xref: /dragonfly/sys/vm/vm_object.c (revision 1847e88f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.22 2005/06/02 20:57:21 swildner Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103 
104 static void	vm_object_qcollapse (vm_object_t object);
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;
134 static long vm_object_count;		/* count of all objects */
135 vm_object_t kernel_object;
136 vm_object_t kmem_object;
137 static struct vm_object kernel_object_store;
138 static struct vm_object kmem_object_store;
139 extern int vm_pageout_page_count;
140 
141 static long object_collapses;
142 static long object_bypasses;
143 static int next_index;
144 static vm_zone_t obj_zone;
145 static struct vm_zone obj_zone_store;
146 static int object_hash_rand;
147 #define VM_OBJECTS_INIT 256
148 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
149 
150 void
151 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
152 {
153 	int incr;
154 	TAILQ_INIT(&object->memq);
155 	LIST_INIT(&object->shadow_head);
156 
157 	object->type = type;
158 	object->size = size;
159 	object->ref_count = 1;
160 	object->flags = 0;
161 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
162 		vm_object_set_flag(object, OBJ_ONEMAPPING);
163 	object->paging_in_progress = 0;
164 	object->resident_page_count = 0;
165 	object->shadow_count = 0;
166 	object->pg_color = next_index;
167 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
168 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
169 	else
170 		incr = size;
171 	next_index = (next_index + incr) & PQ_L2_MASK;
172 	object->handle = NULL;
173 	object->backing_object = NULL;
174 	object->backing_object_offset = (vm_ooffset_t) 0;
175 	/*
176 	 * Try to generate a number that will spread objects out in the
177 	 * hash table.  We 'wipe' new objects across the hash in 128 page
178 	 * increments plus 1 more to offset it a little more by the time
179 	 * it wraps around.
180 	 */
181 	object->hash_rand = object_hash_rand - 129;
182 
183 	object->generation++;
184 
185 	crit_enter();
186 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
187 	vm_object_count++;
188 	object_hash_rand = object->hash_rand;
189 	crit_exit();
190 }
191 
192 /*
193  *	vm_object_init:
194  *
195  *	Initialize the VM objects module.
196  */
197 void
198 vm_object_init(void)
199 {
200 	TAILQ_INIT(&vm_object_list);
201 
202 	kernel_object = &kernel_object_store;
203 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
204 	    kernel_object);
205 
206 	kmem_object = &kmem_object_store;
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208 	    kmem_object);
209 
210 	obj_zone = &obj_zone_store;
211 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
212 		vm_objects_init, VM_OBJECTS_INIT);
213 }
214 
215 void
216 vm_object_init2(void)
217 {
218 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
219 }
220 
221 /*
222  *	vm_object_allocate:
223  *
224  *	Returns a new object with the given size.
225  */
226 
227 vm_object_t
228 vm_object_allocate(objtype_t type, vm_size_t size)
229 {
230 	vm_object_t result;
231 
232 	result = (vm_object_t) zalloc(obj_zone);
233 
234 	_vm_object_allocate(type, size, result);
235 
236 	return (result);
237 }
238 
239 
240 /*
241  *	vm_object_reference:
242  *
243  *	Gets another reference to the given object.
244  */
245 void
246 vm_object_reference(vm_object_t object)
247 {
248 	if (object == NULL)
249 		return;
250 
251 #if 0
252 	/* object can be re-referenced during final cleaning */
253 	KASSERT(!(object->flags & OBJ_DEAD),
254 	    ("vm_object_reference: attempting to reference dead obj"));
255 #endif
256 
257 	object->ref_count++;
258 	if (object->type == OBJT_VNODE) {
259 		vref(object->handle);
260 		/* XXX what if the vnode is being destroyed? */
261 #if 0
262 		while (vget((struct vnode *) object->handle,
263 		    LK_RETRY|LK_NOOBJ, curthread)) {
264 			printf("vm_object_reference: delay in getting object\n");
265 		}
266 #endif
267 	}
268 }
269 
270 void
271 vm_object_vndeallocate(vm_object_t object)
272 {
273 	struct vnode *vp = (struct vnode *) object->handle;
274 
275 	KASSERT(object->type == OBJT_VNODE,
276 	    ("vm_object_vndeallocate: not a vnode object"));
277 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
278 #ifdef INVARIANTS
279 	if (object->ref_count == 0) {
280 		vprint("vm_object_vndeallocate", vp);
281 		panic("vm_object_vndeallocate: bad object reference count");
282 	}
283 #endif
284 
285 	object->ref_count--;
286 	if (object->ref_count == 0) {
287 		vp->v_flag &= ~VTEXT;
288 		vm_object_clear_flag(object, OBJ_OPT);
289 	}
290 	vrele(vp);
291 }
292 
293 /*
294  *	vm_object_deallocate:
295  *
296  *	Release a reference to the specified object,
297  *	gained either through a vm_object_allocate
298  *	or a vm_object_reference call.  When all references
299  *	are gone, storage associated with this object
300  *	may be relinquished.
301  *
302  *	No object may be locked.
303  */
304 void
305 vm_object_deallocate(vm_object_t object)
306 {
307 	vm_object_t temp;
308 
309 	while (object != NULL) {
310 
311 		if (object->type == OBJT_VNODE) {
312 			vm_object_vndeallocate(object);
313 			return;
314 		}
315 
316 		if (object->ref_count == 0) {
317 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
318 		} else if (object->ref_count > 2) {
319 			object->ref_count--;
320 			return;
321 		}
322 
323 		/*
324 		 * Here on ref_count of one or two, which are special cases for
325 		 * objects.
326 		 */
327 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
328 			vm_object_set_flag(object, OBJ_ONEMAPPING);
329 			object->ref_count--;
330 			return;
331 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
332 			object->ref_count--;
333 			if ((object->handle == NULL) &&
334 			    (object->type == OBJT_DEFAULT ||
335 			     object->type == OBJT_SWAP)) {
336 				vm_object_t robject;
337 
338 				robject = LIST_FIRST(&object->shadow_head);
339 				KASSERT(robject != NULL,
340 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
341 					 object->ref_count,
342 					 object->shadow_count));
343 				if ((robject->handle == NULL) &&
344 				    (robject->type == OBJT_DEFAULT ||
345 				     robject->type == OBJT_SWAP)) {
346 
347 					robject->ref_count++;
348 
349 					while (
350 						robject->paging_in_progress ||
351 						object->paging_in_progress
352 					) {
353 						vm_object_pip_sleep(robject, "objde1");
354 						vm_object_pip_sleep(object, "objde2");
355 					}
356 
357 					if (robject->ref_count == 1) {
358 						robject->ref_count--;
359 						object = robject;
360 						goto doterm;
361 					}
362 
363 					object = robject;
364 					vm_object_collapse(object);
365 					continue;
366 				}
367 			}
368 
369 			return;
370 
371 		} else {
372 			object->ref_count--;
373 			if (object->ref_count != 0)
374 				return;
375 		}
376 
377 doterm:
378 
379 		temp = object->backing_object;
380 		if (temp) {
381 			LIST_REMOVE(object, shadow_list);
382 			temp->shadow_count--;
383 			if (temp->ref_count == 0)
384 				vm_object_clear_flag(temp, OBJ_OPT);
385 			temp->generation++;
386 			object->backing_object = NULL;
387 		}
388 
389 		/*
390 		 * Don't double-terminate, we could be in a termination
391 		 * recursion due to the terminate having to sync data
392 		 * to disk.
