xref: /dragonfly/sys/vm/vm_object.c (revision 3851e4b8)
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62 
63 /*
64  *	Virtual memory object module.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>		/* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #include <machine/specialreg.h>
95 
96 #define EASY_SCAN_FACTOR	8
97 
98 static void	vm_object_qcollapse(vm_object_t object,
99 				    vm_object_t backing_object);
100 static void	vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101 					     int pagerflags);
102 static void	vm_object_lock_init(vm_object_t);
103 
104 /*
105  *	Virtual memory objects maintain the actual data
106  *	associated with allocated virtual memory.  A given
107  *	page of memory exists within exactly one object.
108  *
109  *	An object is only deallocated when all "references"
110  *	are given up.  Only one "reference" to a given
111  *	region of an object should be writeable.
112  *
113  *	Associated with each object is a list of all resident
114  *	memory pages belonging to that object; this list is
115  *	maintained by the "vm_page" module, and locked by the object's
116  *	lock.
117  *
118  *	Each object also records a "pager" routine which is
119  *	used to retrieve (and store) pages to the proper backing
120  *	storage.  In addition, objects may be backed by other
121  *	objects from which they were virtual-copied.
122  *
123  *	The only items within the object structure which are
124  *	modified after time of creation are:
125  *		reference count		locked by object's lock
126  *		pager routine		locked by object's lock
127  *
128  */
129 
130 struct vm_object kernel_object;
131 
132 static long object_collapses;
133 static long object_bypasses;
134 
135 struct vm_object_hash vm_object_hash[VMOBJ_HSIZE];
136 
137 MALLOC_DEFINE(M_VM_OBJECT, "vm_object", "vm_object structures");
138 
139 #define VMOBJ_HASH_PRIME1	66555444443333333ULL
140 #define VMOBJ_HASH_PRIME2	989042931893ULL
141 
142 static __inline
143 struct vm_object_hash *
144 vmobj_hash(vm_object_t obj)
145 {
146 	uintptr_t hash1;
147 	uintptr_t hash2;
148 
149 	hash1 = (uintptr_t)obj + ((uintptr_t)obj >> 18);
150 	hash1 %= VMOBJ_HASH_PRIME1;
151 	hash2 = ((uintptr_t)obj >> 8) + ((uintptr_t)obj >> 24);
152 	hash2 %= VMOBJ_HASH_PRIME2;
153 	return (&vm_object_hash[(hash1 ^ hash2) & VMOBJ_HMASK]);
154 }
155 
156 #if defined(DEBUG_LOCKS)
157 
158 #define vm_object_vndeallocate(obj, vpp)	\
159                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
160 
161 /*
162  * Debug helper to track hold/drop/ref/deallocate calls.
163  */
164 static void
165 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
166 {
167 	int i;
168 
169 	i = atomic_fetchadd_int(&obj->debug_index, 1);
170 	i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
171 	ksnprintf(obj->debug_hold_thrs[i],
172 		  sizeof(obj->debug_hold_thrs[i]),
173 		  "%c%d:(%d):%s",
174 		  (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
175 		  (curthread->td_proc ? curthread->td_proc->p_pid : -1),
176 		  obj->ref_count,
177 		  curthread->td_comm);
178 	obj->debug_hold_file[i] = file;
179 	obj->debug_hold_line[i] = line;
180 #if 0
181 	/* Uncomment for debugging obj refs/derefs in reproducable cases */
182 	if (strcmp(curthread->td_comm, "sshd") == 0) {
183 		kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
184 			(curthread->td_proc ? curthread->td_proc->p_pid : -1),
185 			obj, obj->ref_count, addrem, file, line);
186 	}
187 #endif
188 }
189 
190 #endif
191 
192 /*
193  * Misc low level routines
194  */
195 static void
196 vm_object_lock_init(vm_object_t obj)
197 {
198 #if defined(DEBUG_LOCKS)
199 	int i;
200 
201 	obj->debug_index = 0;
202 	for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
203 		obj->debug_hold_thrs[i][0] = 0;
204 		obj->debug_hold_file[i] = NULL;
205 		obj->debug_hold_line[i] = 0;
206 	}
207 #endif
208 }
209 
210 void
211 vm_object_lock_swap(void)
212 {
213 	lwkt_token_swap();
214 }
215 
216 void
217 vm_object_lock(vm_object_t obj)
218 {
219 	lwkt_gettoken(&obj->token);
220 }
221 
222 /*
223  * Returns TRUE on sucesss
224  */
225 static int
226 vm_object_lock_try(vm_object_t obj)
227 {
228 	return(lwkt_trytoken(&obj->token));
229 }
230 
231 void
232 vm_object_lock_shared(vm_object_t obj)
233 {
234 	lwkt_gettoken_shared(&obj->token);
235 }
236 
237 void
238 vm_object_unlock(vm_object_t obj)
239 {
240 	lwkt_reltoken(&obj->token);
241 }
242 
243 void
244 vm_object_upgrade(vm_object_t obj)
245 {
246 	lwkt_reltoken(&obj->token);
247 	lwkt_gettoken(&obj->token);
248 }
249 
250 void
251 vm_object_downgrade(vm_object_t obj)
252 {
253 	lwkt_reltoken(&obj->token);
254 	lwkt_gettoken_shared(&obj->token);
255 }
256 
257 static __inline void
258 vm_object_assert_held(vm_object_t obj)
259 {
260 	ASSERT_LWKT_TOKEN_HELD(&obj->token);
261 }
262 
263 static __inline int
264 vm_quickcolor(void)
265 {
266 	globaldata_t gd = mycpu;
267 	int pg_color;
268 
269 	pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
270 	pg_color += gd->gd_quick_color;
271 	gd->gd_quick_color += PQ_PRIME2;
272 
273 	return pg_color;
274 }
275 
276 void
277 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
278 {
279 	KKASSERT(obj != NULL);
280 
281 	/*
282 	 * Object must be held (object allocation is stable due to callers
283 	 * context, typically already holding the token on a parent object)
284 	 * prior to potentially blocking on the lock, otherwise the object
285 	 * can get ripped away from us.
286 	 */
287 	refcount_acquire(&obj->hold_count);
288 	vm_object_lock(obj);
289 
290 #if defined(DEBUG_LOCKS)
291 	debugvm_object_add(obj, file, line, 1);
292 #endif
293 }
294 
295 int
296 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
297 {
298 	KKASSERT(obj != NULL);
299 
300 	/*
301 	 * Object must be held (object allocation is stable due to callers
302 	 * context, typically already holding the token on a parent object)
303 	 * prior to potentially blocking on the lock, otherwise the object
304 	 * can get ripped away from us.
305 	 */
306 	refcount_acquire(&obj->hold_count);
307 	if (vm_object_lock_try(obj) == 0) {
308 		if (refcount_release(&obj->hold_count)) {
309 			if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
310 				kfree(obj, M_VM_OBJECT);
311 		}
312 		return(0);
313 	}
314 
315 #if defined(DEBUG_LOCKS)
316 	debugvm_object_add(obj, file, line, 1);
317 #endif
318 	return(1);
319 }
320 
321 void
322 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
323 {
324 	KKASSERT(obj != NULL);
325 
326 	/*
327 	 * Object must be held (object allocation is stable due to callers
328 	 * context, typically already holding the token on a parent object)
329 	 * prior to potentially blocking on the lock, otherwise the object
330 	 * can get ripped away from us.
331 	 */
332 	refcount_acquire(&obj->hold_count);
333 	vm_object_lock_shared(obj);
334 
335 #if defined(DEBUG_LOCKS)
336 	debugvm_object_add(obj, file, line, 1);
337 #endif
338 }
339 
340 /*
341  * Drop the token and hold_count on the object.
342  *
343  * WARNING! Token might be shared.
344  */
345 void
346 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
347 {
348 	if (obj == NULL)
349 		return;
350 
351 	/*
352 	 * No new holders should be possible once we drop hold_count 1->0 as
353 	 * there is no longer any way to reference the object.
354 	 */
355 	KKASSERT(obj->hold_count > 0);
356 	if (refcount_release(&obj->hold_count)) {
357 #if defined(DEBUG_LOCKS)
358 		debugvm_object_add(obj, file, line, -1);
359 #endif
360 
361 		if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
362 			vm_object_unlock(obj);
363 			kfree(obj, M_VM_OBJECT);
364 		} else {
365 			vm_object_unlock(obj);
366 		}
367 	} else {
368 #if defined(DEBUG_LOCKS)
369 		debugvm_object_add(obj, file, line, -1);
370 #endif
371 		vm_object_unlock(obj);
372 	}
373 }
374 
375 /*
376  * Initialize a freshly allocated object, returning a held object.
377  *
378  * Used only by vm_object_allocate(), zinitna() and vm_object_init().
379  *
380  * No requirements.
381  */
382 void
383 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
384 {
385 	struct vm_object_hash *hash;
386 
387 	RB_INIT(&object->rb_memq);
388 	LIST_INIT(&object->shadow_head);
389 	lwkt_token_init(&object->token, "vmobj");
390 
391 	object->type = type;
392 	object->size = size;
393 	object->ref_count = 1;
394 	object->memattr = VM_MEMATTR_DEFAULT;
395 	object->hold_count = 0;
396 	object->flags = 0;
397 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
398 		vm_object_set_flag(object, OBJ_ONEMAPPING);
399 	object->paging_in_progress = 0;
400 	object->resident_page_count = 0;
401 	object->shadow_count = 0;
402 	/* cpu localization twist */
403 	object->pg_color = vm_quickcolor();
404 	object->handle = NULL;
405 	object->backing_object = NULL;
406 	object->backing_object_offset = (vm_ooffset_t)0;
407 
408 	atomic_add_int(&object->generation, 1);
409 	object->swblock_count = 0;
410 	RB_INIT(&object->swblock_root);
411 	vm_object_lock_init(object);
412 	pmap_object_init(object);
413 
414 	vm_object_hold(object);
415 
416 	hash = vmobj_hash(object);
417 	lwkt_gettoken(&hash->token);
418 	TAILQ_INSERT_TAIL(&hash->list, object, object_list);
419 	lwkt_reltoken(&hash->token);
420 }
421 
422 /*
423  * Initialize a VM object.
424  */
425 void
426 vm_object_init(vm_object_t object, vm_pindex_t size)
427 {
428 	_vm_object_allocate(OBJT_DEFAULT, size, object);
429 	vm_object_drop(object);
430 }
431 
432 /*
433  * Initialize the VM objects module.
434  *
435  * Called from the low level boot code only.  Note that this occurs before
436  * kmalloc is initialized so we cannot allocate any VM objects.
437  */
438 void
439 vm_object_init1(void)
440 {
441 	int i;
442 
443 	for (i = 0; i < VMOBJ_HSIZE; ++i) {
444 		TAILQ_INIT(&vm_object_hash[i].list);
445 		lwkt_token_init(&vm_object_hash[i].token, "vmobjlst");
446 	}
447 
448 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
449 			    &kernel_object);
450 	vm_object_drop(&kernel_object);
451 }
452 
453 void
454 vm_object_init2(void)
455 {
456 	kmalloc_set_unlimited(M_VM_OBJECT);
457 }
458 
459 /*
460  * Allocate and return a new object of the specified type and size.
461  *
462  * No requirements.
463  */
464 vm_object_t
465 vm_object_allocate(objtype_t type, vm_pindex_t size)
466 {
467 	vm_object_t obj;
468 
469 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
470 	_vm_object_allocate(type, size, obj);
471 	vm_object_drop(obj);
472 
473 	return (obj);
474 }
475 
476 /*
477  * This version returns a held object, allowing further atomic initialization
478  * of the object.
479  */
480 vm_object_t
481 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
482 {
483 	vm_object_t obj;
484 
485 	obj = kmalloc(sizeof(*obj), M_VM_OBJECT, M_INTWAIT|M_ZERO);
486 	_vm_object_allocate(type, size, obj);
487 
488 	return (obj);
489 }
490 
491 /*
492  * Add an additional reference to a vm_object.  The object must already be
493  * held.  The original non-lock version is no longer supported.  The object
494  * must NOT be chain locked by anyone at the time the reference is added.
495  *
496  * Referencing a chain-locked object can blow up the fairly sensitive
497  * ref_count and shadow_count tests in the deallocator.  Most callers
498  * will call vm_object_chain_wait() prior to calling
499  * vm_object_reference_locked() to avoid the case.  The held token
500  * allows the caller to pair the wait and ref.
501  *
502  * The object must be held, but may be held shared if desired (hence why
503  * we use an atomic op).
504  */
505 void
506 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
507 {
508 	KKASSERT(object != NULL);
509 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
510 	KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
511 	atomic_add_int(&object->ref_count, 1);
512 	if (object->type == OBJT_VNODE) {
513 		vref(object->handle);
514 		/* XXX what if the vnode is being destroyed? */
515 	}
516 #if defined(DEBUG_LOCKS)
517 	debugvm_object_add(object, file, line, 1);
518 #endif
519 }
520 
521 /*
522  * This version explicitly allows the chain to be held (i.e. by the
523  * caller).  The token must also be held.
