xref: /dragonfly/sys/vm/vm_map.c (revision 19fe1c42)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
99 
100 /*
101  *	Virtual memory maps provide for the mapping, protection,
102  *	and sharing of virtual memory objects.  In addition,
103  *	this module provides for an efficient virtual copy of
104  *	memory from one map to another.
105  *
106  *	Synchronization is required prior to most operations.
107  *
108  *	Maps consist of an ordered doubly-linked list of simple
109  *	entries; a single hint is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.mag_capacity =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate
140 	}
141 };
142 
143 #define VMEPERCPU	2
144 
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152 
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 		vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164 
165 /*
166  *	vm_map_startup:
167  *
168  *	Initialize the vm_map module.  Must be called before
169  *	any other vm_map routines.
170  *
171  *	Map and entry structures are allocated from the general
172  *	purpose memory pool with some exceptions:
173  *
174  *	- The kernel map and kmem submap are allocated statically.
175  *	- Kernel map entries are allocated out of a static pool.
176  *
177  *	These restrictions are necessary since malloc() uses the
178  *	maps and requires map entries.
179  */
180 void
181 vm_map_startup(void)
182 {
183 	mapzone = &mapzone_store;
184 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 		map_init, MAX_KMAP);
186 	mapentzone = &mapentzone_store;
187 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 		map_entry_init, MAX_MAPENT);
189 }
190 
191 /*
192  *	vm_init2 - called prior to any vmspace allocations
193  */
194 void
195 vm_init2(void)
196 {
197 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
198 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200 	pmap_init2();
201 	vm_object_init2();
202 }
203 
204 
205 /*
206  * Red black tree functions
207  */
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
210 
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
214 {
215 	if (a->start < b->start)
216 		return(-1);
217 	else if (a->start > b->start)
218 		return(1);
219 	return(0);
220 }
221 
222 /*
223  * Allocate a vmspace structure, including a vm_map and pmap.
224  * Initialize numerous fields.  While the initial allocation is zerod,
225  * subsequence reuse from the objcache leaves elements of the structure
226  * intact (particularly the pmap), so portions must be zerod.
227  *
228  * The structure is not considered activated until we call sysref_activate().
229  */
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
232 {
233 	struct vmspace *vm;
234 
235 	vm = sysref_alloc(&vmspace_sysref_class);
236 	bzero(&vm->vm_startcopy,
237 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238 	vm_map_init(&vm->vm_map, min, max, NULL);
239 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
240 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
241 	vm->vm_shm = NULL;
242 	vm->vm_exitingcnt = 0;
243 	cpu_vmspace_alloc(vm);
244 	sysref_activate(&vm->vm_sysref);
245 	return (vm);
246 }
247 
248 /*
249  * dtor function - Some elements of the pmap are retained in the
250  * free-cached vmspaces to improve performance.  We have to clean them up
251  * here before returning the vmspace to the memory pool.
252  */
253 static void
254 vmspace_dtor(void *obj, void *private)
255 {
256 	struct vmspace *vm = obj;
257 
258 	pmap_puninit(vmspace_pmap(vm));
259 }
260 
261 /*
262  * Called in two cases:
263  *
264  * (1) When the last sysref is dropped, but exitingcnt might still be
265  *     non-zero.
266  *
267  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268  *     exitingcnt becomes zero
269  *
270  * sysref will not scrap the object until we call sysref_put() once more
271  * after the last ref has been dropped.
272  */
273 static void
274 vmspace_terminate(struct vmspace *vm)
275 {
276 	int count;
277 
278 	/*
279 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
280 	 * yet, but we can scrap user memory.
281 	 */
282 	if (vm->vm_exitingcnt) {
283 		shmexit(vm);
284 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285 				  VM_MAX_USER_ADDRESS);
286 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287 			      VM_MAX_USER_ADDRESS);
288 
289 		return;
290 	}
291 	cpu_vmspace_free(vm);
292 
293 	/*
294 	 * Make sure any SysV shm is freed, it might not have in
295 	 * exit1()
296 	 */
297 	shmexit(vm);
298 
299 	KKASSERT(vm->vm_upcalls == NULL);
300 
301 	/*
302 	 * Lock the map, to wait out all other references to it.
303 	 * Delete all of the mappings and pages they hold, then call
304 	 * the pmap module to reclaim anything left.
305 	 */
306 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 	vm_map_lock(&vm->vm_map);
308 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309 		vm->vm_map.max_offset, &count);
310 	vm_map_unlock(&vm->vm_map);
311 	vm_map_entry_release(count);
312 
313 	pmap_release(vmspace_pmap(vm));
314 	sysref_put(&vm->vm_sysref);
315 }
316 
317 /*
318  * This is called in the wait*() handling code.  The vmspace can be terminated
319  * after the last wait is finished using it.
320  */
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324 	struct vmspace *vm;
325 
326 	vm = p->p_vmspace;
327 	p->p_vmspace = NULL;
328 
329 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330 		vmspace_terminate(vm);
331 }
332 
333 /*
334  * vmspace_swap_count()
335  *
336  *	Swap useage is determined by taking the proportional swap used by
337  *	VM objects backing the VM map.  To make up for fractional losses,
338  *	if the VM object has any swap use at all the associated map entries
339  *	count for at least 1 swap page.
340  */
341 int
342 vmspace_swap_count(struct vmspace *vmspace)
343 {
344 	vm_map_t map = &vmspace->vm_map;
345 	vm_map_entry_t cur;
346 	vm_object_t object;
347 	int count = 0;
348 	int n;
349 
350 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
351 		switch(cur->maptype) {
352 		case VM_MAPTYPE_NORMAL:
353 		case VM_MAPTYPE_VPAGETABLE:
354 			if ((object = cur->object.vm_object) == NULL)
355 				break;
356 			if (object->type != OBJT_SWAP)
357 				break;
358 			n = (cur->end - cur->start) / PAGE_SIZE;
359 			if (object->un_pager.swp.swp_bcount) {
360 				count += object->un_pager.swp.swp_bcount *
361 				    SWAP_META_PAGES * n / object->size + 1;
362 			}
363 			break;
364 		default:
365 			break;
366 		}
367 	}
368 	return(count);
369 }
370 
371 /*
372  * vmspace_anonymous_count()
373  *
374  *	Calculate the approximate number of anonymous pages in use by
375  *	this vmspace.  To make up for fractional losses, we count each
376  *	VM object as having at least 1 anonymous page.
377  */
378 int
379 vmspace_anonymous_count(struct vmspace *vmspace)
380 {
381 	vm_map_t map = &vmspace->vm_map;
382 	vm_map_entry_t cur;
383 	vm_object_t object;
384 	int count = 0;
385 
386 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
387 		switch(cur->maptype) {
388 		case VM_MAPTYPE_NORMAL:
389 		case VM_MAPTYPE_VPAGETABLE:
390 			if ((object = cur->object.vm_object) == NULL)
391 				break;
392 			if (object->type != OBJT_DEFAULT &&
393 			    object->type != OBJT_SWAP) {
394 				break;
395 			}
396 			count += object->resident_page_count;
397 			break;
398 		default:
399 			break;
400 		}
401 	}
402 	return(count);
403 }
404 
405 
406 
407 
408 /*
409  *	vm_map_create:
410  *
411  *	Creates and returns a new empty VM map with
412  *	the given physical map structure, and having
413  *	the given lower and upper address bounds.
414  */
415 vm_map_t
416 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
417 {
418 	if (result == NULL)
419 		result = zalloc(mapzone);
420 	vm_map_init(result, min, max, pmap);
421 	return (result);
422 }
423 
424 /*
425  * Initialize an existing vm_map structure
426  * such as that in the vmspace structure.
427  * The pmap is set elsewhere.
428  */
429 void
430 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
431 {
432 	map->header.next = map->header.prev = &map->header;
433 	RB_INIT(&map->rb_root);
434 	map->nentries = 0;
435 	map->size = 0;
436 	map->system_map = 0;
437 	map->infork = 0;
438 	map->min_offset = min;
439 	map->max_offset = max;
440 	map->pmap = pmap;
441 	map->first_free = &map->header;
442 	map->hint = &map->header;
443 	map->timestamp = 0;
444 	lockinit(&map->lock, "thrd_sleep", 0, 0);
445 }
446 
447 /*
448  * Shadow the vm_map_entry's object.  This typically needs to be done when
449  * a write fault is taken on an entry which had previously been cloned by
450  * fork().  The shared object (which might be NULL) must become private so
451  * we add a shadow layer above it.
452  *
453  * Object allocation for anonymous mappings is defered as long as possible.
454  * When creating a shadow, however, the underlying object must be instantiated
455  * so it can be shared.
456  *
457  * If the map segment is governed by a virtual page table then it is
458  * possible to address offsets beyond the mapped area.  Just allocate
459  * a maximally sized object for this case.
460  */
461 static
462 void
463 vm_map_entry_shadow(vm_map_entry_t entry)
464 {
465 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
466 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
467 				 0x7FFFFFFF);	/* XXX */
468 	} else {
469 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
470 				 atop(entry->end - entry->start));
471 	}
472 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
473 }
474 
475 /*
476  * Allocate an object for a vm_map_entry.
477  *
478  * Object allocation for anonymous mappings is defered as long as possible.
479  * This function is called when we can defer no longer, generally when a map
480  * entry might be split or forked or takes a page fault.
481  *
482  * If the map segment is governed by a virtual page table then it is
483  * possible to address offsets beyond the mapped area.  Just allocate
484  * a maximally sized object for this case.
485  */
486 void
487 vm_map_entry_allocate_object(vm_map_entry_t entry)
488 {
489 	vm_object_t obj;
490 
491 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
492 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
493 	} else {
494 		obj = vm_object_allocate(OBJT_DEFAULT,
495 					 atop(entry->end - entry->start));
496 	}
497 	entry->object.vm_object = obj;
498 	entry->offset = 0;
499 }
500 
501 /*
502  *      vm_map_entry_reserve_cpu_init:
503  *
504  *	Set an initial negative count so the first attempt to reserve
505  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
506  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
507  *	map a new page for vm_map_entry structures.  SMP systems are
508  *	particularly sensitive.
509  *
510  *	This routine is called in early boot so we cannot just call
511  *	vm_map_entry_reserve().
512  *
513  *	May be called for a gd other then mycpu, but may only be called
514  *	during early boot.
515  */
516 void
517 vm_map_entry_reserve_cpu_init(globaldata_t gd)
518 {
519 	vm_map_entry_t entry;
520 	int i;
521 
522 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
523 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
524 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
525 		entry->next = gd->gd_vme_base;
526 		gd->gd_vme_base = entry;
527 	}
528 }
529 
530 /*
531  *	vm_map_entry_reserve:
532  *
533  *	Reserves vm_map_entry structures so code later on can manipulate
534  *	map_entry structures within a locked map without blocking trying
535  *	to allocate a new vm_map_entry.
536  */
537 int
538 vm_map_entry_reserve(int count)
539 {
540 	struct globaldata *gd = mycpu;
541 	vm_map_entry_t entry;
542 
543 	crit_enter();
544 
545 	/*
546 	 * Make sure we have enough structures in gd_vme_base to handle
547 	 * the reservation request.
548 	 */
549 	while (gd->gd_vme_avail < count) {
550 		entry = zalloc(mapentzone);
551 		entry->next = gd->gd_vme_base;
552 		gd->gd_vme_base = entry;
553 		++gd->gd_vme_avail;
554 	}
555 	gd->gd_vme_avail -= count;
556 	crit_exit();
557 	return(count);
558 }
559 
560 /*
561  *	vm_map_entry_release:
562  *
563  *	Releases previously reserved vm_map_entry structures that were not
564  *	used.  If we have too much junk in our per-cpu cache clean some of
565  *	it out.
566  */
567 void
568 vm_map_entry_release(int count)
569 {
570 	struct globaldata *gd = mycpu;
571 	vm_map_entry_t entry;
572 
573 	crit_enter();
574 	gd->gd_vme_avail += count;
575 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
576 		entry = gd->gd_vme_base;
577 		KKASSERT(entry != NULL);
578 		gd->gd_vme_base = entry->next;
579 		--gd->gd_vme_avail;
580 		crit_exit();
581 		zfree(mapentzone, entry);
582 		crit_enter();
583 	}
584 	crit_exit();
585 }
586 
587 /*
588  *	vm_map_entry_kreserve:
589  *
590  *	Reserve map entry structures for use in kernel_map itself.  These
591  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
592  *	was inited.  This function is used by zalloc() to avoid a recursion
593  *	when zalloc() itself needs to allocate additional kernel memory.
594  *
595  *	This function works like the normal reserve but does not load the
596  *	vm_map_entry cache (because that would result in an infinite
597  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
598  *
599  *	Any caller of this function must be sure to renormalize after
600  *	potentially eating entries to ensure that the reserve supply
601  *	remains intact.
602  */
603 int
604 vm_map_entry_kreserve(int count)
605 {
606 	struct globaldata *gd = mycpu;
607 
608 	crit_enter();
609 	gd->gd_vme_avail -= count;
610 	crit_exit();
611 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
612 	return(count);
613 }
614 
615 /*
616  *	vm_map_entry_krelease:
617  *
618  *	Release previously reserved map entries for kernel_map.  We do not
619  *	attempt to clean up like the normal release function as this would
620  *	cause an unnecessary (but probably not fatal) deep procedure call.
621  */
622 void
623 vm_map_entry_krelease(int count)
624 {
625 	struct globaldata *gd = mycpu;
626 
627 	crit_enter();
628 	gd->gd_vme_avail += count;
629 	crit_exit();
630 }
631 
632 /*
633  *	vm_map_entry_create:	[ internal use only ]
634  *
635  *	Allocates a VM map entry for insertion.  No entry fields are filled
636  *	in.
