xref: /dragonfly/sys/vm/vm_map.c (revision bcb3e04d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
68  */
69 
70 /*
71  *	Virtual memory mapping module.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/serialize.h>
79 #include <sys/lock.h>
80 #include <sys/vmmeter.h>
81 #include <sys/mman.h>
82 #include <sys/vnode.h>
83 #include <sys/resourcevar.h>
84 #include <sys/shm.h>
85 #include <sys/tree.h>
86 #include <sys/malloc.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/swap_pager.h>
98 #include <vm/vm_zone.h>
99 
100 #include <sys/thread2.h>
101 #include <sys/sysref2.h>
102 
103 /*
104  * Virtual memory maps provide for the mapping, protection, and sharing
105  * of virtual memory objects.  In addition, this module provides for an
106  * efficient virtual copy of memory from one map to another.
107  *
108  * Synchronization is required prior to most operations.
109  *
110  * Maps consist of an ordered doubly-linked list of simple entries.
111  * A hint and a RB tree is used to speed-up lookups.
112  *
113  * Callers looking to modify maps specify start/end addresses which cause
114  * the related map entry to be clipped if necessary, and then later
115  * recombined if the pieces remained compatible.
116  *
117  * Virtual copy operations are performed by copying VM object references
118  * from one map to another, and then marking both regions as copy-on-write.
119  */
120 static void vmspace_terminate(struct vmspace *vm);
121 static void vmspace_lock(struct vmspace *vm);
122 static void vmspace_unlock(struct vmspace *vm);
123 static void vmspace_dtor(void *obj, void *private);
124 
125 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
126 
127 struct sysref_class vmspace_sysref_class = {
128 	.name =		"vmspace",
129 	.mtype =	M_VMSPACE,
130 	.proto =	SYSREF_PROTO_VMSPACE,
131 	.offset =	offsetof(struct vmspace, vm_sysref),
132 	.objsize =	sizeof(struct vmspace),
133 	.mag_capacity =	32,
134 	.flags = SRC_MANAGEDINIT,
135 	.dtor = vmspace_dtor,
136 	.ops = {
137 		.terminate = (sysref_terminate_func_t)vmspace_terminate,
138 		.lock = (sysref_lock_func_t)vmspace_lock,
139 		.unlock = (sysref_lock_func_t)vmspace_unlock
140 	}
141 };
142 
143 #define VMEPERCPU	2
144 
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152 
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 		vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164 
165 /*
166  * Initialize the vm_map module.  Must be called before any other vm_map
167  * routines.
168  *
169  * Map and entry structures are allocated from the general purpose
170  * memory pool with some exceptions:
171  *
172  *	- The kernel map is allocated statically.
173  *	- Initial kernel map entries are allocated out of a static pool.
174  *
175  *	These restrictions are necessary since malloc() uses the
176  *	maps and requires map entries.
177  *
178  * Called from the low level boot code only.
179  */
180 void
181 vm_map_startup(void)
182 {
183 	mapzone = &mapzone_store;
184 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 		map_init, MAX_KMAP);
186 	mapentzone = &mapentzone_store;
187 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 		map_entry_init, MAX_MAPENT);
189 }
190 
191 /*
192  * Called prior to any vmspace allocations.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_init2(void)
198 {
199 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
200 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
201 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
202 	pmap_init2();
203 	vm_object_init2();
204 }
205 
206 
207 /*
208  * Red black tree functions
209  *
210  * The caller must hold the related map lock.
211  */
212 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
213 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
214 
215 /* a->start is address, and the only field has to be initialized */
216 static int
217 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
218 {
219 	if (a->start < b->start)
220 		return(-1);
221 	else if (a->start > b->start)
222 		return(1);
223 	return(0);
224 }
225 
226 /*
227  * Allocate a vmspace structure, including a vm_map and pmap.
228  * Initialize numerous fields.  While the initial allocation is zerod,
229  * subsequence reuse from the objcache leaves elements of the structure
230  * intact (particularly the pmap), so portions must be zerod.
231  *
232  * The structure is not considered activated until we call sysref_activate().
233  *
234  * No requirements.
235  */
236 struct vmspace *
237 vmspace_alloc(vm_offset_t min, vm_offset_t max)
238 {
239 	struct vmspace *vm;
240 
241 	lwkt_gettoken(&vmspace_token);
242 	vm = sysref_alloc(&vmspace_sysref_class);
243 	bzero(&vm->vm_startcopy,
244 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
245 	vm_map_init(&vm->vm_map, min, max, NULL);
246 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
247 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
248 	vm->vm_shm = NULL;
249 	vm->vm_exitingcnt = 0;
250 	cpu_vmspace_alloc(vm);
251 	sysref_activate(&vm->vm_sysref);
252 	lwkt_reltoken(&vmspace_token);
253 
254 	return (vm);
255 }
256 
257 /*
258  * dtor function - Some elements of the pmap are retained in the
259  * free-cached vmspaces to improve performance.  We have to clean them up
260  * here before returning the vmspace to the memory pool.
261  *
262  * No requirements.
263  */
264 static void
265 vmspace_dtor(void *obj, void *private)
266 {
267 	struct vmspace *vm = obj;
268 
269 	pmap_puninit(vmspace_pmap(vm));
270 }
271 
272 /*
273  * Called in two cases:
274  *
275  * (1) When the last sysref is dropped, but exitingcnt might still be
276  *     non-zero.
277  *
278  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
279  *     exitingcnt becomes zero
280  *
281  * sysref will not scrap the object until we call sysref_put() once more
282  * after the last ref has been dropped.
283  *
284  * Interlocked by the sysref API.
285  */
286 static void
287 vmspace_terminate(struct vmspace *vm)
288 {
289 	int count;
290 
291 	/*
292 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
293 	 * yet, but we can scrap user memory.
294 	 */
295 	lwkt_gettoken(&vmspace_token);
296 	if (vm->vm_exitingcnt) {
297 		shmexit(vm);
298 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
299 				  VM_MAX_USER_ADDRESS);
300 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
301 			      VM_MAX_USER_ADDRESS);
302 		lwkt_reltoken(&vmspace_token);
303 		return;
304 	}
305 	cpu_vmspace_free(vm);
306 
307 	/*
308 	 * Make sure any SysV shm is freed, it might not have in
309 	 * exit1()
310 	 */
311 	shmexit(vm);
312 
313 	KKASSERT(vm->vm_upcalls == NULL);
314 
315 	/*
316 	 * Lock the map, to wait out all other references to it.
317 	 * Delete all of the mappings and pages they hold, then call
318 	 * the pmap module to reclaim anything left.
319 	 */
320 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
321 	vm_map_lock(&vm->vm_map);
322 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
323 		vm->vm_map.max_offset, &count);
324 	vm_map_unlock(&vm->vm_map);
325 	vm_map_entry_release(count);
326 
327 	pmap_release(vmspace_pmap(vm));
328 	sysref_put(&vm->vm_sysref);
329 	lwkt_reltoken(&vmspace_token);
330 }
331 
332 /*
333  * vmspaces are not currently locked.
334  */
335 static void
336 vmspace_lock(struct vmspace *vm __unused)
337 {
338 }
339 
340 static void
341 vmspace_unlock(struct vmspace *vm __unused)
342 {
343 }
344 
345 /*
346  * This is called during exit indicating that the vmspace is no
347  * longer in used by an exiting process, but the process has not yet
348  * been cleaned up.
349  *
350  * No requirements.
351  */
352 void
353 vmspace_exitbump(struct vmspace *vm)
354 {
355 	lwkt_gettoken(&vmspace_token);
356 	++vm->vm_exitingcnt;
357 	lwkt_reltoken(&vmspace_token);
358 }
359 
360 /*
361  * This is called in the wait*() handling code.  The vmspace can be terminated
362  * after the last wait is finished using it.
363  *
364  * No requirements.
365  */
366 void
367 vmspace_exitfree(struct proc *p)
368 {
369 	struct vmspace *vm;
370 
371 	lwkt_gettoken(&vmspace_token);
372 	vm = p->p_vmspace;
373 	p->p_vmspace = NULL;
374 
375 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
376 		vmspace_terminate(vm);
377 	lwkt_reltoken(&vmspace_token);
378 }
379 
380 /*
381  * Swap useage is determined by taking the proportional swap used by
382  * VM objects backing the VM map.  To make up for fractional losses,
383  * if the VM object has any swap use at all the associated map entries
384  * count for at least 1 swap page.
385  *
386  * No requirements.
387  */
388 int
389 vmspace_swap_count(struct vmspace *vmspace)
390 {
391 	vm_map_t map = &vmspace->vm_map;
392 	vm_map_entry_t cur;
393 	vm_object_t object;
394 	int count = 0;
395 	int n;
396 
397 	lwkt_gettoken(&vmspace_token);
398 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
399 		switch(cur->maptype) {
400 		case VM_MAPTYPE_NORMAL:
401 		case VM_MAPTYPE_VPAGETABLE:
402 			if ((object = cur->object.vm_object) == NULL)
403 				break;
404 			if (object->swblock_count) {
405 				n = (cur->end - cur->start) / PAGE_SIZE;
406 				count += object->swblock_count *
407 				    SWAP_META_PAGES * n / object->size + 1;
408 			}
409 			break;
410 		default:
411 			break;
412 		}
413 	}
414 	lwkt_reltoken(&vmspace_token);
415 	return(count);
416 }
417 
418 /*
419  * Calculate the approximate number of anonymous pages in use by
420  * this vmspace.  To make up for fractional losses, we count each
421  * VM object as having at least 1 anonymous page.
422  *
423  * No requirements.
424  */
425 int
426 vmspace_anonymous_count(struct vmspace *vmspace)
427 {
428 	vm_map_t map = &vmspace->vm_map;
429 	vm_map_entry_t cur;
430 	vm_object_t object;
431 	int count = 0;
432 
433 	lwkt_gettoken(&vmspace_token);
434 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
435 		switch(cur->maptype) {
436 		case VM_MAPTYPE_NORMAL:
437 		case VM_MAPTYPE_VPAGETABLE:
438 			if ((object = cur->object.vm_object) == NULL)
439 				break;
440 			if (object->type != OBJT_DEFAULT &&
441 			    object->type != OBJT_SWAP) {
442 				break;
443 			}
444 			count += object->resident_page_count;
445 			break;
446 		default:
447 			break;
448 		}
449 	}
450 	lwkt_reltoken(&vmspace_token);
451 	return(count);
452 }
453 
454 /*
455  * Creates and returns a new empty VM map with the given physical map
456  * structure, and having the given lower and upper address bounds.
457  *
458  * No requirements.
459  */
460 vm_map_t
461 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
462 {
463 	if (result == NULL)
464 		result = zalloc(mapzone);
465 	vm_map_init(result, min, max, pmap);
466 	return (result);
467 }
468 
469 /*
470  * Initialize an existing vm_map structure such as that in the vmspace
471  * structure.  The pmap is initialized elsewhere.
472  *
473  * No requirements.
474  */
475 void
476 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
477 {
478 	map->header.next = map->header.prev = &map->header;
479 	RB_INIT(&map->rb_root);
480 	map->nentries = 0;
481 	map->size = 0;
482 	map->system_map = 0;
483 	map->infork = 0;
484 	map->min_offset = min;
485 	map->max_offset = max;
486 	map->pmap = pmap;
487 	map->first_free = &map->header;
488 	map->hint = &map->header;
489 	map->timestamp = 0;
490 	map->flags = 0;
491 	lockinit(&map->lock, "thrd_sleep", 0, 0);
492 }
493 
494 /*
495  * Shadow the vm_map_entry's object.  This typically needs to be done when
496  * a write fault is taken on an entry which had previously been cloned by
497  * fork().  The shared object (which might be NULL) must become private so
498  * we add a shadow layer above it.
499  *
500  * Object allocation for anonymous mappings is defered as long as possible.
501  * When creating a shadow, however, the underlying object must be instantiated
502  * so it can be shared.
503  *
504  * If the map segment is governed by a virtual page table then it is
505  * possible to address offsets beyond the mapped area.  Just allocate
506  * a maximally sized object for this case.
507  *
508  * The vm_map must be exclusively locked.
509  * No other requirements.
510  */
511 static
512 void
513 vm_map_entry_shadow(vm_map_entry_t entry)
514 {
515 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
516 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
517 				 0x7FFFFFFF);	/* XXX */
518 	} else {
519 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
520 				 atop(entry->end - entry->start));
521 	}
522 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
523 }
524 
525 /*
526  * Allocate an object for a vm_map_entry.
527  *
528  * Object allocation for anonymous mappings is defered as long as possible.
529  * This function is called when we can defer no longer, generally when a map
530  * entry might be split or forked or takes a page fault.
531  *
532  * If the map segment is governed by a virtual page table then it is
533  * possible to address offsets beyond the mapped area.  Just allocate
534  * a maximally sized object for this case.
535  *
536  * The vm_map must be exclusively locked.
537  * No other requirements.
538  */
539 void
540 vm_map_entry_allocate_object(vm_map_entry_t entry)
541 {
542 	vm_object_t obj;
543 
544 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
545 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
546 	} else {
547 		obj = vm_object_allocate(OBJT_DEFAULT,
548 					 atop(entry->end - entry->start));
549 	}
550 	entry->object.vm_object = obj;
551 	entry->offset = 0;
552 }
553 
554 /*
555  * Set an initial negative count so the first attempt to reserve
556  * space preloads a bunch of vm_map_entry's for this cpu.  Also
557  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
558  * map a new page for vm_map_entry structures.  SMP systems are
559  * particularly sensitive.
560  *
561  * This routine is called in early boot so we cannot just call
562  * vm_map_entry_reserve().
563  *
564  * Called from the low level boot code only (for each cpu)
565  */
566 void
567 vm_map_entry_reserve_cpu_init(globaldata_t gd)
568 {
569 	vm_map_entry_t entry;
570 	int i;
571 
572 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
573 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
574 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
575 		entry->next = gd->gd_vme_base;
576 		gd->gd_vme_base = entry;
577 	}
578 }
579 
580 /*
581  * Reserves vm_map_entry structures so code later on can manipulate
582  * map_entry structures within a locked map without blocking trying
583  * to allocate a new vm_map_entry.
584  *
585  * No requirements.
586  */
587 int
588 vm_map_entry_reserve(int count)
589 {
590 	struct globaldata *gd = mycpu;
591 	vm_map_entry_t entry;
592 
593 	/*
594 	 * Make sure we have enough structures in gd_vme_base to handle
595 	 * the reservation request.
596 	 */
597 	crit_enter();
598 	while (gd->gd_vme_avail < count) {
599 		entry = zalloc(mapentzone);
600 		entry->next = gd->gd_vme_base;
601 		gd->gd_vme_base = entry;
602 		++gd->gd_vme_avail;
603 	}
604 	gd->gd_vme_avail -= count;
605 	crit_exit();
606 
607 	return(count);
608 }
609 
610 /*
611  * Releases previously reserved vm_map_entry structures that were not
612  * used.  If we have too much junk in our per-cpu cache clean some of
613  * it out.
