xref: /dragonfly/sys/vm/vm_fault.c (revision d9d67b59)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 
160 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
161 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
162 			vpte_t, int, int);
163 #if 0
164 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
165 #endif
166 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
167 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
168 			vm_map_entry_t entry, int prot, int fault_flags);
169 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
170 			vm_map_entry_t entry, int prot, int fault_flags);
171 
172 static __inline void
173 release_page(struct faultstate *fs)
174 {
175 	vm_page_deactivate(fs->m);
176 	vm_page_wakeup(fs->m);
177 	fs->m = NULL;
178 }
179 
180 /*
181  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
182  *	 requires relocking and then checking the timestamp.
183  *
184  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
185  *	 not have to update fs->map_generation here.
186  *
187  * NOTE: This function can fail due to a deadlock against the caller's
188  *	 holding of a vm_page BUSY.
189  */
190 static __inline int
191 relock_map(struct faultstate *fs)
192 {
193 	int error;
194 
195 	if (fs->lookup_still_valid == FALSE && fs->map) {
196 		error = vm_map_lock_read_to(fs->map);
197 		if (error == 0)
198 			fs->lookup_still_valid = TRUE;
199 	} else {
200 		error = 0;
201 	}
202 	return error;
203 }
204 
205 static __inline void
206 unlock_map(struct faultstate *fs)
207 {
208 	if (fs->lookup_still_valid && fs->map) {
209 		vm_map_lookup_done(fs->map, fs->entry, 0);
210 		fs->lookup_still_valid = FALSE;
211 	}
212 }
213 
214 /*
215  * Clean up after a successful call to vm_fault_object() so another call
216  * to vm_fault_object() can be made.
217  */
218 static void
219 _cleanup_successful_fault(struct faultstate *fs, int relock)
220 {
221 	/*
222 	 * We allocated a junk page for a COW operation that did
223 	 * not occur, the page must be freed.
224 	 */
225 	if (fs->object != fs->first_object) {
226 		KKASSERT(fs->first_shared == 0);
227 		vm_page_free(fs->first_m);
228 		vm_object_pip_wakeup(fs->object);
229 		fs->first_m = NULL;
230 	}
231 
232 	/*
233 	 * Reset fs->object.
234 	 */
235 	fs->object = fs->first_object;
236 	if (relock && fs->lookup_still_valid == FALSE) {
237 		if (fs->map)
238 			vm_map_lock_read(fs->map);
239 		fs->lookup_still_valid = TRUE;
240 	}
241 }
242 
243 static void
244 _unlock_things(struct faultstate *fs, int dealloc)
245 {
246 	_cleanup_successful_fault(fs, 0);
247 	if (dealloc) {
248 		/*vm_object_deallocate(fs->first_object);*/
249 		/*fs->first_object = NULL; drop used later on */
250 	}
251 	unlock_map(fs);
252 	if (fs->vp != NULL) {
253 		vput(fs->vp);
254 		fs->vp = NULL;
255 	}
256 }
257 
258 #define unlock_things(fs) _unlock_things(fs, 0)
259 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
260 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
261 
262 /*
263  * TRYPAGER
264  *
265  * Determine if the pager for the current object *might* contain the page.
266  *
267  * We only need to try the pager if this is not a default object (default
268  * objects are zero-fill and have no real pager), and if we are not taking
269  * a wiring fault or if the FS entry is wired.
270  */
271 #define TRYPAGER(fs)	\
272 		(fs->object->type != OBJT_DEFAULT && \
273 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
274 
275 /*
276  * vm_fault:
277  *
278  * Handle a page fault occuring at the given address, requiring the given
279  * permissions, in the map specified.  If successful, the page is inserted
280  * into the associated physical map.
281  *
282  * NOTE: The given address should be truncated to the proper page address.
283  *
284  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
285  * a standard error specifying why the fault is fatal is returned.
286  *
287  * The map in question must be referenced, and remains so.
288  * The caller may hold no locks.
289  * No other requirements.
290  */
291 int
292 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
293 {
294 	int result;
295 	vm_pindex_t first_pindex;
296 	struct faultstate fs;
297 	struct lwp *lp;
298 	struct proc *p;
299 	thread_t td;
300 	struct vm_map_ilock ilock;
301 	int didilock;
302 	int growstack;
303 	int retry = 0;
304 	int inherit_prot;
305 
306 	inherit_prot = fault_type & VM_PROT_NOSYNC;
307 	fs.hardfault = 0;
308 	fs.fault_flags = fault_flags;
309 	fs.vp = NULL;
310 	fs.shared = vm_shared_fault;
311 	fs.first_shared = vm_shared_fault;
312 	growstack = 1;
313 
314 	/*
315 	 * vm_map interactions
316 	 */
317 	td = curthread;
318 	if ((lp = td->td_lwp) != NULL)
319 		lp->lwp_flags |= LWP_PAGING;
320 
321 RetryFault:
322 	/*
323 	 * Find the vm_map_entry representing the backing store and resolve
324 	 * the top level object and page index.  This may have the side
325 	 * effect of executing a copy-on-write on the map entry,
326 	 * creating a shadow object, or splitting an anonymous entry for
327 	 * performance, but will not COW any actual VM pages.
328 	 *
329 	 * On success fs.map is left read-locked and various other fields
330 	 * are initialized but not otherwise referenced or locked.
331 	 *
332 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
333 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
334 	 *	  and also writable, so we can set the 'A'accessed bit in
335 	 *	  the virtual page table entry.
336 	 */
337 	fs.map = map;
338 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
339 			       &fs.entry, &fs.first_object,
340 			       &first_pindex, &fs.first_prot, &fs.wired);
341 
342 	/*
343 	 * If the lookup failed or the map protections are incompatible,
344 	 * the fault generally fails.
345 	 *
346 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
347 	 * tried to do a COW fault.
348 	 *
349 	 * If the caller is trying to do a user wiring we have more work
350 	 * to do.
351 	 */
352 	if (result != KERN_SUCCESS) {
353 		if (result == KERN_FAILURE_NOFAULT) {
354 			result = KERN_FAILURE;
355 			goto done;
356 		}
357 		if (result != KERN_PROTECTION_FAILURE ||
358 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
359 		{
360 			if (result == KERN_INVALID_ADDRESS && growstack &&
361 			    map != &kernel_map && curproc != NULL) {
362 				result = vm_map_growstack(map, vaddr);
363 				if (result == KERN_SUCCESS) {
364 					growstack = 0;
365 					++retry;
366 					goto RetryFault;
367 				}
368 				result = KERN_FAILURE;
369 			}
370 			goto done;
371 		}
372 
373 		/*
374 		 * If we are user-wiring a r/w segment, and it is COW, then
375 		 * we need to do the COW operation.  Note that we don't
376 		 * currently COW RO sections now, because it is NOT desirable
377 		 * to COW .text.  We simply keep .text from ever being COW'ed
378 		 * and take the heat that one cannot debug wired .text sections.
379 		 */
380 		result = vm_map_lookup(&fs.map, vaddr,
381 				       VM_PROT_READ|VM_PROT_WRITE|
382 				        VM_PROT_OVERRIDE_WRITE,
383 				       &fs.entry, &fs.first_object,
384 				       &first_pindex, &fs.first_prot,
385 				       &fs.wired);
386 		if (result != KERN_SUCCESS) {
387 			/* could also be KERN_FAILURE_NOFAULT */
388 			result = KERN_FAILURE;
389 			goto done;
390 		}
391 
392 		/*
393 		 * If we don't COW now, on a user wire, the user will never
394 		 * be able to write to the mapping.  If we don't make this
395 		 * restriction, the bookkeeping would be nearly impossible.
396 		 *
397 		 * XXX We have a shared lock, this will have a MP race but
398 		 * I don't see how it can hurt anything.
399 		 */
400 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
401 			atomic_clear_char(&fs.entry->max_protection,
402 					  VM_PROT_WRITE);
403 		}
404 	}
405 
406 	/*
407 	 * fs.map is read-locked
408 	 *
409 	 * Misc checks.  Save the map generation number to detect races.
410 	 */
411 	fs.map_generation = fs.map->timestamp;
412 	fs.lookup_still_valid = TRUE;
413 	fs.first_m = NULL;
414 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
415 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
416 
417 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
418 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
419 			panic("vm_fault: fault on nofault entry, addr: %p",
420 			      (void *)vaddr);
421 		}
422 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
423 		    vaddr >= fs.entry->start &&
424 		    vaddr < fs.entry->start + PAGE_SIZE) {
425 			panic("vm_fault: fault on stack guard, addr: %p",
426 			      (void *)vaddr);
427 		}
428 	}
429 
430 	/*
431 	 * A user-kernel shared map has no VM object and bypasses
432 	 * everything.  We execute the uksmap function with a temporary
433 	 * fictitious vm_page.  The address is directly mapped with no
434 	 * management.
435 	 */
436 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
437 		struct vm_page fakem;
438 
439 		bzero(&fakem, sizeof(fakem));
440 		fakem.pindex = first_pindex;
441 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
442 		fakem.valid = VM_PAGE_BITS_ALL;
443 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
444 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
445 			result = KERN_FAILURE;
446 			unlock_things(&fs);
447 			goto done2;
448 		}
449 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
450 			   fs.wired, fs.entry);
451 		goto done_success;
452 	}
453 
454 	/*
455 	 * A system map entry may return a NULL object.  No object means
456 	 * no pager means an unrecoverable kernel fault.
457 	 */
458 	if (fs.first_object == NULL) {
459 		panic("vm_fault: unrecoverable fault at %p in entry %p",
460 			(void *)vaddr, fs.entry);
461 	}
462 
463 	/*
464 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
465 	 * is set.
466 	 *
467 	 * Unfortunately a deadlock can occur if we are forced to page-in
468 	 * from swap, but diving all the way into the vm_pager_get_page()
469 	 * function to find out is too much.  Just check the object type.
470 	 *
471 	 * The deadlock is a CAM deadlock on a busy VM page when trying
472 	 * to finish an I/O if another process gets stuck in
473 	 * vop_helper_read_shortcut() due to a swap fault.
474 	 */
475 	if ((td->td_flags & TDF_NOFAULT) &&
476 	    (retry ||
477 	     fs.first_object->type == OBJT_VNODE ||
478 	     fs.first_object->type == OBJT_SWAP ||
479 	     fs.first_object->backing_object)) {
480 		result = KERN_FAILURE;
481 		unlock_things(&fs);
482 		goto done2;
483 	}
484 
485 	/*
486 	 * If the entry is wired we cannot change the page protection.
487 	 */
488 	if (fs.wired)
489 		fault_type = fs.first_prot;
490 
491 	/*
492 	 * We generally want to avoid unnecessary exclusive modes on backing
493 	 * and terminal objects because this can seriously interfere with
494 	 * heavily fork()'d processes (particularly /bin/sh scripts).
495 	 *
496 	 * However, we also want to avoid unnecessary retries due to needed
497 	 * shared->exclusive promotion for common faults.  Exclusive mode is
498 	 * always needed if any page insertion, rename, or free occurs in an
499 	 * object (and also indirectly if any I/O is done).
500 	 *
501 	 * The main issue here is going to be fs.first_shared.  If the
502 	 * first_object has a backing object which isn't shadowed and the
503 	 * process is single-threaded we might as well use an exclusive
504 	 * lock/chain right off the bat.
505 	 */
506 	if (fs.first_shared && fs.first_object->backing_object &&
507 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
508 	    td->td_proc && td->td_proc->p_nthreads == 1) {
509 		fs.first_shared = 0;
510 	}
511 
512 	/*
513 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
514 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
515 	 *		     we can try shared first.
516 	 */
517 	if (fault_flags & VM_FAULT_UNSWAP) {
518 		fs.first_shared = 0;
519 	}
520 
521 	/*
522 	 * Obtain a top-level object lock, shared or exclusive depending
523 	 * on fs.first_shared.  If a shared lock winds up being insufficient
524 	 * we will retry with an exclusive lock.
525 	 *
526 	 * The vnode pager lock is always shared.
527 	 */
528 	if (fs.first_shared)
529 		vm_object_hold_shared(fs.first_object);
530 	else
531 		vm_object_hold(fs.first_object);
532 	if (fs.vp == NULL)
533 		fs.vp = vnode_pager_lock(fs.first_object);
534 
535 	/*
536 	 * The page we want is at (first_object, first_pindex), but if the
537 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
538 	 * page table to figure out the actual pindex.