393 		 */
394 		if ((object->flags & OBJ_DEAD) == 0)
395 			vm_object_terminate(object);
396 		object = temp;
397 	}
398 }
399 
400 /*
401  *	vm_object_terminate actually destroys the specified object, freeing
402  *	up all previously used resources.
403  *
404  *	The object must be locked.
405  *	This routine may block.
406  */
407 void
408 vm_object_terminate(vm_object_t object)
409 {
410 	vm_page_t p;
411 
412 	/*
413 	 * Make sure no one uses us.
414 	 */
415 	vm_object_set_flag(object, OBJ_DEAD);
416 
417 	/*
418 	 * wait for the pageout daemon to be done with the object
419 	 */
420 	vm_object_pip_wait(object, "objtrm");
421 
422 	KASSERT(!object->paging_in_progress,
423 		("vm_object_terminate: pageout in progress"));
424 
425 	/*
426 	 * Clean and free the pages, as appropriate. All references to the
427 	 * object are gone, so we don't need to lock it.
428 	 */
429 	if (object->type == OBJT_VNODE) {
430 		struct vnode *vp;
431 
432 		/*
433 		 * Freeze optimized copies.
434 		 */
435 		vm_freeze_copyopts(object, 0, object->size);
436 
437 		/*
438 		 * Clean pages and flush buffers.
439 		 */
440 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
441 
442 		vp = (struct vnode *) object->handle;
443 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
444 	}
445 
446 	/*
447 	 * Wait for any I/O to complete, after which there had better not
448 	 * be any references left on the object.
449 	 */
450 	vm_object_pip_wait(object, "objtrm");
451 
452 	if (object->ref_count != 0)
453 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
454 
455 	/*
456 	 * Now free any remaining pages. For internal objects, this also
457 	 * removes them from paging queues. Don't free wired pages, just
458 	 * remove them from the object.
459 	 */
460 	crit_enter();
461 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
462 		if (p->busy || (p->flags & PG_BUSY))
463 			panic("vm_object_terminate: freeing busy page %p", p);
464 		if (p->wire_count == 0) {
465 			vm_page_busy(p);
466 			vm_page_free(p);
467 			mycpu->gd_cnt.v_pfree++;
468 		} else {
469 			vm_page_busy(p);
470 			vm_page_remove(p);
471 			vm_page_wakeup(p);
472 		}
473 	}
474 	crit_exit();
475 
476 	/*
477 	 * Let the pager know object is dead.
478 	 */
479 	vm_pager_deallocate(object);
480 
481 	/*
482 	 * Remove the object from the global object list.
483 	 */
484 	crit_enter();
485 	TAILQ_REMOVE(&vm_object_list, object, object_list);
486 	vm_object_count--;
487 	crit_exit();
488 
489 	wakeup(object);
490 	if (object->ref_count != 0)
491 		panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
492 
493 	/*
494 	 * Free the space for the object.
495 	 */
496 	zfree(obj_zone, object);
497 }
498 
499 /*
500  *	vm_object_page_clean
501  *
502  *	Clean all dirty pages in the specified range of object.  Leaves page
503  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
504  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
505  *	leaving the object dirty.
506  *
507  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
508  *	synchronous clustering mode implementation.
509  *
510  *	Odd semantics: if start == end, we clean everything.
511  */
512 
513 void
514 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
515     int flags)
516 {
517 	vm_page_t p, np;
518 	vm_offset_t tstart, tend;
519 	vm_pindex_t pi;
520 	struct vnode *vp;
521 	int clearobjflags;
522 	int pagerflags;
523 	int curgeneration;
524 
525 	if (object->type != OBJT_VNODE ||
526 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
527 		return;
528 
529 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
530 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
531 
532 	vp = object->handle;
533 
534 	vm_object_set_flag(object, OBJ_CLEANING);
535 
536 	/*
537 	 * Handle 'entire object' case
538 	 */
539 	tstart = start;
540 	if (end == 0) {
541 		tend = object->size;
542 	} else {
543 		tend = end;
544 	}
545 
546 	/*
547 	 * If the caller is smart and only msync()s a range he knows is
548 	 * dirty, we may be able to avoid an object scan.  This results in
549 	 * a phenominal improvement in performance.  We cannot do this
550 	 * as a matter of course because the object may be huge - e.g.
551 	 * the size might be in the gigabytes or terrabytes.
552 	 */
553 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
554 		vm_offset_t tscan;
555 		int scanlimit;
556 		int scanreset;
557 
558 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
559 		if (scanreset < 16)
560 			scanreset = 16;
561 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
562 
563 		scanlimit = scanreset;
564 		tscan = tstart;
565 
566 		/*
567 		 * spl protection is required despite the obj generation
568 		 * tracking because we cannot safely call vm_page_test_dirty()
569 		 * or avoid page field tests against an interrupt unbusy/free
570 		 * race that might occur prior to the busy check in
571 		 * vm_object_page_collect_flush().
572 		 */
573 		crit_enter();
574 		while (tscan < tend) {
575 			curgeneration = object->generation;
576 			p = vm_page_lookup(object, tscan);
577 			if (p == NULL || p->valid == 0 ||
578 			    (p->queue - p->pc) == PQ_CACHE) {
579 				if (--scanlimit == 0)
580 					break;
581 				++tscan;
582 				continue;
583 			}
584 			vm_page_test_dirty(p);
585 			if ((p->dirty & p->valid) == 0) {
586 				if (--scanlimit == 0)
587 					break;
588 				++tscan;
589 				continue;
590 			}
591 			/*
592 			 * If we have been asked to skip nosync pages and
593 			 * this is a nosync page, we can't continue.
594 			 */
595 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
596 				if (--scanlimit == 0)
597 					break;
598 				++tscan;
599 				continue;
600 			}
601 			scanlimit = scanreset;
602 
603 			/*
604 			 * This returns 0 if it was unable to busy the first
605 			 * page (i.e. had to sleep).
606 			 */
607 			tscan += vm_object_page_collect_flush(object, p,
608 						curgeneration, pagerflags);
609 		}
610 		crit_exit();
611 
612 		/*
613 		 * If everything was dirty and we flushed it successfully,
614 		 * and the requested range is not the entire object, we
615 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
616 		 * return immediately.
617 		 */
618 		if (tscan >= tend && (tstart || tend < object->size)) {
619 			vm_object_clear_flag(object, OBJ_CLEANING);
620 			return;
621 		}
622 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
623 	}
624 
625 	/*
626 	 * Generally set CLEANCHK interlock and make the page read-only so
627 	 * we can then clear the object flags.