637  *
638  *	This routine may be called from an interrupt thread but not a FAST
639  *	interrupt.  This routine may recurse the map lock.
640  */
641 static vm_map_entry_t
642 vm_map_entry_create(vm_map_t map, int *countp)
643 {
644 	struct globaldata *gd = mycpu;
645 	vm_map_entry_t entry;
646 
647 	KKASSERT(*countp > 0);
648 	--*countp;
649 	crit_enter();
650 	entry = gd->gd_vme_base;
651 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
652 	gd->gd_vme_base = entry->next;
653 	crit_exit();
654 	return(entry);
655 }
656 
657 /*
658  *	vm_map_entry_dispose:	[ internal use only ]
659  *
660  *	Dispose of a vm_map_entry that is no longer being referenced.  This
661  *	function may be called from an interrupt.
662  */
663 static void
664 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
665 {
666 	struct globaldata *gd = mycpu;
667 
668 	KKASSERT(map->hint != entry);
669 	KKASSERT(map->first_free != entry);
670 
671 	++*countp;
672 	crit_enter();
673 	entry->next = gd->gd_vme_base;
674 	gd->gd_vme_base = entry;
675 	crit_exit();
676 }
677 
678 
679 /*
680  *	vm_map_entry_{un,}link:
681  *
682  *	Insert/remove entries from maps.
683  */
684 static __inline void
685 vm_map_entry_link(vm_map_t map,
686 		  vm_map_entry_t after_where,
687 		  vm_map_entry_t entry)
688 {
689 	map->nentries++;
690 	entry->prev = after_where;
691 	entry->next = after_where->next;
692 	entry->next->prev = entry;
693 	after_where->next = entry;
694 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
695 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
696 }
697 
698 static __inline void
699 vm_map_entry_unlink(vm_map_t map,
700 		    vm_map_entry_t entry)
701 {
702 	vm_map_entry_t prev;
703 	vm_map_entry_t next;
704 
705 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
706 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
707 	prev = entry->prev;
708 	next = entry->next;
709 	next->prev = prev;
710 	prev->next = next;
711 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
712 	map->nentries--;
713 }
714 
715 /*
716  *	vm_map_lookup_entry:	[ internal use only ]
717  *
718  *	Finds the map entry containing (or
719  *	immediately preceding) the specified address
720  *	in the given map; the entry is returned
721  *	in the "entry" parameter.  The boolean
722  *	result indicates whether the address is
723  *	actually contained in the map.
724  */
725 boolean_t
726 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
727     vm_map_entry_t *entry /* OUT */)
728 {
729 	vm_map_entry_t tmp;
730 	vm_map_entry_t last;
731 
732 #if 0
733 	/*
734 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
735 	 * the hint code with the red-black lookup meets with system crashes
736 	 * and lockups.  We do not yet know why.
737 	 *
738 	 * It is possible that the problem is related to the setting
739 	 * of the hint during map_entry deletion, in the code specified
740 	 * at the GGG comment later on in this file.
741 	 */
742 	/*
743 	 * Quickly check the cached hint, there's a good chance of a match.
744 	 */
745 	if (map->hint != &map->header) {
746 		tmp = map->hint;
747 		if (address >= tmp->start && address < tmp->end) {
748 			*entry = tmp;
749 			return(TRUE);
750 		}
751 	}
752 #endif
753 
754 	/*
755 	 * Locate the record from the top of the tree.  'last' tracks the
756 	 * closest prior record and is returned if no match is found, which
757 	 * in binary tree terms means tracking the most recent right-branch
758 	 * taken.  If there is no prior record, &map->header is returned.
759 	 */
760 	last = &map->header;
761 	tmp = RB_ROOT(&map->rb_root);
762 
763 	while (tmp) {
764 		if (address >= tmp->start) {
765 			if (address < tmp->end) {
766 				*entry = tmp;
767 				map->hint = tmp;
768 				return(TRUE);
769 			}
770 			last = tmp;
771 			tmp = RB_RIGHT(tmp, rb_entry);
772 		} else {
773 			tmp = RB_LEFT(tmp, rb_entry);
774 		}
775 	}
776 	*entry = last;
777 	return (FALSE);
778 }
779 
780 /*
781  *	vm_map_insert:
782  *
783  *	Inserts the given whole VM object into the target
784  *	map at the specified address range.  The object's
785  *	size should match that of the address range.
786  *
787  *	Requires that the map be locked, and leaves it so.  Requires that
788  *	sufficient vm_map_entry structures have been reserved and tracks
789  *	the use via countp.
790  *
791  *	If object is non-NULL, ref count must be bumped by caller
792  *	prior to making call to account for the new entry.
793  */
794 int
795 vm_map_insert(vm_map_t map, int *countp,
796 	      vm_object_t object, vm_ooffset_t offset,
797 	      vm_offset_t start, vm_offset_t end,
798 	      vm_maptype_t maptype,
799 	      vm_prot_t prot, vm_prot_t max,
800 	      int cow)
801 {
802 	vm_map_entry_t new_entry;
803 	vm_map_entry_t prev_entry;
804 	vm_map_entry_t temp_entry;
805 	vm_eflags_t protoeflags;
806 
807 	/*
808 	 * Check that the start and end points are not bogus.
809 	 */
810 
811 	if ((start < map->min_offset) || (end > map->max_offset) ||
812 	    (start >= end))
813 		return (KERN_INVALID_ADDRESS);
814 
815 	/*
816 	 * Find the entry prior to the proposed starting address; if it's part
817 	 * of an existing entry, this range is bogus.
818 	 */
819 
820 	if (vm_map_lookup_entry(map, start, &temp_entry))
821 		return (KERN_NO_SPACE);
822 
823 	prev_entry = temp_entry;
824 
825 	/*
826 	 * Assert that the next entry doesn't overlap the end point.
827 	 */
828 
829 	if ((prev_entry->next != &map->header) &&
830 	    (prev_entry->next->start < end))
831 		return (KERN_NO_SPACE);
832 
833 	protoeflags = 0;
834 
835 	if (cow & MAP_COPY_ON_WRITE)
836 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
837 
838 	if (cow & MAP_NOFAULT) {
839 		protoeflags |= MAP_ENTRY_NOFAULT;
840 
841 		KASSERT(object == NULL,
842 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
843 	}
844 	if (cow & MAP_DISABLE_SYNCER)
845 		protoeflags |= MAP_ENTRY_NOSYNC;
846 	if (cow & MAP_DISABLE_COREDUMP)
847 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
848 
849 	if (object) {
850 		/*
851 		 * When object is non-NULL, it could be shared with another
852 		 * process.  We have to set or clear OBJ_ONEMAPPING
853 		 * appropriately.
854 		 */
855 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
856 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
857 		}
858 	}
859 	else if ((prev_entry != &map->header) &&
860 		 (prev_entry->eflags == protoeflags) &&
861 		 (prev_entry->end == start) &&
862 		 (prev_entry->wired_count == 0) &&
863 		 prev_entry->maptype == maptype &&
864 		 ((prev_entry->object.vm_object == NULL) ||
865 		  vm_object_coalesce(prev_entry->object.vm_object,
866 				     OFF_TO_IDX(prev_entry->offset),
867 				     (vm_size_t)(prev_entry->end - prev_entry->start),
868 				     (vm_size_t)(end - prev_entry->end)))) {
869 		/*
870 		 * We were able to extend the object.  Determine if we
871 		 * can extend the previous map entry to include the
872 		 * new range as well.
873 		 */
874 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
875 		    (prev_entry->protection == prot) &&
876 		    (prev_entry->max_protection == max)) {
877 			map->size += (end - prev_entry->end);
878 			prev_entry->end = end;
879 			vm_map_simplify_entry(map, prev_entry, countp);
880 			return (KERN_SUCCESS);
881 		}
882 
883 		/*
884 		 * If we can extend the object but cannot extend the
885 		 * map entry, we have to create a new map entry.  We
886 		 * must bump the ref count on the extended object to
887 		 * account for it.  object may be NULL.
888 		 */
889 		object = prev_entry->object.vm_object;
890 		offset = prev_entry->offset +
891 			(prev_entry->end - prev_entry->start);
892 		vm_object_reference(object);
893 	}
894 
895 	/*
896 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
897 	 * in things like the buffer map where we manage kva but do not manage
898 	 * backing objects.
899 	 */
900 
901 	/*
902 	 * Create a new entry
903 	 */
904 
905 	new_entry = vm_map_entry_create(map, countp);
906 	new_entry->start = start;
907 	new_entry->end = end;
908 
909 	new_entry->maptype = maptype;
910 	new_entry->eflags = protoeflags;
911 	new_entry->object.vm_object = object;
912 	new_entry->offset = offset;
913 	new_entry->aux.master_pde = 0;
914 
915 	new_entry->inheritance = VM_INHERIT_DEFAULT;
916 	new_entry->protection = prot;
917 	new_entry->max_protection = max;
918 	new_entry->wired_count = 0;
919 
920 	/*
921 	 * Insert the new entry into the list
922 	 */
923 
924 	vm_map_entry_link(map, prev_entry, new_entry);
925 	map->size += new_entry->end - new_entry->start;
926 
927 	/*
928 	 * Update the free space hint
929 	 */
930 	if ((map->first_free == prev_entry) &&
931 	    (prev_entry->end >= new_entry->start)) {
932 		map->first_free = new_entry;
933 	}
934 
935 #if 0
936 	/*
937 	 * Temporarily removed to avoid MAP_STACK panic, due to
938 	 * MAP_STACK being a huge hack.  Will be added back in
939 	 * when MAP_STACK (and the user stack mapping) is fixed.
940 	 */
941 	/*
942 	 * It may be possible to simplify the entry
943 	 */
944 	vm_map_simplify_entry(map, new_entry, countp);
945 #endif
946 
947 	/*
948 	 * Try to pre-populate the page table.  Mappings governed by virtual
949 	 * page tables cannot be prepopulated without a lot of work, so
950 	 * don't try.
951 	 */
952 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
953 	    maptype != VM_MAPTYPE_VPAGETABLE) {
954 		pmap_object_init_pt(map->pmap, start, prot,
955 				    object, OFF_TO_IDX(offset), end - start,
956 				    cow & MAP_PREFAULT_PARTIAL);
957 	}
958 
959 	return (KERN_SUCCESS);
960 }
961 
962 /*
963  * Find sufficient space for `length' bytes in the given map, starting at
964  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
965  *
966  * This function will returned an arbitrarily aligned pointer.  If no
967  * particular alignment is required you should pass align as 1.  Note that
968  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
969  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
970  * argument.
971  *
972  * 'align' should be a power of 2 but is not required to be.
973  */
974 int
975 vm_map_findspace(
976 	vm_map_t map,
977 	vm_offset_t start,
978 	vm_size_t length,
979 	vm_offset_t align,
980 	vm_offset_t *addr)
981 {
982 	vm_map_entry_t entry, next;
983 	vm_offset_t end;
984 	vm_offset_t align_mask;
985 
986 	if (start < map->min_offset)
987 		start = map->min_offset;
988 	if (start > map->max_offset)
989 		return (1);
990 
991 	/*
992 	 * If the alignment is not a power of 2 we will have to use
993 	 * a mod/division, set align_mask to a special value.
994 	 */
995 	if ((align | (align - 1)) + 1 != (align << 1))
996 		align_mask = (vm_offset_t)-1;
997 	else
998 		align_mask = align - 1;
999 
1000 retry:
1001 	/*
1002 	 * Look for the first possible address; if there's already something
1003 	 * at this address, we have to start after it.
1004 	 */
1005 	if (start == map->min_offset) {
1006 		if ((entry = map->first_free) != &map->header)
1007 			start = entry->end;
1008 	} else {
1009 		vm_map_entry_t tmp;
1010 
1011 		if (vm_map_lookup_entry(map, start, &tmp))
1012 			start = tmp->end;
1013 		entry = tmp;
1014 	}
1015 
1016 	/*
1017 	 * Look through the rest of the map, trying to fit a new region in the
1018 	 * gap between existing regions, or after the very last region.
1019 	 */
1020 	for (;; start = (entry = next)->end) {
1021 		/*
1022 		 * Adjust the proposed start by the requested alignment,
1023 		 * be sure that we didn't wrap the address.
1024 		 */
1025 		if (align_mask == (vm_offset_t)-1)
1026 			end = ((start + align - 1) / align) * align;
1027 		else
1028 			end = (start + align_mask) & ~align_mask;
1029 		if (end < start)
1030 			return (1);
1031 		start = end;
1032 		/*
1033 		 * Find the end of the proposed new region.  Be sure we didn't
1034 		 * go beyond the end of the map, or wrap around the address.
1035 		 * Then check to see if this is the last entry or if the
1036 		 * proposed end fits in the gap between this and the next
1037 		 * entry.
1038 		 */
1039 		end = start + length;
1040 		if (end > map->max_offset || end < start)
1041 			return (1);
1042 		next = entry->next;
1043 		if (next == &map->header || next->start >= end)
1044 			break;
1045 	}
1046 	map->hint = entry;
1047 	if (map == &kernel_map) {
1048 		vm_offset_t ksize;
1049 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
1050 			pmap_growkernel(ksize);
1051 			goto retry;
1052 		}
1053 	}
1054 	*addr = start;
1055 	return (0);
1056 }
1057 
1058 /*
1059  *	vm_map_find finds an unallocated region in the target address
1060  *	map with the given length.  The search is defined to be
1061  *	first-fit from the specified address; the region found is
1062  *	returned in the same parameter.
1063  *
1064  *	If object is non-NULL, ref count must be bumped by caller
1065  *	prior to making call to account for the new entry.
