xref: /dragonfly/sys/vm/vm_object.c (revision aa8d5dcb)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_object.c	8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.13 2004/03/01 06:33:24 dillon Exp $
66  */
67 
68 /*
69  *	Virtual memory object module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>		/* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94 
95 #define EASY_SCAN_FACTOR	8
96 
97 #define MSYNC_FLUSH_HARDSEQ	0x01
98 #define MSYNC_FLUSH_SOFTSEQ	0x02
99 
100 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
101 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
102         CTLFLAG_RW, &msync_flush_flags, 0, "");
103 
104 static void	vm_object_qcollapse (vm_object_t object);
105 static int	vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
106 
107 /*
108  *	Virtual memory objects maintain the actual data
109  *	associated with allocated virtual memory.  A given
110  *	page of memory exists within exactly one object.
111  *
112  *	An object is only deallocated when all "references"
113  *	are given up.  Only one "reference" to a given
114  *	region of an object should be writeable.
115  *
116  *	Associated with each object is a list of all resident
117  *	memory pages belonging to that object; this list is
118  *	maintained by the "vm_page" module, and locked by the object's
119  *	lock.
120  *
121  *	Each object also records a "pager" routine which is
122  *	used to retrieve (and store) pages to the proper backing
123  *	storage.  In addition, objects may be backed by other
124  *	objects from which they were virtual-copied.
125  *
126  *	The only items within the object structure which are
127  *	modified after time of creation are:
128  *		reference count		locked by object's lock
129  *		pager routine		locked by object's lock
130  *
131  */
132 
133 struct object_q vm_object_list;
134 static struct lwkt_token vm_object_list_token;
135 static long vm_object_count;		/* count of all objects */
136 vm_object_t kernel_object;
137 vm_object_t kmem_object;
138 static struct vm_object kernel_object_store;
139 static struct vm_object kmem_object_store;
140 extern int vm_pageout_page_count;
141 
142 static long object_collapses;
143 static long object_bypasses;
144 static int next_index;
145 static vm_zone_t obj_zone;
146 static struct vm_zone obj_zone_store;
147 static int object_hash_rand;
148 #define VM_OBJECTS_INIT 256
149 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
150 
151 void
152 _vm_object_allocate(type, size, object)
153 	objtype_t type;
154 	vm_size_t size;
155 	vm_object_t object;
156 {
157 	int incr;
158 	TAILQ_INIT(&object->memq);
159 	LIST_INIT(&object->shadow_head);
160 
161 	object->type = type;
162 	object->size = size;
163 	object->ref_count = 1;
164 	object->flags = 0;
165 	if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
166 		vm_object_set_flag(object, OBJ_ONEMAPPING);
167 	object->paging_in_progress = 0;
168 	object->resident_page_count = 0;
169 	object->shadow_count = 0;
170 	object->pg_color = next_index;
171 	if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
172 		incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
173 	else
174 		incr = size;
175 	next_index = (next_index + incr) & PQ_L2_MASK;
176 	object->handle = NULL;
177 	object->backing_object = NULL;
178 	object->backing_object_offset = (vm_ooffset_t) 0;
179 	/*
180 	 * Try to generate a number that will spread objects out in the
181 	 * hash table.  We 'wipe' new objects across the hash in 128 page
182 	 * increments plus 1 more to offset it a little more by the time
183 	 * it wraps around.
184 	 */
185 	object->hash_rand = object_hash_rand - 129;
186 
187 	object->generation++;
188 
189 	TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
190 	vm_object_count++;
191 	object_hash_rand = object->hash_rand;
192 }
193 
194 /*
195  *	vm_object_init:
196  *
197  *	Initialize the VM objects module.
198  */
199 void
200 vm_object_init()
201 {
202 	TAILQ_INIT(&vm_object_list);
203 	lwkt_token_init(&vm_object_list_token);
204 	vm_object_count = 0;
205 
206 	kernel_object = &kernel_object_store;
207 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
208 	    kernel_object);
209 
210 	kmem_object = &kmem_object_store;
211 	_vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
212 	    kmem_object);
213 
214 	obj_zone = &obj_zone_store;
215 	zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
216 		vm_objects_init, VM_OBJECTS_INIT);
217 }
218 
219 void
220 vm_object_init2()
221 {
222 	zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
223 }
224 
225 /*
226  *	vm_object_allocate:
227  *
228  *	Returns a new object with the given size.
229  */
230 
231 vm_object_t
232 vm_object_allocate(type, size)
233 	objtype_t type;
234 	vm_size_t size;
235 {
236 	vm_object_t result;
237 
238 	result = (vm_object_t) zalloc(obj_zone);
239 
240 	_vm_object_allocate(type, size, result);
241 
242 	return (result);
243 }
244 
245 
246 /*
247  *	vm_object_reference:
248  *
249  *	Gets another reference to the given object.
250  */
251 void
252 vm_object_reference(object)
253 	vm_object_t object;
254 {
255 	if (object == NULL)
256 		return;
257 
258 #if 0
259 	/* object can be re-referenced during final cleaning */
260 	KASSERT(!(object->flags & OBJ_DEAD),
261 	    ("vm_object_reference: attempting to reference dead obj"));
262 #endif
263 
264 	object->ref_count++;
265 	if (object->type == OBJT_VNODE) {
266 		while (vget((struct vnode *) object->handle, NULL,
267 		    LK_RETRY|LK_NOOBJ, curthread)) {
268 			printf("vm_object_reference: delay in getting object\n");
269 		}
270 	}
271 }
272 
273 void
274 vm_object_vndeallocate(object)
275 	vm_object_t object;
276 {
277 	struct vnode *vp = (struct vnode *) object->handle;
278 
279 	KASSERT(object->type == OBJT_VNODE,
280 	    ("vm_object_vndeallocate: not a vnode object"));
281 	KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
282 #ifdef INVARIANTS
283 	if (object->ref_count == 0) {
284 		vprint("vm_object_vndeallocate", vp);
285 		panic("vm_object_vndeallocate: bad object reference count");
286 	}
287 #endif
288 
289 	object->ref_count--;
290 	if (object->ref_count == 0) {
291 		vp->v_flag &= ~VTEXT;
292 		vm_object_clear_flag(object, OBJ_OPT);
293 	}
294 	vrele(vp);
295 }
296 
297 /*
298  *	vm_object_deallocate:
299  *
300  *	Release a reference to the specified object,
301  *	gained either through a vm_object_allocate
302  *	or a vm_object_reference call.  When all references
303  *	are gone, storage associated with this object
304  *	may be relinquished.
305  *
306  *	No object may be locked.
307  */
308 void
309 vm_object_deallocate(object)
310 	vm_object_t object;
311 {
312 	vm_object_t temp;
313 
314 	while (object != NULL) {
315 
316 		if (object->type == OBJT_VNODE) {
317 			vm_object_vndeallocate(object);
318 			return;
319 		}
320 
321 		if (object->ref_count == 0) {
322 			panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
323 		} else if (object->ref_count > 2) {
324 			object->ref_count--;
325 			return;
326 		}
327 
328 		/*
329 		 * Here on ref_count of one or two, which are special cases for
330 		 * objects.