614  *
615  * No requirements.
616  */
617 void
618 vm_map_entry_release(int count)
619 {
620 	struct globaldata *gd = mycpu;
621 	vm_map_entry_t entry;
622 
623 	crit_enter();
624 	gd->gd_vme_avail += count;
625 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
626 		entry = gd->gd_vme_base;
627 		KKASSERT(entry != NULL);
628 		gd->gd_vme_base = entry->next;
629 		--gd->gd_vme_avail;
630 		crit_exit();
631 		zfree(mapentzone, entry);
632 		crit_enter();
633 	}
634 	crit_exit();
635 }
636 
637 /*
638  * Reserve map entry structures for use in kernel_map itself.  These
639  * entries have *ALREADY* been reserved on a per-cpu basis when the map
640  * was inited.  This function is used by zalloc() to avoid a recursion
641  * when zalloc() itself needs to allocate additional kernel memory.
642  *
643  * This function works like the normal reserve but does not load the
644  * vm_map_entry cache (because that would result in an infinite
645  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
646  *
647  * Any caller of this function must be sure to renormalize after
648  * potentially eating entries to ensure that the reserve supply
649  * remains intact.
650  *
651  * No requirements.
652  */
653 int
654 vm_map_entry_kreserve(int count)
655 {
656 	struct globaldata *gd = mycpu;
657 
658 	crit_enter();
659 	gd->gd_vme_avail -= count;
660 	crit_exit();
661 	KASSERT(gd->gd_vme_base != NULL,
662 		("no reserved entries left, gd_vme_avail = %d\n",
663 		gd->gd_vme_avail));
664 	return(count);
665 }
666 
667 /*
668  * Release previously reserved map entries for kernel_map.  We do not
669  * attempt to clean up like the normal release function as this would
670  * cause an unnecessary (but probably not fatal) deep procedure call.
671  *
672  * No requirements.
673  */
674 void
675 vm_map_entry_krelease(int count)
676 {
677 	struct globaldata *gd = mycpu;
678 
679 	crit_enter();
680 	gd->gd_vme_avail += count;
681 	crit_exit();
682 }
683 
684 /*
685  * Allocates a VM map entry for insertion.  No entry fields are filled in.
686  *
687  * The entries should have previously been reserved.  The reservation count
688  * is tracked in (*countp).
689  *
690  * No requirements.
691  */
692 static vm_map_entry_t
693 vm_map_entry_create(vm_map_t map, int *countp)
694 {
695 	struct globaldata *gd = mycpu;
696 	vm_map_entry_t entry;
697 
698 	KKASSERT(*countp > 0);
699 	--*countp;
700 	crit_enter();
701 	entry = gd->gd_vme_base;
702 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
703 	gd->gd_vme_base = entry->next;
704 	crit_exit();
705 
706 	return(entry);
707 }
708 
709 /*
710  * Dispose of a vm_map_entry that is no longer being referenced.
711  *
712  * No requirements.
713  */
714 static void
715 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
716 {
717 	struct globaldata *gd = mycpu;
718 
719 	KKASSERT(map->hint != entry);
720 	KKASSERT(map->first_free != entry);
721 
722 	++*countp;
723 	crit_enter();
724 	entry->next = gd->gd_vme_base;
725 	gd->gd_vme_base = entry;
726 	crit_exit();
727 }
728 
729 
730 /*
731  * Insert/remove entries from maps.
732  *
733  * The related map must be exclusively locked.
734  * No other requirements.
735  *
736  * NOTE! We currently acquire the vmspace_token only to avoid races
737  *	 against the pageout daemon's calls to vmspace_*_count(), which
738  *	 are unable to safely lock the vm_map without potentially
739  *	 deadlocking.
740  */
741 static __inline void
742 vm_map_entry_link(vm_map_t map,
743 		  vm_map_entry_t after_where,
744 		  vm_map_entry_t entry)
745 {
746 	ASSERT_VM_MAP_LOCKED(map);
747 
748 	lwkt_gettoken(&vmspace_token);
749 	map->nentries++;
750 	entry->prev = after_where;
751 	entry->next = after_where->next;
752 	entry->next->prev = entry;
753 	after_where->next = entry;
754 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
755 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
756 	lwkt_reltoken(&vmspace_token);
757 }
758 
759 static __inline void
760 vm_map_entry_unlink(vm_map_t map,
761 		    vm_map_entry_t entry)
762 {
763 	vm_map_entry_t prev;
764 	vm_map_entry_t next;
765 
766 	ASSERT_VM_MAP_LOCKED(map);
767 
768 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
769 		panic("vm_map_entry_unlink: attempt to mess with "
770 		      "locked entry! %p", entry);
771 	}
772 	lwkt_gettoken(&vmspace_token);
773 	prev = entry->prev;
774 	next = entry->next;
775 	next->prev = prev;
776 	prev->next = next;
777 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
778 	map->nentries--;
779 	lwkt_reltoken(&vmspace_token);
780 }
781 
782 /*
783  * Finds the map entry containing (or immediately preceding) the specified
784  * address in the given map.  The entry is returned in (*entry).
785  *
786  * The boolean result indicates whether the address is actually contained
787  * in the map.
788  *
789  * The related map must be locked.
790  * No other requirements.
791  */
792 boolean_t
793 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
794 {
795 	vm_map_entry_t tmp;
796 	vm_map_entry_t last;
797 
798 	ASSERT_VM_MAP_LOCKED(map);
799 #if 0
800 	/*
801 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
802 	 * the hint code with the red-black lookup meets with system crashes
803 	 * and lockups.  We do not yet know why.
804 	 *
805 	 * It is possible that the problem is related to the setting
806 	 * of the hint during map_entry deletion, in the code specified
807 	 * at the GGG comment later on in this file.
808 	 */
809 	/*
810 	 * Quickly check the cached hint, there's a good chance of a match.
811 	 */
812 	if (map->hint != &map->header) {
813 		tmp = map->hint;
814 		if (address >= tmp->start && address < tmp->end) {
815 			*entry = tmp;
816 			return(TRUE);
817 		}
818 	}
819 #endif
820 
821 	/*
822 	 * Locate the record from the top of the tree.  'last' tracks the
823 	 * closest prior record and is returned if no match is found, which
824 	 * in binary tree terms means tracking the most recent right-branch
825 	 * taken.  If there is no prior record, &map->header is returned.
826 	 */
827 	last = &map->header;
828 	tmp = RB_ROOT(&map->rb_root);
829 
830 	while (tmp) {
831 		if (address >= tmp->start) {
832 			if (address < tmp->end) {
833 				*entry = tmp;
834 				map->hint = tmp;
835 				return(TRUE);
836 			}
837 			last = tmp;
838 			tmp = RB_RIGHT(tmp, rb_entry);
839 		} else {
840 			tmp = RB_LEFT(tmp, rb_entry);
841 		}
842 	}
843 	*entry = last;
844 	return (FALSE);
845 }
846 
847 /*
848  * Inserts the given whole VM object into the target map at the specified
849  * address range.  The object's size should match that of the address range.
850  *
851  * The map must be exclusively locked.
852  * The caller must have reserved sufficient vm_map_entry structures.
853  *
854  * If object is non-NULL, ref count must be bumped by caller
855  * prior to making call to account for the new entry.
856  */
857 int
858 vm_map_insert(vm_map_t map, int *countp,
859 	      vm_object_t object, vm_ooffset_t offset,
860 	      vm_offset_t start, vm_offset_t end,
861 	      vm_maptype_t maptype,
862 	      vm_prot_t prot, vm_prot_t max,
863 	      int cow)
864 {
865 	vm_map_entry_t new_entry;
866 	vm_map_entry_t prev_entry;
867 	vm_map_entry_t temp_entry;
868 	vm_eflags_t protoeflags;
869 
870 	ASSERT_VM_MAP_LOCKED(map);
871 
872 	/*
873 	 * Check that the start and end points are not bogus.
874 	 */
875 	if ((start < map->min_offset) || (end > map->max_offset) ||
876 	    (start >= end))
877 		return (KERN_INVALID_ADDRESS);
878 
879 	/*
880 	 * Find the entry prior to the proposed starting address; if it's part
881 	 * of an existing entry, this range is bogus.
882 	 */
883 	if (vm_map_lookup_entry(map, start, &temp_entry))
884 		return (KERN_NO_SPACE);
885 
886 	prev_entry = temp_entry;
887 
888 	/*
889 	 * Assert that the next entry doesn't overlap the end point.
890 	 */
891 
892 	if ((prev_entry->next != &map->header) &&
893 	    (prev_entry->next->start < end))
894 		return (KERN_NO_SPACE);
895 
896 	protoeflags = 0;
897 
898 	if (cow & MAP_COPY_ON_WRITE)
899 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
900 
901 	if (cow & MAP_NOFAULT) {
902 		protoeflags |= MAP_ENTRY_NOFAULT;
903 
904 		KASSERT(object == NULL,
905 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
906 	}
907 	if (cow & MAP_DISABLE_SYNCER)
908 		protoeflags |= MAP_ENTRY_NOSYNC;
909 	if (cow & MAP_DISABLE_COREDUMP)
910 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
911 	if (cow & MAP_IS_STACK)
912 		protoeflags |= MAP_ENTRY_STACK;
913 	if (cow & MAP_IS_KSTACK)
914 		protoeflags |= MAP_ENTRY_KSTACK;
915 
916 	lwkt_gettoken(&vm_token);
917 	lwkt_gettoken(&vmobj_token);
918 
919 	if (object) {
920 		/*
921 		 * When object is non-NULL, it could be shared with another
922 		 * process.  We have to set or clear OBJ_ONEMAPPING
923 		 * appropriately.
924 		 */
925 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
926 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
927 		}
928 	}
929 	else if ((prev_entry != &map->header) &&
930 		 (prev_entry->eflags == protoeflags) &&
931 		 (prev_entry->end == start) &&
932 		 (prev_entry->wired_count == 0) &&
933 		 prev_entry->maptype == maptype &&
934 		 ((prev_entry->object.vm_object == NULL) ||
935 		  vm_object_coalesce(prev_entry->object.vm_object,
936 				     OFF_TO_IDX(prev_entry->offset),
937 				     (vm_size_t)(prev_entry->end - prev_entry->start),
938 				     (vm_size_t)(end - prev_entry->end)))) {
939 		/*
940 		 * We were able to extend the object.  Determine if we
941 		 * can extend the previous map entry to include the
942 		 * new range as well.
943 		 */
944 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
945 		    (prev_entry->protection == prot) &&
946 		    (prev_entry->max_protection == max)) {
947 			lwkt_reltoken(&vmobj_token);
948 			lwkt_reltoken(&vm_token);
949 			map->size += (end - prev_entry->end);
950 			prev_entry->end = end;
951 			vm_map_simplify_entry(map, prev_entry, countp);
952 			return (KERN_SUCCESS);
953 		}
954 
955 		/*
956 		 * If we can extend the object but cannot extend the
957 		 * map entry, we have to create a new map entry.  We
958 		 * must bump the ref count on the extended object to
959 		 * account for it.  object may be NULL.
960 		 */
961 		object = prev_entry->object.vm_object;
962 		offset = prev_entry->offset +
963 			(prev_entry->end - prev_entry->start);
964 		vm_object_reference_locked(object);
965 	}
966 
967 	lwkt_reltoken(&vmobj_token);
968 	lwkt_reltoken(&vm_token);
969 
970 	/*
971 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
972 	 * in things like the buffer map where we manage kva but do not manage
973 	 * backing objects.
974 	 */
975 
976 	/*
977 	 * Create a new entry
978 	 */
979 
980 	new_entry = vm_map_entry_create(map, countp);
981 	new_entry->start = start;
982 	new_entry->end = end;
983 
984 	new_entry->maptype = maptype;
985 	new_entry->eflags = protoeflags;
986 	new_entry->object.vm_object = object;
987 	new_entry->offset = offset;
988 	new_entry->aux.master_pde = 0;
989 
990 	new_entry->inheritance = VM_INHERIT_DEFAULT;
991 	new_entry->protection = prot;
992 	new_entry->max_protection = max;
993 	new_entry->wired_count = 0;
994 
995 	/*
996 	 * Insert the new entry into the list
997 	 */
998 
999 	vm_map_entry_link(map, prev_entry, new_entry);
1000 	map->size += new_entry->end - new_entry->start;
1001 
1002 	/*
1003 	 * Update the free space hint.  Entries cannot overlap.
1004 	 * An exact comparison is needed to avoid matching
1005 	 * against the map->header.
1006 	 */
1007 	if ((map->first_free == prev_entry) &&
1008 	    (prev_entry->end == new_entry->start)) {
1009 		map->first_free = new_entry;
1010 	}
1011 
1012 #if 0
1013 	/*
1014 	 * Temporarily removed to avoid MAP_STACK panic, due to
1015 	 * MAP_STACK being a huge hack.  Will be added back in
1016 	 * when MAP_STACK (and the user stack mapping) is fixed.
1017 	 */
1018 	/*
1019 	 * It may be possible to simplify the entry
1020 	 */
1021 	vm_map_simplify_entry(map, new_entry, countp);
1022 #endif
1023 
1024 	/*
1025 	 * Try to pre-populate the page table.  Mappings governed by virtual
1026 	 * page tables cannot be prepopulated without a lot of work, so
1027 	 * don't try.
1028 	 */
1029 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1030 	    maptype != VM_MAPTYPE_VPAGETABLE) {
1031 		pmap_object_init_pt(map->pmap, start, prot,
1032 				    object, OFF_TO_IDX(offset), end - start,
1033 				    cow & MAP_PREFAULT_PARTIAL);
1034 	}
1035 
1036 	return (KERN_SUCCESS);
1037 }
1038 
1039 /*
1040  * Find sufficient space for `length' bytes in the given map, starting at
1041  * `start'.  Returns 0 on success, 1 on no space.
1042  *
1043  * This function will returned an arbitrarily aligned pointer.  If no
1044  * particular alignment is required you should pass align as 1.  Note that
1045  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1046  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1047  * argument.
1048  *
1049  * 'align' should be a power of 2 but is not required to be.
1050  *
1051  * The map must be exclusively locked.
1052  * No other requirements.
1053  */
1054 int
1055 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1056 		 vm_size_t align, int flags, vm_offset_t *addr)
1057 {
1058 	vm_map_entry_t entry, next;
1059 	vm_offset_t end;
1060 	vm_offset_t align_mask;
1061 
1062 	if (start < map->min_offset)
1063 		start = map->min_offset;
1064 	if (start > map->max_offset)
1065 		return (1);
1066 
1067 	/*
1068 	 * If the alignment is not a power of 2 we will have to use
1069 	 * a mod/division, set align_mask to a special value.
