1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 40 * 41 * 42 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 43 * All rights reserved. 44 * 45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 46 * 47 * Permission to use, copy, modify and distribute this software and 48 * its documentation is hereby granted, provided that both the copyright 49 * notice and this permission notice appear in all copies of the 50 * software, derivative works or modified versions, and any portions 51 * thereof, and that both notices appear in supporting documentation. 52 * 53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 56 * 57 * Carnegie Mellon requests users of this software to return to 58 * 59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 60 * School of Computer Science 61 * Carnegie Mellon University 62 * Pittsburgh PA 15213-3890 63 * 64 * any improvements or extensions that they make and grant Carnegie the 65 * rights to redistribute these changes. 66 * 67 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 68 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 69 */ 70 71 /* 72 * Page fault handling module. 73 */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/kernel.h> 78 #include <sys/proc.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vmmeter.h> 82 #include <sys/vkernel.h> 83 #include <sys/lock.h> 84 #include <sys/sysctl.h> 85 86 #include <cpu/lwbuf.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/vm_extern.h> 99 100 #include <sys/thread2.h> 101 #include <vm/vm_page2.h> 102 103 struct faultstate { 104 vm_page_t m; 105 vm_object_t object; 106 vm_pindex_t pindex; 107 vm_prot_t prot; 108 vm_page_t first_m; 109 vm_object_t first_object; 110 vm_prot_t first_prot; 111 vm_map_t map; 112 vm_map_entry_t entry; 113 int lookup_still_valid; 114 int hardfault; 115 int fault_flags; 116 int map_generation; 117 int shared; 118 boolean_t wired; 119 struct vnode *vp; 120 }; 121 122 static int debug_cluster = 0; 123 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 124 int vm_shared_fault = 1; 125 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0, 126 "Allow shared token on vm_object"); 127 static long vm_shared_hit = 0; 128 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0, 129 "Successful shared faults"); 130 static long vm_shared_miss = 0; 131 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0, 132 "Unsuccessful shared faults"); 133 134 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 135 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 136 #if 0 137 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 138 #endif 139 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry); 140 static void vm_prefault(pmap_t pmap, vm_offset_t addra, 141 vm_map_entry_t entry, int prot, int fault_flags); 142 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 143 vm_map_entry_t entry, int prot, int fault_flags); 144 145 static __inline void 146 release_page(struct faultstate *fs) 147 { 148 vm_page_deactivate(fs->m); 149 vm_page_wakeup(fs->m); 150 fs->m = NULL; 151 } 152 153 /* 154 * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse 155 * requires relocking and then checking the timestamp. 156 * 157 * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do 158 * not have to update fs->map_generation here. 159 * 160 * NOTE: This function can fail due to a deadlock against the caller's 161 * holding of a vm_page BUSY. 162 */ 163 static __inline int 164 relock_map(struct faultstate *fs) 165 { 166 int error; 167 168 if (fs->lookup_still_valid == FALSE && fs->map) { 169 error = vm_map_lock_read_to(fs->map); 170 if (error == 0) 171 fs->lookup_still_valid = TRUE; 172 } else { 173 error = 0; 174 } 175 return error; 176 } 177 178 static __inline void 179 unlock_map(struct faultstate *fs) 180 { 181 if (fs->lookup_still_valid && fs->map) { 182 vm_map_lookup_done(fs->map, fs->entry, 0); 183 fs->lookup_still_valid = FALSE; 184 } 185 } 186 187 /* 188 * Clean up after a successful call to vm_fault_object() so another call 189 * to vm_fault_object() can be made. 190 */ 191 static void 192 _cleanup_successful_fault(struct faultstate *fs, int relock) 193 { 194 if (fs->object != fs->first_object) { 195 vm_page_free(fs->first_m); 196 vm_object_pip_wakeup(fs->object); 197 fs->first_m = NULL; 198 } 199 fs->object = fs->first_object; 200 if (relock && fs->lookup_still_valid == FALSE) { 201 if (fs->map) 202 vm_map_lock_read(fs->map); 203 fs->lookup_still_valid = TRUE; 204 } 205 } 206 207 static void 208 _unlock_things(struct faultstate *fs, int dealloc) 209 { 210 _cleanup_successful_fault(fs, 0); 211 if (dealloc) { 212 /*vm_object_deallocate(fs->first_object);*/ 213 /*fs->first_object = NULL; drop used later on */ 214 } 215 unlock_map(fs); 216 if (fs->vp != NULL) { 217 vput(fs->vp); 218 fs->vp = NULL; 219 } 220 } 221 222 #define unlock_things(fs) _unlock_things(fs, 0) 223 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 224 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 225 226 /* 227 * TRYPAGER 228 * 229 * Determine if the pager for the current object *might* contain the page. 230 * 231 * We only need to try the pager if this is not a default object (default 232 * objects are zero-fill and have no real pager), and if we are not taking 233 * a wiring fault or if the FS entry is wired. 234 */ 235 #define TRYPAGER(fs) \ 236 (fs->object->type != OBJT_DEFAULT && \ 237 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 238 239 /* 240 * vm_fault: 241 * 242 * Handle a page fault occuring at the given address, requiring the given 243 * permissions, in the map specified. If successful, the page is inserted 244 * into the associated physical map. 245 * 246 * NOTE: The given address should be truncated to the proper page address. 247 * 248 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 249 * a standard error specifying why the fault is fatal is returned. 250 * 251 * The map in question must be referenced, and remains so. 252 * The caller may hold no locks. 253 * No other requirements. 254 */ 255 int 256 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 257 { 258 int result; 259 vm_pindex_t first_pindex; 260 struct faultstate fs; 261 struct lwp *lp; 262 int growstack; 263 264 vm_page_pcpu_cache(); 265 fs.hardfault = 0; 266 fs.fault_flags = fault_flags; 267 fs.vp = NULL; 268 growstack = 1; 269 270 if ((lp = curthread->td_lwp) != NULL) 271 lp->lwp_flags |= LWP_PAGING; 272 273 lwkt_gettoken(&map->token); 274 275 RetryFault: 276 /* 277 * Find the vm_map_entry representing the backing store and resolve 278 * the top level object and page index. This may have the side 279 * effect of executing a copy-on-write on the map entry and/or 280 * creating a shadow object, but will not COW any actual VM pages. 281 * 282 * On success fs.map is left read-locked and various other fields 283 * are initialized but not otherwise referenced or locked. 284 * 285 * NOTE! vm_map_lookup will try to upgrade the fault_type to 286 * VM_FAULT_WRITE if the map entry is a virtual page table and also 287 * writable, so we can set the 'A'accessed bit in the virtual page 288 * table entry. 289 */ 290 fs.map = map; 291 result = vm_map_lookup(&fs.map, vaddr, fault_type, 292 &fs.entry, &fs.first_object, 293 &first_pindex, &fs.first_prot, &fs.wired); 294 295 /* 296 * If the lookup failed or the map protections are incompatible, 297 * the fault generally fails. However, if the caller is trying 298 * to do a user wiring we have more work to do. 299 */ 300 if (result != KERN_SUCCESS) { 301 if (result != KERN_PROTECTION_FAILURE || 302 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 303 { 304 if (result == KERN_INVALID_ADDRESS && growstack && 305 map != &kernel_map && curproc != NULL) { 306 result = vm_map_growstack(curproc, vaddr); 307 if (result == KERN_SUCCESS) { 308 growstack = 0; 309 goto RetryFault; 310 } 311 result = KERN_FAILURE; 312 } 313 goto done; 314 } 315 316 /* 317 * If we are user-wiring a r/w segment, and it is COW, then 318 * we need to do the COW operation. Note that we don't 319 * currently COW RO sections now, because it is NOT desirable 320 * to COW .text. We simply keep .text from ever being COW'ed 321 * and take the heat that one cannot debug wired .text sections. 322 */ 323 result = vm_map_lookup(&fs.map, vaddr, 324 VM_PROT_READ|VM_PROT_WRITE| 325 VM_PROT_OVERRIDE_WRITE, 326 &fs.entry, &fs.first_object, 327 &first_pindex, &fs.first_prot, 328 &fs.wired); 329 if (result != KERN_SUCCESS) { 330 result = KERN_FAILURE; 331 goto done; 332 } 333 334 /* 335 * If we don't COW now, on a user wire, the user will never 336 * be able to write to the mapping. If we don't make this 337 * restriction, the bookkeeping would be nearly impossible. 338 * 339 * XXX We have a shared lock, this will have a MP race but 340 * I don't see how it can hurt anything. 341 */ 342 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 343 fs.entry->max_protection &= ~VM_PROT_WRITE; 344 } 345 346 /* 347 * fs.map is read-locked 348 * 349 * Misc checks. Save the map generation number to detect races. 350 */ 351 fs.map_generation = fs.map->timestamp; 352 fs.lookup_still_valid = TRUE; 353 fs.first_m = NULL; 354 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 355 fs.shared = 0; 356 fs.vp = NULL; 357 358 if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) { 359 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 360 panic("vm_fault: fault on nofault entry, addr: %p", 361 (void *)vaddr); 362 } 363 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) && 364 vaddr >= fs.entry->start && 365 vaddr < fs.entry->start + PAGE_SIZE) { 366 panic("vm_fault: fault on stack guard, addr: %p", 367 (void *)vaddr); 368 } 369 } 370 371 /* 372 * A system map entry may return a NULL object. No object means 373 * no pager means an unrecoverable kernel fault. 