1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 * 62 * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $ 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/kernel.h> 72 #include <sys/proc.h> 73 #include <sys/serialize.h> 74 #include <sys/lock.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/shm.h> 80 #include <sys/tree.h> 81 #include <sys/malloc.h> 82 #include <sys/objcache.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 #include <sys/thread2.h> 97 #include <sys/random.h> 98 #include <sys/sysctl.h> 99 100 /* 101 * Virtual memory maps provide for the mapping, protection, and sharing 102 * of virtual memory objects. In addition, this module provides for an 103 * efficient virtual copy of memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple entries. 108 * A hint and a RB tree is used to speed-up lookups. 109 * 110 * Callers looking to modify maps specify start/end addresses which cause 111 * the related map entry to be clipped if necessary, and then later 112 * recombined if the pieces remained compatible. 113 * 114 * Virtual copy operations are performed by copying VM object references 115 * from one map to another, and then marking both regions as copy-on-write. 116 */ 117 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags); 118 static void vmspace_dtor(void *obj, void *privdata); 119 static void vmspace_terminate(struct vmspace *vm, int final); 120 121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore"); 122 static struct objcache *vmspace_cache; 123 124 /* 125 * per-cpu page table cross mappings are initialized in early boot 126 * and might require a considerable number of vm_map_entry structures. 127 */ 128 #define MAPENTRYBSP_CACHE (MAXCPU+1) 129 #define MAPENTRYAP_CACHE 8 130 131 static struct vm_zone mapentzone_store; 132 static vm_zone_t mapentzone; 133 static struct vm_object mapentobj; 134 135 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE]; 137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE]; 138 139 static int randomize_mmap; 140 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0, 141 "Randomize mmap offsets"); 142 static int vm_map_relock_enable = 1; 143 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW, 144 &vm_map_relock_enable, 0, "Randomize mmap offsets"); 145 146 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref); 147 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *); 148 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *); 149 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 150 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *); 151 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *); 152 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t); 153 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t, 154 vm_map_entry_t); 155 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags); 156 157 /* 158 * Initialize the vm_map module. Must be called before any other vm_map 159 * routines. 160 * 161 * Map and entry structures are allocated from the general purpose 162 * memory pool with some exceptions: 163 * 164 * - The kernel map is allocated statically. 165 * - Initial kernel map entries are allocated out of a static pool. 166 * - We must set ZONE_SPECIAL here or the early boot code can get 167 * stuck if there are >63 cores. 168 * 169 * These restrictions are necessary since malloc() uses the 170 * maps and requires map entries. 171 * 172 * Called from the low level boot code only. 173 */ 174 void 175 vm_map_startup(void) 176 { 177 mapentzone = &mapentzone_store; 178 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 179 map_entry_init, MAX_MAPENT); 180 mapentzone_store.zflags |= ZONE_SPECIAL; 181 } 182 183 /* 184 * Called prior to any vmspace allocations. 185 * 186 * Called from the low level boot code only. 187 */ 188 void 189 vm_init2(void) 190 { 191 vmspace_cache = objcache_create_mbacked(M_VMSPACE, 192 sizeof(struct vmspace), 193 0, ncpus * 4, 194 vmspace_ctor, vmspace_dtor, 195 NULL); 196 zinitna(mapentzone, &mapentobj, NULL, 0, 0, 197 ZONE_USE_RESERVE | ZONE_SPECIAL); 198 pmap_init2(); 199 vm_object_init2(); 200 } 201 202 /* 203 * objcache support. We leave the pmap root cached as long as possible 204 * for performance reasons. 205 */ 206 static 207 boolean_t 208 vmspace_ctor(void *obj, void *privdata, int ocflags) 209 { 210 struct vmspace *vm = obj; 211 212 bzero(vm, sizeof(*vm)); 213 vm->vm_refcnt = (u_int)-1; 214 215 return 1; 216 } 217 218 static 219 void 220 vmspace_dtor(void *obj, void *privdata) 221 { 222 struct vmspace *vm = obj; 223 224 KKASSERT(vm->vm_refcnt == (u_int)-1); 225 pmap_puninit(vmspace_pmap(vm)); 226 } 227 228 /* 229 * Red black tree functions 230 * 231 * The caller must hold the related map lock. 232 */ 233 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b); 234 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare); 235 236 /* a->start is address, and the only field has to be initialized */ 237 static int 238 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b) 239 { 240 if (a->start < b->start) 241 return(-1); 242 else if (a->start > b->start) 243 return(1); 244 return(0); 245 } 246 247 /* 248 * Initialize vmspace ref/hold counts vmspace0. There is a holdcnt for 249 * every refcnt. 250 */ 251 void 252 vmspace_initrefs(struct vmspace *vm) 253 { 254 vm->vm_refcnt = 1; 255 vm->vm_holdcnt = 1; 256 } 257 258 /* 259 * Allocate a vmspace structure, including a vm_map and pmap. 260 * Initialize numerous fields. While the initial allocation is zerod, 261 * subsequence reuse from the objcache leaves elements of the structure 262 * intact (particularly the pmap), so portions must be zerod. 263 * 264 * Returns a referenced vmspace. 265 * 266 * No requirements. 267 */ 268 struct vmspace * 269 vmspace_alloc(vm_offset_t min, vm_offset_t max) 270 { 271 struct vmspace *vm; 272 273 vm = objcache_get(vmspace_cache, M_WAITOK); 274 275 bzero(&vm->vm_startcopy, 276 (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy); 277 vm_map_init(&vm->vm_map, min, max, NULL); /* initializes token */ 278 279 /* 280 * NOTE: hold to acquires token for safety. 281 * 282 * On return vmspace is referenced (refs=1, hold=1). That is, 283 * each refcnt also has a holdcnt. There can be additional holds 284 * (holdcnt) above and beyond the refcnt. Finalization is handled in 285 * two stages, one on refs 1->0, and the the second on hold 1->0. 286 */ 287 KKASSERT(vm->vm_holdcnt == 0); 288 KKASSERT(vm->vm_refcnt == (u_int)-1); 289 vmspace_initrefs(vm); 290 vmspace_hold(vm); 291 pmap_pinit(vmspace_pmap(vm)); /* (some fields reused) */ 292 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 293 vm->vm_shm = NULL; 294 vm->vm_flags = 0; 295 cpu_vmspace_alloc(vm); 296 vmspace_drop(vm); 297 298 return (vm); 299 } 300 301 /* 302 * NOTE: Can return -1 if the vmspace is exiting. 303 */ 304 int 305 vmspace_getrefs(struct vmspace *vm) 306 { 307 return ((int)vm->vm_refcnt); 308 } 309 310 /* 311 * A vmspace object must already have a non-zero hold to be able to gain 312 * further holds on it. 313 */ 314 static void 315 vmspace_hold_notoken(struct vmspace *vm) 316 { 317 KKASSERT(vm->vm_holdcnt != 0); 318 refcount_acquire(&vm->vm_holdcnt); 319 } 320 321 static void 322 vmspace_drop_notoken(struct vmspace *vm) 323 { 324 if (refcount_release(&vm->vm_holdcnt)) { 325 if (vm->vm_refcnt == (u_int)-1) { 326 vmspace_terminate(vm, 1); 327 } 328 } 329 } 330 331 void 332 vmspace_hold(struct vmspace *vm) 333 { 334 vmspace_hold_notoken(vm); 335 lwkt_gettoken(&vm->vm_map.token); 336 } 337 338 void 339 vmspace_drop(struct vmspace *vm) 340 { 341 lwkt_reltoken(&vm->vm_map.token); 342 vmspace_drop_notoken(vm); 343 } 344 345 /* 346 * A vmspace object must not be in a terminated state to be able to obtain 347 * additional refs on it. 348 * 349 * Ref'ing a vmspace object also increments its hold count. 350 */ 351 void 352 vmspace_ref(struct vmspace *vm) 353 { 354 KKASSERT((int)vm->vm_refcnt >= 0); 355 vmspace_hold_notoken(vm); 356 refcount_acquire(&vm->vm_refcnt); 357 } 358 359 /* 360 * Release a ref on the vmspace. On the 1->0 transition we do stage-1 361 * termination of the vmspace. Then, on the final drop of the hold we 362 * will do stage-2 final termination. 363 */ 364 void 365 vmspace_rel(struct vmspace *vm) 366 { 367 if (refcount_release(&vm->vm_refcnt)) { 368 vm->vm_refcnt = (u_int)-1; /* no other refs possible */ 369 vmspace_terminate(vm, 0); 370 } 371 vmspace_drop_notoken(vm); 372 } 373 374 /* 375 * This is called during exit indicating that the vmspace is no 376 * longer in used by an exiting process, but the process has not yet 377 * been reaped. 378 * 379 * We release the refcnt but not the associated holdcnt. 380 * 381 * No requirements. 382 */ 383 void 384 vmspace_relexit(struct vmspace *vm) 385 { 386 if (refcount_release(&vm->vm_refcnt)) { 387 vm->vm_refcnt = (u_int)-1; /* no other refs possible */ 388 vmspace_terminate(vm, 0); 389 } 390 } 391 392 /* 393 * Called during reap to disconnect the remainder of the vmspace from 394 * the process. On the hold drop the vmspace termination is finalized. 395 * 396 * No requirements. 397 */ 398 void 399 vmspace_exitfree(struct proc *p) 400 { 401 struct vmspace *vm; 402 403 vm = p->p_vmspace; 404 p->p_vmspace = NULL; 405 vmspace_drop_notoken(vm); 406 } 407 408 /* 409 * Called in two cases: 410 * 411 * (1) When the last refcnt is dropped and the vmspace becomes inactive, 412 * called with final == 0. refcnt will be (u_int)-1 at this point, 413 * and holdcnt will still be non-zero. 414 * 415 * (2) When holdcnt becomes 0, called with final == 1. There should no 416 * longer be anyone with access to the vmspace. 417 * 418 * VMSPACE_EXIT1 flags the primary deactivation 419 * VMSPACE_EXIT2 flags the last reap 420 */ 421 static void 422 vmspace_terminate(struct vmspace *vm, int final) 423 { 424 int count; 425 426 lwkt_gettoken(&vm->vm_map.token); 427 if (final == 0) { 428 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0); 429 430 /* 431 * Get rid of most of the resources. Leave the kernel pmap 432 * intact. 433 * 434 * If the pmap does not contain wired pages we can bulk-delete 435 * the pmap as a performance optimization before removing the related mappings. 436 * 437 * If the pmap contains wired pages we cannot do this pre-optimization 438 * because currently vm_fault_unwire() expects the pmap pages to exist 439 * and will not decrement p->wire_count if they do not. 440 */ 441 vm->vm_flags |= VMSPACE_EXIT1; 442 shmexit(vm); 443 if (vmspace_pmap(vm)->pm_stats.wired_count) { 444 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 445 VM_MAX_USER_ADDRESS); 446 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 447 VM_MAX_USER_ADDRESS); 448 } else { 449 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS, 450 VM_MAX_USER_ADDRESS); 451 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS, 452 VM_MAX_USER_ADDRESS); 453 } 454 lwkt_reltoken(&vm->vm_map.token); 455 } else { 456 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0); 457 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0); 458 459 /* 460 * Get rid of remaining basic resources. 461 */ 462 vm->vm_flags |= VMSPACE_EXIT2; 463 cpu_vmspace_free(vm); 464 shmexit(vm); 465 466 /* 467 * Lock the map, to wait out all other references to it. 468 * Delete all of the mappings and pages they hold, then call 469 * the pmap module to reclaim anything left. 470 */ 471 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 472 vm_map_lock(&vm->vm_map); 473 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 474 vm->vm_map.max_offset, &count); 475 vm_map_unlock(&vm->vm_map); 476 vm_map_entry_release(count); 477 478 lwkt_gettoken(&vmspace_pmap(vm)->pm_token); 479 pmap_release(vmspace_pmap(vm)); 480 lwkt_reltoken(&vmspace_pmap(vm)->pm_token); 481 lwkt_reltoken(&vm->vm_map.token); 482 objcache_put(vmspace_cache, vm); 483 } 484 } 485 486 /* 487 * Swap useage is determined by taking the proportional swap used by 488 * VM objects backing the VM map. To make up for fractional losses, 489 * if the VM object has any swap use at all the associated map entries 490 * count for at least 1 swap page. 491 * 492 * No requirements. 493 */ 494 vm_offset_t 495 vmspace_swap_count(struct vmspace *vm) 496 { 497 vm_map_t map = &vm->vm_map; 498 vm_map_entry_t cur; 499 vm_object_t object; 500 vm_offset_t count = 0; 501 vm_offset_t n; 502 503 vmspace_hold(vm); 504 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 505 switch(cur->maptype) { 506 case VM_MAPTYPE_NORMAL: 507 case VM_MAPTYPE_VPAGETABLE: 508 if ((object = cur->object.vm_object) == NULL) 509 break; 510 if (object->swblock_count) { 511 n = (cur->end - cur->start) / PAGE_SIZE; 512 count += object->swblock_count * 513 SWAP_META_PAGES * n / object->size + 1; 514 } 515 break; 516 default: 517 break; 518 } 519 } 520 vmspace_drop(vm); 521 522 return(count); 523 } 524 525 /* 526 * Calculate the approximate number of anonymous pages in use by 527 * this vmspace. To make up for fractional losses, we count each 528 * VM object as having at least 1 anonymous page. 529 * 530 * No requirements. 531 */ 532 vm_offset_t 533 vmspace_anonymous_count(struct vmspace *vm) 534 { 535 vm_map_t map = &vm->vm_map; 536 vm_map_entry_t cur; 537 vm_object_t object; 538 vm_offset_t count = 0; 539 540 vmspace_hold(vm); 541 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 542 switch(cur->maptype) { 543 case VM_MAPTYPE_NORMAL: 544 case VM_MAPTYPE_VPAGETABLE: 545 if ((object = cur->object.vm_object) == NULL) 546 break; 547 if (object->type != OBJT_DEFAULT && 548 object->type != OBJT_SWAP) { 549 break; 550 } 551 count += object->resident_page_count; 552 break; 553 default: 554 break; 555 } 556 } 557 vmspace_drop(vm); 558 559 return(count); 560 } 561 562 /* 563 * Initialize an existing vm_map structure such as that in the vmspace 564 * structure. The pmap is initialized elsewhere. 565 * 566 * No requirements. 567 */ 568 void 569 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap) 570 { 571 map->header.next = map->header.prev = &map->header; 572 RB_INIT(&map->rb_root); 573 map->nentries = 0; 574 map->size = 0; 575 map->system_map = 0; 576 map->min_offset = min; 577 map->max_offset = max; 578 map->pmap = pmap; 579 map->first_free = &map->header; 580 map->hint = &map->header; 581 map->timestamp = 0; 582 map->flags = 0; 583 lwkt_token_init(&map->token, "vm_map"); 584 lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0); 585 } 586 587 /* 588 * Shadow the vm_map_entry's object. This typically needs to be done when 589 * a write fault is taken on an entry which had previously been cloned by 590 * fork(). The shared object (which might be NULL) must become private so 591 * we add a shadow layer above it. 592 * 593 * Object allocation for anonymous mappings is defered as long as possible. 594 * When creating a shadow, however, the underlying object must be instantiated 595 * so it can be shared. 596 * 597 * If the map segment is governed by a virtual page table then it is 598 * possible to address offsets beyond the mapped area. Just allocate 599 * a maximally sized object for this case. 600 * 601 * If addref is non-zero an additional reference is added to the returned 602 * entry. This mechanic exists because the additional reference might have 603 * to be added atomically and not after return to prevent a premature 604 * collapse. 605 * 606 * The vm_map must be exclusively locked. 607 * No other requirements. 608 */ 609 static 610 void 611 vm_map_entry_shadow(vm_map_entry_t entry, int addref) 612 { 613 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 614 vm_object_shadow(&entry->object.vm_object, &entry->offset, 615 0x7FFFFFFF, addref); /* XXX */ 616 } else { 617 vm_object_shadow(&entry->object.vm_object, &entry->offset, 618 atop(entry->end - entry->start), addref); 619 } 620 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 621 } 622 623 /* 624 * Allocate an object for a vm_map_entry. 