xref: /dragonfly/sys/vm/vm_map.c (revision dcb5d66b)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_zone.h>
97 
98 #include <sys/random.h>
99 #include <sys/sysctl.h>
100 #include <sys/spinlock.h>
101 
102 #include <sys/thread2.h>
103 #include <sys/spinlock2.h>
104 
105 /*
106  * Virtual memory maps provide for the mapping, protection, and sharing
107  * of virtual memory objects.  In addition, this module provides for an
108  * efficient virtual copy of memory from one map to another.
109  *
110  * Synchronization is required prior to most operations.
111  *
112  * Maps consist of an ordered doubly-linked list of simple entries.
113  * A hint and a RB tree is used to speed-up lookups.
114  *
115  * Callers looking to modify maps specify start/end addresses which cause
116  * the related map entry to be clipped if necessary, and then later
117  * recombined if the pieces remained compatible.
118  *
119  * Virtual copy operations are performed by copying VM object references
120  * from one map to another, and then marking both regions as copy-on-write.
121  */
122 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
123 static void vmspace_dtor(void *obj, void *privdata);
124 static void vmspace_terminate(struct vmspace *vm, int final);
125 
126 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
127 static struct objcache *vmspace_cache;
128 
129 /*
130  * per-cpu page table cross mappings are initialized in early boot
131  * and might require a considerable number of vm_map_entry structures.
132  */
133 #define MAPENTRYBSP_CACHE	(MAXCPU+1)
134 #define MAPENTRYAP_CACHE	8
135 
136 /*
137  * Partioning threaded programs with large anonymous memory areas can
138  * improve concurrent fault performance.
139  */
140 #define MAP_ENTRY_PARTITION_SIZE	((vm_offset_t)(32 * 1024 * 1024))
141 #define MAP_ENTRY_PARTITION_MASK	(MAP_ENTRY_PARTITION_SIZE - 1)
142 
143 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)	\
144 	((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
145 
146 static struct vm_zone mapentzone_store;
147 static vm_zone_t mapentzone;
148 
149 static struct vm_map_entry map_entry_init[MAX_MAPENT];
150 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
151 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
152 
153 static int randomize_mmap;
154 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
155     "Randomize mmap offsets");
156 static int vm_map_relock_enable = 1;
157 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
158 	   &vm_map_relock_enable, 0, "insert pop pgtable optimization");
159 static int vm_map_partition_enable = 1;
160 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
161 	   &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
162 
163 static void vmspace_drop_notoken(struct vmspace *vm);
164 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
165 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
166 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
167 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
168 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
170 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
171 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
172 		vm_map_entry_t);
173 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
174 		vm_offset_t start, vm_offset_t end, int *countp, int flags);
175 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
176 		vm_offset_t vaddr, int *countp);
177 
178 /*
179  * Initialize the vm_map module.  Must be called before any other vm_map
180  * routines.
181  *
182  * Map and entry structures are allocated from the general purpose
183  * memory pool with some exceptions:
184  *
185  *	- The kernel map is allocated statically.
186  *	- Initial kernel map entries are allocated out of a static pool.
187  *	- We must set ZONE_SPECIAL here or the early boot code can get
188  *	  stuck if there are >63 cores.
189  *
190  *	These restrictions are necessary since malloc() uses the
191  *	maps and requires map entries.
192  *
193  * Called from the low level boot code only.
194  */
195 void
196 vm_map_startup(void)
197 {
198 	mapentzone = &mapentzone_store;
199 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
200 		  map_entry_init, MAX_MAPENT);
201 	mapentzone_store.zflags |= ZONE_SPECIAL;
202 }
203 
204 /*
205  * Called prior to any vmspace allocations.
206  *
207  * Called from the low level boot code only.
208  */
209 void
210 vm_init2(void)
211 {
212 	vmspace_cache = objcache_create_mbacked(M_VMSPACE,
213 						sizeof(struct vmspace),
214 						0, ncpus * 4,
215 						vmspace_ctor, vmspace_dtor,
216 						NULL);
217 	zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
218 	pmap_init2();
219 	vm_object_init2();
220 }
221 
222 /*
223  * objcache support.  We leave the pmap root cached as long as possible
224  * for performance reasons.
225  */
226 static
227 boolean_t
228 vmspace_ctor(void *obj, void *privdata, int ocflags)
229 {
230 	struct vmspace *vm = obj;
231 
232 	bzero(vm, sizeof(*vm));
233 	vm->vm_refcnt = VM_REF_DELETED;
234 
235 	return 1;
236 }
237 
238 static
239 void
240 vmspace_dtor(void *obj, void *privdata)
241 {
242 	struct vmspace *vm = obj;
243 
244 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
245 	pmap_puninit(vmspace_pmap(vm));
246 }
247 
248 /*
249  * Red black tree functions
250  *
251  * The caller must hold the related map lock.
252  */
253 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
254 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
255 
256 /* a->start is address, and the only field has to be initialized */
257 static int
258 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
259 {
260 	if (a->start < b->start)
261 		return(-1);
262 	else if (a->start > b->start)
263 		return(1);
264 	return(0);
265 }
266 
267 /*
268  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
269  * every refcnt.
270  */
271 void
272 vmspace_initrefs(struct vmspace *vm)
273 {
274 	vm->vm_refcnt = 1;
275 	vm->vm_holdcnt = 1;
276 }
277 
278 /*
279  * Allocate a vmspace structure, including a vm_map and pmap.
280  * Initialize numerous fields.  While the initial allocation is zerod,
281  * subsequence reuse from the objcache leaves elements of the structure
282  * intact (particularly the pmap), so portions must be zerod.
283  *
284  * Returns a referenced vmspace.
285  *
286  * No requirements.
287  */
288 struct vmspace *
289 vmspace_alloc(vm_offset_t min, vm_offset_t max)
290 {
291 	struct vmspace *vm;
292 
293 	vm = objcache_get(vmspace_cache, M_WAITOK);
294 
295 	bzero(&vm->vm_startcopy,
296 	      (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
297 	vm_map_init(&vm->vm_map, min, max, NULL);	/* initializes token */
298 
299 	/*
300 	 * NOTE: hold to acquires token for safety.
301 	 *
302 	 * On return vmspace is referenced (refs=1, hold=1).  That is,
303 	 * each refcnt also has a holdcnt.  There can be additional holds
304 	 * (holdcnt) above and beyond the refcnt.  Finalization is handled in
305 	 * two stages, one on refs 1->0, and the the second on hold 1->0.
306 	 */
307 	KKASSERT(vm->vm_holdcnt == 0);
308 	KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
309 	vmspace_initrefs(vm);
310 	vmspace_hold(vm);
311 	pmap_pinit(vmspace_pmap(vm));		/* (some fields reused) */
312 	vm->vm_map.pmap = vmspace_pmap(vm);	/* XXX */
313 	vm->vm_shm = NULL;
314 	vm->vm_flags = 0;
315 	cpu_vmspace_alloc(vm);
316 	vmspace_drop(vm);
317 
318 	return (vm);
319 }
320 
321 /*
322  * NOTE: Can return 0 if the vmspace is exiting.
323  */
324 int
325 vmspace_getrefs(struct vmspace *vm)
326 {
327 	int32_t n;
328 
329 	n = vm->vm_refcnt;
330 	cpu_ccfence();
331 	if (n & VM_REF_DELETED)
332 		n = -1;
333 	return n;
334 }
335 
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339 	atomic_add_int(&vm->vm_holdcnt, 1);
340 	lwkt_gettoken(&vm->vm_map.token);
341 }
342 
343 /*
344  * Drop with final termination interlock.
345  */
346 void
347 vmspace_drop(struct vmspace *vm)
348 {
349 	lwkt_reltoken(&vm->vm_map.token);
350 	vmspace_drop_notoken(vm);
351 }
352 
353 static void
354 vmspace_drop_notoken(struct vmspace *vm)
355 {
356 	if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
357 		if (vm->vm_refcnt & VM_REF_DELETED)
358 			vmspace_terminate(vm, 1);
359 	}
360 }
361 
362 /*
363  * A vmspace object must not be in a terminated state to be able to obtain
364  * additional refs on it.
365  *
366  * These are official references to the vmspace, the count is used to check
367  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
368  *
369  * XXX we need to combine hold & ref together into one 64-bit field to allow
370  * holds to prevent stage-1 termination.
371  */
372 void
373 vmspace_ref(struct vmspace *vm)
374 {
375 	uint32_t n;
376 
377 	atomic_add_int(&vm->vm_holdcnt, 1);
378 	n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
379 	KKASSERT((n & VM_REF_DELETED) == 0);
380 }
381 
382 /*
383  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
384  * termination of the vmspace.  Then, on the final drop of the hold we
385  * will do stage-2 final termination.
386  */
387 void
388 vmspace_rel(struct vmspace *vm)
389 {
390 	uint32_t n;
391 
392 	/*
393 	 * Drop refs.  Each ref also has a hold which is also dropped.
394 	 *
395 	 * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
396 	 * prevent finalization) to start termination processing.
397 	 * Finalization occurs when the last hold count drops to 0.
398 	 */
399 	n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
400 	while (n == 0) {
401 		if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
402 			vmspace_terminate(vm, 0);
403 			break;
404 		}
405 		n = vm->vm_refcnt;
406 		cpu_ccfence();
407 	}
408 	vmspace_drop_notoken(vm);
409 }
410 
411 /*
412  * This is called during exit indicating that the vmspace is no
413  * longer in used by an exiting process, but the process has not yet
414  * been reaped.
415  *
416  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
417  * to prevent stage-2 until the process is reaped.  Note hte order of
418  * operation, we must hold first.
419  *
420  * No requirements.
421  */
422 void
423 vmspace_relexit(struct vmspace *vm)
424 {
425 	atomic_add_int(&vm->vm_holdcnt, 1);
426 	vmspace_rel(vm);
427 }
428 
429 /*
430  * Called during reap to disconnect the remainder of the vmspace from
431  * the process.  On the hold drop the vmspace termination is finalized.
432  *
433  * No requirements.
434  */
435 void
436 vmspace_exitfree(struct proc *p)
437 {
438 	struct vmspace *vm;
439 
440 	vm = p->p_vmspace;
441 	p->p_vmspace = NULL;
442 	vmspace_drop_notoken(vm);
443 }
444 
445 /*
446  * Called in two cases:
447  *
448  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
449  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
450  *     and holdcnt will still be non-zero.
451  *
452  * (2) When holdcnt becomes 0, called with final == 1.  There should no
453  *     longer be anyone with access to the vmspace.
454  *
455  * VMSPACE_EXIT1 flags the primary deactivation
456  * VMSPACE_EXIT2 flags the last reap
457  */
458 static void
459 vmspace_terminate(struct vmspace *vm, int final)
460 {
461 	int count;
462 
463 	lwkt_gettoken(&vm->vm_map.token);
464 	if (final == 0) {
465 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
466 		vm->vm_flags |= VMSPACE_EXIT1;
467 
468 		/*
469 		 * Get rid of most of the resources.  Leave the kernel pmap
470 		 * intact.
471 		 *
472 		 * If the pmap does not contain wired pages we can bulk-delete
473 		 * the pmap as a performance optimization before removing the
474 		 * related mappings.
475 		 *
476 		 * If the pmap contains wired pages we cannot do this
477 		 * pre-optimization because currently vm_fault_unwire()
478 		 * expects the pmap pages to exist and will not decrement
479 		 * p->wire_count if they do not.
480 		 */
481 		shmexit(vm);
482 		if (vmspace_pmap(vm)->pm_stats.wired_count) {
483 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
484 				      VM_MAX_USER_ADDRESS);
485 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
486 					  VM_MAX_USER_ADDRESS);
487 		} else {
488 			pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
489 					  VM_MAX_USER_ADDRESS);
490 			vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
491 				      VM_MAX_USER_ADDRESS);
492 		}
493 		lwkt_reltoken(&vm->vm_map.token);
494 	} else {
495 		KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
496 		KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
497 
498 		/*
499 		 * Get rid of remaining basic resources.
500 		 */
501 		vm->vm_flags |= VMSPACE_EXIT2;
502 		shmexit(vm);
503 
504 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
505 		vm_map_lock(&vm->vm_map);
506 		cpu_vmspace_free(vm);
507 
508 		/*
509 		 * Lock the map, to wait out all other references to it.
510 		 * Delete all of the mappings and pages they hold, then call
511 		 * the pmap module to reclaim anything left.
512 		 */
513 		vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
514 			      vm->vm_map.max_offset, &count);
515 		vm_map_unlock(&vm->vm_map);
516 		vm_map_entry_release(count);
517 
518 		pmap_release(vmspace_pmap(vm));
519 		lwkt_reltoken(&vm->vm_map.token);
520 		objcache_put(vmspace_cache, vm);
521 	}
522 }
523 
524 /*
525  * Swap useage is determined by taking the proportional swap used by
526  * VM objects backing the VM map.  To make up for fractional losses,
527  * if the VM object has any swap use at all the associated map entries
528  * count for at least 1 swap page.
529  *
530  * No requirements.
531  */
532 vm_offset_t
533 vmspace_swap_count(struct vmspace *vm)
534 {
535 	vm_map_t map = &vm->vm_map;
536 	vm_map_entry_t cur;
537 	vm_object_t object;
538 	vm_offset_t count = 0;
539 	vm_offset_t n;
540 
541 	vmspace_hold(vm);
542 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
543 		switch(cur->maptype) {
544 		case VM_MAPTYPE_NORMAL:
545 		case VM_MAPTYPE_VPAGETABLE:
546 			if ((object = cur->object.vm_object) == NULL)
547 				break;
548 			if (object->swblock_count) {
549 				n = (cur->end - cur->start) / PAGE_SIZE;
550 				count += object->swblock_count *
551 				    SWAP_META_PAGES * n / object->size + 1;
552 			}
553 			break;
554 		default:
555 			break;
556 		}
557 	}
558 	vmspace_drop(vm);
559 
560 	return(count);
561 }
562 
563 /*
564  * Calculate the approximate number of anonymous pages in use by
565  * this vmspace.  To make up for fractional losses, we count each
566  * VM object as having at least 1 anonymous page.
567  *
568  * No requirements.
569  */
570 vm_offset_t
571 vmspace_anonymous_count(struct vmspace *vm)
572 {
573 	vm_map_t map = &vm->vm_map;
574 	vm_map_entry_t cur;
575 	vm_object_t object;
576 	vm_offset_t count = 0;
577 
578 	vmspace_hold(vm);
579 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
580 		switch(cur->maptype) {
581 		case VM_MAPTYPE_NORMAL:
582 		case VM_MAPTYPE_VPAGETABLE:
583 			if ((object = cur->object.vm_object) == NULL)
584 				break;
585 			if (object->type != OBJT_DEFAULT &&
586 			    object->type != OBJT_SWAP) {
587 				break;
588 			}
589 			count += object->resident_page_count;
590 			break;
591 		default:
592 			break;
593 		}
594 	}
595 	vmspace_drop(vm);
596 
597 	return(count);
598 }
599 
600 /*
601  * Initialize an existing vm_map structure such as that in the vmspace
602  * structure.  The pmap is initialized elsewhere.
603  *
604  * No requirements.
605  */
606 void
607 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
608 {
609 	map->header.next = map->header.prev = &map->header;
610 	RB_INIT(&map->rb_root);
611 	spin_init(&map->ilock_spin, "ilock");
612 	map->ilock_base = NULL;
613 	map->nentries = 0;
614 	map->size = 0;
615 	map->system_map = 0;
616 	map->min_offset = min;
617 	map->max_offset = max;
618 	map->pmap = pmap;
619 	map->timestamp = 0;
620 	map->flags = 0;
621 	bzero(&map->freehint, sizeof(map->freehint));
622 	lwkt_token_init(&map->token, "vm_map");
623 	lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
624 }
625 
626 /*
627  * Find the first possible free address for the specified request length.
628  * Returns 0 if we don't have one cached.
629  */
630 static
631 vm_offset_t
632 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
633 {
634 	vm_map_freehint_t *scan;
635 
636 	scan = &map->freehint[0];
637 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
638 		if (scan->length == length && scan->align == align)
639 			return(scan->start);
640 		++scan;
641 	}
642 	return 0;
643 }
644 
645 /*
646  * Unconditionally set the freehint.  Called by vm_map_findspace() after
647  * it finds an address.  This will help us iterate optimally on the next
648  * similar findspace.
649  */
650 static
651 void
652 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
653 		       vm_size_t length, vm_size_t align)
654 {
655 	vm_map_freehint_t *scan;
656 
657 	scan = &map->freehint[0];
658 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
659 		if (scan->length == length && scan->align == align) {
660 			scan->start = start;
661 			return;
662 		}
663 		++scan;
664 	}
665 	scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
666 	scan->start = start;
667 	scan->align = align;
668 	scan->length = length;
669 	++map->freehint_newindex;
670 }
671 
672 /*
673  * Update any existing freehints (for any alignment), for the hole we just
674  * added.
675  */
676 static
677 void
678 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
679 {
680 	vm_map_freehint_t *scan;
681 
682 	scan = &map->freehint[0];
683 	while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
684 		if (scan->length <= length && scan->start > start)
685 			scan->start = start;
686 		++scan;
687 	}
688 }
689 
690 /*
691  * Shadow the vm_map_entry's object.  This typically needs to be done when
692  * a write fault is taken on an entry which had previously been cloned by
693  * fork().  The shared object (which might be NULL) must become private so
694  * we add a shadow layer above it.
695  *
696  * Object allocation for anonymous mappings is defered as long as possible.
697  * When creating a shadow, however, the underlying object must be instantiated
698  * so it can be shared.
699  *
700  * If the map segment is governed by a virtual page table then it is
701  * possible to address offsets beyond the mapped area.  Just allocate
702  * a maximally sized object for this case.
703  *
704  * If addref is non-zero an additional reference is added to the returned
705  * entry.  This mechanic exists because the additional reference might have
706  * to be added atomically and not after return to prevent a premature
707  * collapse.
708  *
709  * The vm_map must be exclusively locked.
710  * No other requirements.
711  */
712 static
713 void
714 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
715 {
716 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
717 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
718 				 0x7FFFFFFF, addref);	/* XXX */
719 	} else {
720 		vm_object_shadow(&entry->object.vm_object, &entry->offset,
721 				 atop(entry->end - entry->start), addref);
722 	}
723 	entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
724 }
725 
726 /*
727  * Allocate an object for a vm_map_entry.
728  *
729  * Object allocation for anonymous mappings is defered as long as possible.
730  * This function is called when we can defer no longer, generally when a map
731  * entry might be split or forked or takes a page fault.