331 		 */
332 		if ((object->ref_count == 2) && (object->shadow_count == 0)) {
333 			vm_object_set_flag(object, OBJ_ONEMAPPING);
334 			object->ref_count--;
335 			return;
336 		} else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
337 			object->ref_count--;
338 			if ((object->handle == NULL) &&
339 			    (object->type == OBJT_DEFAULT ||
340 			     object->type == OBJT_SWAP)) {
341 				vm_object_t robject;
342 
343 				robject = LIST_FIRST(&object->shadow_head);
344 				KASSERT(robject != NULL,
345 				    ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
346 					 object->ref_count,
347 					 object->shadow_count));
348 				if ((robject->handle == NULL) &&
349 				    (robject->type == OBJT_DEFAULT ||
350 				     robject->type == OBJT_SWAP)) {
351 
352 					robject->ref_count++;
353 
354 					while (
355 						robject->paging_in_progress ||
356 						object->paging_in_progress
357 					) {
358 						vm_object_pip_sleep(robject, "objde1");
359 						vm_object_pip_sleep(object, "objde2");
360 					}
361 
362 					if (robject->ref_count == 1) {
363 						robject->ref_count--;
364 						object = robject;
365 						goto doterm;
366 					}
367 
368 					object = robject;
369 					vm_object_collapse(object);
370 					continue;
371 				}
372 			}
373 
374 			return;
375 
376 		} else {
377 			object->ref_count--;
378 			if (object->ref_count != 0)
379 				return;
380 		}
381 
382 doterm:
383 
384 		temp = object->backing_object;
385 		if (temp) {
386 			LIST_REMOVE(object, shadow_list);
387 			temp->shadow_count--;
388 			if (temp->ref_count == 0)
389 				vm_object_clear_flag(temp, OBJ_OPT);
390 			temp->generation++;
391 			object->backing_object = NULL;
392 		}
393 
394 		/*
395 		 * Don't double-terminate, we could be in a termination
396 		 * recursion due to the terminate having to sync data
397 		 * to disk.
398 		 */
399 		if ((object->flags & OBJ_DEAD) == 0)
400 			vm_object_terminate(object);
401 		object = temp;
402 	}
403 }
404 
405 /*
406  *	vm_object_terminate actually destroys the specified object, freeing
407  *	up all previously used resources.
408  *
409  *	The object must be locked.
410  *	This routine may block.
411  */
412 void
413 vm_object_terminate(object)
414 	vm_object_t object;
415 {
416 	lwkt_tokref ilock;
417 	vm_page_t p;
418 	int s;
419 
420 	/*
421 	 * Make sure no one uses us.
422 	 */
423 	vm_object_set_flag(object, OBJ_DEAD);
424 
425 	/*
426 	 * wait for the pageout daemon to be done with the object
427 	 */
428 	vm_object_pip_wait(object, "objtrm");
429 
430 	KASSERT(!object->paging_in_progress,
431 		("vm_object_terminate: pageout in progress"));
432 
433 	/*
434 	 * Clean and free the pages, as appropriate. All references to the
435 	 * object are gone, so we don't need to lock it.
436 	 */
437 	if (object->type == OBJT_VNODE) {
438 		struct vnode *vp;
439 
440 		/*
441 		 * Freeze optimized copies.
442 		 */
443 		vm_freeze_copyopts(object, 0, object->size);
444 
445 		/*
446 		 * Clean pages and flush buffers.
447 		 */
448 		vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
449 
450 		vp = (struct vnode *) object->handle;
451 		vinvalbuf(vp, V_SAVE, NULL, 0, 0);
452 	}
453 
454 	/*
455 	 * Wait for any I/O to complete, after which there had better not
456 	 * be any references left on the object.
457 	 */
458 	vm_object_pip_wait(object, "objtrm");
459 
460 	if (object->ref_count != 0)
461 		panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
462 
463 	/*
464 	 * Now free any remaining pages. For internal objects, this also
465 	 * removes them from paging queues. Don't free wired pages, just
466 	 * remove them from the object.
467 	 */
468 	s = splvm();
469 	while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
470 		if (p->busy || (p->flags & PG_BUSY))
471 			panic("vm_object_terminate: freeing busy page %p\n", p);
472 		if (p->wire_count == 0) {
473 			vm_page_busy(p);
474 			vm_page_free(p);
475 			mycpu->gd_cnt.v_pfree++;
476 		} else {
477 			vm_page_busy(p);
478 			vm_page_remove(p);
479 		}
480 	}
481 	splx(s);
482 
483 	/*
484 	 * Let the pager know object is dead.
485 	 */
486 	vm_pager_deallocate(object);
487 
488 	/*
489 	 * Remove the object from the global object list.
490 	 */
491 	lwkt_gettoken(&ilock, &vm_object_list_token);
492 	TAILQ_REMOVE(&vm_object_list, object, object_list);
493 	lwkt_reltoken(&ilock);
494 
495 	wakeup(object);
496 
497 	/*
498 	 * Free the space for the object.
499 	 */
500 	zfree(obj_zone, object);
501 }
502 
503 /*
504  *	vm_object_page_clean
505  *
506  *	Clean all dirty pages in the specified range of object.  Leaves page
507  * 	on whatever queue it is currently on.   If NOSYNC is set then do not
508  *	write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
509  *	leaving the object dirty.
510  *
511  *	When stuffing pages asynchronously, allow clustering.  XXX we need a
512  *	synchronous clustering mode implementation.
513  *
514  *	Odd semantics: if start == end, we clean everything.
515  *
516  *	The object must be locked.
517  */
518 
519 void
520 vm_object_page_clean(object, start, end, flags)
521 	vm_object_t object;
522 	vm_pindex_t start;
523 	vm_pindex_t end;
524 	int flags;
525 {
526 	vm_page_t p, np;
527 	vm_offset_t tstart, tend;
528 	vm_pindex_t pi;
529 	struct vnode *vp;
530 	int clearobjflags;
531 	int pagerflags;
532 	int curgeneration;
533 	lwkt_tokref vlock;
534 
535 	if (object->type != OBJT_VNODE ||
536 		(object->flags & OBJ_MIGHTBEDIRTY) == 0)
537 		return;
538 
539 	pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
540 	pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
541 
542 	vp = object->handle;
543 
544 	vm_object_set_flag(object, OBJ_CLEANING);
545 
546 	/*
547 	 * Handle 'entire object' case
548 	 */
549 	tstart = start;
550 	if (end == 0) {
551 		tend = object->size;
552 	} else {
553 		tend = end;
554 	}
555 
556 	/*
557 	 * If the caller is smart and only msync()s a range he knows is
558 	 * dirty, we may be able to avoid an object scan.  This results in
559 	 * a phenominal improvement in performance.  We cannot do this
560 	 * as a matter of course because the object may be huge - e.g.
561 	 * the size might be in the gigabytes or terrabytes.
562 	 */
563 	if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
564 		vm_offset_t tscan;
565 		int scanlimit;
566 		int scanreset;
567 
568 		scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
569 		if (scanreset < 16)
570 			scanreset = 16;
571 		pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
572 
573 		scanlimit = scanreset;
574 		tscan = tstart;
575 		while (tscan < tend) {
576 			curgeneration = object->generation;
577 			p = vm_page_lookup(object, tscan);
578 			if (p == NULL || p->valid == 0 ||
579 			    (p->queue - p->pc) == PQ_CACHE) {
580 				if (--scanlimit == 0)
581 					break;
582 				++tscan;
583 				continue;
584 			}
585 			vm_page_test_dirty(p);
586 			if ((p->dirty & p->valid) == 0) {
587 				if (--scanlimit == 0)
588 					break;
589 				++tscan;
590 				continue;
591 			}
592 			/*
593 			 * If we have been asked to skip nosync pages and
594 			 * this is a nosync page, we can't continue.