524  */
525 void
526 VMOBJDEBUG(vm_object_reference_locked_chain_held)(vm_object_t object
527 	   VMOBJDBARGS)
528 {
529 	KKASSERT(object != NULL);
530 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
531 	atomic_add_int(&object->ref_count, 1);
532 	if (object->type == OBJT_VNODE) {
533 		vref(object->handle);
534 		/* XXX what if the vnode is being destroyed? */
535 	}
536 #if defined(DEBUG_LOCKS)
537 	debugvm_object_add(object, file, line, 1);
538 #endif
539 }
540 
541 /*
542  * This version is only allowed for vnode objects.
543  */
544 void
545 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
546 {
547 	KKASSERT(object->type == OBJT_VNODE);
548 	atomic_add_int(&object->ref_count, 1);
549 	vref(object->handle);
550 #if defined(DEBUG_LOCKS)
551 	debugvm_object_add(object, file, line, 1);
552 #endif
553 }
554 
555 /*
556  * Object OBJ_CHAINLOCK lock handling.
557  *
558  * The caller can chain-lock backing objects recursively and then
559  * use vm_object_chain_release_all() to undo the whole chain.
560  *
561  * Chain locks are used to prevent collapses and are only applicable
562  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
563  * on other object types are ignored.  This is also important because
564  * it allows e.g. the vnode underlying a memory mapping to take concurrent
565  * faults.
566  *
567  * The object must usually be held on entry, though intermediate
568  * objects need not be held on release.  The object must be held exclusively,
569  * NOT shared.  Note that the prefault path checks the shared state and
570  * avoids using the chain functions.
571  */
572 void
573 vm_object_chain_wait(vm_object_t object, int shared)
574 {
575 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
576 	for (;;) {
577 		uint32_t chainlk = object->chainlk;
578 
579 		cpu_ccfence();
580 		if (shared) {
581 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
582 				tsleep_interlock(object, 0);
583 				if (atomic_cmpset_int(&object->chainlk,
584 						      chainlk,
585 						      chainlk | CHAINLK_WAIT)) {
586 					tsleep(object, PINTERLOCKED,
587 					       "objchns", 0);
588 				}
589 				/* retry */
590 			} else {
591 				break;
592 			}
593 			/* retry */
594 		} else {
595 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
596 				tsleep_interlock(object, 0);
597 				if (atomic_cmpset_int(&object->chainlk,
598 						      chainlk,
599 						      chainlk | CHAINLK_WAIT))
600 				{
601 					tsleep(object, PINTERLOCKED,
602 					       "objchnx", 0);
603 				}
604 				/* retry */
605 			} else {
606 				if (atomic_cmpset_int(&object->chainlk,
607 						      chainlk,
608 						      chainlk & ~CHAINLK_WAIT))
609 				{
610 					if (chainlk & CHAINLK_WAIT)
611 						wakeup(object);
612 					break;
613 				}
614 				/* retry */
615 			}
616 		}
617 		/* retry */
618 	}
619 }
620 
621 void
622 vm_object_chain_acquire(vm_object_t object, int shared)
623 {
624 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
625 		return;
626 	if (vm_shared_fault == 0)
627 		shared = 0;
628 
629 	for (;;) {
630 		uint32_t chainlk = object->chainlk;
631 
632 		cpu_ccfence();
633 		if (shared) {
634 			if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
635 				tsleep_interlock(object, 0);
636 				if (atomic_cmpset_int(&object->chainlk,
637 						      chainlk,
638 						      chainlk | CHAINLK_WAIT)) {
639 					tsleep(object, PINTERLOCKED,
640 					       "objchns", 0);
641 				}
642 				/* retry */
643 			} else if (atomic_cmpset_int(&object->chainlk,
644 					      chainlk, chainlk + 1)) {
645 				break;
646 			}
647 			/* retry */
648 		} else {
649 			if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
650 				tsleep_interlock(object, 0);
651 				if (atomic_cmpset_int(&object->chainlk,
652 						      chainlk,
653 						      chainlk |
654 						       CHAINLK_WAIT |
655 						       CHAINLK_EXCLREQ)) {
656 					tsleep(object, PINTERLOCKED,
657 					       "objchnx", 0);
658 				}
659 				/* retry */
660 			} else {
661 				if (atomic_cmpset_int(&object->chainlk,
662 						      chainlk,
663 						      (chainlk | CHAINLK_EXCL) &
664 						      ~(CHAINLK_EXCLREQ |
665 							CHAINLK_WAIT))) {
666 					if (chainlk & CHAINLK_WAIT)
667 						wakeup(object);
668 					break;
669 				}
670 				/* retry */
671 			}
672 		}
673 		/* retry */
674 	}
675 }
676 
677 void
678 vm_object_chain_release(vm_object_t object)
679 {
680 	/*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
681 	if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
682 		return;
683 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
684 	for (;;) {
685 		uint32_t chainlk = object->chainlk;
686 
687 		cpu_ccfence();
688 		if (chainlk & CHAINLK_MASK) {
689 			if ((chainlk & CHAINLK_MASK) == 1 &&
690 			    atomic_cmpset_int(&object->chainlk,
691 					      chainlk,
692 					      (chainlk - 1) & ~CHAINLK_WAIT)) {
693 				if (chainlk & CHAINLK_WAIT)
694 					wakeup(object);
695 				break;
696 			}
697 			if ((chainlk & CHAINLK_MASK) > 1 &&
698 			    atomic_cmpset_int(&object->chainlk,
699 					      chainlk, chainlk - 1)) {
700 				break;
701 			}
702 			/* retry */
703 		} else {
704 			KKASSERT(chainlk & CHAINLK_EXCL);
705 			if (atomic_cmpset_int(&object->chainlk,
706 					      chainlk,
707 					      chainlk & ~(CHAINLK_EXCL |
708 							  CHAINLK_WAIT))) {
709 				if (chainlk & CHAINLK_WAIT)
710 					wakeup(object);
711 				break;
712 			}
713 		}
714 	}
715 }
716 
717 /*
718  * Release the chain from first_object through and including stopobj.
719  * The caller is typically holding the first and last object locked
720  * (shared or exclusive) to prevent destruction races.
721  *
722  * We release stopobj first as an optimization as this object is most
723  * likely to be shared across multiple processes.
724  */
725 void
726 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
727 {
728 	vm_object_t backing_object;
729 	vm_object_t object;
730 
731 	vm_object_chain_release(stopobj);
732 	object = first_object;
733 
734 	while (object != stopobj) {
735 		KKASSERT(object);
736 		backing_object = object->backing_object;
737 		vm_object_chain_release(object);
738 		object = backing_object;
739 	}
740 }
741 
742 /*
743  * Dereference an object and its underlying vnode.  The object may be
744  * held shared.  On return the object will remain held.
745  *
746  * This function may return a vnode in *vpp which the caller must release
747  * after the caller drops its own lock.  If vpp is NULL, we assume that
748  * the caller was holding an exclusive lock on the object and we vrele()
749  * the vp ourselves.
750  */
751 static void
752 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
753 				   VMOBJDBARGS)
754 {
755 	struct vnode *vp = (struct vnode *) object->handle;
756 
757 	KASSERT(object->type == OBJT_VNODE,
758 	    ("vm_object_vndeallocate: not a vnode object"));
759 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
760 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
761 #ifdef INVARIANTS
762 	if (object->ref_count == 0) {
763 		vprint("vm_object_vndeallocate", vp);
764 		panic("vm_object_vndeallocate: bad object reference count");
765 	}
766 #endif
767 	for (;;) {
768 		int count = object->ref_count;
769 		cpu_ccfence();
770 		if (count == 1) {
771 			vm_object_upgrade(object);
772 			if (atomic_cmpset_int(&object->ref_count, count, 0)) {
773 				vclrflags(vp, VTEXT);
774 				break;
775 			}
776 		} else {
777 			if (atomic_cmpset_int(&object->ref_count,
778 					      count, count - 1)) {
779 				break;
780 			}
781 		}
782 		/* retry */
783 	}
784 #if defined(DEBUG_LOCKS)
785 	debugvm_object_add(object, file, line, -1);
786 #endif
787 
788 	/*
789 	 * vrele or return the vp to vrele.  We can only safely vrele(vp)
790 	 * if the object was locked exclusively.  But there are two races
791 	 * here.
792 	 *
793 	 * We had to upgrade the object above to safely clear VTEXT
794 	 * but the alternative path where the shared lock is retained
795 	 * can STILL race to 0 in other paths and cause our own vrele()
796 	 * to terminate the vnode.  We can't allow that if the VM object
797 	 * is still locked shared.
798 	 */
799 	if (vpp)
800 		*vpp = vp;
801 	else
802 		vrele(vp);
803 }
804 
805 /*
806  * Release a reference to the specified object, gained either through a
807  * vm_object_allocate or a vm_object_reference call.  When all references
808  * are gone, storage associated with this object may be relinquished.
809  *
810  * The caller does not have to hold the object locked but must have control
811  * over the reference in question in order to guarantee that the object
812  * does not get ripped out from under us.
813  *
814  * XXX Currently all deallocations require an exclusive lock.
815  */
816 void
817 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
818 {
819 	struct vnode *vp;
820 	int count;
821 
822 	if (object == NULL)
823 		return;
824 
825 	for (;;) {
826 		count = object->ref_count;
827 		cpu_ccfence();
828 
829 		/*
830 		 * If decrementing the count enters into special handling
831 		 * territory (0, 1, or 2) we have to do it the hard way.
832 		 * Fortunate though, objects with only a few refs like this
833 		 * are not likely to be heavily contended anyway.
834 		 *
835 		 * For vnode objects we only care about 1->0 transitions.
836 		 */
837 		if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
838 #if defined(DEBUG_LOCKS)
839 			debugvm_object_add(object, file, line, 0);
840 #endif
841 			vm_object_hold(object);
842 			vm_object_deallocate_locked(object);
843 			vm_object_drop(object);
844 			break;
845 		}
846 
847 		/*
848 		 * Try to decrement ref_count without acquiring a hold on
849 		 * the object.  This is particularly important for the exec*()
850 		 * and exit*() code paths because the program binary may
851 		 * have a great deal of sharing and an exclusive lock will
852 		 * crowbar performance in those circumstances.
853 		 */
854 		if (object->type == OBJT_VNODE) {
855 			vp = (struct vnode *)object->handle;
856 			if (atomic_cmpset_int(&object->ref_count,
857 					      count, count - 1)) {
858 #if defined(DEBUG_LOCKS)
859 				debugvm_object_add(object, file, line, -1);
860 #endif
861 
862 				vrele(vp);
863 				break;
864 			}
865 			/* retry */
866 		} else {
867 			if (atomic_cmpset_int(&object->ref_count,
868 					      count, count - 1)) {
869 #if defined(DEBUG_LOCKS)
870 				debugvm_object_add(object, file, line, -1);
871 #endif
872 				break;
873 			}
874 			/* retry */
875 		}
876 		/* retry */
877 	}
878 }
879 
880 void
881 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
882 {
883 	struct vm_object_dealloc_list *dlist = NULL;
884 	struct vm_object_dealloc_list *dtmp;
885 	vm_object_t temp;
886 	int must_drop = 0;
887 
888 	/*
889 	 * We may chain deallocate object, but additional objects may
890 	 * collect on the dlist which also have to be deallocated.  We
891 	 * must avoid a recursion, vm_object chains can get deep.
892 	 */
893 
894 again:
895 	while (object != NULL) {
896 		/*
897 		 * vnode case, caller either locked the object exclusively
898 		 * or this is a recursion with must_drop != 0 and the vnode
899 		 * object will be locked shared.
900 		 *
901 		 * If locked shared we have to drop the object before we can
902 		 * call vrele() or risk a shared/exclusive livelock.
903 		 */
904 		if (object->type == OBJT_VNODE) {
905 			ASSERT_LWKT_TOKEN_HELD(&object->token);
906 			if (must_drop) {
907 				struct vnode *tmp_vp;
908 
909 				vm_object_vndeallocate(object, &tmp_vp);
910 				vm_object_drop(object);
911 				must_drop = 0;
912 				object = NULL;
913 				vrele(tmp_vp);
914 			} else {
915 				vm_object_vndeallocate(object, NULL);
916 			}
917 			break;
918 		}
919 		ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
920 
921 		/*
922 		 * Normal case (object is locked exclusively)
923 		 */
924 		if (object->ref_count == 0) {
925 			panic("vm_object_deallocate: object deallocated "
926 			      "too many times: %d", object->type);
927 		}
928 		if (object->ref_count > 2) {
929 			atomic_add_int(&object->ref_count, -1);
930 #if defined(DEBUG_LOCKS)
931 			debugvm_object_add(object, file, line, -1);
932 #endif
933 			break;
934 		}
935 
936 		/*
937 		 * Here on ref_count of one or two, which are special cases for
938 		 * objects.
939 		 *
940 		 * Nominal ref_count > 1 case if the second ref is not from
941 		 * a shadow.
