xref: /dragonfly/sys/vm/vm_map.c (revision c03f08f3)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.56 2007/04/29 18:25:41 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory mapping module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/vm_zone.h>
96 
97 #include <sys/thread2.h>
98 #include <sys/sysref2.h>
99 
100 /*
101  *	Virtual memory maps provide for the mapping, protection,
102  *	and sharing of virtual memory objects.  In addition,
103  *	this module provides for an efficient virtual copy of
104  *	memory from one map to another.
105  *
106  *	Synchronization is required prior to most operations.
107  *
108  *	Maps consist of an ordered doubly-linked list of simple
109  *	entries; a single hint is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static void vmspace_terminate(struct vmspace *vm);
125 static void vmspace_dtor(void *obj, void *private);
126 
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 
129 struct sysref_class vmspace_sysref_class = {
130 	.name =		"vmspace",
131 	.mtype =	M_VMSPACE,
132 	.proto =	SYSREF_PROTO_VMSPACE,
133 	.offset =	offsetof(struct vmspace, vm_sysref),
134 	.objsize =	sizeof(struct vmspace),
135 	.mag_capacity =	32,
136 	.flags = SRC_MANAGEDINIT,
137 	.dtor = vmspace_dtor,
138 	.ops = {
139 		.terminate = (sysref_terminate_func_t)vmspace_terminate
140 	}
141 };
142 
143 #define VMEPERCPU	2
144 
145 static struct vm_zone mapentzone_store, mapzone_store;
146 static vm_zone_t mapentzone, mapzone;
147 static struct vm_object mapentobj, mapobj;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
151 static struct vm_map map_init[MAX_KMAP];
152 
153 static void vm_map_entry_shadow(vm_map_entry_t entry);
154 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
155 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
156 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
157 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
158 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
159 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
160 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
161 		vm_map_entry_t);
162 static void vm_map_split (vm_map_entry_t);
163 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
164 
165 /*
166  *	vm_map_startup:
167  *
168  *	Initialize the vm_map module.  Must be called before
169  *	any other vm_map routines.
170  *
171  *	Map and entry structures are allocated from the general
172  *	purpose memory pool with some exceptions:
173  *
174  *	- The kernel map and kmem submap are allocated statically.
175  *	- Kernel map entries are allocated out of a static pool.
176  *
177  *	These restrictions are necessary since malloc() uses the
178  *	maps and requires map entries.
179  */
180 void
181 vm_map_startup(void)
182 {
183 	mapzone = &mapzone_store;
184 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
185 		map_init, MAX_KMAP);
186 	mapentzone = &mapentzone_store;
187 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
188 		map_entry_init, MAX_MAPENT);
189 }
190 
191 /*
192  *	vm_init2 - called prior to any vmspace allocations
193  */
194 void
195 vm_init2(void)
196 {
197 	zinitna(mapentzone, &mapentobj, NULL, 0, 0,
198 		ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
199 	zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
200 	pmap_init2();
201 	vm_object_init2();
202 }
203 
204 
205 /*
206  * Red black tree functions
207  */
208 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
209 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
210 
211 /* a->start is address, and the only field has to be initialized */
212 static int
213 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
214 {
215 	if (a->start < b->start)
216 		return(-1);
217 	else if (a->start > b->start)
218 		return(1);
219 	return(0);
220 }
221 
222 /*
223  * Allocate a vmspace structure, including a vm_map and pmap.
224  * Initialize numerous fields.  While the initial allocation is zerod,
225  * subsequence reuse from the objcache leaves elements of the structure
226  * intact (particularly the pmap), so portions must be zerod.
227  *
228  * The structure is not considered activated until we call sysref_activate().
229  */
230 struct vmspace *
231 vmspace_alloc(vm_offset_t min, vm_offset_t max)
232 {
233 	struct vmspace *vm;
234 
235 	vm = sysref_alloc(&vmspace_sysref_class);
236 	bzero(&vm->vm_startcopy,
237 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
238 	vm_map_init(&vm->vm_map, min, max, NULL);
239 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
240 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
241 	vm->vm_shm = NULL;
242 	vm->vm_exitingcnt = 0;
243 	cpu_vmspace_alloc(vm);
244 	sysref_activate(&vm->vm_sysref);
245 	return (vm);
246 }
247 
248 /*
249  * dtor function - Some elements of the pmap are retained in the
250  * free-cached vmspaces to improve performance.  We have to clean them up
251  * here before returning the vmspace to the memory pool.
252  */
253 static void
254 vmspace_dtor(void *obj, void *private)
255 {
256 	struct vmspace *vm = obj;
257 
258 	pmap_puninit(vmspace_pmap(vm));
259 }
260 
261 /*
262  * Called in two cases:
263  *
264  * (1) When the last sysref is dropped, but exitingcnt might still be
265  *     non-zero.
266  *
267  * (2) When there are no sysrefs (i.e. refcnt is negative) left and the
268  *     exitingcnt becomes zero
269  *
270  * sysref will not scrap the object until we call sysref_put() once more
271  * after the last ref has been dropped.
272  */
273 static void
274 vmspace_terminate(struct vmspace *vm)
275 {
276 	int count;
277 
278 	/*
279 	 * If exitingcnt is non-zero we can't get rid of the entire vmspace
280 	 * yet, but we can scrap user memory.
281 	 */
282 	if (vm->vm_exitingcnt) {
283 		shmexit(vm);
284 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
285 				  VM_MAX_USER_ADDRESS);
286 		vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
287 			      VM_MAX_USER_ADDRESS);
288 
289 		return;
290 	}
291 	cpu_vmspace_free(vm);
292 
293 	/*
294 	 * Make sure any SysV shm is freed, it might not have in
295 	 * exit1()
296 	 */
297 	shmexit(vm);
298 
299 	KKASSERT(vm->vm_upcalls == NULL);
300 
301 	/*
302 	 * Lock the map, to wait out all other references to it.
303 	 * Delete all of the mappings and pages they hold, then call
304 	 * the pmap module to reclaim anything left.
305 	 */
306 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
307 	vm_map_lock(&vm->vm_map);
308 	vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
309 		vm->vm_map.max_offset, &count);
310 	vm_map_unlock(&vm->vm_map);
311 	vm_map_entry_release(count);
312 
313 	pmap_release(vmspace_pmap(vm));
314 	sysref_put(&vm->vm_sysref);
315 }
316 
317 /*
318  * This is called in the wait*() handling code.  The vmspace can be terminated
319  * after the last wait is finished using it.
320  */
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324 	struct vmspace *vm;
325 
326 	vm = p->p_vmspace;
327 	p->p_vmspace = NULL;
328 
329 	if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
330 		vmspace_terminate(vm);
331 }
332 
333 /*
334  * vmspace_swap_count() - count the approximate swap useage in pages for a
335  *			  vmspace.
336  *
337  *	Swap useage is determined by taking the proportional swap used by
338  *	VM objects backing the VM map.  To make up for fractional losses,
339  *	if the VM object has any swap use at all the associated map entries
340  *	count for at least 1 swap page.
341  */
342 int
343 vmspace_swap_count(struct vmspace *vmspace)
344 {
345 	vm_map_t map = &vmspace->vm_map;
346 	vm_map_entry_t cur;
347 	vm_object_t object;
348 	int count = 0;
349 	int n;
350 
351 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
352 		switch(cur->maptype) {
353 		case VM_MAPTYPE_NORMAL:
354 		case VM_MAPTYPE_VPAGETABLE:
355 			if ((object = cur->object.vm_object) == NULL)
356 				break;
357 			if (object->type != OBJT_SWAP)
358 				break;
359 			n = (cur->end - cur->start) / PAGE_SIZE;
360 			if (object->un_pager.swp.swp_bcount) {
361 				count += object->un_pager.swp.swp_bcount *
362 				    SWAP_META_PAGES * n / object->size + 1;
363 			}
364 			break;
365 		default:
366 			break;
367 		}
368 	}
369 	return(count);
370 }
371 
372 
373 /*
374  *	vm_map_create:
375  *
376  *	Creates and returns a new empty VM map with
377  *	the given physical map structure, and having
378  *	the given lower and upper address bounds.
379  */
380 vm_map_t
381 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
382 {
383 	if (result == NULL)
384 		result = zalloc(mapzone);
385 	vm_map_init(result, min, max, pmap);
386 	return (result);
387 }
388 
389 /*
390  * Initialize an existing vm_map structure
391  * such as that in the vmspace structure.
392  * The pmap is set elsewhere.
393  */
394 void
395 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
396 {
397 	map->header.next = map->header.prev = &map->header;
398 	RB_INIT(&map->rb_root);
399 	map->nentries = 0;
400 	map->size = 0;
401 	map->system_map = 0;
402 	map->infork = 0;
403 	map->min_offset = min;
404 	map->max_offset = max;
405 	map->pmap = pmap;
406 	map->first_free = &map->header;
407 	map->hint = &map->header;
408 	map->timestamp = 0;
409 	lockinit(&map->lock, "thrd_sleep", 0, 0);
410 }
411 
412 /*
413  * Shadow the vm_map_entry's object.  This typically needs to be done when
414  * a write fault is taken on an entry which had previously been cloned by
415  * fork().  The shared object (which might be NULL) must become private so
416  * we add a shadow layer above it.
417  *
418  * Object allocation for anonymous mappings is defered as long as possible.
419  * When creating a shadow, however, the underlying object must be instantiated
420  * so it can be shared.
421  *
422  * If the map segment is governed by a virtual page table then it is
423  * possible to address offsets beyond the mapped area.  Just allocate
424  * a maximally sized object for this case.
425  */
426 static
427 void
428 vm_map_entry_shadow(vm_map_entry_t entry)
429 {
430 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
431 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
432 				 0x7FFFFFFF);	/* XXX */
433 	} else {
434 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
435 				 atop(entry->end - entry->start));
436 	}
437 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
438 }
439 
440 /*
441  * Allocate an object for a vm_map_entry.
442  *
443  * Object allocation for anonymous mappings is defered as long as possible.
444  * This function is called when we can defer no longer, generally when a map
445  * entry might be split or forked or takes a page fault.
446  *
447  * If the map segment is governed by a virtual page table then it is
448  * possible to address offsets beyond the mapped area.  Just allocate
449  * a maximally sized object for this case.
450  */
451 void
452 vm_map_entry_allocate_object(vm_map_entry_t entry)
453 {
454 	vm_object_t obj;
455 
456 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
457 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
458 	} else {
459 		obj = vm_object_allocate(OBJT_DEFAULT,
460 					 atop(entry->end - entry->start));
461 	}
462 	entry->object.vm_object = obj;
463 	entry->offset = 0;
464 }
465 
466 /*
467  *      vm_map_entry_reserve_cpu_init:
468  *
469  *	Set an initial negative count so the first attempt to reserve
470  *	space preloads a bunch of vm_map_entry's for this cpu.  Also
471  *	pre-allocate 2 vm_map_entries which will be needed by zalloc() to
472  *	map a new page for vm_map_entry structures.  SMP systems are
473  *	particularly sensitive.
474  *
475  *	This routine is called in early boot so we cannot just call
476  *	vm_map_entry_reserve().
477  *
478  *	May be called for a gd other then mycpu, but may only be called
479  *	during early boot.
480  */
481 void
482 vm_map_entry_reserve_cpu_init(globaldata_t gd)
483 {
484 	vm_map_entry_t entry;
485 	int i;
486 
487 	gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
488 	entry = &cpu_map_entry_init[gd->gd_cpuid][0];
489 	for (i = 0; i < VMEPERCPU; ++i, ++entry) {
490 		entry->next = gd->gd_vme_base;
491 		gd->gd_vme_base = entry;
492 	}
493 }
494 
495 /*
496  *	vm_map_entry_reserve:
497  *
498  *	Reserves vm_map_entry structures so code later on can manipulate
499  *	map_entry structures within a locked map without blocking trying
500  *	to allocate a new vm_map_entry.
501  */
502 int
503 vm_map_entry_reserve(int count)
504 {
505 	struct globaldata *gd = mycpu;
506 	vm_map_entry_t entry;
507 
508 	crit_enter();
509 
510 	/*
511 	 * Make sure we have enough structures in gd_vme_base to handle
512 	 * the reservation request.
513 	 */
514 	while (gd->gd_vme_avail < count) {
515 		entry = zalloc(mapentzone);
516 		entry->next = gd->gd_vme_base;
517 		gd->gd_vme_base = entry;
518 		++gd->gd_vme_avail;
519 	}
520 	gd->gd_vme_avail -= count;
521 	crit_exit();
522 	return(count);
523 }
524 
525 /*
526  *	vm_map_entry_release:
527  *
528  *	Releases previously reserved vm_map_entry structures that were not
529  *	used.  If we have too much junk in our per-cpu cache clean some of
530  *	it out.
531  */
532 void
533 vm_map_entry_release(int count)
534 {
535 	struct globaldata *gd = mycpu;
536 	vm_map_entry_t entry;
537 
538 	crit_enter();
539 	gd->gd_vme_avail += count;
540 	while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
541 		entry = gd->gd_vme_base;
542 		KKASSERT(entry != NULL);
543 		gd->gd_vme_base = entry->next;
544 		--gd->gd_vme_avail;
545 		crit_exit();
546 		zfree(mapentzone, entry);
547 		crit_enter();
548 	}
549 	crit_exit();
550 }
551 
552 /*
553  *	vm_map_entry_kreserve:
554  *
555  *	Reserve map entry structures for use in kernel_map itself.  These
556  *	entries have *ALREADY* been reserved on a per-cpu basis when the map
557  *	was inited.  This function is used by zalloc() to avoid a recursion
558  *	when zalloc() itself needs to allocate additional kernel memory.
559  *
560  *	This function works like the normal reserve but does not load the
561  *	vm_map_entry cache (because that would result in an infinite
562  *	recursion).  Note that gd_vme_avail may go negative.  This is expected.
563  *
564  *	Any caller of this function must be sure to renormalize after
565  *	potentially eating entries to ensure that the reserve supply
566  *	remains intact.