595 			 */
596 			if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
597 				if (--scanlimit == 0)
598 					break;
599 				++tscan;
600 				continue;
601 			}
602 			scanlimit = scanreset;
603 
604 			/*
605 			 * This returns 0 if it was unable to busy the first
606 			 * page (i.e. had to sleep).
607 			 */
608 			tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
609 		}
610 
611 		/*
612 		 * If everything was dirty and we flushed it successfully,
613 		 * and the requested range is not the entire object, we
614 		 * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
615 		 * return immediately.
616 		 */
617 		if (tscan >= tend && (tstart || tend < object->size)) {
618 			vm_object_clear_flag(object, OBJ_CLEANING);
619 			return;
620 		}
621 		pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
622 	}
623 
624 	/*
625 	 * Generally set CLEANCHK interlock and make the page read-only so
626 	 * we can then clear the object flags.
627 	 *
628 	 * However, if this is a nosync mmap then the object is likely to
629 	 * stay dirty so do not mess with the page and do not clear the
630 	 * object flags.
631 	 */
632 
633 	clearobjflags = 1;
634 
635 	for(p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
636 		vm_page_flag_set(p, PG_CLEANCHK);
637 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
638 			clearobjflags = 0;
639 		else
640 			vm_page_protect(p, VM_PROT_READ);
641 	}
642 
643 	if (clearobjflags && (tstart == 0) && (tend == object->size)) {
644 		struct vnode *vp;
645 
646 		vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
647                 if (object->type == OBJT_VNODE &&
648                     (vp = (struct vnode *)object->handle) != NULL) {
649                         if (vp->v_flag & VOBJDIRTY) {
650                                 lwkt_gettoken(&vlock, vp->v_interlock);
651                                 vp->v_flag &= ~VOBJDIRTY;
652                                 lwkt_reltoken(&vlock);
653                         }
654                 }
655 	}
656 
657 rescan:
658 	curgeneration = object->generation;
659 
660 	for(p = TAILQ_FIRST(&object->memq); p; p = np) {
661 		int n;
662 
663 		np = TAILQ_NEXT(p, listq);
664 
665 again:
666 		pi = p->pindex;
667 		if (((p->flags & PG_CLEANCHK) == 0) ||
668 			(pi < tstart) || (pi >= tend) ||
669 			(p->valid == 0) ||
670 			((p->queue - p->pc) == PQ_CACHE)) {
671 			vm_page_flag_clear(p, PG_CLEANCHK);
672 			continue;
673 		}
674 
675 		vm_page_test_dirty(p);
676 		if ((p->dirty & p->valid) == 0) {
677 			vm_page_flag_clear(p, PG_CLEANCHK);
678 			continue;
679 		}
680 
681 		/*
682 		 * If we have been asked to skip nosync pages and this is a
683 		 * nosync page, skip it.  Note that the object flags were
684 		 * not cleared in this case so we do not have to set them.
685 		 */
686 		if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
687 			vm_page_flag_clear(p, PG_CLEANCHK);
688 			continue;
689 		}
690 
691 		n = vm_object_page_collect_flush(object, p,
692 			curgeneration, pagerflags);
693 		if (n == 0)
694 			goto rescan;
695 		if (object->generation != curgeneration)
696 			goto rescan;
697 
698 		/*
699 		 * Try to optimize the next page.  If we can't we pick up
700 		 * our (random) scan where we left off.
701 		 */
702 		if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
703 			if ((p = vm_page_lookup(object, pi + n)) != NULL)
704 				goto again;
705 		}
706 	}
707 
708 #if 0
709 	VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
710 #endif
711 
712 	vm_object_clear_flag(object, OBJ_CLEANING);
713 	return;
714 }
715 
716 static int
717 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
718 {
719 	int runlen;
720 	int s;
721 	int maxf;
722 	int chkb;
723 	int maxb;
724 	int i;
725 	vm_pindex_t pi;
726 	vm_page_t maf[vm_pageout_page_count];
727 	vm_page_t mab[vm_pageout_page_count];
728 	vm_page_t ma[vm_pageout_page_count];
729 
730 	s = splvm();
731 	pi = p->pindex;
732 	while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
733 		if (object->generation != curgeneration) {
734 			splx(s);
735 			return(0);
736 		}
737 	}
738 
739 	maxf = 0;
740 	for(i = 1; i < vm_pageout_page_count; i++) {
741 		vm_page_t tp;
742 
743 		if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
744 			if ((tp->flags & PG_BUSY) ||
745 				((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
746 				 (tp->flags & PG_CLEANCHK) == 0) ||
747 				(tp->busy != 0))
748 				break;
749 			if((tp->queue - tp->pc) == PQ_CACHE) {
750 				vm_page_flag_clear(tp, PG_CLEANCHK);
751 				break;
752 			}
753 			vm_page_test_dirty(tp);
754 			if ((tp->dirty & tp->valid) == 0) {
755 				vm_page_flag_clear(tp, PG_CLEANCHK);
756 				break;
757 			}
758 			maf[ i - 1 ] = tp;
759 			maxf++;
760 			continue;
761 		}
762 		break;
763 	}
764 
765 	maxb = 0;
766 	chkb = vm_pageout_page_count -  maxf;
767 	if (chkb) {
768 		for(i = 1; i < chkb;i++) {
769 			vm_page_t tp;
770 
771 			if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
772 				if ((tp->flags & PG_BUSY) ||
773 					((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
774 					 (tp->flags & PG_CLEANCHK) == 0) ||
775 					(tp->busy != 0))
776 					break;
777 				if((tp->queue - tp->pc) == PQ_CACHE) {
778 					vm_page_flag_clear(tp, PG_CLEANCHK);
779 					break;
780 				}
781 				vm_page_test_dirty(tp);
782 				if ((tp->dirty & tp->valid) == 0) {
783 					vm_page_flag_clear(tp, PG_CLEANCHK);
784 					break;
785 				}
786 				mab[ i - 1 ] = tp;
787 				maxb++;
788 				continue;
789 			}
790 			break;
791 		}
792 	}
793 
794 	for(i = 0; i < maxb; i++) {
795 		int index = (maxb - i) - 1;
796 		ma[index] = mab[i];
797 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
798 	}
799 	vm_page_flag_clear(p, PG_CLEANCHK);
800 	ma[maxb] = p;
801 	for(i = 0; i < maxf; i++) {
802 		int index = (maxb + i) + 1;
803 		ma[index] = maf[i];
804 		vm_page_flag_clear(ma[index], PG_CLEANCHK);
805 	}
806 	runlen = maxb + maxf + 1;
807 
808 	splx(s);
809 	vm_pageout_flush(ma, runlen, pagerflags);
810 	for (i = 0; i < runlen; i++) {
811 		if (ma[i]->valid & ma[i]->dirty) {
812 			vm_page_protect(ma[i], VM_PROT_READ);
813 			vm_page_flag_set(ma[i], PG_CLEANCHK);
814 
815 			/*
816 			 * maxf will end up being the actual number of pages
817 			 * we wrote out contiguously, non-inclusive of the
818 			 * first page.  We do not count look-behind pages.