732  *
733  * If the map segment is governed by a virtual page table then it is
734  * possible to address offsets beyond the mapped area.  Just allocate
735  * a maximally sized object for this case.
736  *
737  * The vm_map must be exclusively locked.
738  * No other requirements.
739  */
740 void
741 vm_map_entry_allocate_object(vm_map_entry_t entry)
742 {
743 	vm_object_t obj;
744 
745 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
746 		obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
747 	} else {
748 		obj = vm_object_allocate(OBJT_DEFAULT,
749 					 atop(entry->end - entry->start));
750 	}
751 	entry->object.vm_object = obj;
752 	entry->offset = 0;
753 }
754 
755 /*
756  * Set an initial negative count so the first attempt to reserve
757  * space preloads a bunch of vm_map_entry's for this cpu.  Also
758  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
759  * map a new page for vm_map_entry structures.  SMP systems are
760  * particularly sensitive.
761  *
762  * This routine is called in early boot so we cannot just call
763  * vm_map_entry_reserve().
764  *
765  * Called from the low level boot code only (for each cpu)
766  *
767  * WARNING! Take care not to have too-big a static/BSS structure here
768  *	    as MAXCPU can be 256+, otherwise the loader's 64MB heap
769  *	    can get blown out by the kernel plus the initrd image.
770  */
771 void
772 vm_map_entry_reserve_cpu_init(globaldata_t gd)
773 {
774 	vm_map_entry_t entry;
775 	int count;
776 	int i;
777 
778 	atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
779 	if (gd->gd_cpuid == 0) {
780 		entry = &cpu_map_entry_init_bsp[0];
781 		count = MAPENTRYBSP_CACHE;
782 	} else {
783 		entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
784 		count = MAPENTRYAP_CACHE;
785 	}
786 	for (i = 0; i < count; ++i, ++entry) {
787 		entry->next = gd->gd_vme_base;
788 		gd->gd_vme_base = entry;
789 	}
790 }
791 
792 /*
793  * Reserves vm_map_entry structures so code later-on can manipulate
794  * map_entry structures within a locked map without blocking trying
795  * to allocate a new vm_map_entry.
796  *
797  * No requirements.
798  *
799  * WARNING!  We must not decrement gd_vme_avail until after we have
800  *	     ensured that sufficient entries exist, otherwise we can
801  *	     get into an endless call recursion in the zalloc code
802  *	     itself.
803  */
804 int
805 vm_map_entry_reserve(int count)
806 {
807 	struct globaldata *gd = mycpu;
808 	vm_map_entry_t entry;
809 
810 	/*
811 	 * Make sure we have enough structures in gd_vme_base to handle
812 	 * the reservation request.
813 	 *
814 	 * Use a critical section to protect against VM faults.  It might
815 	 * not be needed, but we have to be careful here.
816 	 */
817 	if (gd->gd_vme_avail < count) {
818 		crit_enter();
819 		while (gd->gd_vme_avail < count) {
820 			entry = zalloc(mapentzone);
821 			entry->next = gd->gd_vme_base;
822 			gd->gd_vme_base = entry;
823 			atomic_add_int(&gd->gd_vme_avail, 1);
824 		}
825 		crit_exit();
826 	}
827 	atomic_add_int(&gd->gd_vme_avail, -count);
828 
829 	return(count);
830 }
831 
832 /*
833  * Releases previously reserved vm_map_entry structures that were not
834  * used.  If we have too much junk in our per-cpu cache clean some of
835  * it out.
836  *
837  * No requirements.
838  */
839 void
840 vm_map_entry_release(int count)
841 {
842 	struct globaldata *gd = mycpu;
843 	vm_map_entry_t entry;
844 	vm_map_entry_t efree;
845 
846 	count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
847 	if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
848 		efree = NULL;
849 		crit_enter();
850 		while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
851 			entry = gd->gd_vme_base;
852 			KKASSERT(entry != NULL);
853 			gd->gd_vme_base = entry->next;
854 			atomic_add_int(&gd->gd_vme_avail, -1);
855 			entry->next = efree;
856 			efree = entry;
857 		}
858 		crit_exit();
859 		while ((entry = efree) != NULL) {
860 			efree = efree->next;
861 			zfree(mapentzone, entry);
862 		}
863 	}
864 }
865 
866 /*
867  * Reserve map entry structures for use in kernel_map itself.  These
868  * entries have *ALREADY* been reserved on a per-cpu basis when the map
869  * was inited.  This function is used by zalloc() to avoid a recursion
870  * when zalloc() itself needs to allocate additional kernel memory.
871  *
872  * This function works like the normal reserve but does not load the
873  * vm_map_entry cache (because that would result in an infinite
874  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
875  *
876  * Any caller of this function must be sure to renormalize after
877  * potentially eating entries to ensure that the reserve supply
878  * remains intact.
879  *
880  * No requirements.
881  */
882 int
883 vm_map_entry_kreserve(int count)
884 {
885 	struct globaldata *gd = mycpu;
886 
887 	atomic_add_int(&gd->gd_vme_avail, -count);
888 	KASSERT(gd->gd_vme_base != NULL,
889 		("no reserved entries left, gd_vme_avail = %d",
890 		gd->gd_vme_avail));
891 	return(count);
892 }
893 
894 /*
895  * Release previously reserved map entries for kernel_map.  We do not
896  * attempt to clean up like the normal release function as this would
897  * cause an unnecessary (but probably not fatal) deep procedure call.
898  *
899  * No requirements.
900  */
901 void
902 vm_map_entry_krelease(int count)
903 {
904 	struct globaldata *gd = mycpu;
905 
906 	atomic_add_int(&gd->gd_vme_avail, count);
907 }
908 
909 /*
910  * Allocates a VM map entry for insertion.  No entry fields are filled in.
911  *
912  * The entries should have previously been reserved.  The reservation count
913  * is tracked in (*countp).
914  *
915  * No requirements.
916  */
917 static vm_map_entry_t
918 vm_map_entry_create(vm_map_t map, int *countp)
919 {
920 	struct globaldata *gd = mycpu;
921 	vm_map_entry_t entry;
922 
923 	KKASSERT(*countp > 0);
924 	--*countp;
925 	crit_enter();
926 	entry = gd->gd_vme_base;
927 	KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
928 	gd->gd_vme_base = entry->next;
929 	crit_exit();
930 
931 	return(entry);
932 }
933 
934 /*
935  * Dispose of a vm_map_entry that is no longer being referenced.
936  *
937  * No requirements.
938  */
939 static void
940 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
941 {
942 	struct globaldata *gd = mycpu;
943 
944 	++*countp;
945 	crit_enter();
946 	entry->next = gd->gd_vme_base;
947 	gd->gd_vme_base = entry;
948 	crit_exit();
949 }
950 
951 
952 /*
953  * Insert/remove entries from maps.
954  *
955  * The related map must be exclusively locked.
956  * The caller must hold map->token
957  * No other requirements.
958  */
959 static __inline void
960 vm_map_entry_link(vm_map_t map,
961 		  vm_map_entry_t after_where,
962 		  vm_map_entry_t entry)
963 {
964 	ASSERT_VM_MAP_LOCKED(map);
965 
966 	map->nentries++;
967 	entry->prev = after_where;
968 	entry->next = after_where->next;
969 	entry->next->prev = entry;
970 	after_where->next = entry;
971 	if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
972 		panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
973 }
974 
975 static __inline void
976 vm_map_entry_unlink(vm_map_t map,
977 		    vm_map_entry_t entry)
978 {
979 	vm_map_entry_t prev;
980 	vm_map_entry_t next;
981 
982 	ASSERT_VM_MAP_LOCKED(map);
983 
984 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
985 		panic("vm_map_entry_unlink: attempt to mess with "
986 		      "locked entry! %p", entry);
987 	}
988 	prev = entry->prev;
989 	next = entry->next;
990 	next->prev = prev;
991 	prev->next = next;
992 	vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
993 	map->nentries--;
994 }
995 
996 /*
997  * Finds the map entry containing (or immediately preceding) the specified
998  * address in the given map.  The entry is returned in (*entry).
999  *
1000  * The boolean result indicates whether the address is actually contained
1001  * in the map.
1002  *
1003  * The related map must be locked.
1004  * No other requirements.
1005  */
1006 boolean_t
1007 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
1008 {
1009 	vm_map_entry_t tmp;
1010 	vm_map_entry_t last;
1011 
1012 	ASSERT_VM_MAP_LOCKED(map);
1013 
1014 	/*
1015 	 * Locate the record from the top of the tree.  'last' tracks the
1016 	 * closest prior record and is returned if no match is found, which
1017 	 * in binary tree terms means tracking the most recent right-branch
1018 	 * taken.  If there is no prior record, &map->header is returned.
1019 	 */
1020 	last = &map->header;
1021 	tmp = RB_ROOT(&map->rb_root);
1022 
1023 	while (tmp) {
1024 		if (address >= tmp->start) {
1025 			if (address < tmp->end) {
1026 				*entry = tmp;
1027 				return(TRUE);
1028 			}
1029 			last = tmp;
1030 			tmp = RB_RIGHT(tmp, rb_entry);
1031 		} else {
1032 			tmp = RB_LEFT(tmp, rb_entry);
1033 		}
1034 	}
1035 	*entry = last;
1036 	return (FALSE);
1037 }
1038 
1039 /*
1040  * Inserts the given whole VM object into the target map at the specified
1041  * address range.  The object's size should match that of the address range.
1042  *
1043  * The map must be exclusively locked.
1044  * The object must be held.
1045  * The caller must have reserved sufficient vm_map_entry structures.
1046  *
1047  * If object is non-NULL, ref count must be bumped by caller prior to
1048  * making call to account for the new entry.
1049  */
1050 int
1051 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1052 	      vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1053 	      vm_maptype_t maptype, vm_subsys_t id,
1054 	      vm_prot_t prot, vm_prot_t max, int cow)
1055 {
1056 	vm_map_entry_t new_entry;
1057 	vm_map_entry_t prev_entry;
1058 	vm_map_entry_t temp_entry;
1059 	vm_eflags_t protoeflags;
1060 	int must_drop = 0;
1061 	vm_object_t object;
1062 
1063 	if (maptype == VM_MAPTYPE_UKSMAP)
1064 		object = NULL;
1065 	else
1066 		object = map_object;
1067 
1068 	ASSERT_VM_MAP_LOCKED(map);
1069 	if (object)
1070 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1071 
1072 	/*
1073 	 * Check that the start and end points are not bogus.
1074 	 */
1075 	if ((start < map->min_offset) || (end > map->max_offset) ||
1076 	    (start >= end))
1077 		return (KERN_INVALID_ADDRESS);
1078 
1079 	/*
1080 	 * Find the entry prior to the proposed starting address; if it's part
1081 	 * of an existing entry, this range is bogus.
1082 	 */
1083 	if (vm_map_lookup_entry(map, start, &temp_entry))
1084 		return (KERN_NO_SPACE);
1085 
1086 	prev_entry = temp_entry;
1087 
1088 	/*
1089 	 * Assert that the next entry doesn't overlap the end point.
1090 	 */
1091 
1092 	if ((prev_entry->next != &map->header) &&
1093 	    (prev_entry->next->start < end))
1094 		return (KERN_NO_SPACE);
1095 
1096 	protoeflags = 0;
1097 
1098 	if (cow & MAP_COPY_ON_WRITE)
1099 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1100 
1101 	if (cow & MAP_NOFAULT) {
1102 		protoeflags |= MAP_ENTRY_NOFAULT;
1103 
1104 		KASSERT(object == NULL,
1105 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1106 	}
1107 	if (cow & MAP_DISABLE_SYNCER)
1108 		protoeflags |= MAP_ENTRY_NOSYNC;
1109 	if (cow & MAP_DISABLE_COREDUMP)
1110 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1111 	if (cow & MAP_IS_STACK)
1112 		protoeflags |= MAP_ENTRY_STACK;
1113 	if (cow & MAP_IS_KSTACK)
1114 		protoeflags |= MAP_ENTRY_KSTACK;
1115 
1116 	lwkt_gettoken(&map->token);
1117 
1118 	if (object) {
1119 		/*
1120 		 * When object is non-NULL, it could be shared with another
1121 		 * process.  We have to set or clear OBJ_ONEMAPPING
1122 		 * appropriately.
1123 		 *
1124 		 * NOTE: This flag is only applicable to DEFAULT and SWAP
1125 		 *	 objects and will already be clear in other types
1126 		 *	 of objects, so a shared object lock is ok for
1127 		 *	 VNODE objects.
1128 		 */
1129 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1130 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1131 		}
1132 	}
1133 	else if ((prev_entry != &map->header) &&
1134 		 (prev_entry->eflags == protoeflags) &&
1135 		 (prev_entry->end == start) &&
1136 		 (prev_entry->wired_count == 0) &&
1137 		 (prev_entry->id == id) &&
1138 		 prev_entry->maptype == maptype &&
1139 		 maptype == VM_MAPTYPE_NORMAL &&
1140 		 ((prev_entry->object.vm_object == NULL) ||
1141 		  vm_object_coalesce(prev_entry->object.vm_object,
1142 				     OFF_TO_IDX(prev_entry->offset),
1143 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1144 				     (vm_size_t)(end - prev_entry->end)))) {
1145 		/*
1146 		 * We were able to extend the object.  Determine if we
1147 		 * can extend the previous map entry to include the
1148 		 * new range as well.
1149 		 */
1150 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1151 		    (prev_entry->protection == prot) &&
1152 		    (prev_entry->max_protection == max)) {
1153 			map->size += (end - prev_entry->end);
1154 			prev_entry->end = end;
1155 			vm_map_simplify_entry(map, prev_entry, countp);
1156 			lwkt_reltoken(&map->token);
1157 			return (KERN_SUCCESS);
1158 		}
1159 
1160 		/*
1161 		 * If we can extend the object but cannot extend the
1162 		 * map entry, we have to create a new map entry.  We
1163 		 * must bump the ref count on the extended object to
1164 		 * account for it.  object may be NULL.
1165 		 *
1166 		 * XXX if object is NULL should we set offset to 0 here ?
1167 		 */
1168 		object = prev_entry->object.vm_object;
1169 		offset = prev_entry->offset +
1170 			(prev_entry->end - prev_entry->start);
1171 		if (object) {
1172 			vm_object_hold(object);
1173 			vm_object_chain_wait(object, 0);
1174 			vm_object_reference_locked(object);
1175 			must_drop = 1;
1176 			map_object = object;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1182 	 * in things like the buffer map where we manage kva but do not manage
1183 	 * backing objects.
1184 	 */
1185 
1186 	/*
1187 	 * Create a new entry
1188 	 */
1189 
1190 	new_entry = vm_map_entry_create(map, countp);
1191 	new_entry->start = start;
1192 	new_entry->end = end;
1193 	new_entry->id = id;
1194 
1195 	new_entry->maptype = maptype;
1196 	new_entry->eflags = protoeflags;
1197 	new_entry->object.map_object = map_object;
1198 	new_entry->aux.master_pde = 0;		/* in case size is different */
1199 	new_entry->aux.map_aux = map_aux;
1200 	new_entry->offset = offset;
1201 
1202 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1203 	new_entry->protection = prot;
1204 	new_entry->max_protection = max;
1205 	new_entry->wired_count = 0;
1206 
1207 	/*
1208 	 * Insert the new entry into the list
1209 	 */
1210 
1211 	vm_map_entry_link(map, prev_entry, new_entry);
1212 	map->size += new_entry->end - new_entry->start;
1213 
1214 	/*
1215 	 * Don't worry about updating freehint[] when inserting, allow
1216 	 * addresses to be lower than the actual first free spot.
1217 	 */
1218 #if 0
1219 	/*
1220 	 * Temporarily removed to avoid MAP_STACK panic, due to
1221 	 * MAP_STACK being a huge hack.  Will be added back in
1222 	 * when MAP_STACK (and the user stack mapping) is fixed.
1223 	 */
1224 	/*
1225 	 * It may be possible to simplify the entry
1226 	 */
1227 	vm_map_simplify_entry(map, new_entry, countp);
1228 #endif
1229 
1230 	/*
1231 	 * Try to pre-populate the page table.  Mappings governed by virtual
1232 	 * page tables cannot be prepopulated without a lot of work, so
1233 	 * don't try.
1234 	 */
1235 	if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1236 	    maptype != VM_MAPTYPE_VPAGETABLE &&
1237 	    maptype != VM_MAPTYPE_UKSMAP) {
1238 		int dorelock = 0;
1239 		if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1240 			dorelock = 1;
1241 			vm_object_lock_swap();
1242 			vm_object_drop(object);
1243 		}
1244 		pmap_object_init_pt(map->pmap, start, prot,
1245 				    object, OFF_TO_IDX(offset), end - start,
1246 				    cow & MAP_PREFAULT_PARTIAL);
1247 		if (dorelock) {
1248 			vm_object_hold(object);
1249 			vm_object_lock_swap();
1250 		}
1251 	}
1252 	if (must_drop)
1253 		vm_object_drop(object);
1254 
1255 	lwkt_reltoken(&map->token);
1256 	return (KERN_SUCCESS);
1257 }
1258 
1259 /*
1260  * Find sufficient space for `length' bytes in the given map, starting at
1261  * `start'.  Returns 0 on success, 1 on no space.
1262  *
1263  * This function will returned an arbitrarily aligned pointer.  If no
1264  * particular alignment is required you should pass align as 1.  Note that
1265  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1266  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1267  * argument.
1268  *
1269  * 'align' should be a power of 2 but is not required to be.
1270  *
1271  * The map must be exclusively locked.
1272  * No other requirements.
1273  */
1274 int
1275 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1276 		 vm_size_t align, int flags, vm_offset_t *addr)
1277 {
1278 	vm_map_entry_t entry, next;
1279 	vm_map_entry_t tmp;
1280 	vm_offset_t hole_start;
1281 	vm_offset_t end;
1282 	vm_offset_t align_mask;
1283 
1284 	if (start < map->min_offset)
1285 		start = map->min_offset;
1286 	if (start > map->max_offset)
1287 		return (1);
1288 
1289 	/*
1290 	 * If the alignment is not a power of 2 we will have to use
1291 	 * a mod/division, set align_mask to a special value.
1292 	 */
1293 	if ((align | (align - 1)) + 1 != (align << 1))
1294 		align_mask = (vm_offset_t)-1;
1295 	else
1296 		align_mask = align - 1;
1297 
1298 	/*
1299 	 * Use freehint to adjust the start point, hopefully reducing
1300 	 * the iteration to O(1).