567  */
568 int
569 vm_map_entry_kreserve(int count)
570 {
571 	struct globaldata *gd = mycpu;
572 
573 	crit_enter();
574 	gd->gd_vme_avail -= count;
575 	crit_exit();
576 	KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
577 	return(count);
578 }
579 
580 /*
581  *	vm_map_entry_krelease:
582  *
583  *	Release previously reserved map entries for kernel_map.  We do not
584  *	attempt to clean up like the normal release function as this would
585  *	cause an unnecessary (but probably not fatal) deep procedure call.
586  */
587 void
588 vm_map_entry_krelease(int count)
589 {
590 	struct globaldata *gd = mycpu;
591 
592 	crit_enter();
593 	gd->gd_vme_avail += count;
594 	crit_exit();
595 }
596 
597 /*
598  *	vm_map_entry_create:	[ internal use only ]
599  *
600  *	Allocates a VM map entry for insertion.  No entry fields are filled
601  *	in.
602  *
603  *	This routine may be called from an interrupt thread but not a FAST
604  *	interrupt.  This routine may recurse the map lock.
605  */
606 static vm_map_entry_t
607 vm_map_entry_create(vm_map_t map, int *countp)
608 {
609 	struct globaldata *gd = mycpu;
610 	vm_map_entry_t entry;
611 
612 	KKASSERT(*countp > 0);
613 	--*countp;
614 	crit_enter();
615 	entry = gd->gd_vme_base;
616 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
617 	gd->gd_vme_base = entry->next;
618 	crit_exit();
619 	return(entry);
620 }
621 
622 /*
623  *	vm_map_entry_dispose:	[ internal use only ]
624  *
625  *	Dispose of a vm_map_entry that is no longer being referenced.  This
626  *	function may be called from an interrupt.
627  */
628 static void
629 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
630 {
631 	struct globaldata *gd = mycpu;
632 
633 	KKASSERT(map->hint != entry);
634 	KKASSERT(map->first_free != entry);
635 
636 	++*countp;
637 	crit_enter();
638 	entry->next = gd->gd_vme_base;
639 	gd->gd_vme_base = entry;
640 	crit_exit();
641 }
642 
643 
644 /*
645  *	vm_map_entry_{un,}link:
646  *
647  *	Insert/remove entries from maps.
648  */
649 static __inline void
650 vm_map_entry_link(vm_map_t map,
651 		  vm_map_entry_t after_where,
652 		  vm_map_entry_t entry)
653 {
654 	map->nentries++;
655 	entry->prev = after_where;
656 	entry->next = after_where->next;
657 	entry->next->prev = entry;
658 	after_where->next = entry;
659 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
660 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
661 }
662 
663 static __inline void
664 vm_map_entry_unlink(vm_map_t map,
665 		    vm_map_entry_t entry)
666 {
667 	vm_map_entry_t prev;
668 	vm_map_entry_t next;
669 
670 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
671 		panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
672 	prev = entry->prev;
673 	next = entry->next;
674 	next->prev = prev;
675 	prev->next = next;
676 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
677 	map->nentries--;
678 }
679 
680 /*
681  *	vm_map_lookup_entry:	[ internal use only ]
682  *
683  *	Finds the map entry containing (or
684  *	immediately preceding) the specified address
685  *	in the given map; the entry is returned
686  *	in the "entry" parameter.  The boolean
687  *	result indicates whether the address is
688  *	actually contained in the map.
689  */
690 boolean_t
691 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
692     vm_map_entry_t *entry /* OUT */)
693 {
694 	vm_map_entry_t tmp;
695 	vm_map_entry_t last;
696 
697 #if 0
698 	/*
699 	 * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
700 	 * the hint code with the red-black lookup meets with system crashes
701 	 * and lockups.  We do not yet know why.
702 	 *
703 	 * It is possible that the problem is related to the setting
704 	 * of the hint during map_entry deletion, in the code specified
705 	 * at the GGG comment later on in this file.
706 	 */
707 	/*
708 	 * Quickly check the cached hint, there's a good chance of a match.
709 	 */
710 	if (map->hint != &map->header) {
711 		tmp = map->hint;
712 		if (address >= tmp->start && address < tmp->end) {
713 			*entry = tmp;
714 			return(TRUE);
715 		}
716 	}
717 #endif
718 
719 	/*
720 	 * Locate the record from the top of the tree.  'last' tracks the
721 	 * closest prior record and is returned if no match is found, which
722 	 * in binary tree terms means tracking the most recent right-branch
723 	 * taken.  If there is no prior record, &map->header is returned.
724 	 */
725 	last = &map->header;
726 	tmp = RB_ROOT(&map->rb_root);
727 
728 	while (tmp) {
729 		if (address >= tmp->start) {
730 			if (address < tmp->end) {
731 				*entry = tmp;
732 				map->hint = tmp;
733 				return(TRUE);
734 			}
735 			last = tmp;
736 			tmp = RB_RIGHT(tmp, rb_entry);
737 		} else {
738 			tmp = RB_LEFT(tmp, rb_entry);
739 		}
740 	}
741 	*entry = last;
742 	return (FALSE);
743 }
744 
745 /*
746  *	vm_map_insert:
747  *
748  *	Inserts the given whole VM object into the target
749  *	map at the specified address range.  The object's
750  *	size should match that of the address range.
751  *
752  *	Requires that the map be locked, and leaves it so.  Requires that
753  *	sufficient vm_map_entry structures have been reserved and tracks
754  *	the use via countp.
755  *
756  *	If object is non-NULL, ref count must be bumped by caller
757  *	prior to making call to account for the new entry.
758  */
759 int
760 vm_map_insert(vm_map_t map, int *countp,
761 	      vm_object_t object, vm_ooffset_t offset,
762 	      vm_offset_t start, vm_offset_t end,
763 	      vm_maptype_t maptype,
764 	      vm_prot_t prot, vm_prot_t max,
765 	      int cow)
766 {
767 	vm_map_entry_t new_entry;
768 	vm_map_entry_t prev_entry;
769 	vm_map_entry_t temp_entry;
770 	vm_eflags_t protoeflags;
771 
772 	/*
773 	 * Check that the start and end points are not bogus.
774 	 */
775 
776 	if ((start < map->min_offset) || (end > map->max_offset) ||
777 	    (start >= end))
778 		return (KERN_INVALID_ADDRESS);
779 
780 	/*
781 	 * Find the entry prior to the proposed starting address; if it's part
782 	 * of an existing entry, this range is bogus.
783 	 */
784 
785 	if (vm_map_lookup_entry(map, start, &temp_entry))
786 		return (KERN_NO_SPACE);
787 
788 	prev_entry = temp_entry;
789 
790 	/*
791 	 * Assert that the next entry doesn't overlap the end point.
792 	 */
793 
794 	if ((prev_entry->next != &map->header) &&
795 	    (prev_entry->next->start < end))
796 		return (KERN_NO_SPACE);
797 
798 	protoeflags = 0;
799 
800 	if (cow & MAP_COPY_ON_WRITE)
801 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
802 
803 	if (cow & MAP_NOFAULT) {
804 		protoeflags |= MAP_ENTRY_NOFAULT;
805 
806 		KASSERT(object == NULL,
807 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
808 	}
809 	if (cow & MAP_DISABLE_SYNCER)
810 		protoeflags |= MAP_ENTRY_NOSYNC;
811 	if (cow & MAP_DISABLE_COREDUMP)
812 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
813 
814 	if (object) {
815 		/*
816 		 * When object is non-NULL, it could be shared with another
817 		 * process.  We have to set or clear OBJ_ONEMAPPING
818 		 * appropriately.
819 		 */
820 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
821 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
822 		}
823 	}
824 	else if ((prev_entry != &map->header) &&
825 		 (prev_entry->eflags == protoeflags) &&
826 		 (prev_entry->end == start) &&
827 		 (prev_entry->wired_count == 0) &&
828 		 prev_entry->maptype == maptype &&
829 		 ((prev_entry->object.vm_object == NULL) ||
830 		  vm_object_coalesce(prev_entry->object.vm_object,
831 				     OFF_TO_IDX(prev_entry->offset),
832 				     (vm_size_t)(prev_entry->end - prev_entry->start),
833 				     (vm_size_t)(end - prev_entry->end)))) {
834 		/*
835 		 * We were able to extend the object.  Determine if we
836 		 * can extend the previous map entry to include the
837 		 * new range as well.
838 		 */
839 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
840 		    (prev_entry->protection == prot) &&
841 		    (prev_entry->max_protection == max)) {
842 			map->size += (end - prev_entry->end);
843 			prev_entry->end = end;
844 			vm_map_simplify_entry(map, prev_entry, countp);
845 			return (KERN_SUCCESS);
846 		}
847 
848 		/*
849 		 * If we can extend the object but cannot extend the
850 		 * map entry, we have to create a new map entry.  We
851 		 * must bump the ref count on the extended object to
852 		 * account for it.  object may be NULL.
853 		 */
854 		object = prev_entry->object.vm_object;
855 		offset = prev_entry->offset +
856 			(prev_entry->end - prev_entry->start);
857 		vm_object_reference(object);
858 	}
859 
860 	/*
861 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
862 	 * in things like the buffer map where we manage kva but do not manage
863 	 * backing objects.
864 	 */
865 
866 	/*
867 	 * Create a new entry
868 	 */
869 
870 	new_entry = vm_map_entry_create(map, countp);
871 	new_entry->start = start;
872 	new_entry->end = end;
873 
874 	new_entry->maptype = maptype;
875 	new_entry->eflags = protoeflags;
876 	new_entry->object.vm_object = object;
877 	new_entry->offset = offset;
878 	new_entry->aux.master_pde = 0;
879 
880 	new_entry->inheritance = VM_INHERIT_DEFAULT;
881 	new_entry->protection = prot;
882 	new_entry->max_protection = max;
883 	new_entry->wired_count = 0;
884 
885 	/*
886 	 * Insert the new entry into the list
887 	 */
888 
889 	vm_map_entry_link(map, prev_entry, new_entry);
890 	map->size += new_entry->end - new_entry->start;
891 
892 	/*
893 	 * Update the free space hint
894 	 */
895 	if ((map->first_free == prev_entry) &&
896 	    (prev_entry->end >= new_entry->start)) {
897 		map->first_free = new_entry;
898 	}
899 
900 #if 0
901 	/*
902 	 * Temporarily removed to avoid MAP_STACK panic, due to
903 	 * MAP_STACK being a huge hack.  Will be added back in
904 	 * when MAP_STACK (and the user stack mapping) is fixed.
905 	 */
906 	/*
907 	 * It may be possible to simplify the entry
908 	 */
909 	vm_map_simplify_entry(map, new_entry, countp);
910 #endif
911 
912 	/*
913 	 * Try to pre-populate the page table.  Mappings governed by virtual
914 	 * page tables cannot be prepopulated without a lot of work, so
915 	 * don't try.
916 	 */
917 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
918 	    maptype != VM_MAPTYPE_VPAGETABLE) {
919 		pmap_object_init_pt(map->pmap, start, prot,
920 				    object, OFF_TO_IDX(offset), end - start,
921 				    cow & MAP_PREFAULT_PARTIAL);
922 	}
923 
924 	return (KERN_SUCCESS);
925 }
926 
927 /*
928  * Find sufficient space for `length' bytes in the given map, starting at
929  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
930  *
931  * This function will returned an arbitrarily aligned pointer.  If no
932  * particular alignment is required you should pass align as 1.  Note that
933  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
934  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
935  * argument.
936  *
937  * 'align' should be a power of 2 but is not required to be.
938  */
939 int
940 vm_map_findspace(
941 	vm_map_t map,
942 	vm_offset_t start,
943 	vm_size_t length,
944 	vm_offset_t align,
945 	vm_offset_t *addr)
946 {
947 	vm_map_entry_t entry, next;
948 	vm_offset_t end;
949 	vm_offset_t align_mask;
950 
951 	if (start < map->min_offset)
952 		start = map->min_offset;
953 	if (start > map->max_offset)
954 		return (1);
955 
956 	/*
957 	 * If the alignment is not a power of 2 we will have to use
958 	 * a mod/division, set align_mask to a special value.
959 	 */
960 	if ((align | (align - 1)) + 1 != (align << 1))
961 		align_mask = (vm_offset_t)-1;
962 	else
963 		align_mask = align - 1;
964 
965 retry:
966 	/*
967 	 * Look for the first possible address; if there's already something
968 	 * at this address, we have to start after it.
969 	 */
970 	if (start == map->min_offset) {
971 		if ((entry = map->first_free) != &map->header)
972 			start = entry->end;
973 	} else {
974 		vm_map_entry_t tmp;
975 
976 		if (vm_map_lookup_entry(map, start, &tmp))
977 			start = tmp->end;
978 		entry = tmp;
979 	}
980 
981 	/*
982 	 * Look through the rest of the map, trying to fit a new region in the
983 	 * gap between existing regions, or after the very last region.
984 	 */
985 	for (;; start = (entry = next)->end) {
986 		/*
987 		 * Adjust the proposed start by the requested alignment,
988 		 * be sure that we didn't wrap the address.
989 		 */
990 		if (align_mask == (vm_offset_t)-1)
991 			end = ((start + align - 1) / align) * align;
992 		else
993 			end = (start + align_mask) & ~align_mask;
994 		if (end < start)
995 			return (1);
996 		start = end;
997 		/*
998 		 * Find the end of the proposed new region.  Be sure we didn't
999 		 * go beyond the end of the map, or wrap around the address.
1000 		 * Then check to see if this is the last entry or if the
1001 		 * proposed end fits in the gap between this and the next
1002 		 * entry.