374 */ 375 if (fs.first_object == NULL) { 376 panic("vm_fault: unrecoverable fault at %p in entry %p", 377 (void *)vaddr, fs.entry); 378 } 379 380 /* 381 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT 382 * is set. 383 */ 384 if ((curthread->td_flags & TDF_NOFAULT) && 385 (fs.first_object->type == OBJT_VNODE || 386 fs.first_object->backing_object)) { 387 result = KERN_FAILURE; 388 unlock_things(&fs); 389 goto done2; 390 } 391 392 /* 393 * Attempt to shortcut the fault if the lookup returns a 394 * terminal object and the page is present. This allows us 395 * to obtain a shared token on the object instead of an exclusive 396 * token, which theoretically should allow concurrent faults. 397 * 398 * We cannot acquire a shared token on kernel_map, at least not 399 * on i386, because the i386 pmap code uses the kernel_object for 400 * its page table page management, resulting in a shared->exclusive 401 * sequence which will deadlock. This will not happen normally 402 * anyway, except on well cached pageable kmem (like pipe buffers), 403 * so it should not impact performance. 404 */ 405 if (vm_shared_fault && 406 fs.first_object->backing_object == NULL && 407 fs.entry->maptype == VM_MAPTYPE_NORMAL && 408 fs.map != &kernel_map) { 409 int error; 410 vm_object_hold_shared(fs.first_object); 411 /*fs.vp = vnode_pager_lock(fs.first_object);*/ 412 fs.m = vm_page_lookup_busy_try(fs.first_object, 413 first_pindex, 414 TRUE, &error); 415 if (error == 0 && fs.m) { 416 /* 417 * Activate the page and figure out if we can 418 * short-cut a quick mapping. 419 * 420 * WARNING! We cannot call swap_pager_unswapped() 421 * with a shared token! Note that we 422 * have to test fs.first_prot here. 423 */ 424 vm_page_activate(fs.m); 425 if (fs.m->valid == VM_PAGE_BITS_ALL && 426 ((fs.m->flags & PG_SWAPPED) == 0 || 427 (fs.first_prot & VM_PROT_WRITE) == 0 || 428 (fs.fault_flags & VM_FAULT_DIRTY) == 0)) { 429 fs.lookup_still_valid = TRUE; 430 fs.first_m = NULL; 431 fs.object = fs.first_object; 432 fs.prot = fs.first_prot; 433 if (fs.wired) 434 fault_type = fs.first_prot; 435 if (fs.prot & VM_PROT_WRITE) { 436 vm_object_set_writeable_dirty( 437 fs.m->object); 438 vm_set_nosync(fs.m, fs.entry); 439 if (fs.fault_flags & VM_FAULT_DIRTY) { 440 vm_page_dirty(fs.m); 441 /*XXX*/ 442 swap_pager_unswapped(fs.m); 443 } 444 } 445 result = KERN_SUCCESS; 446 fault_flags |= VM_FAULT_BURST_QUICK; 447 fault_flags &= ~VM_FAULT_BURST; 448 ++vm_shared_hit; 449 goto quick; 450 } 451 vm_page_wakeup(fs.m); 452 fs.m = NULL; 453 } 454 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/ 455 } 456 ++vm_shared_miss; 457 458 /* 459 * Bump the paging-in-progress count to prevent size changes (e.g. 460 * truncation operations) during I/O. This must be done after 461 * obtaining the vnode lock in order to avoid possible deadlocks. 462 */ 463 vm_object_hold(fs.first_object); 464 if (fs.vp == NULL) 465 fs.vp = vnode_pager_lock(fs.first_object); 466 467 #if 0 468 fs.lookup_still_valid = TRUE; 469 fs.first_m = NULL; 470 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 471 fs.shared = 0; 472 #endif 473 474 /* 475 * If the entry is wired we cannot change the page protection. 476 */ 477 if (fs.wired) 478 fault_type = fs.first_prot; 479 480 /* 481 * The page we want is at (first_object, first_pindex), but if the 482 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 483 * page table to figure out the actual pindex. 484 * 485 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 486 * ONLY 487 */ 488 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 489 result = vm_fault_vpagetable(&fs, &first_pindex, 490 fs.entry->aux.master_pde, 491 fault_type); 492 if (result == KERN_TRY_AGAIN) { 493 vm_object_drop(fs.first_object); 494 goto RetryFault; 495 } 496 if (result != KERN_SUCCESS) 497 goto done; 498 } 499 500 /* 501 * Now we have the actual (object, pindex), fault in the page. If 502 * vm_fault_object() fails it will unlock and deallocate the FS 503 * data. If it succeeds everything remains locked and fs->object 504 * will have an additional PIP count if it is not equal to 505 * fs->first_object 506 * 507 * vm_fault_object will set fs->prot for the pmap operation. It is 508 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 509 * page can be safely written. However, it will force a read-only 510 * mapping for a read fault if the memory is managed by a virtual 511 * page table. 512 * 513 * If the fault code uses the shared object lock shortcut 514 * we must not try to burst (we can't allocate VM pages). 515 */ 516 result = vm_fault_object(&fs, first_pindex, fault_type); 517 if (fs.shared) 518 fault_flags &= ~VM_FAULT_BURST; 519 520 if (result == KERN_TRY_AGAIN) { 521 vm_object_drop(fs.first_object); 522 goto RetryFault; 523 } 524 if (result != KERN_SUCCESS) 525 goto done; 526 527 quick: 528 /* 529 * On success vm_fault_object() does not unlock or deallocate, and fs.m 530 * will contain a busied page. 531 * 532 * Enter the page into the pmap and do pmap-related adjustments. 533 */ 534 vm_page_flag_set(fs.m, PG_REFERENCED); 535 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry); 536 mycpu->gd_cnt.v_vm_faults++; 537 if (curthread->td_lwp) 538 ++curthread->td_lwp->lwp_ru.ru_minflt; 539 540 /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */ 541 KKASSERT(fs.m->flags & PG_BUSY); 542 543 /* 544 * If the page is not wired down, then put it where the pageout daemon 545 * can find it. 546 */ 547 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 548 if (fs.wired) 549 vm_page_wire(fs.m); 550 else 551 vm_page_unwire(fs.m, 1); 552 } else { 553 vm_page_activate(fs.m); 554 } 555 vm_page_wakeup(fs.m); 556 557 /* 558 * Burst in a few more pages if possible. The fs.map should still 559 * be locked. To avoid interlocking against a vnode->getblk 560 * operation we had to be sure to unbusy our primary vm_page above 561 * first. 562 */ 563 if (fault_flags & VM_FAULT_BURST) { 564 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 565 && fs.wired == 0) { 566 vm_prefault(fs.map->pmap, vaddr, 567 fs.entry, fs.prot, fault_flags); 568 } 569 } 570 if (fault_flags & VM_FAULT_BURST_QUICK) { 571 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 572 && fs.wired == 0) { 573 vm_prefault_quick(fs.map->pmap, vaddr, 574 fs.entry, fs.prot, fault_flags); 575 } 576 } 577 578 /* 579 * Unlock everything, and return 580 */ 581 unlock_things(&fs); 582 583 if (curthread->td_lwp) { 584 if (fs.hardfault) { 585 curthread->td_lwp->lwp_ru.ru_majflt++; 586 } else { 587 curthread->td_lwp->lwp_ru.ru_minflt++; 588 } 589 } 590 591 /*vm_object_deallocate(fs.first_object);*/ 592 /*fs.m = NULL; */ 593 /*fs.first_object = NULL; must still drop later */ 594 595 result = KERN_SUCCESS; 596 done: 597 if (fs.first_object) 598 vm_object_drop(fs.first_object); 599 done2: 600 lwkt_reltoken(&map->token); 601 if (lp) 602 lp->lwp_flags &= ~LWP_PAGING; 603 return (result); 604 } 605 606 /* 607 * Fault in the specified virtual address in the current process map, 608 * returning a held VM page or NULL. See vm_fault_page() for more 609 * information. 610 * 611 * No requirements. 612 */ 613 vm_page_t 614 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 615 { 616 struct lwp *lp = curthread->td_lwp; 617 vm_page_t m; 618 619 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 620 fault_type, VM_FAULT_NORMAL, errorp); 621 return(m); 622 } 623 624 /* 625 * Fault in the specified virtual address in the specified map, doing all 626 * necessary manipulation of the object store and all necessary I/O. Return 627 * a held VM page or NULL, and set *errorp. The related pmap is not 628 * updated. 629 * 630 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 631 * and marked PG_REFERENCED as well. 632 * 633 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 634 * error will be returned. 635 * 636 * No requirements. 637 */ 638 vm_page_t 639 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 640 int fault_flags, int *errorp) 641 { 642 vm_pindex_t first_pindex; 643 struct faultstate fs; 644 int result; 645 vm_prot_t orig_fault_type = fault_type; 646 647 fs.hardfault = 0; 648 fs.fault_flags = fault_flags; 649 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 650 651 lwkt_gettoken(&map->token); 652 653 RetryFault: 654 /* 655 * Find the vm_map_entry representing the backing store and resolve 656 * the top level object and page index. This may have the side 657 * effect of executing a copy-on-write on the map entry and/or 658 * creating a shadow object, but will not COW any actual VM pages. 659 * 660 * On success fs.map is left read-locked and various other fields 661 * are initialized but not otherwise referenced or locked. 662 * 663 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 664 * if the map entry is a virtual page table and also writable, 665 * so we can set the 'A'accessed bit in the virtual page table entry. 666 */ 667 fs.map = map; 668 result = vm_map_lookup(&fs.map, vaddr, fault_type, 669 &fs.entry, &fs.first_object, 670 &first_pindex, &fs.first_prot, &fs.wired); 671 672 if (result != KERN_SUCCESS) { 673 *errorp = result; 674 fs.m = NULL; 675 goto done; 676 } 677 678 /* 679 * fs.map is read-locked 680 * 681 * Misc checks. Save the map generation number to detect races. 682 */ 683 fs.map_generation = fs.map->timestamp; 684 fs.lookup_still_valid = TRUE; 685 fs.first_m = NULL; 686 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 687 fs.shared = 0; 688 fs.vp = NULL; 689 690 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 691 panic("vm_fault: fault on nofault entry, addr: %lx", 692 (u_long)vaddr); 693 } 694 695 /* 696 * A system map entry may return a NULL object. No object means 697 * no pager means an unrecoverable kernel fault. 