xref: /dragonfly/sys/vm/vm_mmap.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1991, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * from: Utah $Hdr: vm_mmap.c 1.6 91/10/21$
39  *
40  *	@(#)vm_mmap.c	8.4 (Berkeley) 1/12/94
41  * $FreeBSD: src/sys/vm/vm_mmap.c,v 1.108.2.6 2002/07/02 20:06:19 dillon Exp $
42  * $DragonFly: src/sys/vm/vm_mmap.c,v 1.20 2004/05/13 17:40:19 dillon Exp $
43  */
44 
45 /*
46  * Mapped file (mmap) interface to VM
47  */
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/systm.h>
52 #include <sys/sysproto.h>
53 #include <sys/filedesc.h>
54 #include <sys/kern_syscall.h>
55 #include <sys/proc.h>
56 #include <sys/resource.h>
57 #include <sys/resourcevar.h>
58 #include <sys/vnode.h>
59 #include <sys/fcntl.h>
60 #include <sys/file.h>
61 #include <sys/mman.h>
62 #include <sys/conf.h>
63 #include <sys/stat.h>
64 #include <sys/vmmeter.h>
65 #include <sys/sysctl.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vm_pageout.h>
76 #include <vm/vm_extern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_kern.h>
79 
80 #include <sys/file2.h>
81 
82 static int max_proc_mmap;
83 SYSCTL_INT(_vm, OID_AUTO, max_proc_mmap, CTLFLAG_RW, &max_proc_mmap, 0, "");
84 
85 /*
86  * Set the maximum number of vm_map_entry structures per process.  Roughly
87  * speaking vm_map_entry structures are tiny, so allowing them to eat 1/100
88  * of our KVM malloc space still results in generous limits.  We want a
89  * default that is good enough to prevent the kernel running out of resources
90  * if attacked from compromised user account but generous enough such that
91  * multi-threaded processes are not unduly inconvenienced.
92  */
93 
94 static void vmmapentry_rsrc_init (void *);
95 SYSINIT(vmmersrc, SI_SUB_KVM_RSRC, SI_ORDER_FIRST, vmmapentry_rsrc_init, NULL)
96 
97 static void
98 vmmapentry_rsrc_init(void *dummy)
99 {
100     max_proc_mmap = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) /
101 			sizeof(struct vm_map_entry);
102     max_proc_mmap /= 100;
103 }
104 
105 /* ARGSUSED */
106 int
107 sbrk(struct sbrk_args *uap)
108 {
109 	/* Not yet implemented */
110 	return (EOPNOTSUPP);
111 }
112 
113 /*
114  * sstk_args(int incr)
115  */
116 /* ARGSUSED */
117 int
118 sstk(struct sstk_args *uap)
119 {
120 	/* Not yet implemented */
121 	return (EOPNOTSUPP);
122 }
123 
124 /*
125  * mmap_args(void *addr, size_t len, int prot, int flags, int fd,
126  *		long pad, off_t pos)
127  *
128  * Memory Map (mmap) system call.  Note that the file offset
129  * and address are allowed to be NOT page aligned, though if
130  * the MAP_FIXED flag it set, both must have the same remainder
131  * modulo the PAGE_SIZE (POSIX 1003.1b).  If the address is not
132  * page-aligned, the actual mapping starts at trunc_page(addr)
133  * and the return value is adjusted up by the page offset.
134  *
135  * Generally speaking, only character devices which are themselves
136  * memory-based, such as a video framebuffer, can be mmap'd.  Otherwise
137  * there would be no cache coherency between a descriptor and a VM mapping
138  * both to the same character device.
139  *
140  * Block devices can be mmap'd no matter what they represent.  Cache coherency
141  * is maintained as long as you do not write directly to the underlying
142  * character device.