628 	 *
629 	 * However, if this is a nosync mmap then the object is likely to
630 	 * stay dirty so do not mess with the page and do not clear the
631 	 * object flags.
632 	 *
633 	 * spl protection is required because an interrupt can remove page
634 	 * from the object.
635 	 */
636 	clearobjflags = 1;
637 
638 	crit_enter();
639 	for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
640 		vm_page_flag_set(p, PG_CLEANCHK);
641 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
642 			clearobjflags = 0;
643 		else
644 			vm_page_protect(p, VM_PROT_READ);
645 	}
646 	crit_exit();
647 
648 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
649 		struct vnode *vp;
650 
651 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
652                 if (object->type == OBJT_VNODE &&
653                     (vp = (struct vnode *)object->handle) != NULL) {
654                         if (vp->v_flag & VOBJDIRTY)
655 				vclrflags(vp, VOBJDIRTY);
656                 }
657 	}
658 
659 	/*
660 	 * spl protection is required both to avoid an interrupt unbusy/free
661 	 * race against a vm_page_lookup(), and also to ensure that the
662 	 * memq is consistent.  We do not want a busy page to be ripped out
663 	 * from under us.
664 	 */
665 	crit_enter();
666 rescan:
667 	crit_exit();
668 	crit_enter();
669 	curgeneration = object->generation;
670 
671 	for (p = TAILQ_FIRST(&object->memq); p; p = np) {
672 		int n;
673 
674 		np = TAILQ_NEXT(p, listq);
675 
676 again:
677 		pi = p->pindex;
678 		if (((p->flags & PG_CLEANCHK) == 0) ||
679 			(pi < tstart) || (pi >= tend) ||
680 			(p->valid == 0) ||
681 			((p->queue - p->pc) == PQ_CACHE)) {
682 			vm_page_flag_clear(p, PG_CLEANCHK);
683 			continue;
684 		}
685 
686 		vm_page_test_dirty(p);
687 		if ((p->dirty & p->valid) == 0) {
688 			vm_page_flag_clear(p, PG_CLEANCHK);
689 			continue;
690 		}
691 
692 		/*
693 		 * If we have been asked to skip nosync pages and this is a
694 		 * nosync page, skip it.  Note that the object flags were
695 		 * not cleared in this case so we do not have to set them.
696 		 */
697 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
698 			vm_page_flag_clear(p, PG_CLEANCHK);
699 			continue;
700 		}
701 
702 		n = vm_object_page_collect_flush(object, p,
703 			curgeneration, pagerflags);
704 		if (n == 0)
705 			goto rescan;
706 		if (object->generation != curgeneration)
707 			goto rescan;
708 
709 		/*
710 		 * Try to optimize the next page.  If we can't we pick up
711 		 * our (random) scan where we left off.
712 		 */
713 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
714 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
715 				goto again;
716 		}
717 	}
718 	crit_exit();
719 
720 #if 0
721 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
722 #endif
723 
724 	vm_object_clear_flag(object, OBJ_CLEANING);
725 	return;
726 }
727 
728 /*
729  * This routine must be called within a critical section to properly avoid
730  * an interrupt unbusy/free race that can occur prior to the busy check.
731  *
732  * Using the object generation number here to detect page ripout is not
733  * the best idea in the world. XXX
734  *
735  * NOTE: we operate under the assumption that a page found to not be busy
736  * will not be ripped out from under us by an interrupt.  XXX we should
737  * recode this to explicitly busy the pages.
738  */
739 static int
740 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
741 {
742 	int runlen;
743 	int maxf;
744 	int chkb;
745 	int maxb;
746 	int i;
747 	vm_pindex_t pi;
748 	vm_page_t maf[vm_pageout_page_count];
749 	vm_page_t mab[vm_pageout_page_count];
750 	vm_page_t ma[vm_pageout_page_count];
751 
752 	pi = p->pindex;
753 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
754 		if (object->generation != curgeneration) {
755 			return(0);
756 		}
757 	}
758 
759 	maxf = 0;
760 	for(i = 1; i < vm_pageout_page_count; i++) {
761 		vm_page_t tp;
762 
763 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
764 			if ((tp->flags & PG_BUSY) ||
765 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
766 				 (tp->flags & PG_CLEANCHK) == 0) ||
767 				(tp->busy != 0))
768 				break;
769 			if((tp->queue - tp->pc) == PQ_CACHE) {
770 				vm_page_flag_clear(tp, PG_CLEANCHK);
771 				break;
772 			}
773 			vm_page_test_dirty(tp);
774 			if ((tp->dirty & tp->valid) == 0) {
775 				vm_page_flag_clear(tp, PG_CLEANCHK);
776 				break;
777 			}
778 			maf[ i - 1 ] = tp;
779 			maxf++;
780 			continue;
781 		}
782 		break;
783 	}
784 
785 	maxb = 0;
786 	chkb = vm_pageout_page_count -  maxf;
787 	if (chkb) {
788 		for(i = 1; i < chkb;i++) {
789 			vm_page_t tp;
790 
791 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
792 				if ((tp->flags & PG_BUSY) ||
793 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
794 					 (tp->flags & PG_CLEANCHK) == 0) ||
795 					(tp->busy != 0))
796 					break;
797 				if((tp->queue - tp->pc) == PQ_CACHE) {
798 					vm_page_flag_clear(tp, PG_CLEANCHK);
799 					break;
800 				}
801 				vm_page_test_dirty(tp);
802 				if ((tp->dirty & tp->valid) == 0) {
803 					vm_page_flag_clear(tp, PG_CLEANCHK);
804 					break;
805 				}
806 				mab[ i - 1 ] = tp;
807 				maxb++;
808 				continue;
809 			}
810 			break;
811 		}
812 	}
813 
814 	for(i = 0; i < maxb; i++) {
815 		int index = (maxb - i) - 1;
816 		ma[index] = mab[i];
817 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
818 	}
819 	vm_page_flag_clear(p, PG_CLEANCHK);
820 	ma[maxb] = p;
821 	for(i = 0; i < maxf; i++) {
822 		int index = (maxb + i) + 1;
823 		ma[index] = maf[i];
824 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
825 	}
826 	runlen = maxb + maxf + 1;
827 
828 	vm_pageout_flush(ma, runlen, pagerflags);
829 	for (i = 0; i < runlen; i++) {
830 		if (ma[i]->valid & ma[i]->dirty) {
831 			vm_page_protect(ma[i], VM_PROT_READ);
832 			vm_page_flag_set(ma[i], PG_CLEANCHK);
833 
834 			/*
835 			 * maxf will end up being the actual number of pages
836 			 * we wrote out contiguously, non-inclusive of the
837 			 * first page.  We do not count look-behind pages.
838 			 */
839 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
840 				maxf = i - maxb - 1;
841 		}
842 	}
843 	return(maxf + 1);
844 }
845 
846 #ifdef not_used
847 /* XXX I cannot tell if this should be an exported symbol */
848 /*
849  *	vm_object_deactivate_pages
850  *
851  *	Deactivate all pages in the specified object.  (Keep its pages
852  *	in memory even though it is no longer referenced.)