539 	 *
540 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
541 	 * ONLY
542 	 */
543 	didilock = 0;
544 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
545 		vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
546 		didilock = 1;
547 		result = vm_fault_vpagetable(&fs, &first_pindex,
548 					     fs.entry->aux.master_pde,
549 					     fault_type, 1);
550 		if (result == KERN_TRY_AGAIN) {
551 			vm_map_deinterlock(fs.map, &ilock);
552 			vm_object_drop(fs.first_object);
553 			++retry;
554 			goto RetryFault;
555 		}
556 		if (result != KERN_SUCCESS) {
557 			vm_map_deinterlock(fs.map, &ilock);
558 			goto done;
559 		}
560 	}
561 
562 	/*
563 	 * Now we have the actual (object, pindex), fault in the page.  If
564 	 * vm_fault_object() fails it will unlock and deallocate the FS
565 	 * data.   If it succeeds everything remains locked and fs->object
566 	 * will have an additional PIP count if it is not equal to
567 	 * fs->first_object
568 	 *
569 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
570 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
571 	 * page can be safely written.  However, it will force a read-only
572 	 * mapping for a read fault if the memory is managed by a virtual
573 	 * page table.
574 	 *
575 	 * If the fault code uses the shared object lock shortcut
576 	 * we must not try to burst (we can't allocate VM pages).
577 	 */
578 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
579 
580 	if (debug_fault > 0) {
581 		--debug_fault;
582 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
583 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
584 			result, (intmax_t)vaddr, fault_type, fault_flags,
585 			fs.m, fs.prot, fs.wired, fs.entry);
586 	}
587 
588 	if (result == KERN_TRY_AGAIN) {
589 		if (didilock)
590 			vm_map_deinterlock(fs.map, &ilock);
591 		vm_object_drop(fs.first_object);
592 		++retry;
593 		goto RetryFault;
594 	}
595 	if (result != KERN_SUCCESS) {
596 		if (didilock)
597 			vm_map_deinterlock(fs.map, &ilock);
598 		goto done;
599 	}
600 
601 	/*
602 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
603 	 * will contain a busied page.
604 	 *
605 	 * Enter the page into the pmap and do pmap-related adjustments.
606 	 */
607 	KKASSERT(fs.lookup_still_valid == TRUE);
608 	vm_page_flag_set(fs.m, PG_REFERENCED);
609 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
610 		   fs.wired, fs.entry);
611 
612 	if (didilock)
613 		vm_map_deinterlock(fs.map, &ilock);
614 
615 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
616 	KKASSERT(fs.m->flags & PG_BUSY);
617 
618 	/*
619 	 * If the page is not wired down, then put it where the pageout daemon
620 	 * can find it.
621 	 */
622 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
623 		if (fs.wired)
624 			vm_page_wire(fs.m);
625 		else
626 			vm_page_unwire(fs.m, 1);
627 	} else {
628 		vm_page_activate(fs.m);
629 	}
630 	vm_page_wakeup(fs.m);
631 
632 	/*
633 	 * Burst in a few more pages if possible.  The fs.map should still
634 	 * be locked.  To avoid interlocking against a vnode->getblk
635 	 * operation we had to be sure to unbusy our primary vm_page above
636 	 * first.
637 	 *
638 	 * A normal burst can continue down backing store, only execute
639 	 * if we are holding an exclusive lock, otherwise the exclusive
640 	 * locks the burst code gets might cause excessive SMP collisions.
641 	 *
642 	 * A quick burst can be utilized when there is no backing object
643 	 * (i.e. a shared file mmap).
644 	 */
645 	if ((fault_flags & VM_FAULT_BURST) &&
646 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
647 	    fs.wired == 0) {
648 		if (fs.first_shared == 0 && fs.shared == 0) {
649 			vm_prefault(fs.map->pmap, vaddr,
650 				    fs.entry, fs.prot, fault_flags);
651 		} else {
652 			vm_prefault_quick(fs.map->pmap, vaddr,
653 					  fs.entry, fs.prot, fault_flags);
654 		}
655 	}
656 
657 done_success:
658 	mycpu->gd_cnt.v_vm_faults++;
659 	if (td->td_lwp)
660 		++td->td_lwp->lwp_ru.ru_minflt;
661 
662 	/*
663 	 * Unlock everything, and return
664 	 */
665 	unlock_things(&fs);
666 
667 	if (td->td_lwp) {
668 		if (fs.hardfault) {
669 			td->td_lwp->lwp_ru.ru_majflt++;
670 		} else {
671 			td->td_lwp->lwp_ru.ru_minflt++;
672 		}
673 	}
674 
675 	/*vm_object_deallocate(fs.first_object);*/
676 	/*fs.m = NULL; */
677 	/*fs.first_object = NULL; must still drop later */
678 
679 	result = KERN_SUCCESS;
680 done:
681 	if (fs.first_object)
682 		vm_object_drop(fs.first_object);
683 done2:
684 	if (lp)
685 		lp->lwp_flags &= ~LWP_PAGING;
686 
687 #if !defined(NO_SWAPPING)
688 	/*
689 	 * Check the process RSS limit and force deactivation and
690 	 * (asynchronous) paging if necessary.  This is a complex operation,
691 	 * only do it for direct user-mode faults, for now.
692 	 *
693 	 * To reduce overhead implement approximately a ~16MB hysteresis.
694 	 */
695 	p = td->td_proc;
696 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
697 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
698 	    map != &kernel_map) {
699 		vm_pindex_t limit;
700 		vm_pindex_t size;
701 
702 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
703 					p->p_rlimit[RLIMIT_RSS].rlim_max));
704 		size = pmap_resident_tlnw_count(map->pmap);
705 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
706 			vm_pageout_map_deactivate_pages(map, limit);
707 		}
708 	}
709 #endif
710 
711 	return (result);
712 }
713 
714 /*
715  * Fault in the specified virtual address in the current process map,
716  * returning a held VM page or NULL.  See vm_fault_page() for more
717  * information.
718  *
719  * No requirements.
720  */
721 vm_page_t
722 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
723 		    int *errorp, int *busyp)
724 {
725 	struct lwp *lp = curthread->td_lwp;
726 	vm_page_t m;
727 
728 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
729 			  fault_type, VM_FAULT_NORMAL,
730 			  errorp, busyp);
731 	return(m);
732 }
733 
734 /*
735  * Fault in the specified virtual address in the specified map, doing all
736  * necessary manipulation of the object store and all necessary I/O.  Return
737  * a held VM page or NULL, and set *errorp.  The related pmap is not
738  * updated.
739  *
740  * If busyp is not NULL then *busyp will be set to TRUE if this routine
741  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
742  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
743  * NULL the returned page is only held.
744  *
745  * If the caller has no intention of writing to the page's contents, busyp
746  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
747  * without busying the page.
748  *
749  * The returned page will also be marked PG_REFERENCED.
750  *
751  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
752  * error will be returned.
753  *
754  * No requirements.
755  */
756 vm_page_t
757 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
758 	      int fault_flags, int *errorp, int *busyp)
759 {
760 	vm_pindex_t first_pindex;
761 	struct faultstate fs;
762 	int result;
763 	int retry;
764 	int growstack;
765 	vm_prot_t orig_fault_type = fault_type;
766 
767 	retry = 0;
768 	fs.hardfault = 0;
769 	fs.fault_flags = fault_flags;
770 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
771 
772 	/*
773 	 * Dive the pmap (concurrency possible).  If we find the
774 	 * appropriate page we can terminate early and quickly.
775 	 *
776 	 * This works great for normal programs but will always return
777 	 * NULL for host lookups of vkernel maps in VMM mode.
778 	 *
779 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
780 	 *	 VM_PROT_WRITE or VM_PROT_OVERRIDE_WRITE is set in
781 	 *	 fault_type and pmap_fault_page_quick() returns non-NULL,
782 	 *	 it will safely dirty the returned vm_page_t for us.  We
783 	 *	 cannot safely dirty it here (it might not be busy).
784 	 */
785 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
786 	if (fs.m) {
787 		*errorp = 0;
788 		return(fs.m);
789 	}
790 
791 	/*
792 	 * Otherwise take a concurrency hit and do a formal page
793 	 * fault.
794 	 */
795 	fs.vp = NULL;
796 	fs.shared = vm_shared_fault;
797 	fs.first_shared = vm_shared_fault;
798 	growstack = 1;
799 
800 	/*
801 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
802 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
803 	 *		     we can try shared first.
804 	 */
805 	if (fault_flags & VM_FAULT_UNSWAP) {
806 		fs.first_shared = 0;
807 	}
808 
809 RetryFault:
810 	/*
811 	 * Find the vm_map_entry representing the backing store and resolve
812 	 * the top level object and page index.  This may have the side
813 	 * effect of executing a copy-on-write on the map entry and/or
814 	 * creating a shadow object, but will not COW any actual VM pages.
815 	 *
816 	 * On success fs.map is left read-locked and various other fields
817 	 * are initialized but not otherwise referenced or locked.
818 	 *
819 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
820 	 *	  if the map entry is a virtual page table and also writable,
821 	 *	  so we can set the 'A'accessed bit in the virtual page table
822 	 *	  entry.
823 	 */
824 	fs.map = map;
825 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
826 			       &fs.entry, &fs.first_object,
827 			       &first_pindex, &fs.first_prot, &fs.wired);
828 
829 	if (result != KERN_SUCCESS) {
830 		if (result == KERN_FAILURE_NOFAULT) {
831 			*errorp = KERN_FAILURE;
832 			fs.m = NULL;
833 			goto done;
834 		}
835 		if (result != KERN_PROTECTION_FAILURE ||
836 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
837 		{
838 			if (result == KERN_INVALID_ADDRESS && growstack &&
839 			    map != &kernel_map && curproc != NULL) {
840 				result = vm_map_growstack(map, vaddr);
841 				if (result == KERN_SUCCESS) {
842 					growstack = 0;
843 					++retry;
844 					goto RetryFault;
845 				}
846 				result = KERN_FAILURE;
847 			}
848 			fs.m = NULL;
849 			*errorp = result;
850 			goto done;
851 		}
852 
853 		/*
854 		 * If we are user-wiring a r/w segment, and it is COW, then
855 		 * we need to do the COW operation.  Note that we don't
856 		 * currently COW RO sections now, because it is NOT desirable
857 		 * to COW .text.  We simply keep .text from ever being COW'ed
858 		 * and take the heat that one cannot debug wired .text sections.
859 		 */
860 		result = vm_map_lookup(&fs.map, vaddr,
861 				       VM_PROT_READ|VM_PROT_WRITE|
862 				        VM_PROT_OVERRIDE_WRITE,
863 				       &fs.entry, &fs.first_object,
864 				       &first_pindex, &fs.first_prot,
865 				       &fs.wired);
866 		if (result != KERN_SUCCESS) {
867 			/* could also be KERN_FAILURE_NOFAULT */
868 			*errorp = KERN_FAILURE;
869 			fs.m = NULL;
870 			goto done;
871 		}
872 
873 		/*
874 		 * If we don't COW now, on a user wire, the user will never
875 		 * be able to write to the mapping.  If we don't make this
876 		 * restriction, the bookkeeping would be nearly impossible.
877 		 *
878 		 * XXX We have a shared lock, this will have a MP race but
879 		 * I don't see how it can hurt anything.
880 		 */
881 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
882 			atomic_clear_char(&fs.entry->max_protection,
883 					  VM_PROT_WRITE);
884 		}
885 	}
886 
887 	/*
888 	 * fs.map is read-locked
889 	 *
890 	 * Misc checks.  Save the map generation number to detect races.
891 	 */
892 	fs.map_generation = fs.map->timestamp;
893 	fs.lookup_still_valid = TRUE;
894 	fs.first_m = NULL;
895 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
896 
897 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
898 		panic("vm_fault: fault on nofault entry, addr: %lx",
899 		    (u_long)vaddr);
900 	}
901 
902 	/*
903 	 * A user-kernel shared map has no VM object and bypasses
904 	 * everything.  We execute the uksmap function with a temporary
905 	 * fictitious vm_page.  The address is directly mapped with no
906 	 * management.