1070 	 */
1071 	if ((align | (align - 1)) + 1 != (align << 1))
1072 		align_mask = (vm_offset_t)-1;
1073 	else
1074 		align_mask = align - 1;
1075 
1076 	/*
1077 	 * Look for the first possible address; if there's already something
1078 	 * at this address, we have to start after it.
1079 	 */
1080 	if (start == map->min_offset) {
1081 		if ((entry = map->first_free) != &map->header)
1082 			start = entry->end;
1083 	} else {
1084 		vm_map_entry_t tmp;
1085 
1086 		if (vm_map_lookup_entry(map, start, &tmp))
1087 			start = tmp->end;
1088 		entry = tmp;
1089 	}
1090 
1091 	/*
1092 	 * Look through the rest of the map, trying to fit a new region in the
1093 	 * gap between existing regions, or after the very last region.
1094 	 */
1095 	for (;; start = (entry = next)->end) {
1096 		/*
1097 		 * Adjust the proposed start by the requested alignment,
1098 		 * be sure that we didn't wrap the address.
1099 		 */
1100 		if (align_mask == (vm_offset_t)-1)
1101 			end = ((start + align - 1) / align) * align;
1102 		else
1103 			end = (start + align_mask) & ~align_mask;
1104 		if (end < start)
1105 			return (1);
1106 		start = end;
1107 		/*
1108 		 * Find the end of the proposed new region.  Be sure we didn't
1109 		 * go beyond the end of the map, or wrap around the address.
1110 		 * Then check to see if this is the last entry or if the
1111 		 * proposed end fits in the gap between this and the next
1112 		 * entry.
1113 		 */
1114 		end = start + length;
1115 		if (end > map->max_offset || end < start)
1116 			return (1);
1117 		next = entry->next;
1118 
1119 		/*
1120 		 * If the next entry's start address is beyond the desired
1121 		 * end address we may have found a good entry.
1122 		 *
1123 		 * If the next entry is a stack mapping we do not map into
1124 		 * the stack's reserved space.
1125 		 *
1126 		 * XXX continue to allow mapping into the stack's reserved
1127 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1128 		 * mapping, for backwards compatibility.  But the caller
1129 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1130 		 * want to do that.
1131 		 */
1132 		if (next == &map->header)
1133 			break;
1134 		if (next->start >= end) {
1135 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1136 				break;
1137 			if (flags & MAP_STACK)
1138 				break;
1139 			if (next->start - next->aux.avail_ssize >= end)
1140 				break;
1141 		}
1142 	}
1143 	map->hint = entry;
1144 
1145 	/*
1146 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1147 	 * if it fails.  The kernel_map is locked and nothing can steal
1148 	 * our address space if pmap_growkernel() blocks.
1149 	 *
1150 	 * NOTE: This may be unconditionally called for kldload areas on
1151 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1152 	 *	 fill 128G worth of page tables!).  Therefore we must not
1153 	 *	 retry.
1154 	 */
1155 	if (map == &kernel_map) {
1156 		vm_offset_t kstop;
1157 
1158 		kstop = round_page(start + length);
1159 		if (kstop > kernel_vm_end)
1160 			pmap_growkernel(start, kstop);
1161 	}
1162 	*addr = start;
1163 	return (0);
1164 }
1165 
1166 /*
1167  * vm_map_find finds an unallocated region in the target address map with
1168  * the given length.  The search is defined to be first-fit from the
1169  * specified address; the region found is returned in the same parameter.
1170  *
1171  * If object is non-NULL, ref count must be bumped by caller
1172  * prior to making call to account for the new entry.
1173  *
1174  * No requirements.  This function will lock the map temporarily.
1175  */
1176 int
1177 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1178 	    vm_offset_t *addr,	vm_size_t length, vm_size_t align,
1179 	    boolean_t fitit,
1180 	    vm_maptype_t maptype,
1181 	    vm_prot_t prot, vm_prot_t max,
1182 	    int cow)
1183 {
1184 	vm_offset_t start;
1185 	int result;
1186 	int count;
1187 
1188 	start = *addr;
1189 
1190 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1191 	vm_map_lock(map);
1192 	if (fitit) {
1193 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1194 			vm_map_unlock(map);
1195 			vm_map_entry_release(count);
1196 			return (KERN_NO_SPACE);
1197 		}
1198 		start = *addr;
1199 	}
1200 	result = vm_map_insert(map, &count, object, offset,
1201 			       start, start + length,
1202 			       maptype,
1203 			       prot, max,
1204 			       cow);
1205 	vm_map_unlock(map);
1206 	vm_map_entry_release(count);
1207 
1208 	return (result);
1209 }
1210 
1211 /*
1212  * Simplify the given map entry by merging with either neighbor.  This
1213  * routine also has the ability to merge with both neighbors.
1214  *
1215  * This routine guarentees that the passed entry remains valid (though
1216  * possibly extended).  When merging, this routine may delete one or
1217  * both neighbors.  No action is taken on entries which have their
1218  * in-transition flag set.
1219  *
1220  * The map must be exclusively locked.
1221  */
1222 void
1223 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1224 {
1225 	vm_map_entry_t next, prev;
1226 	vm_size_t prevsize, esize;
1227 
1228 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1229 		++mycpu->gd_cnt.v_intrans_coll;
1230 		return;
1231 	}
1232 
1233 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1234 		return;
1235 
1236 	prev = entry->prev;
1237 	if (prev != &map->header) {
1238 		prevsize = prev->end - prev->start;
1239 		if ( (prev->end == entry->start) &&
1240 		     (prev->maptype == entry->maptype) &&
1241 		     (prev->object.vm_object == entry->object.vm_object) &&
1242 		     (!prev->object.vm_object ||
1243 			(prev->offset + prevsize == entry->offset)) &&
1244 		     (prev->eflags == entry->eflags) &&
1245 		     (prev->protection == entry->protection) &&
1246 		     (prev->max_protection == entry->max_protection) &&
1247 		     (prev->inheritance == entry->inheritance) &&
1248 		     (prev->wired_count == entry->wired_count)) {
1249 			if (map->first_free == prev)
1250 				map->first_free = entry;
1251 			if (map->hint == prev)
1252 				map->hint = entry;
1253 			vm_map_entry_unlink(map, prev);
1254 			entry->start = prev->start;
1255 			entry->offset = prev->offset;
1256 			if (prev->object.vm_object)
1257 				vm_object_deallocate(prev->object.vm_object);
1258 			vm_map_entry_dispose(map, prev, countp);
1259 		}
1260 	}
1261 
1262 	next = entry->next;
1263 	if (next != &map->header) {
1264 		esize = entry->end - entry->start;
1265 		if ((entry->end == next->start) &&
1266 		    (next->maptype == entry->maptype) &&
1267 		    (next->object.vm_object == entry->object.vm_object) &&
1268 		     (!entry->object.vm_object ||
1269 			(entry->offset + esize == next->offset)) &&
1270 		    (next->eflags == entry->eflags) &&
1271 		    (next->protection == entry->protection) &&
1272 		    (next->max_protection == entry->max_protection) &&
1273 		    (next->inheritance == entry->inheritance) &&
1274 		    (next->wired_count == entry->wired_count)) {
1275 			if (map->first_free == next)
1276 				map->first_free = entry;
1277 			if (map->hint == next)
1278 				map->hint = entry;
1279 			vm_map_entry_unlink(map, next);
1280 			entry->end = next->end;
1281 			if (next->object.vm_object)
1282 				vm_object_deallocate(next->object.vm_object);
1283 			vm_map_entry_dispose(map, next, countp);
1284 	        }
1285 	}
1286 }
1287 
1288 /*
1289  * Asserts that the given entry begins at or after the specified address.
1290  * If necessary, it splits the entry into two.
1291  */
1292 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1293 {									\
1294 	if (startaddr > entry->start)					\
1295 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1296 }
1297 
1298 /*
1299  * This routine is called only when it is known that the entry must be split.
1300  *
1301  * The map must be exclusively locked.
1302  */
1303 static void
1304 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1305 		   int *countp)
1306 {
1307 	vm_map_entry_t new_entry;
1308 
1309 	/*
1310 	 * Split off the front portion -- note that we must insert the new
1311 	 * entry BEFORE this one, so that this entry has the specified
1312 	 * starting address.
1313 	 */
1314 
1315 	vm_map_simplify_entry(map, entry, countp);
1316 
1317 	/*
1318 	 * If there is no object backing this entry, we might as well create
1319 	 * one now.  If we defer it, an object can get created after the map
1320 	 * is clipped, and individual objects will be created for the split-up
1321 	 * map.  This is a bit of a hack, but is also about the best place to
1322 	 * put this improvement.
1323 	 */
1324 	if (entry->object.vm_object == NULL && !map->system_map) {
1325 		vm_map_entry_allocate_object(entry);
1326 	}
1327 
1328 	new_entry = vm_map_entry_create(map, countp);
1329 	*new_entry = *entry;
1330 
1331 	new_entry->end = start;
1332 	entry->offset += (start - entry->start);
1333 	entry->start = start;
1334 
1335 	vm_map_entry_link(map, entry->prev, new_entry);
1336 
1337 	switch(entry->maptype) {
1338 	case VM_MAPTYPE_NORMAL:
1339 	case VM_MAPTYPE_VPAGETABLE:
1340 		vm_object_reference(new_entry->object.vm_object);
1341 		break;
1342 	default:
1343 		break;
1344 	}
1345 }
1346 
1347 /*
1348  * Asserts that the given entry ends at or before the specified address.
1349  * If necessary, it splits the entry into two.
1350  *
1351  * The map must be exclusively locked.
1352  */
1353 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1354 {								\
1355 	if (endaddr < entry->end)				\
1356 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1357 }
1358 
1359 /*
1360  * This routine is called only when it is known that the entry must be split.
1361  *
1362  * The map must be exclusively locked.
1363  */
1364 static void
1365 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1366 		 int *countp)
1367 {
1368 	vm_map_entry_t new_entry;
1369 
1370 	/*
1371 	 * If there is no object backing this entry, we might as well create
1372 	 * one now.  If we defer it, an object can get created after the map
1373 	 * is clipped, and individual objects will be created for the split-up
1374 	 * map.  This is a bit of a hack, but is also about the best place to
1375 	 * put this improvement.
1376 	 */
1377 
1378 	if (entry->object.vm_object == NULL && !map->system_map) {
1379 		vm_map_entry_allocate_object(entry);
1380 	}
1381 
1382 	/*
1383 	 * Create a new entry and insert it AFTER the specified entry
1384 	 */
1385 
1386 	new_entry = vm_map_entry_create(map, countp);
1387 	*new_entry = *entry;
1388 
1389 	new_entry->start = entry->end = end;
1390 	new_entry->offset += (end - entry->start);
1391 
1392 	vm_map_entry_link(map, entry, new_entry);
1393 
1394 	switch(entry->maptype) {
1395 	case VM_MAPTYPE_NORMAL:
1396 	case VM_MAPTYPE_VPAGETABLE:
1397 		vm_object_reference(new_entry->object.vm_object);
1398 		break;
1399 	default:
1400 		break;
1401 	}
1402 }
1403 
1404 /*
1405  * Asserts that the starting and ending region addresses fall within the
1406  * valid range for the map.
1407  */
1408 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1409 {						\
1410 	if (start < vm_map_min(map))		\
1411 		start = vm_map_min(map);	\
1412 	if (end > vm_map_max(map))		\
1413 		end = vm_map_max(map);		\
1414 	if (start > end)			\
1415 		start = end;			\
1416 }
1417 
1418 /*
1419  * Used to block when an in-transition collison occurs.  The map
1420  * is unlocked for the sleep and relocked before the return.
1421  */
1422 void
1423 vm_map_transition_wait(vm_map_t map)
1424 {
1425 	tsleep_interlock(map, 0);
1426 	vm_map_unlock(map);
1427 	tsleep(map, PINTERLOCKED, "vment", 0);
1428 	vm_map_lock(map);
1429 }
1430 
1431 /*
1432  * When we do blocking operations with the map lock held it is
1433  * possible that a clip might have occured on our in-transit entry,
1434  * requiring an adjustment to the entry in our loop.  These macros
1435  * help the pageable and clip_range code deal with the case.  The
1436  * conditional costs virtually nothing if no clipping has occured.
1437  */
1438 
1439 #define CLIP_CHECK_BACK(entry, save_start)		\
1440     do {						\
1441 	    while (entry->start != save_start) {	\
1442 		    entry = entry->prev;		\
1443 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1444 	    }						\
1445     } while(0)
1446 
1447 #define CLIP_CHECK_FWD(entry, save_end)			\
1448     do {						\
1449 	    while (entry->end != save_end) {		\
1450 		    entry = entry->next;		\
1451 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1452 	    }						\
1453     } while(0)
1454 
1455 
1456 /*
1457  * Clip the specified range and return the base entry.  The
1458  * range may cover several entries starting at the returned base
1459  * and the first and last entry in the covering sequence will be
1460  * properly clipped to the requested start and end address.
1461  *
1462  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1463  * flag.
1464  *
1465  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1466  * covered by the requested range.
1467  *
1468  * The map must be exclusively locked on entry and will remain locked
1469  * on return. If no range exists or the range contains holes and you
1470  * specified that no holes were allowed, NULL will be returned.  This
1471  * routine may temporarily unlock the map in order avoid a deadlock when
1472  * sleeping.
1473  */
1474 static
1475 vm_map_entry_t
1476 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1477 		  int *countp, int flags)
1478 {
1479 	vm_map_entry_t start_entry;
1480 	vm_map_entry_t entry;
1481 
1482 	/*
1483 	 * Locate the entry and effect initial clipping.  The in-transition
1484 	 * case does not occur very often so do not try to optimize it.
1485 	 */
1486 again:
1487 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1488 		return (NULL);
1489 	entry = start_entry;
1490 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1491 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1492 		++mycpu->gd_cnt.v_intrans_coll;
1493 		++mycpu->gd_cnt.v_intrans_wait;
1494 		vm_map_transition_wait(map);
1495 		/*
1496 		 * entry and/or start_entry may have been clipped while
1497 		 * we slept, or may have gone away entirely.  We have
1498 		 * to restart from the lookup.
1499 		 */
1500 		goto again;
1501 	}
1502 
1503 	/*
1504 	 * Since we hold an exclusive map lock we do not have to restart
1505 	 * after clipping, even though clipping may block in zalloc.
1506 	 */
1507 	vm_map_clip_start(map, entry, start, countp);
1508 	vm_map_clip_end(map, entry, end, countp);
1509 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1510 
1511 	/*
1512 	 * Scan entries covered by the range.  When working on the next
1513 	 * entry a restart need only re-loop on the current entry which
1514 	 * we have already locked, since 'next' may have changed.  Also,
1515 	 * even though entry is safe, it may have been clipped so we
1516 	 * have to iterate forwards through the clip after sleeping.