625 * 626 * Object allocation for anonymous mappings is defered as long as possible. 627 * This function is called when we can defer no longer, generally when a map 628 * entry might be split or forked or takes a page fault. 629 * 630 * If the map segment is governed by a virtual page table then it is 631 * possible to address offsets beyond the mapped area. Just allocate 632 * a maximally sized object for this case. 633 * 634 * The vm_map must be exclusively locked. 635 * No other requirements. 636 */ 637 void 638 vm_map_entry_allocate_object(vm_map_entry_t entry) 639 { 640 vm_object_t obj; 641 642 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 643 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */ 644 } else { 645 obj = vm_object_allocate(OBJT_DEFAULT, 646 atop(entry->end - entry->start)); 647 } 648 entry->object.vm_object = obj; 649 entry->offset = 0; 650 } 651 652 /* 653 * Set an initial negative count so the first attempt to reserve 654 * space preloads a bunch of vm_map_entry's for this cpu. Also 655 * pre-allocate 2 vm_map_entries which will be needed by zalloc() to 656 * map a new page for vm_map_entry structures. SMP systems are 657 * particularly sensitive. 658 * 659 * This routine is called in early boot so we cannot just call 660 * vm_map_entry_reserve(). 661 * 662 * Called from the low level boot code only (for each cpu) 663 * 664 * WARNING! Take care not to have too-big a static/BSS structure here 665 * as MAXCPU can be 256+, otherwise the loader's 64MB heap 666 * can get blown out by the kernel plus the initrd image. 667 */ 668 void 669 vm_map_entry_reserve_cpu_init(globaldata_t gd) 670 { 671 vm_map_entry_t entry; 672 int count; 673 int i; 674 675 gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2; 676 if (gd->gd_cpuid == 0) { 677 entry = &cpu_map_entry_init_bsp[0]; 678 count = MAPENTRYBSP_CACHE; 679 } else { 680 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0]; 681 count = MAPENTRYAP_CACHE; 682 } 683 for (i = 0; i < count; ++i, ++entry) { 684 entry->next = gd->gd_vme_base; 685 gd->gd_vme_base = entry; 686 } 687 } 688 689 /* 690 * Reserves vm_map_entry structures so code later on can manipulate 691 * map_entry structures within a locked map without blocking trying 692 * to allocate a new vm_map_entry. 693 * 694 * No requirements. 695 */ 696 int 697 vm_map_entry_reserve(int count) 698 { 699 struct globaldata *gd = mycpu; 700 vm_map_entry_t entry; 701 702 /* 703 * Make sure we have enough structures in gd_vme_base to handle 704 * the reservation request. 705 * 706 * The critical section protects access to the per-cpu gd. 707 */ 708 crit_enter(); 709 while (gd->gd_vme_avail < count) { 710 entry = zalloc(mapentzone); 711 entry->next = gd->gd_vme_base; 712 gd->gd_vme_base = entry; 713 ++gd->gd_vme_avail; 714 } 715 gd->gd_vme_avail -= count; 716 crit_exit(); 717 718 return(count); 719 } 720 721 /* 722 * Releases previously reserved vm_map_entry structures that were not 723 * used. If we have too much junk in our per-cpu cache clean some of 724 * it out. 725 * 726 * No requirements. 727 */ 728 void 729 vm_map_entry_release(int count) 730 { 731 struct globaldata *gd = mycpu; 732 vm_map_entry_t entry; 733 734 crit_enter(); 735 gd->gd_vme_avail += count; 736 while (gd->gd_vme_avail > MAP_RESERVE_SLOP) { 737 entry = gd->gd_vme_base; 738 KKASSERT(entry != NULL); 739 gd->gd_vme_base = entry->next; 740 --gd->gd_vme_avail; 741 crit_exit(); 742 zfree(mapentzone, entry); 743 crit_enter(); 744 } 745 crit_exit(); 746 } 747 748 /* 749 * Reserve map entry structures for use in kernel_map itself. These 750 * entries have *ALREADY* been reserved on a per-cpu basis when the map 751 * was inited. This function is used by zalloc() to avoid a recursion 752 * when zalloc() itself needs to allocate additional kernel memory. 753 * 754 * This function works like the normal reserve but does not load the 755 * vm_map_entry cache (because that would result in an infinite 756 * recursion). Note that gd_vme_avail may go negative. This is expected. 757 * 758 * Any caller of this function must be sure to renormalize after 759 * potentially eating entries to ensure that the reserve supply 760 * remains intact. 761 * 762 * No requirements. 763 */ 764 int 765 vm_map_entry_kreserve(int count) 766 { 767 struct globaldata *gd = mycpu; 768 769 crit_enter(); 770 gd->gd_vme_avail -= count; 771 crit_exit(); 772 KASSERT(gd->gd_vme_base != NULL, 773 ("no reserved entries left, gd_vme_avail = %d", 774 gd->gd_vme_avail)); 775 return(count); 776 } 777 778 /* 779 * Release previously reserved map entries for kernel_map. We do not 780 * attempt to clean up like the normal release function as this would 781 * cause an unnecessary (but probably not fatal) deep procedure call. 782 * 783 * No requirements. 784 */ 785 void 786 vm_map_entry_krelease(int count) 787 { 788 struct globaldata *gd = mycpu; 789 790 crit_enter(); 791 gd->gd_vme_avail += count; 792 crit_exit(); 793 } 794 795 /* 796 * Allocates a VM map entry for insertion. No entry fields are filled in. 797 * 798 * The entries should have previously been reserved. The reservation count 799 * is tracked in (*countp). 800 * 801 * No requirements. 802 */ 803 static vm_map_entry_t 804 vm_map_entry_create(vm_map_t map, int *countp) 805 { 806 struct globaldata *gd = mycpu; 807 vm_map_entry_t entry; 808 809 KKASSERT(*countp > 0); 810 --*countp; 811 crit_enter(); 812 entry = gd->gd_vme_base; 813 KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp)); 814 gd->gd_vme_base = entry->next; 815 crit_exit(); 816 817 return(entry); 818 } 819 820 /* 821 * Dispose of a vm_map_entry that is no longer being referenced. 822 * 823 * No requirements. 824 */ 825 static void 826 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp) 827 { 828 struct globaldata *gd = mycpu; 829 830 KKASSERT(map->hint != entry); 831 KKASSERT(map->first_free != entry); 832 833 ++*countp; 834 crit_enter(); 835 entry->next = gd->gd_vme_base; 836 gd->gd_vme_base = entry; 837 crit_exit(); 838 } 839 840 841 /* 842 * Insert/remove entries from maps. 843 * 844 * The related map must be exclusively locked. 845 * The caller must hold map->token 846 * No other requirements. 847 */ 848 static __inline void 849 vm_map_entry_link(vm_map_t map, 850 vm_map_entry_t after_where, 851 vm_map_entry_t entry) 852 { 853 ASSERT_VM_MAP_LOCKED(map); 854 855 map->nentries++; 856 entry->prev = after_where; 857 entry->next = after_where->next; 858 entry->next->prev = entry; 859 after_where->next = entry; 860 if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry)) 861 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry); 862 } 863 864 static __inline void 865 vm_map_entry_unlink(vm_map_t map, 866 vm_map_entry_t entry) 867 { 868 vm_map_entry_t prev; 869 vm_map_entry_t next; 870 871 ASSERT_VM_MAP_LOCKED(map); 872 873 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 874 panic("vm_map_entry_unlink: attempt to mess with " 875 "locked entry! %p", entry); 876 } 877 prev = entry->prev; 878 next = entry->next; 879 next->prev = prev; 880 prev->next = next; 881 vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry); 882 map->nentries--; 883 } 884 885 /* 886 * Finds the map entry containing (or immediately preceding) the specified 887 * address in the given map. The entry is returned in (*entry). 888 * 889 * The boolean result indicates whether the address is actually contained 890 * in the map. 891 * 892 * The related map must be locked. 893 * No other requirements. 894 */ 895 boolean_t 896 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry) 897 { 898 vm_map_entry_t tmp; 899 vm_map_entry_t last; 900 901 ASSERT_VM_MAP_LOCKED(map); 902 #if 0 903 /* 904 * XXX TEMPORARILY DISABLED. For some reason our attempt to revive 905 * the hint code with the red-black lookup meets with system crashes 906 * and lockups. We do not yet know why. 907 * 908 * It is possible that the problem is related to the setting 909 * of the hint during map_entry deletion, in the code specified 910 * at the GGG comment later on in this file. 911 * 912 * YYY More likely it's because this function can be called with 913 * a shared lock on the map, resulting in map->hint updates possibly 914 * racing. Fixed now but untested. 915 */ 916 /* 917 * Quickly check the cached hint, there's a good chance of a match. 918 */ 919 tmp = map->hint; 920 cpu_ccfence(); 921 if (tmp != &map->header) { 922 if (address >= tmp->start && address < tmp->end) { 923 *entry = tmp; 924 return(TRUE); 925 } 926 } 927 #endif 928 929 /* 930 * Locate the record from the top of the tree. 'last' tracks the 931 * closest prior record and is returned if no match is found, which 932 * in binary tree terms means tracking the most recent right-branch 933 * taken. If there is no prior record, &map->header is returned. 934 */ 935 last = &map->header; 936 tmp = RB_ROOT(&map->rb_root); 937 938 while (tmp) { 939 if (address >= tmp->start) { 940 if (address < tmp->end) { 941 *entry = tmp; 942 map->hint = tmp; 943 return(TRUE); 944 } 945 last = tmp; 946 tmp = RB_RIGHT(tmp, rb_entry); 947 } else { 948 tmp = RB_LEFT(tmp, rb_entry); 949 } 950 } 951 *entry = last; 952 return (FALSE); 953 } 954 955 /* 956 * Inserts the given whole VM object into the target map at the specified 957 * address range. The object's size should match that of the address range. 958 * 959 * The map must be exclusively locked. 960 * The object must be held. 961 * The caller must have reserved sufficient vm_map_entry structures. 962 * 963 * If object is non-NULL, ref count must be bumped by caller prior to 964 * making call to account for the new entry. 965 */ 966 int 967 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux, 968 vm_ooffset_t offset, vm_offset_t start, vm_offset_t end, 969 vm_maptype_t maptype, vm_subsys_t id, 970 vm_prot_t prot, vm_prot_t max, int cow) 971 { 972 vm_map_entry_t new_entry; 973 vm_map_entry_t prev_entry; 974 vm_map_entry_t temp_entry; 975 vm_eflags_t protoeflags; 976 int must_drop = 0; 977 vm_object_t object; 978 979 if (maptype == VM_MAPTYPE_UKSMAP) 980 object = NULL; 981 else 982 object = map_object; 983 984 ASSERT_VM_MAP_LOCKED(map); 985 if (object) 986 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 987 988 /* 989 * Check that the start and end points are not bogus. 990 */ 991 if ((start < map->min_offset) || (end > map->max_offset) || 992 (start >= end)) 993 return (KERN_INVALID_ADDRESS); 994 995 /* 996 * Find the entry prior to the proposed starting address; if it's part 997 * of an existing entry, this range is bogus. 998 */ 999 if (vm_map_lookup_entry(map, start, &temp_entry)) 1000 return (KERN_NO_SPACE); 1001 1002 prev_entry = temp_entry; 1003 1004 /* 1005 * Assert that the next entry doesn't overlap the end point. 1006 */ 1007 1008 if ((prev_entry->next != &map->header) && 1009 (prev_entry->next->start < end)) 1010 return (KERN_NO_SPACE); 1011 1012 protoeflags = 0; 1013 1014 if (cow & MAP_COPY_ON_WRITE) 1015 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1016 1017 if (cow & MAP_NOFAULT) { 1018 protoeflags |= MAP_ENTRY_NOFAULT; 1019 1020 KASSERT(object == NULL, 1021 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1022 } 1023 if (cow & MAP_DISABLE_SYNCER) 1024 protoeflags |= MAP_ENTRY_NOSYNC; 1025 if (cow & MAP_DISABLE_COREDUMP) 1026 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1027 if (cow & MAP_IS_STACK) 1028 protoeflags |= MAP_ENTRY_STACK; 1029 if (cow & MAP_IS_KSTACK) 1030 protoeflags |= MAP_ENTRY_KSTACK; 1031 1032 lwkt_gettoken(&map->token); 1033 1034 if (object) { 1035 /* 1036 * When object is non-NULL, it could be shared with another 1037 * process. We have to set or clear OBJ_ONEMAPPING 1038 * appropriately. 1039 * 1040 * NOTE: This flag is only applicable to DEFAULT and SWAP 1041 * objects and will already be clear in other types 1042 * of objects, so a shared object lock is ok for 1043 * VNODE objects. 1044 */ 1045 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 1046 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1047 } 1048 } 1049 else if ((prev_entry != &map->header) && 1050 (prev_entry->eflags == protoeflags) && 1051 (prev_entry->end == start) && 1052 (prev_entry->wired_count == 0) && 1053 (prev_entry->id == id) && 1054 prev_entry->maptype == maptype && 1055 maptype == VM_MAPTYPE_NORMAL && 1056 ((prev_entry->object.vm_object == NULL) || 1057 vm_object_coalesce(prev_entry->object.vm_object, 1058 OFF_TO_IDX(prev_entry->offset), 1059 (vm_size_t)(prev_entry->end - prev_entry->start), 1060 (vm_size_t)(end - prev_entry->end)))) { 1061 /* 1062 * We were able to extend the object. Determine if we 1063 * can extend the previous map entry to include the 1064 * new range as well. 1065 */ 1066 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1067 (prev_entry->protection == prot) && 1068 (prev_entry->max_protection == max)) { 1069 map->size += (end - prev_entry->end); 1070 prev_entry->end = end; 1071 vm_map_simplify_entry(map, prev_entry, countp); 1072 lwkt_reltoken(&map->token); 1073 return (KERN_SUCCESS); 1074 } 1075 1076 /* 1077 * If we can extend the object but cannot extend the 1078 * map entry, we have to create a new map entry. We 1079 * must bump the ref count on the extended object to 1080 * account for it. object may be NULL. 1081 * 1082 * XXX if object is NULL should we set offset to 0 here ? 1083 */ 1084 object = prev_entry->object.vm_object; 1085 offset = prev_entry->offset + 1086 (prev_entry->end - prev_entry->start); 1087 if (object) { 1088 vm_object_hold(object); 1089 vm_object_chain_wait(object, 0); 1090 vm_object_reference_locked(object); 1091 must_drop = 1; 1092 map_object = object; 1093 } 1094 } 1095 1096 /* 1097 * NOTE: if conditionals fail, object can be NULL here. This occurs 1098 * in things like the buffer map where we manage kva but do not manage 1099 * backing objects. 1100 */ 1101 1102 /* 1103 * Create a new entry 1104 */ 1105 1106 new_entry = vm_map_entry_create(map, countp); 1107 new_entry->start = start; 1108 new_entry->end = end; 1109 new_entry->id = id; 1110 1111 new_entry->maptype = maptype; 1112 new_entry->eflags = protoeflags; 1113 new_entry->object.map_object = map_object; 1114 new_entry->aux.master_pde = 0; /* in case size is different */ 1115 new_entry->aux.map_aux = map_aux; 1116 new_entry->offset = offset; 1117 1118 new_entry->inheritance = VM_INHERIT_DEFAULT; 1119 new_entry->protection = prot; 1120 new_entry->max_protection = max; 1121 new_entry->wired_count = 0; 1122 1123 /* 1124 * Insert the new entry into the list 1125 */ 1126 1127 vm_map_entry_link(map, prev_entry, new_entry); 1128 map->size += new_entry->end - new_entry->start; 1129 1130 /* 1131 * Update the free space hint. Entries cannot overlap. 1132 * An exact comparison is needed to avoid matching 1133 * against the map->header. 1134 */ 1135 if ((map->first_free == prev_entry) && 1136 (prev_entry->end == new_entry->start)) { 1137 map->first_free = new_entry; 1138 } 1139 1140 #if 0 1141 /* 1142 * Temporarily removed to avoid MAP_STACK panic, due to 1143 * MAP_STACK being a huge hack. Will be added back in 1144 * when MAP_STACK (and the user stack mapping) is fixed. 