819 			 */
820 			if (i >= maxb + 1 && (maxf > i - maxb - 1))
821 				maxf = i - maxb - 1;
822 		}
823 	}
824 	return(maxf + 1);
825 }
826 
827 #ifdef not_used
828 /* XXX I cannot tell if this should be an exported symbol */
829 /*
830  *	vm_object_deactivate_pages
831  *
832  *	Deactivate all pages in the specified object.  (Keep its pages
833  *	in memory even though it is no longer referenced.)
834  *
835  *	The object must be locked.
836  */
837 static void
838 vm_object_deactivate_pages(object)
839 	vm_object_t object;
840 {
841 	vm_page_t p, next;
842 
843 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
844 		next = TAILQ_NEXT(p, listq);
845 		vm_page_deactivate(p);
846 	}
847 }
848 #endif
849 
850 /*
851  * Same as vm_object_pmap_copy, except range checking really
852  * works, and is meant for small sections of an object.
853  *
854  * This code protects resident pages by making them read-only
855  * and is typically called on a fork or split when a page
856  * is converted to copy-on-write.
857  *
858  * NOTE: If the page is already at VM_PROT_NONE, calling
859  * vm_page_protect will have no effect.
860  */
861 
862 void
863 vm_object_pmap_copy_1(object, start, end)
864 	vm_object_t object;
865 	vm_pindex_t start;
866 	vm_pindex_t end;
867 {
868 	vm_pindex_t idx;
869 	vm_page_t p;
870 
871 	if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
872 		return;
873 
874 	for (idx = start; idx < end; idx++) {
875 		p = vm_page_lookup(object, idx);
876 		if (p == NULL)
877 			continue;
878 		vm_page_protect(p, VM_PROT_READ);
879 	}
880 }
881 
882 /*
883  *	vm_object_pmap_remove:
884  *
885  *	Removes all physical pages in the specified
886  *	object range from all physical maps.
887  *
888  *	The object must *not* be locked.
889  */
890 void
891 vm_object_pmap_remove(object, start, end)
892 	vm_object_t object;
893 	vm_pindex_t start;
894 	vm_pindex_t end;
895 {
896 	vm_page_t p;
897 
898 	if (object == NULL)
899 		return;
900 	for (p = TAILQ_FIRST(&object->memq);
901 		p != NULL;
902 		p = TAILQ_NEXT(p, listq)) {
903 		if (p->pindex >= start && p->pindex < end)
904 			vm_page_protect(p, VM_PROT_NONE);
905 	}
906 	if ((start == 0) && (object->size == end))
907 		vm_object_clear_flag(object, OBJ_WRITEABLE);
908 }
909 
910 /*
911  *	vm_object_madvise:
912  *
913  *	Implements the madvise function at the object/page level.
914  *
915  *	MADV_WILLNEED	(any object)
916  *
917  *	    Activate the specified pages if they are resident.
918  *
919  *	MADV_DONTNEED	(any object)
920  *
921  *	    Deactivate the specified pages if they are resident.
922  *
923  *	MADV_FREE	(OBJT_DEFAULT/OBJT_SWAP objects,
924  *			 OBJ_ONEMAPPING only)
925  *
926  *	    Deactivate and clean the specified pages if they are
927  *	    resident.  This permits the process to reuse the pages
928  *	    without faulting or the kernel to reclaim the pages
929  *	    without I/O.
930  */
931 void
932 vm_object_madvise(object, pindex, count, advise)
933 	vm_object_t object;
934 	vm_pindex_t pindex;
935 	int count;
936 	int advise;
937 {
938 	vm_pindex_t end, tpindex;
939 	vm_object_t tobject;
940 	vm_page_t m;
941 
942 	if (object == NULL)
943 		return;
944 
945 	end = pindex + count;
946 
947 	/*
948 	 * Locate and adjust resident pages
949 	 */
950 
951 	for (; pindex < end; pindex += 1) {
952 relookup:
953 		tobject = object;
954 		tpindex = pindex;
955 shadowlookup:
956 		/*
957 		 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
958 		 * and those pages must be OBJ_ONEMAPPING.
959 		 */
960 		if (advise == MADV_FREE) {
961 			if ((tobject->type != OBJT_DEFAULT &&
962 			     tobject->type != OBJT_SWAP) ||
963 			    (tobject->flags & OBJ_ONEMAPPING) == 0) {
964 				continue;
965 			}
966 		}
967 
968 		m = vm_page_lookup(tobject, tpindex);
969 
970 		if (m == NULL) {
971 			/*
972 			 * There may be swap even if there is no backing page
973 			 */
974 			if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
975 				swap_pager_freespace(tobject, tpindex, 1);
976 
977 			/*
978 			 * next object
979 			 */
980 			tobject = tobject->backing_object;
981 			if (tobject == NULL)
982 				continue;
983 			tpindex += OFF_TO_IDX(tobject->backing_object_offset);
984 			goto shadowlookup;
985 		}
986 
987 		/*
988 		 * If the page is busy or not in a normal active state,
989 		 * we skip it.  If the page is not managed there are no
990 		 * page queues to mess with.  Things can break if we mess
991 		 * with pages in any of the below states.
992 		 */
993 		if (
994 		    m->hold_count ||
995 		    m->wire_count ||
996 		    (m->flags & PG_UNMANAGED) ||
997 		    m->valid != VM_PAGE_BITS_ALL
998 		) {
999 			continue;
1000 		}
1001 
1002  		if (vm_page_sleep_busy(m, TRUE, "madvpo"))
1003   			goto relookup;
1004 
1005 		if (advise == MADV_WILLNEED) {
1006 			vm_page_activate(m);
1007 		} else if (advise == MADV_DONTNEED) {
1008 			vm_page_dontneed(m);
1009 		} else if (advise == MADV_FREE) {
1010 			/*
1011 			 * Mark the page clean.  This will allow the page
1012 			 * to be freed up by the system.  However, such pages
1013 			 * are often reused quickly by malloc()/free()
1014 			 * so we do not do anything that would cause
1015 			 * a page fault if we can help it.
1016 			 *
1017 			 * Specifically, we do not try to actually free
1018 			 * the page now nor do we try to put it in the
1019 			 * cache (which would cause a page fault on reuse).
1020 			 *
1021 			 * But we do make the page is freeable as we
1022 			 * can without actually taking the step of unmapping
1023 			 * it.
1024 			 */
1025 			pmap_clear_modify(m);
1026 			m->dirty = 0;
1027 			m->act_count = 0;
1028 			vm_page_dontneed(m);
1029 			if (tobject->type == OBJT_SWAP)
1030 				swap_pager_freespace(tobject, tpindex, 1);
1031 		}
1032 	}
1033 }
1034 
1035 /*
1036  *	vm_object_shadow:
1037  *
1038  *	Create a new object which is backed by the
1039  *	specified existing object range.  The source
1040  *	object reference is deallocated.
1041  *
1042  *	The new object and offset into that object
1043  *	are returned in the source parameters.
1044  */
1045 
1046 void
1047 vm_object_shadow(object, offset, length)
1048 	vm_object_t *object;	/* IN/OUT */
1049 	vm_ooffset_t *offset;	/* IN/OUT */
1050 	vm_size_t length;
1051 {
1052 	vm_object_t source;
1053 	vm_object_t result;
1054 
1055 	source = *object;
1056 
1057 	/*
1058 	 * Don't create the new object if the old object isn't shared.