1066  */
1067 int
1068 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1069 	    vm_offset_t *addr,	vm_size_t length,
1070 	    boolean_t find_space,
1071 	    vm_maptype_t maptype,
1072 	    vm_prot_t prot, vm_prot_t max,
1073 	    int cow)
1074 {
1075 	vm_offset_t start;
1076 	int result;
1077 	int count;
1078 
1079 	start = *addr;
1080 
1081 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1082 	vm_map_lock(map);
1083 	if (find_space) {
1084 		if (vm_map_findspace(map, start, length, 1, addr)) {
1085 			vm_map_unlock(map);
1086 			vm_map_entry_release(count);
1087 			return (KERN_NO_SPACE);
1088 		}
1089 		start = *addr;
1090 	}
1091 	result = vm_map_insert(map, &count, object, offset,
1092 			       start, start + length,
1093 			       maptype,
1094 			       prot, max,
1095 			       cow);
1096 	vm_map_unlock(map);
1097 	vm_map_entry_release(count);
1098 
1099 	return (result);
1100 }
1101 
1102 /*
1103  *	vm_map_simplify_entry:
1104  *
1105  *	Simplify the given map entry by merging with either neighbor.  This
1106  *	routine also has the ability to merge with both neighbors.
1107  *
1108  *	The map must be locked.
1109  *
1110  *	This routine guarentees that the passed entry remains valid (though
1111  *	possibly extended).  When merging, this routine may delete one or
1112  *	both neighbors.  No action is taken on entries which have their
1113  *	in-transition flag set.
1114  */
1115 void
1116 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1117 {
1118 	vm_map_entry_t next, prev;
1119 	vm_size_t prevsize, esize;
1120 
1121 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1122 		++mycpu->gd_cnt.v_intrans_coll;
1123 		return;
1124 	}
1125 
1126 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1127 		return;
1128 
1129 	prev = entry->prev;
1130 	if (prev != &map->header) {
1131 		prevsize = prev->end - prev->start;
1132 		if ( (prev->end == entry->start) &&
1133 		     (prev->maptype == entry->maptype) &&
1134 		     (prev->object.vm_object == entry->object.vm_object) &&
1135 		     (!prev->object.vm_object ||
1136 			(prev->offset + prevsize == entry->offset)) &&
1137 		     (prev->eflags == entry->eflags) &&
1138 		     (prev->protection == entry->protection) &&
1139 		     (prev->max_protection == entry->max_protection) &&
1140 		     (prev->inheritance == entry->inheritance) &&
1141 		     (prev->wired_count == entry->wired_count)) {
1142 			if (map->first_free == prev)
1143 				map->first_free = entry;
1144 			if (map->hint == prev)
1145 				map->hint = entry;
1146 			vm_map_entry_unlink(map, prev);
1147 			entry->start = prev->start;
1148 			entry->offset = prev->offset;
1149 			if (prev->object.vm_object)
1150 				vm_object_deallocate(prev->object.vm_object);
1151 			vm_map_entry_dispose(map, prev, countp);
1152 		}
1153 	}
1154 
1155 	next = entry->next;
1156 	if (next != &map->header) {
1157 		esize = entry->end - entry->start;
1158 		if ((entry->end == next->start) &&
1159 		    (next->maptype == entry->maptype) &&
1160 		    (next->object.vm_object == entry->object.vm_object) &&
1161 		     (!entry->object.vm_object ||
1162 			(entry->offset + esize == next->offset)) &&
1163 		    (next->eflags == entry->eflags) &&
1164 		    (next->protection == entry->protection) &&
1165 		    (next->max_protection == entry->max_protection) &&
1166 		    (next->inheritance == entry->inheritance) &&
1167 		    (next->wired_count == entry->wired_count)) {
1168 			if (map->first_free == next)
1169 				map->first_free = entry;
1170 			if (map->hint == next)
1171 				map->hint = entry;
1172 			vm_map_entry_unlink(map, next);
1173 			entry->end = next->end;
1174 			if (next->object.vm_object)
1175 				vm_object_deallocate(next->object.vm_object);
1176 			vm_map_entry_dispose(map, next, countp);
1177 	        }
1178 	}
1179 }
1180 /*
1181  *	vm_map_clip_start:	[ internal use only ]
1182  *
1183  *	Asserts that the given entry begins at or after
1184  *	the specified address; if necessary,
1185  *	it splits the entry into two.
1186  */
1187 #define vm_map_clip_start(map, entry, startaddr, countp) \
1188 { \
1189 	if (startaddr > entry->start) \
1190 		_vm_map_clip_start(map, entry, startaddr, countp); \
1191 }
1192 
1193 /*
1194  *	This routine is called only when it is known that
1195  *	the entry must be split.
1196  */
1197 static void
1198 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1199 {
1200 	vm_map_entry_t new_entry;
1201 
1202 	/*
1203 	 * Split off the front portion -- note that we must insert the new
1204 	 * entry BEFORE this one, so that this entry has the specified
1205 	 * starting address.
1206 	 */
1207 
1208 	vm_map_simplify_entry(map, entry, countp);
1209 
1210 	/*
1211 	 * If there is no object backing this entry, we might as well create
1212 	 * one now.  If we defer it, an object can get created after the map
1213 	 * is clipped, and individual objects will be created for the split-up
1214 	 * map.  This is a bit of a hack, but is also about the best place to
1215 	 * put this improvement.
1216 	 */
1217 	if (entry->object.vm_object == NULL && !map->system_map) {
1218 		vm_map_entry_allocate_object(entry);
1219 	}
1220 
1221 	new_entry = vm_map_entry_create(map, countp);
1222 	*new_entry = *entry;
1223 
1224 	new_entry->end = start;
1225 	entry->offset += (start - entry->start);
1226 	entry->start = start;
1227 
1228 	vm_map_entry_link(map, entry->prev, new_entry);
1229 
1230 	switch(entry->maptype) {
1231 	case VM_MAPTYPE_NORMAL:
1232 	case VM_MAPTYPE_VPAGETABLE:
1233 		vm_object_reference(new_entry->object.vm_object);
1234 		break;
1235 	default:
1236 		break;
1237 	}
1238 }
1239 
1240 /*
1241  *	vm_map_clip_end:	[ internal use only ]
1242  *
1243  *	Asserts that the given entry ends at or before
1244  *	the specified address; if necessary,
1245  *	it splits the entry into two.
1246  */
1247 
1248 #define vm_map_clip_end(map, entry, endaddr, countp) \
1249 { \
1250 	if (endaddr < entry->end) \
1251 		_vm_map_clip_end(map, entry, endaddr, countp); \
1252 }
1253 
1254 /*
1255  *	This routine is called only when it is known that
1256  *	the entry must be split.
1257  */
1258 static void
1259 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1260 {
1261 	vm_map_entry_t new_entry;
1262 
1263 	/*
1264 	 * If there is no object backing this entry, we might as well create
1265 	 * one now.  If we defer it, an object can get created after the map
1266 	 * is clipped, and individual objects will be created for the split-up
1267 	 * map.  This is a bit of a hack, but is also about the best place to
1268 	 * put this improvement.
1269 	 */
1270 
1271 	if (entry->object.vm_object == NULL && !map->system_map) {
1272 		vm_map_entry_allocate_object(entry);
1273 	}
1274 
1275 	/*
1276 	 * Create a new entry and insert it AFTER the specified entry
1277 	 */
1278 
1279 	new_entry = vm_map_entry_create(map, countp);
1280 	*new_entry = *entry;
1281 
1282 	new_entry->start = entry->end = end;
1283 	new_entry->offset += (end - entry->start);
1284 
1285 	vm_map_entry_link(map, entry, new_entry);
1286 
1287 	switch(entry->maptype) {
1288 	case VM_MAPTYPE_NORMAL:
1289 	case VM_MAPTYPE_VPAGETABLE:
1290 		vm_object_reference(new_entry->object.vm_object);
1291 		break;
1292 	default:
1293 		break;
1294 	}
1295 }
1296 
1297 /*
1298  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1299  *
1300  *	Asserts that the starting and ending region
1301  *	addresses fall within the valid range of the map.
1302  */
1303 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1304 		{					\
1305 		if (start < vm_map_min(map))		\
1306 			start = vm_map_min(map);	\
1307 		if (end > vm_map_max(map))		\
1308 			end = vm_map_max(map);		\
1309 		if (start > end)			\
1310 			start = end;			\
1311 		}
1312 
1313 /*
1314  *	vm_map_transition_wait:	[ kernel use only ]
1315  *
1316  *	Used to block when an in-transition collison occurs.  The map
1317  *	is unlocked for the sleep and relocked before the return.
1318  */
1319 static
1320 void
1321 vm_map_transition_wait(vm_map_t map)
1322 {
1323 	vm_map_unlock(map);
1324 	tsleep(map, 0, "vment", 0);
1325 	vm_map_lock(map);
1326 }
1327 
1328 /*
1329  * CLIP_CHECK_BACK
1330  * CLIP_CHECK_FWD
1331  *
1332  *	When we do blocking operations with the map lock held it is
1333  *	possible that a clip might have occured on our in-transit entry,
1334  *	requiring an adjustment to the entry in our loop.  These macros
1335  *	help the pageable and clip_range code deal with the case.  The
1336  *	conditional costs virtually nothing if no clipping has occured.
1337  */
1338 
1339 #define CLIP_CHECK_BACK(entry, save_start)		\
1340     do {						\
1341 	    while (entry->start != save_start) {	\
1342 		    entry = entry->prev;		\
1343 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1344 	    }						\
1345     } while(0)
1346 
1347 #define CLIP_CHECK_FWD(entry, save_end)			\
1348     do {						\
1349 	    while (entry->end != save_end) {		\
1350 		    entry = entry->next;		\
1351 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1352 	    }						\
1353     } while(0)
1354 
1355 
1356 /*
1357  *	vm_map_clip_range:	[ kernel use only ]
1358  *
1359  *	Clip the specified range and return the base entry.  The
1360  *	range may cover several entries starting at the returned base
1361  *	and the first and last entry in the covering sequence will be
1362  *	properly clipped to the requested start and end address.
1363  *
1364  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1365  *	flag.
1366  *
1367  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1368  *	covered by the requested range.
1369  *
1370  *	The map must be exclusively locked on entry and will remain locked
1371  *	on return. If no range exists or the range contains holes and you
1372  *	specified that no holes were allowed, NULL will be returned.  This
1373  *	routine may temporarily unlock the map in order avoid a deadlock when
1374  *	sleeping.
1375  */
1376 static
1377 vm_map_entry_t
1378 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1379 	int *countp, int flags)
1380 {
1381 	vm_map_entry_t start_entry;
1382 	vm_map_entry_t entry;
1383 
1384 	/*
1385 	 * Locate the entry and effect initial clipping.  The in-transition
1386 	 * case does not occur very often so do not try to optimize it.
1387 	 */
1388 again:
1389 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1390 		return (NULL);
1391 	entry = start_entry;
1392 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1393 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1394 		++mycpu->gd_cnt.v_intrans_coll;
1395 		++mycpu->gd_cnt.v_intrans_wait;
1396 		vm_map_transition_wait(map);
1397 		/*
1398 		 * entry and/or start_entry may have been clipped while
1399 		 * we slept, or may have gone away entirely.  We have
1400 		 * to restart from the lookup.
1401 		 */
1402 		goto again;
1403 	}
1404 	/*
1405 	 * Since we hold an exclusive map lock we do not have to restart
1406 	 * after clipping, even though clipping may block in zalloc.
1407 	 */
1408 	vm_map_clip_start(map, entry, start, countp);
1409 	vm_map_clip_end(map, entry, end, countp);
1410 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1411 
1412 	/*
1413 	 * Scan entries covered by the range.  When working on the next
1414 	 * entry a restart need only re-loop on the current entry which
1415 	 * we have already locked, since 'next' may have changed.  Also,
1416 	 * even though entry is safe, it may have been clipped so we
1417 	 * have to iterate forwards through the clip after sleeping.
1418 	 */
1419 	while (entry->next != &map->header && entry->next->start < end) {
1420 		vm_map_entry_t next = entry->next;
1421 
1422 		if (flags & MAP_CLIP_NO_HOLES) {
1423 			if (next->start > entry->end) {
1424 				vm_map_unclip_range(map, start_entry,
1425 					start, entry->end, countp, flags);
1426 				return(NULL);
1427 			}
1428 		}
1429 
1430 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1431 			vm_offset_t save_end = entry->end;
1432 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1433 			++mycpu->gd_cnt.v_intrans_coll;
1434 			++mycpu->gd_cnt.v_intrans_wait;
1435 			vm_map_transition_wait(map);
1436 
1437 			/*
1438 			 * clips might have occured while we blocked.
1439 			 */
1440 			CLIP_CHECK_FWD(entry, save_end);
1441 			CLIP_CHECK_BACK(start_entry, start);
1442 			continue;
1443 		}
1444 		/*
1445 		 * No restart necessary even though clip_end may block, we
1446 		 * are holding the map lock.
1447 		 */
1448 		vm_map_clip_end(map, next, end, countp);
1449 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1450 		entry = next;
1451 	}
1452 	if (flags & MAP_CLIP_NO_HOLES) {
1453 		if (entry->end != end) {
1454 			vm_map_unclip_range(map, start_entry,
1455 				start, entry->end, countp, flags);
1456 			return(NULL);
1457 		}
1458 	}
1459 	return(start_entry);
1460 }
1461 
1462 /*
1463  *	vm_map_unclip_range:	[ kernel use only ]
1464  *
1465  *	Undo the effect of vm_map_clip_range().  You should pass the same
1466  *	flags and the same range that you passed to vm_map_clip_range().
1467  *	This code will clear the in-transition flag on the entries and
1468  *	wake up anyone waiting.  This code will also simplify the sequence
1469  *	and attempt to merge it with entries before and after the sequence.
1470  *
1471  *	The map must be locked on entry and will remain locked on return.