1003 		 */
1004 		end = start + length;
1005 		if (end > map->max_offset || end < start)
1006 			return (1);
1007 		next = entry->next;
1008 		if (next == &map->header || next->start >= end)
1009 			break;
1010 	}
1011 	map->hint = entry;
1012 	if (map == &kernel_map) {
1013 		vm_offset_t ksize;
1014 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
1015 			pmap_growkernel(ksize);
1016 			goto retry;
1017 		}
1018 	}
1019 	*addr = start;
1020 	return (0);
1021 }
1022 
1023 /*
1024  *	vm_map_find finds an unallocated region in the target address
1025  *	map with the given length.  The search is defined to be
1026  *	first-fit from the specified address; the region found is
1027  *	returned in the same parameter.
1028  *
1029  *	If object is non-NULL, ref count must be bumped by caller
1030  *	prior to making call to account for the new entry.
1031  */
1032 int
1033 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1034 	    vm_offset_t *addr,	vm_size_t length,
1035 	    boolean_t find_space,
1036 	    vm_maptype_t maptype,
1037 	    vm_prot_t prot, vm_prot_t max,
1038 	    int cow)
1039 {
1040 	vm_offset_t start;
1041 	int result;
1042 	int count;
1043 
1044 	start = *addr;
1045 
1046 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1047 	vm_map_lock(map);
1048 	if (find_space) {
1049 		if (vm_map_findspace(map, start, length, 1, addr)) {
1050 			vm_map_unlock(map);
1051 			vm_map_entry_release(count);
1052 			return (KERN_NO_SPACE);
1053 		}
1054 		start = *addr;
1055 	}
1056 	result = vm_map_insert(map, &count, object, offset,
1057 			       start, start + length,
1058 			       maptype,
1059 			       prot, max,
1060 			       cow);
1061 	vm_map_unlock(map);
1062 	vm_map_entry_release(count);
1063 
1064 	return (result);
1065 }
1066 
1067 /*
1068  *	vm_map_simplify_entry:
1069  *
1070  *	Simplify the given map entry by merging with either neighbor.  This
1071  *	routine also has the ability to merge with both neighbors.
1072  *
1073  *	The map must be locked.
1074  *
1075  *	This routine guarentees that the passed entry remains valid (though
1076  *	possibly extended).  When merging, this routine may delete one or
1077  *	both neighbors.  No action is taken on entries which have their
1078  *	in-transition flag set.
1079  */
1080 void
1081 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1082 {
1083 	vm_map_entry_t next, prev;
1084 	vm_size_t prevsize, esize;
1085 
1086 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1087 		++mycpu->gd_cnt.v_intrans_coll;
1088 		return;
1089 	}
1090 
1091 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1092 		return;
1093 
1094 	prev = entry->prev;
1095 	if (prev != &map->header) {
1096 		prevsize = prev->end - prev->start;
1097 		if ( (prev->end == entry->start) &&
1098 		     (prev->maptype == entry->maptype) &&
1099 		     (prev->object.vm_object == entry->object.vm_object) &&
1100 		     (!prev->object.vm_object ||
1101 			(prev->offset + prevsize == entry->offset)) &&
1102 		     (prev->eflags == entry->eflags) &&
1103 		     (prev->protection == entry->protection) &&
1104 		     (prev->max_protection == entry->max_protection) &&
1105 		     (prev->inheritance == entry->inheritance) &&
1106 		     (prev->wired_count == entry->wired_count)) {
1107 			if (map->first_free == prev)
1108 				map->first_free = entry;
1109 			if (map->hint == prev)
1110 				map->hint = entry;
1111 			vm_map_entry_unlink(map, prev);
1112 			entry->start = prev->start;
1113 			entry->offset = prev->offset;
1114 			if (prev->object.vm_object)
1115 				vm_object_deallocate(prev->object.vm_object);
1116 			vm_map_entry_dispose(map, prev, countp);
1117 		}
1118 	}
1119 
1120 	next = entry->next;
1121 	if (next != &map->header) {
1122 		esize = entry->end - entry->start;
1123 		if ((entry->end == next->start) &&
1124 		    (next->maptype == entry->maptype) &&
1125 		    (next->object.vm_object == entry->object.vm_object) &&
1126 		     (!entry->object.vm_object ||
1127 			(entry->offset + esize == next->offset)) &&
1128 		    (next->eflags == entry->eflags) &&
1129 		    (next->protection == entry->protection) &&
1130 		    (next->max_protection == entry->max_protection) &&
1131 		    (next->inheritance == entry->inheritance) &&
1132 		    (next->wired_count == entry->wired_count)) {
1133 			if (map->first_free == next)
1134 				map->first_free = entry;
1135 			if (map->hint == next)
1136 				map->hint = entry;
1137 			vm_map_entry_unlink(map, next);
1138 			entry->end = next->end;
1139 			if (next->object.vm_object)
1140 				vm_object_deallocate(next->object.vm_object);
1141 			vm_map_entry_dispose(map, next, countp);
1142 	        }
1143 	}
1144 }
1145 /*
1146  *	vm_map_clip_start:	[ internal use only ]
1147  *
1148  *	Asserts that the given entry begins at or after
1149  *	the specified address; if necessary,
1150  *	it splits the entry into two.
1151  */
1152 #define vm_map_clip_start(map, entry, startaddr, countp) \
1153 { \
1154 	if (startaddr > entry->start) \
1155 		_vm_map_clip_start(map, entry, startaddr, countp); \
1156 }
1157 
1158 /*
1159  *	This routine is called only when it is known that
1160  *	the entry must be split.
1161  */
1162 static void
1163 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1164 {
1165 	vm_map_entry_t new_entry;
1166 
1167 	/*
1168 	 * Split off the front portion -- note that we must insert the new
1169 	 * entry BEFORE this one, so that this entry has the specified
1170 	 * starting address.
1171 	 */
1172 
1173 	vm_map_simplify_entry(map, entry, countp);
1174 
1175 	/*
1176 	 * If there is no object backing this entry, we might as well create
1177 	 * one now.  If we defer it, an object can get created after the map
1178 	 * is clipped, and individual objects will be created for the split-up
1179 	 * map.  This is a bit of a hack, but is also about the best place to
1180 	 * put this improvement.
1181 	 */
1182 	if (entry->object.vm_object == NULL && !map->system_map) {
1183 		vm_map_entry_allocate_object(entry);
1184 	}
1185 
1186 	new_entry = vm_map_entry_create(map, countp);
1187 	*new_entry = *entry;
1188 
1189 	new_entry->end = start;
1190 	entry->offset += (start - entry->start);
1191 	entry->start = start;
1192 
1193 	vm_map_entry_link(map, entry->prev, new_entry);
1194 
1195 	switch(entry->maptype) {
1196 	case VM_MAPTYPE_NORMAL:
1197 	case VM_MAPTYPE_VPAGETABLE:
1198 		vm_object_reference(new_entry->object.vm_object);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 }
1204 
1205 /*
1206  *	vm_map_clip_end:	[ internal use only ]
1207  *
1208  *	Asserts that the given entry ends at or before
1209  *	the specified address; if necessary,
1210  *	it splits the entry into two.
1211  */
1212 
1213 #define vm_map_clip_end(map, entry, endaddr, countp) \
1214 { \
1215 	if (endaddr < entry->end) \
1216 		_vm_map_clip_end(map, entry, endaddr, countp); \
1217 }
1218 
1219 /*
1220  *	This routine is called only when it is known that
1221  *	the entry must be split.
1222  */
1223 static void
1224 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1225 {
1226 	vm_map_entry_t new_entry;
1227 
1228 	/*
1229 	 * If there is no object backing this entry, we might as well create
1230 	 * one now.  If we defer it, an object can get created after the map
1231 	 * is clipped, and individual objects will be created for the split-up
1232 	 * map.  This is a bit of a hack, but is also about the best place to
1233 	 * put this improvement.
1234 	 */
1235 
1236 	if (entry->object.vm_object == NULL && !map->system_map) {
1237 		vm_map_entry_allocate_object(entry);
1238 	}
1239 
1240 	/*
1241 	 * Create a new entry and insert it AFTER the specified entry
1242 	 */
1243 
1244 	new_entry = vm_map_entry_create(map, countp);
1245 	*new_entry = *entry;
1246 
1247 	new_entry->start = entry->end = end;
1248 	new_entry->offset += (end - entry->start);
1249 
1250 	vm_map_entry_link(map, entry, new_entry);
1251 
1252 	switch(entry->maptype) {
1253 	case VM_MAPTYPE_NORMAL:
1254 	case VM_MAPTYPE_VPAGETABLE:
1255 		vm_object_reference(new_entry->object.vm_object);
1256 		break;
1257 	default:
1258 		break;
1259 	}
1260 }
1261 
1262 /*
1263  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1264  *
1265  *	Asserts that the starting and ending region
1266  *	addresses fall within the valid range of the map.
1267  */
1268 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1269 		{					\
1270 		if (start < vm_map_min(map))		\
1271 			start = vm_map_min(map);	\
1272 		if (end > vm_map_max(map))		\
1273 			end = vm_map_max(map);		\
1274 		if (start > end)			\
1275 			start = end;			\
1276 		}
1277 
1278 /*
1279  *	vm_map_transition_wait:	[ kernel use only ]
1280  *
1281  *	Used to block when an in-transition collison occurs.  The map
1282  *	is unlocked for the sleep and relocked before the return.
1283  */
1284 static
1285 void
1286 vm_map_transition_wait(vm_map_t map)
1287 {
1288 	vm_map_unlock(map);
1289 	tsleep(map, 0, "vment", 0);
1290 	vm_map_lock(map);
1291 }
1292 
1293 /*
1294  * CLIP_CHECK_BACK
1295  * CLIP_CHECK_FWD
1296  *
1297  *	When we do blocking operations with the map lock held it is
1298  *	possible that a clip might have occured on our in-transit entry,
1299  *	requiring an adjustment to the entry in our loop.  These macros
1300  *	help the pageable and clip_range code deal with the case.  The
1301  *	conditional costs virtually nothing if no clipping has occured.
1302  */
1303 
1304 #define CLIP_CHECK_BACK(entry, save_start)		\
1305     do {						\
1306 	    while (entry->start != save_start) {	\
1307 		    entry = entry->prev;		\
1308 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1309 	    }						\
1310     } while(0)
1311 
1312 #define CLIP_CHECK_FWD(entry, save_end)			\
1313     do {						\
1314 	    while (entry->end != save_end) {		\
1315 		    entry = entry->next;		\
1316 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1317 	    }						\
1318     } while(0)
1319 
1320 
1321 /*
1322  *	vm_map_clip_range:	[ kernel use only ]
1323  *
1324  *	Clip the specified range and return the base entry.  The
1325  *	range may cover several entries starting at the returned base
1326  *	and the first and last entry in the covering sequence will be
1327  *	properly clipped to the requested start and end address.
1328  *
1329  *	If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1330  *	flag.
1331  *
1332  *	The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1333  *	covered by the requested range.
1334  *
1335  *	The map must be exclusively locked on entry and will remain locked
1336  *	on return. If no range exists or the range contains holes and you
1337  *	specified that no holes were allowed, NULL will be returned.  This
1338  *	routine may temporarily unlock the map in order avoid a deadlock when
1339  *	sleeping.
1340  */
1341 static
1342 vm_map_entry_t
1343 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1344 	int *countp, int flags)
1345 {
1346 	vm_map_entry_t start_entry;
1347 	vm_map_entry_t entry;
1348 
1349 	/*
1350 	 * Locate the entry and effect initial clipping.  The in-transition
1351 	 * case does not occur very often so do not try to optimize it.
1352 	 */
1353 again:
1354 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1355 		return (NULL);
1356 	entry = start_entry;
1357 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1358 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1359 		++mycpu->gd_cnt.v_intrans_coll;
1360 		++mycpu->gd_cnt.v_intrans_wait;
1361 		vm_map_transition_wait(map);
1362 		/*
1363 		 * entry and/or start_entry may have been clipped while
1364 		 * we slept, or may have gone away entirely.  We have
1365 		 * to restart from the lookup.
1366 		 */
1367 		goto again;
1368 	}
1369 	/*
1370 	 * Since we hold an exclusive map lock we do not have to restart
1371 	 * after clipping, even though clipping may block in zalloc.
1372 	 */
1373 	vm_map_clip_start(map, entry, start, countp);
1374 	vm_map_clip_end(map, entry, end, countp);
1375 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1376 
1377 	/*
1378 	 * Scan entries covered by the range.  When working on the next
1379 	 * entry a restart need only re-loop on the current entry which
1380 	 * we have already locked, since 'next' may have changed.  Also,
1381 	 * even though entry is safe, it may have been clipped so we
1382 	 * have to iterate forwards through the clip after sleeping.
1383 	 */
1384 	while (entry->next != &map->header && entry->next->start < end) {
1385 		vm_map_entry_t next = entry->next;
1386 
1387 		if (flags & MAP_CLIP_NO_HOLES) {
1388 			if (next->start > entry->end) {
1389 				vm_map_unclip_range(map, start_entry,
1390 					start, entry->end, countp, flags);
1391 				return(NULL);
1392 			}
1393 		}
1394 
1395 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1396 			vm_offset_t save_end = entry->end;
1397 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1398 			++mycpu->gd_cnt.v_intrans_coll;
1399 			++mycpu->gd_cnt.v_intrans_wait;
1400 			vm_map_transition_wait(map);
1401 
1402 			/*
1403 			 * clips might have occured while we blocked.
1404 			 */
1405 			CLIP_CHECK_FWD(entry, save_end);
1406 			CLIP_CHECK_BACK(start_entry, start);
1407 			continue;
1408 		}
1409 		/*
1410 		 * No restart necessary even though clip_end may block, we
1411 		 * are holding the map lock.
1412 		 */
1413 		vm_map_clip_end(map, next, end, countp);
1414 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1415 		entry = next;
1416 	}
1417 	if (flags & MAP_CLIP_NO_HOLES) {
1418 		if (entry->end != end) {
1419 			vm_map_unclip_range(map, start_entry,
1420 				start, entry->end, countp, flags);
1421 			return(NULL);
1422 		}
1423 	}
1424 	return(start_entry);
1425 }
1426 
1427 /*
1428  *	vm_map_unclip_range:	[ kernel use only ]
1429  *
1430  *	Undo the effect of vm_map_clip_range().  You should pass the same
1431  *	flags and the same range that you passed to vm_map_clip_range().