1517 	 */
1518 	while (entry->next != &map->header && entry->next->start < end) {
1519 		vm_map_entry_t next = entry->next;
1520 
1521 		if (flags & MAP_CLIP_NO_HOLES) {
1522 			if (next->start > entry->end) {
1523 				vm_map_unclip_range(map, start_entry,
1524 					start, entry->end, countp, flags);
1525 				return(NULL);
1526 			}
1527 		}
1528 
1529 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1530 			vm_offset_t save_end = entry->end;
1531 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1532 			++mycpu->gd_cnt.v_intrans_coll;
1533 			++mycpu->gd_cnt.v_intrans_wait;
1534 			vm_map_transition_wait(map);
1535 
1536 			/*
1537 			 * clips might have occured while we blocked.
1538 			 */
1539 			CLIP_CHECK_FWD(entry, save_end);
1540 			CLIP_CHECK_BACK(start_entry, start);
1541 			continue;
1542 		}
1543 		/*
1544 		 * No restart necessary even though clip_end may block, we
1545 		 * are holding the map lock.
1546 		 */
1547 		vm_map_clip_end(map, next, end, countp);
1548 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1549 		entry = next;
1550 	}
1551 	if (flags & MAP_CLIP_NO_HOLES) {
1552 		if (entry->end != end) {
1553 			vm_map_unclip_range(map, start_entry,
1554 				start, entry->end, countp, flags);
1555 			return(NULL);
1556 		}
1557 	}
1558 	return(start_entry);
1559 }
1560 
1561 /*
1562  * Undo the effect of vm_map_clip_range().  You should pass the same
1563  * flags and the same range that you passed to vm_map_clip_range().
1564  * This code will clear the in-transition flag on the entries and
1565  * wake up anyone waiting.  This code will also simplify the sequence
1566  * and attempt to merge it with entries before and after the sequence.
1567  *
1568  * The map must be locked on entry and will remain locked on return.
1569  *
1570  * Note that you should also pass the start_entry returned by
1571  * vm_map_clip_range().  However, if you block between the two calls
1572  * with the map unlocked please be aware that the start_entry may
1573  * have been clipped and you may need to scan it backwards to find
1574  * the entry corresponding with the original start address.  You are
1575  * responsible for this, vm_map_unclip_range() expects the correct
1576  * start_entry to be passed to it and will KASSERT otherwise.
1577  */
1578 static
1579 void
1580 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1581 		    vm_offset_t start, vm_offset_t end,
1582 		    int *countp, int flags)
1583 {
1584 	vm_map_entry_t entry;
1585 
1586 	entry = start_entry;
1587 
1588 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1589 	while (entry != &map->header && entry->start < end) {
1590 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1591 			("in-transition flag not set during unclip on: %p",
1592 			entry));
1593 		KASSERT(entry->end <= end,
1594 			("unclip_range: tail wasn't clipped"));
1595 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1596 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1597 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1598 			wakeup(map);
1599 		}
1600 		entry = entry->next;
1601 	}
1602 
1603 	/*
1604 	 * Simplification does not block so there is no restart case.
1605 	 */
1606 	entry = start_entry;
1607 	while (entry != &map->header && entry->start < end) {
1608 		vm_map_simplify_entry(map, entry, countp);
1609 		entry = entry->next;
1610 	}
1611 }
1612 
1613 /*
1614  * Mark the given range as handled by a subordinate map.
1615  *
1616  * This range must have been created with vm_map_find(), and no other
1617  * operations may have been performed on this range prior to calling
1618  * vm_map_submap().
1619  *
1620  * Submappings cannot be removed.
1621  *
1622  * No requirements.
1623  */
1624 int
1625 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1626 {
1627 	vm_map_entry_t entry;
1628 	int result = KERN_INVALID_ARGUMENT;
1629 	int count;
1630 
1631 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1632 	vm_map_lock(map);
1633 
1634 	VM_MAP_RANGE_CHECK(map, start, end);
1635 
1636 	if (vm_map_lookup_entry(map, start, &entry)) {
1637 		vm_map_clip_start(map, entry, start, &count);
1638 	} else {
1639 		entry = entry->next;
1640 	}
1641 
1642 	vm_map_clip_end(map, entry, end, &count);
1643 
1644 	if ((entry->start == start) && (entry->end == end) &&
1645 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1646 	    (entry->object.vm_object == NULL)) {
1647 		entry->object.sub_map = submap;
1648 		entry->maptype = VM_MAPTYPE_SUBMAP;
1649 		result = KERN_SUCCESS;
1650 	}
1651 	vm_map_unlock(map);
1652 	vm_map_entry_release(count);
1653 
1654 	return (result);
1655 }
1656 
1657 /*
1658  * Sets the protection of the specified address region in the target map.
1659  * If "set_max" is specified, the maximum protection is to be set;
1660  * otherwise, only the current protection is affected.
1661  *
1662  * The protection is not applicable to submaps, but is applicable to normal
1663  * maps and maps governed by virtual page tables.  For example, when operating
1664  * on a virtual page table our protection basically controls how COW occurs
1665  * on the backing object, whereas the virtual page table abstraction itself
1666  * is an abstraction for userland.
1667  *
1668  * No requirements.
1669  */
1670 int
1671 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1672 	       vm_prot_t new_prot, boolean_t set_max)
1673 {
1674 	vm_map_entry_t current;
1675 	vm_map_entry_t entry;
1676 	int count;
1677 
1678 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1679 	vm_map_lock(map);
1680 
1681 	VM_MAP_RANGE_CHECK(map, start, end);
1682 
1683 	if (vm_map_lookup_entry(map, start, &entry)) {
1684 		vm_map_clip_start(map, entry, start, &count);
1685 	} else {
1686 		entry = entry->next;
1687 	}
1688 
1689 	/*
1690 	 * Make a first pass to check for protection violations.
1691 	 */
1692 	current = entry;
1693 	while ((current != &map->header) && (current->start < end)) {
1694 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1695 			vm_map_unlock(map);
1696 			vm_map_entry_release(count);
1697 			return (KERN_INVALID_ARGUMENT);
1698 		}
1699 		if ((new_prot & current->max_protection) != new_prot) {
1700 			vm_map_unlock(map);
1701 			vm_map_entry_release(count);
1702 			return (KERN_PROTECTION_FAILURE);
1703 		}
1704 		current = current->next;
1705 	}
1706 
1707 	/*
1708 	 * Go back and fix up protections. [Note that clipping is not
1709 	 * necessary the second time.]
1710 	 */
1711 	current = entry;
1712 
1713 	while ((current != &map->header) && (current->start < end)) {
1714 		vm_prot_t old_prot;
1715 
1716 		vm_map_clip_end(map, current, end, &count);
1717 
1718 		old_prot = current->protection;
1719 		if (set_max) {
1720 			current->protection =
1721 			    (current->max_protection = new_prot) &
1722 			    old_prot;
1723 		} else {
1724 			current->protection = new_prot;
1725 		}
1726 
1727 		/*
1728 		 * Update physical map if necessary. Worry about copy-on-write
1729 		 * here -- CHECK THIS XXX
1730 		 */
1731 
1732 		if (current->protection != old_prot) {
1733 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1734 							VM_PROT_ALL)
1735 
1736 			pmap_protect(map->pmap, current->start,
1737 			    current->end,
1738 			    current->protection & MASK(current));
1739 #undef	MASK
1740 		}
1741 
1742 		vm_map_simplify_entry(map, current, &count);
1743 
1744 		current = current->next;
1745 	}
1746 
1747 	vm_map_unlock(map);
1748 	vm_map_entry_release(count);
1749 	return (KERN_SUCCESS);
1750 }
1751 
1752 /*
1753  * This routine traverses a processes map handling the madvise
1754  * system call.  Advisories are classified as either those effecting
1755  * the vm_map_entry structure, or those effecting the underlying
1756  * objects.
1757  *
1758  * The <value> argument is used for extended madvise calls.
1759  *
1760  * No requirements.
1761  */
1762 int
1763 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1764 	       int behav, off_t value)
1765 {
1766 	vm_map_entry_t current, entry;
1767 	int modify_map = 0;
1768 	int error = 0;
1769 	int count;
1770 
1771 	/*
1772 	 * Some madvise calls directly modify the vm_map_entry, in which case
1773 	 * we need to use an exclusive lock on the map and we need to perform
1774 	 * various clipping operations.  Otherwise we only need a read-lock
1775 	 * on the map.
1776 	 */
1777 
1778 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1779 
1780 	switch(behav) {
1781 	case MADV_NORMAL:
1782 	case MADV_SEQUENTIAL:
1783 	case MADV_RANDOM:
1784 	case MADV_NOSYNC:
1785 	case MADV_AUTOSYNC:
1786 	case MADV_NOCORE:
1787 	case MADV_CORE:
1788 	case MADV_SETMAP:
1789 	case MADV_INVAL:
1790 		modify_map = 1;
1791 		vm_map_lock(map);
1792 		break;
1793 	case MADV_WILLNEED:
1794 	case MADV_DONTNEED:
1795 	case MADV_FREE:
1796 		vm_map_lock_read(map);
1797 		break;
1798 	default:
1799 		vm_map_entry_release(count);
1800 		return (EINVAL);
1801 	}
1802 
1803 	/*
1804 	 * Locate starting entry and clip if necessary.
1805 	 */
1806 
1807 	VM_MAP_RANGE_CHECK(map, start, end);
1808 
1809 	if (vm_map_lookup_entry(map, start, &entry)) {
1810 		if (modify_map)
1811 			vm_map_clip_start(map, entry, start, &count);
1812 	} else {
1813 		entry = entry->next;
1814 	}
1815 
1816 	if (modify_map) {
1817 		/*
1818 		 * madvise behaviors that are implemented in the vm_map_entry.
1819 		 *
1820 		 * We clip the vm_map_entry so that behavioral changes are
1821 		 * limited to the specified address range.
1822 		 */
1823 		for (current = entry;
1824 		     (current != &map->header) && (current->start < end);
1825 		     current = current->next
1826 		) {
1827 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1828 				continue;
1829 
1830 			vm_map_clip_end(map, current, end, &count);
1831 
1832 			switch (behav) {
1833 			case MADV_NORMAL:
1834 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1835 				break;
1836 			case MADV_SEQUENTIAL:
1837 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1838 				break;
1839 			case MADV_RANDOM:
1840 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1841 				break;
1842 			case MADV_NOSYNC:
1843 				current->eflags |= MAP_ENTRY_NOSYNC;
1844 				break;
1845 			case MADV_AUTOSYNC:
1846 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1847 				break;
1848 			case MADV_NOCORE:
1849 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1850 				break;
1851 			case MADV_CORE:
1852 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1853 				break;
1854 			case MADV_INVAL:
1855 				/*
1856 				 * Invalidate the related pmap entries, used
1857 				 * to flush portions of the real kernel's
1858 				 * pmap when the caller has removed or
1859 				 * modified existing mappings in a virtual
1860 				 * page table.
1861 				 */
1862 				pmap_remove(map->pmap,
1863 					    current->start, current->end);
1864 				break;
1865 			case MADV_SETMAP:
1866 				/*
1867 				 * Set the page directory page for a map
1868 				 * governed by a virtual page table.  Mark
1869 				 * the entry as being governed by a virtual
1870 				 * page table if it is not.
1871 				 *
1872 				 * XXX the page directory page is stored
1873 				 * in the avail_ssize field if the map_entry.
1874 				 *
1875 				 * XXX the map simplification code does not
1876 				 * compare this field so weird things may
1877 				 * happen if you do not apply this function
1878 				 * to the entire mapping governed by the
1879 				 * virtual page table.
1880 				 */
1881 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1882 					error = EINVAL;
1883 					break;
1884 				}
1885 				current->aux.master_pde = value;
1886 				pmap_remove(map->pmap,
1887 					    current->start, current->end);
1888 				break;
1889 			default:
1890 				error = EINVAL;
1891 				break;
1892 			}
1893 			vm_map_simplify_entry(map, current, &count);
1894 		}
1895 		vm_map_unlock(map);
1896 	} else {
1897 		vm_pindex_t pindex;
1898 		int count;
1899 
1900 		/*
1901 		 * madvise behaviors that are implemented in the underlying
1902 		 * vm_object.
1903 		 *
1904 		 * Since we don't clip the vm_map_entry, we have to clip
1905 		 * the vm_object pindex and count.
1906 		 *
1907 		 * NOTE!  We currently do not support these functions on
1908 		 * virtual page tables.
1909 		 */
1910 		for (current = entry;
1911 		     (current != &map->header) && (current->start < end);
1912 		     current = current->next
1913 		) {
1914 			vm_offset_t useStart;
1915 
1916 			if (current->maptype != VM_MAPTYPE_NORMAL)
1917 				continue;
1918 
1919 			pindex = OFF_TO_IDX(current->offset);
1920 			count = atop(current->end - current->start);
1921 			useStart = current->start;
1922 
1923 			if (current->start < start) {
1924 				pindex += atop(start - current->start);
1925 				count -= atop(start - current->start);
1926 				useStart = start;
1927 			}
1928 			if (current->end > end)
1929 				count -= atop(current->end - end);
1930 
1931 			if (count <= 0)
1932 				continue;
1933 
1934 			vm_object_madvise(current->object.vm_object,
1935 					  pindex, count, behav);
1936 
1937 			/*
1938 			 * Try to populate the page table.  Mappings governed
1939 			 * by virtual page tables cannot be pre-populated
1940 			 * without a lot of work so don't try.
1941 			 */
1942 			if (behav == MADV_WILLNEED &&
1943 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1944 				pmap_object_init_pt(
1945 				    map->pmap,
1946 				    useStart,
1947 				    current->protection,
1948 				    current->object.vm_object,
1949 				    pindex,
1950 				    (count << PAGE_SHIFT),
1951 				    MAP_PREFAULT_MADVISE
1952 				);
1953 			}
1954 		}
1955 		vm_map_unlock_read(map);
1956 	}
1957 	vm_map_entry_release(count);
1958 	return(error);
1959 }
1960 
1961 
1962 /*
1963  * Sets the inheritance of the specified address range in the target map.
1964  * Inheritance affects how the map will be shared with child maps at the
1965  * time of vm_map_fork.
