xref: /dragonfly/sys/vm/vm_page.c (revision 89a89091)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 #define VMACTION_HSIZE	256
99 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
100 
101 static void vm_page_queue_init(void);
102 static void vm_page_free_wakeup(void);
103 static vm_page_t vm_page_select_cache(u_short pg_color);
104 static vm_page_t _vm_page_list_find2(int basequeue, int index);
105 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
106 
107 /*
108  * Array of tailq lists
109  */
110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
111 
112 LIST_HEAD(vm_page_action_list, vm_page_action);
113 struct vm_page_action_list	action_list[VMACTION_HSIZE];
114 static volatile int vm_pages_waiting;
115 
116 static struct alist vm_contig_alist;
117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
119 
120 static u_long vm_dma_reserved = 0;
121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
123 	    "Memory reserved for DMA");
124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
125 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
126 
127 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
128 	     vm_pindex_t, pindex);
129 
130 static void
131 vm_page_queue_init(void)
132 {
133 	int i;
134 
135 	for (i = 0; i < PQ_L2_SIZE; i++)
136 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
137 	for (i = 0; i < PQ_L2_SIZE; i++)
138 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
145 	/* PQ_NONE has no queue */
146 
147 	for (i = 0; i < PQ_COUNT; i++) {
148 		TAILQ_INIT(&vm_page_queues[i].pl);
149 		spin_init(&vm_page_queues[i].spin);
150 	}
151 
152 	for (i = 0; i < VMACTION_HSIZE; i++)
153 		LIST_INIT(&action_list[i]);
154 }
155 
156 /*
157  * note: place in initialized data section?  Is this necessary?
158  */
159 long first_page = 0;
160 int vm_page_array_size = 0;
161 int vm_page_zero_count = 0;
162 vm_page_t vm_page_array = NULL;
163 vm_paddr_t vm_low_phys_reserved;
164 
165 /*
166  * (low level boot)
167  *
168  * Sets the page size, perhaps based upon the memory size.
169  * Must be called before any use of page-size dependent functions.
170  */
171 void
172 vm_set_page_size(void)
173 {
174 	if (vmstats.v_page_size == 0)
175 		vmstats.v_page_size = PAGE_SIZE;
176 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
177 		panic("vm_set_page_size: page size not a power of two");
178 }
179 
180 /*
181  * (low level boot)
182  *
183  * Add a new page to the freelist for use by the system.  New pages
184  * are added to both the head and tail of the associated free page
185  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
186  * requests pull 'recent' adds (higher physical addresses) first.
187  *
188  * Beware that the page zeroing daemon will also be running soon after
189  * boot, moving pages from the head to the tail of the PQ_FREE queues.
190  *
191  * Must be called in a critical section.
192  */
193 static void
194 vm_add_new_page(vm_paddr_t pa)
195 {
196 	struct vpgqueues *vpq;
197 	vm_page_t m;
198 
199 	m = PHYS_TO_VM_PAGE(pa);
200 	m->phys_addr = pa;
201 	m->flags = 0;
202 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
203 #ifdef SMP
204 	/*
205 	 * Twist for cpu localization in addition to page coloring, so
206 	 * different cpus selecting by m->queue get different page colors.
207 	 */
208 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
209 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
210 #endif
211 	/*
212 	 * Reserve a certain number of contiguous low memory pages for
213 	 * contigmalloc() to use.
214 	 */
215 	if (pa < vm_low_phys_reserved) {
216 		atomic_add_int(&vmstats.v_page_count, 1);
217 		atomic_add_int(&vmstats.v_dma_pages, 1);
218 		m->queue = PQ_NONE;
219 		m->wire_count = 1;
220 		atomic_add_int(&vmstats.v_wire_count, 1);
221 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
222 		return;
223 	}
224 
225 	/*
226 	 * General page
227 	 */
228 	m->queue = m->pc + PQ_FREE;
229 	KKASSERT(m->dirty == 0);
230 
231 	atomic_add_int(&vmstats.v_page_count, 1);
232 	atomic_add_int(&vmstats.v_free_count, 1);
233 	vpq = &vm_page_queues[m->queue];
234 	if ((vpq->flipflop & 15) == 0) {
235 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
236 		m->flags |= PG_ZERO;
237 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
238 		atomic_add_int(&vm_page_zero_count, 1);
239 	} else {
240 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
241 	}
242 	++vpq->flipflop;
243 	++vpq->lcnt;
244 }
245 
246 /*
247  * (low level boot)
248  *
249  * Initializes the resident memory module.
