xref: /dragonfly/sys/vm/vm_fault.c (revision 8a0bcd56)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140 			int prot);
141 
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148 	vm_page_deactivate(fs->m);
149 	vm_page_wakeup(fs->m);
150 	fs->m = NULL;
151 }
152 
153 /*
154  * The caller must hold vm_token.
155  */
156 static __inline void
157 unlock_map(struct faultstate *fs)
158 {
159 	if (fs->lookup_still_valid && fs->map) {
160 		vm_map_lookup_done(fs->map, fs->entry, 0);
161 		fs->lookup_still_valid = FALSE;
162 	}
163 }
164 
165 /*
166  * Clean up after a successful call to vm_fault_object() so another call
167  * to vm_fault_object() can be made.
168  *
169  * The caller must hold vm_token.
170  */
171 static void
172 _cleanup_successful_fault(struct faultstate *fs, int relock)
173 {
174 	if (fs->object != fs->first_object) {
175 		vm_page_free(fs->first_m);
176 		vm_object_pip_wakeup(fs->object);
177 		fs->first_m = NULL;
178 	}
179 	fs->object = fs->first_object;
180 	if (relock && fs->lookup_still_valid == FALSE) {
181 		if (fs->map)
182 			vm_map_lock_read(fs->map);
183 		fs->lookup_still_valid = TRUE;
184 	}
185 }
186 
187 /*
188  * The caller must hold vm_token.
189  */
190 static void
191 _unlock_things(struct faultstate *fs, int dealloc)
192 {
193 	vm_object_pip_wakeup(fs->first_object);
194 	_cleanup_successful_fault(fs, 0);
195 	if (dealloc) {
196 		vm_object_deallocate(fs->first_object);
197 		fs->first_object = NULL;
198 	}
199 	unlock_map(fs);
200 	if (fs->vp != NULL) {
201 		vput(fs->vp);
202 		fs->vp = NULL;
203 	}
204 }
205 
206 #define unlock_things(fs) _unlock_things(fs, 0)
207 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
208 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
209 
210 /*
211  * TRYPAGER
212  *
213  * Determine if the pager for the current object *might* contain the page.
214  *
215  * We only need to try the pager if this is not a default object (default
216  * objects are zero-fill and have no real pager), and if we are not taking
217  * a wiring fault or if the FS entry is wired.
218  */
219 #define TRYPAGER(fs)	\
220 		(fs->object->type != OBJT_DEFAULT && \
221 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
222 
223 /*
224  * vm_fault:
225  *
226  * Handle a page fault occuring at the given address, requiring the given
227  * permissions, in the map specified.  If successful, the page is inserted
228  * into the associated physical map.
229  *
230  * NOTE: The given address should be truncated to the proper page address.
231  *
232  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
233  * a standard error specifying why the fault is fatal is returned.
234  *
235  * The map in question must be referenced, and remains so.
236  * The caller may hold no locks.
237  * No other requirements.
238  */
239 int
240 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
241 {
242 	int result;
243 	vm_pindex_t first_pindex;
244 	struct faultstate fs;
245 	int growstack;
246 
247 	mycpu->gd_cnt.v_vm_faults++;
248 
249 	fs.didlimit = 0;
250 	fs.hardfault = 0;
251 	fs.fault_flags = fault_flags;
252 	growstack = 1;
253 
254 RetryFault:
255 	/*
256 	 * Find the vm_map_entry representing the backing store and resolve
257 	 * the top level object and page index.  This may have the side
258 	 * effect of executing a copy-on-write on the map entry and/or
259 	 * creating a shadow object, but will not COW any actual VM pages.
260 	 *
261 	 * On success fs.map is left read-locked and various other fields
262 	 * are initialized but not otherwise referenced or locked.
263 	 *
264 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
265 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
266 	 * writable, so we can set the 'A'accessed bit in the virtual page
267 	 * table entry.
268 	 */
269 	fs.map = map;
270 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
271 			       &fs.entry, &fs.first_object,
272 			       &first_pindex, &fs.first_prot, &fs.wired);
273 
274 	/*
275 	 * If the lookup failed or the map protections are incompatible,
276 	 * the fault generally fails.  However, if the caller is trying
277 	 * to do a user wiring we have more work to do.
278 	 */
279 	if (result != KERN_SUCCESS) {
280 		if (result != KERN_PROTECTION_FAILURE ||
281 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
282 		{
283 			if (result == KERN_INVALID_ADDRESS && growstack &&
284 			    map != &kernel_map && curproc != NULL) {
285 				result = vm_map_growstack(curproc, vaddr);
286 				if (result != KERN_SUCCESS)
287 					return (KERN_FAILURE);
288 				growstack = 0;
289 				goto RetryFault;
290 			}
291 			return (result);
292 		}
293 
294 		/*
295    		 * If we are user-wiring a r/w segment, and it is COW, then
296    		 * we need to do the COW operation.  Note that we don't
297 		 * currently COW RO sections now, because it is NOT desirable
298    		 * to COW .text.  We simply keep .text from ever being COW'ed
299    		 * and take the heat that one cannot debug wired .text sections.
300    		 */
301 		result = vm_map_lookup(&fs.map, vaddr,
302 				       VM_PROT_READ|VM_PROT_WRITE|
303 				        VM_PROT_OVERRIDE_WRITE,
304 				       &fs.entry, &fs.first_object,
305 				       &first_pindex, &fs.first_prot,
306 				       &fs.wired);
307 		if (result != KERN_SUCCESS)
308 			return result;
309 
310 		/*
311 		 * If we don't COW now, on a user wire, the user will never
312 		 * be able to write to the mapping.  If we don't make this
313 		 * restriction, the bookkeeping would be nearly impossible.
314 		 */
315 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
316 			fs.entry->max_protection &= ~VM_PROT_WRITE;
317 	}
318 
319 	/*
320 	 * fs.map is read-locked
321 	 *
322 	 * Misc checks.  Save the map generation number to detect races.
323 	 */
324 	fs.map_generation = fs.map->timestamp;
325 
326 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
327 		panic("vm_fault: fault on nofault entry, addr: %lx",
328 		    (u_long)vaddr);
329 	}
330 
331 	/*
332 	 * A system map entry may return a NULL object.  No object means
333 	 * no pager means an unrecoverable kernel fault.
334 	 */
335 	if (fs.first_object == NULL) {
336 		panic("vm_fault: unrecoverable fault at %p in entry %p",
337 			(void *)vaddr, fs.entry);
338 	}
339 
340 	/*
341 	 * Make a reference to this object to prevent its disposal while we
342 	 * are messing with it.  Once we have the reference, the map is free
343 	 * to be diddled.  Since objects reference their shadows (and copies),
344 	 * they will stay around as well.
345 	 *
346 	 * Bump the paging-in-progress count to prevent size changes (e.g.
347 	 * truncation operations) during I/O.  This must be done after
348 	 * obtaining the vnode lock in order to avoid possible deadlocks.
349 	 *
350 	 * The vm_token is needed to manipulate the vm_object
351 	 */
352 	lwkt_gettoken(&vm_token);
353 	vm_object_reference(fs.first_object);
354 	fs.vp = vnode_pager_lock(fs.first_object);
355 	vm_object_pip_add(fs.first_object, 1);
356 	lwkt_reltoken(&vm_token);
357 
358 	fs.lookup_still_valid = TRUE;
359 	fs.first_m = NULL;
360 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
361 
362 	/*
363 	 * If the entry is wired we cannot change the page protection.
364 	 */
365 	if (fs.wired)
366 		fault_type = fs.first_prot;
367 
368 	/*
369 	 * The page we want is at (first_object, first_pindex), but if the
370 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
371 	 * page table to figure out the actual pindex.
372 	 *
373 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
374 	 * ONLY
375 	 */
376 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
377 		result = vm_fault_vpagetable(&fs, &first_pindex,
378 					     fs.entry->aux.master_pde,
379 					     fault_type);
380 		if (result == KERN_TRY_AGAIN)
381 			goto RetryFault;
382 		if (result != KERN_SUCCESS)
383 			return (result);
384 	}
385 
386 	/*
387 	 * Now we have the actual (object, pindex), fault in the page.  If
388 	 * vm_fault_object() fails it will unlock and deallocate the FS
389 	 * data.   If it succeeds everything remains locked and fs->object
390 	 * will have an additional PIP count if it is not equal to
391 	 * fs->first_object
392 	 *
393 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
394 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
395 	 * page can be safely written.  However, it will force a read-only
396 	 * mapping for a read fault if the memory is managed by a virtual
397 	 * page table.