1966  */
1967 int
1968 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1969 	       vm_inherit_t new_inheritance)
1970 {
1971 	vm_map_entry_t entry;
1972 	vm_map_entry_t temp_entry;
1973 	int count;
1974 
1975 	switch (new_inheritance) {
1976 	case VM_INHERIT_NONE:
1977 	case VM_INHERIT_COPY:
1978 	case VM_INHERIT_SHARE:
1979 		break;
1980 	default:
1981 		return (KERN_INVALID_ARGUMENT);
1982 	}
1983 
1984 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1985 	vm_map_lock(map);
1986 
1987 	VM_MAP_RANGE_CHECK(map, start, end);
1988 
1989 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1990 		entry = temp_entry;
1991 		vm_map_clip_start(map, entry, start, &count);
1992 	} else
1993 		entry = temp_entry->next;
1994 
1995 	while ((entry != &map->header) && (entry->start < end)) {
1996 		vm_map_clip_end(map, entry, end, &count);
1997 
1998 		entry->inheritance = new_inheritance;
1999 
2000 		vm_map_simplify_entry(map, entry, &count);
2001 
2002 		entry = entry->next;
2003 	}
2004 	vm_map_unlock(map);
2005 	vm_map_entry_release(count);
2006 	return (KERN_SUCCESS);
2007 }
2008 
2009 /*
2010  * Implement the semantics of mlock
2011  */
2012 int
2013 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2014 	      boolean_t new_pageable)
2015 {
2016 	vm_map_entry_t entry;
2017 	vm_map_entry_t start_entry;
2018 	vm_offset_t end;
2019 	int rv = KERN_SUCCESS;
2020 	int count;
2021 
2022 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2023 	vm_map_lock(map);
2024 	VM_MAP_RANGE_CHECK(map, start, real_end);
2025 	end = real_end;
2026 
2027 	start_entry = vm_map_clip_range(map, start, end, &count,
2028 					MAP_CLIP_NO_HOLES);
2029 	if (start_entry == NULL) {
2030 		vm_map_unlock(map);
2031 		vm_map_entry_release(count);
2032 		return (KERN_INVALID_ADDRESS);
2033 	}
2034 
2035 	if (new_pageable == 0) {
2036 		entry = start_entry;
2037 		while ((entry != &map->header) && (entry->start < end)) {
2038 			vm_offset_t save_start;
2039 			vm_offset_t save_end;
2040 
2041 			/*
2042 			 * Already user wired or hard wired (trivial cases)
2043 			 */
2044 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2045 				entry = entry->next;
2046 				continue;
2047 			}
2048 			if (entry->wired_count != 0) {
2049 				entry->wired_count++;
2050 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2051 				entry = entry->next;
2052 				continue;
2053 			}
2054 
2055 			/*
2056 			 * A new wiring requires instantiation of appropriate
2057 			 * management structures and the faulting in of the
2058 			 * page.
2059 			 */
2060 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2061 				int copyflag = entry->eflags &
2062 					       MAP_ENTRY_NEEDS_COPY;
2063 				if (copyflag && ((entry->protection &
2064 						  VM_PROT_WRITE) != 0)) {
2065 					vm_map_entry_shadow(entry);
2066 				} else if (entry->object.vm_object == NULL &&
2067 					   !map->system_map) {
2068 					vm_map_entry_allocate_object(entry);
2069 				}
2070 			}
2071 			entry->wired_count++;
2072 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2073 
2074 			/*
2075 			 * Now fault in the area.  Note that vm_fault_wire()
2076 			 * may release the map lock temporarily, it will be
2077 			 * relocked on return.  The in-transition
2078 			 * flag protects the entries.
2079 			 */
2080 			save_start = entry->start;
2081 			save_end = entry->end;
2082 			rv = vm_fault_wire(map, entry, TRUE);
2083 			if (rv) {
2084 				CLIP_CHECK_BACK(entry, save_start);
2085 				for (;;) {
2086 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2087 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2088 					entry->wired_count = 0;
2089 					if (entry->end == save_end)
2090 						break;
2091 					entry = entry->next;
2092 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2093 				}
2094 				end = save_start;	/* unwire the rest */
2095 				break;
2096 			}
2097 			/*
2098 			 * note that even though the entry might have been
2099 			 * clipped, the USER_WIRED flag we set prevents
2100 			 * duplication so we do not have to do a
2101 			 * clip check.
2102 			 */
2103 			entry = entry->next;
2104 		}
2105 
2106 		/*
2107 		 * If we failed fall through to the unwiring section to
2108 		 * unwire what we had wired so far.  'end' has already
2109 		 * been adjusted.
2110 		 */
2111 		if (rv)
2112 			new_pageable = 1;
2113 
2114 		/*
2115 		 * start_entry might have been clipped if we unlocked the
2116 		 * map and blocked.  No matter how clipped it has gotten
2117 		 * there should be a fragment that is on our start boundary.
2118 		 */
2119 		CLIP_CHECK_BACK(start_entry, start);
2120 	}
2121 
2122 	/*
2123 	 * Deal with the unwiring case.
2124 	 */
2125 	if (new_pageable) {
2126 		/*
2127 		 * This is the unwiring case.  We must first ensure that the
2128 		 * range to be unwired is really wired down.  We know there
2129 		 * are no holes.
2130 		 */
2131 		entry = start_entry;
2132 		while ((entry != &map->header) && (entry->start < end)) {
2133 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2134 				rv = KERN_INVALID_ARGUMENT;
2135 				goto done;
2136 			}
2137 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2138 			entry = entry->next;
2139 		}
2140 
2141 		/*
2142 		 * Now decrement the wiring count for each region. If a region
2143 		 * becomes completely unwired, unwire its physical pages and
2144 		 * mappings.
2145 		 */
2146 		/*
2147 		 * The map entries are processed in a loop, checking to
2148 		 * make sure the entry is wired and asserting it has a wired
2149 		 * count. However, another loop was inserted more-or-less in
2150 		 * the middle of the unwiring path. This loop picks up the
2151 		 * "entry" loop variable from the first loop without first
2152 		 * setting it to start_entry. Naturally, the secound loop
2153 		 * is never entered and the pages backing the entries are
2154 		 * never unwired. This can lead to a leak of wired pages.
2155 		 */
2156 		entry = start_entry;
2157 		while ((entry != &map->header) && (entry->start < end)) {
2158 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2159 				("expected USER_WIRED on entry %p", entry));
2160 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2161 			entry->wired_count--;
2162 			if (entry->wired_count == 0)
2163 				vm_fault_unwire(map, entry);
2164 			entry = entry->next;
2165 		}
2166 	}
2167 done:
2168 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2169 		MAP_CLIP_NO_HOLES);
2170 	map->timestamp++;
2171 	vm_map_unlock(map);
2172 	vm_map_entry_release(count);
2173 	return (rv);
2174 }
2175 
2176 /*
2177  * Sets the pageability of the specified address range in the target map.
2178  * Regions specified as not pageable require locked-down physical
2179  * memory and physical page maps.
2180  *
2181  * The map must not be locked, but a reference must remain to the map
2182  * throughout the call.
2183  *
2184  * This function may be called via the zalloc path and must properly
2185  * reserve map entries for kernel_map.
2186  *
2187  * No requirements.
2188  */
2189 int
2190 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2191 {
2192 	vm_map_entry_t entry;
2193 	vm_map_entry_t start_entry;
2194 	vm_offset_t end;
2195 	int rv = KERN_SUCCESS;
2196 	int count;
2197 
2198 	if (kmflags & KM_KRESERVE)
2199 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2200 	else
2201 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2202 	vm_map_lock(map);
2203 	VM_MAP_RANGE_CHECK(map, start, real_end);
2204 	end = real_end;
2205 
2206 	start_entry = vm_map_clip_range(map, start, end, &count,
2207 					MAP_CLIP_NO_HOLES);
2208 	if (start_entry == NULL) {
2209 		vm_map_unlock(map);
2210 		rv = KERN_INVALID_ADDRESS;
2211 		goto failure;
2212 	}
2213 	if ((kmflags & KM_PAGEABLE) == 0) {
2214 		/*
2215 		 * Wiring.
2216 		 *
2217 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2218 		 * objects that need to be created. Then we clip each map
2219 		 * entry to the region to be wired and increment its wiring
2220 		 * count.  We create objects before clipping the map entries
2221 		 * to avoid object proliferation.
2222 		 *
2223 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2224 		 * fault in the pages for any newly wired area (wired_count is
2225 		 * 1).
2226 		 *
2227 		 * Downgrading to a read lock for vm_fault_wire avoids a
2228 		 * possible deadlock with another process that may have faulted
2229 		 * on one of the pages to be wired (it would mark the page busy,
2230 		 * blocking us, then in turn block on the map lock that we
2231 		 * hold).  Because of problems in the recursive lock package,
2232 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2233 		 * any actions that require the write lock must be done
2234 		 * beforehand.  Because we keep the read lock on the map, the
2235 		 * copy-on-write status of the entries we modify here cannot
2236 		 * change.
2237 		 */
2238 		entry = start_entry;
2239 		while ((entry != &map->header) && (entry->start < end)) {
2240 			/*
2241 			 * Trivial case if the entry is already wired
2242 			 */
2243 			if (entry->wired_count) {
2244 				entry->wired_count++;
2245 				entry = entry->next;
2246 				continue;
2247 			}
2248 
2249 			/*
2250 			 * The entry is being newly wired, we have to setup
2251 			 * appropriate management structures.  A shadow
2252 			 * object is required for a copy-on-write region,
2253 			 * or a normal object for a zero-fill region.  We
2254 			 * do not have to do this for entries that point to sub
2255 			 * maps because we won't hold the lock on the sub map.
2256 			 */
2257 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2258 				int copyflag = entry->eflags &
2259 					       MAP_ENTRY_NEEDS_COPY;
2260 				if (copyflag && ((entry->protection &
2261 						  VM_PROT_WRITE) != 0)) {
2262 					vm_map_entry_shadow(entry);
2263 				} else if (entry->object.vm_object == NULL &&
2264 					   !map->system_map) {
2265 					vm_map_entry_allocate_object(entry);
2266 				}
2267 			}
2268 
2269 			entry->wired_count++;
2270 			entry = entry->next;
2271 		}
2272 
2273 		/*
2274 		 * Pass 2.
2275 		 */
2276 
2277 		/*
2278 		 * HACK HACK HACK HACK
2279 		 *
2280 		 * vm_fault_wire() temporarily unlocks the map to avoid
2281 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2282 		 * call should protect us from changes while the map is
2283 		 * unlocked.  T
2284 		 *
2285 		 * NOTE: Previously this comment stated that clipping might
2286 		 *	 still occur while the entry is unlocked, but from
2287 		 *	 what I can tell it actually cannot.
2288 		 *
2289 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2290 		 *	 are still needed but we keep them in anyway.
2291 		 *
2292 		 * HACK HACK HACK HACK
2293 		 */
2294 
2295 		entry = start_entry;
2296 		while (entry != &map->header && entry->start < end) {
2297 			/*
2298 			 * If vm_fault_wire fails for any page we need to undo
2299 			 * what has been done.  We decrement the wiring count
2300 			 * for those pages which have not yet been wired (now)
2301 			 * and unwire those that have (later).
2302 			 */
2303 			vm_offset_t save_start = entry->start;
2304 			vm_offset_t save_end = entry->end;
2305 
2306 			if (entry->wired_count == 1)
2307 				rv = vm_fault_wire(map, entry, FALSE);
2308 			if (rv) {
2309 				CLIP_CHECK_BACK(entry, save_start);
2310 				for (;;) {
2311 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2312 					entry->wired_count = 0;
2313 					if (entry->end == save_end)
2314 						break;
2315 					entry = entry->next;
2316 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2317 				}
2318 				end = save_start;
2319 				break;
2320 			}
2321 			CLIP_CHECK_FWD(entry, save_end);
2322 			entry = entry->next;
2323 		}
2324 
2325 		/*
2326 		 * If a failure occured undo everything by falling through
2327 		 * to the unwiring code.  'end' has already been adjusted
2328 		 * appropriately.
2329 		 */
2330 		if (rv)
2331 			kmflags |= KM_PAGEABLE;
2332 
2333 		/*
2334 		 * start_entry is still IN_TRANSITION but may have been
2335 		 * clipped since vm_fault_wire() unlocks and relocks the
2336 		 * map.  No matter how clipped it has gotten there should
2337 		 * be a fragment that is on our start boundary.
2338 		 */
2339 		CLIP_CHECK_BACK(start_entry, start);
2340 	}
2341 
2342 	if (kmflags & KM_PAGEABLE) {
2343 		/*
2344 		 * This is the unwiring case.  We must first ensure that the
2345 		 * range to be unwired is really wired down.  We know there
2346 		 * are no holes.
2347 		 */
2348 		entry = start_entry;
2349 		while ((entry != &map->header) && (entry->start < end)) {
2350 			if (entry->wired_count == 0) {
2351 				rv = KERN_INVALID_ARGUMENT;
2352 				goto done;
2353 			}
2354 			entry = entry->next;
2355 		}
2356 
2357 		/*
2358 		 * Now decrement the wiring count for each region. If a region
2359 		 * becomes completely unwired, unwire its physical pages and
2360 		 * mappings.
2361 		 */
2362 		entry = start_entry;
2363 		while ((entry != &map->header) && (entry->start < end)) {
2364 			entry->wired_count--;
2365 			if (entry->wired_count == 0)
2366 				vm_fault_unwire(map, entry);
2367 			entry = entry->next;
2368 		}
2369 	}
2370 done:
2371 	vm_map_unclip_range(map, start_entry, start, real_end,
2372 			    &count, MAP_CLIP_NO_HOLES);
2373 	map->timestamp++;
2374 	vm_map_unlock(map);
2375 failure:
2376 	if (kmflags & KM_KRESERVE)
2377 		vm_map_entry_krelease(count);
2378 	else
2379 		vm_map_entry_release(count);
2380 	return (rv);
2381 }
2382 
2383 /*
2384  * Mark a newly allocated address range as wired but do not fault in
2385  * the pages.  The caller is expected to load the pages into the object.
2386  *
2387  * The map must be locked on entry and will remain locked on return.
2388  * No other requirements.
2389  */
2390 void
2391 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2392 		       int *countp)
2393 {
2394 	vm_map_entry_t scan;
2395 	vm_map_entry_t entry;
2396 
2397 	entry = vm_map_clip_range(map, addr, addr + size,
2398 				  countp, MAP_CLIP_NO_HOLES);
2399 	for (scan = entry;
2400 	     scan != &map->header && scan->start < addr + size;
2401 	     scan = scan->next) {
2402 	    KKASSERT(entry->wired_count == 0);
2403 	    entry->wired_count = 1;
2404 	}
2405 	vm_map_unclip_range(map, entry, addr, addr + size,
2406 			    countp, MAP_CLIP_NO_HOLES);
2407 }
2408 
2409 /*
2410  * Push any dirty cached pages in the address range to their pager.
2411  * If syncio is TRUE, dirty pages are written synchronously.
2412  * If invalidate is TRUE, any cached pages are freed as well.
2413  *
2414  * This routine is called by sys_msync()
2415  *
2416  * Returns an error if any part of the specified range is not mapped.
2417  *
2418  * No requirements.
2419  */
2420 int
2421 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2422 	     boolean_t syncio, boolean_t invalidate)
2423 {
2424 	vm_map_entry_t current;
2425 	vm_map_entry_t entry;
2426 	vm_size_t size;
2427 	vm_object_t object;
2428 	vm_ooffset_t offset;
2429 
2430 	vm_map_lock_read(map);
2431 	VM_MAP_RANGE_CHECK(map, start, end);
2432 	if (!vm_map_lookup_entry(map, start, &entry)) {
2433 		vm_map_unlock_read(map);
2434 		return (KERN_INVALID_ADDRESS);
2435 	}
2436 	/*
2437 	 * Make a first pass to check for holes.
