xref: /dragonfly/sys/vm/swap_pager.c (revision fcf53d9b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *				New Swap System
74  *				Matthew Dillon
75  *
76  * Radix Bitmap 'blists'.
77  *
78  *	- The new swapper uses the new radix bitmap code.  This should scale
79  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
80  *	  arbitrary degree of fragmentation.
81  *
82  * Features:
83  *
84  *	- on the fly reallocation of swap during putpages.  The new system
85  *	  does not try to keep previously allocated swap blocks for dirty
86  *	  pages.
87  *
88  *	- on the fly deallocation of swap
89  *
90  *	- No more garbage collection required.  Unnecessarily allocated swap
91  *	  blocks only exist for dirty vm_page_t's now and these are already
92  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
93  *	  removal of invalidated swap blocks when a page is destroyed
94  *	  or renamed.
95  *
96  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
97  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/conf.h>
104 #include <sys/kernel.h>
105 #include <sys/proc.h>
106 #include <sys/buf.h>
107 #include <sys/vnode.h>
108 #include <sys/malloc.h>
109 #include <sys/vmmeter.h>
110 #include <sys/sysctl.h>
111 #include <sys/blist.h>
112 #include <sys/lock.h>
113 #include <sys/thread2.h>
114 
115 #ifndef MAX_PAGEOUT_CLUSTER
116 #define MAX_PAGEOUT_CLUSTER 16
117 #endif
118 
119 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
120 
121 #include "opt_swap.h"
122 #include <vm/vm.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_pageout.h>
127 #include <vm/swap_pager.h>
128 #include <vm/vm_extern.h>
129 #include <vm/vm_zone.h>
130 #include <vm/vnode_pager.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define SWBIO_READ	0x01
139 #define SWBIO_WRITE	0x02
140 #define SWBIO_SYNC	0x04
141 
142 struct swfreeinfo {
143 	vm_object_t	object;
144 	vm_pindex_t	basei;
145 	vm_pindex_t	begi;
146 	vm_pindex_t	endi;	/* inclusive */
147 };
148 
149 /*
150  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
151  * in the old system.
152  */
153 
154 int swap_pager_full;		/* swap space exhaustion (task killing) */
155 int vm_swap_cache_use;
156 int vm_swap_anon_use;
157 
158 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
159 static int nsw_rcount;		/* free read buffers			*/
160 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
161 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
162 static int nsw_wcount_async_max;/* assigned maximum			*/
163 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
164 
165 struct blist *swapblist;
166 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
167 static int swap_burst_read = 0;	/* allow burst reading */
168 
169 /* from vm_swap.c */
170 extern struct vnode *swapdev_vp;
171 extern struct swdevt *swdevt;
172 extern int nswdev;
173 
174 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
175 
176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
177         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
178 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
179         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
180 
181 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
182         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
183 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
184         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
185 SYSCTL_INT(_vm, OID_AUTO, swap_size,
186         CTLFLAG_RD, &vm_swap_size, 0, "");
187 
188 vm_zone_t		swap_zone;
189 
190 /*
191  * Red-Black tree for swblock entries
192  *
193  * The caller must hold vm_token
194  */
195 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
196 	     vm_pindex_t, swb_index);
197 
198 int
199 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
200 {
201 	if (swb1->swb_index < swb2->swb_index)
202 		return(-1);
203 	if (swb1->swb_index > swb2->swb_index)
204 		return(1);
205 	return(0);
206 }
207 
208 static
209 int
210 rb_swblock_scancmp(struct swblock *swb, void *data)
211 {
212 	struct swfreeinfo *info = data;
213 
214 	if (swb->swb_index < info->basei)
215 		return(-1);
216 	if (swb->swb_index > info->endi)
217 		return(1);
218 	return(0);
219 }
220 
221 static
222 int
223 rb_swblock_condcmp(struct swblock *swb, void *data)
224 {
225 	struct swfreeinfo *info = data;
226 
227 	if (swb->swb_index < info->basei)
228 		return(-1);
229 	return(0);
230 }
231 
232 /*
233  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
234  * calls hooked from other parts of the VM system and do not appear here.
235  * (see vm/swap_pager.h).
236  */
237 
238 static void	swap_pager_dealloc (vm_object_t object);
239 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
240 static void	swap_chain_iodone(struct bio *biox);
241 
242 struct pagerops swappagerops = {
243 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
244 	swap_pager_getpage,	/* pagein				*/
245 	swap_pager_putpages,	/* pageout				*/
246 	swap_pager_haspage	/* get backing store status for page	*/
247 };
248 
249 /*
250  * dmmax is in page-sized chunks with the new swap system.  It was
251  * dev-bsized chunks in the old.  dmmax is always a power of 2.
252  *
253  * swap_*() routines are externally accessible.  swp_*() routines are
254  * internal.
255  */
256 
257 int dmmax;
258 static int dmmax_mask;
259 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
260 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
261 
262 static __inline void	swp_sizecheck (void);
263 static void	swp_pager_async_iodone (struct bio *bio);
264 
265 /*
266  * Swap bitmap functions
267  */
268 
269 static __inline void	swp_pager_freeswapspace(vm_object_t object,
270 						swblk_t blk, int npages);
271 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
272 
273 /*
274  * Metadata functions
275  */
276 
277 static void swp_pager_meta_convert(vm_object_t);
278 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
279 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
280 static void swp_pager_meta_free_all(vm_object_t);
281 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
282 
283 /*
284  * SWP_SIZECHECK() -	update swap_pager_full indication
285  *
286  *	update the swap_pager_almost_full indication and warn when we are
287  *	about to run out of swap space, using lowat/hiwat hysteresis.
288  *
289  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
290  *
291  * No restrictions on call
292  * This routine may not block.
293  * SMP races are ok.
294  */
295 static __inline void
296 swp_sizecheck(void)
297 {
298 	if (vm_swap_size < nswap_lowat) {
299 		if (swap_pager_almost_full == 0) {
300 			kprintf("swap_pager: out of swap space\n");
301 			swap_pager_almost_full = 1;
302 		}
303 	} else {
304 		swap_pager_full = 0;
305 		if (vm_swap_size > nswap_hiwat)
306 			swap_pager_almost_full = 0;
307 	}
308 }
309 
310 /*
311  * SWAP_PAGER_INIT() -	initialize the swap pager!
312  *
313  *	Expected to be started from system init.  NOTE:  This code is run
314  *	before much else so be careful what you depend on.  Most of the VM
315  *	system has yet to be initialized at this point.
316  *
317  * Called from the low level boot code only.
318  */
319 static void
320 swap_pager_init(void *arg __unused)
321 {
322 	/*
323 	 * Device Stripe, in PAGE_SIZE'd blocks
324 	 */
325 	dmmax = SWB_NPAGES * 2;
326 	dmmax_mask = ~(dmmax - 1);
327 }
328 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
329 
330 /*
331  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
332  *
333  *	Expected to be started from pageout process once, prior to entering
334  *	its main loop.
335  *
336  * Called from the low level boot code only.
337  */
338 void
339 swap_pager_swap_init(void)
340 {
341 	int n, n2;
342 
343 	/*
344 	 * Number of in-transit swap bp operations.  Don't
345 	 * exhaust the pbufs completely.  Make sure we
346 	 * initialize workable values (0 will work for hysteresis
347 	 * but it isn't very efficient).
348 	 *
349 	 * The nsw_cluster_max is constrained by the number of pages an XIO
350 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
351 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
352 	 * constrained by the swap device interleave stripe size.
353 	 *
354 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
355 	 * designed to prevent other I/O from having high latencies due to
356 	 * our pageout I/O.  The value 4 works well for one or two active swap
357 	 * devices but is probably a little low if you have more.  Even so,
358 	 * a higher value would probably generate only a limited improvement
359 	 * with three or four active swap devices since the system does not
360 	 * typically have to pageout at extreme bandwidths.   We will want
361 	 * at least 2 per swap devices, and 4 is a pretty good value if you
362 	 * have one NFS swap device due to the command/ack latency over NFS.
363 	 * So it all works out pretty well.
364 	 */
365 
366 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
367 
368 	nsw_rcount = (nswbuf + 1) / 2;
369 	nsw_wcount_sync = (nswbuf + 3) / 4;
370 	nsw_wcount_async = 4;
371 	nsw_wcount_async_max = nsw_wcount_async;
372 
373 	/*
374 	 * The zone is dynamically allocated so generally size it to
375 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
376 	 * on physical memory of around 8x (each swblock can hold 16 pages).
377 	 *
378 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
379 	 * has increased dramatically.
380 	 */
381 	n = vmstats.v_page_count / 2;
382 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
383 		n = maxswzone / sizeof(struct swblock);
384 	n2 = n;
385 
386 	do {
387 		swap_zone = zinit(
388 			"SWAPMETA",
389 			sizeof(struct swblock),
390 			n,
391 			ZONE_INTERRUPT,
392 			1);
393 		if (swap_zone != NULL)
394 			break;
395 		/*
396 		 * if the allocation failed, try a zone two thirds the
397 		 * size of the previous attempt.