1432  *	This code will clear the in-transition flag on the entries and
1433  *	wake up anyone waiting.  This code will also simplify the sequence
1434  *	and attempt to merge it with entries before and after the sequence.
1435  *
1436  *	The map must be locked on entry and will remain locked on return.
1437  *
1438  *	Note that you should also pass the start_entry returned by
1439  *	vm_map_clip_range().  However, if you block between the two calls
1440  *	with the map unlocked please be aware that the start_entry may
1441  *	have been clipped and you may need to scan it backwards to find
1442  *	the entry corresponding with the original start address.  You are
1443  *	responsible for this, vm_map_unclip_range() expects the correct
1444  *	start_entry to be passed to it and will KASSERT otherwise.
1445  */
1446 static
1447 void
1448 vm_map_unclip_range(
1449 	vm_map_t map,
1450 	vm_map_entry_t start_entry,
1451 	vm_offset_t start,
1452 	vm_offset_t end,
1453 	int *countp,
1454 	int flags)
1455 {
1456 	vm_map_entry_t entry;
1457 
1458 	entry = start_entry;
1459 
1460 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1461 	while (entry != &map->header && entry->start < end) {
1462 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1463 		KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1464 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1465 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1466 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1467 			wakeup(map);
1468 		}
1469 		entry = entry->next;
1470 	}
1471 
1472 	/*
1473 	 * Simplification does not block so there is no restart case.
1474 	 */
1475 	entry = start_entry;
1476 	while (entry != &map->header && entry->start < end) {
1477 		vm_map_simplify_entry(map, entry, countp);
1478 		entry = entry->next;
1479 	}
1480 }
1481 
1482 /*
1483  *	vm_map_submap:		[ kernel use only ]
1484  *
1485  *	Mark the given range as handled by a subordinate map.
1486  *
1487  *	This range must have been created with vm_map_find,
1488  *	and no other operations may have been performed on this
1489  *	range prior to calling vm_map_submap.
1490  *
1491  *	Only a limited number of operations can be performed
1492  *	within this rage after calling vm_map_submap:
1493  *		vm_fault
1494  *	[Don't try vm_map_copy!]
1495  *
1496  *	To remove a submapping, one must first remove the
1497  *	range from the superior map, and then destroy the
1498  *	submap (if desired).  [Better yet, don't try it.]
1499  */
1500 int
1501 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1502 {
1503 	vm_map_entry_t entry;
1504 	int result = KERN_INVALID_ARGUMENT;
1505 	int count;
1506 
1507 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1508 	vm_map_lock(map);
1509 
1510 	VM_MAP_RANGE_CHECK(map, start, end);
1511 
1512 	if (vm_map_lookup_entry(map, start, &entry)) {
1513 		vm_map_clip_start(map, entry, start, &count);
1514 	} else {
1515 		entry = entry->next;
1516 	}
1517 
1518 	vm_map_clip_end(map, entry, end, &count);
1519 
1520 	if ((entry->start == start) && (entry->end == end) &&
1521 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1522 	    (entry->object.vm_object == NULL)) {
1523 		entry->object.sub_map = submap;
1524 		entry->maptype = VM_MAPTYPE_SUBMAP;
1525 		result = KERN_SUCCESS;
1526 	}
1527 	vm_map_unlock(map);
1528 	vm_map_entry_release(count);
1529 
1530 	return (result);
1531 }
1532 
1533 /*
1534  * vm_map_protect:
1535  *
1536  * Sets the protection of the specified address region in the target map.
1537  * If "set_max" is specified, the maximum protection is to be set;
1538  * otherwise, only the current protection is affected.
1539  *
1540  * The protection is not applicable to submaps, but is applicable to normal
1541  * maps and maps governed by virtual page tables.  For example, when operating
1542  * on a virtual page table our protection basically controls how COW occurs
1543  * on the backing object, whereas the virtual page table abstraction itself
1544  * is an abstraction for userland.
1545  */
1546 int
1547 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1548 	       vm_prot_t new_prot, boolean_t set_max)
1549 {
1550 	vm_map_entry_t current;
1551 	vm_map_entry_t entry;
1552 	int count;
1553 
1554 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1555 	vm_map_lock(map);
1556 
1557 	VM_MAP_RANGE_CHECK(map, start, end);
1558 
1559 	if (vm_map_lookup_entry(map, start, &entry)) {
1560 		vm_map_clip_start(map, entry, start, &count);
1561 	} else {
1562 		entry = entry->next;
1563 	}
1564 
1565 	/*
1566 	 * Make a first pass to check for protection violations.
1567 	 */
1568 	current = entry;
1569 	while ((current != &map->header) && (current->start < end)) {
1570 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1571 			vm_map_unlock(map);
1572 			vm_map_entry_release(count);
1573 			return (KERN_INVALID_ARGUMENT);
1574 		}
1575 		if ((new_prot & current->max_protection) != new_prot) {
1576 			vm_map_unlock(map);
1577 			vm_map_entry_release(count);
1578 			return (KERN_PROTECTION_FAILURE);
1579 		}
1580 		current = current->next;
1581 	}
1582 
1583 	/*
1584 	 * Go back and fix up protections. [Note that clipping is not
1585 	 * necessary the second time.]
1586 	 */
1587 	current = entry;
1588 
1589 	while ((current != &map->header) && (current->start < end)) {
1590 		vm_prot_t old_prot;
1591 
1592 		vm_map_clip_end(map, current, end, &count);
1593 
1594 		old_prot = current->protection;
1595 		if (set_max) {
1596 			current->protection =
1597 			    (current->max_protection = new_prot) &
1598 			    old_prot;
1599 		} else {
1600 			current->protection = new_prot;
1601 		}
1602 
1603 		/*
1604 		 * Update physical map if necessary. Worry about copy-on-write
1605 		 * here -- CHECK THIS XXX
1606 		 */
1607 
1608 		if (current->protection != old_prot) {
1609 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1610 							VM_PROT_ALL)
1611 
1612 			pmap_protect(map->pmap, current->start,
1613 			    current->end,
1614 			    current->protection & MASK(current));
1615 #undef	MASK
1616 		}
1617 
1618 		vm_map_simplify_entry(map, current, &count);
1619 
1620 		current = current->next;
1621 	}
1622 
1623 	vm_map_unlock(map);
1624 	vm_map_entry_release(count);
1625 	return (KERN_SUCCESS);
1626 }
1627 
1628 /*
1629  *	vm_map_madvise:
1630  *
1631  * 	This routine traverses a processes map handling the madvise
1632  *	system call.  Advisories are classified as either those effecting
1633  *	the vm_map_entry structure, or those effecting the underlying
1634  *	objects.
1635  *
1636  *	The <value> argument is used for extended madvise calls.
1637  */
1638 int
1639 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1640 	       int behav, off_t value)
1641 {
1642 	vm_map_entry_t current, entry;
1643 	int modify_map = 0;
1644 	int error = 0;
1645 	int count;
1646 
1647 	/*
1648 	 * Some madvise calls directly modify the vm_map_entry, in which case
1649 	 * we need to use an exclusive lock on the map and we need to perform
1650 	 * various clipping operations.  Otherwise we only need a read-lock
1651 	 * on the map.
1652 	 */
1653 
1654 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1655 
1656 	switch(behav) {
1657 	case MADV_NORMAL:
1658 	case MADV_SEQUENTIAL:
1659 	case MADV_RANDOM:
1660 	case MADV_NOSYNC:
1661 	case MADV_AUTOSYNC:
1662 	case MADV_NOCORE:
1663 	case MADV_CORE:
1664 	case MADV_SETMAP:
1665 	case MADV_INVAL:
1666 		modify_map = 1;
1667 		vm_map_lock(map);
1668 		break;
1669 	case MADV_WILLNEED:
1670 	case MADV_DONTNEED:
1671 	case MADV_FREE:
1672 		vm_map_lock_read(map);
1673 		break;
1674 	default:
1675 		vm_map_entry_release(count);
1676 		return (EINVAL);
1677 	}
1678 
1679 	/*
1680 	 * Locate starting entry and clip if necessary.
1681 	 */
1682 
1683 	VM_MAP_RANGE_CHECK(map, start, end);
1684 
1685 	if (vm_map_lookup_entry(map, start, &entry)) {
1686 		if (modify_map)
1687 			vm_map_clip_start(map, entry, start, &count);
1688 	} else {
1689 		entry = entry->next;
1690 	}
1691 
1692 	if (modify_map) {
1693 		/*
1694 		 * madvise behaviors that are implemented in the vm_map_entry.
1695 		 *
1696 		 * We clip the vm_map_entry so that behavioral changes are
1697 		 * limited to the specified address range.
1698 		 */
1699 		for (current = entry;
1700 		     (current != &map->header) && (current->start < end);
1701 		     current = current->next
1702 		) {
1703 			if (current->maptype == VM_MAPTYPE_SUBMAP)
1704 				continue;
1705 
1706 			vm_map_clip_end(map, current, end, &count);
1707 
1708 			switch (behav) {
1709 			case MADV_NORMAL:
1710 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1711 				break;
1712 			case MADV_SEQUENTIAL:
1713 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1714 				break;
1715 			case MADV_RANDOM:
1716 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1717 				break;
1718 			case MADV_NOSYNC:
1719 				current->eflags |= MAP_ENTRY_NOSYNC;
1720 				break;
1721 			case MADV_AUTOSYNC:
1722 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1723 				break;
1724 			case MADV_NOCORE:
1725 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1726 				break;
1727 			case MADV_CORE:
1728 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1729 				break;
1730 			case MADV_INVAL:
1731 				/*
1732 				 * Invalidate the related pmap entries, used
1733 				 * to flush portions of the real kernel's
1734 				 * pmap when the caller has removed or
1735 				 * modified existing mappings in a virtual
1736 				 * page table.
1737 				 */
1738 				pmap_remove(map->pmap,
1739 					    current->start, current->end);
1740 				break;
1741 			case MADV_SETMAP:
1742 				/*
1743 				 * Set the page directory page for a map
1744 				 * governed by a virtual page table.  Mark
1745 				 * the entry as being governed by a virtual
1746 				 * page table if it is not.
1747 				 *
1748 				 * XXX the page directory page is stored
1749 				 * in the avail_ssize field if the map_entry.
1750 				 *
1751 				 * XXX the map simplification code does not
1752 				 * compare this field so weird things may
1753 				 * happen if you do not apply this function
1754 				 * to the entire mapping governed by the
1755 				 * virtual page table.
1756 				 */
1757 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1758 					error = EINVAL;
1759 					break;
1760 				}
1761 				current->aux.master_pde = value;
1762 				pmap_remove(map->pmap,
1763 					    current->start, current->end);
1764 				break;
1765 			default:
1766 				error = EINVAL;
1767 				break;
1768 			}
1769 			vm_map_simplify_entry(map, current, &count);
1770 		}
1771 		vm_map_unlock(map);
1772 	} else {
1773 		vm_pindex_t pindex;
1774 		int count;
1775 
1776 		/*
1777 		 * madvise behaviors that are implemented in the underlying
1778 		 * vm_object.
1779 		 *
1780 		 * Since we don't clip the vm_map_entry, we have to clip
1781 		 * the vm_object pindex and count.
1782 		 *
1783 		 * NOTE!  We currently do not support these functions on
1784 		 * virtual page tables.
1785 		 */
1786 		for (current = entry;
1787 		     (current != &map->header) && (current->start < end);
1788 		     current = current->next
1789 		) {
1790 			vm_offset_t useStart;
1791 
1792 			if (current->maptype != VM_MAPTYPE_NORMAL)
1793 				continue;
1794 
1795 			pindex = OFF_TO_IDX(current->offset);
1796 			count = atop(current->end - current->start);
1797 			useStart = current->start;
1798 
1799 			if (current->start < start) {
1800 				pindex += atop(start - current->start);
1801 				count -= atop(start - current->start);
1802 				useStart = start;
1803 			}
1804 			if (current->end > end)
1805 				count -= atop(current->end - end);
1806 
1807 			if (count <= 0)
1808 				continue;
1809 
1810 			vm_object_madvise(current->object.vm_object,
1811 					  pindex, count, behav);
1812 
1813 			/*
1814 			 * Try to populate the page table.  Mappings governed
1815 			 * by virtual page tables cannot be pre-populated
1816 			 * without a lot of work so don't try.
1817 			 */
1818 			if (behav == MADV_WILLNEED &&
1819 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
1820 				pmap_object_init_pt(
1821 				    map->pmap,
1822 				    useStart,
1823 				    current->protection,
1824 				    current->object.vm_object,
1825 				    pindex,
1826 				    (count << PAGE_SHIFT),
1827 				    MAP_PREFAULT_MADVISE
1828 				);
1829 			}
1830 		}
1831 		vm_map_unlock_read(map);
1832 	}
1833 	vm_map_entry_release(count);
1834 	return(error);
1835 }
1836 
1837 
1838 /*
1839  *	vm_map_inherit:
1840  *
1841  *	Sets the inheritance of the specified address
1842  *	range in the target map.  Inheritance
1843  *	affects how the map will be shared with
1844  *	child maps at the time of vm_map_fork.