698 */ 699 if (fs.first_object == NULL) { 700 panic("vm_fault: unrecoverable fault at %p in entry %p", 701 (void *)vaddr, fs.entry); 702 } 703 704 /* 705 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT 706 * is set. 707 */ 708 if ((curthread->td_flags & TDF_NOFAULT) && 709 (fs.first_object->type == OBJT_VNODE || 710 fs.first_object->backing_object)) { 711 *errorp = KERN_FAILURE; 712 unlock_things(&fs); 713 goto done2; 714 } 715 716 /* 717 * Make a reference to this object to prevent its disposal while we 718 * are messing with it. Once we have the reference, the map is free 719 * to be diddled. Since objects reference their shadows (and copies), 720 * they will stay around as well. 721 * 722 * The reference should also prevent an unexpected collapse of the 723 * parent that might move pages from the current object into the 724 * parent unexpectedly, resulting in corruption. 725 * 726 * Bump the paging-in-progress count to prevent size changes (e.g. 727 * truncation operations) during I/O. This must be done after 728 * obtaining the vnode lock in order to avoid possible deadlocks. 729 */ 730 vm_object_hold(fs.first_object); 731 fs.vp = vnode_pager_lock(fs.first_object); 732 733 #if 0 734 fs.lookup_still_valid = TRUE; 735 fs.first_m = NULL; 736 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 737 fs.shared = 0; 738 #endif 739 740 /* 741 * If the entry is wired we cannot change the page protection. 742 */ 743 if (fs.wired) 744 fault_type = fs.first_prot; 745 746 /* 747 * The page we want is at (first_object, first_pindex), but if the 748 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 749 * page table to figure out the actual pindex. 750 * 751 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 752 * ONLY 753 */ 754 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 755 result = vm_fault_vpagetable(&fs, &first_pindex, 756 fs.entry->aux.master_pde, 757 fault_type); 758 if (result == KERN_TRY_AGAIN) { 759 vm_object_drop(fs.first_object); 760 goto RetryFault; 761 } 762 if (result != KERN_SUCCESS) { 763 *errorp = result; 764 fs.m = NULL; 765 goto done; 766 } 767 } 768 769 /* 770 * Now we have the actual (object, pindex), fault in the page. If 771 * vm_fault_object() fails it will unlock and deallocate the FS 772 * data. If it succeeds everything remains locked and fs->object 773 * will have an additinal PIP count if it is not equal to 774 * fs->first_object 775 */ 776 fs.m = NULL; 777 result = vm_fault_object(&fs, first_pindex, fault_type); 778 779 if (result == KERN_TRY_AGAIN) { 780 vm_object_drop(fs.first_object); 781 goto RetryFault; 782 } 783 if (result != KERN_SUCCESS) { 784 *errorp = result; 785 fs.m = NULL; 786 goto done; 787 } 788 789 if ((orig_fault_type & VM_PROT_WRITE) && 790 (fs.prot & VM_PROT_WRITE) == 0) { 791 *errorp = KERN_PROTECTION_FAILURE; 792 unlock_and_deallocate(&fs); 793 fs.m = NULL; 794 goto done; 795 } 796 797 /* 798 * DO NOT UPDATE THE PMAP!!! This function may be called for 799 * a pmap unrelated to the current process pmap, in which case 800 * the current cpu core will not be listed in the pmap's pm_active 801 * mask. Thus invalidation interlocks will fail to work properly. 802 * 803 * (for example, 'ps' uses procfs to read program arguments from 804 * each process's stack). 805 * 806 * In addition to the above this function will be called to acquire 807 * a page that might already be faulted in, re-faulting it 808 * continuously is a waste of time. 809 * 810 * XXX could this have been the cause of our random seg-fault 811 * issues? procfs accesses user stacks. 812 */ 813 vm_page_flag_set(fs.m, PG_REFERENCED); 814 #if 0 815 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL); 816 mycpu->gd_cnt.v_vm_faults++; 817 if (curthread->td_lwp) 818 ++curthread->td_lwp->lwp_ru.ru_minflt; 819 #endif 820 821 /* 822 * On success vm_fault_object() does not unlock or deallocate, and fs.m 823 * will contain a busied page. So we must unlock here after having 824 * messed with the pmap. 825 */ 826 unlock_things(&fs); 827 828 /* 829 * Return a held page. We are not doing any pmap manipulation so do 830 * not set PG_MAPPED. However, adjust the page flags according to 831 * the fault type because the caller may not use a managed pmapping 832 * (so we don't want to lose the fact that the page will be dirtied 833 * if a write fault was specified). 834 */ 835 vm_page_hold(fs.m); 836 vm_page_activate(fs.m); 837 if (fault_type & VM_PROT_WRITE) 838 vm_page_dirty(fs.m); 839 840 if (curthread->td_lwp) { 841 if (fs.hardfault) { 842 curthread->td_lwp->lwp_ru.ru_majflt++; 843 } else { 844 curthread->td_lwp->lwp_ru.ru_minflt++; 845 } 846 } 847 848 /* 849 * Unlock everything, and return the held page. 850 */ 851 vm_page_wakeup(fs.m); 852 /*vm_object_deallocate(fs.first_object);*/ 853 /*fs.first_object = NULL; */ 854 *errorp = 0; 855 856 done: 857 if (fs.first_object) 858 vm_object_drop(fs.first_object); 859 done2: 860 lwkt_reltoken(&map->token); 861 return(fs.m); 862 } 863 864 /* 865 * Fault in the specified (object,offset), dirty the returned page as 866 * needed. If the requested fault_type cannot be done NULL and an 867 * error is returned. 868 * 869 * A held (but not busied) page is returned. 870 * 871 * No requirements. 872 */ 873 vm_page_t 874 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 875 vm_prot_t fault_type, int fault_flags, 876 int shared, int *errorp) 877 { 878 int result; 879 vm_pindex_t first_pindex; 880 struct faultstate fs; 881 struct vm_map_entry entry; 882 883 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 884 bzero(&entry, sizeof(entry)); 885 entry.object.vm_object = object; 886 entry.maptype = VM_MAPTYPE_NORMAL; 887 entry.protection = entry.max_protection = fault_type; 888 889 fs.hardfault = 0; 890 fs.fault_flags = fault_flags; 891 fs.map = NULL; 892 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 893 894 RetryFault: 895 896 fs.first_object = object; 897 first_pindex = OFF_TO_IDX(offset); 898 fs.entry = &entry; 899 fs.first_prot = fault_type; 900 fs.wired = 0; 901 fs.shared = shared; 902 /*fs.map_generation = 0; unused */ 903 904 /* 905 * Make a reference to this object to prevent its disposal while we 906 * are messing with it. Once we have the reference, the map is free 907 * to be diddled. Since objects reference their shadows (and copies), 908 * they will stay around as well. 909 * 910 * The reference should also prevent an unexpected collapse of the 911 * parent that might move pages from the current object into the 912 * parent unexpectedly, resulting in corruption. 913 * 914 * Bump the paging-in-progress count to prevent size changes (e.g. 915 * truncation operations) during I/O. This must be done after 916 * obtaining the vnode lock in order to avoid possible deadlocks. 917 */ 918 fs.vp = vnode_pager_lock(fs.first_object); 919 920 fs.lookup_still_valid = TRUE; 921 fs.first_m = NULL; 922 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 923 924 #if 0 925 /* XXX future - ability to operate on VM object using vpagetable */ 926 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 927 result = vm_fault_vpagetable(&fs, &first_pindex, 928 fs.entry->aux.master_pde, 929 fault_type); 930 if (result == KERN_TRY_AGAIN) 931 goto RetryFault; 932 if (result != KERN_SUCCESS) { 933 *errorp = result; 934 return (NULL); 935 } 936 } 937 #endif 938 939 /* 940 * Now we have the actual (object, pindex), fault in the page. If 941 * vm_fault_object() fails it will unlock and deallocate the FS 942 * data. If it succeeds everything remains locked and fs->object 943 * will have an additinal PIP count if it is not equal to 944 * fs->first_object 945 */ 946 result = vm_fault_object(&fs, first_pindex, fault_type); 947 948 if (result == KERN_TRY_AGAIN) 949 goto RetryFault; 950 if (result != KERN_SUCCESS) { 951 *errorp = result; 952 return(NULL); 953 } 954 955 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 956 *errorp = KERN_PROTECTION_FAILURE; 957 unlock_and_deallocate(&fs); 958 return(NULL); 959 } 960 961 /* 962 * On success vm_fault_object() does not unlock or deallocate, so we 963 * do it here. Note that the returned fs.m will be busied. 964 */ 965 unlock_things(&fs); 966 967 /* 968 * Return a held page. We are not doing any pmap manipulation so do 969 * not set PG_MAPPED. However, adjust the page flags according to 970 * the fault type because the caller may not use a managed pmapping 971 * (so we don't want to lose the fact that the page will be dirtied 972 * if a write fault was specified). 973 */ 974 vm_page_hold(fs.m); 975 vm_page_activate(fs.m); 976 if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY)) 977 vm_page_dirty(fs.m); 978 if (fault_flags & VM_FAULT_UNSWAP) 979 swap_pager_unswapped(fs.m); 980 981 /* 982 * Indicate that the page was accessed. 983 */ 984 vm_page_flag_set(fs.m, PG_REFERENCED); 985 986 if (curthread->td_lwp) { 987 if (fs.hardfault) { 988 curthread->td_lwp->lwp_ru.ru_majflt++; 989 } else { 990 curthread->td_lwp->lwp_ru.ru_minflt++; 991 } 992 } 993 994 /* 995 * Unlock everything, and return the held page. 996 */ 997 vm_page_wakeup(fs.m); 998 /*vm_object_deallocate(fs.first_object);*/ 999 /*fs.first_object = NULL; */ 1000 1001 *errorp = 0; 1002 return(fs.m); 1003 } 1004 1005 /* 1006 * Translate the virtual page number (first_pindex) that is relative 1007 * to the address space into a logical page number that is relative to the 1008 * backing object. Use the virtual page table pointed to by (vpte). 