1301 	 */
1302 	hole_start = vm_map_freehint_find(map, length, align);
1303 	if (start < hole_start)
1304 		start = hole_start;
1305 	if (vm_map_lookup_entry(map, start, &tmp))
1306 		start = tmp->end;
1307 	entry = tmp;
1308 
1309 	/*
1310 	 * Look through the rest of the map, trying to fit a new region in the
1311 	 * gap between existing regions, or after the very last region.
1312 	 */
1313 	for (;; start = (entry = next)->end) {
1314 		/*
1315 		 * Adjust the proposed start by the requested alignment,
1316 		 * be sure that we didn't wrap the address.
1317 		 */
1318 		if (align_mask == (vm_offset_t)-1)
1319 			end = roundup(start, align);
1320 		else
1321 			end = (start + align_mask) & ~align_mask;
1322 		if (end < start)
1323 			return (1);
1324 		start = end;
1325 
1326 		/*
1327 		 * Find the end of the proposed new region.  Be sure we didn't
1328 		 * go beyond the end of the map, or wrap around the address.
1329 		 * Then check to see if this is the last entry or if the
1330 		 * proposed end fits in the gap between this and the next
1331 		 * entry.
1332 		 */
1333 		end = start + length;
1334 		if (end > map->max_offset || end < start)
1335 			return (1);
1336 		next = entry->next;
1337 
1338 		/*
1339 		 * If the next entry's start address is beyond the desired
1340 		 * end address we may have found a good entry.
1341 		 *
1342 		 * If the next entry is a stack mapping we do not map into
1343 		 * the stack's reserved space.
1344 		 *
1345 		 * XXX continue to allow mapping into the stack's reserved
1346 		 * space if doing a MAP_STACK mapping inside a MAP_STACK
1347 		 * mapping, for backwards compatibility.  But the caller
1348 		 * really should use MAP_STACK | MAP_TRYFIXED if they
1349 		 * want to do that.
1350 		 */
1351 		if (next == &map->header)
1352 			break;
1353 		if (next->start >= end) {
1354 			if ((next->eflags & MAP_ENTRY_STACK) == 0)
1355 				break;
1356 			if (flags & MAP_STACK)
1357 				break;
1358 			if (next->start - next->aux.avail_ssize >= end)
1359 				break;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * Update the freehint
1365 	 */
1366 	vm_map_freehint_update(map, start, length, align);
1367 
1368 	/*
1369 	 * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1370 	 * if it fails.  The kernel_map is locked and nothing can steal
1371 	 * our address space if pmap_growkernel() blocks.
1372 	 *
1373 	 * NOTE: This may be unconditionally called for kldload areas on
1374 	 *	 x86_64 because these do not bump kernel_vm_end (which would
1375 	 *	 fill 128G worth of page tables!).  Therefore we must not
1376 	 *	 retry.
1377 	 */
1378 	if (map == &kernel_map) {
1379 		vm_offset_t kstop;
1380 
1381 		kstop = round_page(start + length);
1382 		if (kstop > kernel_vm_end)
1383 			pmap_growkernel(start, kstop);
1384 	}
1385 	*addr = start;
1386 	return (0);
1387 }
1388 
1389 /*
1390  * vm_map_find finds an unallocated region in the target address map with
1391  * the given length and allocates it.  The search is defined to be first-fit
1392  * from the specified address; the region found is returned in the same
1393  * parameter.
1394  *
1395  * If object is non-NULL, ref count must be bumped by caller
1396  * prior to making call to account for the new entry.
1397  *
1398  * No requirements.  This function will lock the map temporarily.
1399  */
1400 int
1401 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1402 	    vm_ooffset_t offset, vm_offset_t *addr,
1403 	    vm_size_t length, vm_size_t align, boolean_t fitit,
1404 	    vm_maptype_t maptype, vm_subsys_t id,
1405 	    vm_prot_t prot, vm_prot_t max, int cow)
1406 {
1407 	vm_offset_t start;
1408 	vm_object_t object;
1409 	int result;
1410 	int count;
1411 
1412 	if (maptype == VM_MAPTYPE_UKSMAP)
1413 		object = NULL;
1414 	else
1415 		object = map_object;
1416 
1417 	start = *addr;
1418 
1419 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1420 	vm_map_lock(map);
1421 	if (object)
1422 		vm_object_hold_shared(object);
1423 	if (fitit) {
1424 		if (vm_map_findspace(map, start, length, align, 0, addr)) {
1425 			if (object)
1426 				vm_object_drop(object);
1427 			vm_map_unlock(map);
1428 			vm_map_entry_release(count);
1429 			return (KERN_NO_SPACE);
1430 		}
1431 		start = *addr;
1432 	}
1433 	result = vm_map_insert(map, &count, map_object, map_aux,
1434 			       offset, start, start + length,
1435 			       maptype, id, prot, max, cow);
1436 	if (object)
1437 		vm_object_drop(object);
1438 	vm_map_unlock(map);
1439 	vm_map_entry_release(count);
1440 
1441 	return (result);
1442 }
1443 
1444 /*
1445  * Simplify the given map entry by merging with either neighbor.  This
1446  * routine also has the ability to merge with both neighbors.
1447  *
1448  * This routine guarentees that the passed entry remains valid (though
1449  * possibly extended).  When merging, this routine may delete one or
1450  * both neighbors.  No action is taken on entries which have their
1451  * in-transition flag set.
1452  *
1453  * The map must be exclusively locked.
1454  */
1455 void
1456 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1457 {
1458 	vm_map_entry_t next, prev;
1459 	vm_size_t prevsize, esize;
1460 
1461 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1462 		++mycpu->gd_cnt.v_intrans_coll;
1463 		return;
1464 	}
1465 
1466 	if (entry->maptype == VM_MAPTYPE_SUBMAP)
1467 		return;
1468 	if (entry->maptype == VM_MAPTYPE_UKSMAP)
1469 		return;
1470 
1471 	prev = entry->prev;
1472 	if (prev != &map->header) {
1473 		prevsize = prev->end - prev->start;
1474 		if ( (prev->end == entry->start) &&
1475 		     (prev->maptype == entry->maptype) &&
1476 		     (prev->object.vm_object == entry->object.vm_object) &&
1477 		     (!prev->object.vm_object ||
1478 			(prev->offset + prevsize == entry->offset)) &&
1479 		     (prev->eflags == entry->eflags) &&
1480 		     (prev->protection == entry->protection) &&
1481 		     (prev->max_protection == entry->max_protection) &&
1482 		     (prev->inheritance == entry->inheritance) &&
1483 		     (prev->id == entry->id) &&
1484 		     (prev->wired_count == entry->wired_count)) {
1485 			vm_map_entry_unlink(map, prev);
1486 			entry->start = prev->start;
1487 			entry->offset = prev->offset;
1488 			if (prev->object.vm_object)
1489 				vm_object_deallocate(prev->object.vm_object);
1490 			vm_map_entry_dispose(map, prev, countp);
1491 		}
1492 	}
1493 
1494 	next = entry->next;
1495 	if (next != &map->header) {
1496 		esize = entry->end - entry->start;
1497 		if ((entry->end == next->start) &&
1498 		    (next->maptype == entry->maptype) &&
1499 		    (next->object.vm_object == entry->object.vm_object) &&
1500 		     (!entry->object.vm_object ||
1501 			(entry->offset + esize == next->offset)) &&
1502 		    (next->eflags == entry->eflags) &&
1503 		    (next->protection == entry->protection) &&
1504 		    (next->max_protection == entry->max_protection) &&
1505 		    (next->inheritance == entry->inheritance) &&
1506 		    (next->id == entry->id) &&
1507 		    (next->wired_count == entry->wired_count)) {
1508 			vm_map_entry_unlink(map, next);
1509 			entry->end = next->end;
1510 			if (next->object.vm_object)
1511 				vm_object_deallocate(next->object.vm_object);
1512 			vm_map_entry_dispose(map, next, countp);
1513 	        }
1514 	}
1515 }
1516 
1517 /*
1518  * Asserts that the given entry begins at or after the specified address.
1519  * If necessary, it splits the entry into two.
1520  */
1521 #define vm_map_clip_start(map, entry, startaddr, countp)		\
1522 {									\
1523 	if (startaddr > entry->start)					\
1524 		_vm_map_clip_start(map, entry, startaddr, countp);	\
1525 }
1526 
1527 /*
1528  * This routine is called only when it is known that the entry must be split.
1529  *
1530  * The map must be exclusively locked.
1531  */
1532 static void
1533 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1534 		   int *countp)
1535 {
1536 	vm_map_entry_t new_entry;
1537 
1538 	/*
1539 	 * Split off the front portion -- note that we must insert the new
1540 	 * entry BEFORE this one, so that this entry has the specified
1541 	 * starting address.
1542 	 */
1543 
1544 	vm_map_simplify_entry(map, entry, countp);
1545 
1546 	/*
1547 	 * If there is no object backing this entry, we might as well create
1548 	 * one now.  If we defer it, an object can get created after the map
1549 	 * is clipped, and individual objects will be created for the split-up
1550 	 * map.  This is a bit of a hack, but is also about the best place to
1551 	 * put this improvement.
1552 	 */
1553 	if (entry->object.vm_object == NULL && !map->system_map &&
1554 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1555 		vm_map_entry_allocate_object(entry);
1556 	}
1557 
1558 	new_entry = vm_map_entry_create(map, countp);
1559 	*new_entry = *entry;
1560 
1561 	new_entry->end = start;
1562 	entry->offset += (start - entry->start);
1563 	entry->start = start;
1564 
1565 	vm_map_entry_link(map, entry->prev, new_entry);
1566 
1567 	switch(entry->maptype) {
1568 	case VM_MAPTYPE_NORMAL:
1569 	case VM_MAPTYPE_VPAGETABLE:
1570 		if (new_entry->object.vm_object) {
1571 			vm_object_hold(new_entry->object.vm_object);
1572 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1573 			vm_object_reference_locked(new_entry->object.vm_object);
1574 			vm_object_drop(new_entry->object.vm_object);
1575 		}
1576 		break;
1577 	default:
1578 		break;
1579 	}
1580 }
1581 
1582 /*
1583  * Asserts that the given entry ends at or before the specified address.
1584  * If necessary, it splits the entry into two.
1585  *
1586  * The map must be exclusively locked.
1587  */
1588 #define vm_map_clip_end(map, entry, endaddr, countp)		\
1589 {								\
1590 	if (endaddr < entry->end)				\
1591 		_vm_map_clip_end(map, entry, endaddr, countp);	\
1592 }
1593 
1594 /*
1595  * This routine is called only when it is known that the entry must be split.
1596  *
1597  * The map must be exclusively locked.
1598  */
1599 static void
1600 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1601 		 int *countp)
1602 {
1603 	vm_map_entry_t new_entry;
1604 
1605 	/*
1606 	 * If there is no object backing this entry, we might as well create
1607 	 * one now.  If we defer it, an object can get created after the map
1608 	 * is clipped, and individual objects will be created for the split-up
1609 	 * map.  This is a bit of a hack, but is also about the best place to
1610 	 * put this improvement.
1611 	 */
1612 
1613 	if (entry->object.vm_object == NULL && !map->system_map &&
1614 	    VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1615 		vm_map_entry_allocate_object(entry);
1616 	}
1617 
1618 	/*
1619 	 * Create a new entry and insert it AFTER the specified entry
1620 	 */
1621 	new_entry = vm_map_entry_create(map, countp);
1622 	*new_entry = *entry;
1623 
1624 	new_entry->start = entry->end = end;
1625 	new_entry->offset += (end - entry->start);
1626 
1627 	vm_map_entry_link(map, entry, new_entry);
1628 
1629 	switch(entry->maptype) {
1630 	case VM_MAPTYPE_NORMAL:
1631 	case VM_MAPTYPE_VPAGETABLE:
1632 		if (new_entry->object.vm_object) {
1633 			vm_object_hold(new_entry->object.vm_object);
1634 			vm_object_chain_wait(new_entry->object.vm_object, 0);
1635 			vm_object_reference_locked(new_entry->object.vm_object);
1636 			vm_object_drop(new_entry->object.vm_object);
1637 		}
1638 		break;
1639 	default:
1640 		break;
1641 	}
1642 }
1643 
1644 /*
1645  * Asserts that the starting and ending region addresses fall within the
1646  * valid range for the map.
1647  */
1648 #define	VM_MAP_RANGE_CHECK(map, start, end)	\
1649 {						\
1650 	if (start < vm_map_min(map))		\
1651 		start = vm_map_min(map);	\
1652 	if (end > vm_map_max(map))		\
1653 		end = vm_map_max(map);		\
1654 	if (start > end)			\
1655 		start = end;			\
1656 }
1657 
1658 /*
1659  * Used to block when an in-transition collison occurs.  The map
1660  * is unlocked for the sleep and relocked before the return.
1661  */
1662 void
1663 vm_map_transition_wait(vm_map_t map, int relock)
1664 {
1665 	tsleep_interlock(map, 0);
1666 	vm_map_unlock(map);
1667 	tsleep(map, PINTERLOCKED, "vment", 0);
1668 	if (relock)
1669 		vm_map_lock(map);
1670 }
1671 
1672 /*
1673  * When we do blocking operations with the map lock held it is
1674  * possible that a clip might have occured on our in-transit entry,
1675  * requiring an adjustment to the entry in our loop.  These macros
1676  * help the pageable and clip_range code deal with the case.  The
1677  * conditional costs virtually nothing if no clipping has occured.
1678  */
1679 
1680 #define CLIP_CHECK_BACK(entry, save_start)		\
1681     do {						\
1682 	    while (entry->start != save_start) {	\
1683 		    entry = entry->prev;		\
1684 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1685 	    }						\
1686     } while(0)
1687 
1688 #define CLIP_CHECK_FWD(entry, save_end)			\
1689     do {						\
1690 	    while (entry->end != save_end) {		\
1691 		    entry = entry->next;		\
1692 		    KASSERT(entry != &map->header, ("bad entry clip")); \
1693 	    }						\
1694     } while(0)
1695 
1696 
1697 /*
1698  * Clip the specified range and return the base entry.  The
1699  * range may cover several entries starting at the returned base
1700  * and the first and last entry in the covering sequence will be
1701  * properly clipped to the requested start and end address.
1702  *
1703  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1704  * flag.
1705  *
1706  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1707  * covered by the requested range.
1708  *
1709  * The map must be exclusively locked on entry and will remain locked
1710  * on return. If no range exists or the range contains holes and you
1711  * specified that no holes were allowed, NULL will be returned.  This
1712  * routine may temporarily unlock the map in order avoid a deadlock when
1713  * sleeping.
1714  */
1715 static
1716 vm_map_entry_t
1717 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end,
1718 		  int *countp, int flags)
1719 {
1720 	vm_map_entry_t start_entry;
1721 	vm_map_entry_t entry;
1722 
1723 	/*
1724 	 * Locate the entry and effect initial clipping.  The in-transition
1725 	 * case does not occur very often so do not try to optimize it.
1726 	 */
1727 again:
1728 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1729 		return (NULL);
1730 	entry = start_entry;
1731 	if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1732 		entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1733 		++mycpu->gd_cnt.v_intrans_coll;
1734 		++mycpu->gd_cnt.v_intrans_wait;
1735 		vm_map_transition_wait(map, 1);
1736 		/*
1737 		 * entry and/or start_entry may have been clipped while
1738 		 * we slept, or may have gone away entirely.  We have
1739 		 * to restart from the lookup.
1740 		 */
1741 		goto again;
1742 	}
1743 
1744 	/*
1745 	 * Since we hold an exclusive map lock we do not have to restart
1746 	 * after clipping, even though clipping may block in zalloc.
1747 	 */
1748 	vm_map_clip_start(map, entry, start, countp);
1749 	vm_map_clip_end(map, entry, end, countp);
1750 	entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1751 
1752 	/*
1753 	 * Scan entries covered by the range.  When working on the next
1754 	 * entry a restart need only re-loop on the current entry which
1755 	 * we have already locked, since 'next' may have changed.  Also,
1756 	 * even though entry is safe, it may have been clipped so we
1757 	 * have to iterate forwards through the clip after sleeping.
1758 	 */
1759 	while (entry->next != &map->header && entry->next->start < end) {
1760 		vm_map_entry_t next = entry->next;
1761 
1762 		if (flags & MAP_CLIP_NO_HOLES) {
1763 			if (next->start > entry->end) {
1764 				vm_map_unclip_range(map, start_entry,
1765 					start, entry->end, countp, flags);
1766 				return(NULL);
1767 			}
1768 		}
1769 
1770 		if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1771 			vm_offset_t save_end = entry->end;
1772 			next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1773 			++mycpu->gd_cnt.v_intrans_coll;
1774 			++mycpu->gd_cnt.v_intrans_wait;
1775 			vm_map_transition_wait(map, 1);
1776 
1777 			/*
1778 			 * clips might have occured while we blocked.
1779 			 */
1780 			CLIP_CHECK_FWD(entry, save_end);
1781 			CLIP_CHECK_BACK(start_entry, start);
1782 			continue;
1783 		}
1784 
1785 		/*
1786 		 * No restart necessary even though clip_end may block, we
1787 		 * are holding the map lock.
1788 		 */
1789 		vm_map_clip_end(map, next, end, countp);
1790 		next->eflags |= MAP_ENTRY_IN_TRANSITION;
1791 		entry = next;
1792 	}
1793 	if (flags & MAP_CLIP_NO_HOLES) {
1794 		if (entry->end != end) {
1795 			vm_map_unclip_range(map, start_entry,
1796 				start, entry->end, countp, flags);
1797 			return(NULL);
1798 		}
1799 	}
1800 	return(start_entry);
1801 }
1802 
1803 /*
1804  * Undo the effect of vm_map_clip_range().  You should pass the same
1805  * flags and the same range that you passed to vm_map_clip_range().
1806  * This code will clear the in-transition flag on the entries and
1807  * wake up anyone waiting.  This code will also simplify the sequence
1808  * and attempt to merge it with entries before and after the sequence.
1809  *
1810  * The map must be locked on entry and will remain locked on return.
1811  *
1812  * Note that you should also pass the start_entry returned by
1813  * vm_map_clip_range().  However, if you block between the two calls
1814  * with the map unlocked please be aware that the start_entry may
1815  * have been clipped and you may need to scan it backwards to find
1816  * the entry corresponding with the original start address.  You are
1817  * responsible for this, vm_map_unclip_range() expects the correct
1818  * start_entry to be passed to it and will KASSERT otherwise.