1145 */ 1146 /* 1147 * It may be possible to simplify the entry 1148 */ 1149 vm_map_simplify_entry(map, new_entry, countp); 1150 #endif 1151 1152 /* 1153 * Try to pre-populate the page table. Mappings governed by virtual 1154 * page tables cannot be prepopulated without a lot of work, so 1155 * don't try. 1156 */ 1157 if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) && 1158 maptype != VM_MAPTYPE_VPAGETABLE && 1159 maptype != VM_MAPTYPE_UKSMAP) { 1160 int dorelock = 0; 1161 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) { 1162 dorelock = 1; 1163 vm_object_lock_swap(); 1164 vm_object_drop(object); 1165 } 1166 pmap_object_init_pt(map->pmap, start, prot, 1167 object, OFF_TO_IDX(offset), end - start, 1168 cow & MAP_PREFAULT_PARTIAL); 1169 if (dorelock) { 1170 vm_object_hold(object); 1171 vm_object_lock_swap(); 1172 } 1173 } 1174 if (must_drop) 1175 vm_object_drop(object); 1176 1177 lwkt_reltoken(&map->token); 1178 return (KERN_SUCCESS); 1179 } 1180 1181 /* 1182 * Find sufficient space for `length' bytes in the given map, starting at 1183 * `start'. Returns 0 on success, 1 on no space. 1184 * 1185 * This function will returned an arbitrarily aligned pointer. If no 1186 * particular alignment is required you should pass align as 1. Note that 1187 * the map may return PAGE_SIZE aligned pointers if all the lengths used in 1188 * the map are a multiple of PAGE_SIZE, even if you pass a smaller align 1189 * argument. 1190 * 1191 * 'align' should be a power of 2 but is not required to be. 1192 * 1193 * The map must be exclusively locked. 1194 * No other requirements. 1195 */ 1196 int 1197 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1198 vm_size_t align, int flags, vm_offset_t *addr) 1199 { 1200 vm_map_entry_t entry, next; 1201 vm_offset_t end; 1202 vm_offset_t align_mask; 1203 1204 if (start < map->min_offset) 1205 start = map->min_offset; 1206 if (start > map->max_offset) 1207 return (1); 1208 1209 /* 1210 * If the alignment is not a power of 2 we will have to use 1211 * a mod/division, set align_mask to a special value. 1212 */ 1213 if ((align | (align - 1)) + 1 != (align << 1)) 1214 align_mask = (vm_offset_t)-1; 1215 else 1216 align_mask = align - 1; 1217 1218 /* 1219 * Look for the first possible address; if there's already something 1220 * at this address, we have to start after it. 1221 */ 1222 if (start == map->min_offset) { 1223 if ((entry = map->first_free) != &map->header) 1224 start = entry->end; 1225 } else { 1226 vm_map_entry_t tmp; 1227 1228 if (vm_map_lookup_entry(map, start, &tmp)) 1229 start = tmp->end; 1230 entry = tmp; 1231 } 1232 1233 /* 1234 * Look through the rest of the map, trying to fit a new region in the 1235 * gap between existing regions, or after the very last region. 1236 */ 1237 for (;; start = (entry = next)->end) { 1238 /* 1239 * Adjust the proposed start by the requested alignment, 1240 * be sure that we didn't wrap the address. 1241 */ 1242 if (align_mask == (vm_offset_t)-1) 1243 end = roundup(start, align); 1244 else 1245 end = (start + align_mask) & ~align_mask; 1246 if (end < start) 1247 return (1); 1248 start = end; 1249 /* 1250 * Find the end of the proposed new region. Be sure we didn't 1251 * go beyond the end of the map, or wrap around the address. 1252 * Then check to see if this is the last entry or if the 1253 * proposed end fits in the gap between this and the next 1254 * entry. 1255 */ 1256 end = start + length; 1257 if (end > map->max_offset || end < start) 1258 return (1); 1259 next = entry->next; 1260 1261 /* 1262 * If the next entry's start address is beyond the desired 1263 * end address we may have found a good entry. 1264 * 1265 * If the next entry is a stack mapping we do not map into 1266 * the stack's reserved space. 1267 * 1268 * XXX continue to allow mapping into the stack's reserved 1269 * space if doing a MAP_STACK mapping inside a MAP_STACK 1270 * mapping, for backwards compatibility. But the caller 1271 * really should use MAP_STACK | MAP_TRYFIXED if they 1272 * want to do that. 1273 */ 1274 if (next == &map->header) 1275 break; 1276 if (next->start >= end) { 1277 if ((next->eflags & MAP_ENTRY_STACK) == 0) 1278 break; 1279 if (flags & MAP_STACK) 1280 break; 1281 if (next->start - next->aux.avail_ssize >= end) 1282 break; 1283 } 1284 } 1285 map->hint = entry; 1286 1287 /* 1288 * Grow the kernel_map if necessary. pmap_growkernel() will panic 1289 * if it fails. The kernel_map is locked and nothing can steal 1290 * our address space if pmap_growkernel() blocks. 1291 * 1292 * NOTE: This may be unconditionally called for kldload areas on 1293 * x86_64 because these do not bump kernel_vm_end (which would 1294 * fill 128G worth of page tables!). Therefore we must not 1295 * retry. 1296 */ 1297 if (map == &kernel_map) { 1298 vm_offset_t kstop; 1299 1300 kstop = round_page(start + length); 1301 if (kstop > kernel_vm_end) 1302 pmap_growkernel(start, kstop); 1303 } 1304 *addr = start; 1305 return (0); 1306 } 1307 1308 /* 1309 * vm_map_find finds an unallocated region in the target address map with 1310 * the given length and allocates it. The search is defined to be first-fit 1311 * from the specified address; the region found is returned in the same 1312 * parameter. 1313 * 1314 * If object is non-NULL, ref count must be bumped by caller 1315 * prior to making call to account for the new entry. 1316 * 1317 * No requirements. This function will lock the map temporarily. 1318 */ 1319 int 1320 vm_map_find(vm_map_t map, void *map_object, void *map_aux, 1321 vm_ooffset_t offset, vm_offset_t *addr, 1322 vm_size_t length, vm_size_t align, boolean_t fitit, 1323 vm_maptype_t maptype, vm_subsys_t id, 1324 vm_prot_t prot, vm_prot_t max, int cow) 1325 { 1326 vm_offset_t start; 1327 vm_object_t object; 1328 int result; 1329 int count; 1330 1331 if (maptype == VM_MAPTYPE_UKSMAP) 1332 object = NULL; 1333 else 1334 object = map_object; 1335 1336 start = *addr; 1337 1338 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1339 vm_map_lock(map); 1340 if (object) 1341 vm_object_hold_shared(object); 1342 if (fitit) { 1343 if (vm_map_findspace(map, start, length, align, 0, addr)) { 1344 if (object) 1345 vm_object_drop(object); 1346 vm_map_unlock(map); 1347 vm_map_entry_release(count); 1348 return (KERN_NO_SPACE); 1349 } 1350 start = *addr; 1351 } 1352 result = vm_map_insert(map, &count, map_object, map_aux, 1353 offset, start, start + length, 1354 maptype, id, prot, max, cow); 1355 if (object) 1356 vm_object_drop(object); 1357 vm_map_unlock(map); 1358 vm_map_entry_release(count); 1359 1360 return (result); 1361 } 1362 1363 /* 1364 * Simplify the given map entry by merging with either neighbor. This 1365 * routine also has the ability to merge with both neighbors. 1366 * 1367 * This routine guarentees that the passed entry remains valid (though 1368 * possibly extended). When merging, this routine may delete one or 1369 * both neighbors. No action is taken on entries which have their 1370 * in-transition flag set. 1371 * 1372 * The map must be exclusively locked. 1373 */ 1374 void 1375 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp) 1376 { 1377 vm_map_entry_t next, prev; 1378 vm_size_t prevsize, esize; 1379 1380 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1381 ++mycpu->gd_cnt.v_intrans_coll; 1382 return; 1383 } 1384 1385 if (entry->maptype == VM_MAPTYPE_SUBMAP) 1386 return; 1387 if (entry->maptype == VM_MAPTYPE_UKSMAP) 1388 return; 1389 1390 prev = entry->prev; 1391 if (prev != &map->header) { 1392 prevsize = prev->end - prev->start; 1393 if ( (prev->end == entry->start) && 1394 (prev->maptype == entry->maptype) && 1395 (prev->object.vm_object == entry->object.vm_object) && 1396 (!prev->object.vm_object || 1397 (prev->offset + prevsize == entry->offset)) && 1398 (prev->eflags == entry->eflags) && 1399 (prev->protection == entry->protection) && 1400 (prev->max_protection == entry->max_protection) && 1401 (prev->inheritance == entry->inheritance) && 1402 (prev->id == entry->id) && 1403 (prev->wired_count == entry->wired_count)) { 1404 if (map->first_free == prev) 1405 map->first_free = entry; 1406 if (map->hint == prev) 1407 map->hint = entry; 1408 vm_map_entry_unlink(map, prev); 1409 entry->start = prev->start; 1410 entry->offset = prev->offset; 1411 if (prev->object.vm_object) 1412 vm_object_deallocate(prev->object.vm_object); 1413 vm_map_entry_dispose(map, prev, countp); 1414 } 1415 } 1416 1417 next = entry->next; 1418 if (next != &map->header) { 1419 esize = entry->end - entry->start; 1420 if ((entry->end == next->start) && 1421 (next->maptype == entry->maptype) && 1422 (next->object.vm_object == entry->object.vm_object) && 1423 (!entry->object.vm_object || 1424 (entry->offset + esize == next->offset)) && 1425 (next->eflags == entry->eflags) && 1426 (next->protection == entry->protection) && 1427 (next->max_protection == entry->max_protection) && 1428 (next->inheritance == entry->inheritance) && 1429 (next->id == entry->id) && 1430 (next->wired_count == entry->wired_count)) { 1431 if (map->first_free == next) 1432 map->first_free = entry; 1433 if (map->hint == next) 1434 map->hint = entry; 1435 vm_map_entry_unlink(map, next); 1436 entry->end = next->end; 1437 if (next->object.vm_object) 1438 vm_object_deallocate(next->object.vm_object); 1439 vm_map_entry_dispose(map, next, countp); 1440 } 1441 } 1442 } 1443 1444 /* 1445 * Asserts that the given entry begins at or after the specified address. 1446 * If necessary, it splits the entry into two. 1447 */ 1448 #define vm_map_clip_start(map, entry, startaddr, countp) \ 1449 { \ 1450 if (startaddr > entry->start) \ 1451 _vm_map_clip_start(map, entry, startaddr, countp); \ 1452 } 1453 1454 /* 1455 * This routine is called only when it is known that the entry must be split. 1456 * 1457 * The map must be exclusively locked. 1458 */ 1459 static void 1460 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, 1461 int *countp) 1462 { 1463 vm_map_entry_t new_entry; 1464 1465 /* 1466 * Split off the front portion -- note that we must insert the new 1467 * entry BEFORE this one, so that this entry has the specified 1468 * starting address. 1469 */ 1470 1471 vm_map_simplify_entry(map, entry, countp); 1472 1473 /* 1474 * If there is no object backing this entry, we might as well create 1475 * one now. If we defer it, an object can get created after the map 1476 * is clipped, and individual objects will be created for the split-up 1477 * map. This is a bit of a hack, but is also about the best place to 1478 * put this improvement. 1479 */ 1480 if (entry->object.vm_object == NULL && !map->system_map) { 1481 vm_map_entry_allocate_object(entry); 1482 } 1483 1484 new_entry = vm_map_entry_create(map, countp); 1485 *new_entry = *entry; 1486 1487 new_entry->end = start; 1488 entry->offset += (start - entry->start); 1489 entry->start = start; 1490 1491 vm_map_entry_link(map, entry->prev, new_entry); 1492 1493 switch(entry->maptype) { 1494 case VM_MAPTYPE_NORMAL: 1495 case VM_MAPTYPE_VPAGETABLE: 1496 if (new_entry->object.vm_object) { 1497 vm_object_hold(new_entry->object.vm_object); 1498 vm_object_chain_wait(new_entry->object.vm_object, 0); 1499 vm_object_reference_locked(new_entry->object.vm_object); 1500 vm_object_drop(new_entry->object.vm_object); 1501 } 1502 break; 1503 default: 1504 break; 1505 } 1506 } 1507 1508 /* 1509 * Asserts that the given entry ends at or before the specified address. 1510 * If necessary, it splits the entry into two. 1511 * 1512 * The map must be exclusively locked. 1513 */ 1514 #define vm_map_clip_end(map, entry, endaddr, countp) \ 1515 { \ 1516 if (endaddr < entry->end) \ 1517 _vm_map_clip_end(map, entry, endaddr, countp); \ 1518 } 1519 1520 /* 1521 * This routine is called only when it is known that the entry must be split. 1522 * 1523 * The map must be exclusively locked. 1524 */ 1525 static void 1526 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, 1527 int *countp) 1528 { 1529 vm_map_entry_t new_entry; 1530 1531 /* 1532 * If there is no object backing this entry, we might as well create 1533 * one now. If we defer it, an object can get created after the map 1534 * is clipped, and individual objects will be created for the split-up 1535 * map. This is a bit of a hack, but is also about the best place to 1536 * put this improvement. 1537 */ 1538 1539 if (entry->object.vm_object == NULL && !map->system_map) { 1540 vm_map_entry_allocate_object(entry); 1541 } 1542 1543 /* 1544 * Create a new entry and insert it AFTER the specified entry 1545 */ 1546 1547 new_entry = vm_map_entry_create(map, countp); 1548 *new_entry = *entry; 1549 1550 new_entry->start = entry->end = end; 1551 new_entry->offset += (end - entry->start); 1552 1553 vm_map_entry_link(map, entry, new_entry); 1554 1555 switch(entry->maptype) { 1556 case VM_MAPTYPE_NORMAL: 1557 case VM_MAPTYPE_VPAGETABLE: 1558 if (new_entry->object.vm_object) { 1559 vm_object_hold(new_entry->object.vm_object); 1560 vm_object_chain_wait(new_entry->object.vm_object, 0); 1561 vm_object_reference_locked(new_entry->object.vm_object); 1562 vm_object_drop(new_entry->object.vm_object); 1563 } 1564 break; 1565 default: 1566 break; 1567 } 1568 } 1569 1570 /* 1571 * Asserts that the starting and ending region addresses fall within the 1572 * valid range for the map. 1573 */ 1574 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1575 { \ 1576 if (start < vm_map_min(map)) \ 1577 start = vm_map_min(map); \ 1578 if (end > vm_map_max(map)) \ 1579 end = vm_map_max(map); \ 1580 if (start > end) \ 1581 start = end; \ 1582 } 1583 1584 /* 1585 * Used to block when an in-transition collison occurs. The map 1586 * is unlocked for the sleep and relocked before the return. 1587 */ 1588 void 1589 vm_map_transition_wait(vm_map_t map) 1590 { 1591 tsleep_interlock(map, 0); 1592 vm_map_unlock(map); 1593 tsleep(map, PINTERLOCKED, "vment", 0); 1594 vm_map_lock(map); 1595 } 1596 1597 /* 1598 * When we do blocking operations with the map lock held it is 1599 * possible that a clip might have occured on our in-transit entry, 1600 * requiring an adjustment to the entry in our loop. These macros 1601 * help the pageable and clip_range code deal with the case. The 1602 * conditional costs virtually nothing if no clipping has occured. 1603 */ 1604 1605 #define CLIP_CHECK_BACK(entry, save_start) \ 1606 do { \ 1607 while (entry->start != save_start) { \ 1608 entry = entry->prev; \ 1609 KASSERT(entry != &map->header, ("bad entry clip")); \ 1610 } \ 1611 } while(0) 1612 1613 #define CLIP_CHECK_FWD(entry, save_end) \ 1614 do { \ 1615 while (entry->end != save_end) { \ 1616 entry = entry->next; \ 1617 KASSERT(entry != &map->header, ("bad entry clip")); \ 1618 } \ 1619 } while(0) 1620 1621 1622 /* 1623 * Clip the specified range and return the base entry. The 1624 * range may cover several entries starting at the returned base 1625 * and the first and last entry in the covering sequence will be 1626 * properly clipped to the requested start and end address. 1627 * 1628 * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES 1629 * flag. 1630 * 1631 * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries 1632 * covered by the requested range. 1633 * 1634 * The map must be exclusively locked on entry and will remain locked 1635 * on return. If no range exists or the range contains holes and you 1636 * specified that no holes were allowed, NULL will be returned. This 1637 * routine may temporarily unlock the map in order avoid a deadlock when 1638 * sleeping. 1639 */ 1640 static 1641 vm_map_entry_t 1642 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 1643 int *countp, int flags) 1644 { 1645 vm_map_entry_t start_entry; 1646 vm_map_entry_t entry; 1647 1648 /* 1649 * Locate the entry and effect initial clipping. The in-transition 1650 * case does not occur very often so do not try to optimize it. 1651 */ 1652 again: 1653 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) 1654 return (NULL); 1655 entry = start_entry; 1656 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1657 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1658 ++mycpu->gd_cnt.v_intrans_coll; 1659 ++mycpu->gd_cnt.v_intrans_wait; 1660 vm_map_transition_wait(map); 1661 /* 1662 * entry and/or start_entry may have been clipped while 1663 * we slept, or may have gone away entirely. We have 1664 * to restart from the lookup. 