1845  */
1846 int
1847 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1848 	       vm_inherit_t new_inheritance)
1849 {
1850 	vm_map_entry_t entry;
1851 	vm_map_entry_t temp_entry;
1852 	int count;
1853 
1854 	switch (new_inheritance) {
1855 	case VM_INHERIT_NONE:
1856 	case VM_INHERIT_COPY:
1857 	case VM_INHERIT_SHARE:
1858 		break;
1859 	default:
1860 		return (KERN_INVALID_ARGUMENT);
1861 	}
1862 
1863 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1864 	vm_map_lock(map);
1865 
1866 	VM_MAP_RANGE_CHECK(map, start, end);
1867 
1868 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1869 		entry = temp_entry;
1870 		vm_map_clip_start(map, entry, start, &count);
1871 	} else
1872 		entry = temp_entry->next;
1873 
1874 	while ((entry != &map->header) && (entry->start < end)) {
1875 		vm_map_clip_end(map, entry, end, &count);
1876 
1877 		entry->inheritance = new_inheritance;
1878 
1879 		vm_map_simplify_entry(map, entry, &count);
1880 
1881 		entry = entry->next;
1882 	}
1883 	vm_map_unlock(map);
1884 	vm_map_entry_release(count);
1885 	return (KERN_SUCCESS);
1886 }
1887 
1888 /*
1889  * Implement the semantics of mlock
1890  */
1891 int
1892 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1893     boolean_t new_pageable)
1894 {
1895 	vm_map_entry_t entry;
1896 	vm_map_entry_t start_entry;
1897 	vm_offset_t end;
1898 	int rv = KERN_SUCCESS;
1899 	int count;
1900 
1901 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1902 	vm_map_lock(map);
1903 	VM_MAP_RANGE_CHECK(map, start, real_end);
1904 	end = real_end;
1905 
1906 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1907 	if (start_entry == NULL) {
1908 		vm_map_unlock(map);
1909 		vm_map_entry_release(count);
1910 		return (KERN_INVALID_ADDRESS);
1911 	}
1912 
1913 	if (new_pageable == 0) {
1914 		entry = start_entry;
1915 		while ((entry != &map->header) && (entry->start < end)) {
1916 			vm_offset_t save_start;
1917 			vm_offset_t save_end;
1918 
1919 			/*
1920 			 * Already user wired or hard wired (trivial cases)
1921 			 */
1922 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1923 				entry = entry->next;
1924 				continue;
1925 			}
1926 			if (entry->wired_count != 0) {
1927 				entry->wired_count++;
1928 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1929 				entry = entry->next;
1930 				continue;
1931 			}
1932 
1933 			/*
1934 			 * A new wiring requires instantiation of appropriate
1935 			 * management structures and the faulting in of the
1936 			 * page.
1937 			 */
1938 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
1939 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1940 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1941 					vm_map_entry_shadow(entry);
1942 				} else if (entry->object.vm_object == NULL &&
1943 					   !map->system_map) {
1944 					vm_map_entry_allocate_object(entry);
1945 				}
1946 			}
1947 			entry->wired_count++;
1948 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1949 
1950 			/*
1951 			 * Now fault in the area.  Note that vm_fault_wire()
1952 			 * may release the map lock temporarily, it will be
1953 			 * relocked on return.  The in-transition
1954 			 * flag protects the entries.
1955 			 */
1956 			save_start = entry->start;
1957 			save_end = entry->end;
1958 			rv = vm_fault_wire(map, entry, TRUE);
1959 			if (rv) {
1960 				CLIP_CHECK_BACK(entry, save_start);
1961 				for (;;) {
1962 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1963 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1964 					entry->wired_count = 0;
1965 					if (entry->end == save_end)
1966 						break;
1967 					entry = entry->next;
1968 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
1969 				}
1970 				end = save_start;	/* unwire the rest */
1971 				break;
1972 			}
1973 			/*
1974 			 * note that even though the entry might have been
1975 			 * clipped, the USER_WIRED flag we set prevents
1976 			 * duplication so we do not have to do a
1977 			 * clip check.
1978 			 */
1979 			entry = entry->next;
1980 		}
1981 
1982 		/*
1983 		 * If we failed fall through to the unwiring section to
1984 		 * unwire what we had wired so far.  'end' has already
1985 		 * been adjusted.
1986 		 */
1987 		if (rv)
1988 			new_pageable = 1;
1989 
1990 		/*
1991 		 * start_entry might have been clipped if we unlocked the
1992 		 * map and blocked.  No matter how clipped it has gotten
1993 		 * there should be a fragment that is on our start boundary.
1994 		 */
1995 		CLIP_CHECK_BACK(start_entry, start);
1996 	}
1997 
1998 	/*
1999 	 * Deal with the unwiring case.
2000 	 */
2001 	if (new_pageable) {
2002 		/*
2003 		 * This is the unwiring case.  We must first ensure that the
2004 		 * range to be unwired is really wired down.  We know there
2005 		 * are no holes.
2006 		 */
2007 		entry = start_entry;
2008 		while ((entry != &map->header) && (entry->start < end)) {
2009 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2010 				rv = KERN_INVALID_ARGUMENT;
2011 				goto done;
2012 			}
2013 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2014 			entry = entry->next;
2015 		}
2016 
2017 		/*
2018 		 * Now decrement the wiring count for each region. If a region
2019 		 * becomes completely unwired, unwire its physical pages and
2020 		 * mappings.
2021 		 */
2022 		/*
2023 		 * The map entries are processed in a loop, checking to
2024 		 * make sure the entry is wired and asserting it has a wired
2025 		 * count. However, another loop was inserted more-or-less in
2026 		 * the middle of the unwiring path. This loop picks up the
2027 		 * "entry" loop variable from the first loop without first
2028 		 * setting it to start_entry. Naturally, the secound loop
2029 		 * is never entered and the pages backing the entries are
2030 		 * never unwired. This can lead to a leak of wired pages.
2031 		 */
2032 		entry = start_entry;
2033 		while ((entry != &map->header) && (entry->start < end)) {
2034 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2035 				("expected USER_WIRED on entry %p", entry));
2036 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2037 			entry->wired_count--;
2038 			if (entry->wired_count == 0)
2039 				vm_fault_unwire(map, entry);
2040 			entry = entry->next;
2041 		}
2042 	}
2043 done:
2044 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2045 		MAP_CLIP_NO_HOLES);
2046 	map->timestamp++;
2047 	vm_map_unlock(map);
2048 	vm_map_entry_release(count);
2049 	return (rv);
2050 }
2051 
2052 /*
2053  *	vm_map_wire:
2054  *
2055  *	Sets the pageability of the specified address
2056  *	range in the target map.  Regions specified
2057  *	as not pageable require locked-down physical
2058  *	memory and physical page maps.
2059  *
2060  *	The map must not be locked, but a reference
2061  *	must remain to the map throughout the call.
2062  *
2063  *	This function may be called via the zalloc path and must properly
2064  *	reserve map entries for kernel_map.
2065  */
2066 int
2067 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2068 {
2069 	vm_map_entry_t entry;
2070 	vm_map_entry_t start_entry;
2071 	vm_offset_t end;
2072 	int rv = KERN_SUCCESS;
2073 	int count;
2074 
2075 	if (kmflags & KM_KRESERVE)
2076 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2077 	else
2078 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2079 	vm_map_lock(map);
2080 	VM_MAP_RANGE_CHECK(map, start, real_end);
2081 	end = real_end;
2082 
2083 	start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
2084 	if (start_entry == NULL) {
2085 		vm_map_unlock(map);
2086 		rv = KERN_INVALID_ADDRESS;
2087 		goto failure;
2088 	}
2089 	if ((kmflags & KM_PAGEABLE) == 0) {
2090 		/*
2091 		 * Wiring.
2092 		 *
2093 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2094 		 * objects that need to be created. Then we clip each map
2095 		 * entry to the region to be wired and increment its wiring
2096 		 * count.  We create objects before clipping the map entries
2097 		 * to avoid object proliferation.
2098 		 *
2099 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2100 		 * fault in the pages for any newly wired area (wired_count is
2101 		 * 1).
2102 		 *
2103 		 * Downgrading to a read lock for vm_fault_wire avoids a
2104 		 * possible deadlock with another process that may have faulted
2105 		 * on one of the pages to be wired (it would mark the page busy,
2106 		 * blocking us, then in turn block on the map lock that we
2107 		 * hold).  Because of problems in the recursive lock package,
2108 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2109 		 * any actions that require the write lock must be done
2110 		 * beforehand.  Because we keep the read lock on the map, the
2111 		 * copy-on-write status of the entries we modify here cannot
2112 		 * change.
2113 		 */
2114 
2115 		entry = start_entry;
2116 		while ((entry != &map->header) && (entry->start < end)) {
2117 			/*
2118 			 * Trivial case if the entry is already wired
2119 			 */
2120 			if (entry->wired_count) {
2121 				entry->wired_count++;
2122 				entry = entry->next;
2123 				continue;
2124 			}
2125 
2126 			/*
2127 			 * The entry is being newly wired, we have to setup
2128 			 * appropriate management structures.  A shadow
2129 			 * object is required for a copy-on-write region,
2130 			 * or a normal object for a zero-fill region.  We
2131 			 * do not have to do this for entries that point to sub
2132 			 * maps because we won't hold the lock on the sub map.
2133 			 */
2134 			if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2135 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
2136 				if (copyflag &&
2137 				    ((entry->protection & VM_PROT_WRITE) != 0)) {
2138 					vm_map_entry_shadow(entry);
2139 				} else if (entry->object.vm_object == NULL &&
2140 					   !map->system_map) {
2141 					vm_map_entry_allocate_object(entry);
2142 				}
2143 			}
2144 
2145 			entry->wired_count++;
2146 			entry = entry->next;
2147 		}
2148 
2149 		/*
2150 		 * Pass 2.
2151 		 */
2152 
2153 		/*
2154 		 * HACK HACK HACK HACK
2155 		 *
2156 		 * Unlock the map to avoid deadlocks.  The in-transit flag
2157 		 * protects us from most changes but note that
2158 		 * clipping may still occur.  To prevent clipping from
2159 		 * occuring after the unlock, except for when we are
2160 		 * blocking in vm_fault_wire, we must run in a critical
2161 		 * section, otherwise our accesses to entry->start and
2162 		 * entry->end could be corrupted.  We have to enter the
2163 		 * critical section prior to unlocking so start_entry does
2164 		 * not change out from under us at the very beginning of the
2165 		 * loop.
2166 		 *
2167 		 * HACK HACK HACK HACK
2168 		 */
2169 
2170 		crit_enter();
2171 
2172 		entry = start_entry;
2173 		while (entry != &map->header && entry->start < end) {
2174 			/*
2175 			 * If vm_fault_wire fails for any page we need to undo
2176 			 * what has been done.  We decrement the wiring count
2177 			 * for those pages which have not yet been wired (now)
2178 			 * and unwire those that have (later).
2179 			 */
2180 			vm_offset_t save_start = entry->start;
2181 			vm_offset_t save_end = entry->end;
2182 
2183 			if (entry->wired_count == 1)
2184 				rv = vm_fault_wire(map, entry, FALSE);
2185 			if (rv) {
2186 				CLIP_CHECK_BACK(entry, save_start);
2187 				for (;;) {
2188 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2189 					entry->wired_count = 0;
2190 					if (entry->end == save_end)
2191 						break;
2192 					entry = entry->next;
2193 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2194 				}
2195 				end = save_start;
2196 				break;
2197 			}
2198 			CLIP_CHECK_FWD(entry, save_end);
2199 			entry = entry->next;
2200 		}
2201 		crit_exit();
2202 
2203 		/*
2204 		 * If a failure occured undo everything by falling through
2205 		 * to the unwiring code.  'end' has already been adjusted
2206 		 * appropriately.
2207 		 */
2208 		if (rv)
2209 			kmflags |= KM_PAGEABLE;
2210 
2211 		/*
2212 		 * start_entry is still IN_TRANSITION but may have been
2213 		 * clipped since vm_fault_wire() unlocks and relocks the
2214 		 * map.  No matter how clipped it has gotten there should
2215 		 * be a fragment that is on our start boundary.
2216 		 */
2217 		CLIP_CHECK_BACK(start_entry, start);
2218 	}
2219 
2220 	if (kmflags & KM_PAGEABLE) {
2221 		/*
2222 		 * This is the unwiring case.  We must first ensure that the
2223 		 * range to be unwired is really wired down.  We know there
2224 		 * are no holes.
2225 		 */
2226 		entry = start_entry;
2227 		while ((entry != &map->header) && (entry->start < end)) {
2228 			if (entry->wired_count == 0) {
2229 				rv = KERN_INVALID_ARGUMENT;
2230 				goto done;
2231 			}
2232 			entry = entry->next;
2233 		}
2234 
2235 		/*
2236 		 * Now decrement the wiring count for each region. If a region
2237 		 * becomes completely unwired, unwire its physical pages and
2238 		 * mappings.
2239 		 */
2240 		entry = start_entry;
2241 		while ((entry != &map->header) && (entry->start < end)) {
2242 			entry->wired_count--;
2243 			if (entry->wired_count == 0)
2244 				vm_fault_unwire(map, entry);
2245 			entry = entry->next;
2246 		}
2247 	}
2248 done:
2249 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2250 		MAP_CLIP_NO_HOLES);
2251 	map->timestamp++;
2252 	vm_map_unlock(map);
2253 failure:
2254 	if (kmflags & KM_KRESERVE)
2255 		vm_map_entry_krelease(count);
2256 	else
2257 		vm_map_entry_release(count);
2258 	return (rv);
2259 }
2260 
2261 /*
2262  * vm_map_set_wired_quick()
2263  *
2264  *	Mark a newly allocated address range as wired but do not fault in
2265  *	the pages.  The caller is expected to load the pages into the object.
2266  *
2267  *	The map must be locked on entry and will remain locked on return.
2268  */
2269 void
2270 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2271 {
2272 	vm_map_entry_t scan;
2273 	vm_map_entry_t entry;
2274 
2275 	entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2276 	for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2277 	    KKASSERT(entry->wired_count == 0);
2278 	    entry->wired_count = 1;
2279 	}
2280 	vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2281 }
2282 
2283 /*
2284  * vm_map_clean
2285  *
2286  * Push any dirty cached pages in the address range to their pager.
2287  * If syncio is TRUE, dirty pages are written synchronously.
2288  * If invalidate is TRUE, any cached pages are freed as well.
2289  *
2290  * Returns an error if any part of the specified range is not mapped.