853  *
854  *	The object must be locked.
855  */
856 static void
857 vm_object_deactivate_pages(vm_object_t object)
858 {
859 	vm_page_t p, next;
860 
861 	crit_enter();
862 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
863 		next = TAILQ_NEXT(p, listq);
864 		vm_page_deactivate(p);
865 	}
866 	crit_exit();
867 }
868 #endif
869 
870 /*
871  * Same as vm_object_pmap_copy, except range checking really
872  * works, and is meant for small sections of an object.
873  *
874  * This code protects resident pages by making them read-only
875  * and is typically called on a fork or split when a page
876  * is converted to copy-on-write.
877  *
878  * NOTE: If the page is already at VM_PROT_NONE, calling
879  * vm_page_protect will have no effect.
880  */
881 void
882 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
883 {
884 	vm_pindex_t idx;
885 	vm_page_t p;
886 
887 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
888 		return;
889 
890 	/*
891 	 * spl protection needed to prevent races between the lookup,
892 	 * an interrupt unbusy/free, and our protect call.
893 	 */
894 	crit_enter();
895 	for (idx = start; idx < end; idx++) {
896 		p = vm_page_lookup(object, idx);
897 		if (p == NULL)
898 			continue;
899 		vm_page_protect(p, VM_PROT_READ);
900 	}
901 	crit_exit();
902 }
903 
904 /*
905  *	vm_object_pmap_remove:
906  *
907  *	Removes all physical pages in the specified
908  *	object range from all physical maps.
909  *
910  *	The object must *not* be locked.
911  */
912 void
913 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
914 {
915 	vm_page_t p;
916 
917 	if (object == NULL)
918 		return;
919 
920 	/*
921 	 * spl protection is required because an interrupt can unbusy/free
922 	 * a page.
923 	 */
924 	crit_enter();
925 	for (p = TAILQ_FIRST(&object->memq);
926 	    p != NULL;
927 	    p = TAILQ_NEXT(p, listq)
928 	) {
929 		if (p->pindex >= start && p->pindex < end)
930 			vm_page_protect(p, VM_PROT_NONE);
931 	}
932 	crit_exit();
933 	if ((start == 0) && (object->size == end))
934 		vm_object_clear_flag(object, OBJ_WRITEABLE);
935 }
936 
937 /*
938  *	vm_object_madvise:
939  *
940  *	Implements the madvise function at the object/page level.
941  *
942  *	MADV_WILLNEED	(any object)
943  *
944  *	    Activate the specified pages if they are resident.
945  *
946  *	MADV_DONTNEED	(any object)
947  *
948  *	    Deactivate the specified pages if they are resident.
949  *
950  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
951  *			 OBJ_ONEMAPPING only)
952  *
953  *	    Deactivate and clean the specified pages if they are
954  *	    resident.  This permits the process to reuse the pages
955  *	    without faulting or the kernel to reclaim the pages
956  *	    without I/O.
957  */
958 void
959 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
960 {
961 	vm_pindex_t end, tpindex;
962 	vm_object_t tobject;
963 	vm_page_t m;
964 
965 	if (object == NULL)
966 		return;
967 
968 	end = pindex + count;
969 
970 	/*
971 	 * Locate and adjust resident pages
972 	 */
973 
974 	for (; pindex < end; pindex += 1) {
975 relookup:
976 		tobject = object;
977 		tpindex = pindex;
978 shadowlookup:
979 		/*
980 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
981 		 * and those pages must be OBJ_ONEMAPPING.
982 		 */
983 		if (advise == MADV_FREE) {
984 			if ((tobject->type != OBJT_DEFAULT &&
985 			     tobject->type != OBJT_SWAP) ||
986 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
987 				continue;
988 			}
989 		}
990 
991 		/*
992 		 * spl protection is required to avoid a race between the
993 		 * lookup, an interrupt unbusy/free, and our busy check.
994 		 */
995 
996 		crit_enter();
997 		m = vm_page_lookup(tobject, tpindex);
998 
999 		if (m == NULL) {
1000 			/*
1001 			 * There may be swap even if there is no backing page
1002 			 */
1003 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1004 				swap_pager_freespace(tobject, tpindex, 1);
1005 
1006 			/*
1007 			 * next object
1008 			 */
1009 			crit_exit();
1010 			if (tobject->backing_object == NULL)
1011 				continue;
1012 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1013 			tobject = tobject->backing_object;
1014 			goto shadowlookup;
1015 		}
1016 
1017 		/*
1018 		 * If the page is busy or not in a normal active state,
1019 		 * we skip it.  If the page is not managed there are no
1020 		 * page queues to mess with.  Things can break if we mess
1021 		 * with pages in any of the below states.
1022 		 */
1023 		if (
1024 		    m->hold_count ||
1025 		    m->wire_count ||
1026 		    (m->flags & PG_UNMANAGED) ||
1027 		    m->valid != VM_PAGE_BITS_ALL
1028 		) {
1029 			crit_exit();
1030 			continue;
1031 		}
1032 
1033  		if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1034 			crit_exit();
1035   			goto relookup;
1036 		}
1037 		crit_exit();
1038 
1039 		/*
1040 		 * Theoretically once a page is known not to be busy, an
1041 		 * interrupt cannot come along and rip it out from under us.
1042 		 */
1043 
1044 		if (advise == MADV_WILLNEED) {
1045 			vm_page_activate(m);
1046 		} else if (advise == MADV_DONTNEED) {
1047 			vm_page_dontneed(m);
1048 		} else if (advise == MADV_FREE) {
1049 			/*
1050 			 * Mark the page clean.  This will allow the page
1051 			 * to be freed up by the system.  However, such pages
1052 			 * are often reused quickly by malloc()/free()
1053 			 * so we do not do anything that would cause
1054 			 * a page fault if we can help it.
1055 			 *
1056 			 * Specifically, we do not try to actually free
1057 			 * the page now nor do we try to put it in the
1058 			 * cache (which would cause a page fault on reuse).
1059 			 *
1060 			 * But we do make the page is freeable as we
1061 			 * can without actually taking the step of unmapping
1062 			 * it.
1063 			 */
1064 			pmap_clear_modify(m);
1065 			m->dirty = 0;
1066 			m->act_count = 0;
1067 			vm_page_dontneed(m);
1068 			if (tobject->type == OBJT_SWAP)
1069 				swap_pager_freespace(tobject, tpindex, 1);
1070 		}
1071 	}
1072 }
1073 
1074 /*
1075  *	vm_object_shadow:
1076  *
1077  *	Create a new object which is backed by the
1078  *	specified existing object range.  The source
1079  *	object reference is deallocated.
1080  *
1081  *	The new object and offset into that object
1082  *	are returned in the source parameters.
1083  */
1084 
1085 void
1086 vm_object_shadow(vm_object_t *object,	/* IN/OUT */
1087 		 vm_ooffset_t *offset,	/* IN/OUT */
1088 		 vm_size_t length)
1089 {
1090 	vm_object_t source;
1091 	vm_object_t result;
1092 
1093 	source = *object;
1094 
1095 	/*
1096 	 * Don't create the new object if the old object isn't shared.