1472  *
1473  *	Note that you should also pass the start_entry returned by
1474  *	vm_map_clip_range().  However, if you block between the two calls
1475  *	with the map unlocked please be aware that the start_entry may
1476  *	have been clipped and you may need to scan it backwards to find
1477  *	the entry corresponding with the original start address.  You are
1478  *	responsible for this, vm_map_unclip_range() expects the correct
1479  *	start_entry to be passed to it and will KASSERT otherwise.
1480  */
1481 static
1482 void
1483 vm_map_unclip_range(
1484 	vm_map_t map,
1485 	vm_map_entry_t start_entry,
1486 	vm_offset_t start,
1487 	vm_offset_t end,
1488 	int *countp,
1489 	int flags)
1490 {
1491 	vm_map_entry_t entry;
1492 
1493 	entry = start_entry;
1494 
1495 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1496 	while (entry != &map->header && entry->start < end) {
1497 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1498 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1499 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1500 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1501 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1502 			wakeup(map);
1503 		}
1504 		entry = entry->next;
1505 	}
1506 
1507 	/*
1508 	 * Simplification does not block so there is no restart case.
1509 	 */
1510 	entry = start_entry;
1511 	while (entry != &map->header && entry->start < end) {
1512 		vm_map_simplify_entry(map, entry, countp);
1513 		entry = entry->next;
1514 	}
1515 }
1516 
1517 /*
1518  *	vm_map_submap:		[ kernel use only ]
1519  *
1520  *	Mark the given range as handled by a subordinate map.
1521  *
1522  *	This range must have been created with vm_map_find,
1523  *	and no other operations may have been performed on this
1524  *	range prior to calling vm_map_submap.
1525  *
1526  *	Only a limited number of operations can be performed
1527  *	within this rage after calling vm_map_submap:
1528  *		vm_fault
1529  *	[Don't try vm_map_copy!]
1530  *
1531  *	To remove a submapping, one must first remove the
1532  *	range from the superior map, and then destroy the
1533  *	submap (if desired).  [Better yet, don't try it.]
1534  */
1535 int
1536 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1537 {
1538 	vm_map_entry_t entry;
1539 	int result = KERN_INVALID_ARGUMENT;
1540 	int count;
1541 
1542 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1543 	vm_map_lock(map);
1544 
1545 	VM_MAP_RANGE_CHECK(map, start, end);
1546 
1547 	if (vm_map_lookup_entry(map, start, &entry)) {
1548 		vm_map_clip_start(map, entry, start, &count);
1549 	} else {
1550 		entry = entry->next;
1551 	}
1552 
1553 	vm_map_clip_end(map, entry, end, &count);
1554 
1555 	if ((entry->start == start) && (entry->end == end) &&
1556 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1557 	    (entry->object.vm_object == NULL)) {
1558 		entry->object.sub_map = submap;
1559 		entry->maptype = VM_MAPTYPE_SUBMAP;
1560 		result = KERN_SUCCESS;
1561 	}
1562 	vm_map_unlock(map);
1563 	vm_map_entry_release(count);
1564 
1565 	return (result);
1566 }
1567 
1568 /*
1569  * vm_map_protect:
1570  *
1571  * Sets the protection of the specified address region in the target map.
1572  * If "set_max" is specified, the maximum protection is to be set;
1573  * otherwise, only the current protection is affected.
1574  *
1575  * The protection is not applicable to submaps, but is applicable to normal
1576  * maps and maps governed by virtual page tables.  For example, when operating
1577  * on a virtual page table our protection basically controls how COW occurs
1578  * on the backing object, whereas the virtual page table abstraction itself
1579  * is an abstraction for userland.
1580  */
1581 int
1582 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1583 	       vm_prot_t new_prot, boolean_t set_max)
1584 {
1585 	vm_map_entry_t current;
1586 	vm_map_entry_t entry;
1587 	int count;
1588 
1589 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1590 	vm_map_lock(map);
1591 
1592 	VM_MAP_RANGE_CHECK(map, start, end);
1593 
1594 	if (vm_map_lookup_entry(map, start, &entry)) {
1595 		vm_map_clip_start(map, entry, start, &count);
1596 	} else {
1597 		entry = entry->next;
1598 	}
1599 
1600 	/*
1601 	 * Make a first pass to check for protection violations.
1602 	 */
1603 	current = entry;
1604 	while ((current != &map->header) && (current->start < end)) {
1605 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1606 			vm_map_unlock(map);
1607 			vm_map_entry_release(count);
1608 			return (KERN_INVALID_ARGUMENT);
1609 		}
1610 		if ((new_prot & current->max_protection) != new_prot) {
1611 			vm_map_unlock(map);
1612 			vm_map_entry_release(count);
1613 			return (KERN_PROTECTION_FAILURE);
1614 		}
1615 		current = current->next;
1616 	}
1617 
1618 	/*
1619 	 * Go back and fix up protections. [Note that clipping is not
1620 	 * necessary the second time.]
1621 	 */
1622 	current = entry;
1623 
1624 	while ((current != &map->header) && (current->start < end)) {
1625 		vm_prot_t old_prot;
1626 
1627 		vm_map_clip_end(map, current, end, &count);
1628 
1629 		old_prot = current->protection;
1630 		if (set_max) {
1631 			current->protection =
1632 			    (current->max_protection = new_prot) &
1633 			    old_prot;
1634 		} else {
1635 			current->protection = new_prot;
1636 		}
1637 
1638 		/*
1639 		 * Update physical map if necessary. Worry about copy-on-write
1640 		 * here -- CHECK THIS XXX
1641 		 */
1642 
1643 		if (current->protection != old_prot) {
1644 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1645 							VM_PROT_ALL)
1646 
1647 			pmap_protect(map->pmap, current->start,
1648 			    current->end,
1649 			    current->protection & MASK(current));
1650 #undef	MASK
1651 		}
1652 
1653 		vm_map_simplify_entry(map, current, &count);
1654 
1655 		current = current->next;
1656 	}
1657 
1658 	vm_map_unlock(map);
1659 	vm_map_entry_release(count);
1660 	return (KERN_SUCCESS);
1661 }
1662 
1663 /*
1664  *	vm_map_madvise:
1665  *
1666  * 	This routine traverses a processes map handling the madvise
1667  *	system call.  Advisories are classified as either those effecting
1668  *	the vm_map_entry structure, or those effecting the underlying
1669  *	objects.
1670  *
1671  *	The <value> argument is used for extended madvise calls.
1672  */
1673 int
1674 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1675 	       int behav, off_t value)
1676 {
1677 	vm_map_entry_t current, entry;
1678 	int modify_map = 0;
1679 	int error = 0;
1680 	int count;
1681 
1682 	/*
1683 	 * Some madvise calls directly modify the vm_map_entry, in which case
1684 	 * we need to use an exclusive lock on the map and we need to perform
1685 	 * various clipping operations.  Otherwise we only need a read-lock
1686 	 * on the map.
1687 	 */
1688 
1689 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1690 
1691 	switch(behav) {
1692 	case MADV_NORMAL:
1693 	case MADV_SEQUENTIAL:
1694 	case MADV_RANDOM:
1695 	case MADV_NOSYNC:
1696 	case MADV_AUTOSYNC:
1697 	case MADV_NOCORE:
1698 	case MADV_CORE:
1699 	case MADV_SETMAP:
1700 	case MADV_INVAL:
1701 		modify_map = 1;
1702 		vm_map_lock(map);
1703 		break;
1704 	case MADV_WILLNEED:
1705 	case MADV_DONTNEED:
1706 	case MADV_FREE:
1707 		vm_map_lock_read(map);
1708 		break;
1709 	default:
1710 		vm_map_entry_release(count);
1711 		return (EINVAL);
1712 	}
1713 
1714 	/*
1715 	 * Locate starting entry and clip if necessary.
1716 	 */
1717 
1718 	VM_MAP_RANGE_CHECK(map, start, end);
1719 
1720 	if (vm_map_lookup_entry(map, start, &entry)) {
1721 		if (modify_map)
1722 			vm_map_clip_start(map, entry, start, &count);
1723 	} else {
1724 		entry = entry->next;
1725 	}
1726 
1727 	if (modify_map) {
1728 		/*
1729 		 * madvise behaviors that are implemented in the vm_map_entry.
1730 		 *
1731 		 * We clip the vm_map_entry so that behavioral changes are
1732 		 * limited to the specified address range.
1733 		 */
1734 		for (current = entry;
1735 		     (current != &map->header) && (current->start < end);
1736 		     current = current->next
1737 		) {
1738 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1739 				continue;
1740 
1741 			vm_map_clip_end(map, current, end, &count);
1742 
1743 			switch (behav) {
1744 			case MADV_NORMAL:
1745 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1746 				break;
1747 			case MADV_SEQUENTIAL:
1748 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1749 				break;
1750 			case MADV_RANDOM:
1751 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1752 				break;
1753 			case MADV_NOSYNC:
1754 				current->eflags |= MAP_ENTRY_NOSYNC;
1755 				break;
1756 			case MADV_AUTOSYNC:
1757 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1758 				break;
1759 			case MADV_NOCORE:
1760 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1761 				break;
1762 			case MADV_CORE:
1763 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1764 				break;
1765 			case MADV_INVAL:
1766 				/*
1767 				 * Invalidate the related pmap entries, used
1768 				 * to flush portions of the real kernel's
1769 				 * pmap when the caller has removed or
1770 				 * modified existing mappings in a virtual
1771 				 * page table.
1772 				 */
1773 				pmap_remove(map->pmap,
1774 					    current->start, current->end);
1775 				break;
1776 			case MADV_SETMAP:
1777 				/*
1778 				 * Set the page directory page for a map
1779 				 * governed by a virtual page table.  Mark
1780 				 * the entry as being governed by a virtual
1781 				 * page table if it is not.
1782 				 *
1783 				 * XXX the page directory page is stored
1784 				 * in the avail_ssize field if the map_entry.
1785 				 *
1786 				 * XXX the map simplification code does not
1787 				 * compare this field so weird things may
1788 				 * happen if you do not apply this function
1789 				 * to the entire mapping governed by the
1790 				 * virtual page table.
1791 				 */
1792 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1793 					error = EINVAL;
1794 					break;
1795 				}
1796 				current->aux.master_pde = value;
1797 				pmap_remove(map->pmap,
1798 					    current->start, current->end);
1799 				break;
1800 			default:
1801 				error = EINVAL;
1802 				break;
1803 			}
1804 			vm_map_simplify_entry(map, current, &count);
1805 		}
1806 		vm_map_unlock(map);
1807 	} else {
1808 		vm_pindex_t pindex;
1809 		int count;
1810 
1811 		/*
1812 		 * madvise behaviors that are implemented in the underlying
1813 		 * vm_object.
1814 		 *
1815 		 * Since we don't clip the vm_map_entry, we have to clip
1816 		 * the vm_object pindex and count.
1817 		 *
1818 		 * NOTE!  We currently do not support these functions on
1819 		 * virtual page tables.
1820 		 */
1821 		for (current = entry;
1822 		     (current != &map->header) && (current->start < end);
1823 		     current = current->next
1824 		) {
1825 			vm_offset_t useStart;
1826 
1827 			if (current->maptype != VM_MAPTYPE_NORMAL)
1828 				continue;
1829 
1830 			pindex = OFF_TO_IDX(current->offset);
1831 			count = atop(current->end - current->start);
1832 			useStart = current->start;
1833 
1834 			if (current->start < start) {
1835 				pindex += atop(start - current->start);
1836 				count -= atop(start - current->start);
1837 				useStart = start;
1838 			}
1839 			if (current->end > end)
1840 				count -= atop(current->end - end);
1841 
1842 			if (count <= 0)
1843 				continue;
1844 
1845 			vm_object_madvise(current->object.vm_object,
1846 					  pindex, count, behav);
1847 
1848 			/*
1849 			 * Try to populate the page table.  Mappings governed
1850 			 * by virtual page tables cannot be pre-populated
1851 			 * without a lot of work so don't try.
1852 			 */
1853 			if (behav == MADV_WILLNEED &&
1854 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1855 				pmap_object_init_pt(
1856 				    map->pmap,
1857 				    useStart,
1858 				    current->protection,
1859 				    current->object.vm_object,
1860 				    pindex,
1861 				    (count << PAGE_SHIFT),
1862 				    MAP_PREFAULT_MADVISE
1863 				);
1864 			}
1865 		}
1866 		vm_map_unlock_read(map);
1867 	}
1868 	vm_map_entry_release(count);
1869 	return(error);
1870 }
1871 
1872 
1873 /*
1874  *	vm_map_inherit:
1875  *
1876  *	Sets the inheritance of the specified address
1877  *	range in the target map.  Inheritance
1878  *	affects how the map will be shared with
1879  *	child maps at the time of vm_map_fork.