2438 	 */
2439 	for (current = entry; current->start < end; current = current->next) {
2440 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2441 			vm_map_unlock_read(map);
2442 			return (KERN_INVALID_ARGUMENT);
2443 		}
2444 		if (end > current->end &&
2445 		    (current->next == &map->header ||
2446 			current->end != current->next->start)) {
2447 			vm_map_unlock_read(map);
2448 			return (KERN_INVALID_ADDRESS);
2449 		}
2450 	}
2451 
2452 	if (invalidate)
2453 		pmap_remove(vm_map_pmap(map), start, end);
2454 
2455 	/*
2456 	 * Make a second pass, cleaning/uncaching pages from the indicated
2457 	 * objects as we go.
2458 	 *
2459 	 * Hold vm_token to avoid blocking in vm_object_reference()
2460 	 */
2461 	lwkt_gettoken(&vm_token);
2462 	lwkt_gettoken(&vmobj_token);
2463 
2464 	for (current = entry; current->start < end; current = current->next) {
2465 		offset = current->offset + (start - current->start);
2466 		size = (end <= current->end ? end : current->end) - start;
2467 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2468 			vm_map_t smap;
2469 			vm_map_entry_t tentry;
2470 			vm_size_t tsize;
2471 
2472 			smap = current->object.sub_map;
2473 			vm_map_lock_read(smap);
2474 			vm_map_lookup_entry(smap, offset, &tentry);
2475 			tsize = tentry->end - offset;
2476 			if (tsize < size)
2477 				size = tsize;
2478 			object = tentry->object.vm_object;
2479 			offset = tentry->offset + (offset - tentry->start);
2480 			vm_map_unlock_read(smap);
2481 		} else {
2482 			object = current->object.vm_object;
2483 		}
2484 		/*
2485 		 * Note that there is absolutely no sense in writing out
2486 		 * anonymous objects, so we track down the vnode object
2487 		 * to write out.
2488 		 * We invalidate (remove) all pages from the address space
2489 		 * anyway, for semantic correctness.
2490 		 *
2491 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2492 		 * may start out with a NULL object.
2493 		 */
2494 		while (object && object->backing_object) {
2495 			offset += object->backing_object_offset;
2496 			object = object->backing_object;
2497 			if (object->size < OFF_TO_IDX( offset + size))
2498 				size = IDX_TO_OFF(object->size) - offset;
2499 		}
2500 		if (object && (object->type == OBJT_VNODE) &&
2501 		    (current->protection & VM_PROT_WRITE) &&
2502 		    (object->flags & OBJ_NOMSYNC) == 0) {
2503 			/*
2504 			 * Flush pages if writing is allowed, invalidate them
2505 			 * if invalidation requested.  Pages undergoing I/O
2506 			 * will be ignored by vm_object_page_remove().
2507 			 *
2508 			 * We cannot lock the vnode and then wait for paging
2509 			 * to complete without deadlocking against vm_fault.
2510 			 * Instead we simply call vm_object_page_remove() and
2511 			 * allow it to block internally on a page-by-page
2512 			 * basis when it encounters pages undergoing async
2513 			 * I/O.
2514 			 */
2515 			int flags;
2516 
2517 			vm_object_reference_locked(object);
2518 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2519 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2520 			flags |= invalidate ? OBJPC_INVAL : 0;
2521 
2522 			/*
2523 			 * When operating on a virtual page table just
2524 			 * flush the whole object.  XXX we probably ought
2525 			 * to
2526 			 */
2527 			switch(current->maptype) {
2528 			case VM_MAPTYPE_NORMAL:
2529 				vm_object_page_clean(object,
2530 				    OFF_TO_IDX(offset),
2531 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2532 				    flags);
2533 				break;
2534 			case VM_MAPTYPE_VPAGETABLE:
2535 				vm_object_page_clean(object, 0, 0, flags);
2536 				break;
2537 			}
2538 			vn_unlock(((struct vnode *)object->handle));
2539 			vm_object_deallocate_locked(object);
2540 		}
2541 		if (object && invalidate &&
2542 		   ((object->type == OBJT_VNODE) ||
2543 		    (object->type == OBJT_DEVICE))) {
2544 			int clean_only =
2545 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2546 			vm_object_reference_locked(object);
2547 			switch(current->maptype) {
2548 			case VM_MAPTYPE_NORMAL:
2549 				vm_object_page_remove(object,
2550 				    OFF_TO_IDX(offset),
2551 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2552 				    clean_only);
2553 				break;
2554 			case VM_MAPTYPE_VPAGETABLE:
2555 				vm_object_page_remove(object, 0, 0, clean_only);
2556 				break;
2557 			}
2558 			vm_object_deallocate_locked(object);
2559 		}
2560 		start += size;
2561 	}
2562 
2563 	lwkt_reltoken(&vmobj_token);
2564 	lwkt_reltoken(&vm_token);
2565 	vm_map_unlock_read(map);
2566 
2567 	return (KERN_SUCCESS);
2568 }
2569 
2570 /*
2571  * Make the region specified by this entry pageable.
2572  *
2573  * The vm_map must be exclusively locked.
2574  */
2575 static void
2576 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2577 {
2578 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2579 	entry->wired_count = 0;
2580 	vm_fault_unwire(map, entry);
2581 }
2582 
2583 /*
2584  * Deallocate the given entry from the target map.
2585  *
2586  * The vm_map must be exclusively locked.
2587  */
2588 static void
2589 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2590 {
2591 	vm_map_entry_unlink(map, entry);
2592 	map->size -= entry->end - entry->start;
2593 
2594 	switch(entry->maptype) {
2595 	case VM_MAPTYPE_NORMAL:
2596 	case VM_MAPTYPE_VPAGETABLE:
2597 		vm_object_deallocate(entry->object.vm_object);
2598 		break;
2599 	default:
2600 		break;
2601 	}
2602 
2603 	vm_map_entry_dispose(map, entry, countp);
2604 }
2605 
2606 /*
2607  * Deallocates the given address range from the target map.
2608  *
2609  * The vm_map must be exclusively locked.
2610  */
2611 int
2612 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2613 {
2614 	vm_object_t object;
2615 	vm_map_entry_t entry;
2616 	vm_map_entry_t first_entry;
2617 
2618 	ASSERT_VM_MAP_LOCKED(map);
2619 again:
2620 	/*
2621 	 * Find the start of the region, and clip it.  Set entry to point
2622 	 * at the first record containing the requested address or, if no
2623 	 * such record exists, the next record with a greater address.  The
2624 	 * loop will run from this point until a record beyond the termination
2625 	 * address is encountered.
2626 	 *
2627 	 * map->hint must be adjusted to not point to anything we delete,
2628 	 * so set it to the entry prior to the one being deleted.
2629 	 *
2630 	 * GGG see other GGG comment.
2631 	 */
2632 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2633 		entry = first_entry;
2634 		vm_map_clip_start(map, entry, start, countp);
2635 		map->hint = entry->prev;	/* possible problem XXX */
2636 	} else {
2637 		map->hint = first_entry;	/* possible problem XXX */
2638 		entry = first_entry->next;
2639 	}
2640 
2641 	/*
2642 	 * If a hole opens up prior to the current first_free then
2643 	 * adjust first_free.  As with map->hint, map->first_free
2644 	 * cannot be left set to anything we might delete.
2645 	 */
2646 	if (entry == &map->header) {
2647 		map->first_free = &map->header;
2648 	} else if (map->first_free->start >= start) {
2649 		map->first_free = entry->prev;
2650 	}
2651 
2652 	/*
2653 	 * Step through all entries in this region
2654 	 */
2655 	while ((entry != &map->header) && (entry->start < end)) {
2656 		vm_map_entry_t next;
2657 		vm_offset_t s, e;
2658 		vm_pindex_t offidxstart, offidxend, count;
2659 
2660 		/*
2661 		 * If we hit an in-transition entry we have to sleep and
2662 		 * retry.  It's easier (and not really slower) to just retry
2663 		 * since this case occurs so rarely and the hint is already
2664 		 * pointing at the right place.  We have to reset the
2665 		 * start offset so as not to accidently delete an entry
2666 		 * another process just created in vacated space.
2667 		 */
2668 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2669 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2670 			start = entry->start;
2671 			++mycpu->gd_cnt.v_intrans_coll;
2672 			++mycpu->gd_cnt.v_intrans_wait;
2673 			vm_map_transition_wait(map);
2674 			goto again;
2675 		}
2676 		vm_map_clip_end(map, entry, end, countp);
2677 
2678 		s = entry->start;
2679 		e = entry->end;
2680 		next = entry->next;
2681 
2682 		offidxstart = OFF_TO_IDX(entry->offset);
2683 		count = OFF_TO_IDX(e - s);
2684 		object = entry->object.vm_object;
2685 
2686 		/*
2687 		 * Unwire before removing addresses from the pmap; otherwise,
2688 		 * unwiring will put the entries back in the pmap.
2689 		 */
2690 		if (entry->wired_count != 0)
2691 			vm_map_entry_unwire(map, entry);
2692 
2693 		offidxend = offidxstart + count;
2694 
2695 		/*
2696 		 * Hold vm_token when manipulating vm_objects,
2697 		 *
2698 		 * Hold vmobj_token when potentially adding or removing
2699 		 * objects (collapse requires both).
2700 		 */
2701 		lwkt_gettoken(&vm_token);
2702 		lwkt_gettoken(&vmobj_token);
2703 
2704 		if (object == &kernel_object) {
2705 			vm_object_page_remove(object, offidxstart,
2706 					      offidxend, FALSE);
2707 		} else {
2708 			pmap_remove(map->pmap, s, e);
2709 
2710 			if (object != NULL &&
2711 			    object->ref_count != 1 &&
2712 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2713 			     OBJ_ONEMAPPING &&
2714 			    (object->type == OBJT_DEFAULT ||
2715 			     object->type == OBJT_SWAP)) {
2716 				vm_object_collapse(object);
2717 				vm_object_page_remove(object, offidxstart,
2718 						      offidxend, FALSE);
2719 				if (object->type == OBJT_SWAP) {
2720 					swap_pager_freespace(object,
2721 							     offidxstart,
2722 							     count);
2723 				}
2724 				if (offidxend >= object->size &&
2725 				    offidxstart < object->size) {
2726 					object->size = offidxstart;
2727 				}
2728 			}
2729 		}
2730 		lwkt_reltoken(&vmobj_token);
2731 		lwkt_reltoken(&vm_token);
2732 
2733 		/*
2734 		 * Delete the entry (which may delete the object) only after
2735 		 * removing all pmap entries pointing to its pages.
2736 		 * (Otherwise, its page frames may be reallocated, and any
2737 		 * modify bits will be set in the wrong object!)
2738 		 */
2739 		vm_map_entry_delete(map, entry, countp);
2740 		entry = next;
2741 	}
2742 	return (KERN_SUCCESS);
2743 }
2744 
2745 /*
2746  * Remove the given address range from the target map.
2747  * This is the exported form of vm_map_delete.
2748  *
2749  * No requirements.
2750  */
2751 int
2752 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2753 {
2754 	int result;
2755 	int count;
2756 
2757 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2758 	vm_map_lock(map);
2759 	VM_MAP_RANGE_CHECK(map, start, end);
2760 	result = vm_map_delete(map, start, end, &count);
2761 	vm_map_unlock(map);
2762 	vm_map_entry_release(count);
2763 
2764 	return (result);
2765 }
2766 
2767 /*
2768  * Assert that the target map allows the specified privilege on the
2769  * entire address region given.  The entire region must be allocated.
2770  *
2771  * The caller must specify whether the vm_map is already locked or not.
2772  */
2773 boolean_t
2774 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2775 			vm_prot_t protection, boolean_t have_lock)
2776 {
2777 	vm_map_entry_t entry;
2778 	vm_map_entry_t tmp_entry;
2779 	boolean_t result;
2780 
2781 	if (have_lock == FALSE)
2782 		vm_map_lock_read(map);
2783 
2784 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2785 		if (have_lock == FALSE)
2786 			vm_map_unlock_read(map);
2787 		return (FALSE);
2788 	}
2789 	entry = tmp_entry;
2790 
2791 	result = TRUE;
2792 	while (start < end) {
2793 		if (entry == &map->header) {
2794 			result = FALSE;
2795 			break;
2796 		}
2797 		/*
2798 		 * No holes allowed!
2799 		 */
2800 
2801 		if (start < entry->start) {
2802 			result = FALSE;
2803 			break;
2804 		}
2805 		/*
2806 		 * Check protection associated with entry.
2807 		 */
2808 
2809 		if ((entry->protection & protection) != protection) {
2810 			result = FALSE;
2811 			break;
2812 		}
2813 		/* go to next entry */
2814 
2815 		start = entry->end;
2816 		entry = entry->next;
2817 	}
2818 	if (have_lock == FALSE)
2819 		vm_map_unlock_read(map);
2820 	return (result);
2821 }
2822 
2823 /*
2824  * Split the pages in a map entry into a new object.  This affords
2825  * easier removal of unused pages, and keeps object inheritance from
2826  * being a negative impact on memory usage.
2827  *
2828  * The vm_map must be exclusively locked.
2829  */
2830 static void
2831 vm_map_split(vm_map_entry_t entry)
2832 {
2833 	vm_page_t m;
2834 	vm_object_t orig_object, new_object, source;
2835 	vm_offset_t s, e;
2836 	vm_pindex_t offidxstart, offidxend, idx;
2837 	vm_size_t size;
2838 	vm_ooffset_t offset;
2839 
2840 	orig_object = entry->object.vm_object;
2841 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2842 		return;
2843 	if (orig_object->ref_count <= 1)
2844 		return;
2845 
2846 	offset = entry->offset;
2847 	s = entry->start;
2848 	e = entry->end;
2849 
2850 	offidxstart = OFF_TO_IDX(offset);
2851 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2852 	size = offidxend - offidxstart;
2853 
2854 	switch(orig_object->type) {
2855 	case OBJT_DEFAULT:
2856 		new_object = default_pager_alloc(NULL, IDX_TO_OFF(size),
2857 						 VM_PROT_ALL, 0);
2858 		break;
2859 	case OBJT_SWAP:
2860 		new_object = swap_pager_alloc(NULL, IDX_TO_OFF(size),
2861 					      VM_PROT_ALL, 0);
2862 		break;
2863 	default:
2864 		/* not reached */
2865 		new_object = NULL;
2866 		KKASSERT(0);
2867 	}
2868 	if (new_object == NULL)
2869 		return;
2870 
2871 	/*
2872 	 * vm_token required when manipulating vm_objects.