1097 	 */
1098 
1099 	if (source != NULL &&
1100 	    source->ref_count == 1 &&
1101 	    source->handle == NULL &&
1102 	    (source->type == OBJT_DEFAULT ||
1103 	     source->type == OBJT_SWAP))
1104 		return;
1105 
1106 	/*
1107 	 * Allocate a new object with the given length
1108 	 */
1109 
1110 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1111 		panic("vm_object_shadow: no object for shadowing");
1112 
1113 	/*
1114 	 * The new object shadows the source object, adding a reference to it.
1115 	 * Our caller changes his reference to point to the new object,
1116 	 * removing a reference to the source object.  Net result: no change
1117 	 * of reference count.
1118 	 *
1119 	 * Try to optimize the result object's page color when shadowing
1120 	 * in order to maintain page coloring consistency in the combined
1121 	 * shadowed object.
1122 	 */
1123 	result->backing_object = source;
1124 	if (source) {
1125 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1126 		source->shadow_count++;
1127 		source->generation++;
1128 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1129 	}
1130 
1131 	/*
1132 	 * Store the offset into the source object, and fix up the offset into
1133 	 * the new object.
1134 	 */
1135 
1136 	result->backing_object_offset = *offset;
1137 
1138 	/*
1139 	 * Return the new things
1140 	 */
1141 
1142 	*offset = 0;
1143 	*object = result;
1144 }
1145 
1146 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1147 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1148 #define	OBSC_COLLAPSE_WAIT	0x0004
1149 
1150 static __inline int
1151 vm_object_backing_scan(vm_object_t object, int op)
1152 {
1153 	int r = 1;
1154 	vm_page_t p;
1155 	vm_object_t backing_object;
1156 	vm_pindex_t backing_offset_index;
1157 
1158 	/*
1159 	 * spl protection is required to avoid races between the memq/lookup,
1160 	 * an interrupt doing an unbusy/free, and our busy check.  Amoung
1161 	 * other things.
1162 	 */
1163 	crit_enter();
1164 
1165 	backing_object = object->backing_object;
1166 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1167 
1168 	/*
1169 	 * Initial conditions
1170 	 */
1171 
1172 	if (op & OBSC_TEST_ALL_SHADOWED) {
1173 		/*
1174 		 * We do not want to have to test for the existence of
1175 		 * swap pages in the backing object.  XXX but with the
1176 		 * new swapper this would be pretty easy to do.
1177 		 *
1178 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1179 		 * been ZFOD faulted yet?  If we do not test for this, the
1180 		 * shadow test may succeed! XXX
1181 		 */
1182 		if (backing_object->type != OBJT_DEFAULT) {
1183 			crit_exit();
1184 			return(0);
1185 		}
1186 	}
1187 	if (op & OBSC_COLLAPSE_WAIT) {
1188 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1189 		vm_object_set_flag(backing_object, OBJ_DEAD);
1190 	}
1191 
1192 	/*
1193 	 * Our scan
1194 	 */
1195 
1196 	p = TAILQ_FIRST(&backing_object->memq);
1197 	while (p) {
1198 		vm_page_t next = TAILQ_NEXT(p, listq);
1199 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1200 
1201 		if (op & OBSC_TEST_ALL_SHADOWED) {
1202 			vm_page_t pp;
1203 
1204 			/*
1205 			 * Ignore pages outside the parent object's range
1206 			 * and outside the parent object's mapping of the
1207 			 * backing object.
1208 			 *
1209 			 * note that we do not busy the backing object's
1210 			 * page.
1211 			 */
1212 
1213 			if (
1214 			    p->pindex < backing_offset_index ||
1215 			    new_pindex >= object->size
1216 			) {
1217 				p = next;
1218 				continue;
1219 			}
1220 
1221 			/*
1222 			 * See if the parent has the page or if the parent's
1223 			 * object pager has the page.  If the parent has the
1224 			 * page but the page is not valid, the parent's
1225 			 * object pager must have the page.
1226 			 *
1227 			 * If this fails, the parent does not completely shadow
1228 			 * the object and we might as well give up now.
1229 			 */
1230 
1231 			pp = vm_page_lookup(object, new_pindex);
1232 			if (
1233 			    (pp == NULL || pp->valid == 0) &&
1234 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1235 			) {
1236 				r = 0;
1237 				break;
1238 			}
1239 		}
1240 
1241 		/*
1242 		 * Check for busy page
1243 		 */
1244 
1245 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1246 			vm_page_t pp;
1247 
1248 			if (op & OBSC_COLLAPSE_NOWAIT) {
1249 				if (
1250 				    (p->flags & PG_BUSY) ||
1251 				    !p->valid ||
1252 				    p->hold_count ||
1253 				    p->wire_count ||
1254 				    p->busy
1255 				) {
1256 					p = next;
1257 					continue;
1258 				}
1259 			} else if (op & OBSC_COLLAPSE_WAIT) {
1260 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1261 					/*
1262 					 * If we slept, anything could have
1263 					 * happened.  Since the object is
1264 					 * marked dead, the backing offset
1265 					 * should not have changed so we
1266 					 * just restart our scan.
1267 					 */
1268 					p = TAILQ_FIRST(&backing_object->memq);
1269 					continue;
1270 				}
1271 			}
1272 
1273 			/*
1274 			 * Busy the page
1275 			 */
1276 			vm_page_busy(p);
1277 
1278 			KASSERT(
1279 			    p->object == backing_object,
1280 			    ("vm_object_qcollapse(): object mismatch")
1281 			);
1282 
1283 			/*
1284 			 * Destroy any associated swap
1285 			 */
1286 			if (backing_object->type == OBJT_SWAP) {
1287 				swap_pager_freespace(
1288 				    backing_object,
1289 				    p->pindex,
1290 				    1
1291 				);
1292 			}
1293 
1294 			if (
1295 			    p->pindex < backing_offset_index ||
1296 			    new_pindex >= object->size
1297 			) {
1298 				/*
1299 				 * Page is out of the parent object's range, we
1300 				 * can simply destroy it.
1301 				 */
1302 				vm_page_protect(p, VM_PROT_NONE);
1303 				vm_page_free(p);
1304 				p = next;
1305 				continue;
1306 			}
1307 
1308 			pp = vm_page_lookup(object, new_pindex);
1309 			if (
1310 			    pp != NULL ||
1311 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1312 			) {
1313 				/*
1314 				 * page already exists in parent OR swap exists
1315 				 * for this location in the parent.  Destroy
1316 				 * the original page from the backing object.
1317 				 *
1318 				 * Leave the parent's page alone
1319 				 */
1320 				vm_page_protect(p, VM_PROT_NONE);
1321 				vm_page_free(p);
1322 				p = next;
1323 				continue;
1324 			}
1325 
1326 			/*
1327 			 * Page does not exist in parent, rename the
1328 			 * page from the backing object to the main object.
1329 			 *
1330 			 * If the page was mapped to a process, it can remain
1331 			 * mapped through the rename.