1009 * 1010 * This implements an N-level page table. Any level can terminate the 1011 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 1012 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 1013 */ 1014 static 1015 int 1016 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 1017 vpte_t vpte, int fault_type) 1018 { 1019 struct lwbuf *lwb; 1020 struct lwbuf lwb_cache; 1021 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 1022 int result = KERN_SUCCESS; 1023 vpte_t *ptep; 1024 1025 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 1026 for (;;) { 1027 /* 1028 * We cannot proceed if the vpte is not valid, not readable 1029 * for a read fault, or not writable for a write fault. 1030 */ 1031 if ((vpte & VPTE_V) == 0) { 1032 unlock_and_deallocate(fs); 1033 return (KERN_FAILURE); 1034 } 1035 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 1036 unlock_and_deallocate(fs); 1037 return (KERN_FAILURE); 1038 } 1039 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 1040 unlock_and_deallocate(fs); 1041 return (KERN_FAILURE); 1042 } 1043 if ((vpte & VPTE_PS) || vshift == 0) 1044 break; 1045 KKASSERT(vshift >= VPTE_PAGE_BITS); 1046 1047 /* 1048 * Get the page table page. Nominally we only read the page 1049 * table, but since we are actively setting VPTE_M and VPTE_A, 1050 * tell vm_fault_object() that we are writing it. 1051 * 1052 * There is currently no real need to optimize this. 1053 */ 1054 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 1055 VM_PROT_READ|VM_PROT_WRITE); 1056 if (result != KERN_SUCCESS) 1057 return (result); 1058 1059 /* 1060 * Process the returned fs.m and look up the page table 1061 * entry in the page table page. 1062 */ 1063 vshift -= VPTE_PAGE_BITS; 1064 lwb = lwbuf_alloc(fs->m, &lwb_cache); 1065 ptep = ((vpte_t *)lwbuf_kva(lwb) + 1066 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 1067 vpte = *ptep; 1068 1069 /* 1070 * Page table write-back. If the vpte is valid for the 1071 * requested operation, do a write-back to the page table. 1072 * 1073 * XXX VPTE_M is not set properly for page directory pages. 1074 * It doesn't get set in the page directory if the page table 1075 * is modified during a read access. 1076 */ 1077 vm_page_activate(fs->m); 1078 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 1079 (vpte & VPTE_W)) { 1080 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 1081 atomic_set_long(ptep, VPTE_M | VPTE_A); 1082 vm_page_dirty(fs->m); 1083 } 1084 } 1085 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 1086 (vpte & VPTE_R)) { 1087 if ((vpte & VPTE_A) == 0) { 1088 atomic_set_long(ptep, VPTE_A); 1089 vm_page_dirty(fs->m); 1090 } 1091 } 1092 lwbuf_free(lwb); 1093 vm_page_flag_set(fs->m, PG_REFERENCED); 1094 vm_page_wakeup(fs->m); 1095 fs->m = NULL; 1096 cleanup_successful_fault(fs); 1097 } 1098 /* 1099 * Combine remaining address bits with the vpte. 1100 */ 1101 /* JG how many bits from each? */ 1102 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 1103 (*pindex & ((1L << vshift) - 1)); 1104 return (KERN_SUCCESS); 1105 } 1106 1107 1108 /* 1109 * This is the core of the vm_fault code. 1110 * 1111 * Do all operations required to fault-in (fs.first_object, pindex). Run 1112 * through the shadow chain as necessary and do required COW or virtual 1113 * copy operations. The caller has already fully resolved the vm_map_entry 1114 * and, if appropriate, has created a copy-on-write layer. All we need to 1115 * do is iterate the object chain. 1116 * 1117 * On failure (fs) is unlocked and deallocated and the caller may return or 1118 * retry depending on the failure code. On success (fs) is NOT unlocked or 1119 * deallocated, fs.m will contained a resolved, busied page, and fs.object 1120 * will have an additional PIP count if it is not equal to fs.first_object. 1121 * 1122 * fs->first_object must be held on call. 1123 */ 1124 static 1125 int 1126 vm_fault_object(struct faultstate *fs, 1127 vm_pindex_t first_pindex, vm_prot_t fault_type) 1128 { 1129 vm_object_t next_object; 1130 vm_pindex_t pindex; 1131 int error; 1132 1133 ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object)); 1134 fs->prot = fs->first_prot; 1135 fs->object = fs->first_object; 1136 pindex = first_pindex; 1137 1138 vm_object_chain_acquire(fs->first_object); 1139 vm_object_pip_add(fs->first_object, 1); 1140 1141 /* 1142 * If a read fault occurs we try to make the page writable if 1143 * possible. There are three cases where we cannot make the 1144 * page mapping writable: 1145 * 1146 * (1) The mapping is read-only or the VM object is read-only, 1147 * fs->prot above will simply not have VM_PROT_WRITE set. 1148 * 1149 * (2) If the mapping is a virtual page table we need to be able 1150 * to detect writes so we can set VPTE_M in the virtual page 1151 * table. 1152 * 1153 * (3) If the VM page is read-only or copy-on-write, upgrading would 1154 * just result in an unnecessary COW fault. 1155 * 1156 * VM_PROT_VPAGED is set if faulting via a virtual page table and 1157 * causes adjustments to the 'M'odify bit to also turn off write 1158 * access to force a re-fault. 1159 */ 1160 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 1161 if ((fault_type & VM_PROT_WRITE) == 0) 1162 fs->prot &= ~VM_PROT_WRITE; 1163 } 1164 1165 /* vm_object_hold(fs->object); implied b/c object == first_object */ 1166 1167 for (;;) { 1168 /* 1169 * The entire backing chain from first_object to object 1170 * inclusive is chainlocked. 1171 * 1172 * If the object is dead, we stop here 1173 * 1174 * vm_shared_fault (fs->shared != 0) case: nothing special. 1175 */ 1176 if (fs->object->flags & OBJ_DEAD) { 1177 vm_object_pip_wakeup(fs->first_object); 1178 vm_object_chain_release_all(fs->first_object, 1179 fs->object); 1180 if (fs->object != fs->first_object) 1181 vm_object_drop(fs->object); 1182 unlock_and_deallocate(fs); 1183 return (KERN_PROTECTION_FAILURE); 1184 } 1185 1186 /* 1187 * See if the page is resident. Wait/Retry if the page is 1188 * busy (lots of stuff may have changed so we can't continue 1189 * in that case). 1190 * 1191 * We can theoretically allow the soft-busy case on a read 1192 * fault if the page is marked valid, but since such 1193 * pages are typically already pmap'd, putting that 1194 * special case in might be more effort then it is 1195 * worth. We cannot under any circumstances mess 1196 * around with a vm_page_t->busy page except, perhaps, 1197 * to pmap it. 1198 * 1199 * vm_shared_fault (fs->shared != 0) case: 1200 * error nothing special 1201 * fs->m relock excl if I/O needed 1202 * NULL relock excl 1203 */ 1204 fs->m = vm_page_lookup_busy_try(fs->object, pindex, 1205 TRUE, &error); 1206 if (error) { 1207 vm_object_pip_wakeup(fs->first_object); 1208 vm_object_chain_release_all(fs->first_object, 1209 fs->object); 1210 if (fs->object != fs->first_object) 1211 vm_object_drop(fs->object); 1212 unlock_things(fs); 1213 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1214 mycpu->gd_cnt.v_intrans++; 1215 /*vm_object_deallocate(fs->first_object);*/ 1216 /*fs->first_object = NULL;*/ 1217 fs->m = NULL; 1218 return (KERN_TRY_AGAIN); 1219 } 1220 if (fs->m) { 1221 /* 1222 * The page is busied for us. 1223 * 1224 * If reactivating a page from PQ_CACHE we may have 1225 * to rate-limit. 1226 */ 1227 int queue = fs->m->queue; 1228 vm_page_unqueue_nowakeup(fs->m); 1229 1230 if ((queue - fs->m->pc) == PQ_CACHE && 1231 vm_page_count_severe()) { 1232 vm_page_activate(fs->m); 1233 vm_page_wakeup(fs->m); 1234 fs->m = NULL; 1235 vm_object_pip_wakeup(fs->first_object); 1236 vm_object_chain_release_all(fs->first_object, 1237 fs->object); 1238 if (fs->object != fs->first_object) 1239 vm_object_drop(fs->object); 1240 unlock_and_deallocate(fs); 1241 vm_wait_pfault(); 1242 return (KERN_TRY_AGAIN); 1243 } 1244 1245 /* 1246 * If it still isn't completely valid (readable), 1247 * or if a read-ahead-mark is set on the VM page, 1248 * jump to readrest, else we found the page and 1249 * can return. 1250 * 1251 * We can release the spl once we have marked the 1252 * page busy. 1253 */ 1254 if (fs->m->object != &kernel_object) { 1255 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1256 VM_PAGE_BITS_ALL) { 1257 if (fs->shared) { 1258 vm_object_drop(fs->object); 1259 vm_object_hold(fs->object); 1260 fs->shared = 0; 1261 } 1262 goto readrest; 1263 } 1264 if (fs->m->flags & PG_RAM) { 1265 if (debug_cluster) 1266 kprintf("R"); 1267 vm_page_flag_clear(fs->m, PG_RAM); 1268 if (fs->shared) { 1269 vm_object_drop(fs->object); 1270 vm_object_hold(fs->object); 1271 fs->shared = 0; 1272 } 1273 goto readrest; 1274 } 1275 } 1276 break; /* break to PAGE HAS BEEN FOUND */ 1277 } 1278 1279 if (fs->shared) { 1280 vm_object_drop(fs->object); 1281 vm_object_hold(fs->object); 1282 fs->shared = 0; 1283 } 1284 1285 /* 1286 * Page is not resident, If this is the search termination 1287 * or the pager might contain the page, allocate a new page. 1288 */ 1289 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1290 /* 1291 * If the page is beyond the object size we fail 1292 */ 1293 if (pindex >= fs->object->size) { 1294 vm_object_pip_wakeup(fs->first_object); 1295 vm_object_chain_release_all(fs->first_object, 1296 fs->object); 1297 if (fs->object != fs->first_object) 1298 vm_object_drop(fs->object); 1299 unlock_and_deallocate(fs); 1300 return (KERN_PROTECTION_FAILURE); 1301 } 1302 1303 /* 1304 * Allocate a new page for this object/offset pair. 1305 * 1306 * It is possible for the allocation to race, so 1307 * handle the case. 1308 */ 1309 fs->m = NULL; 1310 if (!vm_page_count_severe()) { 1311 fs->m = vm_page_alloc(fs->object, pindex, 1312 ((fs->vp || fs->object->backing_object) ? 