1819  */
1820 static
1821 void
1822 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1823 		    vm_offset_t start, vm_offset_t end,
1824 		    int *countp, int flags)
1825 {
1826 	vm_map_entry_t entry;
1827 
1828 	entry = start_entry;
1829 
1830 	KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1831 	while (entry != &map->header && entry->start < end) {
1832 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1833 			("in-transition flag not set during unclip on: %p",
1834 			entry));
1835 		KASSERT(entry->end <= end,
1836 			("unclip_range: tail wasn't clipped"));
1837 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1838 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1839 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1840 			wakeup(map);
1841 		}
1842 		entry = entry->next;
1843 	}
1844 
1845 	/*
1846 	 * Simplification does not block so there is no restart case.
1847 	 */
1848 	entry = start_entry;
1849 	while (entry != &map->header && entry->start < end) {
1850 		vm_map_simplify_entry(map, entry, countp);
1851 		entry = entry->next;
1852 	}
1853 }
1854 
1855 /*
1856  * Mark the given range as handled by a subordinate map.
1857  *
1858  * This range must have been created with vm_map_find(), and no other
1859  * operations may have been performed on this range prior to calling
1860  * vm_map_submap().
1861  *
1862  * Submappings cannot be removed.
1863  *
1864  * No requirements.
1865  */
1866 int
1867 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1868 {
1869 	vm_map_entry_t entry;
1870 	int result = KERN_INVALID_ARGUMENT;
1871 	int count;
1872 
1873 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1874 	vm_map_lock(map);
1875 
1876 	VM_MAP_RANGE_CHECK(map, start, end);
1877 
1878 	if (vm_map_lookup_entry(map, start, &entry)) {
1879 		vm_map_clip_start(map, entry, start, &count);
1880 	} else {
1881 		entry = entry->next;
1882 	}
1883 
1884 	vm_map_clip_end(map, entry, end, &count);
1885 
1886 	if ((entry->start == start) && (entry->end == end) &&
1887 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1888 	    (entry->object.vm_object == NULL)) {
1889 		entry->object.sub_map = submap;
1890 		entry->maptype = VM_MAPTYPE_SUBMAP;
1891 		result = KERN_SUCCESS;
1892 	}
1893 	vm_map_unlock(map);
1894 	vm_map_entry_release(count);
1895 
1896 	return (result);
1897 }
1898 
1899 /*
1900  * Sets the protection of the specified address region in the target map.
1901  * If "set_max" is specified, the maximum protection is to be set;
1902  * otherwise, only the current protection is affected.
1903  *
1904  * The protection is not applicable to submaps, but is applicable to normal
1905  * maps and maps governed by virtual page tables.  For example, when operating
1906  * on a virtual page table our protection basically controls how COW occurs
1907  * on the backing object, whereas the virtual page table abstraction itself
1908  * is an abstraction for userland.
1909  *
1910  * No requirements.
1911  */
1912 int
1913 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1914 	       vm_prot_t new_prot, boolean_t set_max)
1915 {
1916 	vm_map_entry_t current;
1917 	vm_map_entry_t entry;
1918 	int count;
1919 
1920 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1921 	vm_map_lock(map);
1922 
1923 	VM_MAP_RANGE_CHECK(map, start, end);
1924 
1925 	if (vm_map_lookup_entry(map, start, &entry)) {
1926 		vm_map_clip_start(map, entry, start, &count);
1927 	} else {
1928 		entry = entry->next;
1929 	}
1930 
1931 	/*
1932 	 * Make a first pass to check for protection violations.
1933 	 */
1934 	current = entry;
1935 	while ((current != &map->header) && (current->start < end)) {
1936 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
1937 			vm_map_unlock(map);
1938 			vm_map_entry_release(count);
1939 			return (KERN_INVALID_ARGUMENT);
1940 		}
1941 		if ((new_prot & current->max_protection) != new_prot) {
1942 			vm_map_unlock(map);
1943 			vm_map_entry_release(count);
1944 			return (KERN_PROTECTION_FAILURE);
1945 		}
1946 
1947 		/*
1948 		 * When making a SHARED+RW file mmap writable, update
1949 		 * v_lastwrite_ts.
1950 		 */
1951 		if (new_prot & PROT_WRITE &&
1952 		    (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
1953 		    (current->maptype == VM_MAPTYPE_NORMAL ||
1954 		     current->maptype == VM_MAPTYPE_VPAGETABLE) &&
1955 		    current->object.vm_object &&
1956 		    current->object.vm_object->type == OBJT_VNODE) {
1957 			struct vnode *vp;
1958 
1959 			vp = current->object.vm_object->handle;
1960 			if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
1961 				vfs_timestamp(&vp->v_lastwrite_ts);
1962 				vsetflags(vp, VLASTWRITETS);
1963 				vn_unlock(vp);
1964 			}
1965 		}
1966 		current = current->next;
1967 	}
1968 
1969 	/*
1970 	 * Go back and fix up protections. [Note that clipping is not
1971 	 * necessary the second time.]
1972 	 */
1973 	current = entry;
1974 
1975 	while ((current != &map->header) && (current->start < end)) {
1976 		vm_prot_t old_prot;
1977 
1978 		vm_map_clip_end(map, current, end, &count);
1979 
1980 		old_prot = current->protection;
1981 		if (set_max) {
1982 			current->max_protection = new_prot;
1983 			current->protection = new_prot & old_prot;
1984 		} else {
1985 			current->protection = new_prot;
1986 		}
1987 
1988 		/*
1989 		 * Update physical map if necessary. Worry about copy-on-write
1990 		 * here -- CHECK THIS XXX
1991 		 */
1992 		if (current->protection != old_prot) {
1993 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1994 							VM_PROT_ALL)
1995 
1996 			pmap_protect(map->pmap, current->start,
1997 			    current->end,
1998 			    current->protection & MASK(current));
1999 #undef	MASK
2000 		}
2001 
2002 		vm_map_simplify_entry(map, current, &count);
2003 
2004 		current = current->next;
2005 	}
2006 	vm_map_unlock(map);
2007 	vm_map_entry_release(count);
2008 	return (KERN_SUCCESS);
2009 }
2010 
2011 /*
2012  * This routine traverses a processes map handling the madvise
2013  * system call.  Advisories are classified as either those effecting
2014  * the vm_map_entry structure, or those effecting the underlying
2015  * objects.
2016  *
2017  * The <value> argument is used for extended madvise calls.
2018  *
2019  * No requirements.
2020  */
2021 int
2022 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2023 	       int behav, off_t value)
2024 {
2025 	vm_map_entry_t current, entry;
2026 	int modify_map = 0;
2027 	int error = 0;
2028 	int count;
2029 
2030 	/*
2031 	 * Some madvise calls directly modify the vm_map_entry, in which case
2032 	 * we need to use an exclusive lock on the map and we need to perform
2033 	 * various clipping operations.  Otherwise we only need a read-lock
2034 	 * on the map.
2035 	 */
2036 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2037 
2038 	switch(behav) {
2039 	case MADV_NORMAL:
2040 	case MADV_SEQUENTIAL:
2041 	case MADV_RANDOM:
2042 	case MADV_NOSYNC:
2043 	case MADV_AUTOSYNC:
2044 	case MADV_NOCORE:
2045 	case MADV_CORE:
2046 	case MADV_SETMAP:
2047 		modify_map = 1;
2048 		vm_map_lock(map);
2049 		break;
2050 	case MADV_INVAL:
2051 	case MADV_WILLNEED:
2052 	case MADV_DONTNEED:
2053 	case MADV_FREE:
2054 		vm_map_lock_read(map);
2055 		break;
2056 	default:
2057 		vm_map_entry_release(count);
2058 		return (EINVAL);
2059 	}
2060 
2061 	/*
2062 	 * Locate starting entry and clip if necessary.
2063 	 */
2064 
2065 	VM_MAP_RANGE_CHECK(map, start, end);
2066 
2067 	if (vm_map_lookup_entry(map, start, &entry)) {
2068 		if (modify_map)
2069 			vm_map_clip_start(map, entry, start, &count);
2070 	} else {
2071 		entry = entry->next;
2072 	}
2073 
2074 	if (modify_map) {
2075 		/*
2076 		 * madvise behaviors that are implemented in the vm_map_entry.
2077 		 *
2078 		 * We clip the vm_map_entry so that behavioral changes are
2079 		 * limited to the specified address range.
2080 		 */
2081 		for (current = entry;
2082 		     (current != &map->header) && (current->start < end);
2083 		     current = current->next
2084 		) {
2085 			if (current->maptype == VM_MAPTYPE_SUBMAP)
2086 				continue;
2087 
2088 			vm_map_clip_end(map, current, end, &count);
2089 
2090 			switch (behav) {
2091 			case MADV_NORMAL:
2092 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2093 				break;
2094 			case MADV_SEQUENTIAL:
2095 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2096 				break;
2097 			case MADV_RANDOM:
2098 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2099 				break;
2100 			case MADV_NOSYNC:
2101 				current->eflags |= MAP_ENTRY_NOSYNC;
2102 				break;
2103 			case MADV_AUTOSYNC:
2104 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2105 				break;
2106 			case MADV_NOCORE:
2107 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2108 				break;
2109 			case MADV_CORE:
2110 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2111 				break;
2112 			case MADV_SETMAP:
2113 				/*
2114 				 * Set the page directory page for a map
2115 				 * governed by a virtual page table.  Mark
2116 				 * the entry as being governed by a virtual
2117 				 * page table if it is not.
2118 				 *
2119 				 * XXX the page directory page is stored
2120 				 * in the avail_ssize field if the map_entry.
2121 				 *
2122 				 * XXX the map simplification code does not
2123 				 * compare this field so weird things may
2124 				 * happen if you do not apply this function
2125 				 * to the entire mapping governed by the
2126 				 * virtual page table.
2127 				 */
2128 				if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2129 					error = EINVAL;
2130 					break;
2131 				}
2132 				current->aux.master_pde = value;
2133 				pmap_remove(map->pmap,
2134 					    current->start, current->end);
2135 				break;
2136 			case MADV_INVAL:
2137 				/*
2138 				 * Invalidate the related pmap entries, used
2139 				 * to flush portions of the real kernel's
2140 				 * pmap when the caller has removed or
2141 				 * modified existing mappings in a virtual
2142 				 * page table.
2143 				 *
2144 				 * (exclusive locked map version does not
2145 				 * need the range interlock).
2146 				 */
2147 				pmap_remove(map->pmap,
2148 					    current->start, current->end);
2149 				break;
2150 			default:
2151 				error = EINVAL;
2152 				break;
2153 			}
2154 			vm_map_simplify_entry(map, current, &count);
2155 		}
2156 		vm_map_unlock(map);
2157 	} else {
2158 		vm_pindex_t pindex;
2159 		vm_pindex_t delta;
2160 
2161 		/*
2162 		 * madvise behaviors that are implemented in the underlying
2163 		 * vm_object.
2164 		 *
2165 		 * Since we don't clip the vm_map_entry, we have to clip
2166 		 * the vm_object pindex and count.
2167 		 *
2168 		 * NOTE!  These functions are only supported on normal maps,
2169 		 *	  except MADV_INVAL which is also supported on
2170 		 *	  virtual page tables.
2171 		 */
2172 		for (current = entry;
2173 		     (current != &map->header) && (current->start < end);
2174 		     current = current->next
2175 		) {
2176 			vm_offset_t useStart;
2177 
2178 			if (current->maptype != VM_MAPTYPE_NORMAL &&
2179 			    (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2180 			     behav != MADV_INVAL)) {
2181 				continue;
2182 			}
2183 
2184 			pindex = OFF_TO_IDX(current->offset);
2185 			delta = atop(current->end - current->start);
2186 			useStart = current->start;
2187 
2188 			if (current->start < start) {
2189 				pindex += atop(start - current->start);
2190 				delta -= atop(start - current->start);
2191 				useStart = start;
2192 			}
2193 			if (current->end > end)
2194 				delta -= atop(current->end - end);
2195 
2196 			if ((vm_spindex_t)delta <= 0)
2197 				continue;
2198 
2199 			if (behav == MADV_INVAL) {
2200 				/*
2201 				 * Invalidate the related pmap entries, used
2202 				 * to flush portions of the real kernel's
2203 				 * pmap when the caller has removed or
2204 				 * modified existing mappings in a virtual
2205 				 * page table.
2206 				 *
2207 				 * (shared locked map version needs the
2208 				 * interlock, see vm_fault()).
2209 				 */
2210 				struct vm_map_ilock ilock;
2211 
2212 				KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2213 					    useStart + ptoa(delta) <=
2214 					    VM_MAX_USER_ADDRESS,
2215 					 ("Bad range %016jx-%016jx (%016jx)",
2216 					 useStart, useStart + ptoa(delta),
2217 					 delta));
2218 				vm_map_interlock(map, &ilock,
2219 						 useStart,
2220 						 useStart + ptoa(delta));
2221 				pmap_remove(map->pmap,
2222 					    useStart,
2223 					    useStart + ptoa(delta));
2224 				vm_map_deinterlock(map, &ilock);
2225 			} else {
2226 				vm_object_madvise(current->object.vm_object,
2227 						  pindex, delta, behav);
2228 			}
2229 
2230 			/*
2231 			 * Try to populate the page table.  Mappings governed
2232 			 * by virtual page tables cannot be pre-populated
2233 			 * without a lot of work so don't try.
2234 			 */
2235 			if (behav == MADV_WILLNEED &&
2236 			    current->maptype != VM_MAPTYPE_VPAGETABLE) {
2237 				pmap_object_init_pt(
2238 				    map->pmap,
2239 				    useStart,
2240 				    current->protection,
2241 				    current->object.vm_object,
2242 				    pindex,
2243 				    (count << PAGE_SHIFT),
2244 				    MAP_PREFAULT_MADVISE
2245 				);
2246 			}
2247 		}
2248 		vm_map_unlock_read(map);
2249 	}
2250 	vm_map_entry_release(count);
2251 	return(error);
2252 }
2253 
2254 
2255 /*
2256  * Sets the inheritance of the specified address range in the target map.
2257  * Inheritance affects how the map will be shared with child maps at the
2258  * time of vm_map_fork.
2259  */
2260 int
2261 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2262 	       vm_inherit_t new_inheritance)
2263 {
2264 	vm_map_entry_t entry;
2265 	vm_map_entry_t temp_entry;
2266 	int count;
2267 
2268 	switch (new_inheritance) {
2269 	case VM_INHERIT_NONE:
2270 	case VM_INHERIT_COPY:
2271 	case VM_INHERIT_SHARE:
2272 		break;
2273 	default:
2274 		return (KERN_INVALID_ARGUMENT);
2275 	}
2276 
2277 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2278 	vm_map_lock(map);
2279 
2280 	VM_MAP_RANGE_CHECK(map, start, end);
2281 
2282 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2283 		entry = temp_entry;
2284 		vm_map_clip_start(map, entry, start, &count);
2285 	} else
2286 		entry = temp_entry->next;
2287 
2288 	while ((entry != &map->header) && (entry->start < end)) {
2289 		vm_map_clip_end(map, entry, end, &count);
2290 
2291 		entry->inheritance = new_inheritance;
2292 
2293 		vm_map_simplify_entry(map, entry, &count);
2294 
2295 		entry = entry->next;
2296 	}
2297 	vm_map_unlock(map);
2298 	vm_map_entry_release(count);
2299 	return (KERN_SUCCESS);
2300 }
2301 
2302 /*
2303  * Implement the semantics of mlock
2304  */
2305 int
2306 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2307 	      boolean_t new_pageable)
2308 {
2309 	vm_map_entry_t entry;
2310 	vm_map_entry_t start_entry;
2311 	vm_offset_t end;
2312 	int rv = KERN_SUCCESS;
2313 	int count;
2314 
2315 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2316 	vm_map_lock(map);
2317 	VM_MAP_RANGE_CHECK(map, start, real_end);
2318 	end = real_end;
2319 
2320 	start_entry = vm_map_clip_range(map, start, end, &count,
2321 					MAP_CLIP_NO_HOLES);
2322 	if (start_entry == NULL) {
2323 		vm_map_unlock(map);
2324 		vm_map_entry_release(count);
2325 		return (KERN_INVALID_ADDRESS);
2326 	}
2327 
2328 	if (new_pageable == 0) {
2329 		entry = start_entry;
2330 		while ((entry != &map->header) && (entry->start < end)) {
2331 			vm_offset_t save_start;
2332 			vm_offset_t save_end;
2333 
2334 			/*
2335 			 * Already user wired or hard wired (trivial cases)
2336 			 */
2337 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2338 				entry = entry->next;
2339 				continue;
2340 			}
2341 			if (entry->wired_count != 0) {
2342 				entry->wired_count++;
2343 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2344 				entry = entry->next;
2345 				continue;
2346 			}
2347 
2348 			/*
2349 			 * A new wiring requires instantiation of appropriate
2350 			 * management structures and the faulting in of the
2351 			 * page.
2352 			 */
2353 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2354 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2355 				int copyflag = entry->eflags &
2356 					       MAP_ENTRY_NEEDS_COPY;
2357 				if (copyflag && ((entry->protection &
2358 						  VM_PROT_WRITE) != 0)) {
2359 					vm_map_entry_shadow(entry, 0);
2360 				} else if (entry->object.vm_object == NULL &&
2361 					   !map->system_map) {
2362 					vm_map_entry_allocate_object(entry);
2363 				}
2364 			}
2365 			entry->wired_count++;
2366 			entry->eflags |= MAP_ENTRY_USER_WIRED;
2367 
2368 			/*
2369 			 * Now fault in the area.  Note that vm_fault_wire()
2370 			 * may release the map lock temporarily, it will be
2371 			 * relocked on return.  The in-transition
2372 			 * flag protects the entries.
2373 			 */
2374 			save_start = entry->start;
2375 			save_end = entry->end;
2376 			rv = vm_fault_wire(map, entry, TRUE, 0);
2377 			if (rv) {
2378 				CLIP_CHECK_BACK(entry, save_start);
2379 				for (;;) {
2380 					KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2381 					entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2382 					entry->wired_count = 0;
2383 					if (entry->end == save_end)
2384 						break;
2385 					entry = entry->next;
2386 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2387 				}
2388 				end = save_start;	/* unwire the rest */
2389 				break;
2390 			}
2391 			/*
2392 			 * note that even though the entry might have been
2393 			 * clipped, the USER_WIRED flag we set prevents
2394 			 * duplication so we do not have to do a
2395 			 * clip check.
2396 			 */
2397 			entry = entry->next;
2398 		}
2399 
2400 		/*
2401 		 * If we failed fall through to the unwiring section to
2402 		 * unwire what we had wired so far.  'end' has already
2403 		 * been adjusted.
2404 		 */
2405 		if (rv)
2406 			new_pageable = 1;
2407 
2408 		/*
2409 		 * start_entry might have been clipped if we unlocked the
2410 		 * map and blocked.  No matter how clipped it has gotten
2411 		 * there should be a fragment that is on our start boundary.