1332 			 */
1333 			if ((p->queue - p->pc) == PQ_CACHE)
1334 				vm_page_deactivate(p);
1335 
1336 			vm_page_rename(p, object, new_pindex);
1337 			/* page automatically made dirty by rename */
1338 		}
1339 		p = next;
1340 	}
1341 	crit_exit();
1342 	return(r);
1343 }
1344 
1345 
1346 /*
1347  * this version of collapse allows the operation to occur earlier and
1348  * when paging_in_progress is true for an object...  This is not a complete
1349  * operation, but should plug 99.9% of the rest of the leaks.
1350  */
1351 static void
1352 vm_object_qcollapse(vm_object_t object)
1353 {
1354 	vm_object_t backing_object = object->backing_object;
1355 
1356 	if (backing_object->ref_count != 1)
1357 		return;
1358 
1359 	backing_object->ref_count += 2;
1360 
1361 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1362 
1363 	backing_object->ref_count -= 2;
1364 }
1365 
1366 /*
1367  *	vm_object_collapse:
1368  *
1369  *	Collapse an object with the object backing it.
1370  *	Pages in the backing object are moved into the
1371  *	parent, and the backing object is deallocated.
1372  */
1373 void
1374 vm_object_collapse(vm_object_t object)
1375 {
1376 	while (TRUE) {
1377 		vm_object_t backing_object;
1378 
1379 		/*
1380 		 * Verify that the conditions are right for collapse:
1381 		 *
1382 		 * The object exists and the backing object exists.
1383 		 */
1384 		if (object == NULL)
1385 			break;
1386 
1387 		if ((backing_object = object->backing_object) == NULL)
1388 			break;
1389 
1390 		/*
1391 		 * we check the backing object first, because it is most likely
1392 		 * not collapsable.
1393 		 */
1394 		if (backing_object->handle != NULL ||
1395 		    (backing_object->type != OBJT_DEFAULT &&
1396 		     backing_object->type != OBJT_SWAP) ||
1397 		    (backing_object->flags & OBJ_DEAD) ||
1398 		    object->handle != NULL ||
1399 		    (object->type != OBJT_DEFAULT &&
1400 		     object->type != OBJT_SWAP) ||
1401 		    (object->flags & OBJ_DEAD)) {
1402 			break;
1403 		}
1404 
1405 		if (
1406 		    object->paging_in_progress != 0 ||
1407 		    backing_object->paging_in_progress != 0
1408 		) {
1409 			vm_object_qcollapse(object);
1410 			break;
1411 		}
1412 
1413 		/*
1414 		 * We know that we can either collapse the backing object (if
1415 		 * the parent is the only reference to it) or (perhaps) have
1416 		 * the parent bypass the object if the parent happens to shadow
1417 		 * all the resident pages in the entire backing object.
1418 		 *
1419 		 * This is ignoring pager-backed pages such as swap pages.
1420 		 * vm_object_backing_scan fails the shadowing test in this
1421 		 * case.
1422 		 */
1423 
1424 		if (backing_object->ref_count == 1) {
1425 			/*
1426 			 * If there is exactly one reference to the backing
1427 			 * object, we can collapse it into the parent.
1428 			 */
1429 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1430 
1431 			/*
1432 			 * Move the pager from backing_object to object.
1433 			 */
1434 
1435 			if (backing_object->type == OBJT_SWAP) {
1436 				vm_object_pip_add(backing_object, 1);
1437 
1438 				/*
1439 				 * scrap the paging_offset junk and do a
1440 				 * discrete copy.  This also removes major
1441 				 * assumptions about how the swap-pager
1442 				 * works from where it doesn't belong.  The
1443 				 * new swapper is able to optimize the
1444 				 * destroy-source case.
1445 				 */
1446 
1447 				vm_object_pip_add(object, 1);
1448 				swap_pager_copy(
1449 				    backing_object,
1450 				    object,
1451 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1452 				vm_object_pip_wakeup(object);
1453 
1454 				vm_object_pip_wakeup(backing_object);
1455 			}
1456 			/*
1457 			 * Object now shadows whatever backing_object did.
1458 			 * Note that the reference to
1459 			 * backing_object->backing_object moves from within
1460 			 * backing_object to within object.
1461 			 */
1462 
1463 			LIST_REMOVE(object, shadow_list);
1464 			object->backing_object->shadow_count--;
1465 			object->backing_object->generation++;
1466 			if (backing_object->backing_object) {
1467 				LIST_REMOVE(backing_object, shadow_list);
1468 				backing_object->backing_object->shadow_count--;
1469 				backing_object->backing_object->generation++;
1470 			}
1471 			object->backing_object = backing_object->backing_object;
1472 			if (object->backing_object) {
1473 				LIST_INSERT_HEAD(
1474 				    &object->backing_object->shadow_head,
1475 				    object,
1476 				    shadow_list
1477 				);
1478 				object->backing_object->shadow_count++;
1479 				object->backing_object->generation++;
1480 			}
1481 
1482 			object->backing_object_offset +=
1483 			    backing_object->backing_object_offset;
1484 
1485 			/*
1486 			 * Discard backing_object.
1487 			 *
1488 			 * Since the backing object has no pages, no pager left,
1489 			 * and no object references within it, all that is
1490 			 * necessary is to dispose of it.
1491 			 */
1492 
1493 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1494 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1495 			crit_enter();
1496 			TAILQ_REMOVE(
1497 			    &vm_object_list,
1498 			    backing_object,
1499 			    object_list
1500 			);
1501 			vm_object_count--;
1502 			crit_exit();
1503 
1504 			zfree(obj_zone, backing_object);
1505 
1506 			object_collapses++;
1507 		} else {
1508 			vm_object_t new_backing_object;
1509 
1510 			/*
1511 			 * If we do not entirely shadow the backing object,
1512 			 * there is nothing we can do so we give up.
1513 			 */
1514 
1515 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1516 				break;
1517 			}
1518 
1519 			/*
1520 			 * Make the parent shadow the next object in the
1521 			 * chain.  Deallocating backing_object will not remove
1522 			 * it, since its reference count is at least 2.
1523 			 */
1524 
1525 			LIST_REMOVE(object, shadow_list);
1526 			backing_object->shadow_count--;
1527 			backing_object->generation++;
1528 
1529 			new_backing_object = backing_object->backing_object;
1530 			if ((object->backing_object = new_backing_object) != NULL) {
1531 				vm_object_reference(new_backing_object);
1532 				LIST_INSERT_HEAD(
1533 				    &new_backing_object->shadow_head,
1534 				    object,
1535 				    shadow_list
1536 				);
1537 				new_backing_object->shadow_count++;
1538 				new_backing_object->generation++;
1539 				object->backing_object_offset +=
1540 					backing_object->backing_object_offset;
1541 			}
1542 
1543 			/*
1544 			 * Drop the reference count on backing_object. Since
1545 			 * its ref_count was at least 2, it will not vanish;
1546 			 * so we don't need to call vm_object_deallocate, but
1547 			 * we do anyway.
