xref: /dragonfly/sys/vm/vm_kern.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
65  * $DragonFly: src/sys/vm/vm_kern.c,v 1.10 2003/10/02 21:00:20 hmp Exp $
66  */
67 
68 /*
69  *	Kernel memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/malloc.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_extern.h>
86 
87 vm_map_t kernel_map=0;
88 #if defined(USE_KMEM_MAP)
89 vm_map_t kmem_map=0;
90 #endif
91 vm_map_t exec_map=0;
92 vm_map_t clean_map=0;
93 vm_map_t buffer_map=0;
94 vm_map_t mb_map=0;
95 int mb_map_full=0;
96 
97 /*
98  *	kmem_alloc_pageable:
99  *
100  *	Allocate pageable memory to the kernel's address map.
101  *	"map" must be kernel_map or a submap of kernel_map.
102  */
103 
104 vm_offset_t
105 kmem_alloc_pageable(map, size)
106 	vm_map_t map;
107 	vm_size_t size;
108 {
109 	vm_offset_t addr;
110 	int result;
111 
112 	size = round_page(size);
113 	addr = vm_map_min(map);
114 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
115 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
116 	if (result != KERN_SUCCESS) {
117 		return (0);
118 	}
119 	return (addr);
120 }
121 
122 /*
123  *	kmem_alloc_nofault:
124  *
125  *	Same as kmem_alloc_pageable, except that it create a nofault entry.
126  */
127 
128 vm_offset_t
129 kmem_alloc_nofault(map, size)
130 	vm_map_t map;
131 	vm_size_t size;
132 {
133 	vm_offset_t addr;
134 	int result;
135 
136 	size = round_page(size);
137 	addr = vm_map_min(map);
138 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
139 	    &addr, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
140 	if (result != KERN_SUCCESS) {
141 		return (0);
142 	}
143 	return (addr);
144 }
145 
146 /*
147  *	Allocate wired-down memory in the kernel's address map
148  *	or a submap.
149  */
150 vm_offset_t
151 kmem_alloc(vm_map_t map, vm_size_t size)
152 {
153 	vm_offset_t addr;
154 	vm_offset_t offset;
155 	vm_offset_t i;
156 	int count;
157 
158 	size = round_page(size);
159 
160 	count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
161 
162 	/*
163 	 * Use the kernel object for wired-down kernel pages. Assume that no
164 	 * region of the kernel object is referenced more than once.
165 	 *
166 	 * Locate sufficient space in the map.  This will give us the final
167 	 * virtual address for the new memory, and thus will tell us the
168 	 * offset within the kernel map.
169 	 */
170 	vm_map_lock(map);
171 	if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr)) {
172 		vm_map_unlock(map);
173 		vm_map_entry_krelease(count);
174 		return (0);
175 	}
176 	offset = addr - VM_MIN_KERNEL_ADDRESS;
177 	vm_object_reference(kernel_object);
178 	vm_map_insert(map, &count,
179 		kernel_object, offset, addr, addr + size,
180 		VM_PROT_ALL, VM_PROT_ALL, 0);
181 	vm_map_unlock(map);
182 	vm_map_entry_krelease(count);
183 
184 	/*
185 	 * Guarantee that there are pages already in this object before
186 	 * calling vm_map_wire.  This is to prevent the following
187 	 * scenario:
188 	 *
189 	 * 1) Threads have swapped out, so that there is a pager for the
190 	 * kernel_object. 2) The kmsg zone is empty, and so we are
191 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
192 	 * there is no page, but there is a pager, so we call
193 	 * pager_data_request.  But the kmsg zone is empty, so we must
194 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
195 	 * we get the data back from the pager, it will be (very stale)
196 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
197 	 *
198 	 * We're intentionally not activating the pages we allocate to prevent a
199 	 * race with page-out.  vm_map_wire will wire the pages.