398 		 */
399 		n -= ((n + 2) / 3);
400 	} while (n > 0);
401 
402 	if (swap_zone == NULL)
403 		panic("swap_pager_swap_init: swap_zone == NULL");
404 	if (n2 != n)
405 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
406 }
407 
408 /*
409  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
410  *			its metadata structures.
411  *
412  *	This routine is called from the mmap and fork code to create a new
413  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
414  *	and then converting it with swp_pager_meta_convert().
415  *
416  *	We only support unnamed objects.
417  *
418  * No restrictions.
419  */
420 vm_object_t
421 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
422 {
423 	vm_object_t object;
424 
425 	KKASSERT(handle == NULL);
426 	lwkt_gettoken(&vm_token);
427 	object = vm_object_allocate(OBJT_DEFAULT,
428 				    OFF_TO_IDX(offset + PAGE_MASK + size));
429 	swp_pager_meta_convert(object);
430 	lwkt_reltoken(&vm_token);
431 
432 	return (object);
433 }
434 
435 /*
436  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
437  *
438  *	The swap backing for the object is destroyed.  The code is
439  *	designed such that we can reinstantiate it later, but this
440  *	routine is typically called only when the entire object is
441  *	about to be destroyed.
442  *
443  * The object must be locked or unreferenceable.
444  * No other requirements.
445  */
446 static void
447 swap_pager_dealloc(vm_object_t object)
448 {
449 	lwkt_gettoken(&vm_token);
450 	vm_object_pip_wait(object, "swpdea");
451 
452 	/*
453 	 * Free all remaining metadata.  We only bother to free it from
454 	 * the swap meta data.  We do not attempt to free swapblk's still
455 	 * associated with vm_page_t's for this object.  We do not care
456 	 * if paging is still in progress on some objects.
457 	 */
458 	crit_enter();
459 	swp_pager_meta_free_all(object);
460 	crit_exit();
461 	lwkt_reltoken(&vm_token);
462 }
463 
464 /************************************************************************
465  *			SWAP PAGER BITMAP ROUTINES			*
466  ************************************************************************/
467 
468 /*
469  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
470  *
471  *	Allocate swap for the requested number of pages.  The starting
472  *	swap block number (a page index) is returned or SWAPBLK_NONE
473  *	if the allocation failed.
474  *
475  *	Also has the side effect of advising that somebody made a mistake
476  *	when they configured swap and didn't configure enough.
477  *
478  * The caller must hold vm_token.
479  * This routine may not block.
480  *
481  * NOTE: vm_token must be held to avoid races with bitmap frees from
482  *	 vm_page_remove() via swap_pager_page_removed().
483  */
484 static __inline swblk_t
485 swp_pager_getswapspace(vm_object_t object, int npages)
486 {
487 	swblk_t blk;
488 
489 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
490 
491 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
492 		if (swap_pager_full != 2) {
493 			kprintf("swap_pager_getswapspace: failed\n");
494 			swap_pager_full = 2;
495 			swap_pager_almost_full = 1;
496 		}
497 	} else {
498 		swapacctspace(blk, -npages);
499 		if (object->type == OBJT_SWAP)
500 			vm_swap_anon_use += npages;
501 		else
502 			vm_swap_cache_use += npages;
503 		swp_sizecheck();
504 	}
505 	return(blk);
506 }
507 
508 /*
509  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
510  *
511  *	This routine returns the specified swap blocks back to the bitmap.
512  *
513  *	Note:  This routine may not block (it could in the old swap code),
514  *	and through the use of the new blist routines it does not block.
515  *
516  *	We must be called at splvm() to avoid races with bitmap frees from
517  *	vm_page_remove() aka swap_pager_page_removed().
518  *
519  * The caller must hold vm_token.
520  * This routine may not block.
521  */
522 
523 static __inline void
524 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
525 {
526 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
527 
528 	sp->sw_nused -= npages;
529 	if (object->type == OBJT_SWAP)
530 		vm_swap_anon_use -= npages;
531 	else
532 		vm_swap_cache_use -= npages;
533 
534 	if (sp->sw_flags & SW_CLOSING)
535 		return;
536 
537 	blist_free(swapblist, blk, npages);
538 	vm_swap_size += npages;
539 	swp_sizecheck();
540 }
541 
542 /*
543  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
544  *				range within an object.
545  *
546  *	This is a globally accessible routine.
547  *
548  *	This routine removes swapblk assignments from swap metadata.
549  *
550  *	The external callers of this routine typically have already destroyed
551  *	or renamed vm_page_t's associated with this range in the object so
552  *	we should be ok.
553  *
554  * No requirements.
555  */
556 void
557 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
558 {
559 	crit_enter();
560 	lwkt_gettoken(&vm_token);
561 	swp_pager_meta_free(object, start, size);
562 	lwkt_reltoken(&vm_token);
563 	crit_exit();
564 }
565 
566 /*
567  * No requirements.
568  */
569 void
570 swap_pager_freespace_all(vm_object_t object)
571 {
572 	crit_enter();
573 	lwkt_gettoken(&vm_token);
574 	swp_pager_meta_free_all(object);
575 	lwkt_reltoken(&vm_token);
576 	crit_exit();
577 }
578 
579 /*
580  * This function conditionally frees swap cache swap starting at
581  * (*basei) in the object.  (count) swap blocks will be nominally freed.
582  * The actual number of blocks freed can be more or less than the
583  * requested number.
584  *
585  * This function nominally returns the number of blocks freed.  However,
586  * the actual number of blocks freed may be less then the returned value.
587  * If the function is unable to exhaust the object or if it is able to
588  * free (approximately) the requested number of blocks it returns
589  * a value n > count.
590  *
591  * If we exhaust the object we will return a value n <= count.
592  *
593  * The caller must hold vm_token.
594  *
595  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
596  *	     callers should always pass a count value > 0.
597  */
598 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
599 
600 int
601 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
602 {
603 	struct swfreeinfo info;
604 
605 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
606 
607 	info.object = object;
608 	info.basei = *basei;	/* skip up to this page index */
609 	info.begi = count;	/* max swap pages to destroy */
610 	info.endi = count * 8;	/* max swblocks to scan */
611 
612 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
613 				swap_pager_condfree_callback, &info);
614 	*basei = info.basei;
615 	if (info.endi < 0 && info.begi <= count)
616 		info.begi = count + 1;
617 	return(count - (int)info.begi);
618 }
619 
620 /*
621  * The idea is to free whole meta-block to avoid fragmenting
622  * the swap space or disk I/O.  We only do this if NO VM pages
623  * are present.
624  *
625  * We do not have to deal with clearing PG_SWAPPED in related VM
626  * pages because there are no related VM pages.
627  *
628  * The caller must hold vm_token.
629  */
630 static int
631 swap_pager_condfree_callback(struct swblock *swap, void *data)
632 {
633 	struct swfreeinfo *info = data;
634 	vm_object_t object = info->object;
635 	int i;
636 
637 	for (i = 0; i < SWAP_META_PAGES; ++i) {
638 		if (vm_page_lookup(object, swap->swb_index + i))
639 			break;
640 	}
641 	info->basei = swap->swb_index + SWAP_META_PAGES;
642 	if (i == SWAP_META_PAGES) {
643 		info->begi -= swap->swb_count;
644 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
645 	}
646 	--info->endi;
647 	if ((int)info->begi < 0 || (int)info->endi < 0)
648 		return(-1);
649 	return(0);
650 }
651 
652 /*
653  * Called by vm_page_alloc() when a new VM page is inserted
654  * into a VM object.  Checks whether swap has been assigned to
655  * the page and sets PG_SWAPPED as necessary.
656  *
657  * No requirements.
658  */
659 void
660 swap_pager_page_inserted(vm_page_t m)
661 {
662 	if (m->object->swblock_count) {
663 		crit_enter();
664 		lwkt_gettoken(&vm_token);
665 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
666 			vm_page_flag_set(m, PG_SWAPPED);
667 		lwkt_reltoken(&vm_token);
668 		crit_exit();
669 	}
670 }
671 
672 /*
673  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
674  *
675  *	Assigns swap blocks to the specified range within the object.  The
676  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
677  *
678  *	Returns 0 on success, -1 on failure.
679  *
680  * The caller is responsible for avoiding races in the specified range.
681  * No other requirements.