1665 */ 1666 goto again; 1667 } 1668 1669 /* 1670 * Since we hold an exclusive map lock we do not have to restart 1671 * after clipping, even though clipping may block in zalloc. 1672 */ 1673 vm_map_clip_start(map, entry, start, countp); 1674 vm_map_clip_end(map, entry, end, countp); 1675 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1676 1677 /* 1678 * Scan entries covered by the range. When working on the next 1679 * entry a restart need only re-loop on the current entry which 1680 * we have already locked, since 'next' may have changed. Also, 1681 * even though entry is safe, it may have been clipped so we 1682 * have to iterate forwards through the clip after sleeping. 1683 */ 1684 while (entry->next != &map->header && entry->next->start < end) { 1685 vm_map_entry_t next = entry->next; 1686 1687 if (flags & MAP_CLIP_NO_HOLES) { 1688 if (next->start > entry->end) { 1689 vm_map_unclip_range(map, start_entry, 1690 start, entry->end, countp, flags); 1691 return(NULL); 1692 } 1693 } 1694 1695 if (next->eflags & MAP_ENTRY_IN_TRANSITION) { 1696 vm_offset_t save_end = entry->end; 1697 next->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1698 ++mycpu->gd_cnt.v_intrans_coll; 1699 ++mycpu->gd_cnt.v_intrans_wait; 1700 vm_map_transition_wait(map); 1701 1702 /* 1703 * clips might have occured while we blocked. 1704 */ 1705 CLIP_CHECK_FWD(entry, save_end); 1706 CLIP_CHECK_BACK(start_entry, start); 1707 continue; 1708 } 1709 /* 1710 * No restart necessary even though clip_end may block, we 1711 * are holding the map lock. 1712 */ 1713 vm_map_clip_end(map, next, end, countp); 1714 next->eflags |= MAP_ENTRY_IN_TRANSITION; 1715 entry = next; 1716 } 1717 if (flags & MAP_CLIP_NO_HOLES) { 1718 if (entry->end != end) { 1719 vm_map_unclip_range(map, start_entry, 1720 start, entry->end, countp, flags); 1721 return(NULL); 1722 } 1723 } 1724 return(start_entry); 1725 } 1726 1727 /* 1728 * Undo the effect of vm_map_clip_range(). You should pass the same 1729 * flags and the same range that you passed to vm_map_clip_range(). 1730 * This code will clear the in-transition flag on the entries and 1731 * wake up anyone waiting. This code will also simplify the sequence 1732 * and attempt to merge it with entries before and after the sequence. 1733 * 1734 * The map must be locked on entry and will remain locked on return. 1735 * 1736 * Note that you should also pass the start_entry returned by 1737 * vm_map_clip_range(). However, if you block between the two calls 1738 * with the map unlocked please be aware that the start_entry may 1739 * have been clipped and you may need to scan it backwards to find 1740 * the entry corresponding with the original start address. You are 1741 * responsible for this, vm_map_unclip_range() expects the correct 1742 * start_entry to be passed to it and will KASSERT otherwise. 1743 */ 1744 static 1745 void 1746 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry, 1747 vm_offset_t start, vm_offset_t end, 1748 int *countp, int flags) 1749 { 1750 vm_map_entry_t entry; 1751 1752 entry = start_entry; 1753 1754 KASSERT(entry->start == start, ("unclip_range: illegal base entry")); 1755 while (entry != &map->header && entry->start < end) { 1756 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1757 ("in-transition flag not set during unclip on: %p", 1758 entry)); 1759 KASSERT(entry->end <= end, 1760 ("unclip_range: tail wasn't clipped")); 1761 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1762 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1763 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1764 wakeup(map); 1765 } 1766 entry = entry->next; 1767 } 1768 1769 /* 1770 * Simplification does not block so there is no restart case. 1771 */ 1772 entry = start_entry; 1773 while (entry != &map->header && entry->start < end) { 1774 vm_map_simplify_entry(map, entry, countp); 1775 entry = entry->next; 1776 } 1777 } 1778 1779 /* 1780 * Mark the given range as handled by a subordinate map. 1781 * 1782 * This range must have been created with vm_map_find(), and no other 1783 * operations may have been performed on this range prior to calling 1784 * vm_map_submap(). 1785 * 1786 * Submappings cannot be removed. 1787 * 1788 * No requirements. 1789 */ 1790 int 1791 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap) 1792 { 1793 vm_map_entry_t entry; 1794 int result = KERN_INVALID_ARGUMENT; 1795 int count; 1796 1797 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1798 vm_map_lock(map); 1799 1800 VM_MAP_RANGE_CHECK(map, start, end); 1801 1802 if (vm_map_lookup_entry(map, start, &entry)) { 1803 vm_map_clip_start(map, entry, start, &count); 1804 } else { 1805 entry = entry->next; 1806 } 1807 1808 vm_map_clip_end(map, entry, end, &count); 1809 1810 if ((entry->start == start) && (entry->end == end) && 1811 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1812 (entry->object.vm_object == NULL)) { 1813 entry->object.sub_map = submap; 1814 entry->maptype = VM_MAPTYPE_SUBMAP; 1815 result = KERN_SUCCESS; 1816 } 1817 vm_map_unlock(map); 1818 vm_map_entry_release(count); 1819 1820 return (result); 1821 } 1822 1823 /* 1824 * Sets the protection of the specified address region in the target map. 1825 * If "set_max" is specified, the maximum protection is to be set; 1826 * otherwise, only the current protection is affected. 1827 * 1828 * The protection is not applicable to submaps, but is applicable to normal 1829 * maps and maps governed by virtual page tables. For example, when operating 1830 * on a virtual page table our protection basically controls how COW occurs 1831 * on the backing object, whereas the virtual page table abstraction itself 1832 * is an abstraction for userland. 1833 * 1834 * No requirements. 1835 */ 1836 int 1837 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1838 vm_prot_t new_prot, boolean_t set_max) 1839 { 1840 vm_map_entry_t current; 1841 vm_map_entry_t entry; 1842 int count; 1843 1844 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1845 vm_map_lock(map); 1846 1847 VM_MAP_RANGE_CHECK(map, start, end); 1848 1849 if (vm_map_lookup_entry(map, start, &entry)) { 1850 vm_map_clip_start(map, entry, start, &count); 1851 } else { 1852 entry = entry->next; 1853 } 1854 1855 /* 1856 * Make a first pass to check for protection violations. 1857 */ 1858 current = entry; 1859 while ((current != &map->header) && (current->start < end)) { 1860 if (current->maptype == VM_MAPTYPE_SUBMAP) { 1861 vm_map_unlock(map); 1862 vm_map_entry_release(count); 1863 return (KERN_INVALID_ARGUMENT); 1864 } 1865 if ((new_prot & current->max_protection) != new_prot) { 1866 vm_map_unlock(map); 1867 vm_map_entry_release(count); 1868 return (KERN_PROTECTION_FAILURE); 1869 } 1870 current = current->next; 1871 } 1872 1873 /* 1874 * Go back and fix up protections. [Note that clipping is not 1875 * necessary the second time.] 1876 */ 1877 current = entry; 1878 1879 while ((current != &map->header) && (current->start < end)) { 1880 vm_prot_t old_prot; 1881 1882 vm_map_clip_end(map, current, end, &count); 1883 1884 old_prot = current->protection; 1885 if (set_max) { 1886 current->protection = 1887 (current->max_protection = new_prot) & 1888 old_prot; 1889 } else { 1890 current->protection = new_prot; 1891 } 1892 1893 /* 1894 * Update physical map if necessary. Worry about copy-on-write 1895 * here -- CHECK THIS XXX 1896 */ 1897 1898 if (current->protection != old_prot) { 1899 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1900 VM_PROT_ALL) 1901 1902 pmap_protect(map->pmap, current->start, 1903 current->end, 1904 current->protection & MASK(current)); 1905 #undef MASK 1906 } 1907 1908 vm_map_simplify_entry(map, current, &count); 1909 1910 current = current->next; 1911 } 1912 1913 vm_map_unlock(map); 1914 vm_map_entry_release(count); 1915 return (KERN_SUCCESS); 1916 } 1917 1918 /* 1919 * This routine traverses a processes map handling the madvise 1920 * system call. Advisories are classified as either those effecting 1921 * the vm_map_entry structure, or those effecting the underlying 1922 * objects. 1923 * 1924 * The <value> argument is used for extended madvise calls. 1925 * 1926 * No requirements. 1927 */ 1928 int 1929 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, 1930 int behav, off_t value) 1931 { 1932 vm_map_entry_t current, entry; 1933 int modify_map = 0; 1934 int error = 0; 1935 int count; 1936 1937 /* 1938 * Some madvise calls directly modify the vm_map_entry, in which case 1939 * we need to use an exclusive lock on the map and we need to perform 1940 * various clipping operations. Otherwise we only need a read-lock 1941 * on the map. 1942 */ 1943 1944 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 1945 1946 switch(behav) { 1947 case MADV_NORMAL: 1948 case MADV_SEQUENTIAL: 1949 case MADV_RANDOM: 1950 case MADV_NOSYNC: 1951 case MADV_AUTOSYNC: 1952 case MADV_NOCORE: 1953 case MADV_CORE: 1954 case MADV_SETMAP: 1955 case MADV_INVAL: 1956 modify_map = 1; 1957 vm_map_lock(map); 1958 break; 1959 case MADV_WILLNEED: 1960 case MADV_DONTNEED: 1961 case MADV_FREE: 1962 vm_map_lock_read(map); 1963 break; 1964 default: 1965 vm_map_entry_release(count); 1966 return (EINVAL); 1967 } 1968 1969 /* 1970 * Locate starting entry and clip if necessary. 1971 */ 1972 1973 VM_MAP_RANGE_CHECK(map, start, end); 1974 1975 if (vm_map_lookup_entry(map, start, &entry)) { 1976 if (modify_map) 1977 vm_map_clip_start(map, entry, start, &count); 1978 } else { 1979 entry = entry->next; 1980 } 1981 1982 if (modify_map) { 1983 /* 1984 * madvise behaviors that are implemented in the vm_map_entry. 1985 * 1986 * We clip the vm_map_entry so that behavioral changes are 1987 * limited to the specified address range. 1988 */ 1989 for (current = entry; 1990 (current != &map->header) && (current->start < end); 1991 current = current->next 1992 ) { 1993 if (current->maptype == VM_MAPTYPE_SUBMAP) 1994 continue; 1995 1996 vm_map_clip_end(map, current, end, &count); 1997 1998 switch (behav) { 1999 case MADV_NORMAL: 2000 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2001 break; 2002 case MADV_SEQUENTIAL: 2003 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2004 break; 2005 case MADV_RANDOM: 2006 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2007 break; 2008 case MADV_NOSYNC: 2009 current->eflags |= MAP_ENTRY_NOSYNC; 2010 break; 2011 case MADV_AUTOSYNC: 2012 current->eflags &= ~MAP_ENTRY_NOSYNC; 2013 break; 2014 case MADV_NOCORE: 2015 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2016 break; 2017 case MADV_CORE: 2018 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2019 break; 2020 case MADV_INVAL: 2021 /* 2022 * Invalidate the related pmap entries, used 2023 * to flush portions of the real kernel's 2024 * pmap when the caller has removed or 2025 * modified existing mappings in a virtual 2026 * page table. 2027 */ 2028 pmap_remove(map->pmap, 2029 current->start, current->end); 2030 break; 2031 case MADV_SETMAP: 2032 /* 2033 * Set the page directory page for a map 2034 * governed by a virtual page table. Mark 2035 * the entry as being governed by a virtual 2036 * page table if it is not. 2037 * 2038 * XXX the page directory page is stored 2039 * in the avail_ssize field if the map_entry. 2040 * 2041 * XXX the map simplification code does not 2042 * compare this field so weird things may 2043 * happen if you do not apply this function 2044 * to the entire mapping governed by the 2045 * virtual page table. 2046 */ 2047 if (current->maptype != VM_MAPTYPE_VPAGETABLE) { 2048 error = EINVAL; 2049 break; 2050 } 2051 current->aux.master_pde = value; 2052 pmap_remove(map->pmap, 2053 current->start, current->end); 2054 break; 2055 default: 2056 error = EINVAL; 2057 break; 2058 } 2059 vm_map_simplify_entry(map, current, &count); 2060 } 2061 vm_map_unlock(map); 2062 } else { 2063 vm_pindex_t pindex; 2064 int count; 2065 2066 /* 2067 * madvise behaviors that are implemented in the underlying 2068 * vm_object. 2069 * 2070 * Since we don't clip the vm_map_entry, we have to clip 2071 * the vm_object pindex and count. 2072 * 2073 * NOTE! We currently do not support these functions on 2074 * virtual page tables. 2075 */ 2076 for (current = entry; 2077 (current != &map->header) && (current->start < end); 2078 current = current->next 2079 ) { 2080 vm_offset_t useStart; 2081 2082 if (current->maptype != VM_MAPTYPE_NORMAL) 2083 continue; 2084 2085 pindex = OFF_TO_IDX(current->offset); 2086 count = atop(current->end - current->start); 2087 useStart = current->start; 2088 2089 if (current->start < start) { 2090 pindex += atop(start - current->start); 2091 count -= atop(start - current->start); 2092 useStart = start; 2093 } 2094 if (current->end > end) 2095 count -= atop(current->end - end); 2096 2097 if (count <= 0) 2098 continue; 2099 2100 vm_object_madvise(current->object.vm_object, 2101 pindex, count, behav); 2102 2103 /* 2104 * Try to populate the page table. Mappings governed 2105 * by virtual page tables cannot be pre-populated 2106 * without a lot of work so don't try. 2107 */ 2108 if (behav == MADV_WILLNEED && 2109 current->maptype != VM_MAPTYPE_VPAGETABLE) { 2110 pmap_object_init_pt( 2111 map->pmap, 2112 useStart, 2113 current->protection, 2114 current->object.vm_object, 2115 pindex, 2116 (count << PAGE_SHIFT), 2117 MAP_PREFAULT_MADVISE 2118 ); 2119 } 2120 } 2121 vm_map_unlock_read(map); 2122 } 2123 vm_map_entry_release(count); 2124 return(error); 2125 } 2126 2127 2128 /* 2129 * Sets the inheritance of the specified address range in the target map. 2130 * Inheritance affects how the map will be shared with child maps at the 2131 * time of vm_map_fork. 2132 */ 2133 int 2134 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2135 vm_inherit_t new_inheritance) 2136 { 2137 vm_map_entry_t entry; 2138 vm_map_entry_t temp_entry; 2139 int count; 2140 2141 switch (new_inheritance) { 2142 case VM_INHERIT_NONE: 2143 case VM_INHERIT_COPY: 2144 case VM_INHERIT_SHARE: 2145 break; 2146 default: 2147 return (KERN_INVALID_ARGUMENT); 2148 } 2149 2150 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2151 vm_map_lock(map); 2152 2153 VM_MAP_RANGE_CHECK(map, start, end); 2154 2155 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2156 entry = temp_entry; 2157 vm_map_clip_start(map, entry, start, &count); 2158 } else 2159 entry = temp_entry->next; 2160 2161 while ((entry != &map->header) && (entry->start < end)) { 2162 vm_map_clip_end(map, entry, end, &count); 2163 2164 entry->inheritance = new_inheritance; 2165 2166 vm_map_simplify_entry(map, entry, &count); 2167 2168 entry = entry->next; 2169 } 2170 vm_map_unlock(map); 2171 vm_map_entry_release(count); 2172 return (KERN_SUCCESS); 2173 } 2174 2175 /* 2176 * Implement the semantics of mlock 2177 */ 2178 int 2179 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, 2180 boolean_t new_pageable) 2181 { 2182 vm_map_entry_t entry; 2183 vm_map_entry_t start_entry; 2184 vm_offset_t end; 2185 int rv = KERN_SUCCESS; 2186 int count; 2187 2188 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2189 vm_map_lock(map); 2190 VM_MAP_RANGE_CHECK(map, start, real_end); 2191 end = real_end; 2192 2193 start_entry = vm_map_clip_range(map, start, end, &count, 2194 MAP_CLIP_NO_HOLES); 2195 if (start_entry == NULL) { 2196 vm_map_unlock(map); 2197 vm_map_entry_release(count); 2198 return (KERN_INVALID_ADDRESS); 2199 } 2200 2201 if (new_pageable == 0) { 2202 entry = start_entry; 2203 while ((entry != &map->header) && (entry->start < end)) { 2204 vm_offset_t save_start; 2205 vm_offset_t save_end; 2206 2207 /* 2208 * Already user wired or hard wired (trivial cases) 2209 */ 2210 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 2211 entry = entry->next; 2212 continue; 2213 } 2214 if (entry->wired_count != 0) { 2215 entry->wired_count++; 2216 entry->eflags |= MAP_ENTRY_USER_WIRED; 2217 entry = entry->next; 2218 continue; 2219 } 2220 2221 /* 2222 * A new wiring requires instantiation of appropriate 2223 * management structures and the faulting in of the 2224 * page. 2225 */ 2226 if (entry->maptype == VM_MAPTYPE_NORMAL || 2227 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2228 int copyflag = entry->eflags & 2229 MAP_ENTRY_NEEDS_COPY; 2230 if (copyflag && ((entry->protection & 2231 VM_PROT_WRITE) != 0)) { 2232 vm_map_entry_shadow(entry, 0); 2233 } else if (entry->object.vm_object == NULL && 2234 !map->system_map) { 2235 vm_map_entry_allocate_object(entry); 2236 } 2237 } 2238 entry->wired_count++; 2239 entry->eflags |= MAP_ENTRY_USER_WIRED; 2240 2241 /* 2242 * Now fault in the area. Note that vm_fault_wire() 2243 * may release the map lock temporarily, it will be 2244 * relocked on return. The in-transition 2245 * flag protects the entries. 