143  */
144 
145 int
146 kern_mmap(caddr_t uaddr, size_t ulen, int uprot, int uflags, int fd,
147     off_t upos, void **res)
148 {
149 	struct thread *td = curthread;
150  	struct proc *p = td->td_proc;
151 	struct filedesc *fdp = p->p_fd;
152 	struct file *fp = NULL;
153 	struct vnode *vp;
154 	vm_offset_t addr;
155 	vm_size_t size, pageoff;
156 	vm_prot_t prot, maxprot;
157 	void *handle;
158 	int flags, error;
159 	int disablexworkaround;
160 	off_t pos;
161 	struct vmspace *vms = p->p_vmspace;
162 	vm_object_t obj;
163 
164 	KKASSERT(p);
165 
166 	addr = (vm_offset_t) uaddr;
167 	size = ulen;
168 	prot = uprot & VM_PROT_ALL;
169 	flags = uflags;
170 	pos = upos;
171 
172 	/* make sure mapping fits into numeric range etc */
173 	if ((ssize_t) ulen < 0 ||
174 	    ((flags & MAP_ANON) && fd != -1))
175 		return (EINVAL);
176 
177 	if (flags & MAP_STACK) {
178 		if ((fd != -1) ||
179 		    ((prot & (PROT_READ | PROT_WRITE)) != (PROT_READ | PROT_WRITE)))
180 			return (EINVAL);
181 		flags |= MAP_ANON;
182 		pos = 0;
183 	}
184 
185 	/*
186 	 * Align the file position to a page boundary,
187 	 * and save its page offset component.
188 	 */
189 	pageoff = (pos & PAGE_MASK);
190 	pos -= pageoff;
191 
192 	/* Adjust size for rounding (on both ends). */
193 	size += pageoff;			/* low end... */
194 	size = (vm_size_t) round_page(size);	/* hi end */
195 
196 	/*
197 	 * Check for illegal addresses.  Watch out for address wrap... Note
198 	 * that VM_*_ADDRESS are not constants due to casts (argh).
199 	 */
200 	if (flags & MAP_FIXED) {
201 		/*
202 		 * The specified address must have the same remainder
203 		 * as the file offset taken modulo PAGE_SIZE, so it
204 		 * should be aligned after adjustment by pageoff.
205 		 */
206 		addr -= pageoff;
207 		if (addr & PAGE_MASK)
208 			return (EINVAL);
209 		/* Address range must be all in user VM space. */
210 		if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
211 			return (EINVAL);
212 #ifndef i386
213 		if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
214 			return (EINVAL);
215 #endif
216 		if (addr + size < addr)
217 			return (EINVAL);
218 	}
219 	/*
220 	 * XXX for non-fixed mappings where no hint is provided or
221 	 * the hint would fall in the potential heap space,
222 	 * place it after the end of the largest possible heap.
223 	 *
224 	 * There should really be a pmap call to determine a reasonable
225 	 * location.
226 	 */
227 	else if (addr == 0 ||
228 	    (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
229 	     addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz)))
230 		addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
231 
232 	if (flags & MAP_ANON) {
233 		/*
234 		 * Mapping blank space is trivial.
235 		 */
236 		handle = NULL;
237 		maxprot = VM_PROT_ALL;
238 		pos = 0;
239 	} else {
240 		/*
241 		 * Mapping file, get fp for validation. Obtain vnode and make
242 		 * sure it is of appropriate type.
243 		 */
244 		if (((unsigned) fd) >= fdp->fd_nfiles ||
245 		    (fp = fdp->fd_ofiles[fd]) == NULL)
246 			return (EBADF);
247 		if (fp->f_type != DTYPE_VNODE)
248 			return (EINVAL);
249 		/*
250 		 * POSIX shared-memory objects are defined to have
251 		 * kernel persistence, and are not defined to support
252 		 * read(2)/write(2) -- or even open(2).  Thus, we can
253 		 * use MAP_ASYNC to trade on-disk coherence for speed.
254 		 * The shm_open(3) library routine turns on the FPOSIXSHM
255 		 * flag to request this behavior.
256 		 */
257 		if (fp->f_flag & FPOSIXSHM)
258 			flags |= MAP_NOSYNC;
259 		vp = (struct vnode *) fp->f_data;
260 		if (vp->v_type != VREG && vp->v_type != VCHR)
261 			return (EINVAL);
262 		if (vp->v_type == VREG) {
263 			/*
264 			 * Get the proper underlying object
265 			 */
266 			if (VOP_GETVOBJECT(vp, &obj) != 0)
267 				return (EINVAL);
268 			vp = (struct vnode*)obj->handle;
269 		}
270 
271 		/*
272 		 * don't let the descriptor disappear on us if we block
273 		 */
274 		fhold(fp);
275 
276 		/*
277 		 * XXX hack to handle use of /dev/zero to map anon memory (ala
278 		 * SunOS).
279 		 */
280 		if (vp->v_type == VCHR && iszerodev(vp->v_rdev)) {
281 			handle = NULL;
282 			maxprot = VM_PROT_ALL;
283 			flags |= MAP_ANON;
284 			pos = 0;
285 		} else {
286 			/*
287 			 * cdevs does not provide private mappings of any kind.