1059 	 */
1060 
1061 	if (source != NULL &&
1062 	    source->ref_count == 1 &&
1063 	    source->handle == NULL &&
1064 	    (source->type == OBJT_DEFAULT ||
1065 	     source->type == OBJT_SWAP))
1066 		return;
1067 
1068 	/*
1069 	 * Allocate a new object with the given length
1070 	 */
1071 
1072 	if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1073 		panic("vm_object_shadow: no object for shadowing");
1074 
1075 	/*
1076 	 * The new object shadows the source object, adding a reference to it.
1077 	 * Our caller changes his reference to point to the new object,
1078 	 * removing a reference to the source object.  Net result: no change
1079 	 * of reference count.
1080 	 *
1081 	 * Try to optimize the result object's page color when shadowing
1082 	 * in order to maintain page coloring consistency in the combined
1083 	 * shadowed object.
1084 	 */
1085 	result->backing_object = source;
1086 	if (source) {
1087 		LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1088 		source->shadow_count++;
1089 		source->generation++;
1090 		result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1091 	}
1092 
1093 	/*
1094 	 * Store the offset into the source object, and fix up the offset into
1095 	 * the new object.
1096 	 */
1097 
1098 	result->backing_object_offset = *offset;
1099 
1100 	/*
1101 	 * Return the new things
1102 	 */
1103 
1104 	*offset = 0;
1105 	*object = result;
1106 }
1107 
1108 #define	OBSC_TEST_ALL_SHADOWED	0x0001
1109 #define	OBSC_COLLAPSE_NOWAIT	0x0002
1110 #define	OBSC_COLLAPSE_WAIT	0x0004
1111 
1112 static __inline int
1113 vm_object_backing_scan(vm_object_t object, int op)
1114 {
1115 	int s;
1116 	int r = 1;
1117 	vm_page_t p;
1118 	vm_object_t backing_object;
1119 	vm_pindex_t backing_offset_index;
1120 
1121 	s = splvm();
1122 
1123 	backing_object = object->backing_object;
1124 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1125 
1126 	/*
1127 	 * Initial conditions
1128 	 */
1129 
1130 	if (op & OBSC_TEST_ALL_SHADOWED) {
1131 		/*
1132 		 * We do not want to have to test for the existence of
1133 		 * swap pages in the backing object.  XXX but with the
1134 		 * new swapper this would be pretty easy to do.
1135 		 *
1136 		 * XXX what about anonymous MAP_SHARED memory that hasn't
1137 		 * been ZFOD faulted yet?  If we do not test for this, the
1138 		 * shadow test may succeed! XXX
1139 		 */
1140 		if (backing_object->type != OBJT_DEFAULT) {
1141 			splx(s);
1142 			return(0);
1143 		}
1144 	}
1145 	if (op & OBSC_COLLAPSE_WAIT) {
1146 		vm_object_set_flag(backing_object, OBJ_DEAD);
1147 	}
1148 
1149 	/*
1150 	 * Our scan
1151 	 */
1152 
1153 	p = TAILQ_FIRST(&backing_object->memq);
1154 	while (p) {
1155 		vm_page_t next = TAILQ_NEXT(p, listq);
1156 		vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1157 
1158 		if (op & OBSC_TEST_ALL_SHADOWED) {
1159 			vm_page_t pp;
1160 
1161 			/*
1162 			 * Ignore pages outside the parent object's range
1163 			 * and outside the parent object's mapping of the
1164 			 * backing object.
1165 			 *
1166 			 * note that we do not busy the backing object's
1167 			 * page.
1168 			 */
1169 
1170 			if (
1171 			    p->pindex < backing_offset_index ||
1172 			    new_pindex >= object->size
1173 			) {
1174 				p = next;
1175 				continue;
1176 			}
1177 
1178 			/*
1179 			 * See if the parent has the page or if the parent's
1180 			 * object pager has the page.  If the parent has the
1181 			 * page but the page is not valid, the parent's
1182 			 * object pager must have the page.
1183 			 *
1184 			 * If this fails, the parent does not completely shadow
1185 			 * the object and we might as well give up now.
1186 			 */
1187 
1188 			pp = vm_page_lookup(object, new_pindex);
1189 			if (
1190 			    (pp == NULL || pp->valid == 0) &&
1191 			    !vm_pager_has_page(object, new_pindex, NULL, NULL)
1192 			) {
1193 				r = 0;
1194 				break;
1195 			}
1196 		}
1197 
1198 		/*
1199 		 * Check for busy page
1200 		 */
1201 
1202 		if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1203 			vm_page_t pp;
1204 
1205 			if (op & OBSC_COLLAPSE_NOWAIT) {
1206 				if (
1207 				    (p->flags & PG_BUSY) ||
1208 				    !p->valid ||
1209 				    p->hold_count ||
1210 				    p->wire_count ||
1211 				    p->busy
1212 				) {
1213 					p = next;
1214 					continue;
1215 				}
1216 			} else if (op & OBSC_COLLAPSE_WAIT) {
1217 				if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1218 					/*
1219 					 * If we slept, anything could have
1220 					 * happened.  Since the object is
1221 					 * marked dead, the backing offset
1222 					 * should not have changed so we
1223 					 * just restart our scan.
1224 					 */
1225 					p = TAILQ_FIRST(&backing_object->memq);
1226 					continue;
1227 				}
1228 			}
1229 
1230 			/*
1231 			 * Busy the page
1232 			 */
1233 			vm_page_busy(p);
1234 
1235 			KASSERT(
1236 			    p->object == backing_object,
1237 			    ("vm_object_qcollapse(): object mismatch")
1238 			);
1239 
1240 			/*
1241 			 * Destroy any associated swap
1242 			 */
1243 			if (backing_object->type == OBJT_SWAP) {
1244 				swap_pager_freespace(
1245 				    backing_object,
1246 				    p->pindex,
1247 				    1
1248 				);
1249 			}
1250 
1251 			if (
1252 			    p->pindex < backing_offset_index ||
1253 			    new_pindex >= object->size
1254 			) {
1255 				/*
1256 				 * Page is out of the parent object's range, we
1257 				 * can simply destroy it.
1258 				 */
1259 				vm_page_protect(p, VM_PROT_NONE);
1260 				vm_page_free(p);
1261 				p = next;
1262 				continue;
1263 			}
1264 
1265 			pp = vm_page_lookup(object, new_pindex);
1266 			if (
1267 			    pp != NULL ||
1268 			    vm_pager_has_page(object, new_pindex, NULL, NULL)
1269 			) {
1270 				/*
1271 				 * page already exists in parent OR swap exists
1272 				 * for this location in the parent.  Destroy
1273 				 * the original page from the backing object.
1274 				 *
1275 				 * Leave the parent's page alone
1276 				 */
1277 				vm_page_protect(p, VM_PROT_NONE);
1278 				vm_page_free(p);
1279 				p = next;
1280 				continue;
1281 			}
1282 
1283 			/*
1284 			 * Page does not exist in parent, rename the
1285 			 * page from the backing object to the main object.
1286 			 *
1287 			 * If the page was mapped to a process, it can remain
1288 			 * mapped through the rename.
