xref: /dragonfly/sys/vm/vm_kern.c (revision bcb3e04d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_kern.c,v 1.61.2.2 2002/03/12 18:25:26 tegge Exp $
67  * $DragonFly: src/sys/vm/vm_kern.c,v 1.29 2007/06/07 23:14:29 dillon Exp $
68  */
69 
70 /*
71  *	Kernel memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/sysctl.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <sys/lock.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 
92 struct vm_map kernel_map;
93 struct vm_map clean_map;
94 struct vm_map buffer_map;
95 
96 /*
97  * Allocate pageable memory to the kernel's address map.  "map" must
98  * be kernel_map or a submap of kernel_map.
99  *
100  * No requirements.
101  */
102 vm_offset_t
103 kmem_alloc_pageable(vm_map_t map, vm_size_t size)
104 {
105 	vm_offset_t addr;
106 	int result;
107 
108 	size = round_page(size);
109 	addr = vm_map_min(map);
110 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
111 			     &addr, size, PAGE_SIZE,
112 			     TRUE, VM_MAPTYPE_NORMAL,
113 			     VM_PROT_ALL, VM_PROT_ALL,
114 			     0);
115 	if (result != KERN_SUCCESS)
116 		return (0);
117 	return (addr);
118 }
119 
120 /*
121  * Same as kmem_alloc_pageable, except that it create a nofault entry.
122  *
123  * No requirements.
124  */
125 vm_offset_t
126 kmem_alloc_nofault(vm_map_t map, vm_size_t size, vm_size_t align)
127 {
128 	vm_offset_t addr;
129 	int result;
130 
131 	size = round_page(size);
132 	addr = vm_map_min(map);
133 	result = vm_map_find(map, NULL, (vm_offset_t) 0,
134 			     &addr, size, align,
135 			     TRUE, VM_MAPTYPE_NORMAL,
136 			     VM_PROT_ALL, VM_PROT_ALL,
137 			     MAP_NOFAULT);
138 	if (result != KERN_SUCCESS)
139 		return (0);
140 	return (addr);
141 }
142 
143 /*
144  * Allocate wired-down memory in the kernel's address map or a submap.
145  *
146  * No requirements.
147  */
148 vm_offset_t
149 kmem_alloc3(vm_map_t map, vm_size_t size, int kmflags)
150 {
151 	vm_offset_t addr;
152 	vm_offset_t gstart;
153 	vm_offset_t i;
154 	int count;
155 	int cow;
156 
157 	size = round_page(size);
158 
159 	if (kmflags & KM_KRESERVE)
160 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
161 	else
162 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
163 
164 	if (kmflags & KM_STACK) {
165 		cow = MAP_IS_KSTACK;
166 		gstart = PAGE_SIZE;
167 	} else {
168 		cow = 0;
169 		gstart = 0;
170 	}
171 
172 	/*
173 	 * Use the kernel object for wired-down kernel pages. Assume that no
174 	 * region of the kernel object is referenced more than once.
175 	 *
176 	 * Locate sufficient space in the map.  This will give us the final
177 	 * virtual address for the new memory, and thus will tell us the
178 	 * offset within the kernel map.
179 	 */
180 	vm_map_lock(map);
181 	if (vm_map_findspace(map, vm_map_min(map), size, PAGE_SIZE, 0, &addr)) {
182 		vm_map_unlock(map);
183 		if (kmflags & KM_KRESERVE)
184 			vm_map_entry_krelease(count);
185 		else
186 			vm_map_entry_release(count);
187 		return (0);
188 	}
189 	vm_object_reference(&kernel_object);
190 	vm_map_insert(map, &count,
191 		      &kernel_object, addr, addr, addr + size,
192 		      VM_MAPTYPE_NORMAL,
193 		      VM_PROT_ALL, VM_PROT_ALL,
194 		      cow);
195 	vm_map_unlock(map);
196 	if (kmflags & KM_KRESERVE)
197 		vm_map_entry_krelease(count);
198 	else
199 		vm_map_entry_release(count);
200 
201 	/*
202 	 * Guarantee that there are pages already in this object before
203 	 * calling vm_map_wire.  This is to prevent the following
204 	 * scenario:
205 	 *
206 	 * 1) Threads have swapped out, so that there is a pager for the
207 	 * kernel_object. 2) The kmsg zone is empty, and so we are
208 	 * kmem_allocing a new page for it. 3) vm_map_wire calls vm_fault;
209 	 * there is no page, but there is a pager, so we call
210 	 * pager_data_request.  But the kmsg zone is empty, so we must
211 	 * kmem_alloc. 4) goto 1 5) Even if the kmsg zone is not empty: when
212 	 * we get the data back from the pager, it will be (very stale)
213 	 * non-zero data.  kmem_alloc is defined to return zero-filled memory.