398 	 */
399 	result = vm_fault_object(&fs, first_pindex, fault_type);
400 
401 	if (result == KERN_TRY_AGAIN)
402 		goto RetryFault;
403 	if (result != KERN_SUCCESS)
404 		return (result);
405 
406 	/*
407 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
408 	 * will contain a busied page.
409 	 *
410 	 * Enter the page into the pmap and do pmap-related adjustments.
411 	 */
412 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
413 
414 	/*
415 	 * Burst in a few more pages if possible.  The fs.map should still
416 	 * be locked.
417 	 */
418 	if (fault_flags & VM_FAULT_BURST) {
419 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
420 		    fs.wired == 0) {
421 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
422 		}
423 	}
424 	unlock_things(&fs);
425 
426 	vm_page_flag_clear(fs.m, PG_ZERO);
427 	vm_page_flag_set(fs.m, PG_REFERENCED);
428 
429 	/*
430 	 * If the page is not wired down, then put it where the pageout daemon
431 	 * can find it.
432 	 *
433 	 * We do not really need to get vm_token here but since all the
434 	 * vm_*() calls have to doing it here improves efficiency.
435 	 */
436 	lwkt_gettoken(&vm_token);
437 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
438 		if (fs.wired)
439 			vm_page_wire(fs.m);
440 		else
441 			vm_page_unwire(fs.m, 1);
442 	} else {
443 		vm_page_activate(fs.m);
444 	}
445 
446 	if (curthread->td_lwp) {
447 		if (fs.hardfault) {
448 			curthread->td_lwp->lwp_ru.ru_majflt++;
449 		} else {
450 			curthread->td_lwp->lwp_ru.ru_minflt++;
451 		}
452 	}
453 
454 	/*
455 	 * Unlock everything, and return
456 	 */
457 	vm_page_wakeup(fs.m);
458 	vm_object_deallocate(fs.first_object);
459 	lwkt_reltoken(&vm_token);
460 
461 	return (KERN_SUCCESS);
462 }
463 
464 /*
465  * Fault in the specified virtual address in the current process map,
466  * returning a held VM page or NULL.  See vm_fault_page() for more
467  * information.
468  *
469  * No requirements.
470  */
471 vm_page_t
472 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
473 {
474 	struct lwp *lp = curthread->td_lwp;
475 	vm_page_t m;
476 
477 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
478 			  fault_type, VM_FAULT_NORMAL, errorp);
479 	return(m);
480 }
481 
482 /*
483  * Fault in the specified virtual address in the specified map, doing all
484  * necessary manipulation of the object store and all necessary I/O.  Return
485  * a held VM page or NULL, and set *errorp.  The related pmap is not
486  * updated.
487  *
488  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
489  * and marked PG_REFERENCED as well.
490  *
491  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
492  * error will be returned.
493  *
494  * No requirements.
495  */
496 vm_page_t
497 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
498 	      int fault_flags, int *errorp)
499 {
500 	vm_pindex_t first_pindex;
501 	struct faultstate fs;
502 	int result;
503 	vm_prot_t orig_fault_type = fault_type;
504 
505 	mycpu->gd_cnt.v_vm_faults++;
506 
507 	fs.didlimit = 0;
508 	fs.hardfault = 0;
509 	fs.fault_flags = fault_flags;
510 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
511 
512 RetryFault:
513 	/*
514 	 * Find the vm_map_entry representing the backing store and resolve
515 	 * the top level object and page index.  This may have the side
516 	 * effect of executing a copy-on-write on the map entry and/or
517 	 * creating a shadow object, but will not COW any actual VM pages.
518 	 *
519 	 * On success fs.map is left read-locked and various other fields
520 	 * are initialized but not otherwise referenced or locked.
521 	 *
522 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
523 	 * if the map entry is a virtual page table and also writable,
524 	 * so we can set the 'A'accessed bit in the virtual page table entry.
525 	 */
526 	fs.map = map;
527 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
528 			       &fs.entry, &fs.first_object,
529 			       &first_pindex, &fs.first_prot, &fs.wired);
530 
531 	if (result != KERN_SUCCESS) {
532 		*errorp = result;
533 		return (NULL);
534 	}
535 
536 	/*
537 	 * fs.map is read-locked
538 	 *
539 	 * Misc checks.  Save the map generation number to detect races.
540 	 */
541 	fs.map_generation = fs.map->timestamp;
542 
543 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
544 		panic("vm_fault: fault on nofault entry, addr: %lx",
545 		    (u_long)vaddr);
546 	}
547 
548 	/*
549 	 * A system map entry may return a NULL object.  No object means
550 	 * no pager means an unrecoverable kernel fault.
551 	 */
552 	if (fs.first_object == NULL) {
553 		panic("vm_fault: unrecoverable fault at %p in entry %p",
554 			(void *)vaddr, fs.entry);
555 	}
556 
557 	/*
558 	 * Make a reference to this object to prevent its disposal while we
559 	 * are messing with it.  Once we have the reference, the map is free
560 	 * to be diddled.  Since objects reference their shadows (and copies),
561 	 * they will stay around as well.
562 	 *
563 	 * Bump the paging-in-progress count to prevent size changes (e.g.
564 	 * truncation operations) during I/O.  This must be done after
565 	 * obtaining the vnode lock in order to avoid possible deadlocks.
566 	 *
567 	 * The vm_token is needed to manipulate the vm_object
568 	 */
569 	lwkt_gettoken(&vm_token);
570 	vm_object_reference(fs.first_object);
571 	fs.vp = vnode_pager_lock(fs.first_object);
572 	vm_object_pip_add(fs.first_object, 1);
573 	lwkt_reltoken(&vm_token);
574 
575 	fs.lookup_still_valid = TRUE;
576 	fs.first_m = NULL;
577 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
578 
579 	/*
580 	 * If the entry is wired we cannot change the page protection.
581 	 */
582 	if (fs.wired)
583 		fault_type = fs.first_prot;
584 
585 	/*
586 	 * The page we want is at (first_object, first_pindex), but if the
587 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
588 	 * page table to figure out the actual pindex.
589 	 *
590 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
591 	 * ONLY
592 	 */
593 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
594 		result = vm_fault_vpagetable(&fs, &first_pindex,
595 					     fs.entry->aux.master_pde,
596 					     fault_type);
597 		if (result == KERN_TRY_AGAIN)
598 			goto RetryFault;
599 		if (result != KERN_SUCCESS) {
600 			*errorp = result;
601 			return (NULL);
602 		}
603 	}
604 
605 	/*
606 	 * Now we have the actual (object, pindex), fault in the page.  If
607 	 * vm_fault_object() fails it will unlock and deallocate the FS
608 	 * data.   If it succeeds everything remains locked and fs->object
609 	 * will have an additinal PIP count if it is not equal to
610 	 * fs->first_object
611 	 */
612 	result = vm_fault_object(&fs, first_pindex, fault_type);
613 
614 	if (result == KERN_TRY_AGAIN)
615 		goto RetryFault;
616 	if (result != KERN_SUCCESS) {
617 		*errorp = result;
618 		return(NULL);
619 	}
620 
621 	if ((orig_fault_type & VM_PROT_WRITE) &&
622 	    (fs.prot & VM_PROT_WRITE) == 0) {
623 		*errorp = KERN_PROTECTION_FAILURE;
624 		unlock_and_deallocate(&fs);
625 		return(NULL);
626 	}
627 
628 	/*
629 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
630 	 * will contain a busied page.
631 	 */
632 	unlock_things(&fs);
633 
634 	/*
635 	 * Return a held page.  We are not doing any pmap manipulation so do
636 	 * not set PG_MAPPED.  However, adjust the page flags according to
637 	 * the fault type because the caller may not use a managed pmapping
638 	 * (so we don't want to lose the fact that the page will be dirtied
639 	 * if a write fault was specified).
640 	 */
641 	lwkt_gettoken(&vm_token);
642 	vm_page_hold(fs.m);
643 	vm_page_flag_clear(fs.m, PG_ZERO);
644 	if (fault_type & VM_PROT_WRITE)
645 		vm_page_dirty(fs.m);
646 
647 	/*
648 	 * Update the pmap.  We really only have to do this if a COW
649 	 * occured to replace the read-only page with the new page.  For
650 	 * now just do it unconditionally. XXX
651 	 */
652 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
653 	vm_page_flag_set(fs.m, PG_REFERENCED);
654 
655 	/*
656 	 * Unbusy the page by activating it.  It remains held and will not
657 	 * be reclaimed.