1880  */
1881 int
1882 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1883 	       vm_inherit_t new_inheritance)
1884 {
1885 	vm_map_entry_t entry;
1886 	vm_map_entry_t temp_entry;
1887 	int count;
1888 
1889 	switch (new_inheritance) {
1890 	case VM_INHERIT_NONE:
1891 	case VM_INHERIT_COPY:
1892 	case VM_INHERIT_SHARE:
1893 		break;
1894 	default:
1895 		return (KERN_INVALID_ARGUMENT);
1896 	}
1897 
1898 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1899 	vm_map_lock(map);
1900 
1901 	VM_MAP_RANGE_CHECK(map, start, end);
1902 
1903 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1904 		entry = temp_entry;
1905 		vm_map_clip_start(map, entry, start, &count);
1906 	} else
1907 		entry = temp_entry->next;
1908 
1909 	while ((entry != &map->header) && (entry->start < end)) {
1910 		vm_map_clip_end(map, entry, end, &count);
1911 
1912 		entry->inheritance = new_inheritance;
1913 
1914 		vm_map_simplify_entry(map, entry, &count);
1915 
1916 		entry = entry->next;
1917 	}
1918 	vm_map_unlock(map);
1919 	vm_map_entry_release(count);
1920 	return (KERN_SUCCESS);
1921 }
1922 
1923 /*
1924  * Implement the semantics of mlock
1925  */
1926 int
1927 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1928     boolean_t new_pageable)
1929 {
1930 	vm_map_entry_t entry;
1931 	vm_map_entry_t start_entry;
1932 	vm_offset_t end;
1933 	int rv = KERN_SUCCESS;
1934 	int count;
1935 
1936 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1937 	vm_map_lock(map);
1938 	VM_MAP_RANGE_CHECK(map, start, real_end);
1939 	end = real_end;
1940 
1941 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1942 	if (start_entry == NULL) {
1943 		vm_map_unlock(map);
1944 		vm_map_entry_release(count);
1945 		return (KERN_INVALID_ADDRESS);
1946 	}
1947 
1948 	if (new_pageable == 0) {
1949 		entry = start_entry;
1950 		while ((entry != &map->header) && (entry->start < end)) {
1951 			vm_offset_t save_start;
1952 			vm_offset_t save_end;
1953 
1954 			/*
1955 			 * Already user wired or hard wired (trivial cases)
1956 			 */
1957 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1958 				entry = entry->next;
1959 				continue;
1960 			}
1961 			if (entry->wired_count != 0) {
1962 				entry->wired_count++;
1963 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1964 				entry = entry->next;
1965 				continue;
1966 			}
1967 
1968 			/*
1969 			 * A new wiring requires instantiation of appropriate
1970 			 * management structures and the faulting in of the
1971 			 * page.
1972 			 */
1973 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1974 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1975 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1976 					vm_map_entry_shadow(entry);
1977 				} else if (entry->object.vm_object == NULL &&
1978 					   !map->system_map) {
1979 					vm_map_entry_allocate_object(entry);
1980 				}
1981 			}
1982 			entry->wired_count++;
1983 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1984 
1985 			/*
1986 			 * Now fault in the area.  Note that vm_fault_wire()
1987 			 * may release the map lock temporarily, it will be
1988 			 * relocked on return.  The in-transition
1989 			 * flag protects the entries.
1990 			 */
1991 			save_start = entry->start;
1992 			save_end = entry->end;
1993 			rv = vm_fault_wire(map, entry, TRUE);
1994 			if (rv) {
1995 				CLIP_CHECK_BACK(entry, save_start);
1996 				for (;;) {
1997 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1998 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1999 					entry->wired_count = 0;
2000 					if (entry->end == save_end)
2001 						break;
2002 					entry = entry->next;
2003 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2004 				}
2005 				end = save_start;	/* unwire the rest */
2006 				break;
2007 			}
2008 			/*
2009 			 * note that even though the entry might have been
2010 			 * clipped, the USER_WIRED flag we set prevents
2011 			 * duplication so we do not have to do a
2012 			 * clip check.
2013 			 */
2014 			entry = entry->next;
2015 		}
2016 
2017 		/*
2018 		 * If we failed fall through to the unwiring section to
2019 		 * unwire what we had wired so far.  'end' has already
2020 		 * been adjusted.
2021 		 */
2022 		if (rv)
2023 			new_pageable = 1;
2024 
2025 		/*
2026 		 * start_entry might have been clipped if we unlocked the
2027 		 * map and blocked.  No matter how clipped it has gotten
2028 		 * there should be a fragment that is on our start boundary.
2029 		 */
2030 		CLIP_CHECK_BACK(start_entry, start);
2031 	}
2032 
2033 	/*
2034 	 * Deal with the unwiring case.
2035 	 */
2036 	if (new_pageable) {
2037 		/*
2038 		 * This is the unwiring case.  We must first ensure that the
2039 		 * range to be unwired is really wired down.  We know there
2040 		 * are no holes.
2041 		 */
2042 		entry = start_entry;
2043 		while ((entry != &map->header) && (entry->start < end)) {
2044 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2045 				rv = KERN_INVALID_ARGUMENT;
2046 				goto done;
2047 			}
2048 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2049 			entry = entry->next;
2050 		}
2051 
2052 		/*
2053 		 * Now decrement the wiring count for each region. If a region
2054 		 * becomes completely unwired, unwire its physical pages and
2055 		 * mappings.
2056 		 */
2057 		/*
2058 		 * The map entries are processed in a loop, checking to
2059 		 * make sure the entry is wired and asserting it has a wired
2060 		 * count. However, another loop was inserted more-or-less in
2061 		 * the middle of the unwiring path. This loop picks up the
2062 		 * "entry" loop variable from the first loop without first
2063 		 * setting it to start_entry. Naturally, the secound loop
2064 		 * is never entered and the pages backing the entries are
2065 		 * never unwired. This can lead to a leak of wired pages.
2066 		 */
2067 		entry = start_entry;
2068 		while ((entry != &map->header) && (entry->start < end)) {
2069 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2070 				("expected USER_WIRED on entry %p", entry));
2071 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2072 			entry->wired_count--;
2073 			if (entry->wired_count == 0)
2074 				vm_fault_unwire(map, entry);
2075 			entry = entry->next;
2076 		}
2077 	}
2078 done:
2079 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2080 		MAP_CLIP_NO_HOLES);
2081 	map->timestamp++;
2082 	vm_map_unlock(map);
2083 	vm_map_entry_release(count);
2084 	return (rv);
2085 }
2086 
2087 /*
2088  *	vm_map_wire:
2089  *
2090  *	Sets the pageability of the specified address
2091  *	range in the target map.  Regions specified
2092  *	as not pageable require locked-down physical
2093  *	memory and physical page maps.
2094  *
2095  *	The map must not be locked, but a reference
2096  *	must remain to the map throughout the call.
2097  *
2098  *	This function may be called via the zalloc path and must properly
2099  *	reserve map entries for kernel_map.
2100  */
2101 int
2102 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2103 {
2104 	vm_map_entry_t entry;
2105 	vm_map_entry_t start_entry;
2106 	vm_offset_t end;
2107 	int rv = KERN_SUCCESS;
2108 	int count;
2109 
2110 	if (kmflags & KM_KRESERVE)
2111 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2112 	else
2113 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2114 	vm_map_lock(map);
2115 	VM_MAP_RANGE_CHECK(map, start, real_end);
2116 	end = real_end;
2117 
2118 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2119 	if (start_entry == NULL) {
2120 		vm_map_unlock(map);
2121 		rv = KERN_INVALID_ADDRESS;
2122 		goto failure;
2123 	}
2124 	if ((kmflags & KM_PAGEABLE) == 0) {
2125 		/*
2126 		 * Wiring.
2127 		 *
2128 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2129 		 * objects that need to be created. Then we clip each map
2130 		 * entry to the region to be wired and increment its wiring
2131 		 * count.  We create objects before clipping the map entries
2132 		 * to avoid object proliferation.
2133 		 *
2134 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2135 		 * fault in the pages for any newly wired area (wired_count is
2136 		 * 1).
2137 		 *
2138 		 * Downgrading to a read lock for vm_fault_wire avoids a
2139 		 * possible deadlock with another process that may have faulted
2140 		 * on one of the pages to be wired (it would mark the page busy,
2141 		 * blocking us, then in turn block on the map lock that we
2142 		 * hold).  Because of problems in the recursive lock package,
2143 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2144 		 * any actions that require the write lock must be done
2145 		 * beforehand.  Because we keep the read lock on the map, the
2146 		 * copy-on-write status of the entries we modify here cannot
2147 		 * change.
2148 		 */
2149 
2150 		entry = start_entry;
2151 		while ((entry != &map->header) && (entry->start < end)) {
2152 			/*
2153 			 * Trivial case if the entry is already wired
2154 			 */
2155 			if (entry->wired_count) {
2156 				entry->wired_count++;
2157 				entry = entry->next;
2158 				continue;
2159 			}
2160 
2161 			/*
2162 			 * The entry is being newly wired, we have to setup
2163 			 * appropriate management structures.  A shadow
2164 			 * object is required for a copy-on-write region,
2165 			 * or a normal object for a zero-fill region.  We
2166 			 * do not have to do this for entries that point to sub
2167 			 * maps because we won't hold the lock on the sub map.
2168 			 */
2169 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2170 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2171 				if (copyflag &&
2172 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2173 					vm_map_entry_shadow(entry);
2174 				} else if (entry->object.vm_object == NULL &&
2175 					   !map->system_map) {
2176 					vm_map_entry_allocate_object(entry);
2177 				}
2178 			}
2179 
2180 			entry->wired_count++;
2181 			entry = entry->next;
2182 		}
2183 
2184 		/*
2185 		 * Pass 2.
2186 		 */
2187 
2188 		/*
2189 		 * HACK HACK HACK HACK
2190 		 *
2191 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2192 		 * protects us from most changes but note that
2193 		 * clipping may still occur.  To prevent clipping from
2194 		 * occuring after the unlock, except for when we are
2195 		 * blocking in vm_fault_wire, we must run in a critical
2196 		 * section, otherwise our accesses to entry->start and
2197 		 * entry->end could be corrupted.  We have to enter the
2198 		 * critical section prior to unlocking so start_entry does
2199 		 * not change out from under us at the very beginning of the
2200 		 * loop.
2201 		 *
2202 		 * HACK HACK HACK HACK
2203 		 */
2204 
2205 		crit_enter();
2206 
2207 		entry = start_entry;
2208 		while (entry != &map->header && entry->start < end) {
2209 			/*
2210 			 * If vm_fault_wire fails for any page we need to undo
2211 			 * what has been done.  We decrement the wiring count
2212 			 * for those pages which have not yet been wired (now)
2213 			 * and unwire those that have (later).
2214 			 */
2215 			vm_offset_t save_start = entry->start;
2216 			vm_offset_t save_end = entry->end;
2217 
2218 			if (entry->wired_count == 1)
2219 				rv = vm_fault_wire(map, entry, FALSE);
2220 			if (rv) {
2221 				CLIP_CHECK_BACK(entry, save_start);
2222 				for (;;) {
2223 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2224 					entry->wired_count = 0;
2225 					if (entry->end == save_end)
2226 						break;
2227 					entry = entry->next;
2228 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2229 				}
2230 				end = save_start;
2231 				break;
2232 			}
2233 			CLIP_CHECK_FWD(entry, save_end);
2234 			entry = entry->next;
2235 		}
2236 		crit_exit();
2237 
2238 		/*
2239 		 * If a failure occured undo everything by falling through
2240 		 * to the unwiring code.  'end' has already been adjusted
2241 		 * appropriately.
2242 		 */
2243 		if (rv)
2244 			kmflags |= KM_PAGEABLE;
2245 
2246 		/*
2247 		 * start_entry is still IN_TRANSITION but may have been
2248 		 * clipped since vm_fault_wire() unlocks and relocks the
2249 		 * map.  No matter how clipped it has gotten there should
2250 		 * be a fragment that is on our start boundary.
2251 		 */
2252 		CLIP_CHECK_BACK(start_entry, start);
2253 	}
2254 
2255 	if (kmflags & KM_PAGEABLE) {
2256 		/*
2257 		 * This is the unwiring case.  We must first ensure that the
2258 		 * range to be unwired is really wired down.  We know there
2259 		 * are no holes.
2260 		 */
2261 		entry = start_entry;
2262 		while ((entry != &map->header) && (entry->start < end)) {
2263 			if (entry->wired_count == 0) {
2264 				rv = KERN_INVALID_ARGUMENT;
2265 				goto done;
2266 			}
2267 			entry = entry->next;
2268 		}
2269 
2270 		/*
2271 		 * Now decrement the wiring count for each region. If a region
2272 		 * becomes completely unwired, unwire its physical pages and
2273 		 * mappings.
2274 		 */
2275 		entry = start_entry;
2276 		while ((entry != &map->header) && (entry->start < end)) {
2277 			entry->wired_count--;
2278 			if (entry->wired_count == 0)
2279 				vm_fault_unwire(map, entry);
2280 			entry = entry->next;
2281 		}
2282 	}
2283 done:
2284 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2285 		MAP_CLIP_NO_HOLES);
2286 	map->timestamp++;
2287 	vm_map_unlock(map);
2288 failure:
2289 	if (kmflags & KM_KRESERVE)
2290 		vm_map_entry_krelease(count);
2291 	else
2292 		vm_map_entry_release(count);
2293 	return (rv);
2294 }
2295 
2296 /*
2297  * vm_map_set_wired_quick()
2298  *
2299  *	Mark a newly allocated address range as wired but do not fault in
2300  *	the pages.  The caller is expected to load the pages into the object.
2301  *
2302  *	The map must be locked on entry and will remain locked on return.
2303  */
2304 void
2305 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2306 {
2307 	vm_map_entry_t scan;
2308 	vm_map_entry_t entry;
2309 
2310 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2311 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2312 	    KKASSERT(entry->wired_count == 0);
2313 	    entry->wired_count = 1;
2314 	}
2315 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2316 }
2317 
2318 /*
2319  * vm_map_clean
2320  *
2321  * Push any dirty cached pages in the address range to their pager.
2322  * If syncio is TRUE, dirty pages are written synchronously.
2323  * If invalidate is TRUE, any cached pages are freed as well.
2324  *
2325  * Returns an error if any part of the specified range is not mapped.
2326  */
2327 int
2328 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2329     boolean_t invalidate)
2330 {
2331 	vm_map_entry_t current;
2332 	vm_map_entry_t entry;
2333 	vm_size_t size;
2334 	vm_object_t object;
2335 	vm_ooffset_t offset;
2336 
2337 	vm_map_lock_read(map);
2338 	VM_MAP_RANGE_CHECK(map, start, end);
2339 	if (!vm_map_lookup_entry(map, start, &entry)) {
2340 		vm_map_unlock_read(map);
2341 		return (KERN_INVALID_ADDRESS);
2342 	}
2343 	/*
2344 	 * Make a first pass to check for holes.