200 	 */
201 
202 	for (i = 0; i < size; i += PAGE_SIZE) {
203 		vm_page_t mem;
204 
205 		mem = vm_page_grab(kernel_object, OFF_TO_IDX(offset + i),
206 				VM_ALLOC_ZERO | VM_ALLOC_RETRY);
207 		if ((mem->flags & PG_ZERO) == 0)
208 			vm_page_zero_fill(mem);
209 		mem->valid = VM_PAGE_BITS_ALL;
210 		vm_page_flag_clear(mem, PG_ZERO);
211 		vm_page_wakeup(mem);
212 	}
213 
214 	/*
215 	 * And finally, mark the data as non-pageable.
216 	 */
217 
218 	(void) vm_map_wire(map, (vm_offset_t) addr, addr + size, FALSE);
219 
220 	return (addr);
221 }
222 
223 /*
224  *	kmem_free:
225  *
226  *	Release a region of kernel virtual memory allocated
227  *	with kmem_alloc, and return the physical pages
228  *	associated with that region.
229  *
230  *	This routine may not block on kernel maps.
231  */
232 void
233 kmem_free(map, addr, size)
234 	vm_map_t map;
235 	vm_offset_t addr;
236 	vm_size_t size;
237 {
238 	(void) vm_map_remove(map, trunc_page(addr), round_page(addr + size));
239 }
240 
241 /*
242  *	kmem_suballoc:
243  *
244  *	Allocates a map to manage a subrange
245  *	of the kernel virtual address space.
246  *
247  *	Arguments are as follows:
248  *
249  *	parent		Map to take range from
250  *	size		Size of range to find
251  *	min, max	Returned endpoints of map
252  *	pageable	Can the region be paged
253  */
254 vm_map_t
255 kmem_suballoc(parent, min, max, size)
256 	vm_map_t parent;
257 	vm_offset_t *min, *max;
258 	vm_size_t size;
259 {
260 	int ret;
261 	vm_map_t result;
262 
263 	size = round_page(size);
264 
265 	*min = (vm_offset_t) vm_map_min(parent);
266 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
267 	    min, size, TRUE, VM_PROT_ALL, VM_PROT_ALL, 0);
268 	if (ret != KERN_SUCCESS) {
269 		printf("kmem_suballoc: bad status return of %d.\n", ret);
270 		panic("kmem_suballoc");
271 	}
272 	*max = *min + size;
273 	pmap_reference(vm_map_pmap(parent));
274 	result = vm_map_create(vm_map_pmap(parent), *min, *max);
275 	if (result == NULL)
276 		panic("kmem_suballoc: cannot create submap");
277 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
278 		panic("kmem_suballoc: unable to change range to submap");
279 	return (result);
280 }
281 
282 /*
283  *	kmem_malloc:
284  *
285  * 	Allocate wired-down memory in the kernel's address map for the higher
286  * 	level kernel memory allocator (kern/kern_malloc.c).  We cannot use
287  * 	kmem_alloc() because we may need to allocate memory at interrupt
288  * 	level where we cannot block (canwait == FALSE).
289  *
290  * 	This routine has its own private kernel submap (kmem_map) and object
291  * 	(kmem_object).  This, combined with the fact that only malloc uses
292  * 	this routine, ensures that we will never block in map or object waits.
293  *
294  * 	Note that this still only works in a uni-processor environment and
295  * 	when called at splhigh().
296  *
297  * 	We don't worry about expanding the map (adding entries) since entries
298  * 	for wired maps are statically allocated.
299  *
300  *	NOTE:  This routine is not supposed to block if M_NOWAIT is set, but
301  *	I have not verified that it actually does not block.
302  */
303 vm_offset_t
304 kmem_malloc(vm_map_t map, vm_size_t size, int flags)
305 {
306 	vm_offset_t offset, i;
307 	vm_map_entry_t entry;
308 	vm_offset_t addr;
309 	vm_page_t m;
310 	int count;
311 
312 #if defined(USE_KMEM_MAP)
313 	if (map != kmem_map && map != mb_map)
314 		panic("kmem_malloc: map != {kmem,mb}_map");
315 #else
316 	if (map != kernel_map && map != mb_map)
317 		panic("kmem_malloc: map != {kmem,mb}_map");
318 #endif
319 
320 	size = round_page(size);
321 	addr = vm_map_min(map);
322 
323 	/*
324 	 * Locate sufficient space in the map.  This will give us the final
325 	 * virtual address for the new memory, and thus will tell us the
326 	 * offset within the kernel map.