658 	 */
659 	vm_page_activate(fs.m);
660 
661 	if (curthread->td_lwp) {
662 		if (fs.hardfault) {
663 			curthread->td_lwp->lwp_ru.ru_majflt++;
664 		} else {
665 			curthread->td_lwp->lwp_ru.ru_minflt++;
666 		}
667 	}
668 
669 	/*
670 	 * Unlock everything, and return the held page.
671 	 */
672 	vm_page_wakeup(fs.m);
673 	vm_object_deallocate(fs.first_object);
674 	lwkt_reltoken(&vm_token);
675 
676 	*errorp = 0;
677 	return(fs.m);
678 }
679 
680 /*
681  * Fault in the specified (object,offset), dirty the returned page as
682  * needed.  If the requested fault_type cannot be done NULL and an
683  * error is returned.
684  *
685  * A held (but not busied) page is returned.
686  *
687  * No requirements.
688  */
689 vm_page_t
690 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
691 		     vm_prot_t fault_type, int fault_flags, int *errorp)
692 {
693 	int result;
694 	vm_pindex_t first_pindex;
695 	struct faultstate fs;
696 	struct vm_map_entry entry;
697 
698 	bzero(&entry, sizeof(entry));
699 	entry.object.vm_object = object;
700 	entry.maptype = VM_MAPTYPE_NORMAL;
701 	entry.protection = entry.max_protection = fault_type;
702 
703 	fs.didlimit = 0;
704 	fs.hardfault = 0;
705 	fs.fault_flags = fault_flags;
706 	fs.map = NULL;
707 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
708 
709 RetryFault:
710 
711 	fs.first_object = object;
712 	first_pindex = OFF_TO_IDX(offset);
713 	fs.entry = &entry;
714 	fs.first_prot = fault_type;
715 	fs.wired = 0;
716 	/*fs.map_generation = 0; unused */
717 
718 	/*
719 	 * Make a reference to this object to prevent its disposal while we
720 	 * are messing with it.  Once we have the reference, the map is free
721 	 * to be diddled.  Since objects reference their shadows (and copies),
722 	 * they will stay around as well.
723 	 *
724 	 * Bump the paging-in-progress count to prevent size changes (e.g.
725 	 * truncation operations) during I/O.  This must be done after
726 	 * obtaining the vnode lock in order to avoid possible deadlocks.
727 	 */
728 	lwkt_gettoken(&vm_token);
729 	vm_object_reference(fs.first_object);
730 	fs.vp = vnode_pager_lock(fs.first_object);
731 	vm_object_pip_add(fs.first_object, 1);
732 	lwkt_reltoken(&vm_token);
733 
734 	fs.lookup_still_valid = TRUE;
735 	fs.first_m = NULL;
736 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
737 
738 #if 0
739 	/* XXX future - ability to operate on VM object using vpagetable */
740 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
741 		result = vm_fault_vpagetable(&fs, &first_pindex,
742 					     fs.entry->aux.master_pde,
743 					     fault_type);
744 		if (result == KERN_TRY_AGAIN)
745 			goto RetryFault;
746 		if (result != KERN_SUCCESS) {
747 			*errorp = result;
748 			return (NULL);
749 		}
750 	}
751 #endif
752 
753 	/*
754 	 * Now we have the actual (object, pindex), fault in the page.  If
755 	 * vm_fault_object() fails it will unlock and deallocate the FS
756 	 * data.   If it succeeds everything remains locked and fs->object
757 	 * will have an additinal PIP count if it is not equal to
758 	 * fs->first_object
759 	 */
760 	result = vm_fault_object(&fs, first_pindex, fault_type);
761 
762 	if (result == KERN_TRY_AGAIN)
763 		goto RetryFault;
764 	if (result != KERN_SUCCESS) {
765 		*errorp = result;
766 		return(NULL);
767 	}
768 
769 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
770 		*errorp = KERN_PROTECTION_FAILURE;
771 		unlock_and_deallocate(&fs);
772 		return(NULL);
773 	}
774 
775 	/*
776 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
777 	 * will contain a busied page.
778 	 */
779 	unlock_things(&fs);
780 
781 	/*
782 	 * Return a held page.  We are not doing any pmap manipulation so do
783 	 * not set PG_MAPPED.  However, adjust the page flags according to
784 	 * the fault type because the caller may not use a managed pmapping
785 	 * (so we don't want to lose the fact that the page will be dirtied
786 	 * if a write fault was specified).
787 	 */
788 	lwkt_gettoken(&vm_token);
789 	vm_page_hold(fs.m);
790 	vm_page_flag_clear(fs.m, PG_ZERO);
791 	if (fault_type & VM_PROT_WRITE)
792 		vm_page_dirty(fs.m);
793 
794 	if (fault_flags & VM_FAULT_DIRTY)
795 		vm_page_dirty(fs.m);
796 	if (fault_flags & VM_FAULT_UNSWAP)
797 		swap_pager_unswapped(fs.m);
798 
799 	/*
800 	 * Indicate that the page was accessed.
801 	 */
802 	vm_page_flag_set(fs.m, PG_REFERENCED);
803 
804 	/*
805 	 * Unbusy the page by activating it.  It remains held and will not
806 	 * be reclaimed.
807 	 */
808 	vm_page_activate(fs.m);
809 
810 	if (curthread->td_lwp) {
811 		if (fs.hardfault) {
812 			mycpu->gd_cnt.v_vm_faults++;
813 			curthread->td_lwp->lwp_ru.ru_majflt++;
814 		} else {
815 			curthread->td_lwp->lwp_ru.ru_minflt++;
816 		}
817 	}
818 
819 	/*
820 	 * Unlock everything, and return the held page.
821 	 */
822 	vm_page_wakeup(fs.m);
823 	vm_object_deallocate(fs.first_object);
824 	lwkt_reltoken(&vm_token);
825 
826 	*errorp = 0;
827 	return(fs.m);
828 }
829 
830 /*
831  * Translate the virtual page number (first_pindex) that is relative
832  * to the address space into a logical page number that is relative to the
833  * backing object.  Use the virtual page table pointed to by (vpte).
834  *
835  * This implements an N-level page table.  Any level can terminate the
836  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
837  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
838  *
839  * No requirements (vm_token need not be held).
840  */
841 static
842 int
843 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
844 		    vpte_t vpte, int fault_type)
845 {
846 	struct lwbuf *lwb;
847 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
848 	int result = KERN_SUCCESS;
849 	vpte_t *ptep;
850 
851 	for (;;) {
852 		/*
853 		 * We cannot proceed if the vpte is not valid, not readable
854 		 * for a read fault, or not writable for a write fault.
855 		 */
856 		if ((vpte & VPTE_V) == 0) {
857 			unlock_and_deallocate(fs);
858 			return (KERN_FAILURE);
859 		}
860 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
861 			unlock_and_deallocate(fs);
862 			return (KERN_FAILURE);
863 		}
864 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
865 			unlock_and_deallocate(fs);
866 			return (KERN_FAILURE);
867 		}
868 		if ((vpte & VPTE_PS) || vshift == 0)
869 			break;
870 		KKASSERT(vshift >= VPTE_PAGE_BITS);
871 
872 		/*
873 		 * Get the page table page.  Nominally we only read the page
874 		 * table, but since we are actively setting VPTE_M and VPTE_A,
875 		 * tell vm_fault_object() that we are writing it.
876 		 *
877 		 * There is currently no real need to optimize this.
878 		 */
879 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
880 					 VM_PROT_READ|VM_PROT_WRITE);
881 		if (result != KERN_SUCCESS)
882 			return (result);
883 
884 		/*
885 		 * Process the returned fs.m and look up the page table
886 		 * entry in the page table page.
887 		 */
888 		vshift -= VPTE_PAGE_BITS;
889 		lwb = lwbuf_alloc(fs->m);
890 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
891 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
892 		vpte = *ptep;
893 
894 		/*
895 		 * Page table write-back.  If the vpte is valid for the
896 		 * requested operation, do a write-back to the page table.
897 		 *
898 		 * XXX VPTE_M is not set properly for page directory pages.