288 			 */
289 			/*
290 			 * However, for XIG X server to continue to work,
291 			 * we should allow the superuser to do it anyway.
292 			 * We only allow it at securelevel < 1.
293 			 * (Because the XIG X server writes directly to video
294 			 * memory via /dev/mem, it should never work at any
295 			 * other securelevel.
296 			 * XXX this will have to go
297 			 */
298 			if (securelevel >= 1)
299 				disablexworkaround = 1;
300 			else
301 				disablexworkaround = suser(td);
302 			if (vp->v_type == VCHR && disablexworkaround &&
303 			    (flags & (MAP_PRIVATE|MAP_COPY))) {
304 				error = EINVAL;
305 				goto done;
306 			}
307 			/*
308 			 * Ensure that file and memory protections are
309 			 * compatible.  Note that we only worry about
310 			 * writability if mapping is shared; in this case,
311 			 * current and max prot are dictated by the open file.
312 			 * XXX use the vnode instead?  Problem is: what
313 			 * credentials do we use for determination? What if
314 			 * proc does a setuid?
315 			 */
316 			maxprot = VM_PROT_EXECUTE;	/* ??? */
317 			if (fp->f_flag & FREAD) {
318 				maxprot |= VM_PROT_READ;
319 			} else if (prot & PROT_READ) {
320 				error = EACCES;
321 				goto done;
322 			}
323 			/*
324 			 * If we are sharing potential changes (either via
325 			 * MAP_SHARED or via the implicit sharing of character
326 			 * device mappings), and we are trying to get write
327 			 * permission although we opened it without asking
328 			 * for it, bail out.  Check for superuser, only if
329 			 * we're at securelevel < 1, to allow the XIG X server
330 			 * to continue to work.
331 			 */
332 
333 			if ((flags & MAP_SHARED) != 0 ||
334 			    (vp->v_type == VCHR && disablexworkaround)) {
335 				if ((fp->f_flag & FWRITE) != 0) {
336 					struct vattr va;
337 					if ((error = VOP_GETATTR(vp, &va, td))) {
338 						goto done;
339 					}
340 					if ((va.va_flags &
341 					    (IMMUTABLE|APPEND)) == 0) {
342 						maxprot |= VM_PROT_WRITE;
343 					} else if (prot & PROT_WRITE) {
344 						error = EPERM;
345 						goto done;
346 					}
347 				} else if ((prot & PROT_WRITE) != 0) {
348 					error = EACCES;
349 					goto done;
350 				}
351 			} else {
352 				maxprot |= VM_PROT_WRITE;
353 			}
354 			handle = (void *)vp;
355 		}
356 	}
357 
358 	/*
359 	 * Do not allow more then a certain number of vm_map_entry structures
360 	 * per process.  Scale with the number of rforks sharing the map
361 	 * to make the limit reasonable for threads.
362 	 */
363 	if (max_proc_mmap &&
364 	    vms->vm_map.nentries >= max_proc_mmap * vms->vm_refcnt) {
365 		error = ENOMEM;
366 		goto done;
367 	}
368 
369 	error = vm_mmap(&vms->vm_map, &addr, size, prot, maxprot,
370 	    flags, handle, pos);
371 	if (error == 0)
372 		*res = (void *)(addr + pageoff);
373 done:
374 	if (fp)
375 		fdrop(fp, td);
376 	return (error);
377 }
378 
379 int
380 mmap(struct mmap_args *uap)
381 {
382 	int error;
383 
384 	error = kern_mmap(uap->addr, uap->len, uap->prot, uap->flags,
385 	    uap->fd, uap->pos, &uap->sysmsg_resultp);
386 
387 	return (error);
388 }
389 
390 /*
391  * msync_args(void *addr, int len, int flags)
392  */
393 int
394 msync(struct msync_args *uap)
395 {
396 	struct proc *p = curproc;
397 	vm_offset_t addr;
398 	vm_size_t size, pageoff;
399 	int flags;
400 	vm_map_t map;
401 	int rv;
402 
403 	addr = (vm_offset_t) uap->addr;
404 	size = uap->len;
405 	flags = uap->flags;
406 
407 	pageoff = (addr & PAGE_MASK);
408 	addr -= pageoff;
409 	size += pageoff;
410 	size = (vm_size_t) round_page(size);
411 	if (addr + size < addr)
412 		return(EINVAL);
413 
414 	if ((flags & (MS_ASYNC|MS_INVALIDATE)) == (MS_ASYNC|MS_INVALIDATE))
415 		return (EINVAL);
416 
417 	map = &p->p_vmspace->vm_map;
418 
419 	/*
420 	 * XXX Gak!  If size is zero we are supposed to sync "all modified
421 	 * pages with the region containing addr".  Unfortunately, we don't
422 	 * really keep track of individual mmaps so we approximate by flushing
423 	 * the range of the map entry containing addr. This can be incorrect
424 	 * if the region splits or is coalesced with a neighbor.