327 	 */
328 	vm_map_lock(map);
329 	count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
330 	if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr)) {
331 		vm_map_unlock(map);
332 		vm_map_entry_krelease(count);
333 		if (map == mb_map) {
334 			mb_map_full = TRUE;
335 			printf("Out of mbuf clusters - adjust NMBCLUSTERS or increase maxusers!\n");
336 			return (0);
337 		}
338 #if defined(USE_KMEM_MAP)
339 		if ((flags & M_NOWAIT) == 0)
340 			panic("kmem_malloc(%ld): kmem_map too small: %ld total allocated",
341 #else
342 		if ((flags & M_NOWAIT) == 0)
343 			panic("kmem_malloc(%ld): kernel_map too small: %ld total allocated",
344 #endif
345 				(long)size, (long)map->size);
346 		return (0);
347 	}
348 	offset = addr - VM_MIN_KERNEL_ADDRESS;
349 	vm_object_reference(kmem_object);
350 	vm_map_insert(map, &count,
351 		kmem_object, offset, addr, addr + size,
352 		VM_PROT_ALL, VM_PROT_ALL, 0);
353 
354 	for (i = 0; i < size; i += PAGE_SIZE) {
355 		/*
356 		 * Note: if M_NOWAIT specified alone, allocate from
357 		 * interrupt-safe queues only (just the free list).  If
358 		 * M_USE_RESERVE is also specified, we can also
359 		 * allocate from the cache.  Neither of the latter two
360 		 * flags may be specified from an interrupt since interrupts
361 		 * are not allowed to mess with the cache queue.
362 		 */
363 retry:
364 		m = vm_page_alloc(kmem_object, OFF_TO_IDX(offset + i),
365 		    ((flags & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) ?
366 			VM_ALLOC_INTERRUPT :
367 			VM_ALLOC_SYSTEM);
368 
369 		/*
370 		 * Ran out of space, free everything up and return. Don't need
371 		 * to lock page queues here as we know that the pages we got
372 		 * aren't on any queues.
373 		 */
374 		if (m == NULL) {
375 			if ((flags & M_NOWAIT) == 0) {
376 				vm_map_unlock(map);
377 				VM_WAIT;
378 				vm_map_lock(map);
379 				goto retry;
380 			}
381 			/*
382 			 * Free the pages before removing the map entry.
383 			 * They are already marked busy.  Calling
384 			 * vm_map_delete before the pages has been freed or
385 			 * unbusied will cause a deadlock.
386 			 */
387 			while (i != 0) {
388 				i -= PAGE_SIZE;
389 				m = vm_page_lookup(kmem_object,
390 						   OFF_TO_IDX(offset + i));
391 				vm_page_free(m);
392 			}
393 			vm_map_delete(map, addr, addr + size, &count);
394 			vm_map_unlock(map);
395 			vm_map_entry_krelease(count);
396 			return (0);
397 		}
398 		vm_page_flag_clear(m, PG_ZERO);
399 		m->valid = VM_PAGE_BITS_ALL;
400 	}
401 
402 	/*
403 	 * Mark map entry as non-pageable. Assert: vm_map_insert() will never
404 	 * be able to extend the previous entry so there will be a new entry
405 	 * exactly corresponding to this address range and it will have
406 	 * wired_count == 0.
407 	 */
408 	if (!vm_map_lookup_entry(map, addr, &entry) ||
409 	    entry->start != addr || entry->end != addr + size ||
410 	    entry->wired_count != 0)
411 		panic("kmem_malloc: entry not found or misaligned");
412 	entry->wired_count = 1;
413 
414 	vm_map_simplify_entry(map, entry, &count);
415 
416 	/*
417 	 * Loop thru pages, entering them in the pmap. (We cannot add them to
418 	 * the wired count without wrapping the vm_page_queue_lock in
419 	 * splimp...)