214 	 *
215 	 * We're intentionally not activating the pages we allocate to prevent a
216 	 * race with page-out.  vm_map_wire will wire the pages.
217 	 */
218 	lwkt_gettoken(&vm_token);
219 	for (i = gstart; i < size; i += PAGE_SIZE) {
220 		vm_page_t mem;
221 
222 		mem = vm_page_grab(&kernel_object, OFF_TO_IDX(addr + i),
223 			    VM_ALLOC_ZERO | VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
224 		if ((mem->flags & PG_ZERO) == 0)
225 			vm_page_zero_fill(mem);
226 		mem->valid = VM_PAGE_BITS_ALL;
227 		vm_page_flag_clear(mem, PG_ZERO);
228 		vm_page_wakeup(mem);
229 	}
230 	lwkt_reltoken(&vm_token);
231 
232 	/*
233 	 * And finally, mark the data as non-pageable.
234 	 *
235 	 * NOTE: vm_map_wire() handles any kstack guard.
236 	 */
237 	vm_map_wire(map, (vm_offset_t)addr, addr + size, kmflags);
238 
239 	return (addr);
240 }
241 
242 /*
243  * Release a region of kernel virtual memory allocated with kmem_alloc,
244  * and return the physical pages associated with that region.
245  *
246  * WARNING!  If the caller entered pages into the region using pmap_kenter()
247  * it must remove the pages using pmap_kremove[_quick]() before freeing the
248  * underlying kmem, otherwise resident_count will be mistabulated.
249  *
250  * No requirements.
251  */
252 void
253 kmem_free(vm_map_t map, vm_offset_t addr, vm_size_t size)
254 {
255 	vm_map_remove(map, trunc_page(addr), round_page(addr + size));
256 }
257 
258 /*
259  * Used to break a system map into smaller maps, usually to reduce
260  * contention and to provide large KVA spaces for subsystems like the
261  * buffer cache.
262  *
263  *	parent		Map to take range from
264  *	result
265  *	size		Size of range to find
266  *	min, max	Returned endpoints of map
267  *	pageable	Can the region be paged
268  *
269  * No requirements.
270  */
271 void
272 kmem_suballoc(vm_map_t parent, vm_map_t result,
273 	      vm_offset_t *min, vm_offset_t *max, vm_size_t size)
274 {
275 	int ret;
276 
277 	size = round_page(size);
278 
279 	lwkt_gettoken(&vm_token);
280 	*min = (vm_offset_t) vm_map_min(parent);
281 	ret = vm_map_find(parent, NULL, (vm_offset_t) 0,
282 			  min, size, PAGE_SIZE,
283 			  TRUE, VM_MAPTYPE_UNSPECIFIED,
284 			  VM_PROT_ALL, VM_PROT_ALL,
285 			  0);
286 	if (ret != KERN_SUCCESS) {
287 		kprintf("kmem_suballoc: bad status return of %d.\n", ret);
288 		panic("kmem_suballoc");
289 	}
290 	*max = *min + size;
291 	pmap_reference(vm_map_pmap(parent));
292 	vm_map_init(result, *min, *max, vm_map_pmap(parent));
293 	if ((ret = vm_map_submap(parent, *min, *max, result)) != KERN_SUCCESS)
294 		panic("kmem_suballoc: unable to change range to submap");
295 	lwkt_reltoken(&vm_token);
296 }
297 
298 /*
299  * Allocates pageable memory from a sub-map of the kernel.  If the submap
300  * has no room, the caller sleeps waiting for more memory in the submap.
301  *
302  * No requirements.
303  */
304 vm_offset_t
305 kmem_alloc_wait(vm_map_t map, vm_size_t size)
306 {
307 	vm_offset_t addr;
308 	int count;
309 
310 	size = round_page(size);
311 
312 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
313 
314 	for (;;) {
315 		/*
316 		 * To make this work for more than one map, use the map's lock
317 		 * to lock out sleepers/wakers.