425 	 */
426 	if (size == 0) {
427 		vm_map_entry_t entry;
428 
429 		vm_map_lock_read(map);
430 		rv = vm_map_lookup_entry(map, addr, &entry);
431 		vm_map_unlock_read(map);
432 		if (rv == FALSE)
433 			return (EINVAL);
434 		addr = entry->start;
435 		size = entry->end - entry->start;
436 	}
437 
438 	/*
439 	 * Clean the pages and interpret the return value.
440 	 */
441 	rv = vm_map_clean(map, addr, addr + size, (flags & MS_ASYNC) == 0,
442 	    (flags & MS_INVALIDATE) != 0);
443 
444 	switch (rv) {
445 	case KERN_SUCCESS:
446 		break;
447 	case KERN_INVALID_ADDRESS:
448 		return (EINVAL);	/* Sun returns ENOMEM? */
449 	case KERN_FAILURE:
450 		return (EIO);
451 	default:
452 		return (EINVAL);
453 	}
454 
455 	return (0);
456 }
457 
458 /*
459  * munmap_args(void *addr, size_t len)
460  */
461 int
462 munmap(struct munmap_args *uap)
463 {
464 	struct proc *p = curproc;
465 	vm_offset_t addr;
466 	vm_size_t size, pageoff;
467 	vm_map_t map;
468 
469 	addr = (vm_offset_t) uap->addr;
470 	size = uap->len;
471 
472 	pageoff = (addr & PAGE_MASK);
473 	addr -= pageoff;
474 	size += pageoff;
475 	size = (vm_size_t) round_page(size);
476 	if (addr + size < addr)
477 		return(EINVAL);
478 
479 	if (size == 0)
480 		return (0);
481 
482 	/*
483 	 * Check for illegal addresses.  Watch out for address wrap... Note
484 	 * that VM_*_ADDRESS are not constants due to casts (argh).
485 	 */
486 	if (VM_MAXUSER_ADDRESS > 0 && addr + size > VM_MAXUSER_ADDRESS)
487 		return (EINVAL);
488 #ifndef i386
489 	if (VM_MIN_ADDRESS > 0 && addr < VM_MIN_ADDRESS)
490 		return (EINVAL);
491 #endif
492 	map = &p->p_vmspace->vm_map;
493 	/*
494 	 * Make sure entire range is allocated.
495 	 */
496 	if (!vm_map_check_protection(map, addr, addr + size, VM_PROT_NONE))
497 		return (EINVAL);
498 	/* returns nothing but KERN_SUCCESS anyway */
499 	(void) vm_map_remove(map, addr, addr + size);
500 	return (0);
501 }
502 
503 #if 0
504 void
505 munmapfd(p, fd)
506 	struct proc *p;
507 	int fd;
508 {
509 	/*
510 	 * XXX should unmap any regions mapped to this file
511 	 */
512 	p->p_fd->fd_ofileflags[fd] &= ~UF_MAPPED;
513 }
514 #endif
515 
516 /*
517  * mprotect_args(const void *addr, size_t len, int prot)
518  */
519 int
520 mprotect(struct mprotect_args *uap)
521 {
522 	struct proc *p = curproc;
523 	vm_offset_t addr;
524 	vm_size_t size, pageoff;
525 	vm_prot_t prot;
526 
527 	addr = (vm_offset_t) uap->addr;
528 	size = uap->len;
529 	prot = uap->prot & VM_PROT_ALL;
530 #if defined(VM_PROT_READ_IS_EXEC)
531 	if (prot & VM_PROT_READ)
532 		prot |= VM_PROT_EXECUTE;
533 #endif
534 
535 	pageoff = (addr & PAGE_MASK);
536 	addr -= pageoff;
537 	size += pageoff;
538 	size = (vm_size_t) round_page(size);
539 	if (addr + size < addr)
540 		return(EINVAL);
541 
542 	switch (vm_map_protect(&p->p_vmspace->vm_map, addr, addr + size, prot,
543 		FALSE)) {
544 	case KERN_SUCCESS:
545 		return (0);
546 	case KERN_PROTECTION_FAILURE:
547 		return (EACCES);
548 	}
549 	return (EINVAL);
550 }
551 
552 /*
553  * minherit_args(void *addr, size_t len, int inherit)
554  */
555 int