2246 */ 2247 save_start = entry->start; 2248 save_end = entry->end; 2249 rv = vm_fault_wire(map, entry, TRUE, 0); 2250 if (rv) { 2251 CLIP_CHECK_BACK(entry, save_start); 2252 for (;;) { 2253 KASSERT(entry->wired_count == 1, ("bad wired_count on entry")); 2254 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2255 entry->wired_count = 0; 2256 if (entry->end == save_end) 2257 break; 2258 entry = entry->next; 2259 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2260 } 2261 end = save_start; /* unwire the rest */ 2262 break; 2263 } 2264 /* 2265 * note that even though the entry might have been 2266 * clipped, the USER_WIRED flag we set prevents 2267 * duplication so we do not have to do a 2268 * clip check. 2269 */ 2270 entry = entry->next; 2271 } 2272 2273 /* 2274 * If we failed fall through to the unwiring section to 2275 * unwire what we had wired so far. 'end' has already 2276 * been adjusted. 2277 */ 2278 if (rv) 2279 new_pageable = 1; 2280 2281 /* 2282 * start_entry might have been clipped if we unlocked the 2283 * map and blocked. No matter how clipped it has gotten 2284 * there should be a fragment that is on our start boundary. 2285 */ 2286 CLIP_CHECK_BACK(start_entry, start); 2287 } 2288 2289 /* 2290 * Deal with the unwiring case. 2291 */ 2292 if (new_pageable) { 2293 /* 2294 * This is the unwiring case. We must first ensure that the 2295 * range to be unwired is really wired down. We know there 2296 * are no holes. 2297 */ 2298 entry = start_entry; 2299 while ((entry != &map->header) && (entry->start < end)) { 2300 if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2301 rv = KERN_INVALID_ARGUMENT; 2302 goto done; 2303 } 2304 KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry)); 2305 entry = entry->next; 2306 } 2307 2308 /* 2309 * Now decrement the wiring count for each region. If a region 2310 * becomes completely unwired, unwire its physical pages and 2311 * mappings. 2312 */ 2313 /* 2314 * The map entries are processed in a loop, checking to 2315 * make sure the entry is wired and asserting it has a wired 2316 * count. However, another loop was inserted more-or-less in 2317 * the middle of the unwiring path. This loop picks up the 2318 * "entry" loop variable from the first loop without first 2319 * setting it to start_entry. Naturally, the secound loop 2320 * is never entered and the pages backing the entries are 2321 * never unwired. This can lead to a leak of wired pages. 2322 */ 2323 entry = start_entry; 2324 while ((entry != &map->header) && (entry->start < end)) { 2325 KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED, 2326 ("expected USER_WIRED on entry %p", entry)); 2327 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2328 entry->wired_count--; 2329 if (entry->wired_count == 0) 2330 vm_fault_unwire(map, entry); 2331 entry = entry->next; 2332 } 2333 } 2334 done: 2335 vm_map_unclip_range(map, start_entry, start, real_end, &count, 2336 MAP_CLIP_NO_HOLES); 2337 map->timestamp++; 2338 vm_map_unlock(map); 2339 vm_map_entry_release(count); 2340 return (rv); 2341 } 2342 2343 /* 2344 * Sets the pageability of the specified address range in the target map. 2345 * Regions specified as not pageable require locked-down physical 2346 * memory and physical page maps. 2347 * 2348 * The map must not be locked, but a reference must remain to the map 2349 * throughout the call. 2350 * 2351 * This function may be called via the zalloc path and must properly 2352 * reserve map entries for kernel_map. 2353 * 2354 * No requirements. 2355 */ 2356 int 2357 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags) 2358 { 2359 vm_map_entry_t entry; 2360 vm_map_entry_t start_entry; 2361 vm_offset_t end; 2362 int rv = KERN_SUCCESS; 2363 int count; 2364 2365 if (kmflags & KM_KRESERVE) 2366 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT); 2367 else 2368 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2369 vm_map_lock(map); 2370 VM_MAP_RANGE_CHECK(map, start, real_end); 2371 end = real_end; 2372 2373 start_entry = vm_map_clip_range(map, start, end, &count, 2374 MAP_CLIP_NO_HOLES); 2375 if (start_entry == NULL) { 2376 vm_map_unlock(map); 2377 rv = KERN_INVALID_ADDRESS; 2378 goto failure; 2379 } 2380 if ((kmflags & KM_PAGEABLE) == 0) { 2381 /* 2382 * Wiring. 2383 * 2384 * 1. Holding the write lock, we create any shadow or zero-fill 2385 * objects that need to be created. Then we clip each map 2386 * entry to the region to be wired and increment its wiring 2387 * count. We create objects before clipping the map entries 2388 * to avoid object proliferation. 2389 * 2390 * 2. We downgrade to a read lock, and call vm_fault_wire to 2391 * fault in the pages for any newly wired area (wired_count is 2392 * 1). 2393 * 2394 * Downgrading to a read lock for vm_fault_wire avoids a 2395 * possible deadlock with another process that may have faulted 2396 * on one of the pages to be wired (it would mark the page busy, 2397 * blocking us, then in turn block on the map lock that we 2398 * hold). Because of problems in the recursive lock package, 2399 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 2400 * any actions that require the write lock must be done 2401 * beforehand. Because we keep the read lock on the map, the 2402 * copy-on-write status of the entries we modify here cannot 2403 * change. 2404 */ 2405 entry = start_entry; 2406 while ((entry != &map->header) && (entry->start < end)) { 2407 /* 2408 * Trivial case if the entry is already wired 2409 */ 2410 if (entry->wired_count) { 2411 entry->wired_count++; 2412 entry = entry->next; 2413 continue; 2414 } 2415 2416 /* 2417 * The entry is being newly wired, we have to setup 2418 * appropriate management structures. A shadow 2419 * object is required for a copy-on-write region, 2420 * or a normal object for a zero-fill region. We 2421 * do not have to do this for entries that point to sub 2422 * maps because we won't hold the lock on the sub map. 2423 */ 2424 if (entry->maptype == VM_MAPTYPE_NORMAL || 2425 entry->maptype == VM_MAPTYPE_VPAGETABLE) { 2426 int copyflag = entry->eflags & 2427 MAP_ENTRY_NEEDS_COPY; 2428 if (copyflag && ((entry->protection & 2429 VM_PROT_WRITE) != 0)) { 2430 vm_map_entry_shadow(entry, 0); 2431 } else if (entry->object.vm_object == NULL && 2432 !map->system_map) { 2433 vm_map_entry_allocate_object(entry); 2434 } 2435 } 2436 2437 entry->wired_count++; 2438 entry = entry->next; 2439 } 2440 2441 /* 2442 * Pass 2. 2443 */ 2444 2445 /* 2446 * HACK HACK HACK HACK 2447 * 2448 * vm_fault_wire() temporarily unlocks the map to avoid 2449 * deadlocks. The in-transition flag from vm_map_clip_range 2450 * call should protect us from changes while the map is 2451 * unlocked. T 2452 * 2453 * NOTE: Previously this comment stated that clipping might 2454 * still occur while the entry is unlocked, but from 2455 * what I can tell it actually cannot. 2456 * 2457 * It is unclear whether the CLIP_CHECK_*() calls 2458 * are still needed but we keep them in anyway. 2459 * 2460 * HACK HACK HACK HACK 2461 */ 2462 2463 entry = start_entry; 2464 while (entry != &map->header && entry->start < end) { 2465 /* 2466 * If vm_fault_wire fails for any page we need to undo 2467 * what has been done. We decrement the wiring count 2468 * for those pages which have not yet been wired (now) 2469 * and unwire those that have (later). 2470 */ 2471 vm_offset_t save_start = entry->start; 2472 vm_offset_t save_end = entry->end; 2473 2474 if (entry->wired_count == 1) 2475 rv = vm_fault_wire(map, entry, FALSE, kmflags); 2476 if (rv) { 2477 CLIP_CHECK_BACK(entry, save_start); 2478 for (;;) { 2479 KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly")); 2480 entry->wired_count = 0; 2481 if (entry->end == save_end) 2482 break; 2483 entry = entry->next; 2484 KASSERT(entry != &map->header, ("bad entry clip during backout")); 2485 } 2486 end = save_start; 2487 break; 2488 } 2489 CLIP_CHECK_FWD(entry, save_end); 2490 entry = entry->next; 2491 } 2492 2493 /* 2494 * If a failure occured undo everything by falling through 2495 * to the unwiring code. 'end' has already been adjusted 2496 * appropriately. 2497 */ 2498 if (rv) 2499 kmflags |= KM_PAGEABLE; 2500 2501 /* 2502 * start_entry is still IN_TRANSITION but may have been 2503 * clipped since vm_fault_wire() unlocks and relocks the 2504 * map. No matter how clipped it has gotten there should 2505 * be a fragment that is on our start boundary. 2506 */ 2507 CLIP_CHECK_BACK(start_entry, start); 2508 } 2509 2510 if (kmflags & KM_PAGEABLE) { 2511 /* 2512 * This is the unwiring case. We must first ensure that the 2513 * range to be unwired is really wired down. We know there 2514 * are no holes. 2515 */ 2516 entry = start_entry; 2517 while ((entry != &map->header) && (entry->start < end)) { 2518 if (entry->wired_count == 0) { 2519 rv = KERN_INVALID_ARGUMENT; 2520 goto done; 2521 } 2522 entry = entry->next; 2523 } 2524 2525 /* 2526 * Now decrement the wiring count for each region. If a region 2527 * becomes completely unwired, unwire its physical pages and 2528 * mappings. 2529 */ 2530 entry = start_entry; 2531 while ((entry != &map->header) && (entry->start < end)) { 2532 entry->wired_count--; 2533 if (entry->wired_count == 0) 2534 vm_fault_unwire(map, entry); 2535 entry = entry->next; 2536 } 2537 } 2538 done: 2539 vm_map_unclip_range(map, start_entry, start, real_end, 2540 &count, MAP_CLIP_NO_HOLES); 2541 map->timestamp++; 2542 vm_map_unlock(map); 2543 failure: 2544 if (kmflags & KM_KRESERVE) 2545 vm_map_entry_krelease(count); 2546 else 2547 vm_map_entry_release(count); 2548 return (rv); 2549 } 2550 2551 /* 2552 * Mark a newly allocated address range as wired but do not fault in 2553 * the pages. The caller is expected to load the pages into the object. 2554 * 2555 * The map must be locked on entry and will remain locked on return. 2556 * No other requirements. 2557 */ 2558 void 2559 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, 2560 int *countp) 2561 { 2562 vm_map_entry_t scan; 2563 vm_map_entry_t entry; 2564 2565 entry = vm_map_clip_range(map, addr, addr + size, 2566 countp, MAP_CLIP_NO_HOLES); 2567 for (scan = entry; 2568 scan != &map->header && scan->start < addr + size; 2569 scan = scan->next) { 2570 KKASSERT(scan->wired_count == 0); 2571 scan->wired_count = 1; 2572 } 2573 vm_map_unclip_range(map, entry, addr, addr + size, 2574 countp, MAP_CLIP_NO_HOLES); 2575 } 2576 2577 /* 2578 * Push any dirty cached pages in the address range to their pager. 2579 * If syncio is TRUE, dirty pages are written synchronously. 2580 * If invalidate is TRUE, any cached pages are freed as well. 2581 * 2582 * This routine is called by sys_msync() 2583 * 2584 * Returns an error if any part of the specified range is not mapped. 2585 * 2586 * No requirements. 2587 */ 2588 int 2589 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, 2590 boolean_t syncio, boolean_t invalidate) 2591 { 2592 vm_map_entry_t current; 2593 vm_map_entry_t entry; 2594 vm_size_t size; 2595 vm_object_t object; 2596 vm_object_t tobj; 2597 vm_ooffset_t offset; 2598 2599 vm_map_lock_read(map); 2600 VM_MAP_RANGE_CHECK(map, start, end); 2601 if (!vm_map_lookup_entry(map, start, &entry)) { 2602 vm_map_unlock_read(map); 2603 return (KERN_INVALID_ADDRESS); 2604 } 2605 lwkt_gettoken(&map->token); 2606 2607 /* 2608 * Make a first pass to check for holes. 2609 */ 2610 for (current = entry; current->start < end; current = current->next) { 2611 if (current->maptype == VM_MAPTYPE_SUBMAP) { 2612 lwkt_reltoken(&map->token); 2613 vm_map_unlock_read(map); 2614 return (KERN_INVALID_ARGUMENT); 2615 } 2616 if (end > current->end && 2617 (current->next == &map->header || 2618 current->end != current->next->start)) { 2619 lwkt_reltoken(&map->token); 2620 vm_map_unlock_read(map); 2621 return (KERN_INVALID_ADDRESS); 2622 } 2623 } 2624 2625 if (invalidate) 2626 pmap_remove(vm_map_pmap(map), start, end); 2627 2628 /* 2629 * Make a second pass, cleaning/uncaching pages from the indicated 2630 * objects as we go. 2631 */ 2632 for (current = entry; current->start < end; current = current->next) { 2633 offset = current->offset + (start - current->start); 2634 size = (end <= current->end ? end : current->end) - start; 2635 2636 switch(current->maptype) { 2637 case VM_MAPTYPE_SUBMAP: 2638 { 2639 vm_map_t smap; 2640 vm_map_entry_t tentry; 2641 vm_size_t tsize; 2642 2643 smap = current->object.sub_map; 2644 vm_map_lock_read(smap); 2645 vm_map_lookup_entry(smap, offset, &tentry); 2646 tsize = tentry->end - offset; 2647 if (tsize < size) 2648 size = tsize; 2649 object = tentry->object.vm_object; 2650 offset = tentry->offset + (offset - tentry->start); 2651 vm_map_unlock_read(smap); 2652 break; 2653 } 2654 case VM_MAPTYPE_NORMAL: 2655 case VM_MAPTYPE_VPAGETABLE: 2656 object = current->object.vm_object; 2657 break; 2658 default: 2659 object = NULL; 2660 break; 2661 } 2662 2663 if (object) 2664 vm_object_hold(object); 2665 2666 /* 2667 * Note that there is absolutely no sense in writing out 2668 * anonymous objects, so we track down the vnode object 2669 * to write out. 2670 * We invalidate (remove) all pages from the address space 2671 * anyway, for semantic correctness. 2672 * 2673 * note: certain anonymous maps, such as MAP_NOSYNC maps, 2674 * may start out with a NULL object. 2675 */ 2676 while (object && (tobj = object->backing_object) != NULL) { 2677 vm_object_hold(tobj); 2678 if (tobj == object->backing_object) { 2679 vm_object_lock_swap(); 2680 offset += object->backing_object_offset; 2681 vm_object_drop(object); 2682 object = tobj; 2683 if (object->size < OFF_TO_IDX(offset + size)) 2684 size = IDX_TO_OFF(object->size) - 2685 offset; 2686 break; 2687 } 2688 vm_object_drop(tobj); 2689 } 2690 if (object && (object->type == OBJT_VNODE) && 2691 (current->protection & VM_PROT_WRITE) && 2692 (object->flags & OBJ_NOMSYNC) == 0) { 2693 /* 2694 * Flush pages if writing is allowed, invalidate them 2695 * if invalidation requested. Pages undergoing I/O 2696 * will be ignored by vm_object_page_remove(). 2697 * 2698 * We cannot lock the vnode and then wait for paging 2699 * to complete without deadlocking against vm_fault. 