1289 			 */
1290 			if ((p->queue - p->pc) == PQ_CACHE)
1291 				vm_page_deactivate(p);
1292 
1293 			vm_page_rename(p, object, new_pindex);
1294 			/* page automatically made dirty by rename */
1295 		}
1296 		p = next;
1297 	}
1298 	splx(s);
1299 	return(r);
1300 }
1301 
1302 
1303 /*
1304  * this version of collapse allows the operation to occur earlier and
1305  * when paging_in_progress is true for an object...  This is not a complete
1306  * operation, but should plug 99.9% of the rest of the leaks.
1307  */
1308 static void
1309 vm_object_qcollapse(object)
1310 	vm_object_t object;
1311 {
1312 	vm_object_t backing_object = object->backing_object;
1313 
1314 	if (backing_object->ref_count != 1)
1315 		return;
1316 
1317 	backing_object->ref_count += 2;
1318 
1319 	vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1320 
1321 	backing_object->ref_count -= 2;
1322 }
1323 
1324 /*
1325  *	vm_object_collapse:
1326  *
1327  *	Collapse an object with the object backing it.
1328  *	Pages in the backing object are moved into the
1329  *	parent, and the backing object is deallocated.
1330  */
1331 void
1332 vm_object_collapse(object)
1333 	vm_object_t object;
1334 {
1335 	while (TRUE) {
1336 		vm_object_t backing_object;
1337 
1338 		/*
1339 		 * Verify that the conditions are right for collapse:
1340 		 *
1341 		 * The object exists and the backing object exists.
1342 		 */
1343 		if (object == NULL)
1344 			break;
1345 
1346 		if ((backing_object = object->backing_object) == NULL)
1347 			break;
1348 
1349 		/*
1350 		 * we check the backing object first, because it is most likely
1351 		 * not collapsable.
1352 		 */
1353 		if (backing_object->handle != NULL ||
1354 		    (backing_object->type != OBJT_DEFAULT &&
1355 		     backing_object->type != OBJT_SWAP) ||
1356 		    (backing_object->flags & OBJ_DEAD) ||
1357 		    object->handle != NULL ||
1358 		    (object->type != OBJT_DEFAULT &&
1359 		     object->type != OBJT_SWAP) ||
1360 		    (object->flags & OBJ_DEAD)) {
1361 			break;
1362 		}
1363 
1364 		if (
1365 		    object->paging_in_progress != 0 ||
1366 		    backing_object->paging_in_progress != 0
1367 		) {
1368 			vm_object_qcollapse(object);
1369 			break;
1370 		}
1371 
1372 		/*
1373 		 * We know that we can either collapse the backing object (if
1374 		 * the parent is the only reference to it) or (perhaps) have
1375 		 * the parent bypass the object if the parent happens to shadow
1376 		 * all the resident pages in the entire backing object.
1377 		 *
1378 		 * This is ignoring pager-backed pages such as swap pages.
1379 		 * vm_object_backing_scan fails the shadowing test in this
1380 		 * case.
1381 		 */
1382 
1383 		if (backing_object->ref_count == 1) {
1384 			/*
1385 			 * If there is exactly one reference to the backing
1386 			 * object, we can collapse it into the parent.
1387 			 */
1388 
1389 			vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1390 
1391 			/*
1392 			 * Move the pager from backing_object to object.
1393 			 */
1394 
1395 			if (backing_object->type == OBJT_SWAP) {
1396 				vm_object_pip_add(backing_object, 1);
1397 
1398 				/*
1399 				 * scrap the paging_offset junk and do a
1400 				 * discrete copy.  This also removes major
1401 				 * assumptions about how the swap-pager
1402 				 * works from where it doesn't belong.  The
1403 				 * new swapper is able to optimize the
1404 				 * destroy-source case.
1405 				 */
1406 
1407 				vm_object_pip_add(object, 1);
1408 				swap_pager_copy(
1409 				    backing_object,
1410 				    object,
1411 				    OFF_TO_IDX(object->backing_object_offset), TRUE);
1412 				vm_object_pip_wakeup(object);
1413 
1414 				vm_object_pip_wakeup(backing_object);
1415 			}
1416 			/*
1417 			 * Object now shadows whatever backing_object did.
1418 			 * Note that the reference to
1419 			 * backing_object->backing_object moves from within
1420 			 * backing_object to within object.
1421 			 */
1422 
1423 			LIST_REMOVE(object, shadow_list);
1424 			object->backing_object->shadow_count--;
1425 			object->backing_object->generation++;
1426 			if (backing_object->backing_object) {
1427 				LIST_REMOVE(backing_object, shadow_list);
1428 				backing_object->backing_object->shadow_count--;
1429 				backing_object->backing_object->generation++;
1430 			}
1431 			object->backing_object = backing_object->backing_object;
1432 			if (object->backing_object) {
1433 				LIST_INSERT_HEAD(
1434 				    &object->backing_object->shadow_head,
1435 				    object,
1436 				    shadow_list
1437 				);
1438 				object->backing_object->shadow_count++;
1439 				object->backing_object->generation++;
1440 			}
1441 
1442 			object->backing_object_offset +=
1443 			    backing_object->backing_object_offset;
1444 
1445 			/*
1446 			 * Discard backing_object.
1447 			 *
1448 			 * Since the backing object has no pages, no pager left,
1449 			 * and no object references within it, all that is
1450 			 * necessary is to dispose of it.
1451 			 */
1452 
1453 			KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1454 			KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1455 			TAILQ_REMOVE(
1456 			    &vm_object_list,
1457 			    backing_object,
1458 			    object_list
1459 			);
1460 			vm_object_count--;
1461 
1462 			zfree(obj_zone, backing_object);
1463 
1464 			object_collapses++;
1465 		} else {
1466 			vm_object_t new_backing_object;
1467 
1468 			/*
1469 			 * If we do not entirely shadow the backing object,
1470 			 * there is nothing we can do so we give up.
1471 			 */
1472 
1473 			if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1474 				break;
1475 			}
1476 
1477 			/*
1478 			 * Make the parent shadow the next object in the
1479 			 * chain.  Deallocating backing_object will not remove
1480 			 * it, since its reference count is at least 2.
1481 			 */
1482 
1483 			LIST_REMOVE(object, shadow_list);
1484 			backing_object->shadow_count--;
1485 			backing_object->generation++;
1486 
1487 			new_backing_object = backing_object->backing_object;
1488 			if ((object->backing_object = new_backing_object) != NULL) {
1489 				vm_object_reference(new_backing_object);
1490 				LIST_INSERT_HEAD(
1491 				    &new_backing_object->shadow_head,
1492 				    object,
1493 				    shadow_list
1494 				);
1495 				new_backing_object->shadow_count++;
1496 				new_backing_object->generation++;
1497 				object->backing_object_offset +=
1498 					backing_object->backing_object_offset;
1499 			}
1500 
1501 			/*
1502 			 * Drop the reference count on backing_object. Since
1503 			 * its ref_count was at least 2, it will not vanish;
1504 			 * so we don't need to call vm_object_deallocate, but
1505 			 * we do anyway.
1506 			 */
1507 			vm_object_deallocate(backing_object);
1508 			object_bypasses++;
1509 		}
1510 
1511 		/*
1512 		 * Try again with this object's new backing object.
1513 		 */
1514 	}
1515 }
1516 
1517 /*
1518  *	vm_object_page_remove: [internal]
1519  *
1520  *	Removes all physical pages in the specified
1521  *	object range from the object's list of pages.
1522  *
1523  *	The object must be locked.