942 		 *
943 		 * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
944 		 */
945 		if (object->ref_count == 2 && object->shadow_count == 0) {
946 			if (object->type == OBJT_DEFAULT ||
947 			    object->type == OBJT_SWAP) {
948 				vm_object_set_flag(object, OBJ_ONEMAPPING);
949 			}
950 			atomic_add_int(&object->ref_count, -1);
951 #if defined(DEBUG_LOCKS)
952 			debugvm_object_add(object, file, line, -1);
953 #endif
954 			break;
955 		}
956 
957 		/*
958 		 * If the second ref is from a shadow we chain along it
959 		 * upwards if object's handle is exhausted.
960 		 *
961 		 * We have to decrement object->ref_count before potentially
962 		 * collapsing the first shadow object or the collapse code
963 		 * will not be able to handle the degenerate case to remove
964 		 * object.  However, if we do it too early the object can
965 		 * get ripped out from under us.
966 		 */
967 		if (object->ref_count == 2 && object->shadow_count == 1 &&
968 		    object->handle == NULL && (object->type == OBJT_DEFAULT ||
969 					       object->type == OBJT_SWAP)) {
970 			temp = LIST_FIRST(&object->shadow_head);
971 			KKASSERT(temp != NULL);
972 			vm_object_hold(temp);
973 
974 			/*
975 			 * Wait for any paging to complete so the collapse
976 			 * doesn't (or isn't likely to) qcollapse.  pip
977 			 * waiting must occur before we acquire the
978 			 * chainlock.
979 			 */
980 			while (
981 				temp->paging_in_progress ||
982 				object->paging_in_progress
983 			) {
984 				vm_object_pip_wait(temp, "objde1");
985 				vm_object_pip_wait(object, "objde2");
986 			}
987 
988 			/*
989 			 * If the parent is locked we have to give up, as
990 			 * otherwise we would be acquiring locks in the
991 			 * wrong order and potentially deadlock.
992 			 */
993 			if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
994 				vm_object_drop(temp);
995 				goto skip;
996 			}
997 			vm_object_chain_acquire(temp, 0);
998 
999 			/*
1000 			 * Recheck/retry after the hold and the paging
1001 			 * wait, both of which can block us.
1002 			 */
1003 			if (object->ref_count != 2 ||
1004 			    object->shadow_count != 1 ||
1005 			    object->handle ||
1006 			    LIST_FIRST(&object->shadow_head) != temp ||
1007 			    (object->type != OBJT_DEFAULT &&
1008 			     object->type != OBJT_SWAP)) {
1009 				vm_object_chain_release(temp);
1010 				vm_object_drop(temp);
1011 				continue;
1012 			}
1013 
1014 			/*
1015 			 * We can safely drop object's ref_count now.
1016 			 */
1017 			KKASSERT(object->ref_count == 2);
1018 			atomic_add_int(&object->ref_count, -1);
1019 #if defined(DEBUG_LOCKS)
1020 			debugvm_object_add(object, file, line, -1);
1021 #endif
1022 
1023 			/*
1024 			 * If our single parent is not collapseable just
1025 			 * decrement ref_count (2->1) and stop.
1026 			 */
1027 			if (temp->handle || (temp->type != OBJT_DEFAULT &&
1028 					     temp->type != OBJT_SWAP)) {
1029 				vm_object_chain_release(temp);
1030 				vm_object_drop(temp);
1031 				break;
1032 			}
1033 
1034 			/*
1035 			 * At this point we have already dropped object's
1036 			 * ref_count so it is possible for a race to
1037 			 * deallocate obj out from under us.  Any collapse
1038 			 * will re-check the situation.  We must not block
1039 			 * until we are able to collapse.
1040 			 *
1041 			 * Bump temp's ref_count to avoid an unwanted
1042 			 * degenerate recursion (can't call
1043 			 * vm_object_reference_locked() because it asserts
1044 			 * that CHAINLOCK is not set).
1045 			 */
1046 			atomic_add_int(&temp->ref_count, 1);
1047 			KKASSERT(temp->ref_count > 1);
1048 
1049 			/*
1050 			 * Collapse temp, then deallocate the extra ref
1051 			 * formally.
1052 			 */
1053 			vm_object_collapse(temp, &dlist);
1054 			vm_object_chain_release(temp);
1055 			if (must_drop) {
1056 				vm_object_lock_swap();
1057 				vm_object_drop(object);
1058 			}
1059 			object = temp;
1060 			must_drop = 1;
1061 			continue;
1062 		}
1063 
1064 		/*
1065 		 * Drop the ref and handle termination on the 1->0 transition.
1066 		 * We may have blocked above so we have to recheck.
1067 		 */
1068 skip:
1069 		KKASSERT(object->ref_count != 0);
1070 		if (object->ref_count >= 2) {
1071 			atomic_add_int(&object->ref_count, -1);
1072 #if defined(DEBUG_LOCKS)
1073 			debugvm_object_add(object, file, line, -1);
1074 #endif
1075 			break;
1076 		}
1077 		KKASSERT(object->ref_count == 1);
1078 
1079 		/*
1080 		 * 1->0 transition.  Chain through the backing_object.
1081 		 * Maintain the ref until we've located the backing object,
1082 		 * then re-check.
1083 		 */
1084 		while ((temp = object->backing_object) != NULL) {
1085 			if (temp->type == OBJT_VNODE)
1086 				vm_object_hold_shared(temp);
1087 			else
1088 				vm_object_hold(temp);
1089 			if (temp == object->backing_object)
1090 				break;
1091 			vm_object_drop(temp);
1092 		}
1093 
1094 		/*
1095 		 * 1->0 transition verified, retry if ref_count is no longer
1096 		 * 1.  Otherwise disconnect the backing_object (temp) and
1097 		 * clean up.
1098 		 */
1099 		if (object->ref_count != 1) {
1100 			vm_object_drop(temp);
1101 			continue;
1102 		}
1103 
1104 		/*
1105 		 * It shouldn't be possible for the object to be chain locked
1106 		 * if we're removing the last ref on it.
1107 		 *
1108 		 * Removing object from temp's shadow list requires dropping
1109 		 * temp, which we will do on loop.
1110 		 *
1111 		 * NOTE! vnodes do not use the shadow list, but still have
1112 		 *	 the backing_object reference.
1113 		 */
1114 		KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1115 
1116 		if (temp) {
1117 			if (object->flags & OBJ_ONSHADOW) {
1118 				LIST_REMOVE(object, shadow_list);
1119 				temp->shadow_count--;
1120 				atomic_add_int(&temp->generation, 1);
1121 				vm_object_clear_flag(object, OBJ_ONSHADOW);
1122 			}
1123 			object->backing_object = NULL;
1124 		}
1125 
1126 		atomic_add_int(&object->ref_count, -1);
1127 		if ((object->flags & OBJ_DEAD) == 0)
1128 			vm_object_terminate(object);
1129 		if (must_drop && temp)
1130 			vm_object_lock_swap();
1131 		if (must_drop)
1132 			vm_object_drop(object);
1133 		object = temp;
1134 		must_drop = 1;
1135 	}
1136 
1137 	if (must_drop && object)
1138 		vm_object_drop(object);
1139 
1140 	/*
1141 	 * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1142 	 * on the dlist have a hold count but are not locked.
1143 	 */
1144 	if ((dtmp = dlist) != NULL) {
1145 		dlist = dtmp->next;
1146 		object = dtmp->object;
1147 		kfree(dtmp, M_TEMP);
1148 
1149 		vm_object_lock(object);	/* already held, add lock */
1150 		must_drop = 1;		/* and we're responsible for it */
1151 		goto again;
1152 	}
1153 }
1154 
1155 /*
1156  * Destroy the specified object, freeing up related resources.
1157  *
1158  * The object must have zero references.
1159  *
1160  * The object must held.  The caller is responsible for dropping the object
1161  * after terminate returns.  Terminate does NOT drop the object.
1162  */
1163 static int vm_object_terminate_callback(vm_page_t p, void *data);
1164 
1165 void
1166 vm_object_terminate(vm_object_t object)
1167 {
1168 	struct rb_vm_page_scan_info info;
1169 	struct vm_object_hash *hash;
1170 
1171 	/*
1172 	 * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1173 	 * able to safely block.
1174 	 */
1175 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1176 	KKASSERT((object->flags & OBJ_DEAD) == 0);
1177 	vm_object_set_flag(object, OBJ_DEAD);
1178 
1179 	/*
1180 	 * Wait for the pageout daemon to be done with the object
1181 	 */
1182 	vm_object_pip_wait(object, "objtrm1");
1183 
1184 	KASSERT(!object->paging_in_progress,
1185 		("vm_object_terminate: pageout in progress"));
1186 
1187 	/*
1188 	 * Clean and free the pages, as appropriate. All references to the
1189 	 * object are gone, so we don't need to lock it.
1190 	 */
1191 	if (object->type == OBJT_VNODE) {
1192 		struct vnode *vp;
1193 
1194 		/*
1195 		 * Clean pages and flush buffers.
1196 		 *
1197 		 * NOTE!  TMPFS buffer flushes do not typically flush the
1198 		 *	  actual page to swap as this would be highly
1199 		 *	  inefficient, and normal filesystems usually wrap
1200 		 *	  page flushes with buffer cache buffers.
1201 		 *
1202 		 *	  To deal with this we have to call vinvalbuf() both
1203 		 *	  before and after the vm_object_page_clean().
1204 		 */
1205 		vp = (struct vnode *) object->handle;
1206 		vinvalbuf(vp, V_SAVE, 0, 0);
1207 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1208 		vinvalbuf(vp, V_SAVE, 0, 0);
1209 	}
1210 
1211 	/*
1212 	 * Wait for any I/O to complete, after which there had better not
1213 	 * be any references left on the object.
1214 	 */
1215 	vm_object_pip_wait(object, "objtrm2");
1216 
1217 	if (object->ref_count != 0) {
1218 		panic("vm_object_terminate: object with references, "
1219 		      "ref_count=%d", object->ref_count);
1220 	}
1221 
1222 	/*
1223 	 * Cleanup any shared pmaps associated with this object.
1224 	 */
1225 	pmap_object_free(object);
1226 
1227 	/*
1228 	 * Now free any remaining pages. For internal objects, this also
1229 	 * removes them from paging queues. Don't free wired pages, just
1230 	 * remove them from the object.
1231 	 */
1232 	info.count = 0;
1233 	info.object = object;
1234 	do {
1235 		info.error = 0;
1236 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1237 					vm_object_terminate_callback, &info);
1238 	} while (info.error);
1239 
1240 	/*
1241 	 * Let the pager know object is dead.
1242 	 */
1243 	vm_pager_deallocate(object);
1244 
1245 	/*
1246 	 * Wait for the object hold count to hit 1, clean out pages as
1247 	 * we go.  vmobj_token interlocks any race conditions that might
1248 	 * pick the object up from the vm_object_list after we have cleared
1249 	 * rb_memq.
1250 	 */
1251 	for (;;) {
1252 		if (RB_ROOT(&object->rb_memq) == NULL)
1253 			break;
1254 		kprintf("vm_object_terminate: Warning, object %p "
1255 			"still has %ld pages\n",
1256 			object, object->resident_page_count);
1257 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1258 					vm_object_terminate_callback, &info);
1259 	}
1260 
1261 	/*
1262 	 * There had better not be any pages left
1263 	 */
1264 	KKASSERT(object->resident_page_count == 0);
1265 
1266 	/*
1267 	 * Remove the object from the global object list.
1268 	 */
1269 	hash = vmobj_hash(object);
1270 	lwkt_gettoken(&hash->token);
1271 	TAILQ_REMOVE(&hash->list, object, object_list);
1272 	lwkt_reltoken(&hash->token);
1273 
1274 	if (object->ref_count != 0) {
1275 		panic("vm_object_terminate2: object with references, "
1276 		      "ref_count=%d", object->ref_count);
1277 	}
1278 
1279 	/*
1280 	 * NOTE: The object hold_count is at least 1, so we cannot kfree()
1281 	 *	 the object here.  See vm_object_drop().
1282 	 */
1283 }
1284 
1285 /*
1286  * The caller must hold the object.
1287  */
1288 static int
1289 vm_object_terminate_callback(vm_page_t p, void *data)
1290 {
1291 	struct rb_vm_page_scan_info *info = data;
1292 	vm_object_t object;
1293 
1294 	object = p->object;
1295 	KKASSERT(object == info->object);
1296 	if (vm_page_busy_try(p, TRUE)) {
1297 		vm_page_sleep_busy(p, TRUE, "vmotrm");
1298 		info->error = 1;
1299 		return 0;
1300 	}
1301 	if (object != p->object) {
1302 		/* XXX remove once we determine it can't happen */
1303 		kprintf("vm_object_terminate: Warning: Encountered "
1304 			"busied page %p on queue %d\n", p, p->queue);
1305 		vm_page_wakeup(p);
1306 		info->error = 1;
1307 	} else if (p->wire_count == 0) {
1308 		/*
1309 		 * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1310 		 */
1311 		vm_page_free(p);
1312 		mycpu->gd_cnt.v_pfree++;
1313 	} else {
1314 		if (p->queue != PQ_NONE)
1315 			kprintf("vm_object_terminate: Warning: Encountered "
1316 				"wired page %p on queue %d\n", p, p->queue);
1317 		vm_page_remove(p);
1318 		vm_page_wakeup(p);
1319 	}
1320 
1321 	/*
1322 	 * Must be at end to avoid SMP races, caller holds object token
1323 	 */
1324 	if ((++info->count & 63) == 0)
1325 		lwkt_user_yield();
1326 	return(0);
1327 }
1328 
1329 /*
1330  * Clean all dirty pages in the specified range of object.  Leaves page
1331  * on whatever queue it is currently on.   If NOSYNC is set then do not
1332  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1333  * leaving the object dirty.