556 minherit(struct minherit_args *uap)
557 {
558 	struct proc *p = curproc;
559 	vm_offset_t addr;
560 	vm_size_t size, pageoff;
561 	vm_inherit_t inherit;
562 
563 	addr = (vm_offset_t)uap->addr;
564 	size = uap->len;
565 	inherit = uap->inherit;
566 
567 	pageoff = (addr & PAGE_MASK);
568 	addr -= pageoff;
569 	size += pageoff;
570 	size = (vm_size_t) round_page(size);
571 	if (addr + size < addr)
572 		return(EINVAL);
573 
574 	switch (vm_map_inherit(&p->p_vmspace->vm_map, addr, addr+size,
575 	    inherit)) {
576 	case KERN_SUCCESS:
577 		return (0);
578 	case KERN_PROTECTION_FAILURE:
579 		return (EACCES);
580 	}
581 	return (EINVAL);
582 }
583 
584 /*
585  * madvise_args(void *addr, size_t len, int behav)
586  */
587 /* ARGSUSED */
588 int
589 madvise(struct madvise_args *uap)
590 {
591 	struct proc *p = curproc;
592 	vm_offset_t start, end;
593 
594 	/*
595 	 * Check for illegal behavior
596 	 */
597 	if (uap->behav < 0 || uap->behav > MADV_CORE)
598 		return (EINVAL);
599 	/*
600 	 * Check for illegal addresses.  Watch out for address wrap... Note
601 	 * that VM_*_ADDRESS are not constants due to casts (argh).
602 	 */
603 	if (VM_MAXUSER_ADDRESS > 0 &&
604 		((vm_offset_t) uap->addr + uap->len) > VM_MAXUSER_ADDRESS)
605 		return (EINVAL);
606 #ifndef i386
607 	if (VM_MIN_ADDRESS > 0 && uap->addr < VM_MIN_ADDRESS)
608 		return (EINVAL);
609 #endif
610 	if (((vm_offset_t) uap->addr + uap->len) < (vm_offset_t) uap->addr)
611 		return (EINVAL);
612 
613 	/*
614 	 * Since this routine is only advisory, we default to conservative
615 	 * behavior.
616 	 */
617 	start = trunc_page((vm_offset_t) uap->addr);
618 	end = round_page((vm_offset_t) uap->addr + uap->len);
619 
620 	if (vm_map_madvise(&p->p_vmspace->vm_map, start, end, uap->behav))
621 		return (EINVAL);
622 	return (0);
623 }
624 
625 /*
626  * mincore_args(const void *addr, size_t len, char *vec)
627  */
628 /* ARGSUSED */
629 int
630 mincore(struct mincore_args *uap)
631 {
632 	struct proc *p = curproc;
633 	vm_offset_t addr, first_addr;
634 	vm_offset_t end, cend;
635 	pmap_t pmap;
636 	vm_map_t map;
637 	char *vec;
638 	int error;
639 	int vecindex, lastvecindex;
640 	vm_map_entry_t current;
641 	vm_map_entry_t entry;
642 	int mincoreinfo;
643 	unsigned int timestamp;
644 
645 	/*
646 	 * Make sure that the addresses presented are valid for user
647 	 * mode.
648 	 */
649 	first_addr = addr = trunc_page((vm_offset_t) uap->addr);
650 	end = addr + (vm_size_t)round_page(uap->len);
651 	if (VM_MAXUSER_ADDRESS > 0 && end > VM_MAXUSER_ADDRESS)
652 		return (EINVAL);
653 	if (end < addr)
654 		return (EINVAL);
655 
656 	/*
657 	 * Address of byte vector
658 	 */
659 	vec = uap->vec;
660 
661 	map = &p->p_vmspace->vm_map;
662 	pmap = vmspace_pmap(p->p_vmspace);
663 
664 	vm_map_lock_read(map);
665 RestartScan:
666 	timestamp = map->timestamp;
667 
668 	if (!vm_map_lookup_entry(map, addr, &entry))
669 		entry = entry->next;
670 
671 	/*
672 	 * Do this on a map entry basis so that if the pages are not
673 	 * in the current processes address space, we can easily look
674 	 * up the pages elsewhere.