2412 		 */
2413 		CLIP_CHECK_BACK(start_entry, start);
2414 	}
2415 
2416 	/*
2417 	 * Deal with the unwiring case.
2418 	 */
2419 	if (new_pageable) {
2420 		/*
2421 		 * This is the unwiring case.  We must first ensure that the
2422 		 * range to be unwired is really wired down.  We know there
2423 		 * are no holes.
2424 		 */
2425 		entry = start_entry;
2426 		while ((entry != &map->header) && (entry->start < end)) {
2427 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2428 				rv = KERN_INVALID_ARGUMENT;
2429 				goto done;
2430 			}
2431 			KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2432 			entry = entry->next;
2433 		}
2434 
2435 		/*
2436 		 * Now decrement the wiring count for each region. If a region
2437 		 * becomes completely unwired, unwire its physical pages and
2438 		 * mappings.
2439 		 */
2440 		/*
2441 		 * The map entries are processed in a loop, checking to
2442 		 * make sure the entry is wired and asserting it has a wired
2443 		 * count. However, another loop was inserted more-or-less in
2444 		 * the middle of the unwiring path. This loop picks up the
2445 		 * "entry" loop variable from the first loop without first
2446 		 * setting it to start_entry. Naturally, the secound loop
2447 		 * is never entered and the pages backing the entries are
2448 		 * never unwired. This can lead to a leak of wired pages.
2449 		 */
2450 		entry = start_entry;
2451 		while ((entry != &map->header) && (entry->start < end)) {
2452 			KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2453 				("expected USER_WIRED on entry %p", entry));
2454 			entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2455 			entry->wired_count--;
2456 			if (entry->wired_count == 0)
2457 				vm_fault_unwire(map, entry);
2458 			entry = entry->next;
2459 		}
2460 	}
2461 done:
2462 	vm_map_unclip_range(map, start_entry, start, real_end, &count,
2463 		MAP_CLIP_NO_HOLES);
2464 	vm_map_unlock(map);
2465 	vm_map_entry_release(count);
2466 
2467 	return (rv);
2468 }
2469 
2470 /*
2471  * Sets the pageability of the specified address range in the target map.
2472  * Regions specified as not pageable require locked-down physical
2473  * memory and physical page maps.
2474  *
2475  * The map must not be locked, but a reference must remain to the map
2476  * throughout the call.
2477  *
2478  * This function may be called via the zalloc path and must properly
2479  * reserve map entries for kernel_map.
2480  *
2481  * No requirements.
2482  */
2483 int
2484 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2485 {
2486 	vm_map_entry_t entry;
2487 	vm_map_entry_t start_entry;
2488 	vm_offset_t end;
2489 	int rv = KERN_SUCCESS;
2490 	int count;
2491 
2492 	if (kmflags & KM_KRESERVE)
2493 		count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2494 	else
2495 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2496 	vm_map_lock(map);
2497 	VM_MAP_RANGE_CHECK(map, start, real_end);
2498 	end = real_end;
2499 
2500 	start_entry = vm_map_clip_range(map, start, end, &count,
2501 					MAP_CLIP_NO_HOLES);
2502 	if (start_entry == NULL) {
2503 		vm_map_unlock(map);
2504 		rv = KERN_INVALID_ADDRESS;
2505 		goto failure;
2506 	}
2507 	if ((kmflags & KM_PAGEABLE) == 0) {
2508 		/*
2509 		 * Wiring.
2510 		 *
2511 		 * 1.  Holding the write lock, we create any shadow or zero-fill
2512 		 * objects that need to be created. Then we clip each map
2513 		 * entry to the region to be wired and increment its wiring
2514 		 * count.  We create objects before clipping the map entries
2515 		 * to avoid object proliferation.
2516 		 *
2517 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
2518 		 * fault in the pages for any newly wired area (wired_count is
2519 		 * 1).
2520 		 *
2521 		 * Downgrading to a read lock for vm_fault_wire avoids a
2522 		 * possible deadlock with another process that may have faulted
2523 		 * on one of the pages to be wired (it would mark the page busy,
2524 		 * blocking us, then in turn block on the map lock that we
2525 		 * hold).  Because of problems in the recursive lock package,
2526 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2527 		 * any actions that require the write lock must be done
2528 		 * beforehand.  Because we keep the read lock on the map, the
2529 		 * copy-on-write status of the entries we modify here cannot
2530 		 * change.
2531 		 */
2532 		entry = start_entry;
2533 		while ((entry != &map->header) && (entry->start < end)) {
2534 			/*
2535 			 * Trivial case if the entry is already wired
2536 			 */
2537 			if (entry->wired_count) {
2538 				entry->wired_count++;
2539 				entry = entry->next;
2540 				continue;
2541 			}
2542 
2543 			/*
2544 			 * The entry is being newly wired, we have to setup
2545 			 * appropriate management structures.  A shadow
2546 			 * object is required for a copy-on-write region,
2547 			 * or a normal object for a zero-fill region.  We
2548 			 * do not have to do this for entries that point to sub
2549 			 * maps because we won't hold the lock on the sub map.
2550 			 */
2551 			if (entry->maptype == VM_MAPTYPE_NORMAL ||
2552 			    entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2553 				int copyflag = entry->eflags &
2554 					       MAP_ENTRY_NEEDS_COPY;
2555 				if (copyflag && ((entry->protection &
2556 						  VM_PROT_WRITE) != 0)) {
2557 					vm_map_entry_shadow(entry, 0);
2558 				} else if (entry->object.vm_object == NULL &&
2559 					   !map->system_map) {
2560 					vm_map_entry_allocate_object(entry);
2561 				}
2562 			}
2563 
2564 			entry->wired_count++;
2565 			entry = entry->next;
2566 		}
2567 
2568 		/*
2569 		 * Pass 2.
2570 		 */
2571 
2572 		/*
2573 		 * HACK HACK HACK HACK
2574 		 *
2575 		 * vm_fault_wire() temporarily unlocks the map to avoid
2576 		 * deadlocks.  The in-transition flag from vm_map_clip_range
2577 		 * call should protect us from changes while the map is
2578 		 * unlocked.  T
2579 		 *
2580 		 * NOTE: Previously this comment stated that clipping might
2581 		 *	 still occur while the entry is unlocked, but from
2582 		 *	 what I can tell it actually cannot.
2583 		 *
2584 		 *	 It is unclear whether the CLIP_CHECK_*() calls
2585 		 *	 are still needed but we keep them in anyway.
2586 		 *
2587 		 * HACK HACK HACK HACK
2588 		 */
2589 
2590 		entry = start_entry;
2591 		while (entry != &map->header && entry->start < end) {
2592 			/*
2593 			 * If vm_fault_wire fails for any page we need to undo
2594 			 * what has been done.  We decrement the wiring count
2595 			 * for those pages which have not yet been wired (now)
2596 			 * and unwire those that have (later).
2597 			 */
2598 			vm_offset_t save_start = entry->start;
2599 			vm_offset_t save_end = entry->end;
2600 
2601 			if (entry->wired_count == 1)
2602 				rv = vm_fault_wire(map, entry, FALSE, kmflags);
2603 			if (rv) {
2604 				CLIP_CHECK_BACK(entry, save_start);
2605 				for (;;) {
2606 					KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2607 					entry->wired_count = 0;
2608 					if (entry->end == save_end)
2609 						break;
2610 					entry = entry->next;
2611 					KASSERT(entry != &map->header, ("bad entry clip during backout"));
2612 				}
2613 				end = save_start;
2614 				break;
2615 			}
2616 			CLIP_CHECK_FWD(entry, save_end);
2617 			entry = entry->next;
2618 		}
2619 
2620 		/*
2621 		 * If a failure occured undo everything by falling through
2622 		 * to the unwiring code.  'end' has already been adjusted
2623 		 * appropriately.
2624 		 */
2625 		if (rv)
2626 			kmflags |= KM_PAGEABLE;
2627 
2628 		/*
2629 		 * start_entry is still IN_TRANSITION but may have been
2630 		 * clipped since vm_fault_wire() unlocks and relocks the
2631 		 * map.  No matter how clipped it has gotten there should
2632 		 * be a fragment that is on our start boundary.
2633 		 */
2634 		CLIP_CHECK_BACK(start_entry, start);
2635 	}
2636 
2637 	if (kmflags & KM_PAGEABLE) {
2638 		/*
2639 		 * This is the unwiring case.  We must first ensure that the
2640 		 * range to be unwired is really wired down.  We know there
2641 		 * are no holes.
2642 		 */
2643 		entry = start_entry;
2644 		while ((entry != &map->header) && (entry->start < end)) {
2645 			if (entry->wired_count == 0) {
2646 				rv = KERN_INVALID_ARGUMENT;
2647 				goto done;
2648 			}
2649 			entry = entry->next;
2650 		}
2651 
2652 		/*
2653 		 * Now decrement the wiring count for each region. If a region
2654 		 * becomes completely unwired, unwire its physical pages and
2655 		 * mappings.
2656 		 */
2657 		entry = start_entry;
2658 		while ((entry != &map->header) && (entry->start < end)) {
2659 			entry->wired_count--;
2660 			if (entry->wired_count == 0)
2661 				vm_fault_unwire(map, entry);
2662 			entry = entry->next;
2663 		}
2664 	}
2665 done:
2666 	vm_map_unclip_range(map, start_entry, start, real_end,
2667 			    &count, MAP_CLIP_NO_HOLES);
2668 	vm_map_unlock(map);
2669 failure:
2670 	if (kmflags & KM_KRESERVE)
2671 		vm_map_entry_krelease(count);
2672 	else
2673 		vm_map_entry_release(count);
2674 	return (rv);
2675 }
2676 
2677 /*
2678  * Mark a newly allocated address range as wired but do not fault in
2679  * the pages.  The caller is expected to load the pages into the object.
2680  *
2681  * The map must be locked on entry and will remain locked on return.
2682  * No other requirements.
2683  */
2684 void
2685 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2686 		       int *countp)
2687 {
2688 	vm_map_entry_t scan;
2689 	vm_map_entry_t entry;
2690 
2691 	entry = vm_map_clip_range(map, addr, addr + size,
2692 				  countp, MAP_CLIP_NO_HOLES);
2693 	for (scan = entry;
2694 	     scan != &map->header && scan->start < addr + size;
2695 	     scan = scan->next) {
2696 	    KKASSERT(scan->wired_count == 0);
2697 	    scan->wired_count = 1;
2698 	}
2699 	vm_map_unclip_range(map, entry, addr, addr + size,
2700 			    countp, MAP_CLIP_NO_HOLES);
2701 }
2702 
2703 /*
2704  * Push any dirty cached pages in the address range to their pager.
2705  * If syncio is TRUE, dirty pages are written synchronously.
2706  * If invalidate is TRUE, any cached pages are freed as well.
2707  *
2708  * This routine is called by sys_msync()
2709  *
2710  * Returns an error if any part of the specified range is not mapped.
2711  *
2712  * No requirements.
2713  */
2714 int
2715 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2716 	     boolean_t syncio, boolean_t invalidate)
2717 {
2718 	vm_map_entry_t current;
2719 	vm_map_entry_t entry;
2720 	vm_size_t size;
2721 	vm_object_t object;
2722 	vm_object_t tobj;
2723 	vm_ooffset_t offset;
2724 
2725 	vm_map_lock_read(map);
2726 	VM_MAP_RANGE_CHECK(map, start, end);
2727 	if (!vm_map_lookup_entry(map, start, &entry)) {
2728 		vm_map_unlock_read(map);
2729 		return (KERN_INVALID_ADDRESS);
2730 	}
2731 	lwkt_gettoken(&map->token);
2732 
2733 	/*
2734 	 * Make a first pass to check for holes.
2735 	 */
2736 	for (current = entry; current->start < end; current = current->next) {
2737 		if (current->maptype == VM_MAPTYPE_SUBMAP) {
2738 			lwkt_reltoken(&map->token);
2739 			vm_map_unlock_read(map);
2740 			return (KERN_INVALID_ARGUMENT);
2741 		}
2742 		if (end > current->end &&
2743 		    (current->next == &map->header ||
2744 			current->end != current->next->start)) {
2745 			lwkt_reltoken(&map->token);
2746 			vm_map_unlock_read(map);
2747 			return (KERN_INVALID_ADDRESS);
2748 		}
2749 	}
2750 
2751 	if (invalidate)
2752 		pmap_remove(vm_map_pmap(map), start, end);
2753 
2754 	/*
2755 	 * Make a second pass, cleaning/uncaching pages from the indicated
2756 	 * objects as we go.
2757 	 */
2758 	for (current = entry; current->start < end; current = current->next) {
2759 		offset = current->offset + (start - current->start);
2760 		size = (end <= current->end ? end : current->end) - start;
2761 
2762 		switch(current->maptype) {
2763 		case VM_MAPTYPE_SUBMAP:
2764 		{
2765 			vm_map_t smap;
2766 			vm_map_entry_t tentry;
2767 			vm_size_t tsize;
2768 
2769 			smap = current->object.sub_map;
2770 			vm_map_lock_read(smap);
2771 			vm_map_lookup_entry(smap, offset, &tentry);
2772 			tsize = tentry->end - offset;
2773 			if (tsize < size)
2774 				size = tsize;
2775 			object = tentry->object.vm_object;
2776 			offset = tentry->offset + (offset - tentry->start);
2777 			vm_map_unlock_read(smap);
2778 			break;
2779 		}
2780 		case VM_MAPTYPE_NORMAL:
2781 		case VM_MAPTYPE_VPAGETABLE:
2782 			object = current->object.vm_object;
2783 			break;
2784 		default:
2785 			object = NULL;
2786 			break;
2787 		}
2788 
2789 		if (object)
2790 			vm_object_hold(object);
2791 
2792 		/*
2793 		 * Note that there is absolutely no sense in writing out
2794 		 * anonymous objects, so we track down the vnode object
2795 		 * to write out.
2796 		 * We invalidate (remove) all pages from the address space
2797 		 * anyway, for semantic correctness.
2798 		 *
2799 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
2800 		 * may start out with a NULL object.
2801 		 */
2802 		while (object && (tobj = object->backing_object) != NULL) {
2803 			vm_object_hold(tobj);
2804 			if (tobj == object->backing_object) {
2805 				vm_object_lock_swap();
2806 				offset += object->backing_object_offset;
2807 				vm_object_drop(object);
2808 				object = tobj;
2809 				if (object->size < OFF_TO_IDX(offset + size))
2810 					size = IDX_TO_OFF(object->size) -
2811 					       offset;
2812 				break;
2813 			}
2814 			vm_object_drop(tobj);
2815 		}
2816 		if (object && (object->type == OBJT_VNODE) &&
2817 		    (current->protection & VM_PROT_WRITE) &&
2818 		    (object->flags & OBJ_NOMSYNC) == 0) {
2819 			/*
2820 			 * Flush pages if writing is allowed, invalidate them
2821 			 * if invalidation requested.  Pages undergoing I/O
2822 			 * will be ignored by vm_object_page_remove().
2823 			 *
2824 			 * We cannot lock the vnode and then wait for paging
2825 			 * to complete without deadlocking against vm_fault.
2826 			 * Instead we simply call vm_object_page_remove() and
2827 			 * allow it to block internally on a page-by-page
2828 			 * basis when it encounters pages undergoing async
2829 			 * I/O.
2830 			 */
2831 			int flags;
2832 
2833 			/* no chain wait needed for vnode objects */
2834 			vm_object_reference_locked(object);
2835 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2836 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2837 			flags |= invalidate ? OBJPC_INVAL : 0;
2838 
2839 			/*
2840 			 * When operating on a virtual page table just
2841 			 * flush the whole object.  XXX we probably ought
2842 			 * to
2843 			 */
2844 			switch(current->maptype) {
2845 			case VM_MAPTYPE_NORMAL:
2846 				vm_object_page_clean(object,
2847 				    OFF_TO_IDX(offset),
2848 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2849 				    flags);
2850 				break;
2851 			case VM_MAPTYPE_VPAGETABLE:
2852 				vm_object_page_clean(object, 0, 0, flags);
2853 				break;
2854 			}
2855 			vn_unlock(((struct vnode *)object->handle));
2856 			vm_object_deallocate_locked(object);
2857 		}
2858 		if (object && invalidate &&
2859 		   ((object->type == OBJT_VNODE) ||
2860 		    (object->type == OBJT_DEVICE) ||
2861 		    (object->type == OBJT_MGTDEVICE))) {
2862 			int clean_only =
2863 				((object->type == OBJT_DEVICE) ||
2864 				(object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2865 			/* no chain wait needed for vnode/device objects */
2866 			vm_object_reference_locked(object);
2867 			switch(current->maptype) {
2868 			case VM_MAPTYPE_NORMAL:
2869 				vm_object_page_remove(object,
2870 				    OFF_TO_IDX(offset),
2871 				    OFF_TO_IDX(offset + size + PAGE_MASK),
2872 				    clean_only);
2873 				break;
2874 			case VM_MAPTYPE_VPAGETABLE:
2875 				vm_object_page_remove(object, 0, 0, clean_only);
2876 				break;
2877 			}
2878 			vm_object_deallocate_locked(object);
2879 		}
2880 		start += size;
2881 		if (object)
2882 			vm_object_drop(object);
2883 	}
2884 
2885 	lwkt_reltoken(&map->token);
2886 	vm_map_unlock_read(map);
2887 
2888 	return (KERN_SUCCESS);
2889 }
2890 
2891 /*
2892  * Make the region specified by this entry pageable.
2893  *
2894  * The vm_map must be exclusively locked.
2895  */
2896 static void
2897 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2898 {
2899 	entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2900 	entry->wired_count = 0;
2901 	vm_fault_unwire(map, entry);
2902 }
2903 
2904 /*
2905  * Deallocate the given entry from the target map.
2906  *
2907  * The vm_map must be exclusively locked.
2908  */
2909 static void
2910 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2911 {
2912 	vm_map_entry_unlink(map, entry);
2913 	map->size -= entry->end - entry->start;
2914 
2915 	switch(entry->maptype) {
2916 	case VM_MAPTYPE_NORMAL:
2917 	case VM_MAPTYPE_VPAGETABLE:
2918 	case VM_MAPTYPE_SUBMAP:
2919 		vm_object_deallocate(entry->object.vm_object);
2920 		break;
2921 	case VM_MAPTYPE_UKSMAP:
2922 		/* XXX TODO */
2923 		break;
2924 	default:
2925 		break;
2926 	}
2927 
2928 	vm_map_entry_dispose(map, entry, countp);
2929 }
2930 
2931 /*
2932  * Deallocates the given address range from the target map.