682  */
683 int
684 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
685 {
686 	int n = 0;
687 	swblk_t blk = SWAPBLK_NONE;
688 	vm_pindex_t beg = start;	/* save start index */
689 
690 	crit_enter();
691 	lwkt_gettoken(&vm_token);
692 	while (size) {
693 		if (n == 0) {
694 			n = BLIST_MAX_ALLOC;
695 			while ((blk = swp_pager_getswapspace(object, n)) ==
696 			       SWAPBLK_NONE)
697 			{
698 				n >>= 1;
699 				if (n == 0) {
700 					swp_pager_meta_free(object, beg,
701 							    start - beg);
702 					lwkt_reltoken(&vm_token);
703 					crit_exit();
704 					return(-1);
705 				}
706 			}
707 		}
708 		swp_pager_meta_build(object, start, blk);
709 		--size;
710 		++start;
711 		++blk;
712 		--n;
713 	}
714 	swp_pager_meta_free(object, start, n);
715 	lwkt_reltoken(&vm_token);
716 	crit_exit();
717 	return(0);
718 }
719 
720 /*
721  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
722  *			and destroy the source.
723  *
724  *	Copy any valid swapblks from the source to the destination.  In
725  *	cases where both the source and destination have a valid swapblk,
726  *	we keep the destination's.
727  *
728  *	This routine is allowed to block.  It may block allocating metadata
729  *	indirectly through swp_pager_meta_build() or if paging is still in
730  *	progress on the source.
731  *
732  *	This routine can be called at any spl
733  *
734  *	XXX vm_page_collapse() kinda expects us not to block because we
735  *	supposedly do not need to allocate memory, but for the moment we
736  *	*may* have to get a little memory from the zone allocator, but
737  *	it is taken from the interrupt memory.  We should be ok.
738  *
739  *	The source object contains no vm_page_t's (which is just as well)
740  *
741  *	The source object is of type OBJT_SWAP.
742  *
743  *	The source and destination objects must be locked or
744  *	inaccessible (XXX are they ?)
745  *
746  * The caller must hold vm_token.
747  */
748 void
749 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
750 		vm_pindex_t base_index, int destroysource)
751 {
752 	vm_pindex_t i;
753 
754 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
755 	crit_enter();
756 
757 	/*
758 	 * transfer source to destination.
759 	 */
760 	for (i = 0; i < dstobject->size; ++i) {
761 		swblk_t dstaddr;
762 
763 		/*
764 		 * Locate (without changing) the swapblk on the destination,
765 		 * unless it is invalid in which case free it silently, or
766 		 * if the destination is a resident page, in which case the
767 		 * source is thrown away.
768 		 */
769 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
770 
771 		if (dstaddr == SWAPBLK_NONE) {
772 			/*
773 			 * Destination has no swapblk and is not resident,
774 			 * copy source.
775 			 */
776 			swblk_t srcaddr;
777 
778 			srcaddr = swp_pager_meta_ctl(srcobject,
779 						     base_index + i, SWM_POP);
780 
781 			if (srcaddr != SWAPBLK_NONE)
782 				swp_pager_meta_build(dstobject, i, srcaddr);
783 		} else {
784 			/*
785 			 * Destination has valid swapblk or it is represented
786 			 * by a resident page.  We destroy the sourceblock.
787 			 */
788 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
789 		}
790 	}
791 
792 	/*
793 	 * Free left over swap blocks in source.
794 	 *
795 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
796 	 * double-remove the object from the swap queues.
797 	 */
798 	if (destroysource) {
799 		/*
800 		 * Reverting the type is not necessary, the caller is going
801 		 * to destroy srcobject directly, but I'm doing it here
802 		 * for consistency since we've removed the object from its
803 		 * queues.
804 		 */
805 		swp_pager_meta_free_all(srcobject);
806 		if (srcobject->type == OBJT_SWAP)
807 			srcobject->type = OBJT_DEFAULT;
808 	}
809 	crit_exit();
810 }
811 
812 /*
813  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
814  *				the requested page.
815  *
816  *	We determine whether good backing store exists for the requested
817  *	page and return TRUE if it does, FALSE if it doesn't.
818  *
819  *	If TRUE, we also try to determine how much valid, contiguous backing
820  *	store exists before and after the requested page within a reasonable
821  *	distance.  We do not try to restrict it to the swap device stripe
822  *	(that is handled in getpages/putpages).  It probably isn't worth
823  *	doing here.
824  *
825  * No requirements.
826  */
827 boolean_t
828 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
829 {
830 	swblk_t blk0;
831 
832 	/*
833 	 * do we have good backing store at the requested index ?
834 	 */
835 
836 	crit_enter();
837 	lwkt_gettoken(&vm_token);
838 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
839 
840 	if (blk0 == SWAPBLK_NONE) {
841 		lwkt_reltoken(&vm_token);
842 		crit_exit();
843 		return (FALSE);
844 	}
845 	lwkt_reltoken(&vm_token);
846 	crit_exit();
847 	return (TRUE);
848 }
849 
850 /*
851  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
852  *
853  * This removes any associated swap backing store, whether valid or
854  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
855  * objects.
856  *
857  * This routine is typically called when a page is made dirty, at
858  * which point any associated swap can be freed.  MADV_FREE also
859  * calls us in a special-case situation
860  *
861  * NOTE!!!  If the page is clean and the swap was valid, the caller
862  * should make the page dirty before calling this routine.  This routine
863  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
864  * depends on it.
865  *
866  * The page must be busied or soft-busied.
867  * The caller must hold vm_token if the caller does not wish to block here.
868  * No other requirements.
869  */
870 void
871 swap_pager_unswapped(vm_page_t m)
872 {
873 	if (m->flags & PG_SWAPPED) {
874 		crit_enter();
875 		lwkt_gettoken(&vm_token);
876 		KKASSERT(m->flags & PG_SWAPPED);
877 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
878 		vm_page_flag_clear(m, PG_SWAPPED);
879 		lwkt_reltoken(&vm_token);
880 		crit_exit();
881 	}
882 }
883 
884 /*
885  * SWAP_PAGER_STRATEGY() - read, write, free blocks
886  *
887  * This implements a VM OBJECT strategy function using swap backing store.
888  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
889  * types.
890  *
891  * This is intended to be a cacheless interface (i.e. caching occurs at
892  * higher levels), and is also used as a swap-based SSD cache for vnode
893  * and device objects.
894  *
895  * All I/O goes directly to and from the swap device.
896  *
897  * We currently attempt to run I/O synchronously or asynchronously as
898  * the caller requests.  This isn't perfect because we loose error
899  * sequencing when we run multiple ops in parallel to satisfy a request.
900  * But this is swap, so we let it all hang out.
901  *
902  * No requirements.
903  */
904 void
905 swap_pager_strategy(vm_object_t object, struct bio *bio)
906 {
907 	struct buf *bp = bio->bio_buf;
908 	struct bio *nbio;
909 	vm_pindex_t start;
910 	vm_pindex_t biox_blkno = 0;
911 	int count;
912 	char *data;
913 	struct bio *biox;
914 	struct buf *bufx;
915 	struct bio_track *track;
916 
917 	/*
918 	 * tracking for swapdev vnode I/Os
919 	 */
920 	if (bp->b_cmd == BUF_CMD_READ)
921 		track = &swapdev_vp->v_track_read;
922 	else
923 		track = &swapdev_vp->v_track_write;
924 
925 	if (bp->b_bcount & PAGE_MASK) {
926 		bp->b_error = EINVAL;
927 		bp->b_flags |= B_ERROR | B_INVAL;
928 		biodone(bio);
929 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
930 			"not page bounded\n",
931 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
932 		return;
933 	}
934 
935 	/*
936 	 * Clear error indication, initialize page index, count, data pointer.
937 	 */
938 	bp->b_error = 0;
939 	bp->b_flags &= ~B_ERROR;
940 	bp->b_resid = bp->b_bcount;
941 
942 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
943 	count = howmany(bp->b_bcount, PAGE_SIZE);
944 	data = bp->b_data;
945 
946 	/*
947 	 * Deal with BUF_CMD_FREEBLKS
948 	 */
949 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
950 		/*
951 		 * FREE PAGE(s) - destroy underlying swap that is no longer
952 		 *		  needed.
953 		 */
954 		crit_enter();
955 		lwkt_gettoken(&vm_token);
956 		swp_pager_meta_free(object, start, count);
957 		lwkt_reltoken(&vm_token);
958 		crit_exit();
959 		bp->b_resid = 0;
960 		biodone(bio);
961 		return;
962 	}
963 
964 	/*
965 	 * We need to be able to create a new cluster of I/O's.  We cannot
966 	 * use the caller fields of the passed bio so push a new one.
967 	 *
968 	 * Because nbio is just a placeholder for the cluster links,
969 	 * we can biodone() the original bio instead of nbio to make
970 	 * things a bit more efficient.