907 	 */
908 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
909 		struct vm_page fakem;
910 
911 		bzero(&fakem, sizeof(fakem));
912 		fakem.pindex = first_pindex;
913 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
914 		fakem.valid = VM_PAGE_BITS_ALL;
915 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
916 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
917 			*errorp = KERN_FAILURE;
918 			fs.m = NULL;
919 			unlock_things(&fs);
920 			goto done2;
921 		}
922 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
923 		vm_page_hold(fs.m);
924 		if (busyp)
925 			*busyp = 0;	/* don't need to busy R or W */
926 		unlock_things(&fs);
927 		*errorp = 0;
928 		goto done;
929 	}
930 
931 
932 	/*
933 	 * A system map entry may return a NULL object.  No object means
934 	 * no pager means an unrecoverable kernel fault.
935 	 */
936 	if (fs.first_object == NULL) {
937 		panic("vm_fault: unrecoverable fault at %p in entry %p",
938 			(void *)vaddr, fs.entry);
939 	}
940 
941 	/*
942 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
943 	 * is set.
944 	 *
945 	 * Unfortunately a deadlock can occur if we are forced to page-in
946 	 * from swap, but diving all the way into the vm_pager_get_page()
947 	 * function to find out is too much.  Just check the object type.
948 	 */
949 	if ((curthread->td_flags & TDF_NOFAULT) &&
950 	    (retry ||
951 	     fs.first_object->type == OBJT_VNODE ||
952 	     fs.first_object->type == OBJT_SWAP ||
953 	     fs.first_object->backing_object)) {
954 		*errorp = KERN_FAILURE;
955 		unlock_things(&fs);
956 		fs.m = NULL;
957 		goto done2;
958 	}
959 
960 	/*
961 	 * If the entry is wired we cannot change the page protection.
962 	 */
963 	if (fs.wired)
964 		fault_type = fs.first_prot;
965 
966 	/*
967 	 * Make a reference to this object to prevent its disposal while we
968 	 * are messing with it.  Once we have the reference, the map is free
969 	 * to be diddled.  Since objects reference their shadows (and copies),
970 	 * they will stay around as well.
971 	 *
972 	 * The reference should also prevent an unexpected collapse of the
973 	 * parent that might move pages from the current object into the
974 	 * parent unexpectedly, resulting in corruption.
975 	 *
976 	 * Bump the paging-in-progress count to prevent size changes (e.g.
977 	 * truncation operations) during I/O.  This must be done after
978 	 * obtaining the vnode lock in order to avoid possible deadlocks.
979 	 */
980 	if (fs.first_shared)
981 		vm_object_hold_shared(fs.first_object);
982 	else
983 		vm_object_hold(fs.first_object);
984 	if (fs.vp == NULL)
985 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
986 
987 	/*
988 	 * The page we want is at (first_object, first_pindex), but if the
989 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
990 	 * page table to figure out the actual pindex.
991 	 *
992 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
993 	 * ONLY
994 	 */
995 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
996 		result = vm_fault_vpagetable(&fs, &first_pindex,
997 					     fs.entry->aux.master_pde,
998 					     fault_type, 1);
999 		if (result == KERN_TRY_AGAIN) {
1000 			vm_object_drop(fs.first_object);
1001 			++retry;
1002 			goto RetryFault;
1003 		}
1004 		if (result != KERN_SUCCESS) {
1005 			*errorp = result;
1006 			fs.m = NULL;
1007 			goto done;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Now we have the actual (object, pindex), fault in the page.  If
1013 	 * vm_fault_object() fails it will unlock and deallocate the FS
1014 	 * data.   If it succeeds everything remains locked and fs->object
1015 	 * will have an additinal PIP count if it is not equal to
1016 	 * fs->first_object
1017 	 */
1018 	fs.m = NULL;
1019 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1020 
1021 	if (result == KERN_TRY_AGAIN) {
1022 		vm_object_drop(fs.first_object);
1023 		++retry;
1024 		goto RetryFault;
1025 	}
1026 	if (result != KERN_SUCCESS) {
1027 		*errorp = result;
1028 		fs.m = NULL;
1029 		goto done;
1030 	}
1031 
1032 	if ((orig_fault_type & VM_PROT_WRITE) &&
1033 	    (fs.prot & VM_PROT_WRITE) == 0) {
1034 		*errorp = KERN_PROTECTION_FAILURE;
1035 		unlock_and_deallocate(&fs);
1036 		fs.m = NULL;
1037 		goto done;
1038 	}
1039 
1040 	/*
1041 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
1042 	 * a pmap unrelated to the current process pmap, in which case
1043 	 * the current cpu core will not be listed in the pmap's pm_active
1044 	 * mask.  Thus invalidation interlocks will fail to work properly.
1045 	 *
1046 	 * (for example, 'ps' uses procfs to read program arguments from
1047 	 * each process's stack).
1048 	 *
1049 	 * In addition to the above this function will be called to acquire
1050 	 * a page that might already be faulted in, re-faulting it
1051 	 * continuously is a waste of time.
1052 	 *
1053 	 * XXX could this have been the cause of our random seg-fault
1054 	 *     issues?  procfs accesses user stacks.
1055 	 */
1056 	vm_page_flag_set(fs.m, PG_REFERENCED);
1057 #if 0
1058 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
1059 	mycpu->gd_cnt.v_vm_faults++;
1060 	if (curthread->td_lwp)
1061 		++curthread->td_lwp->lwp_ru.ru_minflt;
1062 #endif
1063 
1064 	/*
1065 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1066 	 * will contain a busied page.  So we must unlock here after having
1067 	 * messed with the pmap.
1068 	 */
1069 	unlock_things(&fs);
1070 
1071 	/*
1072 	 * Return a held page.  We are not doing any pmap manipulation so do
1073 	 * not set PG_MAPPED.  However, adjust the page flags according to
1074 	 * the fault type because the caller may not use a managed pmapping
1075 	 * (so we don't want to lose the fact that the page will be dirtied
1076 	 * if a write fault was specified).
1077 	 */
1078 	if (fault_type & VM_PROT_WRITE)
1079 		vm_page_dirty(fs.m);
1080 	vm_page_activate(fs.m);
1081 
1082 	if (curthread->td_lwp) {
1083 		if (fs.hardfault) {
1084 			curthread->td_lwp->lwp_ru.ru_majflt++;
1085 		} else {
1086 			curthread->td_lwp->lwp_ru.ru_minflt++;
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * Unlock everything, and return the held or busied page.
1092 	 */
1093 	if (busyp) {
1094 		if (fault_type & (VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE)) {
1095 			vm_page_dirty(fs.m);
1096 			*busyp = 1;
1097 		} else {
1098 			*busyp = 0;
1099 			vm_page_hold(fs.m);
1100 			vm_page_wakeup(fs.m);
1101 		}
1102 	} else {
1103 		vm_page_hold(fs.m);
1104 		vm_page_wakeup(fs.m);
1105 	}
1106 	/*vm_object_deallocate(fs.first_object);*/
1107 	/*fs.first_object = NULL; */
1108 	*errorp = 0;
1109 
1110 done:
1111 	if (fs.first_object)
1112 		vm_object_drop(fs.first_object);
1113 done2:
1114 	return(fs.m);
1115 }
1116 
1117 /*
1118  * Fault in the specified (object,offset), dirty the returned page as
1119  * needed.  If the requested fault_type cannot be done NULL and an
1120  * error is returned.
1121  *
1122  * A held (but not busied) page is returned.
1123  *
1124  * The passed in object must be held as specified by the shared
1125  * argument.
1126  */
1127 vm_page_t
1128 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1129 		     vm_prot_t fault_type, int fault_flags,
1130 		     int *sharedp, int *errorp)
1131 {
1132 	int result;
1133 	vm_pindex_t first_pindex;
1134 	struct faultstate fs;
1135 	struct vm_map_entry entry;
1136 
1137 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1138 	bzero(&entry, sizeof(entry));
1139 	entry.object.vm_object = object;
1140 	entry.maptype = VM_MAPTYPE_NORMAL;
1141 	entry.protection = entry.max_protection = fault_type;
1142 
1143 	fs.hardfault = 0;
1144 	fs.fault_flags = fault_flags;
1145 	fs.map = NULL;
1146 	fs.shared = vm_shared_fault;
1147 	fs.first_shared = *sharedp;
1148 	fs.vp = NULL;
1149 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1150 
1151 	/*
1152 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1153 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1154 	 *		     we can try shared first.
1155 	 */
1156 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1157 		fs.first_shared = 0;
1158 		vm_object_upgrade(object);
1159 	}
1160 
1161 	/*
1162 	 * Retry loop as needed (typically for shared->exclusive transitions)
1163 	 */
1164 RetryFault:
1165 	*sharedp = fs.first_shared;
1166 	first_pindex = OFF_TO_IDX(offset);
1167 	fs.first_object = object;
1168 	fs.entry = &entry;
1169 	fs.first_prot = fault_type;
1170 	fs.wired = 0;
1171 	/*fs.map_generation = 0; unused */
1172 
1173 	/*
1174 	 * Make a reference to this object to prevent its disposal while we
1175 	 * are messing with it.  Once we have the reference, the map is free
1176 	 * to be diddled.  Since objects reference their shadows (and copies),
1177 	 * they will stay around as well.
1178 	 *
1179 	 * The reference should also prevent an unexpected collapse of the
1180 	 * parent that might move pages from the current object into the
1181 	 * parent unexpectedly, resulting in corruption.
1182 	 *
1183 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1184 	 * truncation operations) during I/O.  This must be done after
1185 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1186 	 */
1187 	if (fs.vp == NULL)
1188 		fs.vp = vnode_pager_lock(fs.first_object);
1189 
1190 	fs.lookup_still_valid = TRUE;
1191 	fs.first_m = NULL;
1192 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1193 
1194 #if 0
1195 	/* XXX future - ability to operate on VM object using vpagetable */
1196 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1197 		result = vm_fault_vpagetable(&fs, &first_pindex,
1198 					     fs.entry->aux.master_pde,
1199 					     fault_type, 0);
1200 		if (result == KERN_TRY_AGAIN) {
1201 			if (fs.first_shared == 0 && *sharedp)
1202 				vm_object_upgrade(object);
1203 			goto RetryFault;
1204 		}
1205 		if (result != KERN_SUCCESS) {
1206 			*errorp = result;
1207 			return (NULL);
1208 		}
1209 	}
1210 #endif
1211 
1212 	/*
1213 	 * Now we have the actual (object, pindex), fault in the page.  If
1214 	 * vm_fault_object() fails it will unlock and deallocate the FS
1215 	 * data.   If it succeeds everything remains locked and fs->object
1216 	 * will have an additinal PIP count if it is not equal to
1217 	 * fs->first_object
1218 	 *
1219 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1220 	 * We may have to upgrade its lock to handle the requested fault.
1221 	 */
1222 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1223 
1224 	if (result == KERN_TRY_AGAIN) {
1225 		if (fs.first_shared == 0 && *sharedp)
1226 			vm_object_upgrade(object);
1227 		goto RetryFault;
1228 	}
1229 	if (result != KERN_SUCCESS) {
1230 		*errorp = result;
1231 		return(NULL);
1232 	}
1233 
1234 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1235 		*errorp = KERN_PROTECTION_FAILURE;
1236 		unlock_and_deallocate(&fs);
1237 		return(NULL);
1238 	}
1239 
1240 	/*
1241 	 * On success vm_fault_object() does not unlock or deallocate, so we
1242 	 * do it here.  Note that the returned fs.m will be busied.
1243 	 */
1244 	unlock_things(&fs);
1245 
1246 	/*
1247 	 * Return a held page.  We are not doing any pmap manipulation so do
1248 	 * not set PG_MAPPED.  However, adjust the page flags according to
1249 	 * the fault type because the caller may not use a managed pmapping
1250 	 * (so we don't want to lose the fact that the page will be dirtied
1251 	 * if a write fault was specified).
1252 	 */
1253 	vm_page_hold(fs.m);
1254 	vm_page_activate(fs.m);
1255 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1256 		vm_page_dirty(fs.m);
1257 	if (fault_flags & VM_FAULT_UNSWAP)
1258 		swap_pager_unswapped(fs.m);
1259 
1260 	/*
1261 	 * Indicate that the page was accessed.
1262 	 */
1263 	vm_page_flag_set(fs.m, PG_REFERENCED);
1264 
1265 	if (curthread->td_lwp) {
1266 		if (fs.hardfault) {
1267 			curthread->td_lwp->lwp_ru.ru_majflt++;
1268 		} else {
1269 			curthread->td_lwp->lwp_ru.ru_minflt++;
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * Unlock everything, and return the held page.