2700 * Instead we simply call vm_object_page_remove() and 2701 * allow it to block internally on a page-by-page 2702 * basis when it encounters pages undergoing async 2703 * I/O. 2704 */ 2705 int flags; 2706 2707 /* no chain wait needed for vnode objects */ 2708 vm_object_reference_locked(object); 2709 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY); 2710 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 2711 flags |= invalidate ? OBJPC_INVAL : 0; 2712 2713 /* 2714 * When operating on a virtual page table just 2715 * flush the whole object. XXX we probably ought 2716 * to 2717 */ 2718 switch(current->maptype) { 2719 case VM_MAPTYPE_NORMAL: 2720 vm_object_page_clean(object, 2721 OFF_TO_IDX(offset), 2722 OFF_TO_IDX(offset + size + PAGE_MASK), 2723 flags); 2724 break; 2725 case VM_MAPTYPE_VPAGETABLE: 2726 vm_object_page_clean(object, 0, 0, flags); 2727 break; 2728 } 2729 vn_unlock(((struct vnode *)object->handle)); 2730 vm_object_deallocate_locked(object); 2731 } 2732 if (object && invalidate && 2733 ((object->type == OBJT_VNODE) || 2734 (object->type == OBJT_DEVICE) || 2735 (object->type == OBJT_MGTDEVICE))) { 2736 int clean_only = 2737 ((object->type == OBJT_DEVICE) || 2738 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE; 2739 /* no chain wait needed for vnode/device objects */ 2740 vm_object_reference_locked(object); 2741 switch(current->maptype) { 2742 case VM_MAPTYPE_NORMAL: 2743 vm_object_page_remove(object, 2744 OFF_TO_IDX(offset), 2745 OFF_TO_IDX(offset + size + PAGE_MASK), 2746 clean_only); 2747 break; 2748 case VM_MAPTYPE_VPAGETABLE: 2749 vm_object_page_remove(object, 0, 0, clean_only); 2750 break; 2751 } 2752 vm_object_deallocate_locked(object); 2753 } 2754 start += size; 2755 if (object) 2756 vm_object_drop(object); 2757 } 2758 2759 lwkt_reltoken(&map->token); 2760 vm_map_unlock_read(map); 2761 2762 return (KERN_SUCCESS); 2763 } 2764 2765 /* 2766 * Make the region specified by this entry pageable. 2767 * 2768 * The vm_map must be exclusively locked. 2769 */ 2770 static void 2771 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2772 { 2773 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2774 entry->wired_count = 0; 2775 vm_fault_unwire(map, entry); 2776 } 2777 2778 /* 2779 * Deallocate the given entry from the target map. 2780 * 2781 * The vm_map must be exclusively locked. 2782 */ 2783 static void 2784 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp) 2785 { 2786 vm_map_entry_unlink(map, entry); 2787 map->size -= entry->end - entry->start; 2788 2789 switch(entry->maptype) { 2790 case VM_MAPTYPE_NORMAL: 2791 case VM_MAPTYPE_VPAGETABLE: 2792 case VM_MAPTYPE_SUBMAP: 2793 vm_object_deallocate(entry->object.vm_object); 2794 break; 2795 case VM_MAPTYPE_UKSMAP: 2796 /* XXX TODO */ 2797 break; 2798 default: 2799 break; 2800 } 2801 2802 vm_map_entry_dispose(map, entry, countp); 2803 } 2804 2805 /* 2806 * Deallocates the given address range from the target map. 2807 * 2808 * The vm_map must be exclusively locked. 2809 */ 2810 int 2811 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp) 2812 { 2813 vm_object_t object; 2814 vm_map_entry_t entry; 2815 vm_map_entry_t first_entry; 2816 2817 ASSERT_VM_MAP_LOCKED(map); 2818 lwkt_gettoken(&map->token); 2819 again: 2820 /* 2821 * Find the start of the region, and clip it. Set entry to point 2822 * at the first record containing the requested address or, if no 2823 * such record exists, the next record with a greater address. The 2824 * loop will run from this point until a record beyond the termination 2825 * address is encountered. 2826 * 2827 * map->hint must be adjusted to not point to anything we delete, 2828 * so set it to the entry prior to the one being deleted. 2829 * 2830 * GGG see other GGG comment. 2831 */ 2832 if (vm_map_lookup_entry(map, start, &first_entry)) { 2833 entry = first_entry; 2834 vm_map_clip_start(map, entry, start, countp); 2835 map->hint = entry->prev; /* possible problem XXX */ 2836 } else { 2837 map->hint = first_entry; /* possible problem XXX */ 2838 entry = first_entry->next; 2839 } 2840 2841 /* 2842 * If a hole opens up prior to the current first_free then 2843 * adjust first_free. As with map->hint, map->first_free 2844 * cannot be left set to anything we might delete. 2845 */ 2846 if (entry == &map->header) { 2847 map->first_free = &map->header; 2848 } else if (map->first_free->start >= start) { 2849 map->first_free = entry->prev; 2850 } 2851 2852 /* 2853 * Step through all entries in this region 2854 */ 2855 while ((entry != &map->header) && (entry->start < end)) { 2856 vm_map_entry_t next; 2857 vm_offset_t s, e; 2858 vm_pindex_t offidxstart, offidxend, count; 2859 2860 /* 2861 * If we hit an in-transition entry we have to sleep and 2862 * retry. It's easier (and not really slower) to just retry 2863 * since this case occurs so rarely and the hint is already 2864 * pointing at the right place. We have to reset the 2865 * start offset so as not to accidently delete an entry 2866 * another process just created in vacated space. 2867 */ 2868 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2869 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2870 start = entry->start; 2871 ++mycpu->gd_cnt.v_intrans_coll; 2872 ++mycpu->gd_cnt.v_intrans_wait; 2873 vm_map_transition_wait(map); 2874 goto again; 2875 } 2876 vm_map_clip_end(map, entry, end, countp); 2877 2878 s = entry->start; 2879 e = entry->end; 2880 next = entry->next; 2881 2882 offidxstart = OFF_TO_IDX(entry->offset); 2883 count = OFF_TO_IDX(e - s); 2884 2885 switch(entry->maptype) { 2886 case VM_MAPTYPE_NORMAL: 2887 case VM_MAPTYPE_VPAGETABLE: 2888 case VM_MAPTYPE_SUBMAP: 2889 object = entry->object.vm_object; 2890 break; 2891 default: 2892 object = NULL; 2893 break; 2894 } 2895 2896 /* 2897 * Unwire before removing addresses from the pmap; otherwise, 2898 * unwiring will put the entries back in the pmap. 2899 */ 2900 if (entry->wired_count != 0) 2901 vm_map_entry_unwire(map, entry); 2902 2903 offidxend = offidxstart + count; 2904 2905 if (object == &kernel_object) { 2906 vm_object_hold(object); 2907 vm_object_page_remove(object, offidxstart, 2908 offidxend, FALSE); 2909 vm_object_drop(object); 2910 } else if (object && object->type != OBJT_DEFAULT && 2911 object->type != OBJT_SWAP) { 2912 /* 2913 * vnode object routines cannot be chain-locked, 2914 * but since we aren't removing pages from the 2915 * object here we can use a shared hold. 2916 */ 2917 vm_object_hold_shared(object); 2918 pmap_remove(map->pmap, s, e); 2919 vm_object_drop(object); 2920 } else if (object) { 2921 vm_object_hold(object); 2922 vm_object_chain_acquire(object, 0); 2923 pmap_remove(map->pmap, s, e); 2924 2925 if (object != NULL && 2926 object->ref_count != 1 && 2927 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == 2928 OBJ_ONEMAPPING && 2929 (object->type == OBJT_DEFAULT || 2930 object->type == OBJT_SWAP)) { 2931 vm_object_collapse(object, NULL); 2932 vm_object_page_remove(object, offidxstart, 2933 offidxend, FALSE); 2934 if (object->type == OBJT_SWAP) { 2935 swap_pager_freespace(object, 2936 offidxstart, 2937 count); 2938 } 2939 if (offidxend >= object->size && 2940 offidxstart < object->size) { 2941 object->size = offidxstart; 2942 } 2943 } 2944 vm_object_chain_release(object); 2945 vm_object_drop(object); 2946 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) { 2947 pmap_remove(map->pmap, s, e); 2948 } 2949 2950 /* 2951 * Delete the entry (which may delete the object) only after 2952 * removing all pmap entries pointing to its pages. 2953 * (Otherwise, its page frames may be reallocated, and any 2954 * modify bits will be set in the wrong object!) 2955 */ 2956 vm_map_entry_delete(map, entry, countp); 2957 entry = next; 2958 } 2959 lwkt_reltoken(&map->token); 2960 return (KERN_SUCCESS); 2961 } 2962 2963 /* 2964 * Remove the given address range from the target map. 2965 * This is the exported form of vm_map_delete. 2966 * 2967 * No requirements. 2968 */ 2969 int 2970 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2971 { 2972 int result; 2973 int count; 2974 2975 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 2976 vm_map_lock(map); 2977 VM_MAP_RANGE_CHECK(map, start, end); 2978 result = vm_map_delete(map, start, end, &count); 2979 vm_map_unlock(map); 2980 vm_map_entry_release(count); 2981 2982 return (result); 2983 } 2984 2985 /* 2986 * Assert that the target map allows the specified privilege on the 2987 * entire address region given. The entire region must be allocated. 2988 * 2989 * The caller must specify whether the vm_map is already locked or not. 2990 */ 2991 boolean_t 2992 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2993 vm_prot_t protection, boolean_t have_lock) 2994 { 2995 vm_map_entry_t entry; 2996 vm_map_entry_t tmp_entry; 2997 boolean_t result; 2998 2999 if (have_lock == FALSE) 3000 vm_map_lock_read(map); 3001 3002 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 3003 if (have_lock == FALSE) 3004 vm_map_unlock_read(map); 3005 return (FALSE); 3006 } 3007 entry = tmp_entry; 3008 3009 result = TRUE; 3010 while (start < end) { 3011 if (entry == &map->header) { 3012 result = FALSE; 3013 break; 3014 } 3015 /* 3016 * No holes allowed! 3017 */ 3018 3019 if (start < entry->start) { 3020 result = FALSE; 3021 break; 3022 } 3023 /* 3024 * Check protection associated with entry. 3025 */ 3026 3027 if ((entry->protection & protection) != protection) { 3028 result = FALSE; 3029 break; 3030 } 3031 /* go to next entry */ 3032 3033 start = entry->end; 3034 entry = entry->next; 3035 } 3036 if (have_lock == FALSE) 3037 vm_map_unlock_read(map); 3038 return (result); 3039 } 3040 3041 /* 3042 * If appropriate this function shadows the original object with a new object 3043 * and moves the VM pages from the original object to the new object. 3044 * The original object will also be collapsed, if possible. 3045 * 3046 * We can only do this for normal memory objects with a single mapping, and 3047 * it only makes sense to do it if there are 2 or more refs on the original 3048 * object. i.e. typically a memory object that has been extended into 3049 * multiple vm_map_entry's with non-overlapping ranges. 3050 * 3051 * This makes it easier to remove unused pages and keeps object inheritance 3052 * from being a negative impact on memory usage. 3053 * 3054 * On return the (possibly new) entry->object.vm_object will have an 3055 * additional ref on it for the caller to dispose of (usually by cloning 3056 * the vm_map_entry). The additional ref had to be done in this routine 3057 * to avoid racing a collapse. The object's ONEMAPPING flag will also be 3058 * cleared. 3059 * 3060 * The vm_map must be locked and its token held. 3061 */ 3062 static void 3063 vm_map_split(vm_map_entry_t entry) 3064 { 3065 /* OPTIMIZED */ 3066 vm_object_t oobject, nobject, bobject; 3067 vm_offset_t s, e; 3068 vm_page_t m; 3069 vm_pindex_t offidxstart, offidxend, idx; 3070 vm_size_t size; 3071 vm_ooffset_t offset; 3072 int useshadowlist; 3073 3074 /* 3075 * Optimize away object locks for vnode objects. Important exit/exec 3076 * critical path. 3077 * 3078 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag 3079 * anyway. 3080 */ 3081 oobject = entry->object.vm_object; 3082 if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) { 3083 vm_object_reference_quick(oobject); 3084 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3085 return; 3086 } 3087 3088 /* 3089 * Setup. Chain lock the original object throughout the entire 3090 * routine to prevent new page faults from occuring. 3091 * 3092 * XXX can madvise WILLNEED interfere with us too? 3093 */ 3094 vm_object_hold(oobject); 3095 vm_object_chain_acquire(oobject, 0); 3096 3097 /* 3098 * Original object cannot be split? Might have also changed state. 3099 */ 3100 if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT && 3101 oobject->type != OBJT_SWAP)) { 3102 vm_object_chain_release(oobject); 3103 vm_object_reference_locked(oobject); 3104 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3105 vm_object_drop(oobject); 3106 return; 3107 } 3108 3109 /* 3110 * Collapse original object with its backing store as an 3111 * optimization to reduce chain lengths when possible. 3112 * 3113 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's 3114 * for oobject, so there's no point collapsing it. 3115 * 3116 * Then re-check whether the object can be split. 3117 */ 3118 vm_object_collapse(oobject, NULL); 3119 3120 if (oobject->ref_count <= 1 || 3121 (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) || 3122 (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) { 3123 vm_object_chain_release(oobject); 3124 vm_object_reference_locked(oobject); 3125 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3126 vm_object_drop(oobject); 3127 return; 3128 } 3129 3130 /* 3131 * Acquire the chain lock on the backing object. 3132 * 3133 * Give bobject an additional ref count for when it will be shadowed 3134 * by nobject. 3135 */ 3136 useshadowlist = 0; 3137 if ((bobject = oobject->backing_object) != NULL) { 3138 if (bobject->type != OBJT_VNODE) { 3139 useshadowlist = 1; 3140 vm_object_hold(bobject); 3141 vm_object_chain_wait(bobject, 0); 3142 /* ref for shadowing below */ 3143 vm_object_reference_locked(bobject); 3144 vm_object_chain_acquire(bobject, 0); 3145 KKASSERT(bobject->backing_object == bobject); 3146 KKASSERT((bobject->flags & OBJ_DEAD) == 0); 3147 } else { 3148 /* 3149 * vnodes are not placed on the shadow list but 3150 * they still get another ref for the backing_object 3151 * reference. 3152 */ 3153 vm_object_reference_quick(bobject); 3154 } 3155 } 3156 3157 /* 3158 * Calculate the object page range and allocate the new object. 3159 */ 3160 offset = entry->offset; 3161 s = entry->start; 3162 e = entry->end; 3163 3164 offidxstart = OFF_TO_IDX(offset); 3165 offidxend = offidxstart + OFF_TO_IDX(e - s); 3166 size = offidxend - offidxstart; 3167 3168 switch(oobject->type) { 3169 case OBJT_DEFAULT: 3170 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size), 3171 VM_PROT_ALL, 0); 3172 break; 3173 case OBJT_SWAP: 3174 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size), 3175 VM_PROT_ALL, 0); 3176 break; 3177 default: 3178 /* not reached */ 3179 nobject = NULL; 3180 KKASSERT(0); 3181 } 3182 3183 if (nobject == NULL) { 3184 if (bobject) { 3185 if (useshadowlist) { 3186 vm_object_chain_release(bobject); 3187 vm_object_deallocate(bobject); 3188 vm_object_drop(bobject); 3189 } else { 3190 vm_object_deallocate(bobject); 3191 } 3192 } 3193 vm_object_chain_release(oobject); 3194 vm_object_reference_locked(oobject); 3195 vm_object_clear_flag(oobject, OBJ_ONEMAPPING); 3196 vm_object_drop(oobject); 3197 return; 3198 } 3199 3200 /* 3201 * The new object will replace entry->object.vm_object so it needs 3202 * a second reference (the caller expects an additional ref). 3203 */ 3204 vm_object_hold(nobject); 3205 vm_object_reference_locked(nobject); 3206 vm_object_chain_acquire(nobject, 0); 3207 3208 /* 3209 * nobject shadows bobject (oobject already shadows bobject). 3210 * 3211 * Adding an object to bobject's shadow list requires refing bobject 3212 * which we did above in the useshadowlist case. 3213 */ 3214 if (bobject) { 3215 nobject->backing_object_offset = 3216 oobject->backing_object_offset + IDX_TO_OFF(offidxstart); 3217 nobject->backing_object = bobject; 3218 if (useshadowlist) { 3219 bobject->shadow_count++; 3220 bobject->generation++; 3221 LIST_INSERT_HEAD(&bobject->shadow_head, 3222 nobject, shadow_list); 3223 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/ 3224 vm_object_chain_release(bobject); 3225 vm_object_drop(bobject); 3226 vm_object_set_flag(nobject, OBJ_ONSHADOW); 3227 } 3228 } 3229 3230 /* 3231 * Move the VM pages from oobject to nobject 3232 */ 3233 for (idx = 0; idx < size; idx++) { 3234 vm_page_t m; 3235 3236 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx, 3237 TRUE, "vmpg"); 3238 if (m == NULL) 3239 continue; 3240 3241 /* 3242 * We must wait for pending I/O to complete before we can 3243 * rename the page. 3244 * 3245 * We do not have to VM_PROT_NONE the page as mappings should 3246 * not be changed by this operation. 