1313 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL : 1314 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1315 VM_ALLOC_USE_GD | VM_ALLOC_ZERO)); 1316 } 1317 if (fs->m == NULL) { 1318 vm_object_pip_wakeup(fs->first_object); 1319 vm_object_chain_release_all(fs->first_object, 1320 fs->object); 1321 if (fs->object != fs->first_object) 1322 vm_object_drop(fs->object); 1323 unlock_and_deallocate(fs); 1324 vm_wait_pfault(); 1325 return (KERN_TRY_AGAIN); 1326 } 1327 1328 /* 1329 * Fall through to readrest. We have a new page which 1330 * will have to be paged (since m->valid will be 0). 1331 */ 1332 } 1333 1334 readrest: 1335 /* 1336 * We have found an invalid or partially valid page, a 1337 * page with a read-ahead mark which might be partially or 1338 * fully valid (and maybe dirty too), or we have allocated 1339 * a new page. 1340 * 1341 * Attempt to fault-in the page if there is a chance that the 1342 * pager has it, and potentially fault in additional pages 1343 * at the same time. 1344 * 1345 * If TRYPAGER is true then fs.m will be non-NULL and busied 1346 * for us. 1347 */ 1348 if (TRYPAGER(fs)) { 1349 int rv; 1350 int seqaccess; 1351 u_char behavior = vm_map_entry_behavior(fs->entry); 1352 1353 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1354 seqaccess = 0; 1355 else 1356 seqaccess = -1; 1357 1358 #if 0 1359 /* 1360 * If sequential access is detected then attempt 1361 * to deactivate/cache pages behind the scan to 1362 * prevent resource hogging. 1363 * 1364 * Use of PG_RAM to detect sequential access 1365 * also simulates multi-zone sequential access 1366 * detection for free. 1367 * 1368 * NOTE: Partially valid dirty pages cannot be 1369 * deactivated without causing NFS picemeal 1370 * writes to barf. 1371 */ 1372 if ((fs->first_object->type != OBJT_DEVICE) && 1373 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1374 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1375 (fs->m->flags & PG_RAM))) 1376 ) { 1377 vm_pindex_t scan_pindex; 1378 int scan_count = 16; 1379 1380 if (first_pindex < 16) { 1381 scan_pindex = 0; 1382 scan_count = 0; 1383 } else { 1384 scan_pindex = first_pindex - 16; 1385 if (scan_pindex < 16) 1386 scan_count = scan_pindex; 1387 else 1388 scan_count = 16; 1389 } 1390 1391 while (scan_count) { 1392 vm_page_t mt; 1393 1394 mt = vm_page_lookup(fs->first_object, 1395 scan_pindex); 1396 if (mt == NULL) 1397 break; 1398 if (vm_page_busy_try(mt, TRUE)) 1399 goto skip; 1400 1401 if (mt->valid != VM_PAGE_BITS_ALL) { 1402 vm_page_wakeup(mt); 1403 break; 1404 } 1405 if ((mt->flags & 1406 (PG_FICTITIOUS | PG_UNMANAGED | 1407 PG_NEED_COMMIT)) || 1408 mt->hold_count || 1409 mt->wire_count) { 1410 vm_page_wakeup(mt); 1411 goto skip; 1412 } 1413 if (mt->dirty == 0) 1414 vm_page_test_dirty(mt); 1415 if (mt->dirty) { 1416 vm_page_protect(mt, 1417 VM_PROT_NONE); 1418 vm_page_deactivate(mt); 1419 vm_page_wakeup(mt); 1420 } else { 1421 vm_page_cache(mt); 1422 } 1423 skip: 1424 --scan_count; 1425 --scan_pindex; 1426 } 1427 1428 seqaccess = 1; 1429 } 1430 #endif 1431 1432 /* 1433 * Avoid deadlocking against the map when doing I/O. 1434 * fs.object and the page is PG_BUSY'd. 1435 * 1436 * NOTE: Once unlocked, fs->entry can become stale 1437 * so this will NULL it out. 1438 * 1439 * NOTE: fs->entry is invalid until we relock the 1440 * map and verify that the timestamp has not 1441 * changed. 1442 */ 1443 unlock_map(fs); 1444 1445 /* 1446 * Acquire the page data. We still hold a ref on 1447 * fs.object and the page has been PG_BUSY's. 1448 * 1449 * The pager may replace the page (for example, in 1450 * order to enter a fictitious page into the 1451 * object). If it does so it is responsible for 1452 * cleaning up the passed page and properly setting 1453 * the new page PG_BUSY. 1454 * 1455 * If we got here through a PG_RAM read-ahead 1456 * mark the page may be partially dirty and thus 1457 * not freeable. Don't bother checking to see 1458 * if the pager has the page because we can't free 1459 * it anyway. We have to depend on the get_page 1460 * operation filling in any gaps whether there is 1461 * backing store or not. 1462 */ 1463 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1464 1465 if (rv == VM_PAGER_OK) { 1466 /* 1467 * Relookup in case pager changed page. Pager 1468 * is responsible for disposition of old page 1469 * if moved. 1470 * 1471 * XXX other code segments do relookups too. 1472 * It's a bad abstraction that needs to be 1473 * fixed/removed. 1474 */ 1475 fs->m = vm_page_lookup(fs->object, pindex); 1476 if (fs->m == NULL) { 1477 vm_object_pip_wakeup(fs->first_object); 1478 vm_object_chain_release_all( 1479 fs->first_object, fs->object); 1480 if (fs->object != fs->first_object) 1481 vm_object_drop(fs->object); 1482 unlock_and_deallocate(fs); 1483 return (KERN_TRY_AGAIN); 1484 } 1485 1486 ++fs->hardfault; 1487 break; /* break to PAGE HAS BEEN FOUND */ 1488 } 1489 1490 /* 1491 * Remove the bogus page (which does not exist at this 1492 * object/offset); before doing so, we must get back 1493 * our object lock to preserve our invariant. 1494 * 1495 * Also wake up any other process that may want to bring 1496 * in this page. 1497 * 1498 * If this is the top-level object, we must leave the 1499 * busy page to prevent another process from rushing 1500 * past us, and inserting the page in that object at 1501 * the same time that we are. 1502 */ 1503 if (rv == VM_PAGER_ERROR) { 1504 if (curproc) { 1505 kprintf("vm_fault: pager read error, " 1506 "pid %d (%s)\n", 1507 curproc->p_pid, 1508 curproc->p_comm); 1509 } else { 1510 kprintf("vm_fault: pager read error, " 1511 "thread %p (%s)\n", 1512 curthread, 1513 curproc->p_comm); 1514 } 1515 } 1516 1517 /* 1518 * Data outside the range of the pager or an I/O error 1519 * 1520 * The page may have been wired during the pagein, 1521 * e.g. by the buffer cache, and cannot simply be 1522 * freed. Call vnode_pager_freepage() to deal with it. 1523 */ 1524 /* 1525 * XXX - the check for kernel_map is a kludge to work 1526 * around having the machine panic on a kernel space 1527 * fault w/ I/O error. 1528 */ 1529 if (((fs->map != &kernel_map) && 1530 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1531 vnode_pager_freepage(fs->m); 1532 fs->m = NULL; 1533 vm_object_pip_wakeup(fs->first_object); 1534 vm_object_chain_release_all(fs->first_object, 1535 fs->object); 1536 if (fs->object != fs->first_object) 1537 vm_object_drop(fs->object); 1538 unlock_and_deallocate(fs); 1539 if (rv == VM_PAGER_ERROR) 1540 return (KERN_FAILURE); 1541 else 1542 return (KERN_PROTECTION_FAILURE); 1543 /* NOT REACHED */ 1544 } 1545 if (fs->object != fs->first_object) { 1546 vnode_pager_freepage(fs->m); 1547 fs->m = NULL; 1548 /* 1549 * XXX - we cannot just fall out at this 1550 * point, m has been freed and is invalid! 1551 */ 1552 } 1553 } 1554 1555 /* 1556 * We get here if the object has a default pager (or unwiring) 1557 * or the pager doesn't have the page. 1558 */ 1559 if (fs->object == fs->first_object) 1560 fs->first_m = fs->m; 1561 1562 /* 1563 * Move on to the next object. The chain lock should prevent 1564 * the backing_object from getting ripped out from under us. 1565 * 1566 * vm_shared_fault case: 1567 * 1568 * If the next object is the last object and 1569 * vnode-backed (thus possibly shared), we can try a 1570 * shared object lock. There is no 'chain' for this 1571 * last object if vnode-backed (otherwise we would 1572 * need an exclusive lock). 1573 * 1574 * fs->shared mode is very fragile and only works 1575 * under certain specific conditions, and is only 1576 * handled for those conditions in our loop. Essentially 1577 * it is designed only to be able to 'dip into' the 1578 * vnode's object and extract an already-cached page. 1579 */ 1580 fs->shared = 0; 1581 if ((next_object = fs->object->backing_object) != NULL) { 1582 fs->shared = vm_object_hold_maybe_shared(next_object); 1583 vm_object_chain_acquire(next_object); 1584 KKASSERT(next_object == fs->object->backing_object); 1585 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1586 } 1587 1588 if (next_object == NULL) { 1589 /* 1590 * If there's no object left, fill the page in the top 1591 * object with zeros. 1592 */ 1593 if (fs->object != fs->first_object) { 1594 if (fs->first_object->backing_object != 1595 fs->object) { 1596 vm_object_hold(fs->first_object->backing_object); 1597 } 1598 vm_object_chain_release_all( 1599 fs->first_object->backing_object, 1600 fs->object); 1601 if (fs->first_object->backing_object != 1602 fs->object) { 1603 vm_object_drop(fs->first_object->backing_object); 1604 } 1605 vm_object_pip_wakeup(fs->object); 1606 vm_object_drop(fs->object); 1607 fs->object = fs->first_object; 1608 pindex = first_pindex; 1609 fs->m = fs->first_m; 1610 } 1611 fs->first_m = NULL; 1612 1613 /* 1614 * Zero the page if necessary and mark it valid. 1615 */ 1616 if ((fs->m->flags & PG_ZERO) == 0) { 1617 vm_page_zero_fill(fs->m); 1618 } else { 1619 #ifdef PMAP_DEBUG 1620 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m)); 1621 #endif 1622 vm_page_flag_clear(fs->m, PG_ZERO); 1623 mycpu->gd_cnt.v_ozfod++; 1624 } 1625 mycpu->gd_cnt.v_zfod++; 1626 fs->m->valid = VM_PAGE_BITS_ALL; 1627 break; /* break to PAGE HAS BEEN FOUND */ 1628 } 1629 if (fs->object != fs->first_object) { 1630 vm_object_pip_wakeup(fs->object); 1631 vm_object_lock_swap(); 1632 vm_object_drop(fs->object); 1633 } 1634 KASSERT(fs->object != next_object, 1635 ("object loop %p", next_object)); 1636 fs->object = next_object; 1637 vm_object_pip_add(fs->object, 1); 1638 } 1639 1640 /* 1641 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1642 * is held.] 1643 * 1644 * object still held. 1645 * 1646 * If the page is being written, but isn't already owned by the 1647 * top-level object, we have to copy it into a new page owned by the 1648 * top-level object. 