1275 	 */
1276 	vm_page_wakeup(fs.m);
1277 	/*vm_object_deallocate(fs.first_object);*/
1278 	/*fs.first_object = NULL; */
1279 
1280 	*errorp = 0;
1281 	return(fs.m);
1282 }
1283 
1284 /*
1285  * Translate the virtual page number (first_pindex) that is relative
1286  * to the address space into a logical page number that is relative to the
1287  * backing object.  Use the virtual page table pointed to by (vpte).
1288  *
1289  * Possibly downgrade the protection based on the vpte bits.
1290  *
1291  * This implements an N-level page table.  Any level can terminate the
1292  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1293  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1294  */
1295 static
1296 int
1297 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1298 		    vpte_t vpte, int fault_type, int allow_nofault)
1299 {
1300 	struct lwbuf *lwb;
1301 	struct lwbuf lwb_cache;
1302 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1303 	int result;
1304 	vpte_t *ptep;
1305 
1306 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1307 	for (;;) {
1308 		/*
1309 		 * We cannot proceed if the vpte is not valid, not readable
1310 		 * for a read fault, not writable for a write fault, or
1311 		 * not executable for an instruction execution fault.
1312 		 */
1313 		if ((vpte & VPTE_V) == 0) {
1314 			unlock_and_deallocate(fs);
1315 			return (KERN_FAILURE);
1316 		}
1317 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1318 			unlock_and_deallocate(fs);
1319 			return (KERN_FAILURE);
1320 		}
1321 		if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1322 			unlock_and_deallocate(fs);
1323 			return (KERN_FAILURE);
1324 		}
1325 		if ((vpte & VPTE_PS) || vshift == 0)
1326 			break;
1327 
1328 		/*
1329 		 * Get the page table page.  Nominally we only read the page
1330 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1331 		 * tell vm_fault_object() that we are writing it.
1332 		 *
1333 		 * There is currently no real need to optimize this.
1334 		 */
1335 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1336 					 VM_PROT_READ|VM_PROT_WRITE,
1337 					 allow_nofault);
1338 		if (result != KERN_SUCCESS)
1339 			return (result);
1340 
1341 		/*
1342 		 * Process the returned fs.m and look up the page table
1343 		 * entry in the page table page.
1344 		 */
1345 		vshift -= VPTE_PAGE_BITS;
1346 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1347 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1348 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1349 		vm_page_activate(fs->m);
1350 
1351 		/*
1352 		 * Page table write-back - entire operation including
1353 		 * validation of the pte must be atomic to avoid races
1354 		 * against the vkernel changing the pte.
1355 		 *
1356 		 * If the vpte is valid for the* requested operation, do
1357 		 * a write-back to the page table.
1358 		 *
1359 		 * XXX VPTE_M is not set properly for page directory pages.
1360 		 * It doesn't get set in the page directory if the page table
1361 		 * is modified during a read access.
1362 		 */
1363 		for (;;) {
1364 			vpte_t nvpte;
1365 
1366 			/*
1367 			 * Reload for the cmpset, but make sure the pte is
1368 			 * still valid.
1369 			 */
1370 			vpte = *ptep;
1371 			cpu_ccfence();
1372 			nvpte = vpte;
1373 
1374 			if ((vpte & VPTE_V) == 0)
1375 				break;
1376 
1377 			if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1378 				nvpte |= VPTE_M | VPTE_A;
1379 			if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1380 				nvpte |= VPTE_A;
1381 			if (vpte == nvpte)
1382 				break;
1383 			if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1384 				vm_page_dirty(fs->m);
1385 				break;
1386 			}
1387 		}
1388 		lwbuf_free(lwb);
1389 		vm_page_flag_set(fs->m, PG_REFERENCED);
1390 		vm_page_wakeup(fs->m);
1391 		fs->m = NULL;
1392 		cleanup_successful_fault(fs);
1393 	}
1394 
1395 	/*
1396 	 * When the vkernel sets VPTE_RW it expects the real kernel to
1397 	 * reflect VPTE_M back when the page is modified via the mapping.
1398 	 * In order to accomplish this the real kernel must map the page
1399 	 * read-only for read faults and use write faults to reflect VPTE_M
1400 	 * back.
1401 	 *
1402 	 * Once VPTE_M has been set, the real kernel's pte allows writing.
1403 	 * If the vkernel clears VPTE_M the vkernel must be sure to
1404 	 * MADV_INVAL the real kernel's mappings to force the real kernel
1405 	 * to re-fault on the next write so oit can set VPTE_M again.
1406 	 */
1407 	if ((fault_type & VM_PROT_WRITE) == 0 &&
1408 	    (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1409 		fs->first_prot &= ~VM_PROT_WRITE;
1410 	}
1411 
1412 	/*
1413 	 * Disable EXECUTE perms if NX bit is set.
1414 	 */
1415 	if (vpte & VPTE_NX)
1416 		fs->first_prot &= ~VM_PROT_EXECUTE;
1417 
1418 	/*
1419 	 * Combine remaining address bits with the vpte.
1420 	 */
1421 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1422 		  (*pindex & ((1L << vshift) - 1));
1423 	return (KERN_SUCCESS);
1424 }
1425 
1426 
1427 /*
1428  * This is the core of the vm_fault code.
1429  *
1430  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1431  * through the shadow chain as necessary and do required COW or virtual
1432  * copy operations.  The caller has already fully resolved the vm_map_entry
1433  * and, if appropriate, has created a copy-on-write layer.  All we need to
1434  * do is iterate the object chain.
1435  *
1436  * On failure (fs) is unlocked and deallocated and the caller may return or
1437  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1438  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1439  * will have an additional PIP count if it is not equal to fs.first_object.
1440  *
1441  * If locks based on fs->first_shared or fs->shared are insufficient,
1442  * clear the appropriate field(s) and return RETRY.  COWs require that
1443  * first_shared be 0, while page allocations (or frees) require that
1444  * shared be 0.  Renames require that both be 0.
1445  *
1446  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1447  *	 we will have to retry with it exclusive if the vm_page is
1448  *	 PG_SWAPPED.
1449  *
1450  * fs->first_object must be held on call.
1451  */
1452 static
1453 int
1454 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1455 		vm_prot_t fault_type, int allow_nofault)
1456 {
1457 	vm_object_t next_object;
1458 	vm_pindex_t pindex;
1459 	int error;
1460 
1461 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1462 	fs->prot = fs->first_prot;
1463 	fs->object = fs->first_object;
1464 	pindex = first_pindex;
1465 
1466 	vm_object_chain_acquire(fs->first_object, fs->shared);
1467 	vm_object_pip_add(fs->first_object, 1);
1468 
1469 	/*
1470 	 * If a read fault occurs we try to upgrade the page protection
1471 	 * and make it also writable if possible.  There are three cases
1472 	 * where we cannot make the page mapping writable:
1473 	 *
1474 	 * (1) The mapping is read-only or the VM object is read-only,
1475 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1476 	 *
1477 	 * (2) If the mapping is a virtual page table fs->first_prot will
1478 	 *     have already been properly adjusted by vm_fault_vpagetable().
1479 	 *     to detect writes so we can set VPTE_M in the virtual page
1480 	 *     table.  Used by vkernels.
1481 	 *
1482 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1483 	 *     just result in an unnecessary COW fault.
1484 	 *
1485 	 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1486 	 *     here.
1487 	 */
1488 #if 0
1489 	/* see vpagetable code */
1490 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1491 		if ((fault_type & VM_PROT_WRITE) == 0)
1492 			fs->prot &= ~VM_PROT_WRITE;
1493 	}
1494 #endif
1495 
1496 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1497 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1498 		if ((fault_type & VM_PROT_WRITE) == 0)
1499 			fs->prot &= ~VM_PROT_WRITE;
1500 	}
1501 
1502 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1503 
1504 	for (;;) {
1505 		/*
1506 		 * The entire backing chain from first_object to object
1507 		 * inclusive is chainlocked.
1508 		 *
1509 		 * If the object is dead, we stop here
1510 		 */
1511 		if (fs->object->flags & OBJ_DEAD) {
1512 			vm_object_pip_wakeup(fs->first_object);
1513 			vm_object_chain_release_all(fs->first_object,
1514 						    fs->object);
1515 			if (fs->object != fs->first_object)
1516 				vm_object_drop(fs->object);
1517 			unlock_and_deallocate(fs);
1518 			return (KERN_PROTECTION_FAILURE);
1519 		}
1520 
1521 		/*
1522 		 * See if the page is resident.  Wait/Retry if the page is
1523 		 * busy (lots of stuff may have changed so we can't continue
1524 		 * in that case).
1525 		 *
1526 		 * We can theoretically allow the soft-busy case on a read
1527 		 * fault if the page is marked valid, but since such
1528 		 * pages are typically already pmap'd, putting that
1529 		 * special case in might be more effort then it is
1530 		 * worth.  We cannot under any circumstances mess
1531 		 * around with a vm_page_t->busy page except, perhaps,
1532 		 * to pmap it.
1533 		 */
1534 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1535 						TRUE, &error);
1536 		if (error) {
1537 			vm_object_pip_wakeup(fs->first_object);
1538 			vm_object_chain_release_all(fs->first_object,
1539 						    fs->object);
1540 			if (fs->object != fs->first_object)
1541 				vm_object_drop(fs->object);
1542 			unlock_things(fs);
1543 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1544 			mycpu->gd_cnt.v_intrans++;
1545 			/*vm_object_deallocate(fs->first_object);*/
1546 			/*fs->first_object = NULL;*/
1547 			fs->m = NULL;
1548 			return (KERN_TRY_AGAIN);
1549 		}
1550 		if (fs->m) {
1551 			/*
1552 			 * The page is busied for us.
1553 			 *
1554 			 * If reactivating a page from PQ_CACHE we may have
1555 			 * to rate-limit.
1556 			 */
1557 			int queue = fs->m->queue;
1558 			vm_page_unqueue_nowakeup(fs->m);
1559 
1560 			if ((queue - fs->m->pc) == PQ_CACHE &&
1561 			    vm_page_count_severe()) {
1562 				vm_page_activate(fs->m);
1563 				vm_page_wakeup(fs->m);
1564 				fs->m = NULL;
1565 				vm_object_pip_wakeup(fs->first_object);
1566 				vm_object_chain_release_all(fs->first_object,
1567 							    fs->object);
1568 				if (fs->object != fs->first_object)
1569 					vm_object_drop(fs->object);
1570 				unlock_and_deallocate(fs);
1571 				if (allow_nofault == 0 ||
1572 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1573 					thread_t td;
1574 
1575 					vm_wait_pfault();
1576 					td = curthread;
1577 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1578 						return (KERN_PROTECTION_FAILURE);
1579 				}
1580 				return (KERN_TRY_AGAIN);
1581 			}
1582 
1583 			/*
1584 			 * If it still isn't completely valid (readable),
1585 			 * or if a read-ahead-mark is set on the VM page,
1586 			 * jump to readrest, else we found the page and
1587 			 * can return.
1588 			 *
1589 			 * We can release the spl once we have marked the
1590 			 * page busy.
1591 			 */
1592 			if (fs->m->object != &kernel_object) {
1593 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1594 				    VM_PAGE_BITS_ALL) {
1595 					goto readrest;
1596 				}
1597 				if (fs->m->flags & PG_RAM) {
1598 					if (debug_cluster)
1599 						kprintf("R");
1600 					vm_page_flag_clear(fs->m, PG_RAM);
1601 					goto readrest;
1602 				}
1603 			}
1604 			break; /* break to PAGE HAS BEEN FOUND */
1605 		}
1606 
1607 		/*
1608 		 * Page is not resident, If this is the search termination
1609 		 * or the pager might contain the page, allocate a new page.
1610 		 */
1611 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1612 			/*
1613 			 * Allocating, must be exclusive.