2345 	 */
2346 	for (current = entry; current->start < end; current = current->next) {
2347 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2348 			vm_map_unlock_read(map);
2349 			return (KERN_INVALID_ARGUMENT);
2350 		}
2351 		if (end > current->end &&
2352 		    (current->next == &map->header ||
2353 			current->end != current->next->start)) {
2354 			vm_map_unlock_read(map);
2355 			return (KERN_INVALID_ADDRESS);
2356 		}
2357 	}
2358 
2359 	if (invalidate)
2360 		pmap_remove(vm_map_pmap(map), start, end);
2361 	/*
2362 	 * Make a second pass, cleaning/uncaching pages from the indicated
2363 	 * objects as we go.
2364 	 */
2365 	for (current = entry; current->start < end; current = current->next) {
2366 		offset = current->offset + (start - current->start);
2367 		size = (end <= current->end ? end : current->end) - start;
2368 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2369 			vm_map_t smap;
2370 			vm_map_entry_t tentry;
2371 			vm_size_t tsize;
2372 
2373 			smap = current->object.sub_map;
2374 			vm_map_lock_read(smap);
2375 			vm_map_lookup_entry(smap, offset, &tentry);
2376 			tsize = tentry->end - offset;
2377 			if (tsize < size)
2378 				size = tsize;
2379 			object = tentry->object.vm_object;
2380 			offset = tentry->offset + (offset - tentry->start);
2381 			vm_map_unlock_read(smap);
2382 		} else {
2383 			object = current->object.vm_object;
2384 		}
2385 		/*
2386 		 * Note that there is absolutely no sense in writing out
2387 		 * anonymous objects, so we track down the vnode object
2388 		 * to write out.
2389 		 * We invalidate (remove) all pages from the address space
2390 		 * anyway, for semantic correctness.
2391 		 *
2392 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2393 		 * may start out with a NULL object.
2394 		 */
2395 		while (object && object->backing_object) {
2396 			offset += object->backing_object_offset;
2397 			object = object->backing_object;
2398 			if (object->size < OFF_TO_IDX( offset + size))
2399 				size = IDX_TO_OFF(object->size) - offset;
2400 		}
2401 		if (object && (object->type == OBJT_VNODE) &&
2402 		    (current->protection & VM_PROT_WRITE)) {
2403 			/*
2404 			 * Flush pages if writing is allowed, invalidate them
2405 			 * if invalidation requested.  Pages undergoing I/O
2406 			 * will be ignored by vm_object_page_remove().
2407 			 *
2408 			 * We cannot lock the vnode and then wait for paging
2409 			 * to complete without deadlocking against vm_fault.
2410 			 * Instead we simply call vm_object_page_remove() and
2411 			 * allow it to block internally on a page-by-page
2412 			 * basis when it encounters pages undergoing async
2413 			 * I/O.
2414 			 */
2415 			int flags;
2416 
2417 			vm_object_reference(object);
2418 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2419 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2420 			flags |= invalidate ? OBJPC_INVAL : 0;
2421 
2422 			/*
2423 			 * When operating on a virtual page table just
2424 			 * flush the whole object.  XXX we probably ought
2425 			 * to
2426 			 */
2427 			switch(current->maptype) {
2428 			case VM_MAPTYPE_NORMAL:
2429 				vm_object_page_clean(object,
2430 				    OFF_TO_IDX(offset),
2431 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2432 				    flags);
2433 				break;
2434 			case VM_MAPTYPE_VPAGETABLE:
2435 				vm_object_page_clean(object, 0, 0, flags);
2436 				break;
2437 			}
2438 			vn_unlock(((struct vnode *)object->handle));
2439 			vm_object_deallocate(object);
2440 		}
2441 		if (object && invalidate &&
2442 		   ((object->type == OBJT_VNODE) ||
2443 		    (object->type == OBJT_DEVICE))) {
2444 			int clean_only =
2445 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2446 			vm_object_reference(object);
2447 			switch(current->maptype) {
2448 			case VM_MAPTYPE_NORMAL:
2449 				vm_object_page_remove(object,
2450 				    OFF_TO_IDX(offset),
2451 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2452 				    clean_only);
2453 				break;
2454 			case VM_MAPTYPE_VPAGETABLE:
2455 				vm_object_page_remove(object, 0, 0, clean_only);
2456 				break;
2457 			}
2458 			vm_object_deallocate(object);
2459 		}
2460 		start += size;
2461 	}
2462 
2463 	vm_map_unlock_read(map);
2464 	return (KERN_SUCCESS);
2465 }
2466 
2467 /*
2468  *	vm_map_entry_unwire:	[ internal use only ]
2469  *
2470  *	Make the region specified by this entry pageable.
2471  *
2472  *	The map in question should be locked.
2473  *	[This is the reason for this routine's existence.]
2474  */
2475 static void
2476 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2477 {
2478 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2479 	entry->wired_count = 0;
2480 	vm_fault_unwire(map, entry);
2481 }
2482 
2483 /*
2484  *	vm_map_entry_delete:	[ internal use only ]
2485  *
2486  *	Deallocate the given entry from the target map.
2487  */
2488 static void
2489 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2490 {
2491 	vm_map_entry_unlink(map, entry);
2492 	map->size -= entry->end - entry->start;
2493 
2494 	switch(entry->maptype) {
2495 	case VM_MAPTYPE_NORMAL:
2496 	case VM_MAPTYPE_VPAGETABLE:
2497 		vm_object_deallocate(entry->object.vm_object);
2498 		break;
2499 	default:
2500 		break;
2501 	}
2502 
2503 	vm_map_entry_dispose(map, entry, countp);
2504 }
2505 
2506 /*
2507  *	vm_map_delete:	[ internal use only ]
2508  *
2509  *	Deallocates the given address range from the target
2510  *	map.
2511  */
2512 int
2513 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2514 {
2515 	vm_object_t object;
2516 	vm_map_entry_t entry;
2517 	vm_map_entry_t first_entry;
2518 
2519 again:
2520 	/*
2521 	 * Find the start of the region, and clip it.  Set entry to point
2522 	 * at the first record containing the requested address or, if no
2523 	 * such record exists, the next record with a greater address.  The
2524 	 * loop will run from this point until a record beyond the termination
2525 	 * address is encountered.
2526 	 *
2527 	 * map->hint must be adjusted to not point to anything we delete,
2528 	 * so set it to the entry prior to the one being deleted.
2529 	 *
2530 	 * GGG see other GGG comment.
2531 	 */
2532 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2533 		entry = first_entry;
2534 		vm_map_clip_start(map, entry, start, countp);
2535 		map->hint = entry->prev;	/* possible problem XXX */
2536 	} else {
2537 		map->hint = first_entry;	/* possible problem XXX */
2538 		entry = first_entry->next;
2539 	}
2540 
2541 	/*
2542 	 * If a hole opens up prior to the current first_free then
2543 	 * adjust first_free.  As with map->hint, map->first_free
2544 	 * cannot be left set to anything we might delete.
2545 	 */
2546 	if (entry == &map->header) {
2547 		map->first_free = &map->header;
2548 	} else if (map->first_free->start >= start) {
2549 		map->first_free = entry->prev;
2550 	}
2551 
2552 	/*
2553 	 * Step through all entries in this region
2554 	 */
2555 
2556 	while ((entry != &map->header) && (entry->start < end)) {
2557 		vm_map_entry_t next;
2558 		vm_offset_t s, e;
2559 		vm_pindex_t offidxstart, offidxend, count;
2560 
2561 		/*
2562 		 * If we hit an in-transition entry we have to sleep and
2563 		 * retry.  It's easier (and not really slower) to just retry
2564 		 * since this case occurs so rarely and the hint is already
2565 		 * pointing at the right place.  We have to reset the
2566 		 * start offset so as not to accidently delete an entry
2567 		 * another process just created in vacated space.
2568 		 */
2569 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2570 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2571 			start = entry->start;
2572 			++mycpu->gd_cnt.v_intrans_coll;
2573 			++mycpu->gd_cnt.v_intrans_wait;
2574 			vm_map_transition_wait(map);
2575 			goto again;
2576 		}
2577 		vm_map_clip_end(map, entry, end, countp);
2578 
2579 		s = entry->start;
2580 		e = entry->end;
2581 		next = entry->next;
2582 
2583 		offidxstart = OFF_TO_IDX(entry->offset);
2584 		count = OFF_TO_IDX(e - s);
2585 		object = entry->object.vm_object;
2586 
2587 		/*
2588 		 * Unwire before removing addresses from the pmap; otherwise,
2589 		 * unwiring will put the entries back in the pmap.
2590 		 */
2591 		if (entry->wired_count != 0)
2592 			vm_map_entry_unwire(map, entry);
2593 
2594 		offidxend = offidxstart + count;
2595 
2596 		if (object == &kernel_object) {
2597 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2598 		} else {
2599 			pmap_remove(map->pmap, s, e);
2600 			if (object != NULL &&
2601 			    object->ref_count != 1 &&
2602 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2603 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2604 				vm_object_collapse(object);
2605 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2606 				if (object->type == OBJT_SWAP) {
2607 					swap_pager_freespace(object, offidxstart, count);
2608 				}
2609 				if (offidxend >= object->size &&
2610 				    offidxstart < object->size) {
2611 					object->size = offidxstart;
2612 				}
2613 			}
2614 		}
2615 
2616 		/*
2617 		 * Delete the entry (which may delete the object) only after
2618 		 * removing all pmap entries pointing to its pages.
2619 		 * (Otherwise, its page frames may be reallocated, and any
2620 		 * modify bits will be set in the wrong object!)
2621 		 */
2622 		vm_map_entry_delete(map, entry, countp);
2623 		entry = next;
2624 	}
2625 	return (KERN_SUCCESS);
2626 }
2627 
2628 /*
2629  *	vm_map_remove:
2630  *
2631  *	Remove the given address range from the target map.
2632  *	This is the exported form of vm_map_delete.
2633  */
2634 int
2635 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2636 {
2637 	int result;
2638 	int count;
2639 
2640 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2641 	vm_map_lock(map);
2642 	VM_MAP_RANGE_CHECK(map, start, end);
2643 	result = vm_map_delete(map, start, end, &count);
2644 	vm_map_unlock(map);
2645 	vm_map_entry_release(count);
2646 
2647 	return (result);
2648 }
2649 
2650 /*
2651  *	vm_map_check_protection:
2652  *
2653  *	Assert that the target map allows the specified
2654  *	privilege on the entire address region given.
2655  *	The entire region must be allocated.
2656  */
2657 boolean_t
2658 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2659 			vm_prot_t protection)
2660 {
2661 	vm_map_entry_t entry;
2662 	vm_map_entry_t tmp_entry;
2663 
2664 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2665 		return (FALSE);
2666 	}
2667 	entry = tmp_entry;
2668 
2669 	while (start < end) {
2670 		if (entry == &map->header) {
2671 			return (FALSE);
2672 		}
2673 		/*
2674 		 * No holes allowed!
2675 		 */
2676 
2677 		if (start < entry->start) {
2678 			return (FALSE);
2679 		}
2680 		/*
2681 		 * Check protection associated with entry.
2682 		 */
2683 
2684 		if ((entry->protection & protection) != protection) {
2685 			return (FALSE);
2686 		}
2687 		/* go to next entry */
2688 
2689 		start = entry->end;
2690 		entry = entry->next;
2691 	}
2692 	return (TRUE);
2693 }
2694 
2695 /*
2696  * Split the pages in a map entry into a new object.  This affords
2697  * easier removal of unused pages, and keeps object inheritance from
2698  * being a negative impact on memory usage.
2699  */
2700 static void
2701 vm_map_split(vm_map_entry_t entry)
2702 {
2703 	vm_page_t m;
2704 	vm_object_t orig_object, new_object, source;
2705 	vm_offset_t s, e;
2706 	vm_pindex_t offidxstart, offidxend, idx;
2707 	vm_size_t size;
2708 	vm_ooffset_t offset;
2709 
2710 	orig_object = entry->object.vm_object;
2711 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2712 		return;
2713 	if (orig_object->ref_count <= 1)
2714 		return;
2715 
2716 	offset = entry->offset;
2717 	s = entry->start;
2718 	e = entry->end;
2719 
2720 	offidxstart = OFF_TO_IDX(offset);
2721 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2722 	size = offidxend - offidxstart;
2723 
2724 	new_object = vm_pager_allocate(orig_object->type, NULL,
2725 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2726 	if (new_object == NULL)
2727 		return;
2728 
2729 	source = orig_object->backing_object;
2730 	if (source != NULL) {
2731 		vm_object_reference(source);	/* Referenced by new_object */
2732 		LIST_INSERT_HEAD(&source->shadow_head,
2733 				  new_object, shadow_list);
2734 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2735 		new_object->backing_object_offset =
2736 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2737 		new_object->backing_object = source;
2738 		source->shadow_count++;
2739 		source->generation++;
2740 	}
2741 
2742 	for (idx = 0; idx < size; idx++) {
2743 		vm_page_t m;
2744 
2745 		/*
2746 		 * A critical section is required to avoid a race between
2747 		 * the lookup and an interrupt/unbusy/free and our busy
2748 		 * check.
2749 		 */
2750 		crit_enter();
2751 	retry:
2752 		m = vm_page_lookup(orig_object, offidxstart + idx);
2753 		if (m == NULL) {
2754 			crit_exit();
2755 			continue;
2756 		}
2757 
2758 		/*
2759 		 * We must wait for pending I/O to complete before we can
2760 		 * rename the page.