899 		 * It doesn't get set in the page directory if the page table
900 		 * is modified during a read access.
901 		 */
902 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
903 		    (vpte & VPTE_W)) {
904 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
905 				atomic_set_long(ptep, VPTE_M | VPTE_A);
906 				vm_page_dirty(fs->m);
907 			}
908 		}
909 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
910 		    (vpte & VPTE_R)) {
911 			if ((vpte & VPTE_A) == 0) {
912 				atomic_set_long(ptep, VPTE_A);
913 				vm_page_dirty(fs->m);
914 			}
915 		}
916 		lwbuf_free(lwb);
917 		vm_page_flag_set(fs->m, PG_REFERENCED);
918 		vm_page_activate(fs->m);
919 		vm_page_wakeup(fs->m);
920 		cleanup_successful_fault(fs);
921 	}
922 	/*
923 	 * Combine remaining address bits with the vpte.
924 	 */
925 	/* JG how many bits from each? */
926 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
927 		  (*pindex & ((1L << vshift) - 1));
928 	return (KERN_SUCCESS);
929 }
930 
931 
932 /*
933  * This is the core of the vm_fault code.
934  *
935  * Do all operations required to fault-in (fs.first_object, pindex).  Run
936  * through the shadow chain as necessary and do required COW or virtual
937  * copy operations.  The caller has already fully resolved the vm_map_entry
938  * and, if appropriate, has created a copy-on-write layer.  All we need to
939  * do is iterate the object chain.
940  *
941  * On failure (fs) is unlocked and deallocated and the caller may return or
942  * retry depending on the failure code.  On success (fs) is NOT unlocked or
943  * deallocated, fs.m will contained a resolved, busied page, and fs.object
944  * will have an additional PIP count if it is not equal to fs.first_object.
945  *
946  * No requirements.
947  */
948 static
949 int
950 vm_fault_object(struct faultstate *fs,
951 		vm_pindex_t first_pindex, vm_prot_t fault_type)
952 {
953 	vm_object_t next_object;
954 	vm_pindex_t pindex;
955 
956 	fs->prot = fs->first_prot;
957 	fs->object = fs->first_object;
958 	pindex = first_pindex;
959 
960 	/*
961 	 * If a read fault occurs we try to make the page writable if
962 	 * possible.  There are three cases where we cannot make the
963 	 * page mapping writable:
964 	 *
965 	 * (1) The mapping is read-only or the VM object is read-only,
966 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
967 	 *
968 	 * (2) If the mapping is a virtual page table we need to be able
969 	 *     to detect writes so we can set VPTE_M in the virtual page
970 	 *     table.
971 	 *
972 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
973 	 *     just result in an unnecessary COW fault.
974 	 *
975 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
976 	 * causes adjustments to the 'M'odify bit to also turn off write
977 	 * access to force a re-fault.
978 	 */
979 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
980 		if ((fault_type & VM_PROT_WRITE) == 0)
981 			fs->prot &= ~VM_PROT_WRITE;
982 	}
983 
984 	lwkt_gettoken(&vm_token);
985 
986 	for (;;) {
987 		/*
988 		 * If the object is dead, we stop here
989 		 */
990 		if (fs->object->flags & OBJ_DEAD) {
991 			unlock_and_deallocate(fs);
992 			lwkt_reltoken(&vm_token);
993 			return (KERN_PROTECTION_FAILURE);
994 		}
995 
996 		/*
997 		 * See if page is resident.  spl protection is required
998 		 * to avoid an interrupt unbusy/free race against our
999 		 * lookup.  We must hold the protection through a page
1000 		 * allocation or busy.
1001 		 */
1002 		crit_enter();
1003 		fs->m = vm_page_lookup(fs->object, pindex);
1004 		if (fs->m != NULL) {
1005 			int queue;
1006 			/*
1007 			 * Wait/Retry if the page is busy.  We have to do this
1008 			 * if the page is busy via either PG_BUSY or
1009 			 * vm_page_t->busy because the vm_pager may be using
1010 			 * vm_page_t->busy for pageouts ( and even pageins if
1011 			 * it is the vnode pager ), and we could end up trying
1012 			 * to pagein and pageout the same page simultaneously.
1013 			 *
1014 			 * We can theoretically allow the busy case on a read
1015 			 * fault if the page is marked valid, but since such
1016 			 * pages are typically already pmap'd, putting that
1017 			 * special case in might be more effort then it is
1018 			 * worth.  We cannot under any circumstances mess
1019 			 * around with a vm_page_t->busy page except, perhaps,
1020 			 * to pmap it.
1021 			 */
1022 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1023 				unlock_things(fs);
1024 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1025 				mycpu->gd_cnt.v_intrans++;
1026 				vm_object_deallocate(fs->first_object);
1027 				fs->first_object = NULL;
1028 				lwkt_reltoken(&vm_token);
1029 				crit_exit();
1030 				return (KERN_TRY_AGAIN);
1031 			}
1032 
1033 			/*
1034 			 * If reactivating a page from PQ_CACHE we may have
1035 			 * to rate-limit.
1036 			 */
1037 			queue = fs->m->queue;
1038 			vm_page_unqueue_nowakeup(fs->m);
1039 
1040 			if ((queue - fs->m->pc) == PQ_CACHE &&
1041 			    vm_page_count_severe()) {
1042 				vm_page_activate(fs->m);
1043 				unlock_and_deallocate(fs);
1044 				vm_waitpfault();
1045 				lwkt_reltoken(&vm_token);
1046 				crit_exit();
1047 				return (KERN_TRY_AGAIN);
1048 			}
1049 
1050 			/*
1051 			 * Mark page busy for other processes, and the
1052 			 * pagedaemon.  If it still isn't completely valid
1053 			 * (readable), or if a read-ahead-mark is set on
1054 			 * the VM page, jump to readrest, else we found the
1055 			 * page and can return.
1056 			 *
1057 			 * We can release the spl once we have marked the
1058 			 * page busy.
1059 			 */
1060 			vm_page_busy(fs->m);
1061 			crit_exit();
1062 
1063 			if (fs->m->object != &kernel_object) {
1064 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1065 				    VM_PAGE_BITS_ALL) {
1066 					goto readrest;
1067 				}
1068 				if (fs->m->flags & PG_RAM) {
1069 					if (debug_cluster)
1070 						kprintf("R");
1071 					vm_page_flag_clear(fs->m, PG_RAM);
1072 					goto readrest;
1073 				}
1074 			}
1075 			break; /* break to PAGE HAS BEEN FOUND */
1076 		}
1077 
1078 		/*
1079 		 * Page is not resident, If this is the search termination
1080 		 * or the pager might contain the page, allocate a new page.
1081 		 *
1082 		 * NOTE: We are still in a critical section.
1083 		 */
1084 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1085 			/*
1086 			 * If the page is beyond the object size we fail
1087 			 */
1088 			if (pindex >= fs->object->size) {
1089 				lwkt_reltoken(&vm_token);
1090 				crit_exit();
1091 				unlock_and_deallocate(fs);
1092 				return (KERN_PROTECTION_FAILURE);
1093 			}
1094 
1095 			/*
1096 			 * Ratelimit.
1097 			 */
1098 			if (fs->didlimit == 0 && curproc != NULL) {
1099 				int limticks;
1100 
1101 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1102 				if (limticks) {
1103 					lwkt_reltoken(&vm_token);
1104 					crit_exit();
1105 					unlock_and_deallocate(fs);
1106 					tsleep(curproc, 0, "vmrate", limticks);
1107 					fs->didlimit = 1;
1108 					return (KERN_TRY_AGAIN);
1109 				}
1110 			}
1111 
1112 			/*
1113 			 * Allocate a new page for this object/offset pair.
1114 			 */
1115 			fs->m = NULL;
1116 			if (!vm_page_count_severe()) {
1117 				fs->m = vm_page_alloc(fs->object, pindex,
1118 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1119 			}
1120 			if (fs->m == NULL) {
1121 				lwkt_reltoken(&vm_token);
1122 				crit_exit();
1123 				unlock_and_deallocate(fs);
1124 				vm_waitpfault();
1125 				return (KERN_TRY_AGAIN);
1126 			}
1127 		}
1128 		crit_exit();
1129 
1130 readrest:
1131 		/*
1132 		 * We have found an invalid or partially valid page, a
1133 		 * page with a read-ahead mark which might be partially or
1134 		 * fully valid (and maybe dirty too), or we have allocated
1135 		 * a new page.