971 	 */
972 	nbio = push_bio(bio);
973 	nbio->bio_offset = bio->bio_offset;
974 	nbio->bio_caller_info1.cluster_head = NULL;
975 	nbio->bio_caller_info2.cluster_tail = NULL;
976 
977 	biox = NULL;
978 	bufx = NULL;
979 
980 	/*
981 	 * Execute read or write
982 	 */
983 	crit_enter();
984 	lwkt_gettoken(&vm_token);
985 	while (count > 0) {
986 		swblk_t blk;
987 
988 		/*
989 		 * Obtain block.  If block not found and writing, allocate a
990 		 * new block and build it into the object.
991 		 */
992 		blk = swp_pager_meta_ctl(object, start, 0);
993 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
994 			blk = swp_pager_getswapspace(object, 1);
995 			if (blk == SWAPBLK_NONE) {
996 				bp->b_error = ENOMEM;
997 				bp->b_flags |= B_ERROR;
998 				break;
999 			}
1000 			swp_pager_meta_build(object, start, blk);
1001 		}
1002 
1003 		/*
1004 		 * Do we have to flush our current collection?  Yes if:
1005 		 *
1006 		 *	- no swap block at this index
1007 		 *	- swap block is not contiguous
1008 		 *	- we cross a physical disk boundry in the
1009 		 *	  stripe.
1010 		 */
1011 		if (
1012 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1013 		     ((biox_blkno ^ blk) & dmmax_mask)
1014 		    )
1015 		) {
1016 			if (bp->b_cmd == BUF_CMD_READ) {
1017 				++mycpu->gd_cnt.v_swapin;
1018 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1019 			} else {
1020 				++mycpu->gd_cnt.v_swapout;
1021 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1022 				bufx->b_dirtyend = bufx->b_bcount;
1023 			}
1024 
1025 			/*
1026 			 * Finished with this buf.
1027 			 */
1028 			KKASSERT(bufx->b_bcount != 0);
1029 			if (bufx->b_cmd != BUF_CMD_READ)
1030 				bufx->b_dirtyend = bufx->b_bcount;
1031 			biox = NULL;
1032 			bufx = NULL;
1033 		}
1034 
1035 		/*
1036 		 * Add new swapblk to biox, instantiating biox if necessary.
1037 		 * Zero-fill reads are able to take a shortcut.
1038 		 */
1039 		if (blk == SWAPBLK_NONE) {
1040 			/*
1041 			 * We can only get here if we are reading.  Since
1042 			 * we are at splvm() we can safely modify b_resid,
1043 			 * even if chain ops are in progress.
1044 			 */
1045 			bzero(data, PAGE_SIZE);
1046 			bp->b_resid -= PAGE_SIZE;
1047 		} else {
1048 			if (biox == NULL) {
1049 				/* XXX chain count > 4, wait to <= 4 */
1050 
1051 				bufx = getpbuf(NULL);
1052 				biox = &bufx->b_bio1;
1053 				cluster_append(nbio, bufx);
1054 				bufx->b_flags |= (bufx->b_flags & B_ORDERED);
1055 				bufx->b_cmd = bp->b_cmd;
1056 				biox->bio_done = swap_chain_iodone;
1057 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1058 				biox->bio_caller_info1.cluster_parent = nbio;
1059 				biox_blkno = blk;
1060 				bufx->b_bcount = 0;
1061 				bufx->b_data = data;
1062 			}
1063 			bufx->b_bcount += PAGE_SIZE;
1064 		}
1065 		--count;
1066 		++start;
1067 		data += PAGE_SIZE;
1068 	}
1069 	lwkt_reltoken(&vm_token);
1070 	crit_exit();
1071 
1072 	/*
1073 	 *  Flush out last buffer
1074 	 */
1075 	if (biox) {
1076 		if (bufx->b_cmd == BUF_CMD_READ) {
1077 			++mycpu->gd_cnt.v_swapin;
1078 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1079 		} else {
1080 			++mycpu->gd_cnt.v_swapout;
1081 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1082 			bufx->b_dirtyend = bufx->b_bcount;
1083 		}
1084 		KKASSERT(bufx->b_bcount);
1085 		if (bufx->b_cmd != BUF_CMD_READ)
1086 			bufx->b_dirtyend = bufx->b_bcount;
1087 		/* biox, bufx = NULL */
1088 	}
1089 
1090 	/*
1091 	 * Now initiate all the I/O.  Be careful looping on our chain as
1092 	 * I/O's may complete while we are still initiating them.
1093 	 *
1094 	 * If the request is a 100% sparse read no bios will be present
1095 	 * and we just biodone() the buffer.
1096 	 */
1097 	nbio->bio_caller_info2.cluster_tail = NULL;
1098 	bufx = nbio->bio_caller_info1.cluster_head;
1099 
1100 	if (bufx) {
1101 		while (bufx) {
1102 			biox = &bufx->b_bio1;
1103 			BUF_KERNPROC(bufx);
1104 			bufx = bufx->b_cluster_next;
1105 			vn_strategy(swapdev_vp, biox);
1106 		}
1107 	} else {
1108 		biodone(bio);
1109 	}
1110 
1111 	/*
1112 	 * Completion of the cluster will also call biodone_chain(nbio).
1113 	 * We never call biodone(nbio) so we don't have to worry about
1114 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1115 	 */
1116 	/**/
1117 }
1118 
1119 /*
1120  * biodone callback
1121  *
1122  * No requirements.
1123  */
1124 static void
1125 swap_chain_iodone(struct bio *biox)
1126 {
1127 	struct buf **nextp;
1128 	struct buf *bufx;	/* chained sub-buffer */
1129 	struct bio *nbio;	/* parent nbio with chain glue */
1130 	struct buf *bp;		/* original bp associated with nbio */
1131 	int chain_empty;
1132 
1133 	bufx = biox->bio_buf;
1134 	nbio = biox->bio_caller_info1.cluster_parent;
1135 	bp = nbio->bio_buf;
1136 
1137 	/*
1138 	 * Update the original buffer
1139 	 */
1140         KKASSERT(bp != NULL);
1141 	if (bufx->b_flags & B_ERROR) {
1142 		atomic_set_int(&bufx->b_flags, B_ERROR);
1143 		bp->b_error = bufx->b_error;	/* race ok */
1144 	} else if (bufx->b_resid != 0) {
1145 		atomic_set_int(&bufx->b_flags, B_ERROR);
1146 		bp->b_error = EINVAL;		/* race ok */
1147 	} else {
1148 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1149 	}
1150 
1151 	/*
1152 	 * Remove us from the chain.
1153 	 */
1154 	spin_lock(&bp->b_lock.lk_spinlock);
1155 	nextp = &nbio->bio_caller_info1.cluster_head;
1156 	while (*nextp != bufx) {
1157 		KKASSERT(*nextp != NULL);
1158 		nextp = &(*nextp)->b_cluster_next;
1159 	}
1160 	*nextp = bufx->b_cluster_next;
1161 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1162 	spin_unlock(&bp->b_lock.lk_spinlock);
1163 
1164 	/*
1165 	 * Clean up bufx.  If the chain is now empty we finish out
1166 	 * the parent.  Note that we may be racing other completions
1167 	 * so we must use the chain_empty status from above.
1168 	 */
1169 	if (chain_empty) {
1170 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1171 			atomic_set_int(&bp->b_flags, B_ERROR);
1172 			bp->b_error = EINVAL;
1173 		}
1174 		biodone_chain(nbio);
1175         }
1176         relpbuf(bufx, NULL);
1177 }
1178 
1179 /*
1180  * SWAP_PAGER_GETPAGES() - bring page in from swap
1181  *
1182  * The requested page may have to be brought in from swap.  Calculate the
1183  * swap block and bring in additional pages if possible.  All pages must
1184  * have contiguous swap block assignments and reside in the same object.
1185  *
1186  * The caller has a single vm_object_pip_add() reference prior to
1187  * calling us and we should return with the same.
1188  *
1189  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1190  * and any additinal pages unbusied.
1191  *
1192  * If the caller encounters a PG_RAM page it will pass it to us even though
1193  * it may be valid and dirty.  We cannot overwrite the page in this case!
1194  * The case is used to allow us to issue pure read-aheads.
1195  *
1196  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1197  *       the PG_RAM page is validated at the same time as mreq.  What we
1198  *	 really need to do is issue a separate read-ahead pbuf.
1199  *
1200  * No requirements.
1201  */
1202 static int
1203 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1204 {
1205 	struct buf *bp;
1206 	struct bio *bio;
1207 	vm_page_t mreq;
1208 	vm_page_t m;
1209 	vm_offset_t kva;
1210 	swblk_t blk;
1211 	int i;
1212 	int j;
1213 	int raonly;
1214 	vm_page_t marray[XIO_INTERNAL_PAGES];
1215 
1216 	mreq = *mpp;
1217 
1218 	if (mreq->object != object) {
1219 		panic("swap_pager_getpages: object mismatch %p/%p",
1220 		    object,
1221 		    mreq->object
1222 		);
1223 	}
1224 
1225 	/*
1226 	 * We don't want to overwrite a fully valid page as it might be
1227 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1228 	 * valid page with PG_RAM set.