1334  *
1335  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1336  * synchronous clustering mode implementation.
1337  *
1338  * Odd semantics: if start == end, we clean everything.
1339  *
1340  * The object must be locked? XXX
1341  */
1342 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1343 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1344 
1345 void
1346 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1347 		     int flags)
1348 {
1349 	struct rb_vm_page_scan_info info;
1350 	struct vnode *vp;
1351 	int wholescan;
1352 	int pagerflags;
1353 	int generation;
1354 
1355 	vm_object_hold(object);
1356 	if (object->type != OBJT_VNODE ||
1357 	    (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1358 		vm_object_drop(object);
1359 		return;
1360 	}
1361 
1362 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
1363 			VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1364 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1365 
1366 	vp = object->handle;
1367 
1368 	/*
1369 	 * Interlock other major object operations.  This allows us to
1370 	 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1371 	 */
1372 	vm_object_set_flag(object, OBJ_CLEANING);
1373 
1374 	/*
1375 	 * Handle 'entire object' case
1376 	 */
1377 	info.start_pindex = start;
1378 	if (end == 0) {
1379 		info.end_pindex = object->size - 1;
1380 	} else {
1381 		info.end_pindex = end - 1;
1382 	}
1383 	wholescan = (start == 0 && info.end_pindex == object->size - 1);
1384 	info.limit = flags;
1385 	info.pagerflags = pagerflags;
1386 	info.object = object;
1387 
1388 	/*
1389 	 * If cleaning the entire object do a pass to mark the pages read-only.
1390 	 * If everything worked out ok, clear OBJ_WRITEABLE and
1391 	 * OBJ_MIGHTBEDIRTY.
1392 	 */
1393 	if (wholescan) {
1394 		info.error = 0;
1395 		info.count = 0;
1396 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1397 					vm_object_page_clean_pass1, &info);
1398 		if (info.error == 0) {
1399 			vm_object_clear_flag(object,
1400 					     OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1401 			if (object->type == OBJT_VNODE &&
1402 			    (vp = (struct vnode *)object->handle) != NULL) {
1403 				/*
1404 				 * Use new-style interface to clear VISDIRTY
1405 				 * because the vnode is not necessarily removed
1406 				 * from the syncer list(s) as often as it was
1407 				 * under the old interface, which can leave
1408 				 * the vnode on the syncer list after reclaim.
1409 				 */
1410 				vclrobjdirty(vp);
1411 			}
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * Do a pass to clean all the dirty pages we find.
1417 	 */
1418 	do {
1419 		info.error = 0;
1420 		info.count = 0;
1421 		generation = object->generation;
1422 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1423 					vm_object_page_clean_pass2, &info);
1424 	} while (info.error || generation != object->generation);
1425 
1426 	vm_object_clear_flag(object, OBJ_CLEANING);
1427 	vm_object_drop(object);
1428 }
1429 
1430 /*
1431  * The caller must hold the object.
1432  */
1433 static
1434 int
1435 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1436 {
1437 	struct rb_vm_page_scan_info *info = data;
1438 
1439 	KKASSERT(p->object == info->object);
1440 
1441 	vm_page_flag_set(p, PG_CLEANCHK);
1442 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1443 		info->error = 1;
1444 	} else if (vm_page_busy_try(p, FALSE)) {
1445 		info->error = 1;
1446 	} else {
1447 		KKASSERT(p->object == info->object);
1448 		vm_page_protect(p, VM_PROT_READ);
1449 		vm_page_wakeup(p);
1450 	}
1451 
1452 	/*
1453 	 * Must be at end to avoid SMP races, caller holds object token
1454 	 */
1455 	if ((++info->count & 63) == 0)
1456 		lwkt_user_yield();
1457 	return(0);
1458 }
1459 
1460 /*
1461  * The caller must hold the object
1462  */
1463 static
1464 int
1465 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1466 {
1467 	struct rb_vm_page_scan_info *info = data;
1468 	int generation;
1469 
1470 	KKASSERT(p->object == info->object);
1471 
1472 	/*
1473 	 * Do not mess with pages that were inserted after we started
1474 	 * the cleaning pass.
1475 	 */
1476 	if ((p->flags & PG_CLEANCHK) == 0)
1477 		goto done;
1478 
1479 	generation = info->object->generation;
1480 
1481 	if (vm_page_busy_try(p, TRUE)) {
1482 		vm_page_sleep_busy(p, TRUE, "vpcwai");
1483 		info->error = 1;
1484 		goto done;
1485 	}
1486 
1487 	KKASSERT(p->object == info->object &&
1488 		 info->object->generation == generation);
1489 
1490 	/*
1491 	 * Before wasting time traversing the pmaps, check for trivial
1492 	 * cases where the page cannot be dirty.
1493 	 */
1494 	if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1495 		KKASSERT((p->dirty & p->valid) == 0 &&
1496 			 (p->flags & PG_NEED_COMMIT) == 0);
1497 		vm_page_wakeup(p);
1498 		goto done;
1499 	}
1500 
1501 	/*
1502 	 * Check whether the page is dirty or not.  The page has been set
1503 	 * to be read-only so the check will not race a user dirtying the
1504 	 * page.
1505 	 */
1506 	vm_page_test_dirty(p);
1507 	if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1508 		vm_page_flag_clear(p, PG_CLEANCHK);
1509 		vm_page_wakeup(p);
1510 		goto done;
1511 	}
1512 
1513 	/*
1514 	 * If we have been asked to skip nosync pages and this is a
1515 	 * nosync page, skip it.  Note that the object flags were
1516 	 * not cleared in this case (because pass1 will have returned an
1517 	 * error), so we do not have to set them.
1518 	 */
1519 	if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1520 		vm_page_flag_clear(p, PG_CLEANCHK);
1521 		vm_page_wakeup(p);
1522 		goto done;
1523 	}
1524 
1525 	/*
1526 	 * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1527 	 * the pages that get successfully flushed.  Set info->error if
1528 	 * we raced an object modification.
1529 	 */
1530 	vm_object_page_collect_flush(info->object, p, info->pagerflags);
1531 	/* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1532 
1533 	/*
1534 	 * Must be at end to avoid SMP races, caller holds object token
1535 	 */
1536 done:
1537 	if ((++info->count & 63) == 0)
1538 		lwkt_user_yield();
1539 	return(0);
1540 }
1541 
1542 /*
1543  * Collect the specified page and nearby pages and flush them out.
1544  * The number of pages flushed is returned.  The passed page is busied
1545  * by the caller and we are responsible for its disposition.
1546  *
1547  * The caller must hold the object.
1548  */
1549 static void
1550 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1551 {
1552 	int error;
1553 	int is;
1554 	int ib;
1555 	int i;
1556 	int page_base;
1557 	vm_pindex_t pi;
1558 	vm_page_t ma[BLIST_MAX_ALLOC];
1559 
1560 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1561 
1562 	pi = p->pindex;
1563 	page_base = pi % BLIST_MAX_ALLOC;
1564 	ma[page_base] = p;
1565 	ib = page_base - 1;
1566 	is = page_base + 1;
1567 
1568 	while (ib >= 0) {
1569 		vm_page_t tp;
1570 
1571 		tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1572 					     TRUE, &error);
1573 		if (error)
1574 			break;
1575 		if (tp == NULL)
1576 			break;
1577 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1578 		    (tp->flags & PG_CLEANCHK) == 0) {
1579 			vm_page_wakeup(tp);
1580 			break;
1581 		}
1582 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1583 			vm_page_flag_clear(tp, PG_CLEANCHK);
1584 			vm_page_wakeup(tp);
1585 			break;
1586 		}
1587 		vm_page_test_dirty(tp);
1588 		if ((tp->dirty & tp->valid) == 0 &&
1589 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1590 			vm_page_flag_clear(tp, PG_CLEANCHK);
1591 			vm_page_wakeup(tp);
1592 			break;
1593 		}
1594 		ma[ib] = tp;
1595 		--ib;
1596 	}
1597 	++ib;	/* fixup */
1598 
1599 	while (is < BLIST_MAX_ALLOC &&
1600 	       pi - page_base + is < object->size) {
1601 		vm_page_t tp;
1602 
1603 		tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1604 					     TRUE, &error);
1605 		if (error)
1606 			break;
1607 		if (tp == NULL)
1608 			break;
1609 		if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1610 		    (tp->flags & PG_CLEANCHK) == 0) {
1611 			vm_page_wakeup(tp);
1612 			break;
1613 		}
1614 		if ((tp->queue - tp->pc) == PQ_CACHE) {
1615 			vm_page_flag_clear(tp, PG_CLEANCHK);
1616 			vm_page_wakeup(tp);
1617 			break;
1618 		}
1619 		vm_page_test_dirty(tp);
1620 		if ((tp->dirty & tp->valid) == 0 &&
1621 		    (tp->flags & PG_NEED_COMMIT) == 0) {
1622 			vm_page_flag_clear(tp, PG_CLEANCHK);
1623 			vm_page_wakeup(tp);
1624 			break;
1625 		}
1626 		ma[is] = tp;
1627 		++is;
1628 	}
1629 
1630 	/*
1631 	 * All pages in the ma[] array are busied now
1632 	 */
1633 	for (i = ib; i < is; ++i) {
1634 		vm_page_flag_clear(ma[i], PG_CLEANCHK);
1635 		vm_page_hold(ma[i]);	/* XXX need this any more? */
1636 	}
1637 	vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1638 	for (i = ib; i < is; ++i)	/* XXX need this any more? */
1639 		vm_page_unhold(ma[i]);
1640 }
1641 
1642 /*
1643  * Same as vm_object_pmap_copy, except range checking really
1644  * works, and is meant for small sections of an object.
1645  *
1646  * This code protects resident pages by making them read-only
1647  * and is typically called on a fork or split when a page
1648  * is converted to copy-on-write.
1649  *
1650  * NOTE: If the page is already at VM_PROT_NONE, calling
1651  * vm_page_protect will have no effect.
1652  */
1653 void
1654 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1655 {
1656 	vm_pindex_t idx;
1657 	vm_page_t p;
1658 
1659 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1660 		return;
1661 
1662 	vm_object_hold(object);
1663 	for (idx = start; idx < end; idx++) {
1664 		p = vm_page_lookup(object, idx);
1665 		if (p == NULL)
1666 			continue;
1667 		vm_page_protect(p, VM_PROT_READ);
1668 	}
1669 	vm_object_drop(object);
1670 }
1671 
1672 /*
1673  * Removes all physical pages in the specified object range from all
1674  * physical maps.
1675  *
1676  * The object must *not* be locked.
1677  */
1678 
1679 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1680 
1681 void
1682 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1683 {
1684 	struct rb_vm_page_scan_info info;
1685 
1686 	if (object == NULL)
1687 		return;
1688 	if (start == end)
1689 		return;
1690 	info.start_pindex = start;
1691 	info.end_pindex = end - 1;
1692 	info.count = 0;
1693 	info.object = object;
1694 
1695 	vm_object_hold(object);
1696 	do {
1697 		info.error = 0;
1698 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1699 					vm_object_pmap_remove_callback, &info);
1700 	} while (info.error);
1701 	if (start == 0 && end == object->size)
1702 		vm_object_clear_flag(object, OBJ_WRITEABLE);
1703 	vm_object_drop(object);
1704 }
1705 
1706 /*
1707  * The caller must hold the object
1708  */
1709 static int
1710 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1711 {
1712 	struct rb_vm_page_scan_info *info = data;
1713 
1714 	if (info->object != p->object ||
1715 	    p->pindex < info->start_pindex ||
1716 	    p->pindex > info->end_pindex) {
1717 		kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1718 			info->object, p);
1719 		info->error = 1;
1720 		return(0);
1721 	}
1722 
1723 	vm_page_protect(p, VM_PROT_NONE);
1724 
1725 	/*
1726 	 * Must be at end to avoid SMP races, caller holds object token
1727 	 */
1728 	if ((++info->count & 63) == 0)
1729 		lwkt_user_yield();
1730 	return(0);
1731 }
1732 
1733 /*
1734  * Implements the madvise function at the object/page level.
1735  *
1736  * MADV_WILLNEED	(any object)
1737  *
1738  *	Activate the specified pages if they are resident.
1739  *
1740  * MADV_DONTNEED	(any object)
1741  *
1742  *	Deactivate the specified pages if they are resident.
1743  *
1744  * MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1745  *
1746  *	Deactivate and clean the specified pages if they are
1747  *	resident.  This permits the process to reuse the pages
1748  *	without faulting or the kernel to reclaim the pages
1749  *	without I/O.
1750  *
1751  * No requirements.