1548 			 */
1549 			vm_object_deallocate(backing_object);
1550 			object_bypasses++;
1551 		}
1552 
1553 		/*
1554 		 * Try again with this object's new backing object.
1555 		 */
1556 	}
1557 }
1558 
1559 /*
1560  *	vm_object_page_remove: [internal]
1561  *
1562  *	Removes all physical pages in the specified
1563  *	object range from the object's list of pages.
1564  */
1565 void
1566 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1567     boolean_t clean_only)
1568 {
1569 	vm_page_t p, next;
1570 	unsigned int size;
1571 	int all;
1572 
1573 	if (object == NULL || object->resident_page_count == 0)
1574 		return;
1575 
1576 	all = ((end == 0) && (start == 0));
1577 
1578 	/*
1579 	 * Since physically-backed objects do not use managed pages, we can't
1580 	 * remove pages from the object (we must instead remove the page
1581 	 * references, and then destroy the object).
1582 	 */
1583 	KASSERT(object->type != OBJT_PHYS,
1584 		("attempt to remove pages from a physical object"));
1585 
1586 	/*
1587 	 * Indicating that the object is undergoing paging.
1588 	 *
1589 	 * spl protection is required to avoid a race between the memq scan,
1590 	 * an interrupt unbusy/free, and the busy check.
1591 	 */
1592 	vm_object_pip_add(object, 1);
1593 	crit_enter();
1594 again:
1595 	size = end - start;
1596 	if (all || size > object->resident_page_count / 4) {
1597 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1598 			next = TAILQ_NEXT(p, listq);
1599 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1600 				if (p->wire_count != 0) {
1601 					vm_page_protect(p, VM_PROT_NONE);
1602 					if (!clean_only)
1603 						p->valid = 0;
1604 					continue;
1605 				}
1606 
1607 				/*
1608 				 * The busy flags are only cleared at
1609 				 * interrupt -- minimize the spl transitions
1610 				 */
1611 
1612  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1613  					goto again;
1614 
1615 				if (clean_only && p->valid) {
1616 					vm_page_test_dirty(p);
1617 					if (p->valid & p->dirty)
1618 						continue;
1619 				}
1620 
1621 				vm_page_busy(p);
1622 				vm_page_protect(p, VM_PROT_NONE);
1623 				vm_page_free(p);
1624 			}
1625 		}
1626 	} else {
1627 		while (size > 0) {
1628 			if ((p = vm_page_lookup(object, start)) != 0) {
1629 				if (p->wire_count != 0) {
1630 					vm_page_protect(p, VM_PROT_NONE);
1631 					if (!clean_only)
1632 						p->valid = 0;
1633 					start += 1;
1634 					size -= 1;
1635 					continue;
1636 				}
1637 
1638 				/*
1639 				 * The busy flags are only cleared at
1640 				 * interrupt -- minimize the spl transitions
1641 				 */
1642  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1643 					goto again;
1644 
1645 				if (clean_only && p->valid) {
1646 					vm_page_test_dirty(p);
1647 					if (p->valid & p->dirty) {
1648 						start += 1;
1649 						size -= 1;
1650 						continue;
1651 					}
1652 				}
1653 
1654 				vm_page_busy(p);
1655 				vm_page_protect(p, VM_PROT_NONE);
1656 				vm_page_free(p);
1657 			}
1658 			start += 1;
1659 			size -= 1;
1660 		}
1661 	}
1662 	crit_exit();
1663 	vm_object_pip_wakeup(object);
1664 }
1665 
1666 /*
1667  *	Routine:	vm_object_coalesce
1668  *	Function:	Coalesces two objects backing up adjoining
1669  *			regions of memory into a single object.
1670  *
1671  *	returns TRUE if objects were combined.
1672  *
1673  *	NOTE:	Only works at the moment if the second object is NULL -
1674  *		if it's not, which object do we lock first?
1675  *
1676  *	Parameters:
1677  *		prev_object	First object to coalesce
1678  *		prev_offset	Offset into prev_object
1679  *		next_object	Second object into coalesce
1680  *		next_offset	Offset into next_object
1681  *
1682  *		prev_size	Size of reference to prev_object
1683  *		next_size	Size of reference to next_object
1684  *
1685  *	Conditions:
1686  *	The object must *not* be locked.
1687  */
1688 boolean_t
1689 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1690     vm_size_t prev_size, vm_size_t next_size)
1691 {
1692 	vm_pindex_t next_pindex;
1693 
1694 	if (prev_object == NULL) {
1695 		return (TRUE);
1696 	}
1697 
1698 	if (prev_object->type != OBJT_DEFAULT &&
1699 	    prev_object->type != OBJT_SWAP) {
1700 		return (FALSE);
1701 	}
1702 
1703 	/*
1704 	 * Try to collapse the object first
1705 	 */
1706 	vm_object_collapse(prev_object);
1707 
1708 	/*
1709 	 * Can't coalesce if: . more than one reference . paged out . shadows
1710 	 * another object . has a copy elsewhere (any of which mean that the
1711 	 * pages not mapped to prev_entry may be in use anyway)
1712 	 */
1713 
1714 	if (prev_object->backing_object != NULL) {
1715 		return (FALSE);
1716 	}
1717 
1718 	prev_size >>= PAGE_SHIFT;
1719 	next_size >>= PAGE_SHIFT;
1720 	next_pindex = prev_pindex + prev_size;
1721 
1722 	if ((prev_object->ref_count > 1) &&
1723 	    (prev_object->size != next_pindex)) {
1724 		return (FALSE);
1725 	}
1726 
1727 	/*
1728 	 * Remove any pages that may still be in the object from a previous
1729 	 * deallocation.
1730 	 */
1731 	if (next_pindex < prev_object->size) {
1732 		vm_object_page_remove(prev_object,
1733 				      next_pindex,
1734 				      next_pindex + next_size, FALSE);
1735 		if (prev_object->type == OBJT_SWAP)
1736 			swap_pager_freespace(prev_object,
1737 					     next_pindex, next_size);
1738 	}
1739 
1740 	/*
1741 	 * Extend the object if necessary.