1136 		 *
1137 		 * Attempt to fault-in the page if there is a chance that the
1138 		 * pager has it, and potentially fault in additional pages
1139 		 * at the same time.
1140 		 *
1141 		 * We are NOT in splvm here and if TRYPAGER is true then
1142 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1143 		 */
1144 		if (TRYPAGER(fs)) {
1145 			int rv;
1146 			int seqaccess;
1147 			u_char behavior = vm_map_entry_behavior(fs->entry);
1148 
1149 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1150 				seqaccess = 0;
1151 			else
1152 				seqaccess = -1;
1153 
1154 			/*
1155 			 * If sequential access is detected then attempt
1156 			 * to deactivate/cache pages behind the scan to
1157 			 * prevent resource hogging.
1158 			 *
1159 			 * Use of PG_RAM to detect sequential access
1160 			 * also simulates multi-zone sequential access
1161 			 * detection for free.
1162 			 *
1163 			 * NOTE: Partially valid dirty pages cannot be
1164 			 *	 deactivated without causing NFS picemeal
1165 			 *	 writes to barf.
1166 			 */
1167 			if ((fs->first_object->type != OBJT_DEVICE) &&
1168 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1169                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1170 				 (fs->m->flags & PG_RAM)))
1171 			) {
1172 				vm_pindex_t scan_pindex;
1173 				int scan_count = 16;
1174 
1175 				if (first_pindex < 16) {
1176 					scan_pindex = 0;
1177 					scan_count = 0;
1178 				} else {
1179 					scan_pindex = first_pindex - 16;
1180 					if (scan_pindex < 16)
1181 						scan_count = scan_pindex;
1182 					else
1183 						scan_count = 16;
1184 				}
1185 
1186 				crit_enter();
1187 				while (scan_count) {
1188 					vm_page_t mt;
1189 
1190 					mt = vm_page_lookup(fs->first_object,
1191 							    scan_pindex);
1192 					if (mt == NULL ||
1193 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1194 						break;
1195 					}
1196 					if (mt->busy ||
1197 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1198 					    mt->hold_count ||
1199 					    mt->wire_count)  {
1200 						goto skip;
1201 					}
1202 					if (mt->dirty == 0)
1203 						vm_page_test_dirty(mt);
1204 					if (mt->dirty) {
1205 						vm_page_busy(mt);
1206 						vm_page_protect(mt,
1207 								VM_PROT_NONE);
1208 						vm_page_deactivate(mt);
1209 						vm_page_wakeup(mt);
1210 					} else {
1211 						vm_page_cache(mt);
1212 					}
1213 skip:
1214 					--scan_count;
1215 					--scan_pindex;
1216 				}
1217 				crit_exit();
1218 
1219 				seqaccess = 1;
1220 			}
1221 
1222 			/*
1223 			 * Avoid deadlocking against the map when doing I/O.
1224 			 * fs.object and the page is PG_BUSY'd.
1225 			 */
1226 			unlock_map(fs);
1227 
1228 			/*
1229 			 * Acquire the page data.  We still hold a ref on
1230 			 * fs.object and the page has been PG_BUSY's.
1231 			 *
1232 			 * The pager may replace the page (for example, in
1233 			 * order to enter a fictitious page into the
1234 			 * object).  If it does so it is responsible for
1235 			 * cleaning up the passed page and properly setting
1236 			 * the new page PG_BUSY.
1237 			 *
1238 			 * If we got here through a PG_RAM read-ahead
1239 			 * mark the page may be partially dirty and thus
1240 			 * not freeable.  Don't bother checking to see
1241 			 * if the pager has the page because we can't free
1242 			 * it anyway.  We have to depend on the get_page
1243 			 * operation filling in any gaps whether there is
1244 			 * backing store or not.
1245 			 */
1246 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1247 
1248 			if (rv == VM_PAGER_OK) {
1249 				/*
1250 				 * Relookup in case pager changed page. Pager
1251 				 * is responsible for disposition of old page
1252 				 * if moved.
1253 				 *
1254 				 * XXX other code segments do relookups too.
1255 				 * It's a bad abstraction that needs to be
1256 				 * fixed/removed.
1257 				 */
1258 				fs->m = vm_page_lookup(fs->object, pindex);
1259 				if (fs->m == NULL) {
1260 					lwkt_reltoken(&vm_token);
1261 					unlock_and_deallocate(fs);
1262 					return (KERN_TRY_AGAIN);
1263 				}
1264 
1265 				++fs->hardfault;
1266 				break; /* break to PAGE HAS BEEN FOUND */
1267 			}
1268 
1269 			/*
1270 			 * Remove the bogus page (which does not exist at this
1271 			 * object/offset); before doing so, we must get back
1272 			 * our object lock to preserve our invariant.
1273 			 *
1274 			 * Also wake up any other process that may want to bring
1275 			 * in this page.
1276 			 *
1277 			 * If this is the top-level object, we must leave the
1278 			 * busy page to prevent another process from rushing
1279 			 * past us, and inserting the page in that object at
1280 			 * the same time that we are.
1281 			 */
1282 			if (rv == VM_PAGER_ERROR) {
1283 				if (curproc)
1284 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1285 				else
1286 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1287 			}
1288 
1289 			/*
1290 			 * Data outside the range of the pager or an I/O error
1291 			 *
1292 			 * The page may have been wired during the pagein,
1293 			 * e.g. by the buffer cache, and cannot simply be
1294 			 * freed.  Call vnode_pager_freepage() to deal with it.
1295 			 */
1296 			/*
1297 			 * XXX - the check for kernel_map is a kludge to work
1298 			 * around having the machine panic on a kernel space
1299 			 * fault w/ I/O error.
1300 			 */
1301 			if (((fs->map != &kernel_map) &&
1302 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1303 				vnode_pager_freepage(fs->m);
1304 				lwkt_reltoken(&vm_token);
1305 				fs->m = NULL;
1306 				unlock_and_deallocate(fs);
1307 				if (rv == VM_PAGER_ERROR)
1308 					return (KERN_FAILURE);
1309 				else
1310 					return (KERN_PROTECTION_FAILURE);
1311 				/* NOT REACHED */
1312 			}
1313 			if (fs->object != fs->first_object) {
1314 				vnode_pager_freepage(fs->m);
1315 				fs->m = NULL;
1316 				/*
1317 				 * XXX - we cannot just fall out at this
1318 				 * point, m has been freed and is invalid!
1319 				 */
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * We get here if the object has a default pager (or unwiring)
1325 		 * or the pager doesn't have the page.
1326 		 */
1327 		if (fs->object == fs->first_object)
1328 			fs->first_m = fs->m;
1329 
1330 		/*
1331 		 * Move on to the next object.  Lock the next object before
1332 		 * unlocking the current one.
1333 		 */
1334 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1335 		next_object = fs->object->backing_object;
1336 		if (next_object == NULL) {
1337 			/*
1338 			 * If there's no object left, fill the page in the top
1339 			 * object with zeros.
1340 			 */
1341 			if (fs->object != fs->first_object) {
1342 				vm_object_pip_wakeup(fs->object);
1343 
1344 				fs->object = fs->first_object;
1345 				pindex = first_pindex;
1346 				fs->m = fs->first_m;
1347 			}
1348 			fs->first_m = NULL;
1349 
1350 			/*
1351 			 * Zero the page if necessary and mark it valid.
1352 			 */
1353 			if ((fs->m->flags & PG_ZERO) == 0) {
1354 				vm_page_zero_fill(fs->m);
1355 			} else {
1356 				mycpu->gd_cnt.v_ozfod++;
1357 			}
1358 			mycpu->gd_cnt.v_zfod++;
1359 			fs->m->valid = VM_PAGE_BITS_ALL;
1360 			break;	/* break to PAGE HAS BEEN FOUND */
1361 		}
1362 		if (fs->object != fs->first_object) {
1363 			vm_object_pip_wakeup(fs->object);
1364 		}
1365 		KASSERT(fs->object != next_object,
1366 			("object loop %p", next_object));
1367 		fs->object = next_object;
1368 		vm_object_pip_add(fs->object, 1);
1369 	}
1370 
1371 	/*
1372 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1373 	 * is held.]
1374 	 *
1375 	 * vm_token is still held
1376 	 *
1377 	 * If the page is being written, but isn't already owned by the
1378 	 * top-level object, we have to copy it into a new page owned by the
1379 	 * top-level object.