2761 		 *
2762 		 * We do not have to VM_PROT_NONE the page as mappings should
2763 		 * not be changed by this operation.
2764 		 */
2765 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2766 			goto retry;
2767 		vm_page_busy(m);
2768 		vm_page_rename(m, new_object, idx);
2769 		/* page automatically made dirty by rename and cache handled */
2770 		vm_page_busy(m);
2771 		crit_exit();
2772 	}
2773 
2774 	if (orig_object->type == OBJT_SWAP) {
2775 		vm_object_pip_add(orig_object, 1);
2776 		/*
2777 		 * copy orig_object pages into new_object
2778 		 * and destroy unneeded pages in
2779 		 * shadow object.
2780 		 */
2781 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2782 		vm_object_pip_wakeup(orig_object);
2783 	}
2784 
2785 	/*
2786 	 * Wakeup the pages we played with.  No spl protection is needed
2787 	 * for a simple wakeup.
2788 	 */
2789 	for (idx = 0; idx < size; idx++) {
2790 		m = vm_page_lookup(new_object, idx);
2791 		if (m)
2792 			vm_page_wakeup(m);
2793 	}
2794 
2795 	entry->object.vm_object = new_object;
2796 	entry->offset = 0LL;
2797 	vm_object_deallocate(orig_object);
2798 }
2799 
2800 /*
2801  *	vm_map_copy_entry:
2802  *
2803  *	Copies the contents of the source entry to the destination
2804  *	entry.  The entries *must* be aligned properly.
2805  */
2806 static void
2807 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2808 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2809 {
2810 	vm_object_t src_object;
2811 
2812 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2813 		return;
2814 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2815 		return;
2816 
2817 	if (src_entry->wired_count == 0) {
2818 		/*
2819 		 * If the source entry is marked needs_copy, it is already
2820 		 * write-protected.
2821 		 */
2822 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2823 			pmap_protect(src_map->pmap,
2824 			    src_entry->start,
2825 			    src_entry->end,
2826 			    src_entry->protection & ~VM_PROT_WRITE);
2827 		}
2828 
2829 		/*
2830 		 * Make a copy of the object.
2831 		 */
2832 		if ((src_object = src_entry->object.vm_object) != NULL) {
2833 			if ((src_object->handle == NULL) &&
2834 				(src_object->type == OBJT_DEFAULT ||
2835 				 src_object->type == OBJT_SWAP)) {
2836 				vm_object_collapse(src_object);
2837 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2838 					vm_map_split(src_entry);
2839 					src_object = src_entry->object.vm_object;
2840 				}
2841 			}
2842 
2843 			vm_object_reference(src_object);
2844 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2845 			dst_entry->object.vm_object = src_object;
2846 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2847 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2848 			dst_entry->offset = src_entry->offset;
2849 		} else {
2850 			dst_entry->object.vm_object = NULL;
2851 			dst_entry->offset = 0;
2852 		}
2853 
2854 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2855 		    dst_entry->end - dst_entry->start, src_entry->start);
2856 	} else {
2857 		/*
2858 		 * Of course, wired down pages can't be set copy-on-write.
2859 		 * Cause wired pages to be copied into the new map by
2860 		 * simulating faults (the new pages are pageable)
2861 		 */
2862 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2863 	}
2864 }
2865 
2866 /*
2867  * vmspace_fork:
2868  * Create a new process vmspace structure and vm_map
2869  * based on those of an existing process.  The new map
2870  * is based on the old map, according to the inheritance
2871  * values on the regions in that map.
2872  *
2873  * The source map must not be locked.
2874  */
2875 struct vmspace *
2876 vmspace_fork(struct vmspace *vm1)
2877 {
2878 	struct vmspace *vm2;
2879 	vm_map_t old_map = &vm1->vm_map;
2880 	vm_map_t new_map;
2881 	vm_map_entry_t old_entry;
2882 	vm_map_entry_t new_entry;
2883 	vm_object_t object;
2884 	int count;
2885 
2886 	vm_map_lock(old_map);
2887 	old_map->infork = 1;
2888 
2889 	/*
2890 	 * XXX Note: upcalls are not copied.
2891 	 */
2892 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2893 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2894 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2895 	new_map = &vm2->vm_map;	/* XXX */
2896 	new_map->timestamp = 1;
2897 
2898 	count = 0;
2899 	old_entry = old_map->header.next;
2900 	while (old_entry != &old_map->header) {
2901 		++count;
2902 		old_entry = old_entry->next;
2903 	}
2904 
2905 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2906 
2907 	old_entry = old_map->header.next;
2908 	while (old_entry != &old_map->header) {
2909 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2910 			panic("vm_map_fork: encountered a submap");
2911 
2912 		switch (old_entry->inheritance) {
2913 		case VM_INHERIT_NONE:
2914 			break;
2915 
2916 		case VM_INHERIT_SHARE:
2917 			/*
2918 			 * Clone the entry, creating the shared object if
2919 			 * necessary.
2920 			 */
2921 			object = old_entry->object.vm_object;
2922 			if (object == NULL) {
2923 				vm_map_entry_allocate_object(old_entry);
2924 				object = old_entry->object.vm_object;
2925 			}
2926 
2927 			/*
2928 			 * Add the reference before calling vm_map_entry_shadow
2929 			 * to insure that a shadow object is created.
2930 			 */
2931 			vm_object_reference(object);
2932 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2933 				vm_map_entry_shadow(old_entry);
2934 				/* Transfer the second reference too. */
2935 				vm_object_reference(
2936 				    old_entry->object.vm_object);
2937 				vm_object_deallocate(object);
2938 				object = old_entry->object.vm_object;
2939 			}
2940 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2941 
2942 			/*
2943 			 * Clone the entry, referencing the shared object.
2944 			 */
2945 			new_entry = vm_map_entry_create(new_map, &count);
2946 			*new_entry = *old_entry;
2947 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2948 			new_entry->wired_count = 0;
2949 
2950 			/*
2951 			 * Insert the entry into the new map -- we know we're
2952 			 * inserting at the end of the new map.
2953 			 */
2954 
2955 			vm_map_entry_link(new_map, new_map->header.prev,
2956 			    new_entry);
2957 
2958 			/*
2959 			 * Update the physical map
2960 			 */
2961 
2962 			pmap_copy(new_map->pmap, old_map->pmap,
2963 			    new_entry->start,
2964 			    (old_entry->end - old_entry->start),
2965 			    old_entry->start);
2966 			break;
2967 
2968 		case VM_INHERIT_COPY:
2969 			/*
2970 			 * Clone the entry and link into the map.
2971 			 */
2972 			new_entry = vm_map_entry_create(new_map, &count);
2973 			*new_entry = *old_entry;
2974 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2975 			new_entry->wired_count = 0;
2976 			new_entry->object.vm_object = NULL;
2977 			vm_map_entry_link(new_map, new_map->header.prev,
2978 			    new_entry);
2979 			vm_map_copy_entry(old_map, new_map, old_entry,
2980 			    new_entry);
2981 			break;
2982 		}
2983 		old_entry = old_entry->next;
2984 	}
2985 
2986 	new_map->size = old_map->size;
2987 	old_map->infork = 0;
2988 	vm_map_unlock(old_map);
2989 	vm_map_entry_release(count);
2990 
2991 	return (vm2);
2992 }
2993 
2994 int
2995 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2996 	      vm_prot_t prot, vm_prot_t max, int cow)
2997 {
2998 	vm_map_entry_t prev_entry;
2999 	vm_map_entry_t new_stack_entry;
3000 	vm_size_t      init_ssize;
3001 	int            rv;
3002 	int		count;
3003 
3004 	if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
3005 		return (KERN_NO_SPACE);
3006 
3007 	if (max_ssize < sgrowsiz)
3008 		init_ssize = max_ssize;
3009 	else
3010 		init_ssize = sgrowsiz;
3011 
3012 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3013 	vm_map_lock(map);
3014 
3015 	/* If addr is already mapped, no go */
3016 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3017 		vm_map_unlock(map);
3018 		vm_map_entry_release(count);
3019 		return (KERN_NO_SPACE);
3020 	}
3021 
3022 	/* If we would blow our VMEM resource limit, no go */
3023 	if (map->size + init_ssize >
3024 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3025 		vm_map_unlock(map);
3026 		vm_map_entry_release(count);
3027 		return (KERN_NO_SPACE);
3028 	}
3029 
3030 	/* If we can't accomodate max_ssize in the current mapping,
3031 	 * no go.  However, we need to be aware that subsequent user
3032 	 * mappings might map into the space we have reserved for
3033 	 * stack, and currently this space is not protected.
3034 	 *
3035 	 * Hopefully we will at least detect this condition
3036 	 * when we try to grow the stack.
3037 	 */
3038 	if ((prev_entry->next != &map->header) &&
3039 	    (prev_entry->next->start < addrbos + max_ssize)) {
3040 		vm_map_unlock(map);
3041 		vm_map_entry_release(count);
3042 		return (KERN_NO_SPACE);
3043 	}
3044 
3045 	/* We initially map a stack of only init_ssize.  We will
3046 	 * grow as needed later.  Since this is to be a grow
3047 	 * down stack, we map at the top of the range.
3048 	 *
3049 	 * Note: we would normally expect prot and max to be
3050 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3051 	 * eliminate these as input parameters, and just
3052 	 * pass these values here in the insert call.
3053 	 */
3054 	rv = vm_map_insert(map, &count,
3055 			   NULL, 0, addrbos + max_ssize - init_ssize,
3056 	                   addrbos + max_ssize,
3057 			   VM_MAPTYPE_NORMAL,
3058 			   prot, max,
3059 			   cow);
3060 
3061 	/* Now set the avail_ssize amount */
3062 	if (rv == KERN_SUCCESS) {
3063 		if (prev_entry != &map->header)
3064 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3065 		new_stack_entry = prev_entry->next;
3066 		if (new_stack_entry->end   != addrbos + max_ssize ||
3067 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3068 			panic ("Bad entry start/end for new stack entry");
3069 		else
3070 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3071 	}
3072 
3073 	vm_map_unlock(map);
3074 	vm_map_entry_release(count);
3075 	return (rv);
3076 }
3077 
3078 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3079  * desired address is already mapped, or if we successfully grow
3080  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3081  * stack range (this is strange, but preserves compatibility with
3082  * the grow function in vm_machdep.c).
3083  */
3084 int
3085 vm_map_growstack (struct proc *p, vm_offset_t addr)
3086 {
3087 	vm_map_entry_t prev_entry;
3088 	vm_map_entry_t stack_entry;
3089 	vm_map_entry_t new_stack_entry;
3090 	struct vmspace *vm = p->p_vmspace;
3091 	vm_map_t map = &vm->vm_map;
3092 	vm_offset_t    end;
3093 	int grow_amount;
3094 	int rv = KERN_SUCCESS;
3095 	int is_procstack;
3096 	int use_read_lock = 1;
3097 	int count;
3098 
3099 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3100 Retry:
3101 	if (use_read_lock)
3102 		vm_map_lock_read(map);
3103 	else
3104 		vm_map_lock(map);
3105 
3106 	/* If addr is already in the entry range, no need to grow.*/
3107 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3108 		goto done;
3109 
3110 	if ((stack_entry = prev_entry->next) == &map->header)
3111 		goto done;
3112 	if (prev_entry == &map->header)
3113 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3114 	else
3115 		end = prev_entry->end;
3116 
3117 	/* This next test mimics the old grow function in vm_machdep.c.
3118 	 * It really doesn't quite make sense, but we do it anyway
3119 	 * for compatibility.
3120 	 *
3121 	 * If not growable stack, return success.  This signals the
3122 	 * caller to proceed as he would normally with normal vm.
3123 	 */
3124 	if (stack_entry->aux.avail_ssize < 1 ||
3125 	    addr >= stack_entry->start ||
3126 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3127 		goto done;
3128 	}
3129 
3130 	/* Find the minimum grow amount */
3131 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3132 	if (grow_amount > stack_entry->aux.avail_ssize) {
3133 		rv = KERN_NO_SPACE;
3134 		goto done;
3135 	}
3136 
3137 	/* If there is no longer enough space between the entries
3138 	 * nogo, and adjust the available space.  Note: this
3139 	 * should only happen if the user has mapped into the
3140 	 * stack area after the stack was created, and is
3141 	 * probably an error.
3142 	 *
3143 	 * This also effectively destroys any guard page the user
3144 	 * might have intended by limiting the stack size.
3145 	 */
3146 	if (grow_amount > stack_entry->start - end) {
3147 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3148 			use_read_lock = 0;
3149 			goto Retry;
3150 		}
3151 		use_read_lock = 0;
3152 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3153 		rv = KERN_NO_SPACE;
3154 		goto done;
3155 	}
3156 
3157 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3158 
3159 	/* If this is the main process stack, see if we're over the
3160 	 * stack limit.
3161 	 */
3162 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3163 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3164 		rv = KERN_NO_SPACE;
3165 		goto done;
3166 	}
3167 
3168 	/* Round up the grow amount modulo SGROWSIZ */
3169 	grow_amount = roundup (grow_amount, sgrowsiz);
3170 	if (grow_amount > stack_entry->aux.avail_ssize) {
3171 		grow_amount = stack_entry->aux.avail_ssize;
3172 	}
3173 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3174 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3175 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3176 		              ctob(vm->vm_ssize);
3177 	}
3178 
3179 	/* If we would blow our VMEM resource limit, no go */
3180 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3181 		rv = KERN_NO_SPACE;
3182 		goto done;
3183 	}
3184 
3185 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3186 		use_read_lock = 0;
3187 		goto Retry;
3188 	}
3189 	use_read_lock = 0;
3190 
3191 	/* Get the preliminary new entry start value */
3192 	addr = stack_entry->start - grow_amount;
3193 
3194 	/* If this puts us into the previous entry, cut back our growth
3195 	 * to the available space.  Also, see the note above.