1229 	 *
1230 	 * In this case we see if the next page is a suitable page-in
1231 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1232 	 * set on the last page of the read-ahead to continue the pipeline.
1233 	 */
1234 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1235 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size)
1236 			return(VM_PAGER_OK);
1237 		crit_enter();
1238 		lwkt_gettoken(&vm_token);
1239 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1240 		if (blk == SWAPBLK_NONE) {
1241 			lwkt_reltoken(&vm_token);
1242 			crit_exit();
1243 			return(VM_PAGER_OK);
1244 		}
1245 		m = vm_page_lookup(object, mreq->pindex + 1);
1246 		if (m == NULL) {
1247 			m = vm_page_alloc(object, mreq->pindex + 1,
1248 					  VM_ALLOC_QUICK);
1249 			if (m == NULL) {
1250 				lwkt_reltoken(&vm_token);
1251 				crit_exit();
1252 				return(VM_PAGER_OK);
1253 			}
1254 		} else {
1255 			if ((m->flags & PG_BUSY) || m->busy || m->valid) {
1256 				lwkt_reltoken(&vm_token);
1257 				crit_exit();
1258 				return(VM_PAGER_OK);
1259 			}
1260 			vm_page_unqueue_nowakeup(m);
1261 			vm_page_busy(m);
1262 		}
1263 		mreq = m;
1264 		raonly = 1;
1265 		lwkt_reltoken(&vm_token);
1266 		crit_exit();
1267 	} else {
1268 		raonly = 0;
1269 	}
1270 
1271 	/*
1272 	 * Try to block-read contiguous pages from swap if sequential,
1273 	 * otherwise just read one page.  Contiguous pages from swap must
1274 	 * reside within a single device stripe because the I/O cannot be
1275 	 * broken up across multiple stripes.
1276 	 *
1277 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1278 	 * set up such that the case(s) are handled implicitly.
1279 	 */
1280 	crit_enter();
1281 	lwkt_gettoken(&vm_token);
1282 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1283 	marray[0] = mreq;
1284 
1285 	for (i = 1; swap_burst_read &&
1286 		    i < XIO_INTERNAL_PAGES &&
1287 		    mreq->pindex + i < object->size; ++i) {
1288 		swblk_t iblk;
1289 
1290 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1291 		if (iblk != blk + i)
1292 			break;
1293 		if ((blk ^ iblk) & dmmax_mask)
1294 			break;
1295 		m = vm_page_lookup(object, mreq->pindex + i);
1296 		if (m == NULL) {
1297 			m = vm_page_alloc(object, mreq->pindex + i,
1298 					  VM_ALLOC_QUICK);
1299 			if (m == NULL)
1300 				break;
1301 		} else {
1302 			if ((m->flags & PG_BUSY) || m->busy || m->valid)
1303 				break;
1304 			vm_page_unqueue_nowakeup(m);
1305 			vm_page_busy(m);
1306 		}
1307 		marray[i] = m;
1308 	}
1309 	if (i > 1)
1310 		vm_page_flag_set(marray[i - 1], PG_RAM);
1311 
1312 	lwkt_reltoken(&vm_token);
1313 	crit_exit();
1314 
1315 	/*
1316 	 * If mreq is the requested page and we have nothing to do return
1317 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1318 	 * page and must be cleaned up.
1319 	 */
1320 	if (blk == SWAPBLK_NONE) {
1321 		KKASSERT(i == 1);
1322 		if (raonly) {
1323 			vnode_pager_freepage(mreq);
1324 			return(VM_PAGER_OK);
1325 		} else {
1326 			return(VM_PAGER_FAIL);
1327 		}
1328 	}
1329 
1330 	/*
1331 	 * map our page(s) into kva for input
1332 	 */
1333 	bp = getpbuf_kva(&nsw_rcount);
1334 	bio = &bp->b_bio1;
1335 	kva = (vm_offset_t) bp->b_kvabase;
1336 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1337 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1338 
1339 	bp->b_data = (caddr_t)kva;
1340 	bp->b_bcount = PAGE_SIZE * i;
1341 	bp->b_xio.xio_npages = i;
1342 	bio->bio_done = swp_pager_async_iodone;
1343 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1344 	bio->bio_caller_info1.index = SWBIO_READ;
1345 
1346 	/*
1347 	 * Set index.  If raonly set the index beyond the array so all
1348 	 * the pages are treated the same, otherwise the original mreq is
1349 	 * at index 0.
1350 	 */
1351 	if (raonly)
1352 		bio->bio_driver_info = (void *)(intptr_t)i;
1353 	else
1354 		bio->bio_driver_info = (void *)(intptr_t)0;
1355 
1356 	for (j = 0; j < i; ++j)
1357 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1358 
1359 	mycpu->gd_cnt.v_swapin++;
1360 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1361 
1362 	/*
1363 	 * We still hold the lock on mreq, and our automatic completion routine
1364 	 * does not remove it.
1365 	 */
1366 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1367 
1368 	/*
1369 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1370 	 * this point because we automatically release it on completion.
1371 	 * Instead, we look at the one page we are interested in which we
1372 	 * still hold a lock on even through the I/O completion.
1373 	 *
1374 	 * The other pages in our m[] array are also released on completion,
1375 	 * so we cannot assume they are valid anymore either.
1376 	 */
1377 	bp->b_cmd = BUF_CMD_READ;
1378 	BUF_KERNPROC(bp);
1379 	vn_strategy(swapdev_vp, bio);
1380 
1381 	/*
1382 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1383 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1384 	 * is set in the meta-data.
1385 	 *
1386 	 * If this is a read-ahead only we return immediately without
1387 	 * waiting for I/O.
1388 	 */
1389 	if (raonly)
1390 		return(VM_PAGER_OK);
1391 
1392 	/*
1393 	 * Read-ahead includes originally requested page case.
1394 	 */
1395 	crit_enter();
1396 	lwkt_gettoken(&vm_token);
1397 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1398 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1399 		mycpu->gd_cnt.v_intrans++;
1400 		if (tsleep(mreq, 0, "swread", hz*20)) {
1401 			kprintf(
1402 			    "swap_pager: indefinite wait buffer: "
1403 				" offset: %lld, size: %ld\n",
1404 			    (long long)bio->bio_offset,
1405 			    (long)bp->b_bcount
1406 			);
1407 		}
1408 	}
1409 	lwkt_reltoken(&vm_token);
1410 	crit_exit();
1411 
1412 	/*
1413 	 * mreq is left bussied after completion, but all the other pages
1414 	 * are freed.  If we had an unrecoverable read error the page will
1415 	 * not be valid.
1416 	 */
1417 	if (mreq->valid != VM_PAGE_BITS_ALL)
1418 		return(VM_PAGER_ERROR);
1419 	else
1420 		return(VM_PAGER_OK);
1421 
1422 	/*
1423 	 * A final note: in a low swap situation, we cannot deallocate swap
1424 	 * and mark a page dirty here because the caller is likely to mark
1425 	 * the page clean when we return, causing the page to possibly revert
1426 	 * to all-zero's later.
1427 	 */
1428 }
1429 
1430 /*
1431  *	swap_pager_putpages:
1432  *
1433  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1434  *
1435  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1436  *	are automatically converted to SWAP objects.
1437  *
1438  *	In a low memory situation we may block in vn_strategy(), but the new
1439  *	vm_page reservation system coupled with properly written VFS devices
1440  *	should ensure that no low-memory deadlock occurs.  This is an area
1441  *	which needs work.
1442  *
1443  *	The parent has N vm_object_pip_add() references prior to
1444  *	calling us and will remove references for rtvals[] that are
1445  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1446  *	completion.
1447  *
1448  *	The parent has soft-busy'd the pages it passes us and will unbusy
1449  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1450  *	We need to unbusy the rest on I/O completion.
1451  *
1452  * No requirements.
1453  */
1454 void
1455 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1456 		    boolean_t sync, int *rtvals)
1457 {
1458 	int i;
1459 	int n = 0;
1460 
1461 	if (count && m[0]->object != object) {
1462 		panic("swap_pager_getpages: object mismatch %p/%p",
1463 		    object,
1464 		    m[0]->object
1465 		);
1466 	}
1467 
1468 	/*
1469 	 * Step 1
1470 	 *
1471 	 * Turn object into OBJT_SWAP
1472 	 * check for bogus sysops
1473 	 * force sync if not pageout process
1474 	 */
1475 	if (object->type == OBJT_DEFAULT) {
1476 		lwkt_gettoken(&vm_token);
1477 		if (object->type == OBJT_DEFAULT)
1478 			swp_pager_meta_convert(object);
1479 		lwkt_reltoken(&vm_token);
1480 	}
1481 
1482 	if (curthread != pagethread)
1483 		sync = TRUE;
1484 
1485 	/*
1486 	 * Step 2
1487 	 *
1488 	 * Update nsw parameters from swap_async_max sysctl values.