1614 			 */
1615 			if (fs->object == fs->first_object &&
1616 			    fs->first_shared) {
1617 				fs->first_shared = 0;
1618 				vm_object_pip_wakeup(fs->first_object);
1619 				vm_object_chain_release_all(fs->first_object,
1620 							    fs->object);
1621 				if (fs->object != fs->first_object)
1622 					vm_object_drop(fs->object);
1623 				unlock_and_deallocate(fs);
1624 				return (KERN_TRY_AGAIN);
1625 			}
1626 			if (fs->object != fs->first_object &&
1627 			    fs->shared) {
1628 				fs->first_shared = 0;
1629 				fs->shared = 0;
1630 				vm_object_pip_wakeup(fs->first_object);
1631 				vm_object_chain_release_all(fs->first_object,
1632 							    fs->object);
1633 				if (fs->object != fs->first_object)
1634 					vm_object_drop(fs->object);
1635 				unlock_and_deallocate(fs);
1636 				return (KERN_TRY_AGAIN);
1637 			}
1638 
1639 			/*
1640 			 * If the page is beyond the object size we fail
1641 			 */
1642 			if (pindex >= fs->object->size) {
1643 				vm_object_pip_wakeup(fs->first_object);
1644 				vm_object_chain_release_all(fs->first_object,
1645 							    fs->object);
1646 				if (fs->object != fs->first_object)
1647 					vm_object_drop(fs->object);
1648 				unlock_and_deallocate(fs);
1649 				return (KERN_PROTECTION_FAILURE);
1650 			}
1651 
1652 			/*
1653 			 * Allocate a new page for this object/offset pair.
1654 			 *
1655 			 * It is possible for the allocation to race, so
1656 			 * handle the case.
1657 			 */
1658 			fs->m = NULL;
1659 			if (!vm_page_count_severe()) {
1660 				fs->m = vm_page_alloc(fs->object, pindex,
1661 				    ((fs->vp || fs->object->backing_object) ?
1662 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1663 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1664 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1665 			}
1666 			if (fs->m == NULL) {
1667 				vm_object_pip_wakeup(fs->first_object);
1668 				vm_object_chain_release_all(fs->first_object,
1669 							    fs->object);
1670 				if (fs->object != fs->first_object)
1671 					vm_object_drop(fs->object);
1672 				unlock_and_deallocate(fs);
1673 				if (allow_nofault == 0 ||
1674 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1675 					thread_t td;
1676 
1677 					vm_wait_pfault();
1678 					td = curthread;
1679 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1680 						return (KERN_PROTECTION_FAILURE);
1681 				}
1682 				return (KERN_TRY_AGAIN);
1683 			}
1684 
1685 			/*
1686 			 * Fall through to readrest.  We have a new page which
1687 			 * will have to be paged (since m->valid will be 0).
1688 			 */
1689 		}
1690 
1691 readrest:
1692 		/*
1693 		 * We have found an invalid or partially valid page, a
1694 		 * page with a read-ahead mark which might be partially or
1695 		 * fully valid (and maybe dirty too), or we have allocated
1696 		 * a new page.
1697 		 *
1698 		 * Attempt to fault-in the page if there is a chance that the
1699 		 * pager has it, and potentially fault in additional pages
1700 		 * at the same time.
1701 		 *
1702 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1703 		 * for us.
1704 		 */
1705 		if (TRYPAGER(fs)) {
1706 			int rv;
1707 			int seqaccess;
1708 			u_char behavior = vm_map_entry_behavior(fs->entry);
1709 
1710 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1711 				seqaccess = 0;
1712 			else
1713 				seqaccess = -1;
1714 
1715 			/*
1716 			 * Doing I/O may synchronously insert additional
1717 			 * pages so we can't be shared at this point either.
1718 			 *
1719 			 * NOTE: We can't free fs->m here in the allocated
1720 			 *	 case (fs->object != fs->first_object) as
1721 			 *	 this would require an exclusively locked
1722 			 *	 VM object.
1723 			 */
1724 			if (fs->object == fs->first_object &&
1725 			    fs->first_shared) {
1726 				vm_page_deactivate(fs->m);
1727 				vm_page_wakeup(fs->m);
1728 				fs->m = NULL;
1729 				fs->first_shared = 0;
1730 				vm_object_pip_wakeup(fs->first_object);
1731 				vm_object_chain_release_all(fs->first_object,
1732 							    fs->object);
1733 				if (fs->object != fs->first_object)
1734 					vm_object_drop(fs->object);
1735 				unlock_and_deallocate(fs);
1736 				return (KERN_TRY_AGAIN);
1737 			}
1738 			if (fs->object != fs->first_object &&
1739 			    fs->shared) {
1740 				vm_page_deactivate(fs->m);
1741 				vm_page_wakeup(fs->m);
1742 				fs->m = NULL;
1743 				fs->first_shared = 0;
1744 				fs->shared = 0;
1745 				vm_object_pip_wakeup(fs->first_object);
1746 				vm_object_chain_release_all(fs->first_object,
1747 							    fs->object);
1748 				if (fs->object != fs->first_object)
1749 					vm_object_drop(fs->object);
1750 				unlock_and_deallocate(fs);
1751 				return (KERN_TRY_AGAIN);
1752 			}
1753 
1754 			/*
1755 			 * Avoid deadlocking against the map when doing I/O.
1756 			 * fs.object and the page is PG_BUSY'd.
1757 			 *
1758 			 * NOTE: Once unlocked, fs->entry can become stale
1759 			 *	 so this will NULL it out.
1760 			 *
1761 			 * NOTE: fs->entry is invalid until we relock the
1762 			 *	 map and verify that the timestamp has not
1763 			 *	 changed.
1764 			 */
1765 			unlock_map(fs);
1766 
1767 			/*
1768 			 * Acquire the page data.  We still hold a ref on
1769 			 * fs.object and the page has been PG_BUSY's.
1770 			 *
1771 			 * The pager may replace the page (for example, in
1772 			 * order to enter a fictitious page into the
1773 			 * object).  If it does so it is responsible for
1774 			 * cleaning up the passed page and properly setting
1775 			 * the new page PG_BUSY.
1776 			 *
1777 			 * If we got here through a PG_RAM read-ahead
1778 			 * mark the page may be partially dirty and thus
1779 			 * not freeable.  Don't bother checking to see
1780 			 * if the pager has the page because we can't free
1781 			 * it anyway.  We have to depend on the get_page
1782 			 * operation filling in any gaps whether there is
1783 			 * backing store or not.
1784 			 */
1785 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1786 
1787 			if (rv == VM_PAGER_OK) {
1788 				/*
1789 				 * Relookup in case pager changed page. Pager
1790 				 * is responsible for disposition of old page
1791 				 * if moved.
1792 				 *
1793 				 * XXX other code segments do relookups too.
1794 				 * It's a bad abstraction that needs to be
1795 				 * fixed/removed.
1796 				 */
1797 				fs->m = vm_page_lookup(fs->object, pindex);
1798 				if (fs->m == NULL) {
1799 					vm_object_pip_wakeup(fs->first_object);
1800 					vm_object_chain_release_all(
1801 						fs->first_object, fs->object);
1802 					if (fs->object != fs->first_object)
1803 						vm_object_drop(fs->object);
1804 					unlock_and_deallocate(fs);
1805 					return (KERN_TRY_AGAIN);
1806 				}
1807 				++fs->hardfault;
1808 				break; /* break to PAGE HAS BEEN FOUND */
1809 			}
1810 
1811 			/*
1812 			 * Remove the bogus page (which does not exist at this
1813 			 * object/offset); before doing so, we must get back
1814 			 * our object lock to preserve our invariant.
1815 			 *
1816 			 * Also wake up any other process that may want to bring
1817 			 * in this page.
1818 			 *
1819 			 * If this is the top-level object, we must leave the
1820 			 * busy page to prevent another process from rushing
1821 			 * past us, and inserting the page in that object at
1822 			 * the same time that we are.
1823 			 */
1824 			if (rv == VM_PAGER_ERROR) {
1825 				if (curproc) {
1826 					kprintf("vm_fault: pager read error, "
1827 						"pid %d (%s)\n",
1828 						curproc->p_pid,
1829 						curproc->p_comm);
1830 				} else {
1831 					kprintf("vm_fault: pager read error, "
1832 						"thread %p (%s)\n",
1833 						curthread,
1834 						curproc->p_comm);
1835 				}
1836 			}
1837 
1838 			/*
1839 			 * Data outside the range of the pager or an I/O error
1840 			 *
1841 			 * The page may have been wired during the pagein,
1842 			 * e.g. by the buffer cache, and cannot simply be
1843 			 * freed.  Call vnode_pager_freepage() to deal with it.
1844 			 *
1845 			 * Also note that we cannot free the page if we are
1846 			 * holding the related object shared. XXX not sure
1847 			 * what to do in that case.
1848 			 */
1849 			if (fs->object != fs->first_object) {
1850 				/*
1851 				 * Scrap the page.  Check to see if the
1852 				 * vm_pager_get_page() call has already
1853 				 * dealt with it.
1854 				 */
1855 				if (fs->m) {
1856 					vnode_pager_freepage(fs->m);
1857 					fs->m = NULL;
1858 				}
1859 
1860 				/*
1861 				 * XXX - we cannot just fall out at this
1862 				 * point, m has been freed and is invalid!
1863 				 */
1864 			}
1865 			/*
1866 			 * XXX - the check for kernel_map is a kludge to work
1867 			 * around having the machine panic on a kernel space
1868 			 * fault w/ I/O error.
1869 			 */
1870 			if (((fs->map != &kernel_map) &&
1871 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1872 				if (fs->m) {
1873 					if (fs->first_shared) {
1874 						vm_page_deactivate(fs->m);
1875 						vm_page_wakeup(fs->m);
1876 					} else {
1877 						vnode_pager_freepage(fs->m);
1878 					}
1879 					fs->m = NULL;
1880 				}
1881 				vm_object_pip_wakeup(fs->first_object);
1882 				vm_object_chain_release_all(fs->first_object,
1883 							    fs->object);
1884 				if (fs->object != fs->first_object)
1885 					vm_object_drop(fs->object);
1886 				unlock_and_deallocate(fs);
1887 				if (rv == VM_PAGER_ERROR)
1888 					return (KERN_FAILURE);
1889 				else
1890 					return (KERN_PROTECTION_FAILURE);
1891 				/* NOT REACHED */
1892 			}
1893 		}
1894 
1895 		/*
1896 		 * We get here if the object has a default pager (or unwiring)
1897 		 * or the pager doesn't have the page.
1898 		 *
1899 		 * fs->first_m will be used for the COW unless we find a
1900 		 * deeper page to be mapped read-only, in which case the
1901 		 * unlock*(fs) will free first_m.
1902 		 */
1903 		if (fs->object == fs->first_object)
1904 			fs->first_m = fs->m;
1905 
1906 		/*
1907 		 * Move on to the next object.  The chain lock should prevent
1908 		 * the backing_object from getting ripped out from under us.
1909 		 *
1910 		 * The object lock for the next object is governed by
1911 		 * fs->shared.
1912 		 */
1913 		if ((next_object = fs->object->backing_object) != NULL) {
1914 			if (fs->shared)
1915 				vm_object_hold_shared(next_object);
1916 			else
1917 				vm_object_hold(next_object);
1918 			vm_object_chain_acquire(next_object, fs->shared);
1919 			KKASSERT(next_object == fs->object->backing_object);
1920 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1921 		}
1922 
1923 		if (next_object == NULL) {
1924 			/*
1925 			 * If there's no object left, fill the page in the top
1926 			 * object with zeros.
1927 			 */
1928 			if (fs->object != fs->first_object) {
1929 #if 0
1930 				if (fs->first_object->backing_object !=
1931 				    fs->object) {
1932 					vm_object_hold(fs->first_object->backing_object);
1933 				}
1934 #endif
1935 				vm_object_chain_release_all(
1936 					fs->first_object->backing_object,
1937 					fs->object);
1938 #if 0
1939 				if (fs->first_object->backing_object !=
1940 				    fs->object) {
1941 					vm_object_drop(fs->first_object->backing_object);
1942 				}
1943 #endif
1944 				vm_object_pip_wakeup(fs->object);
1945 				vm_object_drop(fs->object);
1946 				fs->object = fs->first_object;
1947 				pindex = first_pindex;
1948 				fs->m = fs->first_m;
1949 			}
1950 			fs->first_m = NULL;
1951 
1952 			/*
1953 			 * Zero the page and mark it valid.
1954 			 */
1955 			vm_page_zero_fill(fs->m);
1956 			mycpu->gd_cnt.v_zfod++;
1957 			fs->m->valid = VM_PAGE_BITS_ALL;
1958 			break;	/* break to PAGE HAS BEEN FOUND */
1959 		}
1960 		if (fs->object != fs->first_object) {
1961 			vm_object_pip_wakeup(fs->object);
1962 			vm_object_lock_swap();
1963 			vm_object_drop(fs->object);
1964 		}
1965 		KASSERT(fs->object != next_object,
1966 			("object loop %p", next_object));
1967 		fs->object = next_object;
1968 		vm_object_pip_add(fs->object, 1);
1969 	}
1970 
1971 	/*
1972 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1973 	 * is held.]