1649 */ 1650 KASSERT((fs->m->flags & PG_BUSY) != 0, 1651 ("vm_fault: not busy after main loop")); 1652 1653 if (fs->object != fs->first_object) { 1654 /* 1655 * We only really need to copy if we want to write it. 1656 */ 1657 if (fault_type & VM_PROT_WRITE) { 1658 /* 1659 * This allows pages to be virtually copied from a 1660 * backing_object into the first_object, where the 1661 * backing object has no other refs to it, and cannot 1662 * gain any more refs. Instead of a bcopy, we just 1663 * move the page from the backing object to the 1664 * first object. Note that we must mark the page 1665 * dirty in the first object so that it will go out 1666 * to swap when needed. 1667 */ 1668 if ( 1669 /* 1670 * Map, if present, has not changed 1671 */ 1672 (fs->map == NULL || 1673 fs->map_generation == fs->map->timestamp) && 1674 /* 1675 * Only one shadow object 1676 */ 1677 (fs->object->shadow_count == 1) && 1678 /* 1679 * No COW refs, except us 1680 */ 1681 (fs->object->ref_count == 1) && 1682 /* 1683 * No one else can look this object up 1684 */ 1685 (fs->object->handle == NULL) && 1686 /* 1687 * No other ways to look the object up 1688 */ 1689 ((fs->object->type == OBJT_DEFAULT) || 1690 (fs->object->type == OBJT_SWAP)) && 1691 /* 1692 * We don't chase down the shadow chain 1693 */ 1694 (fs->object == fs->first_object->backing_object) && 1695 1696 /* 1697 * grab the lock if we need to 1698 */ 1699 (fs->lookup_still_valid || 1700 fs->map == NULL || 1701 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1702 ) { 1703 /* 1704 * (first_m) and (m) are both busied. We have 1705 * move (m) into (first_m)'s object/pindex 1706 * in an atomic fashion, then free (first_m). 1707 * 1708 * first_object is held so second remove 1709 * followed by the rename should wind 1710 * up being atomic. vm_page_free() might 1711 * block so we don't do it until after the 1712 * rename. 1713 */ 1714 fs->lookup_still_valid = 1; 1715 vm_page_protect(fs->first_m, VM_PROT_NONE); 1716 vm_page_remove(fs->first_m); 1717 vm_page_rename(fs->m, fs->first_object, 1718 first_pindex); 1719 vm_page_free(fs->first_m); 1720 fs->first_m = fs->m; 1721 fs->m = NULL; 1722 mycpu->gd_cnt.v_cow_optim++; 1723 } else { 1724 /* 1725 * Oh, well, lets copy it. 1726 * 1727 * Why are we unmapping the original page 1728 * here? Well, in short, not all accessors 1729 * of user memory go through the pmap. The 1730 * procfs code doesn't have access user memory 1731 * via a local pmap, so vm_fault_page*() 1732 * can't call pmap_enter(). And the umtx*() 1733 * code may modify the COW'd page via a DMAP 1734 * or kernel mapping and not via the pmap, 1735 * leaving the original page still mapped 1736 * read-only into the pmap. 1737 * 1738 * So we have to remove the page from at 1739 * least the current pmap if it is in it. 1740 * Just remove it from all pmaps. 1741 */ 1742 vm_page_copy(fs->m, fs->first_m); 1743 vm_page_protect(fs->m, VM_PROT_NONE); 1744 vm_page_event(fs->m, VMEVENT_COW); 1745 } 1746 1747 if (fs->m) { 1748 /* 1749 * We no longer need the old page or object. 1750 */ 1751 release_page(fs); 1752 } 1753 1754 /* 1755 * We intend to revert to first_object, undo the 1756 * chain lock through to that. 1757 */ 1758 if (fs->first_object->backing_object != fs->object) 1759 vm_object_hold(fs->first_object->backing_object); 1760 vm_object_chain_release_all( 1761 fs->first_object->backing_object, 1762 fs->object); 1763 if (fs->first_object->backing_object != fs->object) 1764 vm_object_drop(fs->first_object->backing_object); 1765 1766 /* 1767 * fs->object != fs->first_object due to above 1768 * conditional 1769 */ 1770 vm_object_pip_wakeup(fs->object); 1771 vm_object_drop(fs->object); 1772 1773 /* 1774 * Only use the new page below... 1775 */ 1776 1777 mycpu->gd_cnt.v_cow_faults++; 1778 fs->m = fs->first_m; 1779 fs->object = fs->first_object; 1780 pindex = first_pindex; 1781 } else { 1782 /* 1783 * If it wasn't a write fault avoid having to copy 1784 * the page by mapping it read-only. 1785 */ 1786 fs->prot &= ~VM_PROT_WRITE; 1787 } 1788 } 1789 1790 /* 1791 * Relock the map if necessary, then check the generation count. 1792 * relock_map() will update fs->timestamp to account for the 1793 * relocking if necessary. 1794 * 1795 * If the count has changed after relocking then all sorts of 1796 * crap may have happened and we have to retry. 1797 * 1798 * NOTE: The relock_map() can fail due to a deadlock against 1799 * the vm_page we are holding BUSY. 1800 */ 1801 if (fs->lookup_still_valid == FALSE && fs->map) { 1802 if (relock_map(fs) || 1803 fs->map->timestamp != fs->map_generation) { 1804 release_page(fs); 1805 vm_object_pip_wakeup(fs->first_object); 1806 vm_object_chain_release_all(fs->first_object, 1807 fs->object); 1808 if (fs->object != fs->first_object) 1809 vm_object_drop(fs->object); 1810 unlock_and_deallocate(fs); 1811 return (KERN_TRY_AGAIN); 1812 } 1813 } 1814 1815 /* 1816 * If the fault is a write, we know that this page is being 1817 * written NOW so dirty it explicitly to save on pmap_is_modified() 1818 * calls later. 1819 * 1820 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1821 * if the page is already dirty to prevent data written with 1822 * the expectation of being synced from not being synced. 1823 * Likewise if this entry does not request NOSYNC then make 1824 * sure the page isn't marked NOSYNC. Applications sharing 1825 * data should use the same flags to avoid ping ponging. 1826 * 1827 * Also tell the backing pager, if any, that it should remove 1828 * any swap backing since the page is now dirty. 1829 */ 1830 vm_page_activate(fs->m); 1831 if (fs->prot & VM_PROT_WRITE) { 1832 vm_object_set_writeable_dirty(fs->m->object); 1833 vm_set_nosync(fs->m, fs->entry); 1834 if (fs->fault_flags & VM_FAULT_DIRTY) { 1835 vm_page_dirty(fs->m); 1836 swap_pager_unswapped(fs->m); 1837 } 1838 } 1839 1840 vm_object_pip_wakeup(fs->first_object); 1841 vm_object_chain_release_all(fs->first_object, fs->object); 1842 if (fs->object != fs->first_object) 1843 vm_object_drop(fs->object); 1844 1845 /* 1846 * Page had better still be busy. We are still locked up and 1847 * fs->object will have another PIP reference if it is not equal 1848 * to fs->first_object. 1849 */ 1850 KASSERT(fs->m->flags & PG_BUSY, 1851 ("vm_fault: page %p not busy!", fs->m)); 1852 1853 /* 1854 * Sanity check: page must be completely valid or it is not fit to 1855 * map into user space. vm_pager_get_pages() ensures this. 1856 */ 1857 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1858 vm_page_zero_invalid(fs->m, TRUE); 1859 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1860 } 1861 vm_page_flag_clear(fs->m, PG_ZERO); 1862 1863 return (KERN_SUCCESS); 1864 } 1865 1866 /* 1867 * Wire down a range of virtual addresses in a map. The entry in question 1868 * should be marked in-transition and the map must be locked. We must 1869 * release the map temporarily while faulting-in the page to avoid a 1870 * deadlock. Note that the entry may be clipped while we are blocked but 1871 * will never be freed. 1872 * 1873 * No requirements. 1874 */ 1875 int 1876 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1877 { 1878 boolean_t fictitious; 1879 vm_offset_t start; 1880 vm_offset_t end; 1881 vm_offset_t va; 1882 vm_paddr_t pa; 1883 vm_page_t m; 1884 pmap_t pmap; 1885 int rv; 1886 1887 lwkt_gettoken(&map->token); 1888 1889 pmap = vm_map_pmap(map); 1890 start = entry->start; 1891 end = entry->end; 1892 fictitious = entry->object.vm_object && 1893 (entry->object.vm_object->type == OBJT_DEVICE); 1894 if (entry->eflags & MAP_ENTRY_KSTACK) 1895 start += PAGE_SIZE; 1896 map->timestamp++; 1897 vm_map_unlock(map); 1898 1899 /* 1900 * We simulate a fault to get the page and enter it in the physical 1901 * map. 1902 */ 1903 for (va = start; va < end; va += PAGE_SIZE) { 1904 if (user_wire) { 1905 rv = vm_fault(map, va, VM_PROT_READ, 1906 VM_FAULT_USER_WIRE); 1907 } else { 1908 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1909 VM_FAULT_CHANGE_WIRING); 1910 } 1911 if (rv) { 1912 while (va > start) { 1913 va -= PAGE_SIZE; 1914 if ((pa = pmap_extract(pmap, va)) == 0) 1915 continue; 1916 pmap_change_wiring(pmap, va, FALSE, entry); 1917 if (!fictitious) { 1918 m = PHYS_TO_VM_PAGE(pa); 1919 vm_page_busy_wait(m, FALSE, "vmwrpg"); 1920 vm_page_unwire(m, 1); 1921 vm_page_wakeup(m); 1922 } 1923 } 1924 goto done; 1925 } 1926 } 1927 rv = KERN_SUCCESS; 1928 done: 1929 vm_map_lock(map); 1930 lwkt_reltoken(&map->token); 1931 return (rv); 1932 } 1933 1934 /* 1935 * Unwire a range of virtual addresses in a map. The map should be 1936 * locked. 1937 */ 1938 void 1939 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1940 { 1941 boolean_t fictitious; 1942 vm_offset_t start; 1943 vm_offset_t end; 1944 vm_offset_t va; 1945 vm_paddr_t pa; 1946 vm_page_t m; 1947 pmap_t pmap; 1948 1949 lwkt_gettoken(&map->token); 1950 1951 pmap = vm_map_pmap(map); 1952 start = entry->start; 1953 end = entry->end; 1954 fictitious = entry->object.vm_object && 1955 (entry->object.vm_object->type == OBJT_DEVICE); 1956 if (entry->eflags & MAP_ENTRY_KSTACK) 1957 start += PAGE_SIZE; 1958 1959 /* 1960 * Since the pages are wired down, we must be able to get their 1961 * mappings from the physical map system. 1962 */ 1963 for (va = start; va < end; va += PAGE_SIZE) { 1964 pa = pmap_extract(pmap, va); 1965 if (pa != 0) { 1966 pmap_change_wiring(pmap, va, FALSE, entry); 1967 if (!fictitious) { 1968 m = PHYS_TO_VM_PAGE(pa); 1969 vm_page_busy_wait(m, FALSE, "vmwupg"); 1970 vm_page_unwire(m, 1); 1971 vm_page_wakeup(m); 1972 } 1973 } 1974 } 1975 lwkt_reltoken(&map->token); 1976 } 1977 1978 /* 1979 * Copy all of the pages from a wired-down map entry to another. 1980 * 1981 * The source and destination maps must be locked for write. 