2873 	 */
2874 	lwkt_gettoken(&vm_token);
2875 	lwkt_gettoken(&vmobj_token);
2876 
2877 	source = orig_object->backing_object;
2878 	if (source != NULL) {
2879 		/* Referenced by new_object */
2880 		vm_object_reference_locked(source);
2881 		LIST_INSERT_HEAD(&source->shadow_head,
2882 				 new_object, shadow_list);
2883 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2884 		new_object->backing_object_offset =
2885 			orig_object->backing_object_offset +
2886 			IDX_TO_OFF(offidxstart);
2887 		new_object->backing_object = source;
2888 		source->shadow_count++;
2889 		source->generation++;
2890 	}
2891 
2892 	for (idx = 0; idx < size; idx++) {
2893 		vm_page_t m;
2894 
2895 	retry:
2896 		m = vm_page_lookup(orig_object, offidxstart + idx);
2897 		if (m == NULL)
2898 			continue;
2899 
2900 		/*
2901 		 * We must wait for pending I/O to complete before we can
2902 		 * rename the page.
2903 		 *
2904 		 * We do not have to VM_PROT_NONE the page as mappings should
2905 		 * not be changed by this operation.
2906 		 */
2907 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2908 			goto retry;
2909 		vm_page_busy(m);
2910 		vm_page_rename(m, new_object, idx);
2911 		/* page automatically made dirty by rename and cache handled */
2912 		vm_page_busy(m);
2913 	}
2914 
2915 	if (orig_object->type == OBJT_SWAP) {
2916 		vm_object_pip_add(orig_object, 1);
2917 		/*
2918 		 * copy orig_object pages into new_object
2919 		 * and destroy unneeded pages in
2920 		 * shadow object.
2921 		 */
2922 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2923 		vm_object_pip_wakeup(orig_object);
2924 	}
2925 
2926 	/*
2927 	 * Wakeup the pages we played with.  No spl protection is needed
2928 	 * for a simple wakeup.
2929 	 */
2930 	for (idx = 0; idx < size; idx++) {
2931 		m = vm_page_lookup(new_object, idx);
2932 		if (m)
2933 			vm_page_wakeup(m);
2934 	}
2935 
2936 	entry->object.vm_object = new_object;
2937 	entry->offset = 0LL;
2938 	vm_object_deallocate_locked(orig_object);
2939 	lwkt_reltoken(&vmobj_token);
2940 	lwkt_reltoken(&vm_token);
2941 }
2942 
2943 /*
2944  * Copies the contents of the source entry to the destination
2945  * entry.  The entries *must* be aligned properly.
2946  *
2947  * The vm_map must be exclusively locked.
2948  * vm_token must be held
2949  */
2950 static void
2951 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2952 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2953 {
2954 	vm_object_t src_object;
2955 
2956 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2957 		return;
2958 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2959 		return;
2960 
2961 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
2962 	lwkt_gettoken(&vmobj_token);		/* required for collapse */
2963 
2964 	if (src_entry->wired_count == 0) {
2965 		/*
2966 		 * If the source entry is marked needs_copy, it is already
2967 		 * write-protected.
2968 		 */
2969 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2970 			pmap_protect(src_map->pmap,
2971 			    src_entry->start,
2972 			    src_entry->end,
2973 			    src_entry->protection & ~VM_PROT_WRITE);
2974 		}
2975 
2976 		/*
2977 		 * Make a copy of the object.
2978 		 */
2979 		if ((src_object = src_entry->object.vm_object) != NULL) {
2980 			if ((src_object->handle == NULL) &&
2981 				(src_object->type == OBJT_DEFAULT ||
2982 				 src_object->type == OBJT_SWAP)) {
2983 				vm_object_collapse(src_object);
2984 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2985 					vm_map_split(src_entry);
2986 					src_object = src_entry->object.vm_object;
2987 				}
2988 			}
2989 
2990 			vm_object_reference_locked(src_object);
2991 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2992 			dst_entry->object.vm_object = src_object;
2993 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2994 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2995 			dst_entry->offset = src_entry->offset;
2996 		} else {
2997 			dst_entry->object.vm_object = NULL;
2998 			dst_entry->offset = 0;
2999 		}
3000 
3001 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3002 		    dst_entry->end - dst_entry->start, src_entry->start);
3003 	} else {
3004 		/*
3005 		 * Of course, wired down pages can't be set copy-on-write.
3006 		 * Cause wired pages to be copied into the new map by
3007 		 * simulating faults (the new pages are pageable)
3008 		 */
3009 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3010 	}
3011 	lwkt_reltoken(&vmobj_token);
3012 }
3013 
3014 /*
3015  * vmspace_fork:
3016  * Create a new process vmspace structure and vm_map
3017  * based on those of an existing process.  The new map
3018  * is based on the old map, according to the inheritance
3019  * values on the regions in that map.
3020  *
3021  * The source map must not be locked.
3022  * No requirements.
3023  */
3024 struct vmspace *
3025 vmspace_fork(struct vmspace *vm1)
3026 {
3027 	struct vmspace *vm2;
3028 	vm_map_t old_map = &vm1->vm_map;
3029 	vm_map_t new_map;
3030 	vm_map_entry_t old_entry;
3031 	vm_map_entry_t new_entry;
3032 	vm_object_t object;
3033 	int count;
3034 
3035 	lwkt_gettoken(&vm_token);
3036 	lwkt_gettoken(&vmspace_token);
3037 	lwkt_gettoken(&vmobj_token);
3038 	vm_map_lock(old_map);
3039 	old_map->infork = 1;
3040 
3041 	/*
3042 	 * XXX Note: upcalls are not copied.
3043 	 */
3044 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3045 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3046 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3047 	new_map = &vm2->vm_map;	/* XXX */
3048 	new_map->timestamp = 1;
3049 
3050 	vm_map_lock(new_map);
3051 
3052 	count = 0;
3053 	old_entry = old_map->header.next;
3054 	while (old_entry != &old_map->header) {
3055 		++count;
3056 		old_entry = old_entry->next;
3057 	}
3058 
3059 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3060 
3061 	old_entry = old_map->header.next;
3062 	while (old_entry != &old_map->header) {
3063 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3064 			panic("vm_map_fork: encountered a submap");
3065 
3066 		switch (old_entry->inheritance) {
3067 		case VM_INHERIT_NONE:
3068 			break;
3069 		case VM_INHERIT_SHARE:
3070 			/*
3071 			 * Clone the entry, creating the shared object if
3072 			 * necessary.
3073 			 */
3074 			object = old_entry->object.vm_object;
3075 			if (object == NULL) {
3076 				vm_map_entry_allocate_object(old_entry);
3077 				object = old_entry->object.vm_object;
3078 			}
3079 
3080 			/*
3081 			 * Add the reference before calling vm_map_entry_shadow
3082 			 * to insure that a shadow object is created.
3083 			 */
3084 			vm_object_reference_locked(object);
3085 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3086 				vm_map_entry_shadow(old_entry);
3087 				/* Transfer the second reference too. */
3088 				vm_object_reference_locked(
3089 				    old_entry->object.vm_object);
3090 				vm_object_deallocate_locked(object);
3091 				object = old_entry->object.vm_object;
3092 			}
3093 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3094 
3095 			/*
3096 			 * Clone the entry, referencing the shared object.
3097 			 */
3098 			new_entry = vm_map_entry_create(new_map, &count);
3099 			*new_entry = *old_entry;
3100 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3101 			new_entry->wired_count = 0;
3102 
3103 			/*
3104 			 * Insert the entry into the new map -- we know we're
3105 			 * inserting at the end of the new map.
3106 			 */
3107 
3108 			vm_map_entry_link(new_map, new_map->header.prev,
3109 					  new_entry);
3110 
3111 			/*
3112 			 * Update the physical map
3113 			 */
3114 			pmap_copy(new_map->pmap, old_map->pmap,
3115 			    new_entry->start,
3116 			    (old_entry->end - old_entry->start),
3117 			    old_entry->start);
3118 			break;
3119 		case VM_INHERIT_COPY:
3120 			/*
3121 			 * Clone the entry and link into the map.
3122 			 */
3123 			new_entry = vm_map_entry_create(new_map, &count);
3124 			*new_entry = *old_entry;
3125 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3126 			new_entry->wired_count = 0;
3127 			new_entry->object.vm_object = NULL;
3128 			vm_map_entry_link(new_map, new_map->header.prev,
3129 					  new_entry);
3130 			vm_map_copy_entry(old_map, new_map, old_entry,
3131 					  new_entry);
3132 			break;
3133 		}
3134 		old_entry = old_entry->next;
3135 	}
3136 
3137 	new_map->size = old_map->size;
3138 	old_map->infork = 0;
3139 	vm_map_unlock(old_map);
3140 	vm_map_unlock(new_map);
3141 	vm_map_entry_release(count);
3142 
3143 	lwkt_reltoken(&vmobj_token);
3144 	lwkt_reltoken(&vmspace_token);
3145 	lwkt_reltoken(&vm_token);
3146 
3147 	return (vm2);
3148 }
3149 
3150 /*
3151  * Create an auto-grow stack entry
3152  *
3153  * No requirements.
3154  */
3155 int
3156 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3157 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3158 {
3159 	vm_map_entry_t	prev_entry;
3160 	vm_map_entry_t	new_stack_entry;
3161 	vm_size_t	init_ssize;
3162 	int		rv;
3163 	int		count;
3164 	vm_offset_t	tmpaddr;
3165 
3166 	cow |= MAP_IS_STACK;
3167 
3168 	if (max_ssize < sgrowsiz)
3169 		init_ssize = max_ssize;
3170 	else
3171 		init_ssize = sgrowsiz;
3172 
3173 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3174 	vm_map_lock(map);
3175 
3176 	/*
3177 	 * Find space for the mapping
3178 	 */
3179 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3180 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3181 				     flags, &tmpaddr)) {
3182 			vm_map_unlock(map);
3183 			vm_map_entry_release(count);
3184 			return (KERN_NO_SPACE);
3185 		}
3186 		addrbos = tmpaddr;
3187 	}
3188 
3189 	/* If addr is already mapped, no go */
3190 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3191 		vm_map_unlock(map);
3192 		vm_map_entry_release(count);
3193 		return (KERN_NO_SPACE);
3194 	}
3195 
3196 #if 0
3197 	/* XXX already handled by kern_mmap() */
3198 	/* If we would blow our VMEM resource limit, no go */
3199 	if (map->size + init_ssize >
3200 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3201 		vm_map_unlock(map);
3202 		vm_map_entry_release(count);
3203 		return (KERN_NO_SPACE);
3204 	}
3205 #endif
3206 
3207 	/*
3208 	 * If we can't accomodate max_ssize in the current mapping,
3209 	 * no go.  However, we need to be aware that subsequent user
3210 	 * mappings might map into the space we have reserved for
3211 	 * stack, and currently this space is not protected.
3212 	 *
3213 	 * Hopefully we will at least detect this condition
3214 	 * when we try to grow the stack.
3215 	 */
3216 	if ((prev_entry->next != &map->header) &&
3217 	    (prev_entry->next->start < addrbos + max_ssize)) {
3218 		vm_map_unlock(map);
3219 		vm_map_entry_release(count);
3220 		return (KERN_NO_SPACE);
3221 	}
3222 
3223 	/*
3224 	 * We initially map a stack of only init_ssize.  We will
3225 	 * grow as needed later.  Since this is to be a grow
3226 	 * down stack, we map at the top of the range.
3227 	 *
3228 	 * Note: we would normally expect prot and max to be
3229 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3230 	 * eliminate these as input parameters, and just
3231 	 * pass these values here in the insert call.
3232 	 */
3233 	rv = vm_map_insert(map, &count,
3234 			   NULL, 0, addrbos + max_ssize - init_ssize,
3235 	                   addrbos + max_ssize,
3236 			   VM_MAPTYPE_NORMAL,
3237 			   prot, max,
3238 			   cow);
3239 
3240 	/* Now set the avail_ssize amount */
3241 	if (rv == KERN_SUCCESS) {
3242 		if (prev_entry != &map->header)
3243 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3244 		new_stack_entry = prev_entry->next;
3245 		if (new_stack_entry->end   != addrbos + max_ssize ||
3246 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3247 			panic ("Bad entry start/end for new stack entry");
3248 		else
3249 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3250 	}
3251 
3252 	vm_map_unlock(map);
3253 	vm_map_entry_release(count);
3254 	return (rv);
3255 }
3256 
3257 /*
3258  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3259  * desired address is already mapped, or if we successfully grow
3260  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3261  * stack range (this is strange, but preserves compatibility with
3262  * the grow function in vm_machdep.c).
3263  *
3264  * No requirements.
3265  */
3266 int
3267 vm_map_growstack (struct proc *p, vm_offset_t addr)
3268 {
3269 	vm_map_entry_t prev_entry;
3270 	vm_map_entry_t stack_entry;
3271 	vm_map_entry_t new_stack_entry;
3272 	struct vmspace *vm = p->p_vmspace;
3273 	vm_map_t map = &vm->vm_map;
3274 	vm_offset_t    end;
3275 	int grow_amount;
3276 	int rv = KERN_SUCCESS;
3277 	int is_procstack;
3278 	int use_read_lock = 1;
3279 	int count;
3280 
3281 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3282 Retry:
3283 	if (use_read_lock)
3284 		vm_map_lock_read(map);
3285 	else
3286 		vm_map_lock(map);
3287 
3288 	/* If addr is already in the entry range, no need to grow.*/
3289 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3290 		goto done;
3291 
3292 	if ((stack_entry = prev_entry->next) == &map->header)
3293 		goto done;
3294 	if (prev_entry == &map->header)
3295 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3296 	else
3297 		end = prev_entry->end;
3298 
3299 	/*
3300 	 * This next test mimics the old grow function in vm_machdep.c.
3301 	 * It really doesn't quite make sense, but we do it anyway
3302 	 * for compatibility.
3303 	 *
3304 	 * If not growable stack, return success.  This signals the
3305 	 * caller to proceed as he would normally with normal vm.
3306 	 */
3307 	if (stack_entry->aux.avail_ssize < 1 ||
3308 	    addr >= stack_entry->start ||
3309 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3310 		goto done;
3311 	}
3312 
3313 	/* Find the minimum grow amount */
3314 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3315 	if (grow_amount > stack_entry->aux.avail_ssize) {
3316 		rv = KERN_NO_SPACE;
3317 		goto done;
3318 	}
3319 
3320 	/*
3321 	 * If there is no longer enough space between the entries
3322 	 * nogo, and adjust the available space.  Note: this
3323 	 * should only happen if the user has mapped into the
3324 	 * stack area after the stack was created, and is
3325 	 * probably an error.
3326 	 *
3327 	 * This also effectively destroys any guard page the user
3328 	 * might have intended by limiting the stack size.
3329 	 */
3330 	if (grow_amount > stack_entry->start - end) {
3331 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3332 			use_read_lock = 0;
3333 			goto Retry;
3334 		}
3335 		use_read_lock = 0;
3336 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3337 		rv = KERN_NO_SPACE;
3338 		goto done;
3339 	}
3340 
3341 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3342 
3343 	/* If this is the main process stack, see if we're over the
3344 	 * stack limit.