250  *
251  * Preallocates memory for critical VM structures and arrays prior to
252  * kernel_map becoming available.
253  *
254  * Memory is allocated from (virtual2_start, virtual2_end) if available,
255  * otherwise memory is allocated from (virtual_start, virtual_end).
256  *
257  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
258  * large enough to hold vm_page_array & other structures for machines with
259  * large amounts of ram, so we want to use virtual2* when available.
260  */
261 void
262 vm_page_startup(void)
263 {
264 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
265 	vm_offset_t mapped;
266 	vm_size_t npages;
267 	vm_paddr_t page_range;
268 	vm_paddr_t new_end;
269 	int i;
270 	vm_paddr_t pa;
271 	int nblocks;
272 	vm_paddr_t last_pa;
273 	vm_paddr_t end;
274 	vm_paddr_t biggestone, biggestsize;
275 	vm_paddr_t total;
276 
277 	total = 0;
278 	biggestsize = 0;
279 	biggestone = 0;
280 	nblocks = 0;
281 	vaddr = round_page(vaddr);
282 
283 	for (i = 0; phys_avail[i + 1]; i += 2) {
284 		phys_avail[i] = round_page64(phys_avail[i]);
285 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
286 	}
287 
288 	for (i = 0; phys_avail[i + 1]; i += 2) {
289 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
290 
291 		if (size > biggestsize) {
292 			biggestone = i;
293 			biggestsize = size;
294 		}
295 		++nblocks;
296 		total += size;
297 	}
298 
299 	end = phys_avail[biggestone+1];
300 	end = trunc_page(end);
301 
302 	/*
303 	 * Initialize the queue headers for the free queue, the active queue
304 	 * and the inactive queue.
305 	 */
306 	vm_page_queue_init();
307 
308 #if !defined(_KERNEL_VIRTUAL)
309 	/*
310 	 * VKERNELs don't support minidumps and as such don't need
311 	 * vm_page_dump
312 	 *
313 	 * Allocate a bitmap to indicate that a random physical page
314 	 * needs to be included in a minidump.
315 	 *
316 	 * The amd64 port needs this to indicate which direct map pages
317 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
318 	 *
319 	 * However, i386 still needs this workspace internally within the
320 	 * minidump code.  In theory, they are not needed on i386, but are
321 	 * included should the sf_buf code decide to use them.
322 	 */
323 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
324 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
325 	end -= vm_page_dump_size;
326 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
327 	    VM_PROT_READ | VM_PROT_WRITE);
328 	bzero((void *)vm_page_dump, vm_page_dump_size);
329 #endif
330 	/*
331 	 * Compute the number of pages of memory that will be available for
332 	 * use (taking into account the overhead of a page structure per
333 	 * page).
334 	 */
335 	first_page = phys_avail[0] / PAGE_SIZE;
336 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
337 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
338 
339 #ifndef _KERNEL_VIRTUAL
340 	/*
341 	 * (only applies to real kernels)
342 	 *
343 	 * Initialize the contiguous reserve map.  We initially reserve up
344 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
345 	 * is lower.
346 	 *
347 	 * Once device initialization is complete we return most of the
348 	 * reserved memory back to the normal page queues but leave some
349 	 * in reserve for things like usb attachments.