2933  *
2934  * The vm_map must be exclusively locked.
2935  */
2936 int
2937 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2938 {
2939 	vm_object_t object;
2940 	vm_map_entry_t entry;
2941 	vm_map_entry_t first_entry;
2942 	vm_offset_t hole_start;
2943 
2944 	ASSERT_VM_MAP_LOCKED(map);
2945 	lwkt_gettoken(&map->token);
2946 again:
2947 	/*
2948 	 * Find the start of the region, and clip it.  Set entry to point
2949 	 * at the first record containing the requested address or, if no
2950 	 * such record exists, the next record with a greater address.  The
2951 	 * loop will run from this point until a record beyond the termination
2952 	 * address is encountered.
2953 	 *
2954 	 * Adjust freehint[] for either the clip case or the extension case.
2955 	 *
2956 	 * GGG see other GGG comment.
2957 	 */
2958 	if (vm_map_lookup_entry(map, start, &first_entry)) {
2959 		entry = first_entry;
2960 		vm_map_clip_start(map, entry, start, countp);
2961 		hole_start = start;
2962 	} else {
2963 		entry = first_entry->next;
2964 		if (entry == &map->header)
2965 			hole_start = first_entry->start;
2966 		else
2967 			hole_start = first_entry->end;
2968 	}
2969 
2970 	/*
2971 	 * Step through all entries in this region
2972 	 */
2973 	while ((entry != &map->header) && (entry->start < end)) {
2974 		vm_map_entry_t next;
2975 		vm_offset_t s, e;
2976 		vm_pindex_t offidxstart, offidxend, count;
2977 
2978 		/*
2979 		 * If we hit an in-transition entry we have to sleep and
2980 		 * retry.  It's easier (and not really slower) to just retry
2981 		 * since this case occurs so rarely and the hint is already
2982 		 * pointing at the right place.  We have to reset the
2983 		 * start offset so as not to accidently delete an entry
2984 		 * another process just created in vacated space.
2985 		 */
2986 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2987 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2988 			start = entry->start;
2989 			++mycpu->gd_cnt.v_intrans_coll;
2990 			++mycpu->gd_cnt.v_intrans_wait;
2991 			vm_map_transition_wait(map, 1);
2992 			goto again;
2993 		}
2994 		vm_map_clip_end(map, entry, end, countp);
2995 
2996 		s = entry->start;
2997 		e = entry->end;
2998 		next = entry->next;
2999 
3000 		offidxstart = OFF_TO_IDX(entry->offset);
3001 		count = OFF_TO_IDX(e - s);
3002 
3003 		switch(entry->maptype) {
3004 		case VM_MAPTYPE_NORMAL:
3005 		case VM_MAPTYPE_VPAGETABLE:
3006 		case VM_MAPTYPE_SUBMAP:
3007 			object = entry->object.vm_object;
3008 			break;
3009 		default:
3010 			object = NULL;
3011 			break;
3012 		}
3013 
3014 		/*
3015 		 * Unwire before removing addresses from the pmap; otherwise,
3016 		 * unwiring will put the entries back in the pmap.
3017 		 *
3018 		 * Generally speaking, doing a bulk pmap_remove() before
3019 		 * removing the pages from the VM object is better at
3020 		 * reducing unnecessary IPIs.  The pmap code is now optimized
3021 		 * to not blindly iterate the range when pt and pd pages
3022 		 * are missing.
3023 		 */
3024 		if (entry->wired_count != 0)
3025 			vm_map_entry_unwire(map, entry);
3026 
3027 		offidxend = offidxstart + count;
3028 
3029 		if (object == &kernel_object) {
3030 			pmap_remove(map->pmap, s, e);
3031 			vm_object_hold(object);
3032 			vm_object_page_remove(object, offidxstart,
3033 					      offidxend, FALSE);
3034 			vm_object_drop(object);
3035 		} else if (object && object->type != OBJT_DEFAULT &&
3036 			   object->type != OBJT_SWAP) {
3037 			/*
3038 			 * vnode object routines cannot be chain-locked,
3039 			 * but since we aren't removing pages from the
3040 			 * object here we can use a shared hold.
3041 			 */
3042 			vm_object_hold_shared(object);
3043 			pmap_remove(map->pmap, s, e);
3044 			vm_object_drop(object);
3045 		} else if (object) {
3046 			vm_object_hold(object);
3047 			vm_object_chain_acquire(object, 0);
3048 			pmap_remove(map->pmap, s, e);
3049 
3050 			if (object != NULL &&
3051 			    object->ref_count != 1 &&
3052 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3053 			     OBJ_ONEMAPPING &&
3054 			    (object->type == OBJT_DEFAULT ||
3055 			     object->type == OBJT_SWAP)) {
3056 				/*
3057 				 * When ONEMAPPING is set we can destroy the
3058 				 * pages underlying the entry's range.
3059 				 */
3060 				vm_object_collapse(object, NULL);
3061 				vm_object_page_remove(object, offidxstart,
3062 						      offidxend, FALSE);
3063 				if (object->type == OBJT_SWAP) {
3064 					swap_pager_freespace(object,
3065 							     offidxstart,
3066 							     count);
3067 				}
3068 				if (offidxend >= object->size &&
3069 				    offidxstart < object->size) {
3070 					object->size = offidxstart;
3071 				}
3072 			}
3073 			vm_object_chain_release(object);
3074 			vm_object_drop(object);
3075 		} else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3076 			pmap_remove(map->pmap, s, e);
3077 		}
3078 
3079 		/*
3080 		 * Delete the entry (which may delete the object) only after
3081 		 * removing all pmap entries pointing to its pages.
3082 		 * (Otherwise, its page frames may be reallocated, and any
3083 		 * modify bits will be set in the wrong object!)
3084 		 */
3085 		vm_map_entry_delete(map, entry, countp);
3086 		entry = next;
3087 	}
3088 	if (entry == &map->header)
3089 		vm_map_freehint_hole(map, hole_start, entry->end - hole_start);
3090 	else
3091 		vm_map_freehint_hole(map, hole_start,
3092 				     entry->start - hole_start);
3093 
3094 	lwkt_reltoken(&map->token);
3095 
3096 	return (KERN_SUCCESS);
3097 }
3098 
3099 /*
3100  * Remove the given address range from the target map.
3101  * This is the exported form of vm_map_delete.
3102  *
3103  * No requirements.
3104  */
3105 int
3106 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3107 {
3108 	int result;
3109 	int count;
3110 
3111 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3112 	vm_map_lock(map);
3113 	VM_MAP_RANGE_CHECK(map, start, end);
3114 	result = vm_map_delete(map, start, end, &count);
3115 	vm_map_unlock(map);
3116 	vm_map_entry_release(count);
3117 
3118 	return (result);
3119 }
3120 
3121 /*
3122  * Assert that the target map allows the specified privilege on the
3123  * entire address region given.  The entire region must be allocated.
3124  *
3125  * The caller must specify whether the vm_map is already locked or not.
3126  */
3127 boolean_t
3128 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3129 			vm_prot_t protection, boolean_t have_lock)
3130 {
3131 	vm_map_entry_t entry;
3132 	vm_map_entry_t tmp_entry;
3133 	boolean_t result;
3134 
3135 	if (have_lock == FALSE)
3136 		vm_map_lock_read(map);
3137 
3138 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3139 		if (have_lock == FALSE)
3140 			vm_map_unlock_read(map);
3141 		return (FALSE);
3142 	}
3143 	entry = tmp_entry;
3144 
3145 	result = TRUE;
3146 	while (start < end) {
3147 		if (entry == &map->header) {
3148 			result = FALSE;
3149 			break;
3150 		}
3151 		/*
3152 		 * No holes allowed!
3153 		 */
3154 
3155 		if (start < entry->start) {
3156 			result = FALSE;
3157 			break;
3158 		}
3159 		/*
3160 		 * Check protection associated with entry.
3161 		 */
3162 
3163 		if ((entry->protection & protection) != protection) {
3164 			result = FALSE;
3165 			break;
3166 		}
3167 		/* go to next entry */
3168 
3169 		start = entry->end;
3170 		entry = entry->next;
3171 	}
3172 	if (have_lock == FALSE)
3173 		vm_map_unlock_read(map);
3174 	return (result);
3175 }
3176 
3177 /*
3178  * If appropriate this function shadows the original object with a new object
3179  * and moves the VM pages from the original object to the new object.
3180  * The original object will also be collapsed, if possible.
3181  *
3182  * Caller must supply entry->object.vm_object held and chain_acquired, and
3183  * should chain_release and drop the object upon return.
3184  *
3185  * We can only do this for normal memory objects with a single mapping, and
3186  * it only makes sense to do it if there are 2 or more refs on the original
3187  * object.  i.e. typically a memory object that has been extended into
3188  * multiple vm_map_entry's with non-overlapping ranges.
3189  *
3190  * This makes it easier to remove unused pages and keeps object inheritance
3191  * from being a negative impact on memory usage.
3192  *
3193  * On return the (possibly new) entry->object.vm_object will have an
3194  * additional ref on it for the caller to dispose of (usually by cloning
3195  * the vm_map_entry).  The additional ref had to be done in this routine
3196  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3197  * cleared.
3198  *
3199  * The vm_map must be locked and its token held.
3200  */
3201 static void
3202 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3203 {
3204 	/* OPTIMIZED */
3205 	vm_object_t nobject, bobject;
3206 	vm_offset_t s, e;
3207 	vm_page_t m;
3208 	vm_pindex_t offidxstart, offidxend, idx;
3209 	vm_size_t size;
3210 	vm_ooffset_t offset;
3211 	int useshadowlist;
3212 
3213 	/*
3214 	 * Optimize away object locks for vnode objects.  Important exit/exec
3215 	 * critical path.
3216 	 *
3217 	 * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3218 	 * anyway.
3219 	 */
3220 	if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3221 		vm_object_reference_quick(oobject);
3222 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3223 		return;
3224 	}
3225 
3226 #if 0
3227 	/*
3228 	 * Original object cannot be split?
3229 	 */
3230 	if (oobject->handle == NULL) {
3231 		vm_object_reference_locked_chain_held(oobject);
3232 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3233 		return;
3234 	}
3235 #endif
3236 
3237 	/*
3238 	 * Collapse original object with its backing store as an
3239 	 * optimization to reduce chain lengths when possible.
3240 	 *
3241 	 * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3242 	 * for oobject, so there's no point collapsing it.
3243 	 *
3244 	 * Then re-check whether the object can be split.
3245 	 */
3246 	vm_object_collapse(oobject, NULL);
3247 
3248 	if (oobject->ref_count <= 1 ||
3249 	    (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3250 	    (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3251 		vm_object_reference_locked_chain_held(oobject);
3252 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3253 		return;
3254 	}
3255 
3256 	/*
3257 	 * Acquire the chain lock on the backing object.
3258 	 *
3259 	 * Give bobject an additional ref count for when it will be shadowed
3260 	 * by nobject.
3261 	 */
3262 	useshadowlist = 0;
3263 	if ((bobject = oobject->backing_object) != NULL) {
3264 		if (bobject->type != OBJT_VNODE) {
3265 			useshadowlist = 1;
3266 			vm_object_hold(bobject);
3267 			vm_object_chain_wait(bobject, 0);
3268 			/* ref for shadowing below */
3269 			vm_object_reference_locked(bobject);
3270 			vm_object_chain_acquire(bobject, 0);
3271 			KKASSERT(oobject->backing_object == bobject);
3272 			KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3273 		} else {
3274 			/*
3275 			 * vnodes are not placed on the shadow list but
3276 			 * they still get another ref for the backing_object
3277 			 * reference.
3278 			 */
3279 			vm_object_reference_quick(bobject);
3280 		}
3281 	}
3282 
3283 	/*
3284 	 * Calculate the object page range and allocate the new object.
3285 	 */
3286 	offset = entry->offset;
3287 	s = entry->start;
3288 	e = entry->end;
3289 
3290 	offidxstart = OFF_TO_IDX(offset);
3291 	offidxend = offidxstart + OFF_TO_IDX(e - s);
3292 	size = offidxend - offidxstart;
3293 
3294 	switch(oobject->type) {
3295 	case OBJT_DEFAULT:
3296 		nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3297 					      VM_PROT_ALL, 0);
3298 		break;
3299 	case OBJT_SWAP:
3300 		nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3301 					   VM_PROT_ALL, 0);
3302 		break;
3303 	default:
3304 		/* not reached */
3305 		nobject = NULL;
3306 		KKASSERT(0);
3307 	}
3308 
3309 	/*
3310 	 * If we could not allocate nobject just clear ONEMAPPING on
3311 	 * oobject and return.
3312 	 */
3313 	if (nobject == NULL) {
3314 		if (bobject) {
3315 			if (useshadowlist) {
3316 				vm_object_chain_release(bobject);
3317 				vm_object_deallocate(bobject);
3318 				vm_object_drop(bobject);
3319 			} else {
3320 				vm_object_deallocate(bobject);
3321 			}
3322 		}
3323 		vm_object_reference_locked_chain_held(oobject);
3324 		vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3325 		return;
3326 	}
3327 
3328 	/*
3329 	 * The new object will replace entry->object.vm_object so it needs
3330 	 * a second reference (the caller expects an additional ref).
3331 	 */
3332 	vm_object_hold(nobject);
3333 	vm_object_reference_locked(nobject);
3334 	vm_object_chain_acquire(nobject, 0);
3335 
3336 	/*
3337 	 * nobject shadows bobject (oobject already shadows bobject).
3338 	 *
3339 	 * Adding an object to bobject's shadow list requires refing bobject
3340 	 * which we did above in the useshadowlist case.
3341 	 *
3342 	 * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3343 	 *     or not.
3344 	 */
3345 	if (bobject) {
3346 		nobject->backing_object_offset =
3347 		    oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3348 		nobject->backing_object = bobject;
3349 		if (useshadowlist) {
3350 			bobject->shadow_count++;
3351 			atomic_add_int(&bobject->generation, 1);
3352 			LIST_INSERT_HEAD(&bobject->shadow_head,
3353 					 nobject, shadow_list);
3354 			vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3355 			vm_object_set_flag(nobject, OBJ_ONSHADOW);
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * Move the VM pages from oobject to nobject
3361 	 */
3362 	for (idx = 0; idx < size; idx++) {
3363 		vm_page_t m;
3364 
3365 		m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3366 					     TRUE, "vmpg");
3367 		if (m == NULL)
3368 			continue;
3369 
3370 		/*
3371 		 * We must wait for pending I/O to complete before we can
3372 		 * rename the page.
3373 		 *
3374 		 * We do not have to VM_PROT_NONE the page as mappings should
3375 		 * not be changed by this operation.
3376 		 *
3377 		 * NOTE: The act of renaming a page updates chaingen for both
3378 		 *	 objects.
3379 		 */
3380 		vm_page_rename(m, nobject, idx);
3381 		/* page automatically made dirty by rename and cache handled */
3382 		/* page remains busy */
3383 	}
3384 
3385 	if (oobject->type == OBJT_SWAP) {
3386 		vm_object_pip_add(oobject, 1);
3387 		/*
3388 		 * copy oobject pages into nobject and destroy unneeded
3389 		 * pages in shadow object.
3390 		 */
3391 		swap_pager_copy(oobject, nobject, offidxstart, 0);
3392 		vm_object_pip_wakeup(oobject);
3393 	}
3394 
3395 	/*
3396 	 * Wakeup the pages we played with.  No spl protection is needed
3397 	 * for a simple wakeup.
3398 	 */
3399 	for (idx = 0; idx < size; idx++) {
3400 		m = vm_page_lookup(nobject, idx);
3401 		if (m) {
3402 			KKASSERT(m->busy_count & PBUSY_LOCKED);
3403 			vm_page_wakeup(m);
3404 		}
3405 	}
3406 	entry->object.vm_object = nobject;
3407 	entry->offset = 0LL;
3408 
3409 	/*
3410 	 * The map is being split and nobject is going to wind up on both
3411 	 * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3412 	 * nobject.
3413 	 */
3414 	vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3415 
3416 	/*
3417 	 * Cleanup
3418 	 *
3419 	 * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3420 	 *	 related pages were moved and are no longer applicable to the
3421 	 *	 original object.
3422 	 *
3423 	 * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3424 	 *	 replaced by nobject).
3425 	 */
3426 	vm_object_chain_release(nobject);
3427 	vm_object_drop(nobject);
3428 	if (bobject && useshadowlist) {
3429 		vm_object_chain_release(bobject);
3430 		vm_object_drop(bobject);
3431 	}
3432 
3433 #if 0
3434 	if (oobject->resident_page_count) {
3435 		kprintf("oobject %p still contains %jd pages!\n",
3436 			oobject, (intmax_t)oobject->resident_page_count);
3437 		for (idx = 0; idx < size; idx++) {
3438 			vm_page_t m;
3439 
3440 			m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3441 						     TRUE, "vmpg");
3442 			if (m) {
3443 				kprintf("oobject %p idx %jd\n",
3444 					oobject,
3445 					offidxstart + idx);
3446 				vm_page_wakeup(m);
3447 			}
3448 		}
3449 	}
3450 #endif
3451 	/*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3452 	vm_object_deallocate_locked(oobject);
3453 }
3454 
3455 /*
3456  * Copies the contents of the source entry to the destination
3457  * entry.  The entries *must* be aligned properly.
3458  *
3459  * The vm_maps must be exclusively locked.
3460  * The vm_map's token must be held.
3461  *
3462  * Because the maps are locked no faults can be in progress during the
3463  * operation.
3464  */
3465 static void
3466 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3467 		  vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3468 {
3469 	vm_object_t src_object;
3470 	vm_object_t oobject;
3471 
3472 	if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3473 	    dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3474 		return;
3475 	if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3476 	    src_entry->maptype == VM_MAPTYPE_UKSMAP)
3477 		return;
3478 
3479 	if (src_entry->wired_count == 0) {
3480 		/*
3481 		 * If the source entry is marked needs_copy, it is already
3482 		 * write-protected.
3483 		 *
3484 		 * To avoid interacting with a vm_fault that might have
3485 		 * released its vm_map, we must acquire the fronting
3486 		 * object.
3487 		 */
3488 		oobject = src_entry->object.vm_object;
3489 		if (oobject) {
3490 			vm_object_hold(oobject);
3491 			vm_object_chain_acquire(oobject, 0);
3492 		}
3493 
3494 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3495 			pmap_protect(src_map->pmap,
3496 			    src_entry->start,
3497 			    src_entry->end,
3498 			    src_entry->protection & ~VM_PROT_WRITE);
3499 		}
3500 
3501 		/*
3502 		 * Make a copy of the object.