3196 	 */
3197 	if (addr < end) {
3198 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3199 		addr = end;
3200 	}
3201 
3202 	rv = vm_map_insert(map, &count,
3203 			   NULL, 0, addr, stack_entry->start,
3204 			   VM_MAPTYPE_NORMAL,
3205 			   VM_PROT_ALL, VM_PROT_ALL,
3206 			   0);
3207 
3208 	/* Adjust the available stack space by the amount we grew. */
3209 	if (rv == KERN_SUCCESS) {
3210 		if (prev_entry != &map->header)
3211 			vm_map_clip_end(map, prev_entry, addr, &count);
3212 		new_stack_entry = prev_entry->next;
3213 		if (new_stack_entry->end   != stack_entry->start  ||
3214 		    new_stack_entry->start != addr)
3215 			panic ("Bad stack grow start/end in new stack entry");
3216 		else {
3217 			new_stack_entry->aux.avail_ssize =
3218 				stack_entry->aux.avail_ssize -
3219 				(new_stack_entry->end - new_stack_entry->start);
3220 			if (is_procstack)
3221 				vm->vm_ssize += btoc(new_stack_entry->end -
3222 						     new_stack_entry->start);
3223 		}
3224 	}
3225 
3226 done:
3227 	if (use_read_lock)
3228 		vm_map_unlock_read(map);
3229 	else
3230 		vm_map_unlock(map);
3231 	vm_map_entry_release(count);
3232 	return (rv);
3233 }
3234 
3235 /*
3236  * Unshare the specified VM space for exec.  If other processes are
3237  * mapped to it, then create a new one.  The new vmspace is null.
3238  */
3239 void
3240 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3241 {
3242 	struct vmspace *oldvmspace = p->p_vmspace;
3243 	struct vmspace *newvmspace;
3244 	vm_map_t map = &p->p_vmspace->vm_map;
3245 
3246 	/*
3247 	 * If we are execing a resident vmspace we fork it, otherwise
3248 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3249 	 * are not copied to the new vmspace.
3250 	 */
3251 	if (vmcopy)  {
3252 	    newvmspace = vmspace_fork(vmcopy);
3253 	} else {
3254 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3255 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3256 		(caddr_t)&oldvmspace->vm_endcopy -
3257 		    (caddr_t)&oldvmspace->vm_startcopy);
3258 	}
3259 
3260 	/*
3261 	 * Finish initializing the vmspace before assigning it
3262 	 * to the process.  The vmspace will become the current vmspace
3263 	 * if p == curproc.
3264 	 */
3265 	pmap_pinit2(vmspace_pmap(newvmspace));
3266 	pmap_replacevm(p, newvmspace, 0);
3267 	sysref_put(&oldvmspace->vm_sysref);
3268 }
3269 
3270 /*
3271  * Unshare the specified VM space for forcing COW.  This
3272  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3273  *
3274  * The exitingcnt test is not strictly necessary but has been
3275  * included for code sanity (to make the code a bit more deterministic).
3276  */
3277 
3278 void
3279 vmspace_unshare(struct proc *p)
3280 {
3281 	struct vmspace *oldvmspace = p->p_vmspace;
3282 	struct vmspace *newvmspace;
3283 
3284 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3285 		return;
3286 	newvmspace = vmspace_fork(oldvmspace);
3287 	pmap_pinit2(vmspace_pmap(newvmspace));
3288 	pmap_replacevm(p, newvmspace, 0);
3289 	sysref_put(&oldvmspace->vm_sysref);
3290 }
3291 
3292 /*
3293  *	vm_map_lookup:
3294  *
3295  *	Finds the VM object, offset, and
3296  *	protection for a given virtual address in the
3297  *	specified map, assuming a page fault of the
3298  *	type specified.
3299  *
3300  *	Leaves the map in question locked for read; return
3301  *	values are guaranteed until a vm_map_lookup_done
3302  *	call is performed.  Note that the map argument
3303  *	is in/out; the returned map must be used in
3304  *	the call to vm_map_lookup_done.
3305  *
3306  *	A handle (out_entry) is returned for use in
3307  *	vm_map_lookup_done, to make that fast.
3308  *
3309  *	If a lookup is requested with "write protection"
3310  *	specified, the map may be changed to perform virtual
3311  *	copying operations, although the data referenced will
3312  *	remain the same.
3313  */
3314 int
3315 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3316 	      vm_offset_t vaddr,
3317 	      vm_prot_t fault_typea,
3318 	      vm_map_entry_t *out_entry,	/* OUT */
3319 	      vm_object_t *object,		/* OUT */
3320 	      vm_pindex_t *pindex,		/* OUT */
3321 	      vm_prot_t *out_prot,		/* OUT */
3322 	      boolean_t *wired)			/* OUT */
3323 {
3324 	vm_map_entry_t entry;
3325 	vm_map_t map = *var_map;
3326 	vm_prot_t prot;
3327 	vm_prot_t fault_type = fault_typea;
3328 	int use_read_lock = 1;
3329 	int rv = KERN_SUCCESS;
3330 
3331 RetryLookup:
3332 	if (use_read_lock)
3333 		vm_map_lock_read(map);
3334 	else
3335 		vm_map_lock(map);
3336 
3337 	/*
3338 	 * If the map has an interesting hint, try it before calling full
3339 	 * blown lookup routine.
3340 	 */
3341 	entry = map->hint;
3342 	*out_entry = entry;
3343 
3344 	if ((entry == &map->header) ||
3345 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3346 		vm_map_entry_t tmp_entry;
3347 
3348 		/*
3349 		 * Entry was either not a valid hint, or the vaddr was not
3350 		 * contained in the entry, so do a full lookup.
3351 		 */
3352 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3353 			rv = KERN_INVALID_ADDRESS;
3354 			goto done;
3355 		}
3356 
3357 		entry = tmp_entry;
3358 		*out_entry = entry;
3359 	}
3360 
3361 	/*
3362 	 * Handle submaps.
3363 	 */
3364 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3365 		vm_map_t old_map = map;
3366 
3367 		*var_map = map = entry->object.sub_map;
3368 		if (use_read_lock)
3369 			vm_map_unlock_read(old_map);
3370 		else
3371 			vm_map_unlock(old_map);
3372 		use_read_lock = 1;
3373 		goto RetryLookup;
3374 	}
3375 
3376 	/*
3377 	 * Check whether this task is allowed to have this page.
3378 	 * Note the special case for MAP_ENTRY_COW
3379 	 * pages with an override.  This is to implement a forced
3380 	 * COW for debuggers.
3381 	 */
3382 
3383 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3384 		prot = entry->max_protection;
3385 	else
3386 		prot = entry->protection;
3387 
3388 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3389 	if ((fault_type & prot) != fault_type) {
3390 		rv = KERN_PROTECTION_FAILURE;
3391 		goto done;
3392 	}
3393 
3394 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3395 	    (entry->eflags & MAP_ENTRY_COW) &&
3396 	    (fault_type & VM_PROT_WRITE) &&
3397 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3398 		rv = KERN_PROTECTION_FAILURE;
3399 		goto done;
3400 	}
3401 
3402 	/*
3403 	 * If this page is not pageable, we have to get it for all possible
3404 	 * accesses.
3405 	 */
3406 	*wired = (entry->wired_count != 0);
3407 	if (*wired)
3408 		prot = fault_type = entry->protection;
3409 
3410 	/*
3411 	 * Virtual page tables may need to update the accessed (A) bit
3412 	 * in a page table entry.  Upgrade the fault to a write fault for
3413 	 * that case if the map will support it.  If the map does not support
3414 	 * it the page table entry simply will not be updated.
3415 	 */
3416 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3417 		if (prot & VM_PROT_WRITE)
3418 			fault_type |= VM_PROT_WRITE;
3419 	}
3420 
3421 	/*
3422 	 * If the entry was copy-on-write, we either ...
3423 	 */
3424 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3425 		/*
3426 		 * If we want to write the page, we may as well handle that
3427 		 * now since we've got the map locked.
3428 		 *
3429 		 * If we don't need to write the page, we just demote the
3430 		 * permissions allowed.
3431 		 */
3432 
3433 		if (fault_type & VM_PROT_WRITE) {
3434 			/*
3435 			 * Make a new object, and place it in the object
3436 			 * chain.  Note that no new references have appeared
3437 			 * -- one just moved from the map to the new
3438 			 * object.
3439 			 */
3440 
3441 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3442 				use_read_lock = 0;
3443 				goto RetryLookup;
3444 			}
3445 			use_read_lock = 0;
3446 
3447 			vm_map_entry_shadow(entry);
3448 		} else {
3449 			/*
3450 			 * We're attempting to read a copy-on-write page --
3451 			 * don't allow writes.
3452 			 */
3453 
3454 			prot &= ~VM_PROT_WRITE;
3455 		}
3456 	}
3457 
3458 	/*
3459 	 * Create an object if necessary.
3460 	 */
3461 	if (entry->object.vm_object == NULL &&
3462 	    !map->system_map) {
3463 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3464 			use_read_lock = 0;
3465 			goto RetryLookup;
3466 		}
3467 		use_read_lock = 0;
3468 		vm_map_entry_allocate_object(entry);
3469 	}
3470 
3471 	/*
3472 	 * Return the object/offset from this entry.  If the entry was
3473 	 * copy-on-write or empty, it has been fixed up.
3474 	 */
3475 
3476 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3477 	*object = entry->object.vm_object;
3478 
3479 	/*
3480 	 * Return whether this is the only map sharing this data.  On
3481 	 * success we return with a read lock held on the map.  On failure
3482 	 * we return with the map unlocked.
3483 	 */
3484 	*out_prot = prot;
3485 done:
3486 	if (rv == KERN_SUCCESS) {
3487 		if (use_read_lock == 0)
3488 			vm_map_lock_downgrade(map);
3489 	} else if (use_read_lock) {
3490 		vm_map_unlock_read(map);
3491 	} else {
3492 		vm_map_unlock(map);
3493 	}
3494 	return (rv);
3495 }
3496 
3497 /*
3498  *	vm_map_lookup_done:
3499  *
3500  *	Releases locks acquired by a vm_map_lookup
3501  *	(according to the handle returned by that lookup).
3502  */
3503 
3504 void
3505 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3506 {
3507 	/*
3508 	 * Unlock the main-level map
3509 	 */
3510 	vm_map_unlock_read(map);
3511 	if (count)
3512 		vm_map_entry_release(count);
3513 }
3514 
3515 #include "opt_ddb.h"
3516 #ifdef DDB
3517 #include <sys/kernel.h>
3518 
3519 #include <ddb/ddb.h>
3520 
3521 /*
3522  *	vm_map_print:	[ debug ]
3523  */
3524 DB_SHOW_COMMAND(map, vm_map_print)
3525 {
3526 	static int nlines;
3527 	/* XXX convert args. */
3528 	vm_map_t map = (vm_map_t)addr;
3529 	boolean_t full = have_addr;
3530 
3531 	vm_map_entry_t entry;
3532 
3533 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3534 	    (void *)map,
3535 	    (void *)map->pmap, map->nentries, map->timestamp);
3536 	nlines++;
3537 
3538 	if (!full && db_indent)
3539 		return;
3540 
3541 	db_indent += 2;
3542 	for (entry = map->header.next; entry != &map->header;
3543 	    entry = entry->next) {
3544 		db_iprintf("map entry %p: start=%p, end=%p\n",
3545 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3546 		nlines++;
3547 		{
3548 			static char *inheritance_name[4] =
3549 			{"share", "copy", "none", "donate_copy"};
3550 
3551 			db_iprintf(" prot=%x/%x/%s",
3552 			    entry->protection,
3553 			    entry->max_protection,
3554 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3555 			if (entry->wired_count != 0)
3556 				db_printf(", wired");
3557 		}
3558 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3559 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3560 			db_printf(", share=%p, offset=0x%lx\n",
3561 			    (void *)entry->object.sub_map,
3562 			    (long)entry->offset);
3563 			nlines++;
3564 			if ((entry->prev == &map->header) ||
3565 			    (entry->prev->object.sub_map !=
3566 				entry->object.sub_map)) {
3567 				db_indent += 2;
3568 				vm_map_print((db_expr_t)(intptr_t)
3569 					     entry->object.sub_map,
3570 					     full, 0, (char *)0);
3571 				db_indent -= 2;
3572 			}
3573 		} else {
3574 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3575 			db_printf(", object=%p, offset=0x%lx",
3576 			    (void *)entry->object.vm_object,
3577 			    (long)entry->offset);
3578 			if (entry->eflags & MAP_ENTRY_COW)
3579 				db_printf(", copy (%s)",
3580 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3581 			db_printf("\n");
3582 			nlines++;
3583 
3584 			if ((entry->prev == &map->header) ||
3585 			    (entry->prev->object.vm_object !=
3586 				entry->object.vm_object)) {
3587 				db_indent += 2;
3588 				vm_object_print((db_expr_t)(intptr_t)
3589 						entry->object.vm_object,
3590 						full, 0, (char *)0);
3591 				nlines += 4;
3592 				db_indent -= 2;
3593 			}
3594 		}
3595 	}
3596 	db_indent -= 2;
3597 	if (db_indent == 0)
3598 		nlines = 0;
3599 }
3600 
3601 
3602 DB_SHOW_COMMAND(procvm, procvm)
3603 {
3604 	struct proc *p;
3605 
3606 	if (have_addr) {
3607 		p = (struct proc *) addr;
3608 	} else {
3609 		p = curproc;
3610 	}
3611 
3612 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3613 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3614 	    (void *)vmspace_pmap(p->p_vmspace));
3615 
3616 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3617 }
3618 
3619 #endif /* DDB */
3620