1752  */
1753 void
1754 vm_object_madvise(vm_object_t object, vm_pindex_t pindex,
1755 		  vm_pindex_t count, int advise)
1756 {
1757 	vm_pindex_t end, tpindex;
1758 	vm_object_t tobject;
1759 	vm_object_t xobj;
1760 	vm_page_t m;
1761 	int error;
1762 
1763 	if (object == NULL)
1764 		return;
1765 
1766 	end = pindex + count;
1767 
1768 	vm_object_hold(object);
1769 	tobject = object;
1770 
1771 	/*
1772 	 * Locate and adjust resident pages
1773 	 */
1774 	for (; pindex < end; pindex += 1) {
1775 relookup:
1776 		if (tobject != object)
1777 			vm_object_drop(tobject);
1778 		tobject = object;
1779 		tpindex = pindex;
1780 shadowlookup:
1781 		/*
1782 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1783 		 * and those pages must be OBJ_ONEMAPPING.
1784 		 */
1785 		if (advise == MADV_FREE) {
1786 			if ((tobject->type != OBJT_DEFAULT &&
1787 			     tobject->type != OBJT_SWAP) ||
1788 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
1789 				continue;
1790 			}
1791 		}
1792 
1793 		m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1794 
1795 		if (error) {
1796 			vm_page_sleep_busy(m, TRUE, "madvpo");
1797 			goto relookup;
1798 		}
1799 		if (m == NULL) {
1800 			/*
1801 			 * There may be swap even if there is no backing page
1802 			 */
1803 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1804 				swap_pager_freespace(tobject, tpindex, 1);
1805 
1806 			/*
1807 			 * next object
1808 			 */
1809 			while ((xobj = tobject->backing_object) != NULL) {
1810 				KKASSERT(xobj != object);
1811 				vm_object_hold(xobj);
1812 				if (xobj == tobject->backing_object)
1813 					break;
1814 				vm_object_drop(xobj);
1815 			}
1816 			if (xobj == NULL)
1817 				continue;
1818 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1819 			if (tobject != object) {
1820 				vm_object_lock_swap();
1821 				vm_object_drop(tobject);
1822 			}
1823 			tobject = xobj;
1824 			goto shadowlookup;
1825 		}
1826 
1827 		/*
1828 		 * If the page is not in a normal active state, we skip it.
1829 		 * If the page is not managed there are no page queues to
1830 		 * mess with.  Things can break if we mess with pages in
1831 		 * any of the below states.
1832 		 */
1833 		if (m->wire_count ||
1834 		    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1835 		    m->valid != VM_PAGE_BITS_ALL
1836 		) {
1837 			vm_page_wakeup(m);
1838 			continue;
1839 		}
1840 
1841 		/*
1842 		 * Theoretically once a page is known not to be busy, an
1843 		 * interrupt cannot come along and rip it out from under us.
1844 		 */
1845 
1846 		if (advise == MADV_WILLNEED) {
1847 			vm_page_activate(m);
1848 		} else if (advise == MADV_DONTNEED) {
1849 			vm_page_dontneed(m);
1850 		} else if (advise == MADV_FREE) {
1851 			/*
1852 			 * Mark the page clean.  This will allow the page
1853 			 * to be freed up by the system.  However, such pages
1854 			 * are often reused quickly by malloc()/free()
1855 			 * so we do not do anything that would cause
1856 			 * a page fault if we can help it.
1857 			 *
1858 			 * Specifically, we do not try to actually free
1859 			 * the page now nor do we try to put it in the
1860 			 * cache (which would cause a page fault on reuse).
1861 			 *
1862 			 * But we do make the page is freeable as we
1863 			 * can without actually taking the step of unmapping
1864 			 * it.
1865 			 */
1866 			pmap_clear_modify(m);
1867 			m->dirty = 0;
1868 			m->act_count = 0;
1869 			vm_page_dontneed(m);
1870 			if (tobject->type == OBJT_SWAP)
1871 				swap_pager_freespace(tobject, tpindex, 1);
1872 		}
1873 		vm_page_wakeup(m);
1874 	}
1875 	if (tobject != object)
1876 		vm_object_drop(tobject);
1877 	vm_object_drop(object);
1878 }
1879 
1880 /*
1881  * Create a new object which is backed by the specified existing object
1882  * range.  Replace the pointer and offset that was pointing at the existing
1883  * object with the pointer/offset for the new object.
1884  *
1885  * If addref is non-zero the returned object is given an additional reference.
1886  * This mechanic exists to avoid the situation where refs might be 1 and
1887  * race against a collapse when the caller intends to bump it.  So the
1888  * caller cannot add the ref after the fact.  Used when the caller is
1889  * duplicating a vm_map_entry.
1890  *
1891  * No other requirements.
1892  */
1893 void
1894 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1895 		 int addref)
1896 {
1897 	vm_object_t source;
1898 	vm_object_t result;
1899 	int useshadowlist;
1900 
1901 	source = *objectp;
1902 
1903 	/*
1904 	 * Don't create the new object if the old object isn't shared.
1905 	 * We have to chain wait before adding the reference to avoid
1906 	 * racing a collapse or deallocation.
1907 	 *
1908 	 * Clear OBJ_ONEMAPPING flag when shadowing.
1909 	 *
1910 	 * The caller owns a ref on source via *objectp which we are going
1911 	 * to replace.  This ref is inherited by the backing_object assignment.
1912 	 * from nobject and does not need to be incremented here.
1913 	 *
1914 	 * However, we add a temporary extra reference to the original source
1915 	 * prior to holding nobject in case we block, to avoid races where
1916 	 * someone else might believe that the source can be collapsed.
1917 	 */
1918 	useshadowlist = 0;
1919 	if (source) {
1920 		if (source->type != OBJT_VNODE) {
1921 			useshadowlist = 1;
1922 			vm_object_hold(source);
1923 			vm_object_chain_wait(source, 0);
1924 			if (source->ref_count == 1 &&
1925 			    source->handle == NULL &&
1926 			    (source->type == OBJT_DEFAULT ||
1927 			     source->type == OBJT_SWAP)) {
1928 				if (addref) {
1929 					vm_object_reference_locked(source);
1930 					vm_object_clear_flag(source,
1931 							     OBJ_ONEMAPPING);
1932 				}
1933 				vm_object_drop(source);
1934 				return;
1935 			}
1936 			vm_object_reference_locked(source);
1937 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1938 		} else {
1939 			vm_object_reference_quick(source);
1940 			vm_object_clear_flag(source, OBJ_ONEMAPPING);
1941 		}
1942 	}
1943 
1944 	/*
1945 	 * Allocate a new object with the given length.  The new object
1946 	 * is returned referenced but we may have to add another one.
1947 	 * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1948 	 * (typically because the caller is about to clone a vm_map_entry).
1949 	 *
1950 	 * The source object currently has an extra reference to prevent
1951 	 * collapses into it while we mess with its shadow list, which
1952 	 * we will remove later in this routine.
1953 	 *
1954 	 * The target object may require a second reference if asked for one
1955 	 * by the caller.
1956 	 */
1957 	result = vm_object_allocate(OBJT_DEFAULT, length);
1958 	if (result == NULL)
1959 		panic("vm_object_shadow: no object for shadowing");
1960 	vm_object_hold(result);
1961 	if (addref) {
1962 		vm_object_reference_locked(result);
1963 		vm_object_clear_flag(result, OBJ_ONEMAPPING);
1964 	}
1965 
1966 	/*
1967 	 * The new object shadows the source object.  Chain wait before
1968 	 * adjusting shadow_count or the shadow list to avoid races.
1969 	 *
1970 	 * Try to optimize the result object's page color when shadowing
1971 	 * in order to maintain page coloring consistency in the combined
1972 	 * shadowed object.
1973 	 *
1974 	 * The backing_object reference to source requires adding a ref to
1975 	 * source.  We simply inherit the ref from the original *objectp
1976 	 * (which we are replacing) so no additional refs need to be added.
1977 	 * (we must still clean up the extra ref we had to prevent collapse
1978 	 * races).
1979 	 *
1980 	 * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1981 	 */
1982 	KKASSERT(result->backing_object == NULL);
1983 	result->backing_object = source;
1984 	if (source) {
1985 		if (useshadowlist) {
1986 			vm_object_chain_wait(source, 0);
1987 			LIST_INSERT_HEAD(&source->shadow_head,
1988 					 result, shadow_list);
1989 			source->shadow_count++;
1990 			atomic_add_int(&source->generation, 1);
1991 			vm_object_set_flag(result, OBJ_ONSHADOW);
1992 		}
1993 		/* cpu localization twist */
1994 		result->pg_color = vm_quickcolor();
1995 	}
1996 
1997 	/*
1998 	 * Adjust the return storage.  Drop the ref on source before
1999 	 * returning.
2000 	 */
2001 	result->backing_object_offset = *offset;
2002 	vm_object_drop(result);
2003 	*offset = 0;
2004 	if (source) {
2005 		if (useshadowlist) {
2006 			vm_object_deallocate_locked(source);
2007 			vm_object_drop(source);
2008 		} else {
2009 			vm_object_deallocate(source);
2010 		}
2011 	}
2012 
2013 	/*
2014 	 * Return the new things
2015 	 */
2016 	*objectp = result;
2017 }
2018 
2019 #define	OBSC_TEST_ALL_SHADOWED	0x0001
2020 #define	OBSC_COLLAPSE_NOWAIT	0x0002
2021 #define	OBSC_COLLAPSE_WAIT	0x0004
2022 
2023 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
2024 
2025 /*
2026  * The caller must hold the object.
2027  */
2028 static __inline int
2029 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
2030 {
2031 	struct rb_vm_page_scan_info info;
2032 	struct vm_object_hash *hash;
2033 
2034 	vm_object_assert_held(object);
2035 	vm_object_assert_held(backing_object);
2036 
2037 	KKASSERT(backing_object == object->backing_object);
2038 	info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2039 
2040 	/*
2041 	 * Initial conditions
2042 	 */
2043 	if (op & OBSC_TEST_ALL_SHADOWED) {
2044 		/*
2045 		 * We do not want to have to test for the existence of
2046 		 * swap pages in the backing object.  XXX but with the
2047 		 * new swapper this would be pretty easy to do.
2048 		 *
2049 		 * XXX what about anonymous MAP_SHARED memory that hasn't
2050 		 * been ZFOD faulted yet?  If we do not test for this, the
2051 		 * shadow test may succeed! XXX
2052 		 */
2053 		if (backing_object->type != OBJT_DEFAULT)
2054 			return(0);
2055 	}
2056 	if (op & OBSC_COLLAPSE_WAIT) {
2057 		KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2058 		vm_object_set_flag(backing_object, OBJ_DEAD);
2059 
2060 		hash = vmobj_hash(backing_object);
2061 		lwkt_gettoken(&hash->token);
2062 		TAILQ_REMOVE(&hash->list, backing_object, object_list);
2063 		lwkt_reltoken(&hash->token);
2064 	}
2065 
2066 	/*
2067 	 * Our scan.   We have to retry if a negative error code is returned,
2068 	 * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2069 	 * the scan had to be stopped because the parent does not completely
2070 	 * shadow the child.
2071 	 */
2072 	info.object = object;
2073 	info.backing_object = backing_object;
2074 	info.limit = op;
2075 	info.count = 0;
2076 	do {
2077 		info.error = 1;
2078 		vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2079 					vm_object_backing_scan_callback,
2080 					&info);
2081 	} while (info.error < 0);
2082 
2083 	return(info.error);
2084 }
2085 
2086 /*
2087  * The caller must hold the object.
2088  */
2089 static int
2090 vm_object_backing_scan_callback(vm_page_t p, void *data)
2091 {
2092 	struct rb_vm_page_scan_info *info = data;
2093 	vm_object_t backing_object;
2094 	vm_object_t object;
2095 	vm_pindex_t pindex;
2096 	vm_pindex_t new_pindex;
2097 	vm_pindex_t backing_offset_index;
2098 	int op;
2099 
2100 	pindex = p->pindex;
2101 	new_pindex = pindex - info->backing_offset_index;
2102 	op = info->limit;
2103 	object = info->object;
2104 	backing_object = info->backing_object;
2105 	backing_offset_index = info->backing_offset_index;
2106 
2107 	if (op & OBSC_TEST_ALL_SHADOWED) {
2108 		vm_page_t pp;
2109 
2110 		/*
2111 		 * Ignore pages outside the parent object's range
2112 		 * and outside the parent object's mapping of the
2113 		 * backing object.
2114 		 *
2115 		 * note that we do not busy the backing object's
2116 		 * page.
2117 		 */
2118 		if (pindex < backing_offset_index ||
2119 		    new_pindex >= object->size
2120 		) {
2121 			return(0);
2122 		}
2123 
2124 		/*
2125 		 * See if the parent has the page or if the parent's
2126 		 * object pager has the page.  If the parent has the
2127 		 * page but the page is not valid, the parent's
2128 		 * object pager must have the page.
2129 		 *
2130 		 * If this fails, the parent does not completely shadow
2131 		 * the object and we might as well give up now.
2132 		 */
2133 		pp = vm_page_lookup(object, new_pindex);
2134 		if ((pp == NULL || pp->valid == 0) &&
2135 		    !vm_pager_has_page(object, new_pindex)
2136 		) {
2137 			info->error = 0;	/* problemo */
2138 			return(-1);		/* stop the scan */
2139 		}
2140 	}
2141 
2142 	/*
2143 	 * Check for busy page.  Note that we may have lost (p) when we
2144 	 * possibly blocked above.