318 		 */
319 		vm_map_lock(map);
320 		if (vm_map_findspace(map, vm_map_min(map),
321 				     size, PAGE_SIZE, 0, &addr) == 0) {
322 			break;
323 		}
324 		/* no space now; see if we can ever get space */
325 		if (vm_map_max(map) - vm_map_min(map) < size) {
326 			vm_map_entry_release(count);
327 			vm_map_unlock(map);
328 			return (0);
329 		}
330 		vm_map_unlock(map);
331 		tsleep(map, 0, "kmaw", 0);
332 	}
333 	vm_map_insert(map, &count,
334 		      NULL, (vm_offset_t) 0,
335 		      addr, addr + size,
336 		      VM_MAPTYPE_NORMAL,
337 		      VM_PROT_ALL, VM_PROT_ALL,
338 		      0);
339 	vm_map_unlock(map);
340 	vm_map_entry_release(count);
341 
342 	return (addr);
343 }
344 
345 /*
346  * Returns memory to a submap of the kernel, and wakes up any processes
347  * waiting for memory in that map.
348  *
349  * No requirements.
350  */
351 void
352 kmem_free_wakeup(vm_map_t map, vm_offset_t addr, vm_size_t size)
353 {
354 	int count;
355 
356 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
357 	vm_map_lock(map);
358 	vm_map_delete(map, trunc_page(addr), round_page(addr + size), &count);
359 	wakeup(map);
360 	vm_map_unlock(map);
361 	vm_map_entry_release(count);
362 }
363 
364 /*
365  * Create the kernel_map and insert mappings to cover areas already
366  * allocated or reserved thus far.  That is, the area (KvaStart,start)
367  * and (end,KvaEnd) must be marked as allocated.
368  *
369  * virtual2_start/end is a cutout Between KvaStart and start,
370  * for x86_64 due to the location of KERNBASE (at -2G).
371  *
372  * We could use a min_offset of 0 instead of KvaStart, but since the
373  * min_offset is not used for any calculations other then a bounds check
374  * it does not effect readability.  KvaStart is more appropriate.
375  *
376  * Depend on the zalloc bootstrap cache to get our vm_map_entry_t.
377  * Called from the low level boot code only.
378  */
379 void
380 kmem_init(vm_offset_t start, vm_offset_t end)
381 {
382 	vm_offset_t addr;
383 	vm_map_t m;
384 	int count;
385 
386 	m = vm_map_create(&kernel_map, &kernel_pmap, KvaStart, KvaEnd);
387 	vm_map_lock(m);
388 	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
389 	m->system_map = 1;
390 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
391 	addr = KvaStart;
392 	if (virtual2_start) {
393 		if (addr < virtual2_start) {
394 			vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
395 				      addr, virtual2_start,
396 				      VM_MAPTYPE_NORMAL,
397 				      VM_PROT_ALL, VM_PROT_ALL,
398 				      0);
399 		}
400 		addr = virtual2_end;
401 	}
402 	if (addr < start) {
403 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
404 			      addr, start,
405 			      VM_MAPTYPE_NORMAL,
406 			      VM_PROT_ALL, VM_PROT_ALL,
407 			      0);
408 	}
409 	addr = end;
410 	if (addr < KvaEnd) {
411 		vm_map_insert(m, &count, NULL, (vm_offset_t) 0,
412 			      addr, KvaEnd,
413 			      VM_MAPTYPE_NORMAL,
414 			      VM_PROT_ALL, VM_PROT_ALL,
415 			      0);
416 	}
417 	/* ... and ending with the completion of the above `insert' */
418 	vm_map_unlock(m);
419 	vm_map_entry_release(count);
420 }
421 
422 /*
423  * No requirements.
424  */
425 static int
426 kvm_size(SYSCTL_HANDLER_ARGS)
427 {
428 	unsigned long ksize = KvaSize;
429 
430 	return sysctl_handle_long(oidp, &ksize, 0, req);
431 }
432 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
433     0, 0, kvm_size, "IU", "Size of KVM");
434 
435 /*
436  * No requirements.
437  */
438 static int
439 kvm_free(SYSCTL_HANDLER_ARGS)
440 {
441 	unsigned long kfree = virtual_end - kernel_vm_end;
442 
443 	return sysctl_handle_long(oidp, &kfree, 0, req);
444 }
445 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
446     0, 0, kvm_free, "IU", "Amount of KVM free");
447 
448