2291  */
2292 int
2293 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2294     boolean_t invalidate)
2295 {
2296 	vm_map_entry_t current;
2297 	vm_map_entry_t entry;
2298 	vm_size_t size;
2299 	vm_object_t object;
2300 	vm_ooffset_t offset;
2301 
2302 	vm_map_lock_read(map);
2303 	VM_MAP_RANGE_CHECK(map, start, end);
2304 	if (!vm_map_lookup_entry(map, start, &entry)) {
2305 		vm_map_unlock_read(map);
2306 		return (KERN_INVALID_ADDRESS);
2307 	}
2308 	/*
2309 	 * Make a first pass to check for holes.
2310 	 */
2311 	for (current = entry; current->start < end; current = current->next) {
2312 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2313 			vm_map_unlock_read(map);
2314 			return (KERN_INVALID_ARGUMENT);
2315 		}
2316 		if (end > current->end &&
2317 		    (current->next == &map->header ||
2318 			current->end != current->next->start)) {
2319 			vm_map_unlock_read(map);
2320 			return (KERN_INVALID_ADDRESS);
2321 		}
2322 	}
2323 
2324 	if (invalidate)
2325 		pmap_remove(vm_map_pmap(map), start, end);
2326 	/*
2327 	 * Make a second pass, cleaning/uncaching pages from the indicated
2328 	 * objects as we go.
2329 	 */
2330 	for (current = entry; current->start < end; current = current->next) {
2331 		offset = current->offset + (start - current->start);
2332 		size = (end <= current->end ? end : current->end) - start;
2333 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2334 			vm_map_t smap;
2335 			vm_map_entry_t tentry;
2336 			vm_size_t tsize;
2337 
2338 			smap = current->object.sub_map;
2339 			vm_map_lock_read(smap);
2340 			vm_map_lookup_entry(smap, offset, &tentry);
2341 			tsize = tentry->end - offset;
2342 			if (tsize < size)
2343 				size = tsize;
2344 			object = tentry->object.vm_object;
2345 			offset = tentry->offset + (offset - tentry->start);
2346 			vm_map_unlock_read(smap);
2347 		} else {
2348 			object = current->object.vm_object;
2349 		}
2350 		/*
2351 		 * Note that there is absolutely no sense in writing out
2352 		 * anonymous objects, so we track down the vnode object
2353 		 * to write out.
2354 		 * We invalidate (remove) all pages from the address space
2355 		 * anyway, for semantic correctness.
2356 		 *
2357 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2358 		 * may start out with a NULL object.
2359 		 */
2360 		while (object && object->backing_object) {
2361 			offset += object->backing_object_offset;
2362 			object = object->backing_object;
2363 			if (object->size < OFF_TO_IDX( offset + size))
2364 				size = IDX_TO_OFF(object->size) - offset;
2365 		}
2366 		if (object && (object->type == OBJT_VNODE) &&
2367 		    (current->protection & VM_PROT_WRITE)) {
2368 			/*
2369 			 * Flush pages if writing is allowed, invalidate them
2370 			 * if invalidation requested.  Pages undergoing I/O
2371 			 * will be ignored by vm_object_page_remove().
2372 			 *
2373 			 * We cannot lock the vnode and then wait for paging
2374 			 * to complete without deadlocking against vm_fault.
2375 			 * Instead we simply call vm_object_page_remove() and
2376 			 * allow it to block internally on a page-by-page
2377 			 * basis when it encounters pages undergoing async
2378 			 * I/O.
2379 			 */
2380 			int flags;
2381 
2382 			vm_object_reference(object);
2383 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2384 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2385 			flags |= invalidate ? OBJPC_INVAL : 0;
2386 
2387 			/*
2388 			 * When operating on a virtual page table just
2389 			 * flush the whole object.  XXX we probably ought
2390 			 * to
2391 			 */
2392 			switch(current->maptype) {
2393 			case VM_MAPTYPE_NORMAL:
2394 				vm_object_page_clean(object,
2395 				    OFF_TO_IDX(offset),
2396 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2397 				    flags);
2398 				break;
2399 			case VM_MAPTYPE_VPAGETABLE:
2400 				vm_object_page_clean(object, 0, 0, flags);
2401 				break;
2402 			}
2403 			vn_unlock(((struct vnode *)object->handle));
2404 			vm_object_deallocate(object);
2405 		}
2406 		if (object && invalidate &&
2407 		   ((object->type == OBJT_VNODE) ||
2408 		    (object->type == OBJT_DEVICE))) {
2409 			int clean_only =
2410 				(object->type == OBJT_DEVICE) ? FALSE : TRUE;
2411 			vm_object_reference(object);
2412 			switch(current->maptype) {
2413 			case VM_MAPTYPE_NORMAL:
2414 				vm_object_page_remove(object,
2415 				    OFF_TO_IDX(offset),
2416 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2417 				    clean_only);
2418 				break;
2419 			case VM_MAPTYPE_VPAGETABLE:
2420 				vm_object_page_remove(object, 0, 0, clean_only);
2421 				break;
2422 			}
2423 			vm_object_deallocate(object);
2424 		}
2425 		start += size;
2426 	}
2427 
2428 	vm_map_unlock_read(map);
2429 	return (KERN_SUCCESS);
2430 }
2431 
2432 /*
2433  *	vm_map_entry_unwire:	[ internal use only ]
2434  *
2435  *	Make the region specified by this entry pageable.
2436  *
2437  *	The map in question should be locked.
2438  *	[This is the reason for this routine's existence.]
2439  */
2440 static void
2441 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2442 {
2443 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2444 	entry->wired_count = 0;
2445 	vm_fault_unwire(map, entry);
2446 }
2447 
2448 /*
2449  *	vm_map_entry_delete:	[ internal use only ]
2450  *
2451  *	Deallocate the given entry from the target map.
2452  */
2453 static void
2454 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2455 {
2456 	vm_map_entry_unlink(map, entry);
2457 	map->size -= entry->end - entry->start;
2458 
2459 	switch(entry->maptype) {
2460 	case VM_MAPTYPE_NORMAL:
2461 	case VM_MAPTYPE_VPAGETABLE:
2462 		vm_object_deallocate(entry->object.vm_object);
2463 		break;
2464 	default:
2465 		break;
2466 	}
2467 
2468 	vm_map_entry_dispose(map, entry, countp);
2469 }
2470 
2471 /*
2472  *	vm_map_delete:	[ internal use only ]
2473  *
2474  *	Deallocates the given address range from the target
2475  *	map.
2476  */
2477 int
2478 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2479 {
2480 	vm_object_t object;
2481 	vm_map_entry_t entry;
2482 	vm_map_entry_t first_entry;
2483 
2484 again:
2485 	/*
2486 	 * Find the start of the region, and clip it.  Set entry to point
2487 	 * at the first record containing the requested address or, if no
2488 	 * such record exists, the next record with a greater address.  The
2489 	 * loop will run from this point until a record beyond the termination
2490 	 * address is encountered.
2491 	 *
2492 	 * map->hint must be adjusted to not point to anything we delete,
2493 	 * so set it to the entry prior to the one being deleted.
2494 	 *
2495 	 * GGG see other GGG comment.
2496 	 */
2497 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2498 		entry = first_entry;
2499 		vm_map_clip_start(map, entry, start, countp);
2500 		map->hint = entry->prev;	/* possible problem XXX */
2501 	} else {
2502 		map->hint = first_entry;	/* possible problem XXX */
2503 		entry = first_entry->next;
2504 	}
2505 
2506 	/*
2507 	 * If a hole opens up prior to the current first_free then
2508 	 * adjust first_free.  As with map->hint, map->first_free
2509 	 * cannot be left set to anything we might delete.
2510 	 */
2511 	if (entry == &map->header) {
2512 		map->first_free = &map->header;
2513 	} else if (map->first_free->start >= start) {
2514 		map->first_free = entry->prev;
2515 	}
2516 
2517 	/*
2518 	 * Step through all entries in this region
2519 	 */
2520 
2521 	while ((entry != &map->header) && (entry->start < end)) {
2522 		vm_map_entry_t next;
2523 		vm_offset_t s, e;
2524 		vm_pindex_t offidxstart, offidxend, count;
2525 
2526 		/*
2527 		 * If we hit an in-transition entry we have to sleep and
2528 		 * retry.  It's easier (and not really slower) to just retry
2529 		 * since this case occurs so rarely and the hint is already
2530 		 * pointing at the right place.  We have to reset the
2531 		 * start offset so as not to accidently delete an entry
2532 		 * another process just created in vacated space.
2533 		 */
2534 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2535 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2536 			start = entry->start;
2537 			++mycpu->gd_cnt.v_intrans_coll;
2538 			++mycpu->gd_cnt.v_intrans_wait;
2539 			vm_map_transition_wait(map);
2540 			goto again;
2541 		}
2542 		vm_map_clip_end(map, entry, end, countp);
2543 
2544 		s = entry->start;
2545 		e = entry->end;
2546 		next = entry->next;
2547 
2548 		offidxstart = OFF_TO_IDX(entry->offset);
2549 		count = OFF_TO_IDX(e - s);
2550 		object = entry->object.vm_object;
2551 
2552 		/*
2553 		 * Unwire before removing addresses from the pmap; otherwise,
2554 		 * unwiring will put the entries back in the pmap.
2555 		 */
2556 		if (entry->wired_count != 0)
2557 			vm_map_entry_unwire(map, entry);
2558 
2559 		offidxend = offidxstart + count;
2560 
2561 		if (object == &kernel_object) {
2562 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2563 		} else {
2564 			pmap_remove(map->pmap, s, e);
2565 			if (object != NULL &&
2566 			    object->ref_count != 1 &&
2567 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2568 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2569 				vm_object_collapse(object);
2570 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2571 				if (object->type == OBJT_SWAP) {
2572 					swap_pager_freespace(object, offidxstart, count);
2573 				}
2574 				if (offidxend >= object->size &&
2575 				    offidxstart < object->size) {
2576 					object->size = offidxstart;
2577 				}
2578 			}
2579 		}
2580 
2581 		/*
2582 		 * Delete the entry (which may delete the object) only after
2583 		 * removing all pmap entries pointing to its pages.
2584 		 * (Otherwise, its page frames may be reallocated, and any
2585 		 * modify bits will be set in the wrong object!)
2586 		 */
2587 		vm_map_entry_delete(map, entry, countp);
2588 		entry = next;
2589 	}
2590 	return (KERN_SUCCESS);
2591 }
2592 
2593 /*
2594  *	vm_map_remove:
2595  *
2596  *	Remove the given address range from the target map.
2597  *	This is the exported form of vm_map_delete.
2598  */
2599 int
2600 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2601 {
2602 	int result;
2603 	int count;
2604 
2605 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2606 	vm_map_lock(map);
2607 	VM_MAP_RANGE_CHECK(map, start, end);
2608 	result = vm_map_delete(map, start, end, &count);
2609 	vm_map_unlock(map);
2610 	vm_map_entry_release(count);
2611 
2612 	return (result);
2613 }
2614 
2615 /*
2616  *	vm_map_check_protection:
2617  *
2618  *	Assert that the target map allows the specified
2619  *	privilege on the entire address region given.
2620  *	The entire region must be allocated.
2621  */
2622 boolean_t
2623 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2624 			vm_prot_t protection)
2625 {
2626 	vm_map_entry_t entry;
2627 	vm_map_entry_t tmp_entry;
2628 
2629 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2630 		return (FALSE);
2631 	}
2632 	entry = tmp_entry;
2633 
2634 	while (start < end) {
2635 		if (entry == &map->header) {
2636 			return (FALSE);
2637 		}
2638 		/*
2639 		 * No holes allowed!
2640 		 */
2641 
2642 		if (start < entry->start) {
2643 			return (FALSE);
2644 		}
2645 		/*
2646 		 * Check protection associated with entry.
2647 		 */
2648 
2649 		if ((entry->protection & protection) != protection) {
2650 			return (FALSE);
2651 		}
2652 		/* go to next entry */
2653 
2654 		start = entry->end;
2655 		entry = entry->next;
2656 	}
2657 	return (TRUE);
2658 }
2659 
2660 /*
2661  * Split the pages in a map entry into a new object.  This affords
2662  * easier removal of unused pages, and keeps object inheritance from
2663  * being a negative impact on memory usage.
2664  */
2665 static void
2666 vm_map_split(vm_map_entry_t entry)
2667 {
2668 	vm_page_t m;
2669 	vm_object_t orig_object, new_object, source;
2670 	vm_offset_t s, e;
2671 	vm_pindex_t offidxstart, offidxend, idx;
2672 	vm_size_t size;
2673 	vm_ooffset_t offset;
2674 
2675 	orig_object = entry->object.vm_object;
2676 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2677 		return;
2678 	if (orig_object->ref_count <= 1)
2679 		return;
2680 
2681 	offset = entry->offset;
2682 	s = entry->start;
2683 	e = entry->end;
2684 
2685 	offidxstart = OFF_TO_IDX(offset);
2686 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2687 	size = offidxend - offidxstart;
2688 
2689 	new_object = vm_pager_allocate(orig_object->type, NULL,
2690 				       IDX_TO_OFF(size), VM_PROT_ALL, 0);
2691 	if (new_object == NULL)
2692 		return;
2693 
2694 	source = orig_object->backing_object;
2695 	if (source != NULL) {
2696 		vm_object_reference(source);	/* Referenced by new_object */
2697 		LIST_INSERT_HEAD(&source->shadow_head,
2698 				  new_object, shadow_list);
2699 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2700 		new_object->backing_object_offset =
2701 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2702 		new_object->backing_object = source;
2703 		source->shadow_count++;
2704 		source->generation++;
2705 	}
2706 
2707 	for (idx = 0; idx < size; idx++) {
2708 		vm_page_t m;
2709 
2710 		/*
2711 		 * A critical section is required to avoid a race between
2712 		 * the lookup and an interrupt/unbusy/free and our busy
2713 		 * check.
2714 		 */
2715 		crit_enter();
2716 	retry:
2717 		m = vm_page_lookup(orig_object, offidxstart + idx);
2718 		if (m == NULL) {
2719 			crit_exit();
2720 			continue;
2721 		}
2722 
2723 		/*
2724 		 * We must wait for pending I/O to complete before we can
2725 		 * rename the page.