2145 	 */
2146 	if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2147 		vm_page_t pp;
2148 
2149 		if (vm_page_busy_try(p, TRUE)) {
2150 			if (op & OBSC_COLLAPSE_NOWAIT) {
2151 				return(0);
2152 			} else {
2153 				/*
2154 				 * If we slept, anything could have
2155 				 * happened.   Ask that the scan be restarted.
2156 				 *
2157 				 * Since the object is marked dead, the
2158 				 * backing offset should not have changed.
2159 				 */
2160 				vm_page_sleep_busy(p, TRUE, "vmocol");
2161 				info->error = -1;
2162 				return(-1);
2163 			}
2164 		}
2165 
2166 		/*
2167 		 * If (p) is no longer valid restart the scan.
2168 		 */
2169 		if (p->object != backing_object || p->pindex != pindex) {
2170 			kprintf("vm_object_backing_scan: Warning: page "
2171 				"%p ripped out from under us\n", p);
2172 			vm_page_wakeup(p);
2173 			info->error = -1;
2174 			return(-1);
2175 		}
2176 
2177 		if (op & OBSC_COLLAPSE_NOWAIT) {
2178 			if (p->valid == 0 ||
2179 			    p->wire_count ||
2180 			    (p->flags & PG_NEED_COMMIT)) {
2181 				vm_page_wakeup(p);
2182 				return(0);
2183 			}
2184 		} else {
2185 			/* XXX what if p->valid == 0 , hold_count, etc? */
2186 		}
2187 
2188 		KASSERT(
2189 		    p->object == backing_object,
2190 		    ("vm_object_qcollapse(): object mismatch")
2191 		);
2192 
2193 		/*
2194 		 * Destroy any associated swap
2195 		 */
2196 		if (backing_object->type == OBJT_SWAP)
2197 			swap_pager_freespace(backing_object, p->pindex, 1);
2198 
2199 		if (
2200 		    p->pindex < backing_offset_index ||
2201 		    new_pindex >= object->size
2202 		) {
2203 			/*
2204 			 * Page is out of the parent object's range, we
2205 			 * can simply destroy it.
2206 			 */
2207 			vm_page_protect(p, VM_PROT_NONE);
2208 			vm_page_free(p);
2209 			return(0);
2210 		}
2211 
2212 		pp = vm_page_lookup(object, new_pindex);
2213 		if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2214 			/*
2215 			 * page already exists in parent OR swap exists
2216 			 * for this location in the parent.  Destroy
2217 			 * the original page from the backing object.
2218 			 *
2219 			 * Leave the parent's page alone
2220 			 */
2221 			vm_page_protect(p, VM_PROT_NONE);
2222 			vm_page_free(p);
2223 			return(0);
2224 		}
2225 
2226 		/*
2227 		 * Page does not exist in parent, rename the
2228 		 * page from the backing object to the main object.
2229 		 *
2230 		 * If the page was mapped to a process, it can remain
2231 		 * mapped through the rename.
2232 		 */
2233 		if ((p->queue - p->pc) == PQ_CACHE)
2234 			vm_page_deactivate(p);
2235 
2236 		vm_page_rename(p, object, new_pindex);
2237 		vm_page_wakeup(p);
2238 		/* page automatically made dirty by rename */
2239 	}
2240 	return(0);
2241 }
2242 
2243 /*
2244  * This version of collapse allows the operation to occur earlier and
2245  * when paging_in_progress is true for an object...  This is not a complete
2246  * operation, but should plug 99.9% of the rest of the leaks.
2247  *
2248  * The caller must hold the object and backing_object and both must be
2249  * chainlocked.
2250  *
2251  * (only called from vm_object_collapse)
2252  */
2253 static void
2254 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2255 {
2256 	if (backing_object->ref_count == 1) {
2257 		atomic_add_int(&backing_object->ref_count, 2);
2258 #if defined(DEBUG_LOCKS)
2259 		debugvm_object_add(backing_object, "qcollapse", 1, 2);
2260 #endif
2261 		vm_object_backing_scan(object, backing_object,
2262 				       OBSC_COLLAPSE_NOWAIT);
2263 		atomic_add_int(&backing_object->ref_count, -2);
2264 #if defined(DEBUG_LOCKS)
2265 		debugvm_object_add(backing_object, "qcollapse", 2, -2);
2266 #endif
2267 	}
2268 }
2269 
2270 /*
2271  * Collapse an object with the object backing it.  Pages in the backing
2272  * object are moved into the parent, and the backing object is deallocated.
2273  * Any conflict is resolved in favor of the parent's existing pages.
2274  *
2275  * object must be held and chain-locked on call.
2276  *
2277  * The caller must have an extra ref on object to prevent a race from
2278  * destroying it during the collapse.
2279  */
2280 void
2281 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2282 {
2283 	struct vm_object_dealloc_list *dlist = NULL;
2284 	vm_object_t backing_object;
2285 
2286 	/*
2287 	 * Only one thread is attempting a collapse at any given moment.
2288 	 * There are few restrictions for (object) that callers of this
2289 	 * function check so reentrancy is likely.
2290 	 */
2291 	KKASSERT(object != NULL);
2292 	vm_object_assert_held(object);
2293 	KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2294 
2295 	for (;;) {
2296 		vm_object_t bbobj;
2297 		int dodealloc;
2298 
2299 		/*
2300 		 * We can only collapse a DEFAULT/SWAP object with a
2301 		 * DEFAULT/SWAP object.
2302 		 */
2303 		if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2304 			backing_object = NULL;
2305 			break;
2306 		}
2307 
2308 		backing_object = object->backing_object;
2309 		if (backing_object == NULL)
2310 			break;
2311 		if (backing_object->type != OBJT_DEFAULT &&
2312 		    backing_object->type != OBJT_SWAP) {
2313 			backing_object = NULL;
2314 			break;
2315 		}
2316 
2317 		/*
2318 		 * Hold (token lock) the backing_object and retest conditions.
2319 		 */
2320 		vm_object_hold(backing_object);
2321 		if (backing_object != object->backing_object ||
2322 		    (backing_object->type != OBJT_DEFAULT &&
2323 		     backing_object->type != OBJT_SWAP)) {
2324 			vm_object_drop(backing_object);
2325 			continue;
2326 		}
2327 
2328 		/*
2329 		 * Chain-lock the backing object too because if we
2330 		 * successfully merge its pages into the top object we
2331 		 * will collapse backing_object->backing_object as the
2332 		 * new backing_object.  Re-check that it is still our
2333 		 * backing object.
2334 		 */
2335 		vm_object_chain_acquire(backing_object, 0);
2336 		if (backing_object != object->backing_object) {
2337 			vm_object_chain_release(backing_object);
2338 			vm_object_drop(backing_object);
2339 			continue;
2340 		}
2341 
2342 		/*
2343 		 * We check the backing object first, because it is most
2344 		 * likely not collapsable.
2345 		 */
2346 		if (backing_object->handle != NULL ||
2347 		    (backing_object->type != OBJT_DEFAULT &&
2348 		     backing_object->type != OBJT_SWAP) ||
2349 		    (backing_object->flags & OBJ_DEAD) ||
2350 		    object->handle != NULL ||
2351 		    (object->type != OBJT_DEFAULT &&
2352 		     object->type != OBJT_SWAP) ||
2353 		    (object->flags & OBJ_DEAD)) {
2354 			break;
2355 		}
2356 
2357 		/*
2358 		 * If paging is in progress we can't do a normal collapse.
2359 		 */
2360 		if (object->paging_in_progress != 0 ||
2361 		    backing_object->paging_in_progress != 0
2362 		) {
2363 			vm_object_qcollapse(object, backing_object);
2364 			break;
2365 		}
2366 
2367 		/*
2368 		 * We know that we can either collapse the backing object (if
2369 		 * the parent is the only reference to it) or (perhaps) have
2370 		 * the parent bypass the object if the parent happens to shadow
2371 		 * all the resident pages in the entire backing object.
2372 		 *
2373 		 * This is ignoring pager-backed pages such as swap pages.
2374 		 * vm_object_backing_scan fails the shadowing test in this
2375 		 * case.
2376 		 */
2377 		if (backing_object->ref_count == 1) {
2378 			/*
2379 			 * If there is exactly one reference to the backing
2380 			 * object, we can collapse it into the parent.
2381 			 */
2382 			KKASSERT(object->backing_object == backing_object);
2383 			vm_object_backing_scan(object, backing_object,
2384 					       OBSC_COLLAPSE_WAIT);
2385 
2386 			/*
2387 			 * Move the pager from backing_object to object.
2388 			 */
2389 			if (backing_object->type == OBJT_SWAP) {
2390 				vm_object_pip_add(backing_object, 1);
2391 
2392 				/*
2393 				 * scrap the paging_offset junk and do a
2394 				 * discrete copy.  This also removes major
2395 				 * assumptions about how the swap-pager
2396 				 * works from where it doesn't belong.  The
2397 				 * new swapper is able to optimize the
2398 				 * destroy-source case.
2399 				 */
2400 				vm_object_pip_add(object, 1);
2401 				swap_pager_copy(backing_object, object,
2402 				    OFF_TO_IDX(object->backing_object_offset),
2403 				    TRUE);
2404 				vm_object_pip_wakeup(object);
2405 				vm_object_pip_wakeup(backing_object);
2406 			}
2407 
2408 			/*
2409 			 * Object now shadows whatever backing_object did.
2410 			 * Remove object from backing_object's shadow_list.
2411 			 *
2412 			 * Removing object from backing_objects shadow list
2413 			 * requires releasing object, which we will do below.
2414 			 */
2415 			KKASSERT(object->backing_object == backing_object);
2416 			if (object->flags & OBJ_ONSHADOW) {
2417 				LIST_REMOVE(object, shadow_list);
2418 				backing_object->shadow_count--;
2419 				atomic_add_int(&backing_object->generation, 1);
2420 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2421 			}
2422 
2423 			/*
2424 			 * backing_object->backing_object moves from within
2425 			 * backing_object to within object.
2426 			 *
2427 			 * OBJT_VNODE bbobj's should have empty shadow lists.
2428 			 */
2429 			while ((bbobj = backing_object->backing_object) != NULL) {
2430 				if (bbobj->type == OBJT_VNODE)
2431 					vm_object_hold_shared(bbobj);
2432 				else
2433 					vm_object_hold(bbobj);
2434 				if (bbobj == backing_object->backing_object)
2435 					break;
2436 				vm_object_drop(bbobj);
2437 			}
2438 
2439 			/*
2440 			 * We are removing backing_object from bbobj's
2441 			 * shadow list and adding object to bbobj's shadow
2442 			 * list, so the ref_count on bbobj is unchanged.
2443 			 */
2444 			if (bbobj) {
2445 				if (backing_object->flags & OBJ_ONSHADOW) {
2446 					/* not locked exclusively if vnode */
2447 					KKASSERT(bbobj->type != OBJT_VNODE);
2448 					LIST_REMOVE(backing_object,
2449 						    shadow_list);
2450 					bbobj->shadow_count--;
2451 					atomic_add_int(&bbobj->generation, 1);
2452 					vm_object_clear_flag(backing_object,
2453 							     OBJ_ONSHADOW);
2454 				}
2455 				backing_object->backing_object = NULL;
2456 			}
2457 			object->backing_object = bbobj;
2458 			if (bbobj) {
2459 				if (bbobj->type != OBJT_VNODE) {
2460 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2461 							 object, shadow_list);
2462 					bbobj->shadow_count++;
2463 					atomic_add_int(&bbobj->generation, 1);
2464 					vm_object_set_flag(object,
2465 							   OBJ_ONSHADOW);
2466 				}
2467 			}
2468 
2469 			object->backing_object_offset +=
2470 				backing_object->backing_object_offset;
2471 
2472 			vm_object_drop(bbobj);
2473 
2474 			/*
2475 			 * Discard the old backing_object.  Nothing should be
2476 			 * able to ref it, other than a vm_map_split(),
2477 			 * and vm_map_split() will stall on our chain lock.
2478 			 * And we control the parent so it shouldn't be
2479 			 * possible for it to go away either.
2480 			 *
2481 			 * Since the backing object has no pages, no pager
2482 			 * left, and no object references within it, all
2483 			 * that is necessary is to dispose of it.
2484 			 */
2485 			KASSERT(backing_object->ref_count == 1,
2486 				("backing_object %p was somehow "
2487 				 "re-referenced during collapse!",
2488 				 backing_object));
2489 			KASSERT(RB_EMPTY(&backing_object->rb_memq),
2490 				("backing_object %p somehow has left "
2491 				 "over pages during collapse!",
2492 				 backing_object));
2493 
2494 			/*
2495 			 * The object can be destroyed.
2496 			 *
2497 			 * XXX just fall through and dodealloc instead
2498 			 *     of forcing destruction?