3503 		 *
3504 		 * The object must be locked prior to checking the object type
3505 		 * and for the call to vm_object_collapse() and vm_map_split().
3506 		 * We cannot use *_hold() here because the split code will
3507 		 * probably try to destroy the object.  The lock is a pool
3508 		 * token and doesn't care.
3509 		 *
3510 		 * We must bump src_map->timestamp when setting
3511 		 * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3512 		 * to retry, otherwise the concurrent fault might improperly
3513 		 * install a RW pte when its supposed to be a RO(COW) pte.
3514 		 * This race can occur because a vnode-backed fault may have
3515 		 * to temporarily release the map lock.  This was handled
3516 		 * when the caller locked the map exclusively.
3517 		 */
3518 		if (oobject) {
3519 			vm_map_split(src_entry, oobject);
3520 
3521 			src_object = src_entry->object.vm_object;
3522 			dst_entry->object.vm_object = src_object;
3523 			src_entry->eflags |= (MAP_ENTRY_COW |
3524 					      MAP_ENTRY_NEEDS_COPY);
3525 			dst_entry->eflags |= (MAP_ENTRY_COW |
3526 					      MAP_ENTRY_NEEDS_COPY);
3527 			dst_entry->offset = src_entry->offset;
3528 		} else {
3529 			dst_entry->object.vm_object = NULL;
3530 			dst_entry->offset = 0;
3531 		}
3532 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3533 			  dst_entry->end - dst_entry->start,
3534 			  src_entry->start);
3535 		if (oobject) {
3536 			vm_object_chain_release(oobject);
3537 			vm_object_drop(oobject);
3538 		}
3539 	} else {
3540 		/*
3541 		 * Of course, wired down pages can't be set copy-on-write.
3542 		 * Cause wired pages to be copied into the new map by
3543 		 * simulating faults (the new pages are pageable)
3544 		 */
3545 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3546 	}
3547 }
3548 
3549 /*
3550  * vmspace_fork:
3551  * Create a new process vmspace structure and vm_map
3552  * based on those of an existing process.  The new map
3553  * is based on the old map, according to the inheritance
3554  * values on the regions in that map.
3555  *
3556  * The source map must not be locked.
3557  * No requirements.
3558  */
3559 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3560 			  vm_map_entry_t old_entry, int *countp);
3561 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3562 			  vm_map_entry_t old_entry, int *countp);
3563 
3564 struct vmspace *
3565 vmspace_fork(struct vmspace *vm1)
3566 {
3567 	struct vmspace *vm2;
3568 	vm_map_t old_map = &vm1->vm_map;
3569 	vm_map_t new_map;
3570 	vm_map_entry_t old_entry;
3571 	int count;
3572 
3573 	lwkt_gettoken(&vm1->vm_map.token);
3574 	vm_map_lock(old_map);
3575 
3576 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3577 	lwkt_gettoken(&vm2->vm_map.token);
3578 
3579 	/*
3580 	 * We must bump the timestamp to force any concurrent fault
3581 	 * to retry.
3582 	 */
3583 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3584 	      (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3585 	new_map = &vm2->vm_map;	/* XXX */
3586 	new_map->timestamp = 1;
3587 
3588 	vm_map_lock(new_map);
3589 
3590 	count = 0;
3591 	old_entry = old_map->header.next;
3592 	while (old_entry != &old_map->header) {
3593 		++count;
3594 		old_entry = old_entry->next;
3595 	}
3596 
3597 	count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3598 
3599 	old_entry = old_map->header.next;
3600 	while (old_entry != &old_map->header) {
3601 		switch(old_entry->maptype) {
3602 		case VM_MAPTYPE_SUBMAP:
3603 			panic("vm_map_fork: encountered a submap");
3604 			break;
3605 		case VM_MAPTYPE_UKSMAP:
3606 			vmspace_fork_uksmap_entry(old_map, new_map,
3607 						  old_entry, &count);
3608 			break;
3609 		case VM_MAPTYPE_NORMAL:
3610 		case VM_MAPTYPE_VPAGETABLE:
3611 			vmspace_fork_normal_entry(old_map, new_map,
3612 						  old_entry, &count);
3613 			break;
3614 		}
3615 		old_entry = old_entry->next;
3616 	}
3617 
3618 	new_map->size = old_map->size;
3619 	vm_map_unlock(old_map);
3620 	vm_map_unlock(new_map);
3621 	vm_map_entry_release(count);
3622 
3623 	lwkt_reltoken(&vm2->vm_map.token);
3624 	lwkt_reltoken(&vm1->vm_map.token);
3625 
3626 	return (vm2);
3627 }
3628 
3629 static
3630 void
3631 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3632 			  vm_map_entry_t old_entry, int *countp)
3633 {
3634 	vm_map_entry_t new_entry;
3635 	vm_object_t object;
3636 
3637 	switch (old_entry->inheritance) {
3638 	case VM_INHERIT_NONE:
3639 		break;
3640 	case VM_INHERIT_SHARE:
3641 		/*
3642 		 * Clone the entry, creating the shared object if
3643 		 * necessary.
3644 		 */
3645 		if (old_entry->object.vm_object == NULL)
3646 			vm_map_entry_allocate_object(old_entry);
3647 
3648 		if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3649 			/*
3650 			 * Shadow a map_entry which needs a copy,
3651 			 * replacing its object with a new object
3652 			 * that points to the old one.  Ask the
3653 			 * shadow code to automatically add an
3654 			 * additional ref.  We can't do it afterwords
3655 			 * because we might race a collapse.  The call
3656 			 * to vm_map_entry_shadow() will also clear
3657 			 * OBJ_ONEMAPPING.
3658 			 */
3659 			vm_map_entry_shadow(old_entry, 1);
3660 		} else if (old_entry->object.vm_object) {
3661 			/*
3662 			 * We will make a shared copy of the object,
3663 			 * and must clear OBJ_ONEMAPPING.
3664 			 *
3665 			 * Optimize vnode objects.  OBJ_ONEMAPPING
3666 			 * is non-applicable but clear it anyway,
3667 			 * and its terminal so we don't have to deal
3668 			 * with chains.  Reduces SMP conflicts.
3669 			 *
3670 			 * XXX assert that object.vm_object != NULL
3671 			 *     since we allocate it above.
3672 			 */
3673 			object = old_entry->object.vm_object;
3674 			if (object->type == OBJT_VNODE) {
3675 				vm_object_reference_quick(object);
3676 				vm_object_clear_flag(object,
3677 						     OBJ_ONEMAPPING);
3678 			} else {
3679 				vm_object_hold(object);
3680 				vm_object_chain_wait(object, 0);
3681 				vm_object_reference_locked(object);
3682 				vm_object_clear_flag(object,
3683 						     OBJ_ONEMAPPING);
3684 				vm_object_drop(object);
3685 			}
3686 		}
3687 
3688 		/*
3689 		 * Clone the entry.  We've already bumped the ref on
3690 		 * any vm_object.
3691 		 */
3692 		new_entry = vm_map_entry_create(new_map, countp);
3693 		*new_entry = *old_entry;
3694 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3695 		new_entry->wired_count = 0;
3696 
3697 		/*
3698 		 * Insert the entry into the new map -- we know we're
3699 		 * inserting at the end of the new map.
3700 		 */
3701 		vm_map_entry_link(new_map, new_map->header.prev,
3702 				  new_entry);
3703 
3704 		/*
3705 		 * Update the physical map
3706 		 */
3707 		pmap_copy(new_map->pmap, old_map->pmap,
3708 			  new_entry->start,
3709 			  (old_entry->end - old_entry->start),
3710 			  old_entry->start);
3711 		break;
3712 	case VM_INHERIT_COPY:
3713 		/*
3714 		 * Clone the entry and link into the map.
3715 		 */
3716 		new_entry = vm_map_entry_create(new_map, countp);
3717 		*new_entry = *old_entry;
3718 		new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3719 		new_entry->wired_count = 0;
3720 		new_entry->object.vm_object = NULL;
3721 		vm_map_entry_link(new_map, new_map->header.prev,
3722 				  new_entry);
3723 		vm_map_copy_entry(old_map, new_map, old_entry,
3724 				  new_entry);
3725 		break;
3726 	}
3727 }
3728 
3729 /*
3730  * When forking user-kernel shared maps, the map might change in the
3731  * child so do not try to copy the underlying pmap entries.
3732  */
3733 static
3734 void
3735 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3736 			  vm_map_entry_t old_entry, int *countp)
3737 {
3738 	vm_map_entry_t new_entry;
3739 
3740 	new_entry = vm_map_entry_create(new_map, countp);
3741 	*new_entry = *old_entry;
3742 	new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3743 	new_entry->wired_count = 0;
3744 	vm_map_entry_link(new_map, new_map->header.prev,
3745 			  new_entry);
3746 }
3747 
3748 /*
3749  * Create an auto-grow stack entry
3750  *
3751  * No requirements.
3752  */
3753 int
3754 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3755 	      int flags, vm_prot_t prot, vm_prot_t max, int cow)
3756 {
3757 	vm_map_entry_t	prev_entry;
3758 	vm_map_entry_t	new_stack_entry;
3759 	vm_size_t	init_ssize;
3760 	int		rv;
3761 	int		count;
3762 	vm_offset_t	tmpaddr;
3763 
3764 	cow |= MAP_IS_STACK;
3765 
3766 	if (max_ssize < sgrowsiz)
3767 		init_ssize = max_ssize;
3768 	else
3769 		init_ssize = sgrowsiz;
3770 
3771 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3772 	vm_map_lock(map);
3773 
3774 	/*
3775 	 * Find space for the mapping
3776 	 */
3777 	if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3778 		if (vm_map_findspace(map, addrbos, max_ssize, 1,
3779 				     flags, &tmpaddr)) {
3780 			vm_map_unlock(map);
3781 			vm_map_entry_release(count);
3782 			return (KERN_NO_SPACE);
3783 		}
3784 		addrbos = tmpaddr;
3785 	}
3786 
3787 	/* If addr is already mapped, no go */
3788 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3789 		vm_map_unlock(map);
3790 		vm_map_entry_release(count);
3791 		return (KERN_NO_SPACE);
3792 	}
3793 
3794 #if 0
3795 	/* XXX already handled by kern_mmap() */
3796 	/* If we would blow our VMEM resource limit, no go */
3797 	if (map->size + init_ssize >
3798 	    curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3799 		vm_map_unlock(map);
3800 		vm_map_entry_release(count);
3801 		return (KERN_NO_SPACE);
3802 	}
3803 #endif
3804 
3805 	/*
3806 	 * If we can't accomodate max_ssize in the current mapping,
3807 	 * no go.  However, we need to be aware that subsequent user
3808 	 * mappings might map into the space we have reserved for
3809 	 * stack, and currently this space is not protected.
3810 	 *
3811 	 * Hopefully we will at least detect this condition
3812 	 * when we try to grow the stack.
3813 	 */
3814 	if ((prev_entry->next != &map->header) &&
3815 	    (prev_entry->next->start < addrbos + max_ssize)) {
3816 		vm_map_unlock(map);
3817 		vm_map_entry_release(count);
3818 		return (KERN_NO_SPACE);
3819 	}
3820 
3821 	/*
3822 	 * We initially map a stack of only init_ssize.  We will
3823 	 * grow as needed later.  Since this is to be a grow
3824 	 * down stack, we map at the top of the range.
3825 	 *
3826 	 * Note: we would normally expect prot and max to be
3827 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
3828 	 * eliminate these as input parameters, and just
3829 	 * pass these values here in the insert call.
3830 	 */
3831 	rv = vm_map_insert(map, &count, NULL, NULL,
3832 			   0, addrbos + max_ssize - init_ssize,
3833 	                   addrbos + max_ssize,
3834 			   VM_MAPTYPE_NORMAL,
3835 			   VM_SUBSYS_STACK, prot, max, cow);
3836 
3837 	/* Now set the avail_ssize amount */
3838 	if (rv == KERN_SUCCESS) {
3839 		if (prev_entry != &map->header)
3840 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3841 		new_stack_entry = prev_entry->next;
3842 		if (new_stack_entry->end   != addrbos + max_ssize ||
3843 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
3844 			panic ("Bad entry start/end for new stack entry");
3845 		else
3846 			new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3847 	}
3848 
3849 	vm_map_unlock(map);
3850 	vm_map_entry_release(count);
3851 	return (rv);
3852 }
3853 
3854 /*
3855  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3856  * desired address is already mapped, or if we successfully grow
3857  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3858  * stack range (this is strange, but preserves compatibility with
3859  * the grow function in vm_machdep.c).
3860  *
3861  * No requirements.
3862  */
3863 int
3864 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3865 {
3866 	vm_map_entry_t prev_entry;
3867 	vm_map_entry_t stack_entry;
3868 	vm_map_entry_t new_stack_entry;
3869 	struct vmspace *vm;
3870 	struct lwp *lp;
3871 	struct proc *p;
3872 	vm_offset_t    end;
3873 	int grow_amount;
3874 	int rv = KERN_SUCCESS;
3875 	int is_procstack;
3876 	int use_read_lock = 1;
3877 	int count;
3878 
3879 	/*
3880 	 * Find the vm
3881 	 */
3882 	lp = curthread->td_lwp;
3883 	p = curthread->td_proc;
3884 	KKASSERT(lp != NULL);
3885 	vm = lp->lwp_vmspace;
3886 
3887 	/*
3888 	 * Growstack is only allowed on the current process.  We disallow
3889 	 * other use cases, e.g. trying to access memory via procfs that
3890 	 * the stack hasn't grown into.
3891 	 */
3892 	if (map != &vm->vm_map) {
3893 		return KERN_FAILURE;
3894 	}
3895 
3896 	count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3897 Retry:
3898 	if (use_read_lock)
3899 		vm_map_lock_read(map);
3900 	else
3901 		vm_map_lock(map);
3902 
3903 	/* If addr is already in the entry range, no need to grow.*/
3904 	if (vm_map_lookup_entry(map, addr, &prev_entry))
3905 		goto done;
3906 
3907 	if ((stack_entry = prev_entry->next) == &map->header)
3908 		goto done;
3909 	if (prev_entry == &map->header)
3910 		end = stack_entry->start - stack_entry->aux.avail_ssize;
3911 	else
3912 		end = prev_entry->end;
3913 
3914 	/*
3915 	 * This next test mimics the old grow function in vm_machdep.c.
3916 	 * It really doesn't quite make sense, but we do it anyway
3917 	 * for compatibility.
3918 	 *
3919 	 * If not growable stack, return success.  This signals the
3920 	 * caller to proceed as he would normally with normal vm.
3921 	 */
3922 	if (stack_entry->aux.avail_ssize < 1 ||
3923 	    addr >= stack_entry->start ||
3924 	    addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3925 		goto done;
3926 	}
3927 
3928 	/* Find the minimum grow amount */
3929 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3930 	if (grow_amount > stack_entry->aux.avail_ssize) {
3931 		rv = KERN_NO_SPACE;
3932 		goto done;
3933 	}
3934 
3935 	/*
3936 	 * If there is no longer enough space between the entries
3937 	 * nogo, and adjust the available space.  Note: this
3938 	 * should only happen if the user has mapped into the
3939 	 * stack area after the stack was created, and is
3940 	 * probably an error.
3941 	 *
3942 	 * This also effectively destroys any guard page the user
3943 	 * might have intended by limiting the stack size.
3944 	 */
3945 	if (grow_amount > stack_entry->start - end) {
3946 		if (use_read_lock && vm_map_lock_upgrade(map)) {
3947 			/* lost lock */
3948 			use_read_lock = 0;
3949 			goto Retry;
3950 		}
3951 		use_read_lock = 0;
3952 		stack_entry->aux.avail_ssize = stack_entry->start - end;
3953 		rv = KERN_NO_SPACE;
3954 		goto done;
3955 	}
3956 
3957 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3958 
3959 	/* If this is the main process stack, see if we're over the
3960 	 * stack limit.
3961 	 */
3962 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3963 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3964 		rv = KERN_NO_SPACE;
3965 		goto done;
3966 	}
3967 
3968 	/* Round up the grow amount modulo SGROWSIZ */
3969 	grow_amount = roundup (grow_amount, sgrowsiz);
3970 	if (grow_amount > stack_entry->aux.avail_ssize) {
3971 		grow_amount = stack_entry->aux.avail_ssize;
3972 	}
3973 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3974 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3975 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3976 		              ctob(vm->vm_ssize);
3977 	}
3978 
3979 	/* If we would blow our VMEM resource limit, no go */
3980 	if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3981 		rv = KERN_NO_SPACE;
3982 		goto done;
3983 	}
3984 
3985 	if (use_read_lock && vm_map_lock_upgrade(map)) {
3986 		/* lost lock */
3987 		use_read_lock = 0;
3988 		goto Retry;
3989 	}
3990 	use_read_lock = 0;
3991 
3992 	/* Get the preliminary new entry start value */
3993 	addr = stack_entry->start - grow_amount;
3994 
3995 	/* If this puts us into the previous entry, cut back our growth
3996 	 * to the available space.  Also, see the note above.
3997 	 */
3998 	if (addr < end) {
3999 		stack_entry->aux.avail_ssize = stack_entry->start - end;
4000 		addr = end;
4001 	}
4002 
4003 	rv = vm_map_insert(map, &count, NULL, NULL,
4004 			   0, addr, stack_entry->start,
4005 			   VM_MAPTYPE_NORMAL,
4006 			   VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4007 
4008 	/* Adjust the available stack space by the amount we grew. */
4009 	if (rv == KERN_SUCCESS) {
4010 		if (prev_entry != &map->header)
4011 			vm_map_clip_end(map, prev_entry, addr, &count);
4012 		new_stack_entry = prev_entry->next;
4013 		if (new_stack_entry->end   != stack_entry->start  ||
4014 		    new_stack_entry->start != addr)
4015 			panic ("Bad stack grow start/end in new stack entry");
4016 		else {
4017 			new_stack_entry->aux.avail_ssize =
4018 				stack_entry->aux.avail_ssize -
4019 				(new_stack_entry->end - new_stack_entry->start);
4020 			if (is_procstack)
4021 				vm->vm_ssize += btoc(new_stack_entry->end -
4022 						     new_stack_entry->start);
4023 		}
4024 
4025 		if (map->flags & MAP_WIREFUTURE)
4026 			vm_map_unwire(map, new_stack_entry->start,
4027 				      new_stack_entry->end, FALSE);
4028 	}
4029 
4030 done:
4031 	if (use_read_lock)
4032 		vm_map_unlock_read(map);
4033 	else
4034 		vm_map_unlock(map);
4035 	vm_map_entry_release(count);
4036 	return (rv);
4037 }
4038 
4039 /*
4040  * Unshare the specified VM space for exec.  If other processes are
4041  * mapped to it, then create a new one.  The new vmspace is null.