3247 * 3248 * NOTE: The act of renaming a page updates chaingen for both 3249 * objects. 3250 */ 3251 vm_page_rename(m, nobject, idx); 3252 /* page automatically made dirty by rename and cache handled */ 3253 /* page remains busy */ 3254 } 3255 3256 if (oobject->type == OBJT_SWAP) { 3257 vm_object_pip_add(oobject, 1); 3258 /* 3259 * copy oobject pages into nobject and destroy unneeded 3260 * pages in shadow object. 3261 */ 3262 swap_pager_copy(oobject, nobject, offidxstart, 0); 3263 vm_object_pip_wakeup(oobject); 3264 } 3265 3266 /* 3267 * Wakeup the pages we played with. No spl protection is needed 3268 * for a simple wakeup. 3269 */ 3270 for (idx = 0; idx < size; idx++) { 3271 m = vm_page_lookup(nobject, idx); 3272 if (m) { 3273 KKASSERT(m->flags & PG_BUSY); 3274 vm_page_wakeup(m); 3275 } 3276 } 3277 entry->object.vm_object = nobject; 3278 entry->offset = 0LL; 3279 3280 /* 3281 * Cleanup 3282 * 3283 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the 3284 * related pages were moved and are no longer applicable to the 3285 * original object. 3286 * 3287 * NOTE: Deallocate oobject (due to its entry->object.vm_object being 3288 * replaced by nobject). 3289 */ 3290 vm_object_chain_release(nobject); 3291 vm_object_drop(nobject); 3292 if (bobject && useshadowlist) { 3293 vm_object_chain_release(bobject); 3294 vm_object_drop(bobject); 3295 } 3296 vm_object_chain_release(oobject); 3297 /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/ 3298 vm_object_deallocate_locked(oobject); 3299 vm_object_drop(oobject); 3300 } 3301 3302 /* 3303 * Copies the contents of the source entry to the destination 3304 * entry. The entries *must* be aligned properly. 3305 * 3306 * The vm_maps must be exclusively locked. 3307 * The vm_map's token must be held. 3308 * 3309 * Because the maps are locked no faults can be in progress during the 3310 * operation. 3311 */ 3312 static void 3313 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map, 3314 vm_map_entry_t src_entry, vm_map_entry_t dst_entry) 3315 { 3316 vm_object_t src_object; 3317 3318 if (dst_entry->maptype == VM_MAPTYPE_SUBMAP || 3319 dst_entry->maptype == VM_MAPTYPE_UKSMAP) 3320 return; 3321 if (src_entry->maptype == VM_MAPTYPE_SUBMAP || 3322 src_entry->maptype == VM_MAPTYPE_UKSMAP) 3323 return; 3324 3325 if (src_entry->wired_count == 0) { 3326 /* 3327 * If the source entry is marked needs_copy, it is already 3328 * write-protected. 3329 */ 3330 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 3331 pmap_protect(src_map->pmap, 3332 src_entry->start, 3333 src_entry->end, 3334 src_entry->protection & ~VM_PROT_WRITE); 3335 } 3336 3337 /* 3338 * Make a copy of the object. 3339 * 3340 * The object must be locked prior to checking the object type 3341 * and for the call to vm_object_collapse() and vm_map_split(). 3342 * We cannot use *_hold() here because the split code will 3343 * probably try to destroy the object. The lock is a pool 3344 * token and doesn't care. 3345 * 3346 * We must bump src_map->timestamp when setting 3347 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault 3348 * to retry, otherwise the concurrent fault might improperly 3349 * install a RW pte when its supposed to be a RO(COW) pte. 3350 * This race can occur because a vnode-backed fault may have 3351 * to temporarily release the map lock. 3352 */ 3353 if (src_entry->object.vm_object != NULL) { 3354 vm_map_split(src_entry); 3355 src_object = src_entry->object.vm_object; 3356 dst_entry->object.vm_object = src_object; 3357 src_entry->eflags |= (MAP_ENTRY_COW | 3358 MAP_ENTRY_NEEDS_COPY); 3359 dst_entry->eflags |= (MAP_ENTRY_COW | 3360 MAP_ENTRY_NEEDS_COPY); 3361 dst_entry->offset = src_entry->offset; 3362 ++src_map->timestamp; 3363 } else { 3364 dst_entry->object.vm_object = NULL; 3365 dst_entry->offset = 0; 3366 } 3367 3368 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3369 dst_entry->end - dst_entry->start, src_entry->start); 3370 } else { 3371 /* 3372 * Of course, wired down pages can't be set copy-on-write. 3373 * Cause wired pages to be copied into the new map by 3374 * simulating faults (the new pages are pageable) 3375 */ 3376 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 3377 } 3378 } 3379 3380 /* 3381 * vmspace_fork: 3382 * Create a new process vmspace structure and vm_map 3383 * based on those of an existing process. The new map 3384 * is based on the old map, according to the inheritance 3385 * values on the regions in that map. 3386 * 3387 * The source map must not be locked. 3388 * No requirements. 3389 */ 3390 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3391 vm_map_entry_t old_entry, int *countp); 3392 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3393 vm_map_entry_t old_entry, int *countp); 3394 3395 struct vmspace * 3396 vmspace_fork(struct vmspace *vm1) 3397 { 3398 struct vmspace *vm2; 3399 vm_map_t old_map = &vm1->vm_map; 3400 vm_map_t new_map; 3401 vm_map_entry_t old_entry; 3402 int count; 3403 3404 lwkt_gettoken(&vm1->vm_map.token); 3405 vm_map_lock(old_map); 3406 3407 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3408 lwkt_gettoken(&vm2->vm_map.token); 3409 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 3410 (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy); 3411 new_map = &vm2->vm_map; /* XXX */ 3412 new_map->timestamp = 1; 3413 3414 vm_map_lock(new_map); 3415 3416 count = 0; 3417 old_entry = old_map->header.next; 3418 while (old_entry != &old_map->header) { 3419 ++count; 3420 old_entry = old_entry->next; 3421 } 3422 3423 count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT); 3424 3425 old_entry = old_map->header.next; 3426 while (old_entry != &old_map->header) { 3427 switch(old_entry->maptype) { 3428 case VM_MAPTYPE_SUBMAP: 3429 panic("vm_map_fork: encountered a submap"); 3430 break; 3431 case VM_MAPTYPE_UKSMAP: 3432 vmspace_fork_uksmap_entry(old_map, new_map, 3433 old_entry, &count); 3434 break; 3435 case VM_MAPTYPE_NORMAL: 3436 case VM_MAPTYPE_VPAGETABLE: 3437 vmspace_fork_normal_entry(old_map, new_map, 3438 old_entry, &count); 3439 break; 3440 } 3441 old_entry = old_entry->next; 3442 } 3443 3444 new_map->size = old_map->size; 3445 vm_map_unlock(old_map); 3446 vm_map_unlock(new_map); 3447 vm_map_entry_release(count); 3448 3449 lwkt_reltoken(&vm2->vm_map.token); 3450 lwkt_reltoken(&vm1->vm_map.token); 3451 3452 return (vm2); 3453 } 3454 3455 static 3456 void 3457 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map, 3458 vm_map_entry_t old_entry, int *countp) 3459 { 3460 vm_map_entry_t new_entry; 3461 vm_object_t object; 3462 3463 switch (old_entry->inheritance) { 3464 case VM_INHERIT_NONE: 3465 break; 3466 case VM_INHERIT_SHARE: 3467 /* 3468 * Clone the entry, creating the shared object if 3469 * necessary. 3470 */ 3471 if (old_entry->object.vm_object == NULL) 3472 vm_map_entry_allocate_object(old_entry); 3473 3474 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3475 /* 3476 * Shadow a map_entry which needs a copy, 3477 * replacing its object with a new object 3478 * that points to the old one. Ask the 3479 * shadow code to automatically add an 3480 * additional ref. We can't do it afterwords 3481 * because we might race a collapse. The call 3482 * to vm_map_entry_shadow() will also clear 3483 * OBJ_ONEMAPPING. 3484 */ 3485 vm_map_entry_shadow(old_entry, 1); 3486 } else if (old_entry->object.vm_object) { 3487 /* 3488 * We will make a shared copy of the object, 3489 * and must clear OBJ_ONEMAPPING. 3490 * 3491 * Optimize vnode objects. OBJ_ONEMAPPING 3492 * is non-applicable but clear it anyway, 3493 * and its terminal so we don'th ave to deal 3494 * with chains. Reduces SMP conflicts. 3495 * 3496 * XXX assert that object.vm_object != NULL 3497 * since we allocate it above. 3498 */ 3499 object = old_entry->object.vm_object; 3500 if (object->type == OBJT_VNODE) { 3501 vm_object_reference_quick(object); 3502 vm_object_clear_flag(object, 3503 OBJ_ONEMAPPING); 3504 } else { 3505 vm_object_hold(object); 3506 vm_object_chain_wait(object, 0); 3507 vm_object_reference_locked(object); 3508 vm_object_clear_flag(object, 3509 OBJ_ONEMAPPING); 3510 vm_object_drop(object); 3511 } 3512 } 3513 3514 /* 3515 * Clone the entry. We've already bumped the ref on 3516 * any vm_object. 3517 */ 3518 new_entry = vm_map_entry_create(new_map, countp); 3519 *new_entry = *old_entry; 3520 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3521 new_entry->wired_count = 0; 3522 3523 /* 3524 * Insert the entry into the new map -- we know we're 3525 * inserting at the end of the new map. 3526 */ 3527 3528 vm_map_entry_link(new_map, new_map->header.prev, 3529 new_entry); 3530 3531 /* 3532 * Update the physical map 3533 */ 3534 pmap_copy(new_map->pmap, old_map->pmap, 3535 new_entry->start, 3536 (old_entry->end - old_entry->start), 3537 old_entry->start); 3538 break; 3539 case VM_INHERIT_COPY: 3540 /* 3541 * Clone the entry and link into the map. 3542 */ 3543 new_entry = vm_map_entry_create(new_map, countp); 3544 *new_entry = *old_entry; 3545 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3546 new_entry->wired_count = 0; 3547 new_entry->object.vm_object = NULL; 3548 vm_map_entry_link(new_map, new_map->header.prev, 3549 new_entry); 3550 vm_map_copy_entry(old_map, new_map, old_entry, 3551 new_entry); 3552 break; 3553 } 3554 } 3555 3556 /* 3557 * When forking user-kernel shared maps, the map might change in the 3558 * child so do not try to copy the underlying pmap entries. 3559 */ 3560 static 3561 void 3562 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map, 3563 vm_map_entry_t old_entry, int *countp) 3564 { 3565 vm_map_entry_t new_entry; 3566 3567 new_entry = vm_map_entry_create(new_map, countp); 3568 *new_entry = *old_entry; 3569 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3570 new_entry->wired_count = 0; 3571 vm_map_entry_link(new_map, new_map->header.prev, 3572 new_entry); 3573 } 3574 3575 /* 3576 * Create an auto-grow stack entry 3577 * 3578 * No requirements. 3579 */ 3580 int 3581 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3582 int flags, vm_prot_t prot, vm_prot_t max, int cow) 3583 { 3584 vm_map_entry_t prev_entry; 3585 vm_map_entry_t new_stack_entry; 3586 vm_size_t init_ssize; 3587 int rv; 3588 int count; 3589 vm_offset_t tmpaddr; 3590 3591 cow |= MAP_IS_STACK; 3592 3593 if (max_ssize < sgrowsiz) 3594 init_ssize = max_ssize; 3595 else 3596 init_ssize = sgrowsiz; 3597 3598 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3599 vm_map_lock(map); 3600 3601 /* 3602 * Find space for the mapping 3603 */ 3604 if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) { 3605 if (vm_map_findspace(map, addrbos, max_ssize, 1, 3606 flags, &tmpaddr)) { 3607 vm_map_unlock(map); 3608 vm_map_entry_release(count); 3609 return (KERN_NO_SPACE); 3610 } 3611 addrbos = tmpaddr; 3612 } 3613 3614 /* If addr is already mapped, no go */ 3615 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3616 vm_map_unlock(map); 3617 vm_map_entry_release(count); 3618 return (KERN_NO_SPACE); 3619 } 3620 3621 #if 0 3622 /* XXX already handled by kern_mmap() */ 3623 /* If we would blow our VMEM resource limit, no go */ 3624 if (map->size + init_ssize > 3625 curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3626 vm_map_unlock(map); 3627 vm_map_entry_release(count); 3628 return (KERN_NO_SPACE); 3629 } 3630 #endif 3631 3632 /* 3633 * If we can't accomodate max_ssize in the current mapping, 3634 * no go. However, we need to be aware that subsequent user 3635 * mappings might map into the space we have reserved for 3636 * stack, and currently this space is not protected. 3637 * 3638 * Hopefully we will at least detect this condition 3639 * when we try to grow the stack. 3640 */ 3641 if ((prev_entry->next != &map->header) && 3642 (prev_entry->next->start < addrbos + max_ssize)) { 3643 vm_map_unlock(map); 3644 vm_map_entry_release(count); 3645 return (KERN_NO_SPACE); 3646 } 3647 3648 /* 3649 * We initially map a stack of only init_ssize. We will 3650 * grow as needed later. Since this is to be a grow 3651 * down stack, we map at the top of the range. 3652 * 3653 * Note: we would normally expect prot and max to be 3654 * VM_PROT_ALL, and cow to be 0. Possibly we should 3655 * eliminate these as input parameters, and just 3656 * pass these values here in the insert call. 3657 */ 3658 rv = vm_map_insert(map, &count, NULL, NULL, 3659 0, addrbos + max_ssize - init_ssize, 3660 addrbos + max_ssize, 3661 VM_MAPTYPE_NORMAL, 3662 VM_SUBSYS_STACK, prot, max, cow); 3663 3664 /* Now set the avail_ssize amount */ 3665 if (rv == KERN_SUCCESS) { 3666 if (prev_entry != &map->header) 3667 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count); 3668 new_stack_entry = prev_entry->next; 3669 if (new_stack_entry->end != addrbos + max_ssize || 3670 new_stack_entry->start != addrbos + max_ssize - init_ssize) 3671 panic ("Bad entry start/end for new stack entry"); 3672 else 3673 new_stack_entry->aux.avail_ssize = max_ssize - init_ssize; 3674 } 3675 3676 vm_map_unlock(map); 3677 vm_map_entry_release(count); 3678 return (rv); 3679 } 3680 3681 /* 3682 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3683 * desired address is already mapped, or if we successfully grow 3684 * the stack. Also returns KERN_SUCCESS if addr is outside the 3685 * stack range (this is strange, but preserves compatibility with 3686 * the grow function in vm_machdep.c). 3687 * 3688 * No requirements. 3689 */ 3690 int 3691 vm_map_growstack (struct proc *p, vm_offset_t addr) 3692 { 3693 vm_map_entry_t prev_entry; 3694 vm_map_entry_t stack_entry; 3695 vm_map_entry_t new_stack_entry; 3696 struct vmspace *vm = p->p_vmspace; 3697 vm_map_t map = &vm->vm_map; 3698 vm_offset_t end; 3699 int grow_amount; 3700 int rv = KERN_SUCCESS; 3701 int is_procstack; 3702 int use_read_lock = 1; 3703 int count; 3704 3705 count = vm_map_entry_reserve(MAP_RESERVE_COUNT); 3706 Retry: 3707 if (use_read_lock) 3708 vm_map_lock_read(map); 3709 else 3710 vm_map_lock(map); 3711 3712 /* If addr is already in the entry range, no need to grow.*/ 3713 if (vm_map_lookup_entry(map, addr, &prev_entry)) 3714 goto done; 3715 3716 if ((stack_entry = prev_entry->next) == &map->header) 3717 goto done; 3718 if (prev_entry == &map->header) 3719 end = stack_entry->start - stack_entry->aux.avail_ssize; 3720 else 3721 end = prev_entry->end; 3722 3723 /* 3724 * This next test mimics the old grow function in vm_machdep.c. 3725 * It really doesn't quite make sense, but we do it anyway 3726 * for compatibility. 3727 * 3728 * If not growable stack, return success. This signals the 3729 * caller to proceed as he would normally with normal vm. 3730 */ 3731 if (stack_entry->aux.avail_ssize < 1 || 3732 addr >= stack_entry->start || 3733 addr < stack_entry->start - stack_entry->aux.avail_ssize) { 3734 goto done; 3735 } 3736 3737 /* Find the minimum grow amount */ 3738 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 3739 if (grow_amount > stack_entry->aux.avail_ssize) { 3740 rv = KERN_NO_SPACE; 3741 goto done; 3742 } 3743 3744 /* 3745 * If there is no longer enough space between the entries 3746 * nogo, and adjust the available space. Note: this 3747 * should only happen if the user has mapped into the 3748 * stack area after the stack was created, and is 3749 * probably an error. 3750 * 3751 * This also effectively destroys any guard page the user 3752 * might have intended by limiting the stack size. 3753 */ 3754 if (grow_amount > stack_entry->start - end) { 3755 if (use_read_lock && vm_map_lock_upgrade(map)) { 3756 /* lost lock */ 3757 use_read_lock = 0; 3758 goto Retry; 3759 } 3760 use_read_lock = 0; 3761 stack_entry->aux.avail_ssize = stack_entry->start - end; 3762 rv = KERN_NO_SPACE; 3763 goto done; 3764 } 3765 3766 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 3767 3768 /* If this is the main process stack, see if we're over the 3769 * stack limit. 