1982 * The source and destination maps token must be held 1983 * The source map entry must be wired down (or be a sharing map 1984 * entry corresponding to a main map entry that is wired down). 1985 * 1986 * No other requirements. 1987 * 1988 * XXX do segment optimization 1989 */ 1990 void 1991 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1992 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1993 { 1994 vm_object_t dst_object; 1995 vm_object_t src_object; 1996 vm_ooffset_t dst_offset; 1997 vm_ooffset_t src_offset; 1998 vm_prot_t prot; 1999 vm_offset_t vaddr; 2000 vm_page_t dst_m; 2001 vm_page_t src_m; 2002 2003 src_object = src_entry->object.vm_object; 2004 src_offset = src_entry->offset; 2005 2006 /* 2007 * Create the top-level object for the destination entry. (Doesn't 2008 * actually shadow anything - we copy the pages directly.) 2009 */ 2010 vm_map_entry_allocate_object(dst_entry); 2011 dst_object = dst_entry->object.vm_object; 2012 2013 prot = dst_entry->max_protection; 2014 2015 /* 2016 * Loop through all of the pages in the entry's range, copying each 2017 * one from the source object (it should be there) to the destination 2018 * object. 2019 */ 2020 vm_object_hold(src_object); 2021 vm_object_hold(dst_object); 2022 for (vaddr = dst_entry->start, dst_offset = 0; 2023 vaddr < dst_entry->end; 2024 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 2025 2026 /* 2027 * Allocate a page in the destination object 2028 */ 2029 do { 2030 dst_m = vm_page_alloc(dst_object, 2031 OFF_TO_IDX(dst_offset), 2032 VM_ALLOC_NORMAL); 2033 if (dst_m == NULL) { 2034 vm_wait(0); 2035 } 2036 } while (dst_m == NULL); 2037 2038 /* 2039 * Find the page in the source object, and copy it in. 2040 * (Because the source is wired down, the page will be in 2041 * memory.) 2042 */ 2043 src_m = vm_page_lookup(src_object, 2044 OFF_TO_IDX(dst_offset + src_offset)); 2045 if (src_m == NULL) 2046 panic("vm_fault_copy_wired: page missing"); 2047 2048 vm_page_copy(src_m, dst_m); 2049 vm_page_event(src_m, VMEVENT_COW); 2050 2051 /* 2052 * Enter it in the pmap... 2053 */ 2054 2055 vm_page_flag_clear(dst_m, PG_ZERO); 2056 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry); 2057 2058 /* 2059 * Mark it no longer busy, and put it on the active list. 2060 */ 2061 vm_page_activate(dst_m); 2062 vm_page_wakeup(dst_m); 2063 } 2064 vm_object_drop(dst_object); 2065 vm_object_drop(src_object); 2066 } 2067 2068 #if 0 2069 2070 /* 2071 * This routine checks around the requested page for other pages that 2072 * might be able to be faulted in. This routine brackets the viable 2073 * pages for the pages to be paged in. 2074 * 2075 * Inputs: 2076 * m, rbehind, rahead 2077 * 2078 * Outputs: 2079 * marray (array of vm_page_t), reqpage (index of requested page) 2080 * 2081 * Return value: 2082 * number of pages in marray 2083 */ 2084 static int 2085 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 2086 vm_page_t *marray, int *reqpage) 2087 { 2088 int i,j; 2089 vm_object_t object; 2090 vm_pindex_t pindex, startpindex, endpindex, tpindex; 2091 vm_page_t rtm; 2092 int cbehind, cahead; 2093 2094 object = m->object; 2095 pindex = m->pindex; 2096 2097 /* 2098 * we don't fault-ahead for device pager 2099 */ 2100 if (object->type == OBJT_DEVICE) { 2101 *reqpage = 0; 2102 marray[0] = m; 2103 return 1; 2104 } 2105 2106 /* 2107 * if the requested page is not available, then give up now 2108 */ 2109 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 2110 *reqpage = 0; /* not used by caller, fix compiler warn */ 2111 return 0; 2112 } 2113 2114 if ((cbehind == 0) && (cahead == 0)) { 2115 *reqpage = 0; 2116 marray[0] = m; 2117 return 1; 2118 } 2119 2120 if (rahead > cahead) { 2121 rahead = cahead; 2122 } 2123 2124 if (rbehind > cbehind) { 2125 rbehind = cbehind; 2126 } 2127 2128 /* 2129 * Do not do any readahead if we have insufficient free memory. 2130 * 2131 * XXX code was broken disabled before and has instability 2132 * with this conditonal fixed, so shortcut for now. 2133 */ 2134 if (burst_fault == 0 || vm_page_count_severe()) { 2135 marray[0] = m; 2136 *reqpage = 0; 2137 return 1; 2138 } 2139 2140 /* 2141 * scan backward for the read behind pages -- in memory 2142 * 2143 * Assume that if the page is not found an interrupt will not 2144 * create it. Theoretically interrupts can only remove (busy) 2145 * pages, not create new associations. 2146 */ 2147 if (pindex > 0) { 2148 if (rbehind > pindex) { 2149 rbehind = pindex; 2150 startpindex = 0; 2151 } else { 2152 startpindex = pindex - rbehind; 2153 } 2154 2155 vm_object_hold(object); 2156 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 2157 if (vm_page_lookup(object, tpindex - 1)) 2158 break; 2159 } 2160 2161 i = 0; 2162 while (tpindex < pindex) { 2163 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2164 VM_ALLOC_NULL_OK); 2165 if (rtm == NULL) { 2166 for (j = 0; j < i; j++) { 2167 vm_page_free(marray[j]); 2168 } 2169 vm_object_drop(object); 2170 marray[0] = m; 2171 *reqpage = 0; 2172 return 1; 2173 } 2174 marray[i] = rtm; 2175 ++i; 2176 ++tpindex; 2177 } 2178 vm_object_drop(object); 2179 } else { 2180 i = 0; 2181 } 2182 2183 /* 2184 * Assign requested page 2185 */ 2186 marray[i] = m; 2187 *reqpage = i; 2188 ++i; 2189 2190 /* 2191 * Scan forwards for read-ahead pages 2192 */ 2193 tpindex = pindex + 1; 2194 endpindex = tpindex + rahead; 2195 if (endpindex > object->size) 2196 endpindex = object->size; 2197 2198 vm_object_hold(object); 2199 while (tpindex < endpindex) { 2200 if (vm_page_lookup(object, tpindex)) 2201 break; 2202 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM | 2203 VM_ALLOC_NULL_OK); 2204 if (rtm == NULL) 2205 break; 2206 marray[i] = rtm; 2207 ++i; 2208 ++tpindex; 2209 } 2210 vm_object_drop(object); 2211 2212 return (i); 2213 } 2214 2215 #endif 2216 2217 /* 2218 * vm_prefault() provides a quick way of clustering pagefaults into a 2219 * processes address space. It is a "cousin" of pmap_object_init_pt, 2220 * except it runs at page fault time instead of mmap time. 2221 * 2222 * vm.fast_fault Enables pre-faulting zero-fill pages 2223 * 2224 * vm.prefault_pages Number of pages (1/2 negative, 1/2 positive) to 2225 * prefault. Scan stops in either direction when 2226 * a page is found to already exist. 2227 * 2228 * This code used to be per-platform pmap_prefault(). It is now 2229 * machine-independent and enhanced to also pre-fault zero-fill pages 2230 * (see vm.fast_fault) as well as make them writable, which greatly 2231 * reduces the number of page faults programs incur. 2232 * 2233 * Application performance when pre-faulting zero-fill pages is heavily 2234 * dependent on the application. Very tiny applications like /bin/echo 2235 * lose a little performance while applications of any appreciable size 2236 * gain performance. Prefaulting multiple pages also reduces SMP 2237 * congestion and can improve SMP performance significantly. 2238 * 2239 * NOTE! prot may allow writing but this only applies to the top level 2240 * object. If we wind up mapping a page extracted from a backing 2241 * object we have to make sure it is read-only. 2242 * 2243 * NOTE! The caller has already handled any COW operations on the 2244 * vm_map_entry via the normal fault code. Do NOT call this 2245 * shortcut unless the normal fault code has run on this entry. 2246 * 2247 * The related map must be locked. 2248 * No other requirements. 2249 */ 2250 static int vm_prefault_pages = 8; 2251 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0, 2252 "Maximum number of pages to pre-fault"); 2253 static int vm_fast_fault = 1; 2254 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 2255 "Burst fault zero-fill regions"); 2256 2257 /* 2258 * Set PG_NOSYNC if the map entry indicates so, but only if the page 2259 * is not already dirty by other means. This will prevent passive 2260 * filesystem syncing as well as 'sync' from writing out the page. 2261 */ 2262 static void 2263 vm_set_nosync(vm_page_t m, vm_map_entry_t entry) 2264 { 2265 if (entry->eflags & MAP_ENTRY_NOSYNC) { 2266 if (m->dirty == 0) 2267 vm_page_flag_set(m, PG_NOSYNC); 2268 } else { 2269 vm_page_flag_clear(m, PG_NOSYNC); 2270 } 2271 } 2272 2273 static void 2274 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot, 2275 int fault_flags) 2276 { 2277 struct lwp *lp; 2278 vm_page_t m; 2279 vm_offset_t addr; 2280 vm_pindex_t index; 2281 vm_pindex_t pindex; 2282 vm_object_t object; 2283 int pprot; 2284 int i; 2285 int noneg; 2286 int nopos; 2287 int maxpages; 2288 2289 /* 2290 * Get stable max count value, disabled if set to 0 2291 */ 2292 maxpages = vm_prefault_pages; 2293 cpu_ccfence(); 2294 if (maxpages <= 0) 2295 return; 2296 2297 /* 2298 * We do not currently prefault mappings that use virtual page 2299 * tables. We do not prefault foreign pmaps. 2300 */ 2301 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2302 return; 2303 lp = curthread->td_lwp; 2304 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2305 return; 2306 2307 /* 2308 * Limit pre-fault count to 1024 pages. 2309 */ 2310 if (maxpages > 1024) 2311 maxpages = 1024; 2312 2313 object = entry->object.vm_object; 2314 KKASSERT(object != NULL); 2315 KKASSERT(object == entry->object.vm_object); 2316 vm_object_hold(object); 2317 vm_object_chain_acquire(object); 2318 2319 noneg = 0; 2320 nopos = 0; 2321 for (i = 0; i < maxpages; ++i) { 2322 vm_object_t lobject; 2323 vm_object_t nobject; 2324 int allocated = 0; 2325 int error; 2326 2327 /* 2328 * This can eat a lot of time on a heavily contended 2329 * machine so yield on the tick if needed. 2330 */ 2331 if ((i & 7) == 7) 2332 lwkt_yield(); 2333 2334 /* 2335 * Calculate the page to pre-fault, stopping the scan in 2336 * each direction separately if the limit is reached. 