420 	 */
421 	for (i = 0; i < size; i += PAGE_SIZE) {
422 		m = vm_page_lookup(kmem_object, OFF_TO_IDX(offset + i));
423 		vm_page_wire(m);
424 		vm_page_wakeup(m);
425 		/*
426 		 * Because this is kernel_pmap, this call will not block.
427 		 */
428 		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL, 1);
429 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE | PG_REFERENCED);
430 	}
431 	vm_map_unlock(map);
432 	vm_map_entry_krelease(count);
433 
434 	return (addr);
435 }
436 
437 /*
438  *	kmem_alloc_wait:
439  *
440  *	Allocates pageable memory from a sub-map of the kernel.  If the submap
441  *	has no room, the caller sleeps waiting for more memory in the submap.
442  *
443  *	This routine may block.
444  */
445 
446 vm_offset_t
447 kmem_alloc_wait(vm_map_t map, vm_size_t size)
448 {
449 	vm_offset_t addr;
450 	int count;
451 
452 	size = round_page(size);
453 
454 	count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
455 
456 	for (;;) {
457 		/*
458 		 * To make this work for more than one map, use the map's lock
459 		 * to lock out sleepers/wakers.
460 		 */
461 		vm_map_lock(map);
462 		if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr) == 0)
463 			break;
464 		/* no space now; see if we can ever get space */
465 		if (vm_map_max(map) - vm_map_min(map) < size) {
466 			vm_map_entry_krelease(count);
467 			vm_map_unlock(map);
468 			return (0);
469 		}
470 		vm_map_unlock(map);
471 		tsleep(map, 0, "kmaw", 0);
472 	}
473 	vm_map_insert(map, &count,
474 		    NULL, (vm_offset_t) 0,
475 		    addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
476 	vm_map_unlock(map);
477 	vm_map_entry_krelease(count);
478 	return (addr);
479 }
480 
481 /*
482  *	kmem_free_wakeup:
483  *
484  *	Returns memory to a submap of the kernel, and wakes up any processes
485  *	waiting for memory in that map.
486  */
487 void
488 kmem_free_wakeup(map, addr, size)
489 	vm_map_t map;
490 	vm_offset_t addr;
491 	vm_size_t size;
492 {
493 	int count;
494 
495 	count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
496 	vm_map_lock(map);
497 	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
498 	wakeup(map);
499 	vm_map_unlock(map);
500 	vm_map_entry_krelease(count);
501 }
502 
503 /*
504  * 	kmem_init:
505  *
506  *	Create the kernel map; insert a mapping covering kernel text,
507  *	data, bss, and all space allocated thus far (`boostrap' data).  The
508  *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and
509  *	`start' as allocated, and the range between `start' and `end' as free.
510  *
511  *	Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
512  */
513 void
514 kmem_init(vm_offset_t start, vm_offset_t end)
515 {
516 	vm_map_t m;
517 	int count;
518 
519 	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
520 	vm_map_lock(m);
521 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
522 	kernel_map = m;
523 	kernel_map->system_map = 1;
524 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
525 	(void) vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
526 	    VM_MIN_KERNEL_ADDRESS, start, VM_PROT_ALL, VM_PROT_ALL, 0);
527 	/* ... and ending with the completion of the above `insert' */
528 	vm_map_unlock(m);
529 	vm_map_entry_release(count);
530 }
531 
532 /*
533  *	kmem_cpu_init:
534  *
535  *	Load up extra vm_map_entry structures in each cpu's globaldata
536  *	cache.  These allow us to expand the mapent zone for kernel_map.
537  *	Without them we would get into a recursion deadlock trying to
538  *	reserve map entries (reserve->zalloc->kmem_alloc->reserve->...)
539  */
540 void
541 kmem_cpu_init(void)
542 {
543 	vm_map_entry_reserve(MAP_RESERVE_COUNT * 2);
544 }
545 
546