1489 	 * Do not let the sysop crash the machine with bogus numbers.
1490 	 */
1491 
1492 	if (swap_async_max != nsw_wcount_async_max) {
1493 		int n;
1494 
1495 		/*
1496 		 * limit range
1497 		 */
1498 		if ((n = swap_async_max) > nswbuf / 2)
1499 			n = nswbuf / 2;
1500 		if (n < 1)
1501 			n = 1;
1502 		swap_async_max = n;
1503 
1504 		/*
1505 		 * Adjust difference ( if possible ).  If the current async
1506 		 * count is too low, we may not be able to make the adjustment
1507 		 * at this time.
1508 		 */
1509 		crit_enter();
1510 		lwkt_gettoken(&vm_token);
1511 		n -= nsw_wcount_async_max;
1512 		if (nsw_wcount_async + n >= 0) {
1513 			nsw_wcount_async += n;
1514 			nsw_wcount_async_max += n;
1515 			wakeup(&nsw_wcount_async);
1516 		}
1517 		lwkt_reltoken(&vm_token);
1518 		crit_exit();
1519 	}
1520 
1521 	/*
1522 	 * Step 3
1523 	 *
1524 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1525 	 * The page is left dirty until the pageout operation completes
1526 	 * successfully.
1527 	 */
1528 
1529 	for (i = 0; i < count; i += n) {
1530 		struct buf *bp;
1531 		struct bio *bio;
1532 		swblk_t blk;
1533 		int j;
1534 
1535 		/*
1536 		 * Maximum I/O size is limited by a number of factors.
1537 		 */
1538 
1539 		n = min(BLIST_MAX_ALLOC, count - i);
1540 		n = min(n, nsw_cluster_max);
1541 
1542 		crit_enter();
1543 		lwkt_gettoken(&vm_token);
1544 
1545 		/*
1546 		 * Get biggest block of swap we can.  If we fail, fall
1547 		 * back and try to allocate a smaller block.  Don't go
1548 		 * overboard trying to allocate space if it would overly
1549 		 * fragment swap.
1550 		 */
1551 		while (
1552 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1553 		    n > 4
1554 		) {
1555 			n >>= 1;
1556 		}
1557 		if (blk == SWAPBLK_NONE) {
1558 			for (j = 0; j < n; ++j)
1559 				rtvals[i+j] = VM_PAGER_FAIL;
1560 			lwkt_reltoken(&vm_token);
1561 			crit_exit();
1562 			continue;
1563 		}
1564 
1565 		/*
1566 		 * The I/O we are constructing cannot cross a physical
1567 		 * disk boundry in the swap stripe.  Note: we are still
1568 		 * at splvm().
1569 		 */
1570 		if ((blk ^ (blk + n)) & dmmax_mask) {
1571 			j = ((blk + dmmax) & dmmax_mask) - blk;
1572 			swp_pager_freeswapspace(object, blk + j, n - j);
1573 			n = j;
1574 		}
1575 
1576 		/*
1577 		 * All I/O parameters have been satisfied, build the I/O
1578 		 * request and assign the swap space.
1579 		 */
1580 		if (sync == TRUE)
1581 			bp = getpbuf_kva(&nsw_wcount_sync);
1582 		else
1583 			bp = getpbuf_kva(&nsw_wcount_async);
1584 		bio = &bp->b_bio1;
1585 
1586 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1587 
1588 		bp->b_bcount = PAGE_SIZE * n;
1589 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1590 
1591 		for (j = 0; j < n; ++j) {
1592 			vm_page_t mreq = m[i+j];
1593 
1594 			swp_pager_meta_build(mreq->object, mreq->pindex,
1595 					     blk + j);
1596 			if (object->type == OBJT_SWAP)
1597 				vm_page_dirty(mreq);
1598 			rtvals[i+j] = VM_PAGER_OK;
1599 
1600 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1601 			bp->b_xio.xio_pages[j] = mreq;
1602 		}
1603 		bp->b_xio.xio_npages = n;
1604 
1605 		mycpu->gd_cnt.v_swapout++;
1606 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1607 
1608 		lwkt_reltoken(&vm_token);
1609 		crit_exit();
1610 
1611 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1612 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1613 		bp->b_cmd = BUF_CMD_WRITE;
1614 		bio->bio_caller_info1.index = SWBIO_WRITE;
1615 
1616 		/*
1617 		 * asynchronous
1618 		 */
1619 		if (sync == FALSE) {
1620 			bio->bio_done = swp_pager_async_iodone;
1621 			BUF_KERNPROC(bp);
1622 			vn_strategy(swapdev_vp, bio);
1623 
1624 			for (j = 0; j < n; ++j)
1625 				rtvals[i+j] = VM_PAGER_PEND;
1626 			continue;
1627 		}
1628 
1629 		/*
1630 		 * Issue synchrnously.
1631 		 *
1632 		 * Wait for the sync I/O to complete, then update rtvals.
1633 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1634 		 * our async completion routine at the end, thus avoiding a
1635 		 * double-free.
1636 		 */
1637 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1638 		bio->bio_done = biodone_sync;
1639 		bio->bio_flags |= BIO_SYNC;
1640 		vn_strategy(swapdev_vp, bio);
1641 		biowait(bio, "swwrt");
1642 
1643 		for (j = 0; j < n; ++j)
1644 			rtvals[i+j] = VM_PAGER_PEND;
1645 
1646 		/*
1647 		 * Now that we are through with the bp, we can call the
1648 		 * normal async completion, which frees everything up.
1649 		 */
1650 		swp_pager_async_iodone(bio);
1651 	}
1652 }
1653 
1654 /*
1655  * No requirements.
1656  */
1657 void
1658 swap_pager_newswap(void)
1659 {
1660 	swp_sizecheck();
1661 }
1662 
1663 /*
1664  *	swp_pager_async_iodone:
1665  *
1666  *	Completion routine for asynchronous reads and writes from/to swap.
1667  *	Also called manually by synchronous code to finish up a bp.
1668  *
1669  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1670  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1671  *	unbusy all pages except the 'main' request page.  For WRITE
1672  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1673  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1674  *
1675  *	This routine may not block.
1676  *
1677  * No requirements.
1678  */
1679 static void
1680 swp_pager_async_iodone(struct bio *bio)
1681 {
1682 	struct buf *bp = bio->bio_buf;
1683 	vm_object_t object = NULL;
1684 	int i;
1685 	int *nswptr;
1686 
1687 	/*
1688 	 * report error
1689 	 */
1690 	if (bp->b_flags & B_ERROR) {
1691 		kprintf(
1692 		    "swap_pager: I/O error - %s failed; offset %lld,"
1693 			"size %ld, error %d\n",
1694 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1695 			"pagein" : "pageout"),
1696 		    (long long)bio->bio_offset,
1697 		    (long)bp->b_bcount,
1698 		    bp->b_error
1699 		);
1700 	}
1701 
1702 	/*
1703 	 * set object, raise to splvm().
1704 	 */
1705 	if (bp->b_xio.xio_npages)
1706 		object = bp->b_xio.xio_pages[0]->object;
1707 	crit_enter();
1708 	lwkt_gettoken(&vm_token);
1709 
1710 	/*
1711 	 * remove the mapping for kernel virtual
1712 	 */
1713 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1714 
1715 	/*
1716 	 * cleanup pages.  If an error occurs writing to swap, we are in
1717 	 * very serious trouble.  If it happens to be a disk error, though,
1718 	 * we may be able to recover by reassigning the swap later on.  So
1719 	 * in this case we remove the m->swapblk assignment for the page
1720 	 * but do not free it in the rlist.  The errornous block(s) are thus
1721 	 * never reallocated as swap.  Redirty the page and continue.
1722 	 */
1723 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1724 		vm_page_t m = bp->b_xio.xio_pages[i];
1725 
1726 		if (bp->b_flags & B_ERROR) {
1727 			/*
1728 			 * If an error occurs I'd love to throw the swapblk
1729 			 * away without freeing it back to swapspace, so it
1730 			 * can never be used again.  But I can't from an
1731 			 * interrupt.
1732 			 */
1733 
1734 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1735 				/*
1736 				 * When reading, reqpage needs to stay
1737 				 * locked for the parent, but all other
1738 				 * pages can be freed.  We still want to
1739 				 * wakeup the parent waiting on the page,
1740 				 * though.  ( also: pg_reqpage can be -1 and
1741 				 * not match anything ).
1742 				 *
1743 				 * We have to wake specifically requested pages
1744 				 * up too because we cleared PG_SWAPINPROG and
1745 				 * someone may be waiting for that.
1746 				 *
1747 				 * NOTE: for reads, m->dirty will probably
1748 				 * be overridden by the original caller of
1749 				 * getpages so don't play cute tricks here.