1974 	 *
1975 	 * object still held.
1976 	 *
1977 	 * local shared variable may be different from fs->shared.
1978 	 *
1979 	 * If the page is being written, but isn't already owned by the
1980 	 * top-level object, we have to copy it into a new page owned by the
1981 	 * top-level object.
1982 	 */
1983 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1984 		("vm_fault: not busy after main loop"));
1985 
1986 	if (fs->object != fs->first_object) {
1987 		/*
1988 		 * We only really need to copy if we want to write it.
1989 		 */
1990 		if (fault_type & VM_PROT_WRITE) {
1991 			/*
1992 			 * This allows pages to be virtually copied from a
1993 			 * backing_object into the first_object, where the
1994 			 * backing object has no other refs to it, and cannot
1995 			 * gain any more refs.  Instead of a bcopy, we just
1996 			 * move the page from the backing object to the
1997 			 * first object.  Note that we must mark the page
1998 			 * dirty in the first object so that it will go out
1999 			 * to swap when needed.
2000 			 */
2001 			if (
2002 				/*
2003 				 * Must be holding exclusive locks
2004 				 */
2005 				fs->first_shared == 0 &&
2006 				fs->shared == 0 &&
2007 				/*
2008 				 * Map, if present, has not changed
2009 				 */
2010 				(fs->map == NULL ||
2011 				fs->map_generation == fs->map->timestamp) &&
2012 				/*
2013 				 * Only one shadow object
2014 				 */
2015 				(fs->object->shadow_count == 1) &&
2016 				/*
2017 				 * No COW refs, except us
2018 				 */
2019 				(fs->object->ref_count == 1) &&
2020 				/*
2021 				 * No one else can look this object up
2022 				 */
2023 				(fs->object->handle == NULL) &&
2024 				/*
2025 				 * No other ways to look the object up
2026 				 */
2027 				((fs->object->type == OBJT_DEFAULT) ||
2028 				 (fs->object->type == OBJT_SWAP)) &&
2029 				/*
2030 				 * We don't chase down the shadow chain
2031 				 */
2032 				(fs->object == fs->first_object->backing_object) &&
2033 
2034 				/*
2035 				 * grab the lock if we need to
2036 				 */
2037 				(fs->lookup_still_valid ||
2038 				 fs->map == NULL ||
2039 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
2040 			    ) {
2041 				/*
2042 				 * (first_m) and (m) are both busied.  We have
2043 				 * move (m) into (first_m)'s object/pindex
2044 				 * in an atomic fashion, then free (first_m).
2045 				 *
2046 				 * first_object is held so second remove
2047 				 * followed by the rename should wind
2048 				 * up being atomic.  vm_page_free() might
2049 				 * block so we don't do it until after the
2050 				 * rename.
2051 				 */
2052 				fs->lookup_still_valid = 1;
2053 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2054 				vm_page_remove(fs->first_m);
2055 				vm_page_rename(fs->m, fs->first_object,
2056 					       first_pindex);
2057 				vm_page_free(fs->first_m);
2058 				fs->first_m = fs->m;
2059 				fs->m = NULL;
2060 				mycpu->gd_cnt.v_cow_optim++;
2061 			} else {
2062 				/*
2063 				 * Oh, well, lets copy it.
2064 				 *
2065 				 * Why are we unmapping the original page
2066 				 * here?  Well, in short, not all accessors
2067 				 * of user memory go through the pmap.  The
2068 				 * procfs code doesn't have access user memory
2069 				 * via a local pmap, so vm_fault_page*()
2070 				 * can't call pmap_enter().  And the umtx*()
2071 				 * code may modify the COW'd page via a DMAP
2072 				 * or kernel mapping and not via the pmap,
2073 				 * leaving the original page still mapped
2074 				 * read-only into the pmap.
2075 				 *
2076 				 * So we have to remove the page from at
2077 				 * least the current pmap if it is in it.
2078 				 * Just remove it from all pmaps.
2079 				 */
2080 				KKASSERT(fs->first_shared == 0);
2081 				vm_page_copy(fs->m, fs->first_m);
2082 				vm_page_protect(fs->m, VM_PROT_NONE);
2083 			}
2084 
2085 			/*
2086 			 * We no longer need the old page or object.
2087 			 */
2088 			if (fs->m)
2089 				release_page(fs);
2090 
2091 			/*
2092 			 * We intend to revert to first_object, undo the
2093 			 * chain lock through to that.
2094 			 */
2095 #if 0
2096 			if (fs->first_object->backing_object != fs->object)
2097 				vm_object_hold(fs->first_object->backing_object);
2098 #endif
2099 			vm_object_chain_release_all(
2100 					fs->first_object->backing_object,
2101 					fs->object);
2102 #if 0
2103 			if (fs->first_object->backing_object != fs->object)
2104 				vm_object_drop(fs->first_object->backing_object);
2105 #endif
2106 
2107 			/*
2108 			 * fs->object != fs->first_object due to above
2109 			 * conditional
2110 			 */
2111 			vm_object_pip_wakeup(fs->object);
2112 			vm_object_drop(fs->object);
2113 
2114 			/*
2115 			 * Only use the new page below...
2116 			 */
2117 			mycpu->gd_cnt.v_cow_faults++;
2118 			fs->m = fs->first_m;
2119 			fs->object = fs->first_object;
2120 			pindex = first_pindex;
2121 		} else {
2122 			/*
2123 			 * If it wasn't a write fault avoid having to copy
2124 			 * the page by mapping it read-only.
2125 			 */
2126 			fs->prot &= ~VM_PROT_WRITE;
2127 		}
2128 	}
2129 
2130 	/*
2131 	 * Relock the map if necessary, then check the generation count.
2132 	 * relock_map() will update fs->timestamp to account for the
2133 	 * relocking if necessary.
2134 	 *
2135 	 * If the count has changed after relocking then all sorts of
2136 	 * crap may have happened and we have to retry.
2137 	 *
2138 	 * NOTE: The relock_map() can fail due to a deadlock against
2139 	 *	 the vm_page we are holding BUSY.
2140 	 */
2141 	if (fs->lookup_still_valid == FALSE && fs->map) {
2142 		if (relock_map(fs) ||
2143 		    fs->map->timestamp != fs->map_generation) {
2144 			release_page(fs);
2145 			vm_object_pip_wakeup(fs->first_object);
2146 			vm_object_chain_release_all(fs->first_object,
2147 						    fs->object);
2148 			if (fs->object != fs->first_object)
2149 				vm_object_drop(fs->object);
2150 			unlock_and_deallocate(fs);
2151 			return (KERN_TRY_AGAIN);
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * If the fault is a write, we know that this page is being
2157 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2158 	 * calls later.
2159 	 *
2160 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2161 	 * if the page is already dirty to prevent data written with
2162 	 * the expectation of being synced from not being synced.
2163 	 * Likewise if this entry does not request NOSYNC then make
2164 	 * sure the page isn't marked NOSYNC.  Applications sharing
2165 	 * data should use the same flags to avoid ping ponging.
2166 	 *
2167 	 * Also tell the backing pager, if any, that it should remove
2168 	 * any swap backing since the page is now dirty.
2169 	 */
2170 	vm_page_activate(fs->m);
2171 	if (fs->prot & VM_PROT_WRITE) {
2172 		vm_object_set_writeable_dirty(fs->m->object);
2173 		vm_set_nosync(fs->m, fs->entry);
2174 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2175 			vm_page_dirty(fs->m);
2176 			if (fs->m->flags & PG_SWAPPED) {
2177 				/*
2178 				 * If the page is swapped out we have to call
2179 				 * swap_pager_unswapped() which requires an
2180 				 * exclusive object lock.  If we are shared,
2181 				 * we must clear the shared flag and retry.
2182 				 */
2183 				if ((fs->object == fs->first_object &&
2184 				     fs->first_shared) ||
2185 				    (fs->object != fs->first_object &&
2186 				     fs->shared)) {
2187 					vm_page_wakeup(fs->m);
2188 					fs->m = NULL;
2189 					if (fs->object == fs->first_object)
2190 						fs->first_shared = 0;
2191 					else
2192 						fs->shared = 0;
2193 					vm_object_pip_wakeup(fs->first_object);
2194 					vm_object_chain_release_all(
2195 						fs->first_object, fs->object);
2196 					if (fs->object != fs->first_object)
2197 						vm_object_drop(fs->object);
2198 					unlock_and_deallocate(fs);
2199 					return (KERN_TRY_AGAIN);
2200 				}
2201 				swap_pager_unswapped(fs->m);
2202 			}
2203 		}
2204 	}
2205 
2206 	vm_object_pip_wakeup(fs->first_object);
2207 	vm_object_chain_release_all(fs->first_object, fs->object);
2208 	if (fs->object != fs->first_object)
2209 		vm_object_drop(fs->object);
2210 
2211 	/*
2212 	 * Page had better still be busy.  We are still locked up and
2213 	 * fs->object will have another PIP reference if it is not equal
2214 	 * to fs->first_object.
2215 	 */
2216 	KASSERT(fs->m->flags & PG_BUSY,
2217 		("vm_fault: page %p not busy!", fs->m));
2218 
2219 	/*
2220 	 * Sanity check: page must be completely valid or it is not fit to
2221 	 * map into user space.  vm_pager_get_pages() ensures this.
2222 	 */
2223 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2224 		vm_page_zero_invalid(fs->m, TRUE);
2225 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2226 	}
2227 
2228 	return (KERN_SUCCESS);
2229 }
2230 
2231 /*
2232  * Wire down a range of virtual addresses in a map.  The entry in question
2233  * should be marked in-transition and the map must be locked.  We must
2234  * release the map temporarily while faulting-in the page to avoid a
2235  * deadlock.  Note that the entry may be clipped while we are blocked but
2236  * will never be freed.
2237  *
2238  * No requirements.
2239  */
2240 int
2241 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2242 	      boolean_t user_wire, int kmflags)
2243 {
2244 	boolean_t fictitious;
2245 	vm_offset_t start;
2246 	vm_offset_t end;
2247 	vm_offset_t va;
2248 	pmap_t pmap;
2249 	int rv;
2250 	int wire_prot;
2251 	int fault_flags;
2252 	vm_page_t m;
2253 
2254 	if (user_wire) {
2255 		wire_prot = VM_PROT_READ;
2256 		fault_flags = VM_FAULT_USER_WIRE;
2257 	} else {
2258 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2259 		fault_flags = VM_FAULT_CHANGE_WIRING;
2260 	}
2261 	if (kmflags & KM_NOTLBSYNC)
2262 		wire_prot |= VM_PROT_NOSYNC;
2263 
2264 	pmap = vm_map_pmap(map);
2265 	start = entry->start;
2266 	end = entry->end;
2267 
2268 	switch(entry->maptype) {
2269 	case VM_MAPTYPE_NORMAL:
2270 	case VM_MAPTYPE_VPAGETABLE:
2271 		fictitious = entry->object.vm_object &&
2272 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2273 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2274 		break;
2275 	case VM_MAPTYPE_UKSMAP:
2276 		fictitious = TRUE;
2277 		break;
2278 	default:
2279 		fictitious = FALSE;
2280 		break;
2281 	}
2282 
2283 	if (entry->eflags & MAP_ENTRY_KSTACK)
2284 		start += PAGE_SIZE;
2285 	map->timestamp++;
2286 	vm_map_unlock(map);
2287 
2288 	/*
2289 	 * We simulate a fault to get the page and enter it in the physical
2290 	 * map.
2291 	 */
2292 	for (va = start; va < end; va += PAGE_SIZE) {
2293 		rv = vm_fault(map, va, wire_prot, fault_flags);
2294 		if (rv) {
2295 			while (va > start) {
2296 				va -= PAGE_SIZE;
2297 				m = pmap_unwire(pmap, va);
2298 				if (m && !fictitious) {
2299 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2300 					vm_page_unwire(m, 1);
2301 					vm_page_wakeup(m);
2302 				}
2303 			}
2304 			goto done;
2305 		}
2306 	}
2307 	rv = KERN_SUCCESS;
2308 done:
2309 	vm_map_lock(map);
2310 
2311 	return (rv);
2312 }
2313 
2314 /*
2315  * Unwire a range of virtual addresses in a map.  The map should be
2316  * locked.