3770 */ 3771 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3772 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3773 rv = KERN_NO_SPACE; 3774 goto done; 3775 } 3776 3777 /* Round up the grow amount modulo SGROWSIZ */ 3778 grow_amount = roundup (grow_amount, sgrowsiz); 3779 if (grow_amount > stack_entry->aux.avail_ssize) { 3780 grow_amount = stack_entry->aux.avail_ssize; 3781 } 3782 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 3783 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 3784 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 3785 ctob(vm->vm_ssize); 3786 } 3787 3788 /* If we would blow our VMEM resource limit, no go */ 3789 if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) { 3790 rv = KERN_NO_SPACE; 3791 goto done; 3792 } 3793 3794 if (use_read_lock && vm_map_lock_upgrade(map)) { 3795 /* lost lock */ 3796 use_read_lock = 0; 3797 goto Retry; 3798 } 3799 use_read_lock = 0; 3800 3801 /* Get the preliminary new entry start value */ 3802 addr = stack_entry->start - grow_amount; 3803 3804 /* If this puts us into the previous entry, cut back our growth 3805 * to the available space. Also, see the note above. 3806 */ 3807 if (addr < end) { 3808 stack_entry->aux.avail_ssize = stack_entry->start - end; 3809 addr = end; 3810 } 3811 3812 rv = vm_map_insert(map, &count, NULL, NULL, 3813 0, addr, stack_entry->start, 3814 VM_MAPTYPE_NORMAL, 3815 VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0); 3816 3817 /* Adjust the available stack space by the amount we grew. */ 3818 if (rv == KERN_SUCCESS) { 3819 if (prev_entry != &map->header) 3820 vm_map_clip_end(map, prev_entry, addr, &count); 3821 new_stack_entry = prev_entry->next; 3822 if (new_stack_entry->end != stack_entry->start || 3823 new_stack_entry->start != addr) 3824 panic ("Bad stack grow start/end in new stack entry"); 3825 else { 3826 new_stack_entry->aux.avail_ssize = 3827 stack_entry->aux.avail_ssize - 3828 (new_stack_entry->end - new_stack_entry->start); 3829 if (is_procstack) 3830 vm->vm_ssize += btoc(new_stack_entry->end - 3831 new_stack_entry->start); 3832 } 3833 3834 if (map->flags & MAP_WIREFUTURE) 3835 vm_map_unwire(map, new_stack_entry->start, 3836 new_stack_entry->end, FALSE); 3837 } 3838 3839 done: 3840 if (use_read_lock) 3841 vm_map_unlock_read(map); 3842 else 3843 vm_map_unlock(map); 3844 vm_map_entry_release(count); 3845 return (rv); 3846 } 3847 3848 /* 3849 * Unshare the specified VM space for exec. If other processes are 3850 * mapped to it, then create a new one. The new vmspace is null. 3851 * 3852 * No requirements. 3853 */ 3854 void 3855 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 3856 { 3857 struct vmspace *oldvmspace = p->p_vmspace; 3858 struct vmspace *newvmspace; 3859 vm_map_t map = &p->p_vmspace->vm_map; 3860 3861 /* 3862 * If we are execing a resident vmspace we fork it, otherwise 3863 * we create a new vmspace. Note that exitingcnt is not 3864 * copied to the new vmspace. 3865 */ 3866 lwkt_gettoken(&oldvmspace->vm_map.token); 3867 if (vmcopy) { 3868 newvmspace = vmspace_fork(vmcopy); 3869 lwkt_gettoken(&newvmspace->vm_map.token); 3870 } else { 3871 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 3872 lwkt_gettoken(&newvmspace->vm_map.token); 3873 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 3874 (caddr_t)&oldvmspace->vm_endcopy - 3875 (caddr_t)&oldvmspace->vm_startcopy); 3876 } 3877 3878 /* 3879 * Finish initializing the vmspace before assigning it 3880 * to the process. The vmspace will become the current vmspace 3881 * if p == curproc. 3882 */ 3883 pmap_pinit2(vmspace_pmap(newvmspace)); 3884 pmap_replacevm(p, newvmspace, 0); 3885 lwkt_reltoken(&newvmspace->vm_map.token); 3886 lwkt_reltoken(&oldvmspace->vm_map.token); 3887 vmspace_rel(oldvmspace); 3888 } 3889 3890 /* 3891 * Unshare the specified VM space for forcing COW. This 3892 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3893 */ 3894 void 3895 vmspace_unshare(struct proc *p) 3896 { 3897 struct vmspace *oldvmspace = p->p_vmspace; 3898 struct vmspace *newvmspace; 3899 3900 lwkt_gettoken(&oldvmspace->vm_map.token); 3901 if (vmspace_getrefs(oldvmspace) == 1) { 3902 lwkt_reltoken(&oldvmspace->vm_map.token); 3903 return; 3904 } 3905 newvmspace = vmspace_fork(oldvmspace); 3906 lwkt_gettoken(&newvmspace->vm_map.token); 3907 pmap_pinit2(vmspace_pmap(newvmspace)); 3908 pmap_replacevm(p, newvmspace, 0); 3909 lwkt_reltoken(&newvmspace->vm_map.token); 3910 lwkt_reltoken(&oldvmspace->vm_map.token); 3911 vmspace_rel(oldvmspace); 3912 } 3913 3914 /* 3915 * vm_map_hint: return the beginning of the best area suitable for 3916 * creating a new mapping with "prot" protection. 3917 * 3918 * No requirements. 3919 */ 3920 vm_offset_t 3921 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot) 3922 { 3923 struct vmspace *vms = p->p_vmspace; 3924 3925 if (!randomize_mmap || addr != 0) { 3926 /* 3927 * Set a reasonable start point for the hint if it was 3928 * not specified or if it falls within the heap space. 3929 * Hinted mmap()s do not allocate out of the heap space. 3930 */ 3931 if (addr == 0 || 3932 (addr >= round_page((vm_offset_t)vms->vm_taddr) && 3933 addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) { 3934 addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz); 3935 } 3936 3937 return addr; 3938 } 3939 addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ; 3940 addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1); 3941 3942 return (round_page(addr)); 3943 } 3944 3945 /* 3946 * Finds the VM object, offset, and protection for a given virtual address 3947 * in the specified map, assuming a page fault of the type specified. 3948 * 3949 * Leaves the map in question locked for read; return values are guaranteed 3950 * until a vm_map_lookup_done call is performed. Note that the map argument 3951 * is in/out; the returned map must be used in the call to vm_map_lookup_done. 3952 * 3953 * A handle (out_entry) is returned for use in vm_map_lookup_done, to make 3954 * that fast. 3955 * 3956 * If a lookup is requested with "write protection" specified, the map may 3957 * be changed to perform virtual copying operations, although the data 3958 * referenced will remain the same. 3959 * 3960 * No requirements. 3961 */ 3962 int 3963 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3964 vm_offset_t vaddr, 3965 vm_prot_t fault_typea, 3966 vm_map_entry_t *out_entry, /* OUT */ 3967 vm_object_t *object, /* OUT */ 3968 vm_pindex_t *pindex, /* OUT */ 3969 vm_prot_t *out_prot, /* OUT */ 3970 boolean_t *wired) /* OUT */ 3971 { 3972 vm_map_entry_t entry; 3973 vm_map_t map = *var_map; 3974 vm_prot_t prot; 3975 vm_prot_t fault_type = fault_typea; 3976 int use_read_lock = 1; 3977 int rv = KERN_SUCCESS; 3978 3979 RetryLookup: 3980 if (use_read_lock) 3981 vm_map_lock_read(map); 3982 else 3983 vm_map_lock(map); 3984 3985 /* 3986 * If the map has an interesting hint, try it before calling full 3987 * blown lookup routine. 3988 */ 3989 entry = map->hint; 3990 cpu_ccfence(); 3991 *out_entry = entry; 3992 *object = NULL; 3993 3994 if ((entry == &map->header) || 3995 (vaddr < entry->start) || (vaddr >= entry->end)) { 3996 vm_map_entry_t tmp_entry; 3997 3998 /* 3999 * Entry was either not a valid hint, or the vaddr was not 4000 * contained in the entry, so do a full lookup. 4001 */ 4002 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) { 4003 rv = KERN_INVALID_ADDRESS; 4004 goto done; 4005 } 4006 4007 entry = tmp_entry; 4008 *out_entry = entry; 4009 } 4010 4011 /* 4012 * Handle submaps. 4013 */ 4014 if (entry->maptype == VM_MAPTYPE_SUBMAP) { 4015 vm_map_t old_map = map; 4016 4017 *var_map = map = entry->object.sub_map; 4018 if (use_read_lock) 4019 vm_map_unlock_read(old_map); 4020 else 4021 vm_map_unlock(old_map); 4022 use_read_lock = 1; 4023 goto RetryLookup; 4024 } 4025 4026 /* 4027 * Check whether this task is allowed to have this page. 4028 * Note the special case for MAP_ENTRY_COW 4029 * pages with an override. This is to implement a forced 4030 * COW for debuggers. 4031 */ 4032 4033 if (fault_type & VM_PROT_OVERRIDE_WRITE) 4034 prot = entry->max_protection; 4035 else 4036 prot = entry->protection; 4037 4038 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4039 if ((fault_type & prot) != fault_type) { 4040 rv = KERN_PROTECTION_FAILURE; 4041 goto done; 4042 } 4043 4044 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4045 (entry->eflags & MAP_ENTRY_COW) && 4046 (fault_type & VM_PROT_WRITE) && 4047 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 4048 rv = KERN_PROTECTION_FAILURE; 4049 goto done; 4050 } 4051 4052 /* 4053 * If this page is not pageable, we have to get it for all possible 4054 * accesses. 4055 */ 4056 *wired = (entry->wired_count != 0); 4057 if (*wired) 4058 prot = fault_type = entry->protection; 4059 4060 /* 4061 * Virtual page tables may need to update the accessed (A) bit 4062 * in a page table entry. Upgrade the fault to a write fault for 4063 * that case if the map will support it. If the map does not support 4064 * it the page table entry simply will not be updated. 4065 */ 4066 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) { 4067 if (prot & VM_PROT_WRITE) 4068 fault_type |= VM_PROT_WRITE; 4069 } 4070 4071 if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace && 4072 pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) { 4073 if ((prot & VM_PROT_WRITE) == 0) 4074 fault_type |= VM_PROT_WRITE; 4075 } 4076 4077 /* 4078 * Only NORMAL and VPAGETABLE maps are object-based. UKSMAPs are not. 4079 */ 4080 if (entry->maptype != VM_MAPTYPE_NORMAL && 4081 entry->maptype != VM_MAPTYPE_VPAGETABLE) { 4082 *object = NULL; 4083 goto skip; 4084 } 4085 4086 /* 4087 * If the entry was copy-on-write, we either ... 4088 */ 4089 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4090 /* 4091 * If we want to write the page, we may as well handle that 4092 * now since we've got the map locked. 4093 * 4094 * If we don't need to write the page, we just demote the 4095 * permissions allowed. 4096 */ 4097 4098 if (fault_type & VM_PROT_WRITE) { 4099 /* 4100 * Not allowed if TDF_NOFAULT is set as the shadowing 4101 * operation can deadlock against the faulting 4102 * function due to the copy-on-write. 4103 */ 4104 if (curthread->td_flags & TDF_NOFAULT) { 4105 rv = KERN_FAILURE_NOFAULT; 4106 goto done; 4107 } 4108 4109 /* 4110 * Make a new object, and place it in the object 4111 * chain. Note that no new references have appeared 4112 * -- one just moved from the map to the new 4113 * object. 4114 */ 4115 4116 if (use_read_lock && vm_map_lock_upgrade(map)) { 4117 /* lost lock */ 4118 use_read_lock = 0; 4119 goto RetryLookup; 4120 } 4121 use_read_lock = 0; 4122 4123 vm_map_entry_shadow(entry, 0); 4124 } else { 4125 /* 4126 * We're attempting to read a copy-on-write page -- 4127 * don't allow writes. 4128 */ 4129 4130 prot &= ~VM_PROT_WRITE; 4131 } 4132 } 4133 4134 /* 4135 * Create an object if necessary. 4136 */ 4137 if (entry->object.vm_object == NULL && !map->system_map) { 4138 if (use_read_lock && vm_map_lock_upgrade(map)) { 4139 /* lost lock */ 4140 use_read_lock = 0; 4141 goto RetryLookup; 4142 } 4143 use_read_lock = 0; 4144 vm_map_entry_allocate_object(entry); 4145 } 4146 4147 /* 4148 * Return the object/offset from this entry. If the entry was 4149 * copy-on-write or empty, it has been fixed up. 4150 */ 4151 *object = entry->object.vm_object; 4152 4153 skip: 4154 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4155 4156 /* 4157 * Return whether this is the only map sharing this data. On 4158 * success we return with a read lock held on the map. On failure 4159 * we return with the map unlocked. 4160 */ 4161 *out_prot = prot; 4162 done: 4163 if (rv == KERN_SUCCESS) { 4164 if (use_read_lock == 0) 4165 vm_map_lock_downgrade(map); 4166 } else if (use_read_lock) { 4167 vm_map_unlock_read(map); 4168 } else { 4169 vm_map_unlock(map); 4170 } 4171 return (rv); 4172 } 4173 4174 /* 4175 * Releases locks acquired by a vm_map_lookup() 4176 * (according to the handle returned by that lookup). 4177 * 4178 * No other requirements. 4179 */ 4180 void 4181 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count) 4182 { 4183 /* 4184 * Unlock the main-level map 4185 */ 4186 vm_map_unlock_read(map); 4187 if (count) 4188 vm_map_entry_release(count); 4189 } 4190 4191 #include "opt_ddb.h" 4192 #ifdef DDB 4193 #include <sys/kernel.h> 4194 4195 #include <ddb/ddb.h> 4196 4197 /* 4198 * Debugging only 4199 */ 4200 DB_SHOW_COMMAND(map, vm_map_print) 4201 { 4202 static int nlines; 4203 /* XXX convert args. */ 4204 vm_map_t map = (vm_map_t)addr; 4205 boolean_t full = have_addr; 4206 4207 vm_map_entry_t entry; 4208 4209 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4210 (void *)map, 4211 (void *)map->pmap, map->nentries, map->timestamp); 4212 nlines++; 4213 4214 if (!full && db_indent) 4215 return; 4216 4217 db_indent += 2; 4218 for (entry = map->header.next; entry != &map->header; 4219 entry = entry->next) { 4220 db_iprintf("map entry %p: start=%p, end=%p\n", 4221 (void *)entry, (void *)entry->start, (void *)entry->end); 4222 nlines++; 4223 { 4224 static char *inheritance_name[4] = 4225 {"share", "copy", "none", "donate_copy"}; 4226 4227 db_iprintf(" prot=%x/%x/%s", 4228 entry->protection, 4229 entry->max_protection, 4230 inheritance_name[(int)(unsigned char)entry->inheritance]); 4231 if (entry->wired_count != 0) 4232 db_printf(", wired"); 4233 } 4234 switch(entry->maptype) { 4235 case VM_MAPTYPE_SUBMAP: 4236 /* XXX no %qd in kernel. Truncate entry->offset. */ 4237 db_printf(", share=%p, offset=0x%lx\n", 4238 (void *)entry->object.sub_map, 4239 (long)entry->offset); 4240 nlines++; 4241 if ((entry->prev == &map->header) || 4242 (entry->prev->object.sub_map != 4243 entry->object.sub_map)) { 4244 db_indent += 2; 4245 vm_map_print((db_expr_t)(intptr_t) 4246 entry->object.sub_map, 4247 full, 0, NULL); 4248 db_indent -= 2; 4249 } 4250 break; 4251 case VM_MAPTYPE_NORMAL: 4252 case VM_MAPTYPE_VPAGETABLE: 4253 /* XXX no %qd in kernel. Truncate entry->offset. */ 4254 db_printf(", object=%p, offset=0x%lx", 4255 (void *)entry->object.vm_object, 4256 (long)entry->offset); 4257 if (entry->eflags & MAP_ENTRY_COW) 4258 db_printf(", copy (%s)", 4259 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4260 db_printf("\n"); 4261 nlines++; 4262 4263 if ((entry->prev == &map->header) || 4264 (entry->prev->object.vm_object != 4265 entry->object.vm_object)) { 4266 db_indent += 2; 4267 vm_object_print((db_expr_t)(intptr_t) 4268 entry->object.vm_object, 4269 full, 0, NULL); 4270 nlines += 4; 4271 db_indent -= 2; 4272 } 4273 break; 4274 case VM_MAPTYPE_UKSMAP: 4275 db_printf(", uksmap=%p, offset=0x%lx", 4276 (void *)entry->object.uksmap, 4277 (long)entry->offset); 4278 if (entry->eflags & MAP_ENTRY_COW) 4279 db_printf(", copy (%s)", 4280 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4281 db_printf("\n"); 4282 nlines++; 4283 break; 4284 default: 4285 break; 4286 } 4287 } 4288 db_indent -= 2; 4289 if (db_indent == 0) 4290 nlines = 0; 4291 } 4292 4293 /* 4294 * Debugging only 4295 */ 4296 DB_SHOW_COMMAND(procvm, procvm) 4297 { 4298 struct proc *p; 4299 4300 if (have_addr) { 4301 p = (struct proc *) addr; 4302 } else { 4303 p = curproc; 4304 } 4305 4306 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4307 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4308 (void *)vmspace_pmap(p->p_vmspace)); 4309 4310 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4311 } 4312 4313 #endif /* DDB */ 4314