1742 	 */
1743 	if (next_pindex + next_size > prev_object->size)
1744 		prev_object->size = next_pindex + next_size;
1745 
1746 	return (TRUE);
1747 }
1748 
1749 void
1750 vm_object_set_writeable_dirty(vm_object_t object)
1751 {
1752 	struct vnode *vp;
1753 
1754 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1755 	if (object->type == OBJT_VNODE &&
1756 	    (vp = (struct vnode *)object->handle) != NULL) {
1757 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1758 			vsetflags(vp, VOBJDIRTY);
1759 		}
1760 	}
1761 }
1762 
1763 
1764 
1765 #include "opt_ddb.h"
1766 #ifdef DDB
1767 #include <sys/kernel.h>
1768 
1769 #include <sys/cons.h>
1770 
1771 #include <ddb/ddb.h>
1772 
1773 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1774 				       vm_map_entry_t entry);
1775 static int	vm_object_in_map (vm_object_t object);
1776 
1777 static int
1778 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1779 {
1780 	vm_map_t tmpm;
1781 	vm_map_entry_t tmpe;
1782 	vm_object_t obj;
1783 	int entcount;
1784 
1785 	if (map == 0)
1786 		return 0;
1787 
1788 	if (entry == 0) {
1789 		tmpe = map->header.next;
1790 		entcount = map->nentries;
1791 		while (entcount-- && (tmpe != &map->header)) {
1792 			if( _vm_object_in_map(map, object, tmpe)) {
1793 				return 1;
1794 			}
1795 			tmpe = tmpe->next;
1796 		}
1797 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1798 		tmpm = entry->object.sub_map;
1799 		tmpe = tmpm->header.next;
1800 		entcount = tmpm->nentries;
1801 		while (entcount-- && tmpe != &tmpm->header) {
1802 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1803 				return 1;
1804 			}
1805 			tmpe = tmpe->next;
1806 		}
1807 	} else if ((obj = entry->object.vm_object) != NULL) {
1808 		for(; obj; obj=obj->backing_object)
1809 			if( obj == object) {
1810 				return 1;
1811 			}
1812 	}
1813 	return 0;
1814 }
1815 
1816 static int
1817 vm_object_in_map(vm_object_t object)
1818 {
1819 	struct proc *p;
1820 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1821 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1822 			continue;
1823 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1824 			return 1;
1825 	}
1826 	if( _vm_object_in_map( kernel_map, object, 0))
1827 		return 1;
1828 	if( _vm_object_in_map( pager_map, object, 0))
1829 		return 1;
1830 	if( _vm_object_in_map( buffer_map, object, 0))
1831 		return 1;
1832 	return 0;
1833 }
1834 
1835 DB_SHOW_COMMAND(vmochk, vm_object_check)
1836 {
1837 	vm_object_t object;
1838 
1839 	/*
1840 	 * make sure that internal objs are in a map somewhere
1841 	 * and none have zero ref counts.
1842 	 */
1843 	for (object = TAILQ_FIRST(&vm_object_list);
1844 			object != NULL;
1845 			object = TAILQ_NEXT(object, object_list)) {
1846 		if (object->handle == NULL &&
1847 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1848 			if (object->ref_count == 0) {
1849 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1850 					(long)object->size);
1851 			}
1852 			if (!vm_object_in_map(object)) {
1853 				db_printf(
1854 			"vmochk: internal obj is not in a map: "
1855 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1856 				    object->ref_count, (u_long)object->size,
1857 				    (u_long)object->size,
1858 				    (void *)object->backing_object);
1859 			}
1860 		}
1861 	}
1862 }
1863 
1864 /*
1865  *	vm_object_print:	[ debug ]
1866  */
1867 DB_SHOW_COMMAND(object, vm_object_print_static)
1868 {
1869 	/* XXX convert args. */
1870 	vm_object_t object = (vm_object_t)addr;
1871 	boolean_t full = have_addr;
1872 
1873 	vm_page_t p;
1874 
1875 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1876 #define	count	was_count
1877 
1878 	int count;
1879 
1880 	if (object == NULL)
1881 		return;
1882 
1883 	db_iprintf(
1884 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1885 	    object, (int)object->type, (u_long)object->size,
1886 	    object->resident_page_count, object->ref_count, object->flags);
1887 	/*
1888 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1889 	 */
1890 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1891 	    object->shadow_count,
1892 	    object->backing_object ? object->backing_object->ref_count : 0,
1893 	    object->backing_object, (long)object->backing_object_offset);
1894 
1895 	if (!full)
1896 		return;
1897 
1898 	db_indent += 2;
1899 	count = 0;
1900 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1901 		if (count == 0)
1902 			db_iprintf("memory:=");
1903 		else if (count == 6) {
1904 			db_printf("\n");
1905 			db_iprintf(" ...");
1906 			count = 0;
1907 		} else
1908 			db_printf(",");
1909 		count++;
1910 
1911 		db_printf("(off=0x%lx,page=0x%lx)",
1912 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1913 	}
1914 	if (count != 0)
1915 		db_printf("\n");
1916 	db_indent -= 2;
1917 }
1918 
1919 /* XXX. */
1920 #undef count
1921 
1922 /* XXX need this non-static entry for calling from vm_map_print. */
1923 void
1924 vm_object_print(/* db_expr_t */ long addr,
1925 		boolean_t have_addr,
1926 		/* db_expr_t */ long count,
1927 		char *modif)
1928 {
1929 	vm_object_print_static(addr, have_addr, count, modif);
1930 }
1931 
1932 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1933 {
1934 	vm_object_t object;
1935 	int nl = 0;
1936 	int c;
1937 	for (object = TAILQ_FIRST(&vm_object_list);
1938 			object != NULL;
1939 			object = TAILQ_NEXT(object, object_list)) {
1940 		vm_pindex_t idx, fidx;
1941 		vm_pindex_t osize;
1942 		vm_paddr_t pa = -1, padiff;
1943 		int rcount;
1944 		vm_page_t m;
1945 
1946 		db_printf("new object: %p\n", (void *)object);
1947 		if ( nl > 18) {
1948 			c = cngetc();
1949 			if (c != ' ')
1950 				return;
1951 			nl = 0;
1952 		}
1953 		nl++;
1954 		rcount = 0;
1955 		fidx = 0;
1956 		osize = object->size;
1957 		if (osize > 128)
1958 			osize = 128;
1959 		for (idx = 0; idx < osize; idx++) {
1960 			m = vm_page_lookup(object, idx);
1961 			if (m == NULL) {
1962 				if (rcount) {
1963 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1964 						(long)fidx, rcount, (long)pa);
1965 					if ( nl > 18) {
1966 						c = cngetc();
1967 						if (c != ' ')
1968 							return;
1969 						nl = 0;
1970 					}
1971 					nl++;
1972 					rcount = 0;
1973 				}
1974 				continue;
1975 			}
1976 
1977 
1978 			if (rcount &&
1979 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1980 				++rcount;
1981 				continue;
1982 			}
1983 			if (rcount) {
1984 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1985 				padiff >>= PAGE_SHIFT;
1986 				padiff &= PQ_L2_MASK;
1987 				if (padiff == 0) {
1988 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1989 					++rcount;
1990 					continue;
1991 				}
1992 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1993 					(long)fidx, rcount, (long)pa);
1994 				db_printf("pd(%ld)\n", (long)padiff);
1995 				if ( nl > 18) {
1996 					c = cngetc();
1997 					if (c != ' ')
1998 						return;
1999 					nl = 0;
2000 				}
2001 				nl++;
2002 			}
2003 			fidx = idx;
2004 			pa = VM_PAGE_TO_PHYS(m);
2005 			rcount = 1;
2006 		}
2007 		if (rcount) {
2008 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2009 				(long)fidx, rcount, (long)pa);
2010 			if ( nl > 18) {
2011 				c = cngetc();
2012 				if (c != ' ')
2013 					return;
2014 				nl = 0;
2015 			}
2016 			nl++;
2017 		}
2018 	}
2019 }
2020 #endif /* DDB */
2021