2499 			 */
2500 			atomic_add_int(&backing_object->ref_count, -1);
2501 #if defined(DEBUG_LOCKS)
2502 			debugvm_object_add(backing_object, "collapse", 1, -1);
2503 #endif
2504 			if ((backing_object->flags & OBJ_DEAD) == 0)
2505 				vm_object_terminate(backing_object);
2506 			object_collapses++;
2507 			dodealloc = 0;
2508 		} else {
2509 			/*
2510 			 * If we do not entirely shadow the backing object,
2511 			 * there is nothing we can do so we give up.
2512 			 */
2513 			if (vm_object_backing_scan(object, backing_object,
2514 						OBSC_TEST_ALL_SHADOWED) == 0) {
2515 				break;
2516 			}
2517 
2518 			/*
2519 			 * bbobj is backing_object->backing_object.  Since
2520 			 * object completely shadows backing_object we can
2521 			 * bypass it and become backed by bbobj instead.
2522 			 *
2523 			 * The shadow list for vnode backing objects is not
2524 			 * used and a shared hold is allowed.
2525 			 */
2526 			while ((bbobj = backing_object->backing_object) != NULL) {
2527 				if (bbobj->type == OBJT_VNODE)
2528 					vm_object_hold_shared(bbobj);
2529 				else
2530 					vm_object_hold(bbobj);
2531 				if (bbobj == backing_object->backing_object)
2532 					break;
2533 				vm_object_drop(bbobj);
2534 			}
2535 
2536 			/*
2537 			 * Make object shadow bbobj instead of backing_object.
2538 			 * Remove object from backing_object's shadow list.
2539 			 *
2540 			 * Deallocating backing_object will not remove
2541 			 * it, since its reference count is at least 2.
2542 			 *
2543 			 * Removing object from backing_object's shadow
2544 			 * list requires releasing a ref, which we do
2545 			 * below by setting dodealloc to 1.
2546 			 */
2547 			KKASSERT(object->backing_object == backing_object);
2548 			if (object->flags & OBJ_ONSHADOW) {
2549 				LIST_REMOVE(object, shadow_list);
2550 				backing_object->shadow_count--;
2551 				atomic_add_int(&backing_object->generation, 1);
2552 				vm_object_clear_flag(object, OBJ_ONSHADOW);
2553 			}
2554 
2555 			/*
2556 			 * Add a ref to bbobj, bbobj now shadows object.
2557 			 *
2558 			 * NOTE: backing_object->backing_object still points
2559 			 *	 to bbobj.  That relationship remains intact
2560 			 *	 because backing_object has > 1 ref, so
2561 			 *	 someone else is pointing to it (hence why
2562 			 *	 we can't collapse it into object and can
2563 			 *	 only handle the all-shadowed bypass case).
2564 			 */
2565 			if (bbobj) {
2566 				if (bbobj->type != OBJT_VNODE) {
2567 					vm_object_chain_wait(bbobj, 0);
2568 					vm_object_reference_locked(bbobj);
2569 					LIST_INSERT_HEAD(&bbobj->shadow_head,
2570 							 object, shadow_list);
2571 					bbobj->shadow_count++;
2572 					atomic_add_int(&bbobj->generation, 1);
2573 					vm_object_set_flag(object,
2574 							   OBJ_ONSHADOW);
2575 				} else {
2576 					vm_object_reference_quick(bbobj);
2577 				}
2578 				object->backing_object_offset +=
2579 					backing_object->backing_object_offset;
2580 				object->backing_object = bbobj;
2581 				vm_object_drop(bbobj);
2582 			} else {
2583 				object->backing_object = NULL;
2584 			}
2585 
2586 			/*
2587 			 * Drop the reference count on backing_object.  To
2588 			 * handle ref_count races properly we can't assume
2589 			 * that the ref_count is still at least 2 so we
2590 			 * have to actually call vm_object_deallocate()
2591 			 * (after clearing the chainlock).
2592 			 */
2593 			object_bypasses++;
2594 			dodealloc = 1;
2595 		}
2596 
2597 		/*
2598 		 * Ok, we want to loop on the new object->bbobj association,
2599 		 * possibly collapsing it further.  However if dodealloc is
2600 		 * non-zero we have to deallocate the backing_object which
2601 		 * itself can potentially undergo a collapse, creating a
2602 		 * recursion depth issue with the LWKT token subsystem.
2603 		 *
2604 		 * In the case where we must deallocate the backing_object
2605 		 * it is possible now that the backing_object has a single
2606 		 * shadow count on some other object (not represented here
2607 		 * as yet), since it no longer shadows us.  Thus when we
2608 		 * call vm_object_deallocate() it may attempt to collapse
2609 		 * itself into its remaining parent.
2610 		 */
2611 		if (dodealloc) {
2612 			struct vm_object_dealloc_list *dtmp;
2613 
2614 			vm_object_chain_release(backing_object);
2615 			vm_object_unlock(backing_object);
2616 			/* backing_object remains held */
2617 
2618 			/*
2619 			 * Auto-deallocation list for caller convenience.
2620 			 */
2621 			if (dlistp == NULL)
2622 				dlistp = &dlist;
2623 
2624 			dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2625 			dtmp->object = backing_object;
2626 			dtmp->next = *dlistp;
2627 			*dlistp = dtmp;
2628 		} else {
2629 			vm_object_chain_release(backing_object);
2630 			vm_object_drop(backing_object);
2631 		}
2632 		/* backing_object = NULL; not needed */
2633 		/* loop */
2634 	}
2635 
2636 	/*
2637 	 * Clean up any left over backing_object
2638 	 */
2639 	if (backing_object) {
2640 		vm_object_chain_release(backing_object);
2641 		vm_object_drop(backing_object);
2642 	}
2643 
2644 	/*
2645 	 * Clean up any auto-deallocation list.  This is a convenience
2646 	 * for top-level callers so they don't have to pass &dlist.
2647 	 * Do not clean up any caller-passed dlistp, the caller will
2648 	 * do that.
2649 	 */
2650 	if (dlist)
2651 		vm_object_deallocate_list(&dlist);
2652 
2653 }
2654 
2655 /*
2656  * vm_object_collapse() may collect additional objects in need of
2657  * deallocation.  This routine deallocates these objects.  The
2658  * deallocation itself can trigger additional collapses (which the
2659  * deallocate function takes care of).  This procedure is used to
2660  * reduce procedural recursion since these vm_object shadow chains
2661  * can become quite long.
2662  */
2663 void
2664 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2665 {
2666 	struct vm_object_dealloc_list *dlist;
2667 
2668 	while ((dlist = *dlistp) != NULL) {
2669 		*dlistp = dlist->next;
2670 		vm_object_lock(dlist->object);
2671 		vm_object_deallocate_locked(dlist->object);
2672 		vm_object_drop(dlist->object);
2673 		kfree(dlist, M_TEMP);
2674 	}
2675 }
2676 
2677 /*
2678  * Removes all physical pages in the specified object range from the
2679  * object's list of pages.
2680  *
2681  * No requirements.
2682  */
2683 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2684 
2685 void
2686 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2687 		      boolean_t clean_only)
2688 {
2689 	struct rb_vm_page_scan_info info;
2690 	int all;
2691 
2692 	/*
2693 	 * Degenerate cases and assertions
2694 	 */
2695 	vm_object_hold(object);
2696 	if (object == NULL ||
2697 	    (object->resident_page_count == 0 && object->swblock_count == 0)) {
2698 		vm_object_drop(object);
2699 		return;
2700 	}
2701 	KASSERT(object->type != OBJT_PHYS,
2702 		("attempt to remove pages from a physical object"));
2703 
2704 	/*
2705 	 * Indicate that paging is occuring on the object
2706 	 */
2707 	vm_object_pip_add(object, 1);
2708 
2709 	/*
2710 	 * Figure out the actual removal range and whether we are removing
2711 	 * the entire contents of the object or not.  If removing the entire
2712 	 * contents, be sure to get all pages, even those that might be
2713 	 * beyond the end of the object.
2714 	 */
2715 	info.object = object;
2716 	info.start_pindex = start;
2717 	if (end == 0)
2718 		info.end_pindex = (vm_pindex_t)-1;
2719 	else
2720 		info.end_pindex = end - 1;
2721 	info.limit = clean_only;
2722 	info.count = 0;
2723 	all = (start == 0 && info.end_pindex >= object->size - 1);
2724 
2725 	/*
2726 	 * Loop until we are sure we have gotten them all.
2727 	 */
2728 	do {
2729 		info.error = 0;
2730 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2731 					vm_object_page_remove_callback, &info);
2732 	} while (info.error);
2733 
2734 	/*
2735 	 * Remove any related swap if throwing away pages, or for
2736 	 * non-swap objects (the swap is a clean copy in that case).
2737 	 */
2738 	if (object->type != OBJT_SWAP || clean_only == FALSE) {
2739 		if (all)
2740 			swap_pager_freespace_all(object);
2741 		else
2742 			swap_pager_freespace(object, info.start_pindex,
2743 			     info.end_pindex - info.start_pindex + 1);
2744 	}
2745 
2746 	/*
2747 	 * Cleanup
2748 	 */
2749 	vm_object_pip_wakeup(object);
2750 	vm_object_drop(object);
2751 }
2752 
2753 /*
2754  * The caller must hold the object.
2755  *
2756  * NOTE: User yields are allowed when removing more than one page, but not
2757  *	 allowed if only removing one page (the path for single page removals
2758  *	 might hold a spinlock).
2759  */
2760 static int
2761 vm_object_page_remove_callback(vm_page_t p, void *data)
2762 {
2763 	struct rb_vm_page_scan_info *info = data;
2764 
2765 	if (info->object != p->object ||
2766 	    p->pindex < info->start_pindex ||
2767 	    p->pindex > info->end_pindex) {
2768 		kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2769 			info->object, p);
2770 		return(0);
2771 	}
2772 	if (vm_page_busy_try(p, TRUE)) {
2773 		vm_page_sleep_busy(p, TRUE, "vmopar");
2774 		info->error = 1;
2775 		return(0);
2776 	}
2777 	if (info->object != p->object) {
2778 		/* this should never happen */
2779 		kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2780 			info->object, p);
2781 		vm_page_wakeup(p);
2782 		return(0);
2783 	}
2784 
2785 	/*
2786 	 * Wired pages cannot be destroyed, but they can be invalidated
2787 	 * and we do so if clean_only (limit) is not set.
2788 	 *
2789 	 * WARNING!  The page may be wired due to being part of a buffer
2790 	 *	     cache buffer, and the buffer might be marked B_CACHE.
2791 	 *	     This is fine as part of a truncation but VFSs must be
2792 	 *	     sure to fix the buffer up when re-extending the file.
2793 	 *
2794 	 * NOTE!     PG_NEED_COMMIT is ignored.
2795 	 */
2796 	if (p->wire_count != 0) {
2797 		vm_page_protect(p, VM_PROT_NONE);
2798 		if (info->limit == 0)
2799 			p->valid = 0;
2800 		vm_page_wakeup(p);
2801 		goto done;
2802 	}
2803 
2804 	/*
2805 	 * limit is our clean_only flag.  If set and the page is dirty or
2806 	 * requires a commit, do not free it.  If set and the page is being
2807 	 * held by someone, do not free it.
2808 	 */
2809 	if (info->limit && p->valid) {
2810 		vm_page_test_dirty(p);
2811 		if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2812 			vm_page_wakeup(p);
2813 			goto done;
2814 		}
2815 	}
2816 
2817 	/*
2818 	 * Destroy the page
2819 	 */
2820 	vm_page_protect(p, VM_PROT_NONE);
2821 	vm_page_free(p);
2822 
2823 	/*
2824 	 * Must be at end to avoid SMP races, caller holds object token
2825 	 */
2826 done:
2827 	if ((++info->count & 63) == 0)
2828 		lwkt_user_yield();
2829 
2830 	return(0);
2831 }
2832 
2833 /*
2834  * Try to extend prev_object into an adjoining region of virtual
2835  * memory, return TRUE on success.
2836  *
2837  * The caller does not need to hold (prev_object) but must have a stable
2838  * pointer to it (typically by holding the vm_map locked).
2839  *
2840  * This function only works for anonymous memory objects which either
2841  * have (a) one reference or (b) we are extending the object's size.
2842  * Otherwise the related VM pages we want to use for the object might
2843  * be in use by another mapping.
2844  */
2845 boolean_t
2846 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2847 		   vm_size_t prev_size, vm_size_t next_size)
2848 {
2849 	vm_pindex_t next_pindex;
2850 
2851 	if (prev_object == NULL)
2852 		return (TRUE);
2853 
2854 	vm_object_hold(prev_object);
2855 
2856 	if (prev_object->type != OBJT_DEFAULT &&
2857 	    prev_object->type != OBJT_SWAP) {
2858 		vm_object_drop(prev_object);
2859 		return (FALSE);
2860 	}
2861 
2862 	/*
2863 	 * Try to collapse the object first
2864 	 */
2865 	vm_object_chain_acquire(prev_object, 0);
2866 	vm_object_collapse(prev_object, NULL);
2867 
2868 	/*
2869 	 * We can't coalesce if we shadow another object (figuring out the
2870 	 * relationships become too complex).