1750 				 *
1751 				 * NOTE: We can't actually free the page from
1752 				 * here, because this is an interrupt.  It
1753 				 * is not legal to mess with object->memq
1754 				 * from an interrupt.  Deactivate the page
1755 				 * instead.
1756 				 */
1757 
1758 				m->valid = 0;
1759 				vm_page_flag_clear(m, PG_ZERO);
1760 				vm_page_flag_clear(m, PG_SWAPINPROG);
1761 
1762 				/*
1763 				 * bio_driver_info holds the requested page
1764 				 * index.
1765 				 */
1766 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1767 					vm_page_deactivate(m);
1768 					vm_page_wakeup(m);
1769 				} else {
1770 					vm_page_flash(m);
1771 				}
1772 				/*
1773 				 * If i == bp->b_pager.pg_reqpage, do not wake
1774 				 * the page up.  The caller needs to.
1775 				 */
1776 			} else {
1777 				/*
1778 				 * If a write error occurs remove the swap
1779 				 * assignment (note that PG_SWAPPED may or
1780 				 * may not be set depending on prior activity).
1781 				 *
1782 				 * Re-dirty OBJT_SWAP pages as there is no
1783 				 * other backing store, we can't throw the
1784 				 * page away.
1785 				 *
1786 				 * Non-OBJT_SWAP pages (aka swapcache) must
1787 				 * not be dirtied since they may not have
1788 				 * been dirty in the first place, and they
1789 				 * do have backing store (the vnode).
1790 				 */
1791 				swp_pager_meta_ctl(m->object, m->pindex,
1792 						   SWM_FREE);
1793 				vm_page_flag_clear(m, PG_SWAPPED);
1794 				if (m->object->type == OBJT_SWAP) {
1795 					vm_page_dirty(m);
1796 					vm_page_activate(m);
1797 				}
1798 				vm_page_flag_clear(m, PG_SWAPINPROG);
1799 				vm_page_io_finish(m);
1800 			}
1801 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1802 			/*
1803 			 * NOTE: for reads, m->dirty will probably be
1804 			 * overridden by the original caller of getpages so
1805 			 * we cannot set them in order to free the underlying
1806 			 * swap in a low-swap situation.  I don't think we'd
1807 			 * want to do that anyway, but it was an optimization
1808 			 * that existed in the old swapper for a time before
1809 			 * it got ripped out due to precisely this problem.
1810 			 *
1811 			 * clear PG_ZERO in page.
1812 			 *
1813 			 * If not the requested page then deactivate it.
1814 			 *
1815 			 * Note that the requested page, reqpage, is left
1816 			 * busied, but we still have to wake it up.  The
1817 			 * other pages are released (unbusied) by
1818 			 * vm_page_wakeup().  We do not set reqpage's
1819 			 * valid bits here, it is up to the caller.
1820 			 */
1821 
1822 			/*
1823 			 * NOTE: can't call pmap_clear_modify(m) from an
1824 			 * interrupt thread, the pmap code may have to map
1825 			 * non-kernel pmaps and currently asserts the case.
1826 			 */
1827 			/*pmap_clear_modify(m);*/
1828 			m->valid = VM_PAGE_BITS_ALL;
1829 			vm_page_undirty(m);
1830 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1831 			vm_page_flag_set(m, PG_SWAPPED);
1832 
1833 			/*
1834 			 * We have to wake specifically requested pages
1835 			 * up too because we cleared PG_SWAPINPROG and
1836 			 * could be waiting for it in getpages.  However,
1837 			 * be sure to not unbusy getpages specifically
1838 			 * requested page - getpages expects it to be
1839 			 * left busy.
1840 			 *
1841 			 * bio_driver_info holds the requested page
1842 			 */
1843 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1844 				vm_page_deactivate(m);
1845 				vm_page_wakeup(m);
1846 			} else {
1847 				vm_page_flash(m);
1848 			}
1849 		} else {
1850 			/*
1851 			 * Mark the page clean but do not mess with the
1852 			 * pmap-layer's modified state.  That state should
1853 			 * also be clear since the caller protected the
1854 			 * page VM_PROT_READ, but allow the case.
1855 			 *
1856 			 * We are in an interrupt, avoid pmap operations.
1857 			 *
1858 			 * If we have a severe page deficit, deactivate the
1859 			 * page.  Do not try to cache it (which would also
1860 			 * involve a pmap op), because the page might still
1861 			 * be read-heavy.
1862 			 *
1863 			 * When using the swap to cache clean vnode pages
1864 			 * we do not mess with the page dirty bits.
1865 			 */
1866 			if (m->object->type == OBJT_SWAP)
1867 				vm_page_undirty(m);
1868 			vm_page_flag_clear(m, PG_SWAPINPROG);
1869 			vm_page_flag_set(m, PG_SWAPPED);
1870 			if (vm_page_count_severe())
1871 				vm_page_deactivate(m);
1872 #if 0
1873 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1874 				vm_page_protect(m, VM_PROT_READ);
1875 #endif
1876 			vm_page_io_finish(m);
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * adjust pip.  NOTE: the original parent may still have its own
1882 	 * pip refs on the object.
1883 	 */
1884 
1885 	if (object)
1886 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1887 
1888 	/*
1889 	 * Release the physical I/O buffer.
1890 	 *
1891 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1892 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1893 	 *	 been cleared.
1894 	 */
1895 	if (bio->bio_caller_info1.index & SWBIO_READ)
1896 		nswptr = &nsw_rcount;
1897 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1898 		nswptr = &nsw_wcount_sync;
1899 	else
1900 		nswptr = &nsw_wcount_async;
1901 	bp->b_cmd = BUF_CMD_DONE;
1902 	relpbuf(bp, nswptr);
1903 	lwkt_reltoken(&vm_token);
1904 	crit_exit();
1905 }
1906 
1907 /*
1908  * Fault-in a potentially swapped page and remove the swap reference.
1909  */
1910 static __inline void
1911 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1912 {
1913 	struct vnode *vp;
1914 	vm_page_t m;
1915 	int error;
1916 
1917 	if (object->type == OBJT_VNODE) {
1918 		/*
1919 		 * Any swap related to a vnode is due to swapcache.  We must
1920 		 * vget() the vnode in case it is not active (otherwise
1921 		 * vref() will panic).  Calling vm_object_page_remove() will
1922 		 * ensure that any swap ref is removed interlocked with the
1923 		 * page.  clean_only is set to TRUE so we don't throw away
1924 		 * dirty pages.
1925 		 */
1926 		vp = object->handle;
1927 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1928 		if (error == 0) {
1929 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1930 			vput(vp);
1931 		}
1932 	} else {
1933 		/*
1934 		 * Otherwise it is a normal OBJT_SWAP object and we can
1935 		 * fault the page in and remove the swap.
1936 		 */
1937 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1938 					 VM_PROT_NONE,
1939 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1940 					 &error);
1941 		if (m)
1942 			vm_page_unhold(m);
1943 	}
1944 }
1945 
1946 int
1947 swap_pager_swapoff(int devidx)
1948 {
1949 	vm_object_t object;
1950 	struct swblock *swap;
1951 	swblk_t v;
1952 	int i;
1953 
1954 	lwkt_gettoken(&vm_token);
1955 	lwkt_gettoken(&vmobj_token);
1956 rescan:
1957 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1958 		if (object->type == OBJT_SWAP || object->type == OBJT_VNODE) {
1959 			RB_FOREACH(swap, swblock_rb_tree, &object->swblock_root) {
1960 				for (i = 0; i < SWAP_META_PAGES; ++i) {
1961 					v = swap->swb_pages[i];
1962 					if (v != SWAPBLK_NONE &&
1963 					    BLK2DEVIDX(v) == devidx) {
1964 						swp_pager_fault_page(
1965 						    object,
1966 						    swap->swb_index + i);
1967 						goto rescan;
1968 					}
1969 				}
1970 			}
1971 		}
1972 	}
1973 	lwkt_reltoken(&vmobj_token);
1974 	lwkt_reltoken(&vm_token);
1975 
1976 	/*
1977 	 * If we fail to locate all swblocks we just fail gracefully and
1978 	 * do not bother to restore paging on the swap device.  If the
1979 	 * user wants to retry the user can retry.
1980 	 */
1981 	if (swdevt[devidx].sw_nused)
1982 		return (1);
1983 	else
1984 		return (0);
1985 }
1986 
1987 /************************************************************************
1988  *				SWAP META DATA 				*
1989  ************************************************************************
1990  *
1991  *	These routines manipulate the swap metadata stored in the
1992  *	OBJT_SWAP object.  All swp_*() routines must be called at
1993  *	splvm() because swap can be freed up by the low level vm_page
1994  *	code which might be called from interrupts beyond what splbio() covers.
1995  *
1996  *	Swap metadata is implemented with a global hash and not directly
1997  *	linked into the object.  Instead the object simply contains
1998  *	appropriate tracking counters.