2337 */ 2338 if (i & 1) { 2339 if (noneg) 2340 continue; 2341 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2342 } else { 2343 if (nopos) 2344 continue; 2345 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2346 } 2347 if (addr < entry->start) { 2348 noneg = 1; 2349 if (noneg && nopos) 2350 break; 2351 continue; 2352 } 2353 if (addr >= entry->end) { 2354 nopos = 1; 2355 if (noneg && nopos) 2356 break; 2357 continue; 2358 } 2359 2360 /* 2361 * Skip pages already mapped, and stop scanning in that 2362 * direction. When the scan terminates in both directions 2363 * we are done. 2364 */ 2365 if (pmap_prefault_ok(pmap, addr) == 0) { 2366 if (i & 1) 2367 noneg = 1; 2368 else 2369 nopos = 1; 2370 if (noneg && nopos) 2371 break; 2372 continue; 2373 } 2374 2375 /* 2376 * Follow the VM object chain to obtain the page to be mapped 2377 * into the pmap. 2378 * 2379 * If we reach the terminal object without finding a page 2380 * and we determine it would be advantageous, then allocate 2381 * a zero-fill page for the base object. The base object 2382 * is guaranteed to be OBJT_DEFAULT for this case. 2383 * 2384 * In order to not have to check the pager via *haspage*() 2385 * we stop if any non-default object is encountered. e.g. 2386 * a vnode or swap object would stop the loop. 2387 */ 2388 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2389 lobject = object; 2390 pindex = index; 2391 pprot = prot; 2392 2393 KKASSERT(lobject == entry->object.vm_object); 2394 /*vm_object_hold(lobject); implied */ 2395 2396 while ((m = vm_page_lookup_busy_try(lobject, pindex, 2397 TRUE, &error)) == NULL) { 2398 if (lobject->type != OBJT_DEFAULT) 2399 break; 2400 if (lobject->backing_object == NULL) { 2401 if (vm_fast_fault == 0) 2402 break; 2403 if ((prot & VM_PROT_WRITE) == 0 || 2404 vm_page_count_min(0)) { 2405 break; 2406 } 2407 2408 /* 2409 * NOTE: Allocated from base object 2410 */ 2411 m = vm_page_alloc(object, index, 2412 VM_ALLOC_NORMAL | 2413 VM_ALLOC_ZERO | 2414 VM_ALLOC_USE_GD | 2415 VM_ALLOC_NULL_OK); 2416 if (m == NULL) 2417 break; 2418 allocated = 1; 2419 pprot = prot; 2420 /* lobject = object .. not needed */ 2421 break; 2422 } 2423 if (lobject->backing_object_offset & PAGE_MASK) 2424 break; 2425 nobject = lobject->backing_object; 2426 vm_object_hold(nobject); 2427 KKASSERT(nobject == lobject->backing_object); 2428 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2429 if (lobject != object) { 2430 vm_object_lock_swap(); 2431 vm_object_drop(lobject); 2432 } 2433 lobject = nobject; 2434 pprot &= ~VM_PROT_WRITE; 2435 vm_object_chain_acquire(lobject); 2436 } 2437 2438 /* 2439 * NOTE: A non-NULL (m) will be associated with lobject if 2440 * it was found there, otherwise it is probably a 2441 * zero-fill page associated with the base object. 2442 * 2443 * Give-up if no page is available. 2444 */ 2445 if (m == NULL) { 2446 if (lobject != object) { 2447 if (object->backing_object != lobject) 2448 vm_object_hold(object->backing_object); 2449 vm_object_chain_release_all( 2450 object->backing_object, lobject); 2451 if (object->backing_object != lobject) 2452 vm_object_drop(object->backing_object); 2453 vm_object_drop(lobject); 2454 } 2455 break; 2456 } 2457 2458 /* 2459 * The object must be marked dirty if we are mapping a 2460 * writable page. m->object is either lobject or object, 2461 * both of which are still held. Do this before we 2462 * potentially drop the object. 2463 */ 2464 if (pprot & VM_PROT_WRITE) 2465 vm_object_set_writeable_dirty(m->object); 2466 2467 /* 2468 * Do not conditionalize on PG_RAM. If pages are present in 2469 * the VM system we assume optimal caching. If caching is 2470 * not optimal the I/O gravy train will be restarted when we 2471 * hit an unavailable page. We do not want to try to restart 2472 * the gravy train now because we really don't know how much 2473 * of the object has been cached. The cost for restarting 2474 * the gravy train should be low (since accesses will likely 2475 * be I/O bound anyway). 2476 */ 2477 if (lobject != object) { 2478 if (object->backing_object != lobject) 2479 vm_object_hold(object->backing_object); 2480 vm_object_chain_release_all(object->backing_object, 2481 lobject); 2482 if (object->backing_object != lobject) 2483 vm_object_drop(object->backing_object); 2484 vm_object_drop(lobject); 2485 } 2486 2487 /* 2488 * Enter the page into the pmap if appropriate. If we had 2489 * allocated the page we have to place it on a queue. If not 2490 * we just have to make sure it isn't on the cache queue 2491 * (pages on the cache queue are not allowed to be mapped). 2492 */ 2493 if (allocated) { 2494 /* 2495 * Page must be zerod. 2496 */ 2497 if ((m->flags & PG_ZERO) == 0) { 2498 vm_page_zero_fill(m); 2499 } else { 2500 #ifdef PMAP_DEBUG 2501 pmap_page_assertzero( 2502 VM_PAGE_TO_PHYS(m)); 2503 #endif 2504 vm_page_flag_clear(m, PG_ZERO); 2505 mycpu->gd_cnt.v_ozfod++; 2506 } 2507 mycpu->gd_cnt.v_zfod++; 2508 m->valid = VM_PAGE_BITS_ALL; 2509 2510 /* 2511 * Handle dirty page case 2512 */ 2513 if (pprot & VM_PROT_WRITE) 2514 vm_set_nosync(m, entry); 2515 pmap_enter(pmap, addr, m, pprot, 0, entry); 2516 mycpu->gd_cnt.v_vm_faults++; 2517 if (curthread->td_lwp) 2518 ++curthread->td_lwp->lwp_ru.ru_minflt; 2519 vm_page_deactivate(m); 2520 if (pprot & VM_PROT_WRITE) { 2521 /*vm_object_set_writeable_dirty(m->object);*/ 2522 vm_set_nosync(m, entry); 2523 if (fault_flags & VM_FAULT_DIRTY) { 2524 vm_page_dirty(m); 2525 /*XXX*/ 2526 swap_pager_unswapped(m); 2527 } 2528 } 2529 vm_page_wakeup(m); 2530 } else if (error) { 2531 /* couldn't busy page, no wakeup */ 2532 } else if ( 2533 ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2534 (m->flags & PG_FICTITIOUS) == 0) { 2535 /* 2536 * A fully valid page not undergoing soft I/O can 2537 * be immediately entered into the pmap. 2538 */ 2539 if ((m->queue - m->pc) == PQ_CACHE) 2540 vm_page_deactivate(m); 2541 if (pprot & VM_PROT_WRITE) { 2542 /*vm_object_set_writeable_dirty(m->object);*/ 2543 vm_set_nosync(m, entry); 2544 if (fault_flags & VM_FAULT_DIRTY) { 2545 vm_page_dirty(m); 2546 /*XXX*/ 2547 swap_pager_unswapped(m); 2548 } 2549 } 2550 if (pprot & VM_PROT_WRITE) 2551 vm_set_nosync(m, entry); 2552 pmap_enter(pmap, addr, m, pprot, 0, entry); 2553 mycpu->gd_cnt.v_vm_faults++; 2554 if (curthread->td_lwp) 2555 ++curthread->td_lwp->lwp_ru.ru_minflt; 2556 vm_page_wakeup(m); 2557 } else { 2558 vm_page_wakeup(m); 2559 } 2560 } 2561 vm_object_chain_release(object); 2562 vm_object_drop(object); 2563 } 2564 2565 static void 2566 vm_prefault_quick(pmap_t pmap, vm_offset_t addra, 2567 vm_map_entry_t entry, int prot, int fault_flags) 2568 { 2569 struct lwp *lp; 2570 vm_page_t m; 2571 vm_offset_t addr; 2572 vm_pindex_t pindex; 2573 vm_object_t object; 2574 int i; 2575 int noneg; 2576 int nopos; 2577 int maxpages; 2578 2579 /* 2580 * Get stable max count value, disabled if set to 0 2581 */ 2582 maxpages = vm_prefault_pages; 2583 cpu_ccfence(); 2584 if (maxpages <= 0) 2585 return; 2586 2587 /* 2588 * We do not currently prefault mappings that use virtual page 2589 * tables. We do not prefault foreign pmaps. 2590 */ 2591 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 2592 return; 2593 lp = curthread->td_lwp; 2594 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 2595 return; 2596 2597 /* 2598 * Limit pre-fault count to 1024 pages. 2599 */ 2600 if (maxpages > 1024) 2601 maxpages = 1024; 2602 2603 object = entry->object.vm_object; 2604 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2605 KKASSERT(object->backing_object == NULL); 2606 2607 noneg = 0; 2608 nopos = 0; 2609 for (i = 0; i < maxpages; ++i) { 2610 int error; 2611 2612 /* 2613 * Calculate the page to pre-fault, stopping the scan in 2614 * each direction separately if the limit is reached. 2615 */ 2616 if (i & 1) { 2617 if (noneg) 2618 continue; 2619 addr = addra - ((i + 1) >> 1) * PAGE_SIZE; 2620 } else { 2621 if (nopos) 2622 continue; 2623 addr = addra + ((i + 2) >> 1) * PAGE_SIZE; 2624 } 2625 if (addr < entry->start) { 2626 noneg = 1; 2627 if (noneg && nopos) 2628 break; 2629 continue; 2630 } 2631 if (addr >= entry->end) { 2632 nopos = 1; 2633 if (noneg && nopos) 2634 break; 2635 continue; 2636 } 2637 2638 /* 2639 * Skip pages already mapped, and stop scanning in that 2640 * direction. When the scan terminates in both directions 2641 * we are done. 2642 */ 2643 if (pmap_prefault_ok(pmap, addr) == 0) { 2644 if (i & 1) 2645 noneg = 1; 2646 else 2647 nopos = 1; 2648 if (noneg && nopos) 2649 break; 2650 continue; 2651 } 2652 2653 /* 2654 * Follow the VM object chain to obtain the page to be mapped 2655 * into the pmap. This version of the prefault code only 2656 * works with terminal objects. 2657 * 2658 * WARNING! We cannot call swap_pager_unswapped() with a 2659 * shared token. 2660 */ 2661 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2662 2663 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2664 if (m == NULL || error) 2665 continue; 2666 2667 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2668 (m->flags & PG_FICTITIOUS) == 0 && 2669 ((m->flags & PG_SWAPPED) == 0 || 2670 (prot & VM_PROT_WRITE) == 0 || 2671 (fault_flags & VM_FAULT_DIRTY) == 0)) { 2672 /* 2673 * A fully valid page not undergoing soft I/O can 2674 * be immediately entered into the pmap. 2675 */ 2676 if ((m->queue - m->pc) == PQ_CACHE) 2677 vm_page_deactivate(m); 2678 if (prot & VM_PROT_WRITE) { 2679 vm_object_set_writeable_dirty(m->object); 2680 vm_set_nosync(m, entry); 2681 if (fault_flags & VM_FAULT_DIRTY) { 2682 vm_page_dirty(m); 2683 /*XXX*/ 2684 swap_pager_unswapped(m); 2685 } 2686 } 2687 pmap_enter(pmap, addr, m, prot, 0, entry); 2688 mycpu->gd_cnt.v_vm_faults++; 2689 if (curthread->td_lwp) 2690 ++curthread->td_lwp->lwp_ru.ru_minflt; 2691 } 2692 vm_page_wakeup(m); 2693 } 2694 } 2695