675 	 */
676 	lastvecindex = -1;
677 	for(current = entry;
678 		(current != &map->header) && (current->start < end);
679 		current = current->next) {
680 
681 		/*
682 		 * ignore submaps (for now) or null objects
683 		 */
684 		if ((current->eflags & MAP_ENTRY_IS_SUB_MAP) ||
685 			current->object.vm_object == NULL)
686 			continue;
687 
688 		/*
689 		 * limit this scan to the current map entry and the
690 		 * limits for the mincore call
691 		 */
692 		if (addr < current->start)
693 			addr = current->start;
694 		cend = current->end;
695 		if (cend > end)
696 			cend = end;
697 
698 		/*
699 		 * scan this entry one page at a time
700 		 */
701 		while (addr < cend) {
702 			/*
703 			 * Check pmap first, it is likely faster, also
704 			 * it can provide info as to whether we are the
705 			 * one referencing or modifying the page.
706 			 */
707 			mincoreinfo = pmap_mincore(pmap, addr);
708 			if (!mincoreinfo) {
709 				vm_pindex_t pindex;
710 				vm_ooffset_t offset;
711 				vm_page_t m;
712 				int s;
713 
714 				/*
715 				 * calculate the page index into the object
716 				 */
717 				offset = current->offset + (addr - current->start);
718 				pindex = OFF_TO_IDX(offset);
719 
720 				/*
721 				 * if the page is resident, then gather
722 				 * information about it.  spl protection is
723 				 * required to maintain the object
724 				 * association.  And XXX what if the page is
725 				 * busy?  What's the deal with that?
726 				 */
727 				s = splvm();
728 				m = vm_page_lookup(current->object.vm_object,
729 						    pindex);
730 				if (m && m->valid) {
731 					mincoreinfo = MINCORE_INCORE;
732 					if (m->dirty ||
733 						pmap_is_modified(m))
734 						mincoreinfo |= MINCORE_MODIFIED_OTHER;
735 					if ((m->flags & PG_REFERENCED) ||
736 						pmap_ts_referenced(m)) {
737 						vm_page_flag_set(m, PG_REFERENCED);
738 						mincoreinfo |= MINCORE_REFERENCED_OTHER;
739 					}
740 				}
741 				splx(s);
742 			}
743 
744 			/*
745 			 * subyte may page fault.  In case it needs to modify
746 			 * the map, we release the lock.
747 			 */
748 			vm_map_unlock_read(map);
749 
750 			/*
751 			 * calculate index into user supplied byte vector
752 			 */
753 			vecindex = OFF_TO_IDX(addr - first_addr);
754 
755 			/*
756 			 * If we have skipped map entries, we need to make sure that
757 			 * the byte vector is zeroed for those skipped entries.
758 			 */
759 			while((lastvecindex + 1) < vecindex) {
760 				error = subyte( vec + lastvecindex, 0);
761 				if (error) {
762 					return (EFAULT);
763 				}
764 				++lastvecindex;
765 			}
766 
767 			/*
768 			 * Pass the page information to the user
769 			 */
770 			error = subyte( vec + vecindex, mincoreinfo);
771 			if (error) {
772 				return (EFAULT);
773 			}
774 
775 			/*
776 			 * If the map has changed, due to the subyte, the previous
777 			 * output may be invalid.
778 			 */
779 			vm_map_lock_read(map);
780 			if (timestamp != map->timestamp)
781 				goto RestartScan;
782 
783 			lastvecindex = vecindex;
784 			addr += PAGE_SIZE;
785 		}
786 	}
787 
788 	/*
789 	 * subyte may page fault.  In case it needs to modify
790 	 * the map, we release the lock.
791 	 */
792 	vm_map_unlock_read(map);
793 
794 	/*
795 	 * Zero the last entries in the byte vector.
796 	 */
797 	vecindex = OFF_TO_IDX(end - first_addr);
798 	while((lastvecindex + 1) < vecindex) {
799 		error = subyte( vec + lastvecindex, 0);
800 		if (error) {
801 			return (EFAULT);
802 		}
803 		++lastvecindex;
804 	}
805 
806 	/*
807 	 * If the map has changed, due to the subyte, the previous
808 	 * output may be invalid.