1380 	 */
1381 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1382 		("vm_fault: not busy after main loop"));
1383 
1384 	if (fs->object != fs->first_object) {
1385 		/*
1386 		 * We only really need to copy if we want to write it.
1387 		 */
1388 		if (fault_type & VM_PROT_WRITE) {
1389 			/*
1390 			 * This allows pages to be virtually copied from a
1391 			 * backing_object into the first_object, where the
1392 			 * backing object has no other refs to it, and cannot
1393 			 * gain any more refs.  Instead of a bcopy, we just
1394 			 * move the page from the backing object to the
1395 			 * first object.  Note that we must mark the page
1396 			 * dirty in the first object so that it will go out
1397 			 * to swap when needed.
1398 			 */
1399 			if (
1400 				/*
1401 				 * Map, if present, has not changed
1402 				 */
1403 				(fs->map == NULL ||
1404 				fs->map_generation == fs->map->timestamp) &&
1405 				/*
1406 				 * Only one shadow object
1407 				 */
1408 				(fs->object->shadow_count == 1) &&
1409 				/*
1410 				 * No COW refs, except us
1411 				 */
1412 				(fs->object->ref_count == 1) &&
1413 				/*
1414 				 * No one else can look this object up
1415 				 */
1416 				(fs->object->handle == NULL) &&
1417 				/*
1418 				 * No other ways to look the object up
1419 				 */
1420 				((fs->object->type == OBJT_DEFAULT) ||
1421 				 (fs->object->type == OBJT_SWAP)) &&
1422 				/*
1423 				 * We don't chase down the shadow chain
1424 				 */
1425 				(fs->object == fs->first_object->backing_object) &&
1426 
1427 				/*
1428 				 * grab the lock if we need to
1429 				 */
1430 				(fs->lookup_still_valid ||
1431 				 fs->map == NULL ||
1432 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1433 			    ) {
1434 
1435 				fs->lookup_still_valid = 1;
1436 				/*
1437 				 * get rid of the unnecessary page
1438 				 */
1439 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1440 				vm_page_free(fs->first_m);
1441 				fs->first_m = NULL;
1442 
1443 				/*
1444 				 * grab the page and put it into the
1445 				 * process'es object.  The page is
1446 				 * automatically made dirty.
1447 				 */
1448 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1449 				fs->first_m = fs->m;
1450 				vm_page_busy(fs->first_m);
1451 				fs->m = NULL;
1452 				mycpu->gd_cnt.v_cow_optim++;
1453 			} else {
1454 				/*
1455 				 * Oh, well, lets copy it.
1456 				 */
1457 				vm_page_copy(fs->m, fs->first_m);
1458 				vm_page_event(fs->m, VMEVENT_COW);
1459 			}
1460 
1461 			if (fs->m) {
1462 				/*
1463 				 * We no longer need the old page or object.
1464 				 */
1465 				release_page(fs);
1466 			}
1467 
1468 			/*
1469 			 * fs->object != fs->first_object due to above
1470 			 * conditional
1471 			 */
1472 			vm_object_pip_wakeup(fs->object);
1473 
1474 			/*
1475 			 * Only use the new page below...
1476 			 */
1477 
1478 			mycpu->gd_cnt.v_cow_faults++;
1479 			fs->m = fs->first_m;
1480 			fs->object = fs->first_object;
1481 			pindex = first_pindex;
1482 		} else {
1483 			/*
1484 			 * If it wasn't a write fault avoid having to copy
1485 			 * the page by mapping it read-only.
1486 			 */
1487 			fs->prot &= ~VM_PROT_WRITE;
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * We may have had to unlock a map to do I/O.  If we did then
1493 	 * lookup_still_valid will be FALSE.  If the map generation count
1494 	 * also changed then all sorts of things could have happened while
1495 	 * we were doing the I/O and we need to retry.
1496 	 */
1497 
1498 	if (!fs->lookup_still_valid &&
1499 	    fs->map != NULL &&
1500 	    (fs->map->timestamp != fs->map_generation)) {
1501 		release_page(fs);
1502 		lwkt_reltoken(&vm_token);
1503 		unlock_and_deallocate(fs);
1504 		return (KERN_TRY_AGAIN);
1505 	}
1506 
1507 	/*
1508 	 * If the fault is a write, we know that this page is being
1509 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1510 	 * calls later.
1511 	 *
1512 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1513 	 * if the page is already dirty to prevent data written with
1514 	 * the expectation of being synced from not being synced.
1515 	 * Likewise if this entry does not request NOSYNC then make
1516 	 * sure the page isn't marked NOSYNC.  Applications sharing
1517 	 * data should use the same flags to avoid ping ponging.
1518 	 *
1519 	 * Also tell the backing pager, if any, that it should remove
1520 	 * any swap backing since the page is now dirty.
1521 	 */
1522 	if (fs->prot & VM_PROT_WRITE) {
1523 		vm_object_set_writeable_dirty(fs->m->object);
1524 		vm_set_nosync(fs->m, fs->entry);
1525 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1526 			crit_enter();
1527 			vm_page_dirty(fs->m);
1528 			swap_pager_unswapped(fs->m);
1529 			crit_exit();
1530 		}
1531 	}
1532 
1533 	lwkt_reltoken(&vm_token);
1534 
1535 	/*
1536 	 * Page had better still be busy.  We are still locked up and
1537 	 * fs->object will have another PIP reference if it is not equal
1538 	 * to fs->first_object.
1539 	 */
1540 	KASSERT(fs->m->flags & PG_BUSY,
1541 		("vm_fault: page %p not busy!", fs->m));
1542 
1543 	/*
1544 	 * Sanity check: page must be completely valid or it is not fit to
1545 	 * map into user space.  vm_pager_get_pages() ensures this.
1546 	 */
1547 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1548 		vm_page_zero_invalid(fs->m, TRUE);
1549 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1550 	}
1551 
1552 	return (KERN_SUCCESS);
1553 }
1554 
1555 /*
1556  * Wire down a range of virtual addresses in a map.  The entry in question
1557  * should be marked in-transition and the map must be locked.  We must
1558  * release the map temporarily while faulting-in the page to avoid a
1559  * deadlock.  Note that the entry may be clipped while we are blocked but
1560  * will never be freed.
1561  *
1562  * No requirements.
1563  */
1564 int
1565 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1566 {
1567 	boolean_t fictitious;
1568 	vm_offset_t start;
1569 	vm_offset_t end;
1570 	vm_offset_t va;
1571 	vm_paddr_t pa;
1572 	pmap_t pmap;
1573 	int rv;
1574 
1575 	pmap = vm_map_pmap(map);
1576 	start = entry->start;
1577 	end = entry->end;
1578 	fictitious = entry->object.vm_object &&
1579 			(entry->object.vm_object->type == OBJT_DEVICE);
1580 
1581 	lwkt_gettoken(&vm_token);
1582 	vm_map_unlock(map);
1583 	map->timestamp++;
1584 
1585 	/*
1586 	 * We simulate a fault to get the page and enter it in the physical
1587 	 * map.
1588 	 */
1589 	for (va = start; va < end; va += PAGE_SIZE) {
1590 		if (user_wire) {
1591 			rv = vm_fault(map, va, VM_PROT_READ,
1592 					VM_FAULT_USER_WIRE);
1593 		} else {
1594 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1595 					VM_FAULT_CHANGE_WIRING);
1596 		}
1597 		if (rv) {
1598 			while (va > start) {
1599 				va -= PAGE_SIZE;
1600 				if ((pa = pmap_extract(pmap, va)) == 0)
1601 					continue;
1602 				pmap_change_wiring(pmap, va, FALSE);
1603 				if (!fictitious)
1604 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1605 			}
1606 			vm_map_lock(map);
1607 			lwkt_reltoken(&vm_token);
1608 			return (rv);
1609 		}
1610 	}
1611 	vm_map_lock(map);
1612 	lwkt_reltoken(&vm_token);
1613 	return (KERN_SUCCESS);
1614 }
1615 
1616 /*
1617  * Unwire a range of virtual addresses in a map.  The map should be
1618  * locked.