1999  */
2000 
2001 /*
2002  * Lookup the swblock containing the specified swap block index.
2003  *
2004  * The caller must hold vm_token.
2005  */
2006 static __inline
2007 struct swblock *
2008 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2009 {
2010 	index &= ~SWAP_META_MASK;
2011 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2012 }
2013 
2014 /*
2015  * Remove a swblock from the RB tree.
2016  *
2017  * The caller must hold vm_token.
2018  */
2019 static __inline
2020 void
2021 swp_pager_remove(vm_object_t object, struct swblock *swap)
2022 {
2023 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2024 }
2025 
2026 /*
2027  * Convert default object to swap object if necessary
2028  *
2029  * The caller must hold vm_token.
2030  */
2031 static void
2032 swp_pager_meta_convert(vm_object_t object)
2033 {
2034 	if (object->type == OBJT_DEFAULT) {
2035 		object->type = OBJT_SWAP;
2036 		KKASSERT(object->swblock_count == 0);
2037 	}
2038 }
2039 
2040 /*
2041  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2042  *
2043  *	We first convert the object to a swap object if it is a default
2044  *	object.  Vnode objects do not need to be converted.
2045  *
2046  *	The specified swapblk is added to the object's swap metadata.  If
2047  *	the swapblk is not valid, it is freed instead.  Any previously
2048  *	assigned swapblk is freed.
2049  *
2050  * The caller must hold vm_token.
2051  */
2052 static void
2053 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2054 {
2055 	struct swblock *swap;
2056 	struct swblock *oswap;
2057 
2058 	KKASSERT(swapblk != SWAPBLK_NONE);
2059 
2060 	/*
2061 	 * Convert object if necessary
2062 	 */
2063 	if (object->type == OBJT_DEFAULT)
2064 		swp_pager_meta_convert(object);
2065 
2066 	/*
2067 	 * Locate swblock.  If not found create, but if we aren't adding
2068 	 * anything just return.  If we run out of space in the map we wait
2069 	 * and, since the hash table may have changed, retry.
2070 	 */
2071 retry:
2072 	swap = swp_pager_lookup(object, index);
2073 
2074 	if (swap == NULL) {
2075 		int i;
2076 
2077 		swap = zalloc(swap_zone);
2078 		if (swap == NULL) {
2079 			vm_wait(0);
2080 			goto retry;
2081 		}
2082 		swap->swb_index = index & ~SWAP_META_MASK;
2083 		swap->swb_count = 0;
2084 
2085 		++object->swblock_count;
2086 
2087 		for (i = 0; i < SWAP_META_PAGES; ++i)
2088 			swap->swb_pages[i] = SWAPBLK_NONE;
2089 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2090 		KKASSERT(oswap == NULL);
2091 	}
2092 
2093 	/*
2094 	 * Delete prior contents of metadata
2095 	 */
2096 
2097 	index &= SWAP_META_MASK;
2098 
2099 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
2100 		swp_pager_freeswapspace(object, swap->swb_pages[index], 1);
2101 		--swap->swb_count;
2102 	}
2103 
2104 	/*
2105 	 * Enter block into metadata
2106 	 */
2107 	swap->swb_pages[index] = swapblk;
2108 	if (swapblk != SWAPBLK_NONE)
2109 		++swap->swb_count;
2110 }
2111 
2112 /*
2113  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2114  *
2115  *	The requested range of blocks is freed, with any associated swap
2116  *	returned to the swap bitmap.
2117  *
2118  *	This routine will free swap metadata structures as they are cleaned
2119  *	out.  This routine does *NOT* operate on swap metadata associated
2120  *	with resident pages.
2121  *
2122  * The caller must hold vm_token.
2123  */
2124 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2125 
2126 static void
2127 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2128 {
2129 	struct swfreeinfo info;
2130 
2131 	/*
2132 	 * Nothing to do
2133 	 */
2134 	if (object->swblock_count == 0) {
2135 		KKASSERT(RB_EMPTY(&object->swblock_root));
2136 		return;
2137 	}
2138 	if (count == 0)
2139 		return;
2140 
2141 	/*
2142 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2143 	 * due to the 64 bit page index space so we cannot safely iterate.
2144 	 */
2145 	info.object = object;
2146 	info.basei = index & ~SWAP_META_MASK;
2147 	info.begi = index;
2148 	info.endi = index + count - 1;
2149 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2150 				swp_pager_meta_free_callback, &info);
2151 }
2152 
2153 /*
2154  * The caller must hold vm_token.
2155  */
2156 static
2157 int
2158 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2159 {
2160 	struct swfreeinfo *info = data;
2161 	vm_object_t object = info->object;
2162 	int index;
2163 	int eindex;
2164 
2165 	/*
2166 	 * Figure out the range within the swblock.  The wider scan may
2167 	 * return edge-case swap blocks when the start and/or end points
2168 	 * are in the middle of a block.
2169 	 */
2170 	if (swap->swb_index < info->begi)
2171 		index = (int)info->begi & SWAP_META_MASK;
2172 	else
2173 		index = 0;
2174 
2175 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2176 		eindex = (int)info->endi & SWAP_META_MASK;
2177 	else
2178 		eindex = SWAP_META_MASK;
2179 
2180 	/*
2181 	 * Scan and free the blocks.  The loop terminates early
2182 	 * if (swap) runs out of blocks and could be freed.
2183 	 */
2184 	while (index <= eindex) {
2185 		swblk_t v = swap->swb_pages[index];
2186 
2187 		if (v != SWAPBLK_NONE) {
2188 			swp_pager_freeswapspace(object, v, 1);
2189 			swap->swb_pages[index] = SWAPBLK_NONE;
2190 			if (--swap->swb_count == 0) {
2191 				swp_pager_remove(object, swap);
2192 				zfree(swap_zone, swap);
2193 				--object->swblock_count;
2194 				break;
2195 			}
2196 		}
2197 		++index;
2198 	}
2199 	/* swap may be invalid here due to zfree above */
2200 	return(0);
2201 }
2202 
2203 /*
2204  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2205  *
2206  *	This routine locates and destroys all swap metadata associated with
2207  *	an object.
2208  *
2209  * The caller must hold vm_token.
2210  */
2211 static void
2212 swp_pager_meta_free_all(vm_object_t object)
2213 {
2214 	struct swblock *swap;
2215 	int i;
2216 
2217 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2218 		swp_pager_remove(object, swap);
2219 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2220 			swblk_t v = swap->swb_pages[i];
2221 			if (v != SWAPBLK_NONE) {
2222 				--swap->swb_count;
2223 				swp_pager_freeswapspace(object, v, 1);
2224 			}
2225 		}
2226 		if (swap->swb_count != 0)
2227 			panic("swap_pager_meta_free_all: swb_count != 0");
2228 		zfree(swap_zone, swap);
2229 		--object->swblock_count;
2230 	}
2231 	KKASSERT(object->swblock_count == 0);
2232 }
2233 
2234 /*
2235  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2236  *
2237  *	This routine is capable of looking up, popping, or freeing
2238  *	swapblk assignments in the swap meta data or in the vm_page_t.
2239  *	The routine typically returns the swapblk being looked-up, or popped,
2240  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2241  *	was invalid.  This routine will automatically free any invalid
2242  *	meta-data swapblks.
2243  *
2244  *	It is not possible to store invalid swapblks in the swap meta data
2245  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2246  *
2247  *	When acting on a busy resident page and paging is in progress, we
2248  *	have to wait until paging is complete but otherwise can act on the
2249  *	busy page.
2250  *
2251  *	SWM_FREE	remove and free swap block from metadata
2252  *	SWM_POP		remove from meta data but do not free.. pop it out
2253  *
2254  * The caller must hold vm_token.
2255  */
2256 static swblk_t
2257 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2258 {
2259 	struct swblock *swap;
2260 	swblk_t r1;
2261 
2262 	if (object->swblock_count == 0)
2263 		return(SWAPBLK_NONE);
2264 
2265 	r1 = SWAPBLK_NONE;
2266 	swap = swp_pager_lookup(object, index);
2267 
2268 	if (swap != NULL) {
2269 		index &= SWAP_META_MASK;
2270 		r1 = swap->swb_pages[index];
2271 
2272 		if (r1 != SWAPBLK_NONE) {
2273 			if (flags & SWM_FREE) {
2274 				swp_pager_freeswapspace(object, r1, 1);
2275 				r1 = SWAPBLK_NONE;
2276 			}
2277 			if (flags & (SWM_FREE|SWM_POP)) {
2278 				swap->swb_pages[index] = SWAPBLK_NONE;
2279 				if (--swap->swb_count == 0) {
2280 					swp_pager_remove(object, swap);
2281 					zfree(swap_zone, swap);
2282 					--object->swblock_count;
2283 				}
2284 			}
2285 		}
2286 	}
2287 	return(r1);
2288 }
2289