809 	 */
810 	vm_map_lock_read(map);
811 	if (timestamp != map->timestamp)
812 		goto RestartScan;
813 	vm_map_unlock_read(map);
814 
815 	return (0);
816 }
817 
818 /*
819  * mlock_args(const void *addr, size_t len)
820  */
821 int
822 mlock(struct mlock_args *uap)
823 {
824 	vm_offset_t addr;
825 	vm_size_t size, pageoff;
826 	int error;
827 	struct proc *p = curproc;
828 
829 	addr = (vm_offset_t) uap->addr;
830 	size = uap->len;
831 
832 	pageoff = (addr & PAGE_MASK);
833 	addr -= pageoff;
834 	size += pageoff;
835 	size = (vm_size_t) round_page(size);
836 
837 	/* disable wrap around */
838 	if (addr + size < addr)
839 		return (EINVAL);
840 
841 	if (atop(size) + vmstats.v_wire_count > vm_page_max_wired)
842 		return (EAGAIN);
843 
844 #ifdef pmap_wired_count
845 	if (size + ptoa(pmap_wired_count(vm_map_pmap(&p->p_vmspace->vm_map))) >
846 	    p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur)
847 		return (ENOMEM);
848 #else
849 	error = suser_cred(p->p_ucred, 0);
850 	if (error)
851 		return (error);
852 #endif
853 
854 	error = vm_map_unwire(&p->p_vmspace->vm_map, addr, addr + size, FALSE);
855 	return (error == KERN_SUCCESS ? 0 : ENOMEM);
856 }
857 
858 /*
859  * mlockall_args(int how)
860  */
861 int
862 mlockall(struct mlockall_args *uap)
863 {
864 	return 0;
865 }
866 
867 /*
868  * munlockall_args(void)
869  */
870 int
871 munlockall(struct munlockall_args *uap)
872 {
873 	return 0;
874 }
875 
876 /*
877  * munlock_args(const void *addr, size_t len)
878  */
879 int
880 munlock(struct munlock_args *uap)
881 {
882 	struct thread *td = curthread;
883 	struct proc *p = td->td_proc;
884 	vm_offset_t addr;
885 	vm_size_t size, pageoff;
886 	int error;
887 
888 	addr = (vm_offset_t) uap->addr;
889 	size = uap->len;
890 
891 	pageoff = (addr & PAGE_MASK);
892 	addr -= pageoff;
893 	size += pageoff;
894 	size = (vm_size_t) round_page(size);
895 
896 	/* disable wrap around */
897 	if (addr + size < addr)
898 		return (EINVAL);
899 
900 #ifndef pmap_wired_count
901 	error = suser(td);
902 	if (error)
903 		return (error);
904 #endif
905 
906 	error = vm_map_unwire(&p->p_vmspace->vm_map, addr, addr + size, TRUE);
907 	return (error == KERN_SUCCESS ? 0 : ENOMEM);
908 }
909 
910 /*
911  * Internal version of mmap.
912  * Currently used by mmap, exec, and sys5 shared memory.
913  * Handle is either a vnode pointer or NULL for MAP_ANON.
914  */
915 int
916 vm_mmap(vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot,
917 	vm_prot_t maxprot, int flags,
918 	void *handle,
919 	vm_ooffset_t foff)
920 {
921 	boolean_t fitit;
922 	vm_object_t object;
923 	struct vnode *vp = NULL;
924 	objtype_t type;
925 	int rv = KERN_SUCCESS;
926 	vm_ooffset_t objsize;
927 	int docow;
928 	struct thread *td = curthread;	/* XXX */
929 	struct proc *p = td->td_proc;
930 
931 	KKASSERT(p);
932 
933 	if (size == 0)
934 		return (0);
935 
936 	objsize = size = round_page(size);
937 
938 	if (p->p_vmspace->vm_map.size + size >
939 	    p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
940 		return(ENOMEM);
941 	}
942 
943 	/*
944 	 * We currently can only deal with page aligned file offsets.
945 	 * The check is here rather than in the syscall because the
946 	 * kernel calls this function internally for other mmaping
947 	 * operations (such as in exec) and non-aligned offsets will
948 	 * cause pmap inconsistencies...so we want to be sure to
949 	 * disallow this in all cases.