1524  */
1525 void
1526 vm_object_page_remove(object, start, end, clean_only)
1527 	vm_object_t object;
1528 	vm_pindex_t start;
1529 	vm_pindex_t end;
1530 	boolean_t clean_only;
1531 {
1532 	vm_page_t p, next;
1533 	unsigned int size;
1534 	int all;
1535 
1536 	if (object == NULL ||
1537 	    object->resident_page_count == 0)
1538 		return;
1539 
1540 	all = ((end == 0) && (start == 0));
1541 
1542 	/*
1543 	 * Since physically-backed objects do not use managed pages, we can't
1544 	 * remove pages from the object (we must instead remove the page
1545 	 * references, and then destroy the object).
1546 	 */
1547 	KASSERT(object->type != OBJT_PHYS, ("attempt to remove pages from a physical object"));
1548 
1549 	vm_object_pip_add(object, 1);
1550 again:
1551 	size = end - start;
1552 	if (all || size > object->resident_page_count / 4) {
1553 		for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1554 			next = TAILQ_NEXT(p, listq);
1555 			if (all || ((start <= p->pindex) && (p->pindex < end))) {
1556 				if (p->wire_count != 0) {
1557 					vm_page_protect(p, VM_PROT_NONE);
1558 					if (!clean_only)
1559 						p->valid = 0;
1560 					continue;
1561 				}
1562 
1563 				/*
1564 				 * The busy flags are only cleared at
1565 				 * interrupt -- minimize the spl transitions
1566 				 */
1567 
1568  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1569  					goto again;
1570 
1571 				if (clean_only && p->valid) {
1572 					vm_page_test_dirty(p);
1573 					if (p->valid & p->dirty)
1574 						continue;
1575 				}
1576 
1577 				vm_page_busy(p);
1578 				vm_page_protect(p, VM_PROT_NONE);
1579 				vm_page_free(p);
1580 			}
1581 		}
1582 	} else {
1583 		while (size > 0) {
1584 			if ((p = vm_page_lookup(object, start)) != 0) {
1585 
1586 				if (p->wire_count != 0) {
1587 					vm_page_protect(p, VM_PROT_NONE);
1588 					if (!clean_only)
1589 						p->valid = 0;
1590 					start += 1;
1591 					size -= 1;
1592 					continue;
1593 				}
1594 
1595 				/*
1596 				 * The busy flags are only cleared at
1597 				 * interrupt -- minimize the spl transitions
1598 				 */
1599  				if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1600 					goto again;
1601 
1602 				if (clean_only && p->valid) {
1603 					vm_page_test_dirty(p);
1604 					if (p->valid & p->dirty) {
1605 						start += 1;
1606 						size -= 1;
1607 						continue;
1608 					}
1609 				}
1610 
1611 				vm_page_busy(p);
1612 				vm_page_protect(p, VM_PROT_NONE);
1613 				vm_page_free(p);
1614 			}
1615 			start += 1;
1616 			size -= 1;
1617 		}
1618 	}
1619 	vm_object_pip_wakeup(object);
1620 }
1621 
1622 /*
1623  *	Routine:	vm_object_coalesce
1624  *	Function:	Coalesces two objects backing up adjoining
1625  *			regions of memory into a single object.
1626  *
1627  *	returns TRUE if objects were combined.
1628  *
1629  *	NOTE:	Only works at the moment if the second object is NULL -
1630  *		if it's not, which object do we lock first?
1631  *
1632  *	Parameters:
1633  *		prev_object	First object to coalesce
1634  *		prev_offset	Offset into prev_object
1635  *		next_object	Second object into coalesce
1636  *		next_offset	Offset into next_object
1637  *
1638  *		prev_size	Size of reference to prev_object
1639  *		next_size	Size of reference to next_object
1640  *
1641  *	Conditions:
1642  *	The object must *not* be locked.
1643  */
1644 boolean_t
1645 vm_object_coalesce(prev_object, prev_pindex, prev_size, next_size)
1646 	vm_object_t prev_object;
1647 	vm_pindex_t prev_pindex;
1648 	vm_size_t prev_size, next_size;
1649 {
1650 	vm_pindex_t next_pindex;
1651 
1652 	if (prev_object == NULL) {
1653 		return (TRUE);
1654 	}
1655 
1656 	if (prev_object->type != OBJT_DEFAULT &&
1657 	    prev_object->type != OBJT_SWAP) {
1658 		return (FALSE);
1659 	}
1660 
1661 	/*
1662 	 * Try to collapse the object first
1663 	 */
1664 	vm_object_collapse(prev_object);
1665 
1666 	/*
1667 	 * Can't coalesce if: . more than one reference . paged out . shadows
1668 	 * another object . has a copy elsewhere (any of which mean that the
1669 	 * pages not mapped to prev_entry may be in use anyway)
1670 	 */
1671 
1672 	if (prev_object->backing_object != NULL) {
1673 		return (FALSE);
1674 	}
1675 
1676 	prev_size >>= PAGE_SHIFT;
1677 	next_size >>= PAGE_SHIFT;
1678 	next_pindex = prev_pindex + prev_size;
1679 
1680 	if ((prev_object->ref_count > 1) &&
1681 	    (prev_object->size != next_pindex)) {
1682 		return (FALSE);
1683 	}
1684 
1685 	/*
1686 	 * Remove any pages that may still be in the object from a previous
1687 	 * deallocation.
1688 	 */
1689 	if (next_pindex < prev_object->size) {
1690 		vm_object_page_remove(prev_object,
1691 				      next_pindex,
1692 				      next_pindex + next_size, FALSE);
1693 		if (prev_object->type == OBJT_SWAP)
1694 			swap_pager_freespace(prev_object,
1695 					     next_pindex, next_size);
1696 	}
1697 
1698 	/*
1699 	 * Extend the object if necessary.