2871 	 */
2872 	if (prev_object->backing_object != NULL) {
2873 		vm_object_chain_release(prev_object);
2874 		vm_object_drop(prev_object);
2875 		return (FALSE);
2876 	}
2877 
2878 	prev_size >>= PAGE_SHIFT;
2879 	next_size >>= PAGE_SHIFT;
2880 	next_pindex = prev_pindex + prev_size;
2881 
2882 	/*
2883 	 * We can't if the object has more than one ref count unless we
2884 	 * are extending it into newly minted space.
2885 	 */
2886 	if (prev_object->ref_count > 1 &&
2887 	    prev_object->size != next_pindex) {
2888 		vm_object_chain_release(prev_object);
2889 		vm_object_drop(prev_object);
2890 		return (FALSE);
2891 	}
2892 
2893 	/*
2894 	 * Remove any pages that may still be in the object from a previous
2895 	 * deallocation.
2896 	 */
2897 	if (next_pindex < prev_object->size) {
2898 		vm_object_page_remove(prev_object,
2899 				      next_pindex,
2900 				      next_pindex + next_size, FALSE);
2901 		if (prev_object->type == OBJT_SWAP)
2902 			swap_pager_freespace(prev_object,
2903 					     next_pindex, next_size);
2904 	}
2905 
2906 	/*
2907 	 * Extend the object if necessary.
2908 	 */
2909 	if (next_pindex + next_size > prev_object->size)
2910 		prev_object->size = next_pindex + next_size;
2911 	vm_object_chain_release(prev_object);
2912 	vm_object_drop(prev_object);
2913 
2914 	return (TRUE);
2915 }
2916 
2917 /*
2918  * Make the object writable and flag is being possibly dirty.
2919  *
2920  * The object might not be held (or might be held but held shared),
2921  * the related vnode is probably not held either.  Object and vnode are
2922  * stable by virtue of the vm_page busied by the caller preventing
2923  * destruction.
2924  *
2925  * If the related mount is flagged MNTK_THR_SYNC we need to call
2926  * vsetobjdirty().  Filesystems using this option usually shortcut
2927  * synchronization by only scanning the syncer list.
2928  */
2929 void
2930 vm_object_set_writeable_dirty(vm_object_t object)
2931 {
2932 	struct vnode *vp;
2933 
2934 	/*vm_object_assert_held(object);*/
2935 	/*
2936 	 * Avoid contention in vm fault path by checking the state before
2937 	 * issuing an atomic op on it.
2938 	 */
2939 	if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2940 	    (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2941 		vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2942 	}
2943 	if (object->type == OBJT_VNODE &&
2944 	    (vp = (struct vnode *)object->handle) != NULL) {
2945 		if ((vp->v_flag & VOBJDIRTY) == 0) {
2946 			if (vp->v_mount &&
2947 			    (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2948 				/*
2949 				 * New style THR_SYNC places vnodes on the
2950 				 * syncer list more deterministically.
2951 				 */
2952 				vsetobjdirty(vp);
2953 			} else {
2954 				/*
2955 				 * Old style scan would not necessarily place
2956 				 * a vnode on the syncer list when possibly
2957 				 * modified via mmap.
2958 				 */
2959 				vsetflags(vp, VOBJDIRTY);
2960 			}
2961 		}
2962 	}
2963 }
2964 
2965 #include "opt_ddb.h"
2966 #ifdef DDB
2967 #include <sys/cons.h>
2968 
2969 #include <ddb/ddb.h>
2970 
2971 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
2972 				       vm_map_entry_t entry);
2973 static int	vm_object_in_map (vm_object_t object);
2974 
2975 /*
2976  * The caller must hold the object.
2977  */
2978 static int
2979 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2980 {
2981 	vm_map_t tmpm;
2982 	vm_map_entry_t tmpe;
2983 	vm_object_t obj, nobj;
2984 	int entcount;
2985 
2986 	if (map == 0)
2987 		return 0;
2988 	if (entry == 0) {
2989 		tmpe = map->header.next;
2990 		entcount = map->nentries;
2991 		while (entcount-- && (tmpe != &map->header)) {
2992 			if( _vm_object_in_map(map, object, tmpe)) {
2993 				return 1;
2994 			}
2995 			tmpe = tmpe->next;
2996 		}
2997 		return (0);
2998 	}
2999 	switch(entry->maptype) {
3000 	case VM_MAPTYPE_SUBMAP:
3001 		tmpm = entry->object.sub_map;
3002 		tmpe = tmpm->header.next;
3003 		entcount = tmpm->nentries;
3004 		while (entcount-- && tmpe != &tmpm->header) {
3005 			if( _vm_object_in_map(tmpm, object, tmpe)) {
3006 				return 1;
3007 			}
3008 			tmpe = tmpe->next;
3009 		}
3010 		break;
3011 	case VM_MAPTYPE_NORMAL:
3012 	case VM_MAPTYPE_VPAGETABLE:
3013 		obj = entry->object.vm_object;
3014 		while (obj) {
3015 			if (obj == object) {
3016 				if (obj != entry->object.vm_object)
3017 					vm_object_drop(obj);
3018 				return 1;
3019 			}
3020 			while ((nobj = obj->backing_object) != NULL) {
3021 				vm_object_hold(nobj);
3022 				if (nobj == obj->backing_object)
3023 					break;
3024 				vm_object_drop(nobj);
3025 			}
3026 			if (obj != entry->object.vm_object) {
3027 				if (nobj)
3028 					vm_object_lock_swap();
3029 				vm_object_drop(obj);
3030 			}
3031 			obj = nobj;
3032 		}
3033 		break;
3034 	default:
3035 		break;
3036 	}
3037 	return 0;
3038 }
3039 
3040 static int vm_object_in_map_callback(struct proc *p, void *data);
3041 
3042 struct vm_object_in_map_info {
3043 	vm_object_t object;
3044 	int rv;
3045 };
3046 
3047 /*
3048  * Debugging only
3049  */
3050 static int
3051 vm_object_in_map(vm_object_t object)
3052 {
3053 	struct vm_object_in_map_info info;
3054 
3055 	info.rv = 0;
3056 	info.object = object;
3057 
3058 	allproc_scan(vm_object_in_map_callback, &info, 0);
3059 	if (info.rv)
3060 		return 1;
3061 	if( _vm_object_in_map(&kernel_map, object, 0))
3062 		return 1;
3063 	if( _vm_object_in_map(&pager_map, object, 0))
3064 		return 1;
3065 	if( _vm_object_in_map(&buffer_map, object, 0))
3066 		return 1;
3067 	return 0;
3068 }
3069 
3070 /*
3071  * Debugging only
3072  */
3073 static int
3074 vm_object_in_map_callback(struct proc *p, void *data)
3075 {
3076 	struct vm_object_in_map_info *info = data;
3077 
3078 	if (p->p_vmspace) {
3079 		if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3080 			info->rv = 1;
3081 			return -1;
3082 		}
3083 	}
3084 	return (0);
3085 }
3086 
3087 DB_SHOW_COMMAND(vmochk, vm_object_check)
3088 {
3089 	struct vm_object_hash *hash;
3090 	vm_object_t object;
3091 	int n;
3092 
3093 	/*
3094 	 * make sure that internal objs are in a map somewhere
3095 	 * and none have zero ref counts.
3096 	 */
3097 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3098 		hash = &vm_object_hash[n];
3099 		for (object = TAILQ_FIRST(&hash->list);
3100 				object != NULL;
3101 				object = TAILQ_NEXT(object, object_list)) {
3102 			if (object->type == OBJT_MARKER)
3103 				continue;
3104 			if (object->handle != NULL ||
3105 			    (object->type != OBJT_DEFAULT &&
3106 			     object->type != OBJT_SWAP)) {
3107 				continue;
3108 			}
3109 			if (object->ref_count == 0) {
3110 				db_printf("vmochk: internal obj has "
3111 					  "zero ref count: %ld\n",
3112 					  (long)object->size);
3113 			}
3114 			if (vm_object_in_map(object))
3115 				continue;
3116 			db_printf("vmochk: internal obj is not in a map: "
3117 				  "ref: %d, size: %lu: 0x%lx, "
3118 				  "backing_object: %p\n",
3119 				  object->ref_count, (u_long)object->size,
3120 				  (u_long)object->size,
3121 				  (void *)object->backing_object);
3122 		}
3123 	}
3124 }
3125 
3126 /*
3127  * Debugging only
3128  */
3129 DB_SHOW_COMMAND(object, vm_object_print_static)
3130 {
3131 	/* XXX convert args. */
3132 	vm_object_t object = (vm_object_t)addr;
3133 	boolean_t full = have_addr;
3134 
3135 	vm_page_t p;
3136 
3137 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
3138 #define	count	was_count
3139 
3140 	int count;
3141 
3142 	if (object == NULL)
3143 		return;
3144 
3145 	db_iprintf(
3146 	    "Object %p: type=%d, size=0x%lx, res=%ld, ref=%d, flags=0x%x\n",
3147 	    object, (int)object->type, (u_long)object->size,
3148 	    object->resident_page_count, object->ref_count, object->flags);
3149 	/*
3150 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3151 	 */
3152 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3153 	    object->shadow_count,
3154 	    object->backing_object ? object->backing_object->ref_count : 0,
3155 	    object->backing_object, (long)object->backing_object_offset);
3156 
3157 	if (!full)
3158 		return;
3159 
3160 	db_indent += 2;
3161 	count = 0;
3162 	RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3163 		if (count == 0)
3164 			db_iprintf("memory:=");
3165 		else if (count == 6) {
3166 			db_printf("\n");
3167 			db_iprintf(" ...");
3168 			count = 0;
3169 		} else
3170 			db_printf(",");
3171 		count++;
3172 
3173 		db_printf("(off=0x%lx,page=0x%lx)",
3174 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3175 	}
3176 	if (count != 0)
3177 		db_printf("\n");
3178 	db_indent -= 2;
3179 }
3180 
3181 /* XXX. */
3182 #undef count
3183 
3184 /*
3185  * XXX need this non-static entry for calling from vm_map_print.
3186  *
3187  * Debugging only
3188  */
3189 void
3190 vm_object_print(/* db_expr_t */ long addr,
3191 		boolean_t have_addr,
3192 		/* db_expr_t */ long count,
3193 		char *modif)
3194 {
3195 	vm_object_print_static(addr, have_addr, count, modif);
3196 }
3197 
3198 /*
3199  * Debugging only
3200  */
3201 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3202 {
3203 	struct vm_object_hash *hash;
3204 	vm_object_t object;
3205 	int nl = 0;
3206 	int c;
3207 	int n;
3208 
3209 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
3210 		hash = &vm_object_hash[n];
3211 		for (object = TAILQ_FIRST(&hash->list);
3212 				object != NULL;
3213 				object = TAILQ_NEXT(object, object_list)) {
3214 			vm_pindex_t idx, fidx;
3215 			vm_pindex_t osize;
3216 			vm_paddr_t pa = -1, padiff;
3217 			int rcount;
3218 			vm_page_t m;
3219 
3220 			if (object->type == OBJT_MARKER)
3221 				continue;
3222 			db_printf("new object: %p\n", (void *)object);
3223 			if ( nl > 18) {
3224 				c = cngetc();
3225 				if (c != ' ')
3226 					return;
3227 				nl = 0;
3228 			}
3229 			nl++;
3230 			rcount = 0;
3231 			fidx = 0;
3232 			osize = object->size;
3233 			if (osize > 128)
3234 				osize = 128;
3235 			for (idx = 0; idx < osize; idx++) {
3236 				m = vm_page_lookup(object, idx);
3237 				if (m == NULL) {
3238 					if (rcount) {
3239 						db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3240 							(long)fidx, rcount, (long)pa);
3241 						if ( nl > 18) {
3242 							c = cngetc();
3243 							if (c != ' ')
3244 								return;
3245 							nl = 0;
3246 						}
3247 						nl++;
3248 						rcount = 0;
3249 					}
3250 					continue;
3251 				}
3252 
3253 				if (rcount &&
3254 					(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3255 					++rcount;
3256 					continue;
3257 				}
3258 				if (rcount) {
3259 					padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3260 					padiff >>= PAGE_SHIFT;
3261 					padiff &= PQ_L2_MASK;
3262 					if (padiff == 0) {
3263 						pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3264 						++rcount;
3265 						continue;
3266 					}
3267 					db_printf(" index(%ld)run(%d)pa(0x%lx)",
3268 						(long)fidx, rcount, (long)pa);
3269 					db_printf("pd(%ld)\n", (long)padiff);
3270 					if ( nl > 18) {
3271 						c = cngetc();
3272 						if (c != ' ')
3273 							return;
3274 						nl = 0;
3275 					}
3276 					nl++;
3277 				}
3278 				fidx = idx;
3279 				pa = VM_PAGE_TO_PHYS(m);
3280 				rcount = 1;
3281 			}
3282 			if (rcount) {
3283 				db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3284 					(long)fidx, rcount, (long)pa);
3285 				if ( nl > 18) {
3286 					c = cngetc();
3287 					if (c != ' ')
3288 						return;
3289 					nl = 0;
3290 				}
3291 				nl++;
3292 			}
3293 		}
3294 	}
3295 }
3296 #endif /* DDB */
3297