1619  */
1620 void
1621 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1622 {
1623 	boolean_t fictitious;
1624 	vm_offset_t start;
1625 	vm_offset_t end;
1626 	vm_offset_t va;
1627 	vm_paddr_t pa;
1628 	pmap_t pmap;
1629 
1630 	pmap = vm_map_pmap(map);
1631 	start = entry->start;
1632 	end = entry->end;
1633 	fictitious = entry->object.vm_object &&
1634 			(entry->object.vm_object->type == OBJT_DEVICE);
1635 
1636 	/*
1637 	 * Since the pages are wired down, we must be able to get their
1638 	 * mappings from the physical map system.
1639 	 */
1640 	lwkt_gettoken(&vm_token);
1641 	for (va = start; va < end; va += PAGE_SIZE) {
1642 		pa = pmap_extract(pmap, va);
1643 		if (pa != 0) {
1644 			pmap_change_wiring(pmap, va, FALSE);
1645 			if (!fictitious)
1646 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1647 		}
1648 	}
1649 	lwkt_reltoken(&vm_token);
1650 }
1651 
1652 /*
1653  * Reduce the rate at which memory is allocated to a process based
1654  * on the perceived load on the VM system. As the load increases
1655  * the allocation burst rate goes down and the delay increases.
1656  *
1657  * Rate limiting does not apply when faulting active or inactive
1658  * pages.  When faulting 'cache' pages, rate limiting only applies
1659  * if the system currently has a severe page deficit.
1660  *
1661  * XXX vm_pagesupply should be increased when a page is freed.
1662  *
1663  * We sleep up to 1/10 of a second.
1664  */
1665 static int
1666 vm_fault_ratelimit(struct vmspace *vmspace)
1667 {
1668 	if (vm_load_enable == 0)
1669 		return(0);
1670 	if (vmspace->vm_pagesupply > 0) {
1671 		--vmspace->vm_pagesupply;	/* SMP race ok */
1672 		return(0);
1673 	}
1674 #ifdef INVARIANTS
1675 	if (vm_load_debug) {
1676 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1677 			vm_load,
1678 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1679 			curproc->p_pid, curproc->p_comm);
1680 	}
1681 #endif
1682 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1683 	return(vm_load * hz / 10000);
1684 }
1685 
1686 /*
1687  * Copy all of the pages from a wired-down map entry to another.
1688  *
1689  * The source and destination maps must be locked for write.
1690  * The source map entry must be wired down (or be a sharing map
1691  * entry corresponding to a main map entry that is wired down).
1692  *
1693  * No other requirements.
1694  */
1695 void
1696 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1697 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1698 {
1699 	vm_object_t dst_object;
1700 	vm_object_t src_object;
1701 	vm_ooffset_t dst_offset;
1702 	vm_ooffset_t src_offset;
1703 	vm_prot_t prot;
1704 	vm_offset_t vaddr;
1705 	vm_page_t dst_m;
1706 	vm_page_t src_m;
1707 
1708 #ifdef	lint
1709 	src_map++;
1710 #endif	/* lint */
1711 
1712 	src_object = src_entry->object.vm_object;
1713 	src_offset = src_entry->offset;
1714 
1715 	/*
1716 	 * Create the top-level object for the destination entry. (Doesn't
1717 	 * actually shadow anything - we copy the pages directly.)
1718 	 */
1719 	vm_map_entry_allocate_object(dst_entry);
1720 	dst_object = dst_entry->object.vm_object;
1721 
1722 	prot = dst_entry->max_protection;
1723 
1724 	/*
1725 	 * Loop through all of the pages in the entry's range, copying each
1726 	 * one from the source object (it should be there) to the destination
1727 	 * object.
1728 	 */
1729 	for (vaddr = dst_entry->start, dst_offset = 0;
1730 	    vaddr < dst_entry->end;
1731 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1732 
1733 		/*
1734 		 * Allocate a page in the destination object
1735 		 */
1736 		do {
1737 			dst_m = vm_page_alloc(dst_object,
1738 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1739 			if (dst_m == NULL) {
1740 				vm_wait(0);
1741 			}
1742 		} while (dst_m == NULL);
1743 
1744 		/*
1745 		 * Find the page in the source object, and copy it in.
1746 		 * (Because the source is wired down, the page will be in
1747 		 * memory.)
1748 		 */
1749 		src_m = vm_page_lookup(src_object,
1750 			OFF_TO_IDX(dst_offset + src_offset));
1751 		if (src_m == NULL)
1752 			panic("vm_fault_copy_wired: page missing");
1753 
1754 		vm_page_copy(src_m, dst_m);
1755 		vm_page_event(src_m, VMEVENT_COW);
1756 
1757 		/*
1758 		 * Enter it in the pmap...
1759 		 */
1760 
1761 		vm_page_flag_clear(dst_m, PG_ZERO);
1762 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1763 
1764 		/*
1765 		 * Mark it no longer busy, and put it on the active list.
1766 		 */
1767 		vm_page_activate(dst_m);
1768 		vm_page_wakeup(dst_m);
1769 	}
1770 }
1771 
1772 #if 0
1773 
1774 /*
1775  * This routine checks around the requested page for other pages that
1776  * might be able to be faulted in.  This routine brackets the viable
1777  * pages for the pages to be paged in.
1778  *
1779  * Inputs:
1780  *	m, rbehind, rahead
1781  *
1782  * Outputs:
1783  *  marray (array of vm_page_t), reqpage (index of requested page)
1784  *
1785  * Return value:
1786  *  number of pages in marray
1787  */
1788 static int
1789 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1790 			  vm_page_t *marray, int *reqpage)
1791 {
1792 	int i,j;
1793 	vm_object_t object;
1794 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1795 	vm_page_t rtm;
1796 	int cbehind, cahead;
1797 
1798 	object = m->object;
1799 	pindex = m->pindex;
1800 
1801 	/*
1802 	 * we don't fault-ahead for device pager
1803 	 */
1804 	if (object->type == OBJT_DEVICE) {
1805 		*reqpage = 0;
1806 		marray[0] = m;
1807 		return 1;
1808 	}
1809 
1810 	/*
1811 	 * if the requested page is not available, then give up now
1812 	 */
1813 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1814 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1815 		return 0;
1816 	}
1817 
1818 	if ((cbehind == 0) && (cahead == 0)) {
1819 		*reqpage = 0;
1820 		marray[0] = m;
1821 		return 1;
1822 	}
1823 
1824 	if (rahead > cahead) {
1825 		rahead = cahead;
1826 	}
1827 
1828 	if (rbehind > cbehind) {
1829 		rbehind = cbehind;
1830 	}
1831 
1832 	/*
1833 	 * Do not do any readahead if we have insufficient free memory.
1834 	 *
1835 	 * XXX code was broken disabled before and has instability
1836 	 * with this conditonal fixed, so shortcut for now.
1837 	 */
1838 	if (burst_fault == 0 || vm_page_count_severe()) {
1839 		marray[0] = m;
1840 		*reqpage = 0;
1841 		return 1;
1842 	}
1843 
1844 	/*
1845 	 * scan backward for the read behind pages -- in memory
1846 	 *
1847 	 * Assume that if the page is not found an interrupt will not
1848 	 * create it.  Theoretically interrupts can only remove (busy)
1849 	 * pages, not create new associations.
1850 	 */
1851 	if (pindex > 0) {
1852 		if (rbehind > pindex) {
1853 			rbehind = pindex;
1854 			startpindex = 0;
1855 		} else {
1856 			startpindex = pindex - rbehind;
1857 		}
1858 
1859 		crit_enter();
1860 		lwkt_gettoken(&vm_token);
1861 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1862 			if (vm_page_lookup(object, tpindex - 1))
1863 				break;
1864 		}
1865 
1866 		i = 0;
1867 		while (tpindex < pindex) {
1868 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1869 			if (rtm == NULL) {
1870 				lwkt_reltoken(&vm_token);
1871 				crit_exit();
1872 				for (j = 0; j < i; j++) {
1873 					vm_page_free(marray[j]);
1874 				}
1875 				marray[0] = m;
1876 				*reqpage = 0;
1877 				return 1;
1878 			}
1879 			marray[i] = rtm;
1880 			++i;
1881 			++tpindex;
1882 		}
1883 		lwkt_reltoken(&vm_token);
1884 		crit_exit();
1885 	} else {
1886 		i = 0;
1887 	}
1888 
1889 	/*
1890 	 * Assign requested page
1891 	 */
1892 	marray[i] = m;
1893 	*reqpage = i;
1894 	++i;
1895 
1896 	/*
1897 	 * Scan forwards for read-ahead pages
1898 	 */
1899 	tpindex = pindex + 1;
1900 	endpindex = tpindex + rahead;
1901 	if (endpindex > object->size)
1902 		endpindex = object->size;
1903 
1904 	crit_enter();
1905 	lwkt_gettoken(&vm_token);
1906 	while (tpindex < endpindex) {
1907 		if (vm_page_lookup(object, tpindex))
1908 			break;
1909 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1910 		if (rtm == NULL)
1911 			break;
1912 		marray[i] = rtm;
1913 		++i;
1914 		++tpindex;
1915 	}
1916 	lwkt_reltoken(&vm_token);
1917 	crit_exit();
1918 
1919 	return (i);
1920 }
1921 
1922 #endif
1923 
1924 /*
1925  * vm_prefault() provides a quick way of clustering pagefaults into a
1926  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1927  * except it runs at page fault time instead of mmap time.