1700 	 */
1701 	if (next_pindex + next_size > prev_object->size)
1702 		prev_object->size = next_pindex + next_size;
1703 
1704 	return (TRUE);
1705 }
1706 
1707 void
1708 vm_object_set_writeable_dirty(vm_object_t object)
1709 {
1710 	struct vnode *vp;
1711 	lwkt_tokref vlock;
1712 
1713 	vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1714 	if (object->type == OBJT_VNODE &&
1715 	    (vp = (struct vnode *)object->handle) != NULL) {
1716 		if ((vp->v_flag & VOBJDIRTY) == 0) {
1717 			lwkt_gettoken(&vlock, vp->v_interlock);
1718 			vp->v_flag |= VOBJDIRTY;
1719 			lwkt_reltoken(&vlock);
1720 		}
1721 	}
1722 }
1723 
1724 
1725 
1726 #include "opt_ddb.h"
1727 #ifdef DDB
1728 #include <sys/kernel.h>
1729 
1730 #include <sys/cons.h>
1731 
1732 #include <ddb/ddb.h>
1733 
1734 static int	_vm_object_in_map (vm_map_t map, vm_object_t object,
1735 				       vm_map_entry_t entry);
1736 static int	vm_object_in_map (vm_object_t object);
1737 
1738 static int
1739 _vm_object_in_map(map, object, entry)
1740 	vm_map_t map;
1741 	vm_object_t object;
1742 	vm_map_entry_t entry;
1743 {
1744 	vm_map_t tmpm;
1745 	vm_map_entry_t tmpe;
1746 	vm_object_t obj;
1747 	int entcount;
1748 
1749 	if (map == 0)
1750 		return 0;
1751 
1752 	if (entry == 0) {
1753 		tmpe = map->header.next;
1754 		entcount = map->nentries;
1755 		while (entcount-- && (tmpe != &map->header)) {
1756 			if( _vm_object_in_map(map, object, tmpe)) {
1757 				return 1;
1758 			}
1759 			tmpe = tmpe->next;
1760 		}
1761 	} else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1762 		tmpm = entry->object.sub_map;
1763 		tmpe = tmpm->header.next;
1764 		entcount = tmpm->nentries;
1765 		while (entcount-- && tmpe != &tmpm->header) {
1766 			if( _vm_object_in_map(tmpm, object, tmpe)) {
1767 				return 1;
1768 			}
1769 			tmpe = tmpe->next;
1770 		}
1771 	} else if ((obj = entry->object.vm_object) != NULL) {
1772 		for(; obj; obj=obj->backing_object)
1773 			if( obj == object) {
1774 				return 1;
1775 			}
1776 	}
1777 	return 0;
1778 }
1779 
1780 static int
1781 vm_object_in_map( object)
1782 	vm_object_t object;
1783 {
1784 	struct proc *p;
1785 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1786 		if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1787 			continue;
1788 		if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1789 			return 1;
1790 	}
1791 	if( _vm_object_in_map( kernel_map, object, 0))
1792 		return 1;
1793 	if( _vm_object_in_map( pager_map, object, 0))
1794 		return 1;
1795 	if( _vm_object_in_map( buffer_map, object, 0))
1796 		return 1;
1797 	if( _vm_object_in_map( mb_map, object, 0))
1798 		return 1;
1799 	return 0;
1800 }
1801 
1802 DB_SHOW_COMMAND(vmochk, vm_object_check)
1803 {
1804 	vm_object_t object;
1805 
1806 	/*
1807 	 * make sure that internal objs are in a map somewhere
1808 	 * and none have zero ref counts.
1809 	 */
1810 	for (object = TAILQ_FIRST(&vm_object_list);
1811 			object != NULL;
1812 			object = TAILQ_NEXT(object, object_list)) {
1813 		if (object->handle == NULL &&
1814 		    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1815 			if (object->ref_count == 0) {
1816 				db_printf("vmochk: internal obj has zero ref count: %ld\n",
1817 					(long)object->size);
1818 			}
1819 			if (!vm_object_in_map(object)) {
1820 				db_printf(
1821 			"vmochk: internal obj is not in a map: "
1822 			"ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1823 				    object->ref_count, (u_long)object->size,
1824 				    (u_long)object->size,
1825 				    (void *)object->backing_object);
1826 			}
1827 		}
1828 	}
1829 }
1830 
1831 /*
1832  *	vm_object_print:	[ debug ]
1833  */
1834 DB_SHOW_COMMAND(object, vm_object_print_static)
1835 {
1836 	/* XXX convert args. */
1837 	vm_object_t object = (vm_object_t)addr;
1838 	boolean_t full = have_addr;
1839 
1840 	vm_page_t p;
1841 
1842 	/* XXX count is an (unused) arg.  Avoid shadowing it. */
1843 #define	count	was_count
1844 
1845 	int count;
1846 
1847 	if (object == NULL)
1848 		return;
1849 
1850 	db_iprintf(
1851 	    "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1852 	    object, (int)object->type, (u_long)object->size,
1853 	    object->resident_page_count, object->ref_count, object->flags);
1854 	/*
1855 	 * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1856 	 */
1857 	db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1858 	    object->shadow_count,
1859 	    object->backing_object ? object->backing_object->ref_count : 0,
1860 	    object->backing_object, (long)object->backing_object_offset);
1861 
1862 	if (!full)
1863 		return;
1864 
1865 	db_indent += 2;
1866 	count = 0;
1867 	for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1868 		if (count == 0)
1869 			db_iprintf("memory:=");
1870 		else if (count == 6) {
1871 			db_printf("\n");
1872 			db_iprintf(" ...");
1873 			count = 0;
1874 		} else
1875 			db_printf(",");
1876 		count++;
1877 
1878 		db_printf("(off=0x%lx,page=0x%lx)",
1879 		    (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1880 	}
1881 	if (count != 0)
1882 		db_printf("\n");
1883 	db_indent -= 2;
1884 }
1885 
1886 /* XXX. */
1887 #undef count
1888 
1889 /* XXX need this non-static entry for calling from vm_map_print. */
1890 void
1891 vm_object_print(addr, have_addr, count, modif)
1892         /* db_expr_t */ long addr;
1893 	boolean_t have_addr;
1894 	/* db_expr_t */ long count;
1895 	char *modif;
1896 {
1897 	vm_object_print_static(addr, have_addr, count, modif);
1898 }
1899 
1900 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1901 {
1902 	vm_object_t object;
1903 	int nl = 0;
1904 	int c;
1905 	for (object = TAILQ_FIRST(&vm_object_list);
1906 			object != NULL;
1907 			object = TAILQ_NEXT(object, object_list)) {
1908 		vm_pindex_t idx, fidx;
1909 		vm_pindex_t osize;
1910 		vm_paddr_t pa = -1, padiff;
1911 		int rcount;
1912 		vm_page_t m;
1913 
1914 		db_printf("new object: %p\n", (void *)object);
1915 		if ( nl > 18) {
1916 			c = cngetc();
1917 			if (c != ' ')
1918 				return;
1919 			nl = 0;
1920 		}
1921 		nl++;
1922 		rcount = 0;
1923 		fidx = 0;
1924 		osize = object->size;
1925 		if (osize > 128)
1926 			osize = 128;
1927 		for(idx=0;idx<osize;idx++) {
1928 			m = vm_page_lookup(object, idx);
1929 			if (m == NULL) {
1930 				if (rcount) {
1931 					db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1932 						(long)fidx, rcount, (long)pa);
1933 					if ( nl > 18) {
1934 						c = cngetc();
1935 						if (c != ' ')
1936 							return;
1937 						nl = 0;
1938 					}
1939 					nl++;
1940 					rcount = 0;
1941 				}
1942 				continue;
1943 			}
1944 
1945 
1946 			if (rcount &&
1947 				(VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1948 				++rcount;
1949 				continue;
1950 			}
1951 			if (rcount) {
1952 				padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1953 				padiff >>= PAGE_SHIFT;
1954 				padiff &= PQ_L2_MASK;
1955 				if (padiff == 0) {
1956 					pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1957 					++rcount;
1958 					continue;
1959 				}
1960 				db_printf(" index(%ld)run(%d)pa(0x%lx)",
1961 					(long)fidx, rcount, (long)pa);
1962 				db_printf("pd(%ld)\n", (long)padiff);
1963 				if ( nl > 18) {
1964 					c = cngetc();
1965 					if (c != ' ')
1966 						return;
1967 					nl = 0;
1968 				}
1969 				nl++;
1970 			}
1971 			fidx = idx;
1972 			pa = VM_PAGE_TO_PHYS(m);
1973 			rcount = 1;
1974 		}
1975 		if (rcount) {
1976 			db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1977 				(long)fidx, rcount, (long)pa);
1978 			if ( nl > 18) {
1979 				c = cngetc();
1980 				if (c != ' ')
1981 					return;
1982 				nl = 0;
1983 			}
1984 			nl++;
1985 		}
1986 	}
1987 }
1988 #endif /* DDB */
1989