2317  */
2318 void
2319 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2320 {
2321 	boolean_t fictitious;
2322 	vm_offset_t start;
2323 	vm_offset_t end;
2324 	vm_offset_t va;
2325 	pmap_t pmap;
2326 	vm_page_t m;
2327 
2328 	pmap = vm_map_pmap(map);
2329 	start = entry->start;
2330 	end = entry->end;
2331 	fictitious = entry->object.vm_object &&
2332 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2333 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2334 	if (entry->eflags & MAP_ENTRY_KSTACK)
2335 		start += PAGE_SIZE;
2336 
2337 	/*
2338 	 * Since the pages are wired down, we must be able to get their
2339 	 * mappings from the physical map system.
2340 	 */
2341 	for (va = start; va < end; va += PAGE_SIZE) {
2342 		m = pmap_unwire(pmap, va);
2343 		if (m && !fictitious) {
2344 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2345 			vm_page_unwire(m, 1);
2346 			vm_page_wakeup(m);
2347 		}
2348 	}
2349 }
2350 
2351 /*
2352  * Copy all of the pages from a wired-down map entry to another.
2353  *
2354  * The source and destination maps must be locked for write.
2355  * The source and destination maps token must be held
2356  * The source map entry must be wired down (or be a sharing map
2357  * entry corresponding to a main map entry that is wired down).
2358  *
2359  * No other requirements.
2360  *
2361  * XXX do segment optimization
2362  */
2363 void
2364 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2365 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2366 {
2367 	vm_object_t dst_object;
2368 	vm_object_t src_object;
2369 	vm_ooffset_t dst_offset;
2370 	vm_ooffset_t src_offset;
2371 	vm_prot_t prot;
2372 	vm_offset_t vaddr;
2373 	vm_page_t dst_m;
2374 	vm_page_t src_m;
2375 
2376 	src_object = src_entry->object.vm_object;
2377 	src_offset = src_entry->offset;
2378 
2379 	/*
2380 	 * Create the top-level object for the destination entry. (Doesn't
2381 	 * actually shadow anything - we copy the pages directly.)
2382 	 */
2383 	vm_map_entry_allocate_object(dst_entry);
2384 	dst_object = dst_entry->object.vm_object;
2385 
2386 	prot = dst_entry->max_protection;
2387 
2388 	/*
2389 	 * Loop through all of the pages in the entry's range, copying each
2390 	 * one from the source object (it should be there) to the destination
2391 	 * object.
2392 	 */
2393 	vm_object_hold(src_object);
2394 	vm_object_hold(dst_object);
2395 	for (vaddr = dst_entry->start, dst_offset = 0;
2396 	     vaddr < dst_entry->end;
2397 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2398 
2399 		/*
2400 		 * Allocate a page in the destination object
2401 		 */
2402 		do {
2403 			dst_m = vm_page_alloc(dst_object,
2404 					      OFF_TO_IDX(dst_offset),
2405 					      VM_ALLOC_NORMAL);
2406 			if (dst_m == NULL) {
2407 				vm_wait(0);
2408 			}
2409 		} while (dst_m == NULL);
2410 
2411 		/*
2412 		 * Find the page in the source object, and copy it in.
2413 		 * (Because the source is wired down, the page will be in
2414 		 * memory.)
2415 		 */
2416 		src_m = vm_page_lookup(src_object,
2417 				       OFF_TO_IDX(dst_offset + src_offset));
2418 		if (src_m == NULL)
2419 			panic("vm_fault_copy_wired: page missing");
2420 
2421 		vm_page_copy(src_m, dst_m);
2422 
2423 		/*
2424 		 * Enter it in the pmap...
2425 		 */
2426 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2427 
2428 		/*
2429 		 * Mark it no longer busy, and put it on the active list.
2430 		 */
2431 		vm_page_activate(dst_m);
2432 		vm_page_wakeup(dst_m);
2433 	}
2434 	vm_object_drop(dst_object);
2435 	vm_object_drop(src_object);
2436 }
2437 
2438 #if 0
2439 
2440 /*
2441  * This routine checks around the requested page for other pages that
2442  * might be able to be faulted in.  This routine brackets the viable
2443  * pages for the pages to be paged in.
2444  *
2445  * Inputs:
2446  *	m, rbehind, rahead
2447  *
2448  * Outputs:
2449  *  marray (array of vm_page_t), reqpage (index of requested page)
2450  *
2451  * Return value:
2452  *  number of pages in marray
2453  */
2454 static int
2455 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2456 			  vm_page_t *marray, int *reqpage)
2457 {
2458 	int i,j;
2459 	vm_object_t object;
2460 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2461 	vm_page_t rtm;
2462 	int cbehind, cahead;
2463 
2464 	object = m->object;
2465 	pindex = m->pindex;
2466 
2467 	/*
2468 	 * we don't fault-ahead for device pager
2469 	 */
2470 	if ((object->type == OBJT_DEVICE) ||
2471 	    (object->type == OBJT_MGTDEVICE)) {
2472 		*reqpage = 0;
2473 		marray[0] = m;
2474 		return 1;
2475 	}
2476 
2477 	/*
2478 	 * if the requested page is not available, then give up now
2479 	 */
2480 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2481 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2482 		return 0;
2483 	}
2484 
2485 	if ((cbehind == 0) && (cahead == 0)) {
2486 		*reqpage = 0;
2487 		marray[0] = m;
2488 		return 1;
2489 	}
2490 
2491 	if (rahead > cahead) {
2492 		rahead = cahead;
2493 	}
2494 
2495 	if (rbehind > cbehind) {
2496 		rbehind = cbehind;
2497 	}
2498 
2499 	/*
2500 	 * Do not do any readahead if we have insufficient free memory.
2501 	 *
2502 	 * XXX code was broken disabled before and has instability
2503 	 * with this conditonal fixed, so shortcut for now.
2504 	 */
2505 	if (burst_fault == 0 || vm_page_count_severe()) {
2506 		marray[0] = m;
2507 		*reqpage = 0;
2508 		return 1;
2509 	}
2510 
2511 	/*
2512 	 * scan backward for the read behind pages -- in memory
2513 	 *
2514 	 * Assume that if the page is not found an interrupt will not
2515 	 * create it.  Theoretically interrupts can only remove (busy)
2516 	 * pages, not create new associations.
2517 	 */
2518 	if (pindex > 0) {
2519 		if (rbehind > pindex) {
2520 			rbehind = pindex;
2521 			startpindex = 0;
2522 		} else {
2523 			startpindex = pindex - rbehind;
2524 		}
2525 
2526 		vm_object_hold(object);
2527 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2528 			if (vm_page_lookup(object, tpindex - 1))
2529 				break;
2530 		}
2531 
2532 		i = 0;
2533 		while (tpindex < pindex) {
2534 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2535 							     VM_ALLOC_NULL_OK);
2536 			if (rtm == NULL) {
2537 				for (j = 0; j < i; j++) {
2538 					vm_page_free(marray[j]);
2539 				}
2540 				vm_object_drop(object);
2541 				marray[0] = m;
2542 				*reqpage = 0;
2543 				return 1;
2544 			}
2545 			marray[i] = rtm;
2546 			++i;
2547 			++tpindex;
2548 		}
2549 		vm_object_drop(object);
2550 	} else {
2551 		i = 0;
2552 	}
2553 
2554 	/*
2555 	 * Assign requested page
2556 	 */
2557 	marray[i] = m;
2558 	*reqpage = i;
2559 	++i;
2560 
2561 	/*
2562 	 * Scan forwards for read-ahead pages
2563 	 */
2564 	tpindex = pindex + 1;
2565 	endpindex = tpindex + rahead;
2566 	if (endpindex > object->size)
2567 		endpindex = object->size;
2568 
2569 	vm_object_hold(object);
2570 	while (tpindex < endpindex) {
2571 		if (vm_page_lookup(object, tpindex))
2572 			break;
2573 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2574 						     VM_ALLOC_NULL_OK);
2575 		if (rtm == NULL)
2576 			break;
2577 		marray[i] = rtm;
2578 		++i;
2579 		++tpindex;
2580 	}
2581 	vm_object_drop(object);
2582 
2583 	return (i);
2584 }
2585 
2586 #endif
2587 
2588 /*
2589  * vm_prefault() provides a quick way of clustering pagefaults into a
2590  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2591  * except it runs at page fault time instead of mmap time.
2592  *
2593  * vm.fast_fault	Enables pre-faulting zero-fill pages
2594  *
2595  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2596  *			prefault.  Scan stops in either direction when
2597  *			a page is found to already exist.
2598  *
2599  * This code used to be per-platform pmap_prefault().  It is now
2600  * machine-independent and enhanced to also pre-fault zero-fill pages
2601  * (see vm.fast_fault) as well as make them writable, which greatly
2602  * reduces the number of page faults programs incur.
2603  *
2604  * Application performance when pre-faulting zero-fill pages is heavily
2605  * dependent on the application.  Very tiny applications like /bin/echo
2606  * lose a little performance while applications of any appreciable size
2607  * gain performance.  Prefaulting multiple pages also reduces SMP
2608  * congestion and can improve SMP performance significantly.
2609  *
2610  * NOTE!  prot may allow writing but this only applies to the top level
2611  *	  object.  If we wind up mapping a page extracted from a backing
2612  *	  object we have to make sure it is read-only.
2613  *
2614  * NOTE!  The caller has already handled any COW operations on the
2615  *	  vm_map_entry via the normal fault code.  Do NOT call this
2616  *	  shortcut unless the normal fault code has run on this entry.
2617  *
2618  * The related map must be locked.
2619  * No other requirements.
2620  */
2621 static int vm_prefault_pages = 8;
2622 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2623 	   "Maximum number of pages to pre-fault");
2624 static int vm_fast_fault = 1;
2625 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2626 	   "Burst fault zero-fill regions");
2627 
2628 /*
2629  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2630  * is not already dirty by other means.  This will prevent passive
2631  * filesystem syncing as well as 'sync' from writing out the page.
2632  */
2633 static void
2634 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2635 {
2636 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2637 		if (m->dirty == 0)
2638 			vm_page_flag_set(m, PG_NOSYNC);
2639 	} else {
2640 		vm_page_flag_clear(m, PG_NOSYNC);
2641 	}
2642 }
2643 
2644 static void
2645 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2646 	    int fault_flags)
2647 {
2648 	struct lwp *lp;
2649 	vm_page_t m;
2650 	vm_offset_t addr;
2651 	vm_pindex_t index;
2652 	vm_pindex_t pindex;
2653 	vm_object_t object;
2654 	int pprot;
2655 	int i;
2656 	int noneg;
2657 	int nopos;
2658 	int maxpages;
2659 
2660 	/*
2661 	 * Get stable max count value, disabled if set to 0
2662 	 */
2663 	maxpages = vm_prefault_pages;
2664 	cpu_ccfence();
2665 	if (maxpages <= 0)
2666 		return;
2667 
2668 	/*
2669 	 * We do not currently prefault mappings that use virtual page
2670 	 * tables.  We do not prefault foreign pmaps.
2671 	 */
2672 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2673 		return;
2674 	lp = curthread->td_lwp;
2675 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2676 		return;
2677 
2678 	/*
2679 	 * Limit pre-fault count to 1024 pages.
2680 	 */
2681 	if (maxpages > 1024)
2682 		maxpages = 1024;
2683 
2684 	object = entry->object.vm_object;
2685 	KKASSERT(object != NULL);
2686 	KKASSERT(object == entry->object.vm_object);
2687 
2688 	/*
2689 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2690 	 *	 now (or do something more complex XXX).
2691 	 */
2692 	vm_object_hold(object);
2693 	vm_object_chain_acquire(object, 0);
2694 
2695 	noneg = 0;
2696 	nopos = 0;
2697 	for (i = 0; i < maxpages; ++i) {
2698 		vm_object_t lobject;
2699 		vm_object_t nobject;
2700 		int allocated = 0;
2701 		int error;
2702 
2703 		/*
2704 		 * This can eat a lot of time on a heavily contended
2705 		 * machine so yield on the tick if needed.
2706 		 */
2707 		if ((i & 7) == 7)
2708 			lwkt_yield();
2709 
2710 		/*
2711 		 * Calculate the page to pre-fault, stopping the scan in
2712 		 * each direction separately if the limit is reached.