2726 		 *
2727 		 * We do not have to VM_PROT_NONE the page as mappings should
2728 		 * not be changed by this operation.
2729 		 */
2730 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2731 			goto retry;
2732 		vm_page_busy(m);
2733 		vm_page_rename(m, new_object, idx);
2734 		/* page automatically made dirty by rename and cache handled */
2735 		vm_page_busy(m);
2736 		crit_exit();
2737 	}
2738 
2739 	if (orig_object->type == OBJT_SWAP) {
2740 		vm_object_pip_add(orig_object, 1);
2741 		/*
2742 		 * copy orig_object pages into new_object
2743 		 * and destroy unneeded pages in
2744 		 * shadow object.
2745 		 */
2746 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2747 		vm_object_pip_wakeup(orig_object);
2748 	}
2749 
2750 	/*
2751 	 * Wakeup the pages we played with.  No spl protection is needed
2752 	 * for a simple wakeup.
2753 	 */
2754 	for (idx = 0; idx < size; idx++) {
2755 		m = vm_page_lookup(new_object, idx);
2756 		if (m)
2757 			vm_page_wakeup(m);
2758 	}
2759 
2760 	entry->object.vm_object = new_object;
2761 	entry->offset = 0LL;
2762 	vm_object_deallocate(orig_object);
2763 }
2764 
2765 /*
2766  *	vm_map_copy_entry:
2767  *
2768  *	Copies the contents of the source entry to the destination
2769  *	entry.  The entries *must* be aligned properly.
2770  */
2771 static void
2772 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2773 	vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2774 {
2775 	vm_object_t src_object;
2776 
2777 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
2778 		return;
2779 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
2780 		return;
2781 
2782 	if (src_entry->wired_count == 0) {
2783 		/*
2784 		 * If the source entry is marked needs_copy, it is already
2785 		 * write-protected.
2786 		 */
2787 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2788 			pmap_protect(src_map->pmap,
2789 			    src_entry->start,
2790 			    src_entry->end,
2791 			    src_entry->protection & ~VM_PROT_WRITE);
2792 		}
2793 
2794 		/*
2795 		 * Make a copy of the object.
2796 		 */
2797 		if ((src_object = src_entry->object.vm_object) != NULL) {
2798 			if ((src_object->handle == NULL) &&
2799 				(src_object->type == OBJT_DEFAULT ||
2800 				 src_object->type == OBJT_SWAP)) {
2801 				vm_object_collapse(src_object);
2802 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2803 					vm_map_split(src_entry);
2804 					src_object = src_entry->object.vm_object;
2805 				}
2806 			}
2807 
2808 			vm_object_reference(src_object);
2809 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2810 			dst_entry->object.vm_object = src_object;
2811 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2812 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2813 			dst_entry->offset = src_entry->offset;
2814 		} else {
2815 			dst_entry->object.vm_object = NULL;
2816 			dst_entry->offset = 0;
2817 		}
2818 
2819 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2820 		    dst_entry->end - dst_entry->start, src_entry->start);
2821 	} else {
2822 		/*
2823 		 * Of course, wired down pages can't be set copy-on-write.
2824 		 * Cause wired pages to be copied into the new map by
2825 		 * simulating faults (the new pages are pageable)
2826 		 */
2827 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2828 	}
2829 }
2830 
2831 /*
2832  * vmspace_fork:
2833  * Create a new process vmspace structure and vm_map
2834  * based on those of an existing process.  The new map
2835  * is based on the old map, according to the inheritance
2836  * values on the regions in that map.
2837  *
2838  * The source map must not be locked.
2839  */
2840 struct vmspace *
2841 vmspace_fork(struct vmspace *vm1)
2842 {
2843 	struct vmspace *vm2;
2844 	vm_map_t old_map = &vm1->vm_map;
2845 	vm_map_t new_map;
2846 	vm_map_entry_t old_entry;
2847 	vm_map_entry_t new_entry;
2848 	vm_object_t object;
2849 	int count;
2850 
2851 	vm_map_lock(old_map);
2852 	old_map->infork = 1;
2853 
2854 	/*
2855 	 * XXX Note: upcalls are not copied.
2856 	 */
2857 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2858 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2859 	    (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2860 	new_map = &vm2->vm_map;	/* XXX */
2861 	new_map->timestamp = 1;
2862 
2863 	count = 0;
2864 	old_entry = old_map->header.next;
2865 	while (old_entry != &old_map->header) {
2866 		++count;
2867 		old_entry = old_entry->next;
2868 	}
2869 
2870 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2871 
2872 	old_entry = old_map->header.next;
2873 	while (old_entry != &old_map->header) {
2874 		if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
2875 			panic("vm_map_fork: encountered a submap");
2876 
2877 		switch (old_entry->inheritance) {
2878 		case VM_INHERIT_NONE:
2879 			break;
2880 
2881 		case VM_INHERIT_SHARE:
2882 			/*
2883 			 * Clone the entry, creating the shared object if
2884 			 * necessary.
2885 			 */
2886 			object = old_entry->object.vm_object;
2887 			if (object == NULL) {
2888 				vm_map_entry_allocate_object(old_entry);
2889 				object = old_entry->object.vm_object;
2890 			}
2891 
2892 			/*
2893 			 * Add the reference before calling vm_map_entry_shadow
2894 			 * to insure that a shadow object is created.
2895 			 */
2896 			vm_object_reference(object);
2897 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2898 				vm_map_entry_shadow(old_entry);
2899 				/* Transfer the second reference too. */
2900 				vm_object_reference(
2901 				    old_entry->object.vm_object);
2902 				vm_object_deallocate(object);
2903 				object = old_entry->object.vm_object;
2904 			}
2905 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2906 
2907 			/*
2908 			 * Clone the entry, referencing the shared object.
2909 			 */
2910 			new_entry = vm_map_entry_create(new_map, &count);
2911 			*new_entry = *old_entry;
2912 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2913 			new_entry->wired_count = 0;
2914 
2915 			/*
2916 			 * Insert the entry into the new map -- we know we're
2917 			 * inserting at the end of the new map.
2918 			 */
2919 
2920 			vm_map_entry_link(new_map, new_map->header.prev,
2921 			    new_entry);
2922 
2923 			/*
2924 			 * Update the physical map
2925 			 */
2926 
2927 			pmap_copy(new_map->pmap, old_map->pmap,
2928 			    new_entry->start,
2929 			    (old_entry->end - old_entry->start),
2930 			    old_entry->start);
2931 			break;
2932 
2933 		case VM_INHERIT_COPY:
2934 			/*
2935 			 * Clone the entry and link into the map.
2936 			 */
2937 			new_entry = vm_map_entry_create(new_map, &count);
2938 			*new_entry = *old_entry;
2939 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2940 			new_entry->wired_count = 0;
2941 			new_entry->object.vm_object = NULL;
2942 			vm_map_entry_link(new_map, new_map->header.prev,
2943 			    new_entry);
2944 			vm_map_copy_entry(old_map, new_map, old_entry,
2945 			    new_entry);
2946 			break;
2947 		}
2948 		old_entry = old_entry->next;
2949 	}
2950 
2951 	new_map->size = old_map->size;
2952 	old_map->infork = 0;
2953 	vm_map_unlock(old_map);
2954 	vm_map_entry_release(count);
2955 
2956 	return (vm2);
2957 }
2958 
2959 int
2960 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2961 	      vm_prot_t prot, vm_prot_t max, int cow)
2962 {
2963 	vm_map_entry_t prev_entry;
2964 	vm_map_entry_t new_stack_entry;
2965 	vm_size_t      init_ssize;
2966 	int            rv;
2967 	int		count;
2968 
2969 	if (VM_MIN_USER_ADDRESS > 0 && addrbos < VM_MIN_USER_ADDRESS)
2970 		return (KERN_NO_SPACE);
2971 
2972 	if (max_ssize < sgrowsiz)
2973 		init_ssize = max_ssize;
2974 	else
2975 		init_ssize = sgrowsiz;
2976 
2977 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2978 	vm_map_lock(map);
2979 
2980 	/* If addr is already mapped, no go */
2981 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2982 		vm_map_unlock(map);
2983 		vm_map_entry_release(count);
2984 		return (KERN_NO_SPACE);
2985 	}
2986 
2987 	/* If we would blow our VMEM resource limit, no go */
2988 	if (map->size + init_ssize >
2989 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2990 		vm_map_unlock(map);
2991 		vm_map_entry_release(count);
2992 		return (KERN_NO_SPACE);
2993 	}
2994 
2995 	/* If we can't accomodate max_ssize in the current mapping,
2996 	 * no go.  However, we need to be aware that subsequent user
2997 	 * mappings might map into the space we have reserved for
2998 	 * stack, and currently this space is not protected.
2999 	 *
3000 	 * Hopefully we will at least detect this condition
3001 	 * when we try to grow the stack.
3002 	 */
3003 	if ((prev_entry->next != &map->header) &&
3004 	    (prev_entry->next->start < addrbos + max_ssize)) {
3005 		vm_map_unlock(map);
3006 		vm_map_entry_release(count);
3007 		return (KERN_NO_SPACE);
3008 	}
3009 
3010 	/* We initially map a stack of only init_ssize.  We will
3011 	 * grow as needed later.  Since this is to be a grow
3012 	 * down stack, we map at the top of the range.
3013 	 *
3014 	 * Note: we would normally expect prot and max to be
3015 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3016 	 * eliminate these as input parameters, and just
3017 	 * pass these values here in the insert call.
3018 	 */
3019 	rv = vm_map_insert(map, &count,
3020 			   NULL, 0, addrbos + max_ssize - init_ssize,
3021 	                   addrbos + max_ssize,
3022 			   VM_MAPTYPE_NORMAL,
3023 			   prot, max,
3024 			   cow);
3025 
3026 	/* Now set the avail_ssize amount */
3027 	if (rv == KERN_SUCCESS) {
3028 		if (prev_entry != &map->header)
3029 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3030 		new_stack_entry = prev_entry->next;
3031 		if (new_stack_entry->end   != addrbos + max_ssize ||
3032 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3033 			panic ("Bad entry start/end for new stack entry");
3034 		else
3035 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3036 	}
3037 
3038 	vm_map_unlock(map);
3039 	vm_map_entry_release(count);
3040 	return (rv);
3041 }
3042 
3043 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3044  * desired address is already mapped, or if we successfully grow
3045  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3046  * stack range (this is strange, but preserves compatibility with
3047  * the grow function in vm_machdep.c).
3048  */
3049 int
3050 vm_map_growstack (struct proc *p, vm_offset_t addr)
3051 {
3052 	vm_map_entry_t prev_entry;
3053 	vm_map_entry_t stack_entry;
3054 	vm_map_entry_t new_stack_entry;
3055 	struct vmspace *vm = p->p_vmspace;
3056 	vm_map_t map = &vm->vm_map;
3057 	vm_offset_t    end;
3058 	int grow_amount;
3059 	int rv = KERN_SUCCESS;
3060 	int is_procstack;
3061 	int use_read_lock = 1;
3062 	int count;
3063 
3064 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3065 Retry:
3066 	if (use_read_lock)
3067 		vm_map_lock_read(map);
3068 	else
3069 		vm_map_lock(map);
3070 
3071 	/* If addr is already in the entry range, no need to grow.*/
3072 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3073 		goto done;
3074 
3075 	if ((stack_entry = prev_entry->next) == &map->header)
3076 		goto done;
3077 	if (prev_entry == &map->header)
3078 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3079 	else
3080 		end = prev_entry->end;
3081 
3082 	/* This next test mimics the old grow function in vm_machdep.c.
3083 	 * It really doesn't quite make sense, but we do it anyway
3084 	 * for compatibility.
3085 	 *
3086 	 * If not growable stack, return success.  This signals the
3087 	 * caller to proceed as he would normally with normal vm.
3088 	 */
3089 	if (stack_entry->aux.avail_ssize < 1 ||
3090 	    addr >= stack_entry->start ||
3091 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3092 		goto done;
3093 	}
3094 
3095 	/* Find the minimum grow amount */
3096 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3097 	if (grow_amount > stack_entry->aux.avail_ssize) {
3098 		rv = KERN_NO_SPACE;
3099 		goto done;
3100 	}
3101 
3102 	/* If there is no longer enough space between the entries
3103 	 * nogo, and adjust the available space.  Note: this
3104 	 * should only happen if the user has mapped into the
3105 	 * stack area after the stack was created, and is
3106 	 * probably an error.
3107 	 *
3108 	 * This also effectively destroys any guard page the user
3109 	 * might have intended by limiting the stack size.
3110 	 */
3111 	if (grow_amount > stack_entry->start - end) {
3112 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3113 			use_read_lock = 0;
3114 			goto Retry;
3115 		}
3116 		use_read_lock = 0;
3117 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3118 		rv = KERN_NO_SPACE;
3119 		goto done;
3120 	}
3121 
3122 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3123 
3124 	/* If this is the main process stack, see if we're over the
3125 	 * stack limit.
3126 	 */
3127 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3128 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3129 		rv = KERN_NO_SPACE;
3130 		goto done;
3131 	}
3132 
3133 	/* Round up the grow amount modulo SGROWSIZ */
3134 	grow_amount = roundup (grow_amount, sgrowsiz);
3135 	if (grow_amount > stack_entry->aux.avail_ssize) {
3136 		grow_amount = stack_entry->aux.avail_ssize;
3137 	}
3138 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3139 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3140 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3141 		              ctob(vm->vm_ssize);
3142 	}
3143 
3144 	/* If we would blow our VMEM resource limit, no go */
3145 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3146 		rv = KERN_NO_SPACE;
3147 		goto done;
3148 	}
3149 
3150 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3151 		use_read_lock = 0;
3152 		goto Retry;
3153 	}
3154 	use_read_lock = 0;
3155 
3156 	/* Get the preliminary new entry start value */
3157 	addr = stack_entry->start - grow_amount;
3158 
3159 	/* If this puts us into the previous entry, cut back our growth
3160 	 * to the available space.  Also, see the note above.