3345 	 */
3346 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3347 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3348 		rv = KERN_NO_SPACE;
3349 		goto done;
3350 	}
3351 
3352 	/* Round up the grow amount modulo SGROWSIZ */
3353 	grow_amount = roundup (grow_amount, sgrowsiz);
3354 	if (grow_amount > stack_entry->aux.avail_ssize) {
3355 		grow_amount = stack_entry->aux.avail_ssize;
3356 	}
3357 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3358 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3359 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3360 		              ctob(vm->vm_ssize);
3361 	}
3362 
3363 	/* If we would blow our VMEM resource limit, no go */
3364 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3365 		rv = KERN_NO_SPACE;
3366 		goto done;
3367 	}
3368 
3369 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3370 		use_read_lock = 0;
3371 		goto Retry;
3372 	}
3373 	use_read_lock = 0;
3374 
3375 	/* Get the preliminary new entry start value */
3376 	addr = stack_entry->start - grow_amount;
3377 
3378 	/* If this puts us into the previous entry, cut back our growth
3379 	 * to the available space.  Also, see the note above.
3380 	 */
3381 	if (addr < end) {
3382 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3383 		addr = end;
3384 	}
3385 
3386 	rv = vm_map_insert(map, &count,
3387 			   NULL, 0, addr, stack_entry->start,
3388 			   VM_MAPTYPE_NORMAL,
3389 			   VM_PROT_ALL, VM_PROT_ALL,
3390 			   0);
3391 
3392 	/* Adjust the available stack space by the amount we grew. */
3393 	if (rv == KERN_SUCCESS) {
3394 		if (prev_entry != &map->header)
3395 			vm_map_clip_end(map, prev_entry, addr, &count);
3396 		new_stack_entry = prev_entry->next;
3397 		if (new_stack_entry->end   != stack_entry->start  ||
3398 		    new_stack_entry->start != addr)
3399 			panic ("Bad stack grow start/end in new stack entry");
3400 		else {
3401 			new_stack_entry->aux.avail_ssize =
3402 				stack_entry->aux.avail_ssize -
3403 				(new_stack_entry->end - new_stack_entry->start);
3404 			if (is_procstack)
3405 				vm->vm_ssize += btoc(new_stack_entry->end -
3406 						     new_stack_entry->start);
3407 		}
3408 
3409 		if (map->flags & MAP_WIREFUTURE)
3410 			vm_map_unwire(map, new_stack_entry->start,
3411 				      new_stack_entry->end, FALSE);
3412 	}
3413 
3414 done:
3415 	if (use_read_lock)
3416 		vm_map_unlock_read(map);
3417 	else
3418 		vm_map_unlock(map);
3419 	vm_map_entry_release(count);
3420 	return (rv);
3421 }
3422 
3423 /*
3424  * Unshare the specified VM space for exec.  If other processes are
3425  * mapped to it, then create a new one.  The new vmspace is null.
3426  *
3427  * No requirements.
3428  */
3429 void
3430 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3431 {
3432 	struct vmspace *oldvmspace = p->p_vmspace;
3433 	struct vmspace *newvmspace;
3434 	vm_map_t map = &p->p_vmspace->vm_map;
3435 
3436 	/*
3437 	 * If we are execing a resident vmspace we fork it, otherwise
3438 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3439 	 * are not copied to the new vmspace.
3440 	 */
3441 	lwkt_gettoken(&vmspace_token);
3442 	if (vmcopy)  {
3443 		newvmspace = vmspace_fork(vmcopy);
3444 	} else {
3445 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3446 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3447 		      (caddr_t)&oldvmspace->vm_endcopy -
3448 		       (caddr_t)&oldvmspace->vm_startcopy);
3449 	}
3450 
3451 	/*
3452 	 * Finish initializing the vmspace before assigning it
3453 	 * to the process.  The vmspace will become the current vmspace
3454 	 * if p == curproc.
3455 	 */
3456 	pmap_pinit2(vmspace_pmap(newvmspace));
3457 	pmap_replacevm(p, newvmspace, 0);
3458 	sysref_put(&oldvmspace->vm_sysref);
3459 	lwkt_reltoken(&vmspace_token);
3460 }
3461 
3462 /*
3463  * Unshare the specified VM space for forcing COW.  This
3464  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3465  *
3466  * The exitingcnt test is not strictly necessary but has been
3467  * included for code sanity (to make the code a bit more deterministic).
3468  */
3469 void
3470 vmspace_unshare(struct proc *p)
3471 {
3472 	struct vmspace *oldvmspace = p->p_vmspace;
3473 	struct vmspace *newvmspace;
3474 
3475 	lwkt_gettoken(&vmspace_token);
3476 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3477 		return;
3478 	newvmspace = vmspace_fork(oldvmspace);
3479 	pmap_pinit2(vmspace_pmap(newvmspace));
3480 	pmap_replacevm(p, newvmspace, 0);
3481 	sysref_put(&oldvmspace->vm_sysref);
3482 	lwkt_reltoken(&vmspace_token);
3483 }
3484 
3485 /*
3486  * Finds the VM object, offset, and protection for a given virtual address
3487  * in the specified map, assuming a page fault of the type specified.
3488  *
3489  * Leaves the map in question locked for read; return values are guaranteed
3490  * until a vm_map_lookup_done call is performed.  Note that the map argument
3491  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3492  *
3493  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3494  * that fast.
3495  *
3496  * If a lookup is requested with "write protection" specified, the map may
3497  * be changed to perform virtual copying operations, although the data
3498  * referenced will remain the same.
3499  *
3500  * No requirements.
3501  */
3502 int
3503 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3504 	      vm_offset_t vaddr,
3505 	      vm_prot_t fault_typea,
3506 	      vm_map_entry_t *out_entry,	/* OUT */
3507 	      vm_object_t *object,		/* OUT */
3508 	      vm_pindex_t *pindex,		/* OUT */
3509 	      vm_prot_t *out_prot,		/* OUT */
3510 	      boolean_t *wired)			/* OUT */
3511 {
3512 	vm_map_entry_t entry;
3513 	vm_map_t map = *var_map;
3514 	vm_prot_t prot;
3515 	vm_prot_t fault_type = fault_typea;
3516 	int use_read_lock = 1;
3517 	int rv = KERN_SUCCESS;
3518 
3519 RetryLookup:
3520 	if (use_read_lock)
3521 		vm_map_lock_read(map);
3522 	else
3523 		vm_map_lock(map);
3524 
3525 	/*
3526 	 * If the map has an interesting hint, try it before calling full
3527 	 * blown lookup routine.
3528 	 */
3529 	entry = map->hint;
3530 	*out_entry = entry;
3531 
3532 	if ((entry == &map->header) ||
3533 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3534 		vm_map_entry_t tmp_entry;
3535 
3536 		/*
3537 		 * Entry was either not a valid hint, or the vaddr was not
3538 		 * contained in the entry, so do a full lookup.
3539 		 */
3540 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3541 			rv = KERN_INVALID_ADDRESS;
3542 			goto done;
3543 		}
3544 
3545 		entry = tmp_entry;
3546 		*out_entry = entry;
3547 	}
3548 
3549 	/*
3550 	 * Handle submaps.
3551 	 */
3552 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3553 		vm_map_t old_map = map;
3554 
3555 		*var_map = map = entry->object.sub_map;
3556 		if (use_read_lock)
3557 			vm_map_unlock_read(old_map);
3558 		else
3559 			vm_map_unlock(old_map);
3560 		use_read_lock = 1;
3561 		goto RetryLookup;
3562 	}
3563 
3564 	/*
3565 	 * Check whether this task is allowed to have this page.
3566 	 * Note the special case for MAP_ENTRY_COW
3567 	 * pages with an override.  This is to implement a forced
3568 	 * COW for debuggers.
3569 	 */
3570 
3571 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3572 		prot = entry->max_protection;
3573 	else
3574 		prot = entry->protection;
3575 
3576 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3577 	if ((fault_type & prot) != fault_type) {
3578 		rv = KERN_PROTECTION_FAILURE;
3579 		goto done;
3580 	}
3581 
3582 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3583 	    (entry->eflags & MAP_ENTRY_COW) &&
3584 	    (fault_type & VM_PROT_WRITE) &&
3585 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3586 		rv = KERN_PROTECTION_FAILURE;
3587 		goto done;
3588 	}
3589 
3590 	/*
3591 	 * If this page is not pageable, we have to get it for all possible
3592 	 * accesses.
3593 	 */
3594 	*wired = (entry->wired_count != 0);
3595 	if (*wired)
3596 		prot = fault_type = entry->protection;
3597 
3598 	/*
3599 	 * Virtual page tables may need to update the accessed (A) bit
3600 	 * in a page table entry.  Upgrade the fault to a write fault for
3601 	 * that case if the map will support it.  If the map does not support
3602 	 * it the page table entry simply will not be updated.
3603 	 */
3604 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3605 		if (prot & VM_PROT_WRITE)
3606 			fault_type |= VM_PROT_WRITE;
3607 	}
3608 
3609 	/*
3610 	 * If the entry was copy-on-write, we either ...
3611 	 */
3612 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3613 		/*
3614 		 * If we want to write the page, we may as well handle that
3615 		 * now since we've got the map locked.
3616 		 *
3617 		 * If we don't need to write the page, we just demote the
3618 		 * permissions allowed.
3619 		 */
3620 
3621 		if (fault_type & VM_PROT_WRITE) {
3622 			/*
3623 			 * Make a new object, and place it in the object
3624 			 * chain.  Note that no new references have appeared
3625 			 * -- one just moved from the map to the new
3626 			 * object.
3627 			 */
3628 
3629 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3630 				use_read_lock = 0;
3631 				goto RetryLookup;
3632 			}
3633 			use_read_lock = 0;
3634 
3635 			vm_map_entry_shadow(entry);
3636 		} else {
3637 			/*
3638 			 * We're attempting to read a copy-on-write page --
3639 			 * don't allow writes.
3640 			 */
3641 
3642 			prot &= ~VM_PROT_WRITE;
3643 		}
3644 	}
3645 
3646 	/*
3647 	 * Create an object if necessary.
3648 	 */
3649 	if (entry->object.vm_object == NULL &&
3650 	    !map->system_map) {
3651 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3652 			use_read_lock = 0;
3653 			goto RetryLookup;
3654 		}
3655 		use_read_lock = 0;
3656 		vm_map_entry_allocate_object(entry);
3657 	}
3658 
3659 	/*
3660 	 * Return the object/offset from this entry.  If the entry was
3661 	 * copy-on-write or empty, it has been fixed up.
3662 	 */
3663 
3664 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3665 	*object = entry->object.vm_object;
3666 
3667 	/*
3668 	 * Return whether this is the only map sharing this data.  On
3669 	 * success we return with a read lock held on the map.  On failure
3670 	 * we return with the map unlocked.
3671 	 */
3672 	*out_prot = prot;
3673 done:
3674 	if (rv == KERN_SUCCESS) {
3675 		if (use_read_lock == 0)
3676 			vm_map_lock_downgrade(map);
3677 	} else if (use_read_lock) {
3678 		vm_map_unlock_read(map);
3679 	} else {
3680 		vm_map_unlock(map);
3681 	}
3682 	return (rv);
3683 }
3684 
3685 /*
3686  * Releases locks acquired by a vm_map_lookup()
3687  * (according to the handle returned by that lookup).
3688  *
3689  * No other requirements.
3690  */
3691 void
3692 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3693 {
3694 	/*
3695 	 * Unlock the main-level map
3696 	 */
3697 	vm_map_unlock_read(map);
3698 	if (count)
3699 		vm_map_entry_release(count);
3700 }
3701 
3702 #include "opt_ddb.h"
3703 #ifdef DDB
3704 #include <sys/kernel.h>
3705 
3706 #include <ddb/ddb.h>
3707 
3708 /*
3709  * Debugging only
3710  */
3711 DB_SHOW_COMMAND(map, vm_map_print)
3712 {
3713 	static int nlines;
3714 	/* XXX convert args. */
3715 	vm_map_t map = (vm_map_t)addr;
3716 	boolean_t full = have_addr;
3717 
3718 	vm_map_entry_t entry;
3719 
3720 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3721 	    (void *)map,
3722 	    (void *)map->pmap, map->nentries, map->timestamp);
3723 	nlines++;
3724 
3725 	if (!full && db_indent)
3726 		return;
3727 
3728 	db_indent += 2;
3729 	for (entry = map->header.next; entry != &map->header;
3730 	    entry = entry->next) {
3731 		db_iprintf("map entry %p: start=%p, end=%p\n",
3732 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3733 		nlines++;
3734 		{
3735 			static char *inheritance_name[4] =
3736 			{"share", "copy", "none", "donate_copy"};
3737 
3738 			db_iprintf(" prot=%x/%x/%s",
3739 			    entry->protection,
3740 			    entry->max_protection,
3741 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3742 			if (entry->wired_count != 0)
3743 				db_printf(", wired");
3744 		}
3745 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3746 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3747 			db_printf(", share=%p, offset=0x%lx\n",
3748 			    (void *)entry->object.sub_map,
3749 			    (long)entry->offset);
3750 			nlines++;
3751 			if ((entry->prev == &map->header) ||
3752 			    (entry->prev->object.sub_map !=
3753 				entry->object.sub_map)) {
3754 				db_indent += 2;
3755 				vm_map_print((db_expr_t)(intptr_t)
3756 					     entry->object.sub_map,
3757 					     full, 0, NULL);
3758 				db_indent -= 2;
3759 			}
3760 		} else {
3761 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3762 			db_printf(", object=%p, offset=0x%lx",
3763 			    (void *)entry->object.vm_object,
3764 			    (long)entry->offset);
3765 			if (entry->eflags & MAP_ENTRY_COW)
3766 				db_printf(", copy (%s)",
3767 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3768 			db_printf("\n");
3769 			nlines++;
3770 
3771 			if ((entry->prev == &map->header) ||
3772 			    (entry->prev->object.vm_object !=
3773 				entry->object.vm_object)) {
3774 				db_indent += 2;
3775 				vm_object_print((db_expr_t)(intptr_t)
3776 						entry->object.vm_object,
3777 						full, 0, NULL);
3778 				nlines += 4;
3779 				db_indent -= 2;
3780 			}
3781 		}
3782 	}
3783 	db_indent -= 2;
3784 	if (db_indent == 0)
3785 		nlines = 0;
3786 }
3787 
3788 /*
3789  * Debugging only
3790  */
3791 DB_SHOW_COMMAND(procvm, procvm)
3792 {
3793 	struct proc *p;
3794 
3795 	if (have_addr) {
3796 		p = (struct proc *) addr;
3797 	} else {
3798 		p = curproc;
3799 	}
3800 
3801 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3802 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3803 	    (void *)vmspace_pmap(p->p_vmspace));
3804 
3805 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3806 }
3807 
3808 #endif /* DDB */
3809