2713 		 */
2714 		if (i & 1) {
2715 			if (noneg)
2716 				continue;
2717 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2718 		} else {
2719 			if (nopos)
2720 				continue;
2721 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2722 		}
2723 		if (addr < entry->start) {
2724 			noneg = 1;
2725 			if (noneg && nopos)
2726 				break;
2727 			continue;
2728 		}
2729 		if (addr >= entry->end) {
2730 			nopos = 1;
2731 			if (noneg && nopos)
2732 				break;
2733 			continue;
2734 		}
2735 
2736 		/*
2737 		 * Skip pages already mapped, and stop scanning in that
2738 		 * direction.  When the scan terminates in both directions
2739 		 * we are done.
2740 		 */
2741 		if (pmap_prefault_ok(pmap, addr) == 0) {
2742 			if (i & 1)
2743 				noneg = 1;
2744 			else
2745 				nopos = 1;
2746 			if (noneg && nopos)
2747 				break;
2748 			continue;
2749 		}
2750 
2751 		/*
2752 		 * Follow the VM object chain to obtain the page to be mapped
2753 		 * into the pmap.
2754 		 *
2755 		 * If we reach the terminal object without finding a page
2756 		 * and we determine it would be advantageous, then allocate
2757 		 * a zero-fill page for the base object.  The base object
2758 		 * is guaranteed to be OBJT_DEFAULT for this case.
2759 		 *
2760 		 * In order to not have to check the pager via *haspage*()
2761 		 * we stop if any non-default object is encountered.  e.g.
2762 		 * a vnode or swap object would stop the loop.
2763 		 */
2764 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2765 		lobject = object;
2766 		pindex = index;
2767 		pprot = prot;
2768 
2769 		KKASSERT(lobject == entry->object.vm_object);
2770 		/*vm_object_hold(lobject); implied */
2771 
2772 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2773 						    TRUE, &error)) == NULL) {
2774 			if (lobject->type != OBJT_DEFAULT)
2775 				break;
2776 			if (lobject->backing_object == NULL) {
2777 				if (vm_fast_fault == 0)
2778 					break;
2779 				if ((prot & VM_PROT_WRITE) == 0 ||
2780 				    vm_page_count_min(0)) {
2781 					break;
2782 				}
2783 
2784 				/*
2785 				 * NOTE: Allocated from base object
2786 				 */
2787 				m = vm_page_alloc(object, index,
2788 						  VM_ALLOC_NORMAL |
2789 						  VM_ALLOC_ZERO |
2790 						  VM_ALLOC_USE_GD |
2791 						  VM_ALLOC_NULL_OK);
2792 				if (m == NULL)
2793 					break;
2794 				allocated = 1;
2795 				pprot = prot;
2796 				/* lobject = object .. not needed */
2797 				break;
2798 			}
2799 			if (lobject->backing_object_offset & PAGE_MASK)
2800 				break;
2801 			nobject = lobject->backing_object;
2802 			vm_object_hold(nobject);
2803 			KKASSERT(nobject == lobject->backing_object);
2804 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2805 			if (lobject != object) {
2806 				vm_object_lock_swap();
2807 				vm_object_drop(lobject);
2808 			}
2809 			lobject = nobject;
2810 			pprot &= ~VM_PROT_WRITE;
2811 			vm_object_chain_acquire(lobject, 0);
2812 		}
2813 
2814 		/*
2815 		 * NOTE: A non-NULL (m) will be associated with lobject if
2816 		 *	 it was found there, otherwise it is probably a
2817 		 *	 zero-fill page associated with the base object.
2818 		 *
2819 		 * Give-up if no page is available.
2820 		 */
2821 		if (m == NULL) {
2822 			if (lobject != object) {
2823 #if 0
2824 				if (object->backing_object != lobject)
2825 					vm_object_hold(object->backing_object);
2826 #endif
2827 				vm_object_chain_release_all(
2828 					object->backing_object, lobject);
2829 #if 0
2830 				if (object->backing_object != lobject)
2831 					vm_object_drop(object->backing_object);
2832 #endif
2833 				vm_object_drop(lobject);
2834 			}
2835 			break;
2836 		}
2837 
2838 		/*
2839 		 * The object must be marked dirty if we are mapping a
2840 		 * writable page.  m->object is either lobject or object,
2841 		 * both of which are still held.  Do this before we
2842 		 * potentially drop the object.
2843 		 */
2844 		if (pprot & VM_PROT_WRITE)
2845 			vm_object_set_writeable_dirty(m->object);
2846 
2847 		/*
2848 		 * Do not conditionalize on PG_RAM.  If pages are present in
2849 		 * the VM system we assume optimal caching.  If caching is
2850 		 * not optimal the I/O gravy train will be restarted when we
2851 		 * hit an unavailable page.  We do not want to try to restart
2852 		 * the gravy train now because we really don't know how much
2853 		 * of the object has been cached.  The cost for restarting
2854 		 * the gravy train should be low (since accesses will likely
2855 		 * be I/O bound anyway).
2856 		 */
2857 		if (lobject != object) {
2858 #if 0
2859 			if (object->backing_object != lobject)
2860 				vm_object_hold(object->backing_object);
2861 #endif
2862 			vm_object_chain_release_all(object->backing_object,
2863 						    lobject);
2864 #if 0
2865 			if (object->backing_object != lobject)
2866 				vm_object_drop(object->backing_object);
2867 #endif
2868 			vm_object_drop(lobject);
2869 		}
2870 
2871 		/*
2872 		 * Enter the page into the pmap if appropriate.  If we had
2873 		 * allocated the page we have to place it on a queue.  If not
2874 		 * we just have to make sure it isn't on the cache queue
2875 		 * (pages on the cache queue are not allowed to be mapped).
2876 		 */
2877 		if (allocated) {
2878 			/*
2879 			 * Page must be zerod.
2880 			 */
2881 			vm_page_zero_fill(m);
2882 			mycpu->gd_cnt.v_zfod++;
2883 			m->valid = VM_PAGE_BITS_ALL;
2884 
2885 			/*
2886 			 * Handle dirty page case
2887 			 */
2888 			if (pprot & VM_PROT_WRITE)
2889 				vm_set_nosync(m, entry);
2890 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2891 			mycpu->gd_cnt.v_vm_faults++;
2892 			if (curthread->td_lwp)
2893 				++curthread->td_lwp->lwp_ru.ru_minflt;
2894 			vm_page_deactivate(m);
2895 			if (pprot & VM_PROT_WRITE) {
2896 				/*vm_object_set_writeable_dirty(m->object);*/
2897 				vm_set_nosync(m, entry);
2898 				if (fault_flags & VM_FAULT_DIRTY) {
2899 					vm_page_dirty(m);
2900 					/*XXX*/
2901 					swap_pager_unswapped(m);
2902 				}
2903 			}
2904 			vm_page_wakeup(m);
2905 		} else if (error) {
2906 			/* couldn't busy page, no wakeup */
2907 		} else if (
2908 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2909 		    (m->flags & PG_FICTITIOUS) == 0) {
2910 			/*
2911 			 * A fully valid page not undergoing soft I/O can
2912 			 * be immediately entered into the pmap.
2913 			 */
2914 			if ((m->queue - m->pc) == PQ_CACHE)
2915 				vm_page_deactivate(m);
2916 			if (pprot & VM_PROT_WRITE) {
2917 				/*vm_object_set_writeable_dirty(m->object);*/
2918 				vm_set_nosync(m, entry);
2919 				if (fault_flags & VM_FAULT_DIRTY) {
2920 					vm_page_dirty(m);
2921 					/*XXX*/
2922 					swap_pager_unswapped(m);
2923 				}
2924 			}
2925 			if (pprot & VM_PROT_WRITE)
2926 				vm_set_nosync(m, entry);
2927 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2928 			mycpu->gd_cnt.v_vm_faults++;
2929 			if (curthread->td_lwp)
2930 				++curthread->td_lwp->lwp_ru.ru_minflt;
2931 			vm_page_wakeup(m);
2932 		} else {
2933 			vm_page_wakeup(m);
2934 		}
2935 	}
2936 	vm_object_chain_release(object);
2937 	vm_object_drop(object);
2938 }
2939 
2940 /*
2941  * Object can be held shared
2942  */
2943 static void
2944 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2945 		  vm_map_entry_t entry, int prot, int fault_flags)
2946 {
2947 	struct lwp *lp;
2948 	vm_page_t m;
2949 	vm_offset_t addr;
2950 	vm_pindex_t pindex;
2951 	vm_object_t object;
2952 	int i;
2953 	int noneg;
2954 	int nopos;
2955 	int maxpages;
2956 
2957 	/*
2958 	 * Get stable max count value, disabled if set to 0
2959 	 */
2960 	maxpages = vm_prefault_pages;
2961 	cpu_ccfence();
2962 	if (maxpages <= 0)
2963 		return;
2964 
2965 	/*
2966 	 * We do not currently prefault mappings that use virtual page
2967 	 * tables.  We do not prefault foreign pmaps.
2968 	 */
2969 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2970 		return;
2971 	lp = curthread->td_lwp;
2972 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2973 		return;
2974 	object = entry->object.vm_object;
2975 	if (object->backing_object != NULL)
2976 		return;
2977 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2978 
2979 	/*
2980 	 * Limit pre-fault count to 1024 pages.
2981 	 */
2982 	if (maxpages > 1024)
2983 		maxpages = 1024;
2984 
2985 	noneg = 0;
2986 	nopos = 0;
2987 	for (i = 0; i < maxpages; ++i) {
2988 		int error;
2989 
2990 		/*
2991 		 * Calculate the page to pre-fault, stopping the scan in
2992 		 * each direction separately if the limit is reached.
2993 		 */
2994 		if (i & 1) {
2995 			if (noneg)
2996 				continue;
2997 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2998 		} else {
2999 			if (nopos)
3000 				continue;
3001 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3002 		}
3003 		if (addr < entry->start) {
3004 			noneg = 1;
3005 			if (noneg && nopos)
3006 				break;
3007 			continue;
3008 		}
3009 		if (addr >= entry->end) {
3010 			nopos = 1;
3011 			if (noneg && nopos)
3012 				break;
3013 			continue;
3014 		}
3015 
3016 		/*
3017 		 * Follow the VM object chain to obtain the page to be mapped
3018 		 * into the pmap.  This version of the prefault code only
3019 		 * works with terminal objects.
3020 		 *
3021 		 * The page must already exist.  If we encounter a problem
3022 		 * we stop here.
3023 		 *
3024 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3025 		 *	     a new vm_page with a shared token.
3026 		 */
3027 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3028 
3029 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3030 		if (m == NULL || error)
3031 			break;
3032 
3033 		/*
3034 		 * Skip pages already mapped, and stop scanning in that
3035 		 * direction.  When the scan terminates in both directions
3036 		 * we are done.
3037 		 */
3038 		if (pmap_prefault_ok(pmap, addr) == 0) {
3039 			vm_page_wakeup(m);
3040 			if (i & 1)
3041 				noneg = 1;
3042 			else
3043 				nopos = 1;
3044 			if (noneg && nopos)
3045 				break;
3046 			continue;
3047 		}
3048 
3049 		/*
3050 		 * Stop if the page cannot be trivially entered into the
3051 		 * pmap.
3052 		 */
3053 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3054 		    (m->flags & PG_FICTITIOUS) ||
3055 		    ((m->flags & PG_SWAPPED) &&
3056 		     (prot & VM_PROT_WRITE) &&
3057 		     (fault_flags & VM_FAULT_DIRTY))) {
3058 			vm_page_wakeup(m);
3059 			break;
3060 		}
3061 
3062 		/*
3063 		 * Enter the page into the pmap.  The object might be held
3064 		 * shared so we can't do any (serious) modifying operation
3065 		 * on it.
3066 		 */
3067 		if ((m->queue - m->pc) == PQ_CACHE)
3068 			vm_page_deactivate(m);
3069 		if (prot & VM_PROT_WRITE) {
3070 			vm_object_set_writeable_dirty(m->object);
3071 			vm_set_nosync(m, entry);
3072 			if (fault_flags & VM_FAULT_DIRTY) {
3073 				vm_page_dirty(m);
3074 				/* can't happeen due to conditional above */
3075 				/* swap_pager_unswapped(m); */
3076 			}
3077 		}
3078 		pmap_enter(pmap, addr, m, prot, 0, entry);
3079 		mycpu->gd_cnt.v_vm_faults++;
3080 		if (curthread->td_lwp)
3081 			++curthread->td_lwp->lwp_ru.ru_minflt;
3082 		vm_page_wakeup(m);
3083 	}
3084 }
3085