3161 	 */
3162 	if (addr < end) {
3163 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3164 		addr = end;
3165 	}
3166 
3167 	rv = vm_map_insert(map, &count,
3168 			   NULL, 0, addr, stack_entry->start,
3169 			   VM_MAPTYPE_NORMAL,
3170 			   VM_PROT_ALL, VM_PROT_ALL,
3171 			   0);
3172 
3173 	/* Adjust the available stack space by the amount we grew. */
3174 	if (rv == KERN_SUCCESS) {
3175 		if (prev_entry != &map->header)
3176 			vm_map_clip_end(map, prev_entry, addr, &count);
3177 		new_stack_entry = prev_entry->next;
3178 		if (new_stack_entry->end   != stack_entry->start  ||
3179 		    new_stack_entry->start != addr)
3180 			panic ("Bad stack grow start/end in new stack entry");
3181 		else {
3182 			new_stack_entry->aux.avail_ssize =
3183 				stack_entry->aux.avail_ssize -
3184 				(new_stack_entry->end - new_stack_entry->start);
3185 			if (is_procstack)
3186 				vm->vm_ssize += btoc(new_stack_entry->end -
3187 						     new_stack_entry->start);
3188 		}
3189 	}
3190 
3191 done:
3192 	if (use_read_lock)
3193 		vm_map_unlock_read(map);
3194 	else
3195 		vm_map_unlock(map);
3196 	vm_map_entry_release(count);
3197 	return (rv);
3198 }
3199 
3200 /*
3201  * Unshare the specified VM space for exec.  If other processes are
3202  * mapped to it, then create a new one.  The new vmspace is null.
3203  */
3204 void
3205 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
3206 {
3207 	struct vmspace *oldvmspace = p->p_vmspace;
3208 	struct vmspace *newvmspace;
3209 	vm_map_t map = &p->p_vmspace->vm_map;
3210 
3211 	/*
3212 	 * If we are execing a resident vmspace we fork it, otherwise
3213 	 * we create a new vmspace.  Note that exitingcnt and upcalls
3214 	 * are not copied to the new vmspace.
3215 	 */
3216 	if (vmcopy)  {
3217 	    newvmspace = vmspace_fork(vmcopy);
3218 	} else {
3219 	    newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3220 	    bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3221 		(caddr_t)&oldvmspace->vm_endcopy -
3222 		    (caddr_t)&oldvmspace->vm_startcopy);
3223 	}
3224 
3225 	/*
3226 	 * Finish initializing the vmspace before assigning it
3227 	 * to the process.  The vmspace will become the current vmspace
3228 	 * if p == curproc.
3229 	 */
3230 	pmap_pinit2(vmspace_pmap(newvmspace));
3231 	pmap_replacevm(p, newvmspace, 0);
3232 	sysref_put(&oldvmspace->vm_sysref);
3233 }
3234 
3235 /*
3236  * Unshare the specified VM space for forcing COW.  This
3237  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3238  *
3239  * The exitingcnt test is not strictly necessary but has been
3240  * included for code sanity (to make the code a bit more deterministic).
3241  */
3242 
3243 void
3244 vmspace_unshare(struct proc *p)
3245 {
3246 	struct vmspace *oldvmspace = p->p_vmspace;
3247 	struct vmspace *newvmspace;
3248 
3249 	if (oldvmspace->vm_sysref.refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3250 		return;
3251 	newvmspace = vmspace_fork(oldvmspace);
3252 	pmap_pinit2(vmspace_pmap(newvmspace));
3253 	pmap_replacevm(p, newvmspace, 0);
3254 	sysref_put(&oldvmspace->vm_sysref);
3255 }
3256 
3257 /*
3258  *	vm_map_lookup:
3259  *
3260  *	Finds the VM object, offset, and
3261  *	protection for a given virtual address in the
3262  *	specified map, assuming a page fault of the
3263  *	type specified.
3264  *
3265  *	Leaves the map in question locked for read; return
3266  *	values are guaranteed until a vm_map_lookup_done
3267  *	call is performed.  Note that the map argument
3268  *	is in/out; the returned map must be used in
3269  *	the call to vm_map_lookup_done.
3270  *
3271  *	A handle (out_entry) is returned for use in
3272  *	vm_map_lookup_done, to make that fast.
3273  *
3274  *	If a lookup is requested with "write protection"
3275  *	specified, the map may be changed to perform virtual
3276  *	copying operations, although the data referenced will
3277  *	remain the same.
3278  */
3279 int
3280 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3281 	      vm_offset_t vaddr,
3282 	      vm_prot_t fault_typea,
3283 	      vm_map_entry_t *out_entry,	/* OUT */
3284 	      vm_object_t *object,		/* OUT */
3285 	      vm_pindex_t *pindex,		/* OUT */
3286 	      vm_prot_t *out_prot,		/* OUT */
3287 	      boolean_t *wired)			/* OUT */
3288 {
3289 	vm_map_entry_t entry;
3290 	vm_map_t map = *var_map;
3291 	vm_prot_t prot;
3292 	vm_prot_t fault_type = fault_typea;
3293 	int use_read_lock = 1;
3294 	int rv = KERN_SUCCESS;
3295 
3296 RetryLookup:
3297 	if (use_read_lock)
3298 		vm_map_lock_read(map);
3299 	else
3300 		vm_map_lock(map);
3301 
3302 	/*
3303 	 * If the map has an interesting hint, try it before calling full
3304 	 * blown lookup routine.
3305 	 */
3306 	entry = map->hint;
3307 	*out_entry = entry;
3308 
3309 	if ((entry == &map->header) ||
3310 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3311 		vm_map_entry_t tmp_entry;
3312 
3313 		/*
3314 		 * Entry was either not a valid hint, or the vaddr was not
3315 		 * contained in the entry, so do a full lookup.
3316 		 */
3317 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3318 			rv = KERN_INVALID_ADDRESS;
3319 			goto done;
3320 		}
3321 
3322 		entry = tmp_entry;
3323 		*out_entry = entry;
3324 	}
3325 
3326 	/*
3327 	 * Handle submaps.
3328 	 */
3329 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3330 		vm_map_t old_map = map;
3331 
3332 		*var_map = map = entry->object.sub_map;
3333 		if (use_read_lock)
3334 			vm_map_unlock_read(old_map);
3335 		else
3336 			vm_map_unlock(old_map);
3337 		use_read_lock = 1;
3338 		goto RetryLookup;
3339 	}
3340 
3341 	/*
3342 	 * Check whether this task is allowed to have this page.
3343 	 * Note the special case for MAP_ENTRY_COW
3344 	 * pages with an override.  This is to implement a forced
3345 	 * COW for debuggers.
3346 	 */
3347 
3348 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3349 		prot = entry->max_protection;
3350 	else
3351 		prot = entry->protection;
3352 
3353 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3354 	if ((fault_type & prot) != fault_type) {
3355 		rv = KERN_PROTECTION_FAILURE;
3356 		goto done;
3357 	}
3358 
3359 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3360 	    (entry->eflags & MAP_ENTRY_COW) &&
3361 	    (fault_type & VM_PROT_WRITE) &&
3362 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3363 		rv = KERN_PROTECTION_FAILURE;
3364 		goto done;
3365 	}
3366 
3367 	/*
3368 	 * If this page is not pageable, we have to get it for all possible
3369 	 * accesses.
3370 	 */
3371 	*wired = (entry->wired_count != 0);
3372 	if (*wired)
3373 		prot = fault_type = entry->protection;
3374 
3375 	/*
3376 	 * Virtual page tables may need to update the accessed (A) bit
3377 	 * in a page table entry.  Upgrade the fault to a write fault for
3378 	 * that case if the map will support it.  If the map does not support
3379 	 * it the page table entry simply will not be updated.
3380 	 */
3381 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3382 		if (prot & VM_PROT_WRITE)
3383 			fault_type |= VM_PROT_WRITE;
3384 	}
3385 
3386 	/*
3387 	 * If the entry was copy-on-write, we either ...
3388 	 */
3389 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3390 		/*
3391 		 * If we want to write the page, we may as well handle that
3392 		 * now since we've got the map locked.
3393 		 *
3394 		 * If we don't need to write the page, we just demote the
3395 		 * permissions allowed.
3396 		 */
3397 
3398 		if (fault_type & VM_PROT_WRITE) {
3399 			/*
3400 			 * Make a new object, and place it in the object
3401 			 * chain.  Note that no new references have appeared
3402 			 * -- one just moved from the map to the new
3403 			 * object.
3404 			 */
3405 
3406 			if (use_read_lock && vm_map_lock_upgrade(map)) {
3407 				use_read_lock = 0;
3408 				goto RetryLookup;
3409 			}
3410 			use_read_lock = 0;
3411 
3412 			vm_map_entry_shadow(entry);
3413 		} else {
3414 			/*
3415 			 * We're attempting to read a copy-on-write page --
3416 			 * don't allow writes.
3417 			 */
3418 
3419 			prot &= ~VM_PROT_WRITE;
3420 		}
3421 	}
3422 
3423 	/*
3424 	 * Create an object if necessary.
3425 	 */
3426 	if (entry->object.vm_object == NULL &&
3427 	    !map->system_map) {
3428 		if (use_read_lock && vm_map_lock_upgrade(map))  {
3429 			use_read_lock = 0;
3430 			goto RetryLookup;
3431 		}
3432 		use_read_lock = 0;
3433 		vm_map_entry_allocate_object(entry);
3434 	}
3435 
3436 	/*
3437 	 * Return the object/offset from this entry.  If the entry was
3438 	 * copy-on-write or empty, it has been fixed up.
3439 	 */
3440 
3441 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3442 	*object = entry->object.vm_object;
3443 
3444 	/*
3445 	 * Return whether this is the only map sharing this data.  On
3446 	 * success we return with a read lock held on the map.  On failure
3447 	 * we return with the map unlocked.
3448 	 */
3449 	*out_prot = prot;
3450 done:
3451 	if (rv == KERN_SUCCESS) {
3452 		if (use_read_lock == 0)
3453 			vm_map_lock_downgrade(map);
3454 	} else if (use_read_lock) {
3455 		vm_map_unlock_read(map);
3456 	} else {
3457 		vm_map_unlock(map);
3458 	}
3459 	return (rv);
3460 }
3461 
3462 /*
3463  *	vm_map_lookup_done:
3464  *
3465  *	Releases locks acquired by a vm_map_lookup
3466  *	(according to the handle returned by that lookup).
3467  */
3468 
3469 void
3470 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3471 {
3472 	/*
3473 	 * Unlock the main-level map
3474 	 */
3475 	vm_map_unlock_read(map);
3476 	if (count)
3477 		vm_map_entry_release(count);
3478 }
3479 
3480 #include "opt_ddb.h"
3481 #ifdef DDB
3482 #include <sys/kernel.h>
3483 
3484 #include <ddb/ddb.h>
3485 
3486 /*
3487  *	vm_map_print:	[ debug ]
3488  */
3489 DB_SHOW_COMMAND(map, vm_map_print)
3490 {
3491 	static int nlines;
3492 	/* XXX convert args. */
3493 	vm_map_t map = (vm_map_t)addr;
3494 	boolean_t full = have_addr;
3495 
3496 	vm_map_entry_t entry;
3497 
3498 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3499 	    (void *)map,
3500 	    (void *)map->pmap, map->nentries, map->timestamp);
3501 	nlines++;
3502 
3503 	if (!full && db_indent)
3504 		return;
3505 
3506 	db_indent += 2;
3507 	for (entry = map->header.next; entry != &map->header;
3508 	    entry = entry->next) {
3509 		db_iprintf("map entry %p: start=%p, end=%p\n",
3510 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3511 		nlines++;
3512 		{
3513 			static char *inheritance_name[4] =
3514 			{"share", "copy", "none", "donate_copy"};
3515 
3516 			db_iprintf(" prot=%x/%x/%s",
3517 			    entry->protection,
3518 			    entry->max_protection,
3519 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3520 			if (entry->wired_count != 0)
3521 				db_printf(", wired");
3522 		}
3523 		if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3524 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3525 			db_printf(", share=%p, offset=0x%lx\n",
3526 			    (void *)entry->object.sub_map,
3527 			    (long)entry->offset);
3528 			nlines++;
3529 			if ((entry->prev == &map->header) ||
3530 			    (entry->prev->object.sub_map !=
3531 				entry->object.sub_map)) {
3532 				db_indent += 2;
3533 				vm_map_print((db_expr_t)(intptr_t)
3534 					     entry->object.sub_map,
3535 					     full, 0, (char *)0);
3536 				db_indent -= 2;
3537 			}
3538 		} else {
3539 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3540 			db_printf(", object=%p, offset=0x%lx",
3541 			    (void *)entry->object.vm_object,
3542 			    (long)entry->offset);
3543 			if (entry->eflags & MAP_ENTRY_COW)
3544 				db_printf(", copy (%s)",
3545 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3546 			db_printf("\n");
3547 			nlines++;
3548 
3549 			if ((entry->prev == &map->header) ||
3550 			    (entry->prev->object.vm_object !=
3551 				entry->object.vm_object)) {
3552 				db_indent += 2;
3553 				vm_object_print((db_expr_t)(intptr_t)
3554 						entry->object.vm_object,
3555 						full, 0, (char *)0);
3556 				nlines += 4;
3557 				db_indent -= 2;
3558 			}
3559 		}
3560 	}
3561 	db_indent -= 2;
3562 	if (db_indent == 0)
3563 		nlines = 0;
3564 }
3565 
3566 
3567 DB_SHOW_COMMAND(procvm, procvm)
3568 {
3569 	struct proc *p;
3570 
3571 	if (have_addr) {
3572 		p = (struct proc *) addr;
3573 	} else {
3574 		p = curproc;
3575 	}
3576 
3577 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3578 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3579 	    (void *)vmspace_pmap(p->p_vmspace));
3580 
3581 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3582 }
3583 
3584 #endif /* DDB */
3585