950 	 */
951 	if (foff & PAGE_MASK)
952 		return (EINVAL);
953 
954 	if ((flags & MAP_FIXED) == 0) {
955 		fitit = TRUE;
956 		*addr = round_page(*addr);
957 	} else {
958 		if (*addr != trunc_page(*addr))
959 			return (EINVAL);
960 		fitit = FALSE;
961 		(void) vm_map_remove(map, *addr, *addr + size);
962 	}
963 
964 	/*
965 	 * Lookup/allocate object.
966 	 */
967 	if (flags & MAP_ANON) {
968 		type = OBJT_DEFAULT;
969 		/*
970 		 * Unnamed anonymous regions always start at 0.
971 		 */
972 		if (handle == 0)
973 			foff = 0;
974 	} else {
975 		vp = (struct vnode *) handle;
976 		if (vp->v_type == VCHR) {
977 			type = OBJT_DEVICE;
978 			handle = (void *)(intptr_t)vp->v_rdev;
979 		} else {
980 			struct vattr vat;
981 			int error;
982 
983 			error = VOP_GETATTR(vp, &vat, td);
984 			if (error)
985 				return (error);
986 			objsize = round_page(vat.va_size);
987 			type = OBJT_VNODE;
988 			/*
989 			 * if it is a regular file without any references
990 			 * we do not need to sync it.
991 			 */
992 			if (vp->v_type == VREG && vat.va_nlink == 0) {
993 				flags |= MAP_NOSYNC;
994 			}
995 		}
996 	}
997 
998 	if (handle == NULL) {
999 		object = NULL;
1000 		docow = 0;
1001 	} else {
1002 		object = vm_pager_allocate(type,
1003 			handle, objsize, prot, foff);
1004 		if (object == NULL)
1005 			return (type == OBJT_DEVICE ? EINVAL : ENOMEM);
1006 		docow = MAP_PREFAULT_PARTIAL;
1007 	}
1008 
1009 	/*
1010 	 * Force device mappings to be shared.
1011 	 */
1012 	if (type == OBJT_DEVICE || type == OBJT_PHYS) {
1013 		flags &= ~(MAP_PRIVATE|MAP_COPY);
1014 		flags |= MAP_SHARED;
1015 	}
1016 
1017 	if ((flags & (MAP_ANON|MAP_SHARED)) == 0)
1018 		docow |= MAP_COPY_ON_WRITE;
1019 	if (flags & MAP_NOSYNC)
1020 		docow |= MAP_DISABLE_SYNCER;
1021 	if (flags & MAP_NOCORE)
1022 		docow |= MAP_DISABLE_COREDUMP;
1023 
1024 #if defined(VM_PROT_READ_IS_EXEC)
1025 	if (prot & VM_PROT_READ)
1026 		prot |= VM_PROT_EXECUTE;
1027 
1028 	if (maxprot & VM_PROT_READ)
1029 		maxprot |= VM_PROT_EXECUTE;
1030 #endif
1031 
1032 	if (fitit) {
1033 		*addr = pmap_addr_hint(object, *addr, size);
1034 	}
1035 
1036 	if (flags & MAP_STACK)
1037 		rv = vm_map_stack (map, *addr, size, prot,
1038 				   maxprot, docow);
1039 	else
1040 		rv = vm_map_find(map, object, foff, addr, size, fitit,
1041 				 prot, maxprot, docow);
1042 
1043 	if (rv != KERN_SUCCESS) {
1044 		/*
1045 		 * Lose the object reference. Will destroy the
1046 		 * object if it's an unnamed anonymous mapping
1047 		 * or named anonymous without other references.
1048 		 */
1049 		vm_object_deallocate(object);
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * Shared memory is also shared with children.
1055 	 */
1056 	if (flags & (MAP_SHARED|MAP_INHERIT)) {
1057 		rv = vm_map_inherit(map, *addr, *addr + size, VM_INHERIT_SHARE);
1058 		if (rv != KERN_SUCCESS) {
1059 			(void) vm_map_remove(map, *addr, *addr + size);
1060 			goto out;
1061 		}
1062 	}
1063 out:
1064 	switch (rv) {
1065 	case KERN_SUCCESS:
1066 		return (0);
1067 	case KERN_INVALID_ADDRESS:
1068 	case KERN_NO_SPACE:
1069 		return (ENOMEM);
1070 	case KERN_PROTECTION_FAILURE:
1071 		return (EACCES);
1072 	default:
1073 		return (EINVAL);
1074 	}
1075 }
1076