1928  *
1929  * This code used to be per-platform pmap_prefault().  It is now
1930  * machine-independent and enhanced to also pre-fault zero-fill pages
1931  * (see vm.fast_fault) as well as make them writable, which greatly
1932  * reduces the number of page faults programs incur.
1933  *
1934  * Application performance when pre-faulting zero-fill pages is heavily
1935  * dependent on the application.  Very tiny applications like /bin/echo
1936  * lose a little performance while applications of any appreciable size
1937  * gain performance.  Prefaulting multiple pages also reduces SMP
1938  * congestion and can improve SMP performance significantly.
1939  *
1940  * NOTE!  prot may allow writing but this only applies to the top level
1941  *	  object.  If we wind up mapping a page extracted from a backing
1942  *	  object we have to make sure it is read-only.
1943  *
1944  * NOTE!  The caller has already handled any COW operations on the
1945  *	  vm_map_entry via the normal fault code.  Do NOT call this
1946  *	  shortcut unless the normal fault code has run on this entry.
1947  *
1948  * No other requirements.
1949  */
1950 #define PFBAK 4
1951 #define PFFOR 4
1952 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1953 
1954 static int vm_prefault_pageorder[] = {
1955 	-PAGE_SIZE, PAGE_SIZE,
1956 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1957 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1958 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1959 };
1960 
1961 /*
1962  * Set PG_NOSYNC if the map entry indicates so, but only if the page
1963  * is not already dirty by other means.  This will prevent passive
1964  * filesystem syncing as well as 'sync' from writing out the page.
1965  */
1966 static void
1967 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
1968 {
1969 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
1970 		if (m->dirty == 0)
1971 			vm_page_flag_set(m, PG_NOSYNC);
1972 	} else {
1973 		vm_page_flag_clear(m, PG_NOSYNC);
1974 	}
1975 }
1976 
1977 static void
1978 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1979 {
1980 	struct lwp *lp;
1981 	vm_page_t m;
1982 	vm_offset_t starta;
1983 	vm_offset_t addr;
1984 	vm_pindex_t index;
1985 	vm_pindex_t pindex;
1986 	vm_object_t object;
1987 	int pprot;
1988 	int i;
1989 
1990 	/*
1991 	 * We do not currently prefault mappings that use virtual page
1992 	 * tables.  We do not prefault foreign pmaps.
1993 	 */
1994 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1995 		return;
1996 	lp = curthread->td_lwp;
1997 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1998 		return;
1999 
2000 	object = entry->object.vm_object;
2001 
2002 	starta = addra - PFBAK * PAGE_SIZE;
2003 	if (starta < entry->start)
2004 		starta = entry->start;
2005 	else if (starta > addra)
2006 		starta = 0;
2007 
2008 	/*
2009 	 * critical section protection is required to maintain the
2010 	 * page/object association, interrupts can free pages and remove
2011 	 * them from their objects.
2012 	 */
2013 	crit_enter();
2014 	lwkt_gettoken(&vm_token);
2015 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2016 		vm_object_t lobject;
2017 		int allocated = 0;
2018 
2019 		addr = addra + vm_prefault_pageorder[i];
2020 		if (addr > addra + (PFFOR * PAGE_SIZE))
2021 			addr = 0;
2022 
2023 		if (addr < starta || addr >= entry->end)
2024 			continue;
2025 
2026 		if (pmap_prefault_ok(pmap, addr) == 0)
2027 			continue;
2028 
2029 		/*
2030 		 * Follow the VM object chain to obtain the page to be mapped
2031 		 * into the pmap.
2032 		 *
2033 		 * If we reach the terminal object without finding a page
2034 		 * and we determine it would be advantageous, then allocate
2035 		 * a zero-fill page for the base object.  The base object
2036 		 * is guaranteed to be OBJT_DEFAULT for this case.
2037 		 *
2038 		 * In order to not have to check the pager via *haspage*()
2039 		 * we stop if any non-default object is encountered.  e.g.
2040 		 * a vnode or swap object would stop the loop.
2041 		 */
2042 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2043 		lobject = object;
2044 		pindex = index;
2045 		pprot = prot;
2046 
2047 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2048 			if (lobject->type != OBJT_DEFAULT)
2049 				break;
2050 			if (lobject->backing_object == NULL) {
2051 				if (vm_fast_fault == 0)
2052 					break;
2053 				if (vm_prefault_pageorder[i] < 0 ||
2054 				    (prot & VM_PROT_WRITE) == 0 ||
2055 				    vm_page_count_min(0)) {
2056 					break;
2057 				}
2058 				/* note: allocate from base object */
2059 				m = vm_page_alloc(object, index,
2060 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2061 
2062 				if ((m->flags & PG_ZERO) == 0) {
2063 					vm_page_zero_fill(m);
2064 				} else {
2065 					vm_page_flag_clear(m, PG_ZERO);
2066 					mycpu->gd_cnt.v_ozfod++;
2067 				}
2068 				mycpu->gd_cnt.v_zfod++;
2069 				m->valid = VM_PAGE_BITS_ALL;
2070 				allocated = 1;
2071 				pprot = prot;
2072 				/* lobject = object .. not needed */
2073 				break;
2074 			}
2075 			if (lobject->backing_object_offset & PAGE_MASK)
2076 				break;
2077 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2078 			lobject = lobject->backing_object;
2079 			pprot &= ~VM_PROT_WRITE;
2080 		}
2081 		/*
2082 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2083 		 *	 bother assigning lobject = object).
2084 		 *
2085 		 * Give-up if the page is not available.
2086 		 */
2087 		if (m == NULL)
2088 			break;
2089 
2090 		/*
2091 		 * Do not conditionalize on PG_RAM.  If pages are present in
2092 		 * the VM system we assume optimal caching.  If caching is
2093 		 * not optimal the I/O gravy train will be restarted when we
2094 		 * hit an unavailable page.  We do not want to try to restart
2095 		 * the gravy train now because we really don't know how much
2096 		 * of the object has been cached.  The cost for restarting
2097 		 * the gravy train should be low (since accesses will likely
2098 		 * be I/O bound anyway).
2099 		 *
2100 		 * The object must be marked dirty if we are mapping a
2101 		 * writable page.
2102 		 */
2103 		if (pprot & VM_PROT_WRITE)
2104 			vm_object_set_writeable_dirty(m->object);
2105 
2106 		/*
2107 		 * Enter the page into the pmap if appropriate.  If we had
2108 		 * allocated the page we have to place it on a queue.  If not
2109 		 * we just have to make sure it isn't on the cache queue
2110 		 * (pages on the cache queue are not allowed to be mapped).
2111 		 */
2112 		if (allocated) {
2113 			if (pprot & VM_PROT_WRITE)
2114 				vm_set_nosync(m, entry);
2115 			pmap_enter(pmap, addr, m, pprot, 0);
2116 			vm_page_deactivate(m);
2117 			vm_page_wakeup(m);
2118 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2119 		    (m->busy == 0) &&
2120 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2121 
2122 			if ((m->queue - m->pc) == PQ_CACHE) {
2123 				vm_page_deactivate(m);
2124 			}
2125 			vm_page_busy(m);
2126 			if (pprot & VM_PROT_WRITE)
2127 				vm_set_nosync(m, entry);
2128 			pmap_enter(pmap, addr, m, pprot, 0);
2129 			vm_page_wakeup(m);
2130 		}
2131 	}
2132 	lwkt_reltoken(&vm_token);
2133 	crit_exit();
2134 }
2135