4042  *
4043  * No requirements.
4044  */
4045 void
4046 vmspace_exec(struct proc *p, struct vmspace *vmcopy)
4047 {
4048 	struct vmspace *oldvmspace = p->p_vmspace;
4049 	struct vmspace *newvmspace;
4050 	vm_map_t map = &p->p_vmspace->vm_map;
4051 
4052 	/*
4053 	 * If we are execing a resident vmspace we fork it, otherwise
4054 	 * we create a new vmspace.  Note that exitingcnt is not
4055 	 * copied to the new vmspace.
4056 	 */
4057 	lwkt_gettoken(&oldvmspace->vm_map.token);
4058 	if (vmcopy)  {
4059 		newvmspace = vmspace_fork(vmcopy);
4060 		lwkt_gettoken(&newvmspace->vm_map.token);
4061 	} else {
4062 		newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
4063 		lwkt_gettoken(&newvmspace->vm_map.token);
4064 		bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4065 		      (caddr_t)&oldvmspace->vm_endcopy -
4066 		       (caddr_t)&oldvmspace->vm_startcopy);
4067 	}
4068 
4069 	/*
4070 	 * Finish initializing the vmspace before assigning it
4071 	 * to the process.  The vmspace will become the current vmspace
4072 	 * if p == curproc.
4073 	 */
4074 	pmap_pinit2(vmspace_pmap(newvmspace));
4075 	pmap_replacevm(p, newvmspace, 0);
4076 	lwkt_reltoken(&newvmspace->vm_map.token);
4077 	lwkt_reltoken(&oldvmspace->vm_map.token);
4078 	vmspace_rel(oldvmspace);
4079 }
4080 
4081 /*
4082  * Unshare the specified VM space for forcing COW.  This
4083  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4084  */
4085 void
4086 vmspace_unshare(struct proc *p)
4087 {
4088 	struct vmspace *oldvmspace = p->p_vmspace;
4089 	struct vmspace *newvmspace;
4090 
4091 	lwkt_gettoken(&oldvmspace->vm_map.token);
4092 	if (vmspace_getrefs(oldvmspace) == 1) {
4093 		lwkt_reltoken(&oldvmspace->vm_map.token);
4094 		return;
4095 	}
4096 	newvmspace = vmspace_fork(oldvmspace);
4097 	lwkt_gettoken(&newvmspace->vm_map.token);
4098 	pmap_pinit2(vmspace_pmap(newvmspace));
4099 	pmap_replacevm(p, newvmspace, 0);
4100 	lwkt_reltoken(&newvmspace->vm_map.token);
4101 	lwkt_reltoken(&oldvmspace->vm_map.token);
4102 	vmspace_rel(oldvmspace);
4103 }
4104 
4105 /*
4106  * vm_map_hint: return the beginning of the best area suitable for
4107  * creating a new mapping with "prot" protection.
4108  *
4109  * No requirements.
4110  */
4111 vm_offset_t
4112 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4113 {
4114 	struct vmspace *vms = p->p_vmspace;
4115 
4116 	if (!randomize_mmap || addr != 0) {
4117 		/*
4118 		 * Set a reasonable start point for the hint if it was
4119 		 * not specified or if it falls within the heap space.
4120 		 * Hinted mmap()s do not allocate out of the heap space.
4121 		 */
4122 		if (addr == 0 ||
4123 		    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4124 		     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
4125 			addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
4126 		}
4127 
4128 		return addr;
4129 	}
4130 	addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
4131 	addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
4132 
4133 	return (round_page(addr));
4134 }
4135 
4136 /*
4137  * Finds the VM object, offset, and protection for a given virtual address
4138  * in the specified map, assuming a page fault of the type specified.
4139  *
4140  * Leaves the map in question locked for read; return values are guaranteed
4141  * until a vm_map_lookup_done call is performed.  Note that the map argument
4142  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4143  *
4144  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4145  * that fast.
4146  *
4147  * If a lookup is requested with "write protection" specified, the map may
4148  * be changed to perform virtual copying operations, although the data
4149  * referenced will remain the same.
4150  *
4151  * No requirements.
4152  */
4153 int
4154 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4155 	      vm_offset_t vaddr,
4156 	      vm_prot_t fault_typea,
4157 	      vm_map_entry_t *out_entry,	/* OUT */
4158 	      vm_object_t *object,		/* OUT */
4159 	      vm_pindex_t *pindex,		/* OUT */
4160 	      vm_prot_t *out_prot,		/* OUT */
4161 	      int *wflags)			/* OUT */
4162 {
4163 	vm_map_entry_t entry;
4164 	vm_map_t map = *var_map;
4165 	vm_prot_t prot;
4166 	vm_prot_t fault_type = fault_typea;
4167 	int use_read_lock = 1;
4168 	int rv = KERN_SUCCESS;
4169 	int count;
4170 	thread_t td = curthread;
4171 
4172 	/*
4173 	 * vm_map_entry_reserve() implements an important mitigation
4174 	 * against mmap() span running the kernel out of vm_map_entry
4175 	 * structures, but it can also cause an infinite call recursion.
4176 	 * Use td_nest_count to prevent an infinite recursion (allows
4177 	 * the vm_map code to dig into the pcpu vm_map_entry reserve).
4178 	 */
4179 	count = 0;
4180 	if (td->td_nest_count == 0) {
4181 		++td->td_nest_count;
4182 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4183 		--td->td_nest_count;
4184 	}
4185 RetryLookup:
4186 	if (use_read_lock)
4187 		vm_map_lock_read(map);
4188 	else
4189 		vm_map_lock(map);
4190 
4191 	/*
4192 	 * Always do a full lookup.  The hint doesn't get us much anymore
4193 	 * now that the map is RB'd.
4194 	 */
4195 	cpu_ccfence();
4196 	*out_entry = &map->header;
4197 	*object = NULL;
4198 
4199 	{
4200 		vm_map_entry_t tmp_entry;
4201 
4202 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4203 			rv = KERN_INVALID_ADDRESS;
4204 			goto done;
4205 		}
4206 		entry = tmp_entry;
4207 		*out_entry = entry;
4208 	}
4209 
4210 	/*
4211 	 * Handle submaps.
4212 	 */
4213 	if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4214 		vm_map_t old_map = map;
4215 
4216 		*var_map = map = entry->object.sub_map;
4217 		if (use_read_lock)
4218 			vm_map_unlock_read(old_map);
4219 		else
4220 			vm_map_unlock(old_map);
4221 		use_read_lock = 1;
4222 		goto RetryLookup;
4223 	}
4224 
4225 	/*
4226 	 * Check whether this task is allowed to have this page.
4227 	 * Note the special case for MAP_ENTRY_COW pages with an override.
4228 	 * This is to implement a forced COW for debuggers.
4229 	 */
4230 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
4231 		prot = entry->max_protection;
4232 	else
4233 		prot = entry->protection;
4234 
4235 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4236 	if ((fault_type & prot) != fault_type) {
4237 		rv = KERN_PROTECTION_FAILURE;
4238 		goto done;
4239 	}
4240 
4241 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4242 	    (entry->eflags & MAP_ENTRY_COW) &&
4243 	    (fault_type & VM_PROT_WRITE) &&
4244 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4245 		rv = KERN_PROTECTION_FAILURE;
4246 		goto done;
4247 	}
4248 
4249 	/*
4250 	 * If this page is not pageable, we have to get it for all possible
4251 	 * accesses.
4252 	 */
4253 	*wflags = 0;
4254 	if (entry->wired_count) {
4255 		*wflags |= FW_WIRED;
4256 		prot = fault_type = entry->protection;
4257 	}
4258 
4259 	/*
4260 	 * Virtual page tables may need to update the accessed (A) bit
4261 	 * in a page table entry.  Upgrade the fault to a write fault for
4262 	 * that case if the map will support it.  If the map does not support
4263 	 * it the page table entry simply will not be updated.
4264 	 */
4265 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4266 		if (prot & VM_PROT_WRITE)
4267 			fault_type |= VM_PROT_WRITE;
4268 	}
4269 
4270 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4271 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4272 		if ((prot & VM_PROT_WRITE) == 0)
4273 			fault_type |= VM_PROT_WRITE;
4274 	}
4275 
4276 	/*
4277 	 * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4278 	 */
4279 	if (entry->maptype != VM_MAPTYPE_NORMAL &&
4280 	    entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4281 		*object = NULL;
4282 		goto skip;
4283 	}
4284 
4285 	/*
4286 	 * If the entry was copy-on-write, we either ...
4287 	 */
4288 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4289 		/*
4290 		 * If we want to write the page, we may as well handle that
4291 		 * now since we've got the map locked.
4292 		 *
4293 		 * If we don't need to write the page, we just demote the
4294 		 * permissions allowed.
4295 		 */
4296 		if (fault_type & VM_PROT_WRITE) {
4297 			/*
4298 			 * Not allowed if TDF_NOFAULT is set as the shadowing
4299 			 * operation can deadlock against the faulting
4300 			 * function due to the copy-on-write.
4301 			 */
4302 			if (curthread->td_flags & TDF_NOFAULT) {
4303 				rv = KERN_FAILURE_NOFAULT;
4304 				goto done;
4305 			}
4306 
4307 			/*
4308 			 * Make a new object, and place it in the object
4309 			 * chain.  Note that no new references have appeared
4310 			 * -- one just moved from the map to the new
4311 			 * object.
4312 			 */
4313 			if (use_read_lock && vm_map_lock_upgrade(map)) {
4314 				/* lost lock */
4315 				use_read_lock = 0;
4316 				goto RetryLookup;
4317 			}
4318 			use_read_lock = 0;
4319 			vm_map_entry_shadow(entry, 0);
4320 			*wflags |= FW_DIDCOW;
4321 		} else {
4322 			/*
4323 			 * We're attempting to read a copy-on-write page --
4324 			 * don't allow writes.
4325 			 */
4326 			prot &= ~VM_PROT_WRITE;
4327 		}
4328 	}
4329 
4330 	/*
4331 	 * Create an object if necessary.  This code also handles
4332 	 * partitioning large entries to improve vm_fault performance.
4333 	 */
4334 	if (entry->object.vm_object == NULL && !map->system_map) {
4335 		if (use_read_lock && vm_map_lock_upgrade(map))  {
4336 			/* lost lock */
4337 			use_read_lock = 0;
4338 			goto RetryLookup;
4339 		}
4340 		use_read_lock = 0;
4341 
4342 		/*
4343 		 * Partition large entries, giving each its own VM object,
4344 		 * to improve concurrent fault performance.  This is only
4345 		 * applicable to userspace.
4346 		 */
4347 		if (map != &kernel_map &&
4348 		    entry->maptype == VM_MAPTYPE_NORMAL &&
4349 		    ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4350 		    vm_map_partition_enable) {
4351 			if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4352 				entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4353 				++mycpu->gd_cnt.v_intrans_coll;
4354 				++mycpu->gd_cnt.v_intrans_wait;
4355 				vm_map_transition_wait(map, 0);
4356 				goto RetryLookup;
4357 			}
4358 			vm_map_entry_partition(map, entry, vaddr, &count);
4359 		}
4360 		vm_map_entry_allocate_object(entry);
4361 	}
4362 
4363 	/*
4364 	 * Return the object/offset from this entry.  If the entry was
4365 	 * copy-on-write or empty, it has been fixed up.
4366 	 */
4367 	*object = entry->object.vm_object;
4368 
4369 skip:
4370 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4371 
4372 	/*
4373 	 * Return whether this is the only map sharing this data.  On
4374 	 * success we return with a read lock held on the map.  On failure
4375 	 * we return with the map unlocked.
4376 	 */
4377 	*out_prot = prot;
4378 done:
4379 	if (rv == KERN_SUCCESS) {
4380 		if (use_read_lock == 0)
4381 			vm_map_lock_downgrade(map);
4382 	} else if (use_read_lock) {
4383 		vm_map_unlock_read(map);
4384 	} else {
4385 		vm_map_unlock(map);
4386 	}
4387 	if (count > 0)
4388 		vm_map_entry_release(count);
4389 
4390 	return (rv);
4391 }
4392 
4393 /*
4394  * Releases locks acquired by a vm_map_lookup()
4395  * (according to the handle returned by that lookup).
4396  *
4397  * No other requirements.
4398  */
4399 void
4400 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4401 {
4402 	/*
4403 	 * Unlock the main-level map
4404 	 */
4405 	vm_map_unlock_read(map);
4406 	if (count)
4407 		vm_map_entry_release(count);
4408 }
4409 
4410 static void
4411 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4412 		       vm_offset_t vaddr, int *countp)
4413 {
4414 	vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4415 	vm_map_clip_start(map, entry, vaddr, countp);
4416 	vaddr += MAP_ENTRY_PARTITION_SIZE;
4417 	vm_map_clip_end(map, entry, vaddr, countp);
4418 }
4419 
4420 /*
4421  * Quick hack, needs some help to make it more SMP friendly.
4422  */
4423 void
4424 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4425 		 vm_offset_t ran_beg, vm_offset_t ran_end)
4426 {
4427 	struct vm_map_ilock *scan;
4428 
4429 	ilock->ran_beg = ran_beg;
4430 	ilock->ran_end = ran_end;
4431 	ilock->flags = 0;
4432 
4433 	spin_lock(&map->ilock_spin);
4434 restart:
4435 	for (scan = map->ilock_base; scan; scan = scan->next) {
4436 		if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4437 			scan->flags |= ILOCK_WAITING;
4438 			ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4439 			goto restart;
4440 		}
4441 	}
4442 	ilock->next = map->ilock_base;
4443 	map->ilock_base = ilock;
4444 	spin_unlock(&map->ilock_spin);
4445 }
4446 
4447 void
4448 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4449 {
4450 	struct vm_map_ilock *scan;
4451 	struct vm_map_ilock **scanp;
4452 
4453 	spin_lock(&map->ilock_spin);
4454 	scanp = &map->ilock_base;
4455 	while ((scan = *scanp) != NULL) {
4456 		if (scan == ilock) {
4457 			*scanp = ilock->next;
4458 			spin_unlock(&map->ilock_spin);
4459 			if (ilock->flags & ILOCK_WAITING)
4460 				wakeup(ilock);
4461 			return;
4462 		}
4463 		scanp = &scan->next;
4464 	}
4465 	spin_unlock(&map->ilock_spin);
4466 	panic("vm_map_deinterlock: missing ilock!");
4467 }
4468 
4469 #include "opt_ddb.h"
4470 #ifdef DDB
4471 #include <ddb/ddb.h>
4472 
4473 /*
4474  * Debugging only
4475  */
4476 DB_SHOW_COMMAND(map, vm_map_print)
4477 {
4478 	static int nlines;
4479 	/* XXX convert args. */
4480 	vm_map_t map = (vm_map_t)addr;
4481 	boolean_t full = have_addr;
4482 
4483 	vm_map_entry_t entry;
4484 
4485 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4486 	    (void *)map,
4487 	    (void *)map->pmap, map->nentries, map->timestamp);
4488 	nlines++;
4489 
4490 	if (!full && db_indent)
4491 		return;
4492 
4493 	db_indent += 2;
4494 	for (entry = map->header.next; entry != &map->header;
4495 	    entry = entry->next) {
4496 		db_iprintf("map entry %p: start=%p, end=%p\n",
4497 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4498 		nlines++;
4499 		{
4500 			static char *inheritance_name[4] =
4501 			{"share", "copy", "none", "donate_copy"};
4502 
4503 			db_iprintf(" prot=%x/%x/%s",
4504 			    entry->protection,
4505 			    entry->max_protection,
4506 			    inheritance_name[(int)(unsigned char)
4507 						entry->inheritance]);
4508 			if (entry->wired_count != 0)
4509 				db_printf(", wired");
4510 		}
4511 		switch(entry->maptype) {
4512 		case VM_MAPTYPE_SUBMAP:
4513 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4514 			db_printf(", share=%p, offset=0x%lx\n",
4515 			    (void *)entry->object.sub_map,
4516 			    (long)entry->offset);
4517 			nlines++;
4518 			if ((entry->prev == &map->header) ||
4519 			    (entry->prev->object.sub_map !=
4520 				entry->object.sub_map)) {
4521 				db_indent += 2;
4522 				vm_map_print((db_expr_t)(intptr_t)
4523 					     entry->object.sub_map,
4524 					     full, 0, NULL);
4525 				db_indent -= 2;
4526 			}
4527 			break;
4528 		case VM_MAPTYPE_NORMAL:
4529 		case VM_MAPTYPE_VPAGETABLE:
4530 			/* XXX no %qd in kernel.  Truncate entry->offset. */
4531 			db_printf(", object=%p, offset=0x%lx",
4532 			    (void *)entry->object.vm_object,
4533 			    (long)entry->offset);
4534 			if (entry->eflags & MAP_ENTRY_COW)
4535 				db_printf(", copy (%s)",
4536 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4537 			db_printf("\n");
4538 			nlines++;
4539 
4540 			if ((entry->prev == &map->header) ||
4541 			    (entry->prev->object.vm_object !=
4542 				entry->object.vm_object)) {
4543 				db_indent += 2;
4544 				vm_object_print((db_expr_t)(intptr_t)
4545 						entry->object.vm_object,
4546 						full, 0, NULL);
4547 				nlines += 4;
4548 				db_indent -= 2;
4549 			}
4550 			break;
4551 		case VM_MAPTYPE_UKSMAP:
4552 			db_printf(", uksmap=%p, offset=0x%lx",
4553 			    (void *)entry->object.uksmap,
4554 			    (long)entry->offset);
4555 			if (entry->eflags & MAP_ENTRY_COW)
4556 				db_printf(", copy (%s)",
4557 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4558 			db_printf("\n");
4559 			nlines++;
4560 			break;
4561 		default:
4562 			break;
4563 		}
4564 	}
4565 	db_indent -= 2;
4566 	if (db_indent == 0)
4567 		nlines = 0;
4568 }
4569 
4570 /*
4571  * Debugging only
4572  */
4573 DB_SHOW_COMMAND(procvm, procvm)
4574 {
4575 	struct proc *p;
4576 
4577 	if (have_addr) {
4578 		p = (struct proc *) addr;
4579 	} else {
4580 		p = curproc;
4581 	}
4582 
4583 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4584 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4585 	    (void *)vmspace_pmap(p->p_vmspace));
4586 
4587 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4588 }
4589 
4590 #endif /* DDB */
4591