350 	 */
351 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
352 	if (vm_low_phys_reserved > total / 4)
353 		vm_low_phys_reserved = total / 4;
354 	if (vm_dma_reserved == 0) {
355 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
356 		if (vm_dma_reserved > total / 16)
357 			vm_dma_reserved = total / 16;
358 	}
359 #endif
360 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
361 		   ALIST_RECORDS_65536);
362 
363 	/*
364 	 * Initialize the mem entry structures now, and put them in the free
365 	 * queue.
366 	 */
367 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
368 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
369 	vm_page_array = (vm_page_t)mapped;
370 
371 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
372 	/*
373 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
374 	 * we have to manually add these pages to the minidump tracking so
375 	 * that they can be dumped, including the vm_page_array.
376 	 */
377 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
378 		dump_add_page(pa);
379 #endif
380 
381 	/*
382 	 * Clear all of the page structures
383 	 */
384 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
385 	vm_page_array_size = page_range;
386 
387 	/*
388 	 * Construct the free queue(s) in ascending order (by physical
389 	 * address) so that the first 16MB of physical memory is allocated
390 	 * last rather than first.  On large-memory machines, this avoids
391 	 * the exhaustion of low physical memory before isa_dmainit has run.
392 	 */
393 	vmstats.v_page_count = 0;
394 	vmstats.v_free_count = 0;
395 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
396 		pa = phys_avail[i];
397 		if (i == biggestone)
398 			last_pa = new_end;
399 		else
400 			last_pa = phys_avail[i + 1];
401 		while (pa < last_pa && npages-- > 0) {
402 			vm_add_new_page(pa);
403 			pa += PAGE_SIZE;
404 		}
405 	}
406 	if (virtual2_start)
407 		virtual2_start = vaddr;
408 	else
409 		virtual_start = vaddr;
410 }
411 
412 /*
413  * We tended to reserve a ton of memory for contigmalloc().  Now that most
414  * drivers have initialized we want to return most the remaining free
415  * reserve back to the VM page queues so they can be used for normal
416  * allocations.
417  *
418  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
419  */
420 static void
421 vm_page_startup_finish(void *dummy __unused)
422 {
423 	alist_blk_t blk;
424 	alist_blk_t rblk;
425 	alist_blk_t count;
426 	alist_blk_t xcount;
427 	alist_blk_t bfree;
428 	vm_page_t m;
429 
430 	spin_lock(&vm_contig_spin);
431 	for (;;) {
432 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
433 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
434 			break;
435 		if (count == 0)
436 			break;
437 
438 		/*
439 		 * Figure out how much of the initial reserve we have to
440 		 * free in order to reach our target.
441 		 */
442 		bfree -= vm_dma_reserved / PAGE_SIZE;
443 		if (count > bfree) {
444 			blk += count - bfree;
445 			count = bfree;
446 		}
447 
448 		/*
449 		 * Calculate the nearest power of 2 <= count.
450 		 */
451 		for (xcount = 1; xcount <= count; xcount <<= 1)
452 			;
453 		xcount >>= 1;
454 		blk += count - xcount;
455 		count = xcount;
456 
457 		/*
458 		 * Allocate the pages from the alist, then free them to
459 		 * the normal VM page queues.
460 		 *
461 		 * Pages allocated from the alist are wired.  We have to
462 		 * busy, unwire, and free them.  We must also adjust
463 		 * vm_low_phys_reserved before freeing any pages to prevent
464 		 * confusion.
465 		 */
466 		rblk = alist_alloc(&vm_contig_alist, blk, count);
467 		if (rblk != blk) {
468 			kprintf("vm_page_startup_finish: Unable to return "
469 				"dma space @0x%08x/%d -> 0x%08x\n",
470 				blk, count, rblk);
471 			break;
472 		}
473 		atomic_add_int(&vmstats.v_dma_pages, -count);
474 		spin_unlock(&vm_contig_spin);
475 
476 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
477 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
478 		while (count) {
479 			vm_page_busy_wait(m, FALSE, "cpgfr");
480 			vm_page_unwire(m, 0);
481 			vm_page_free(m);
482 			--count;
483 			++m;
484 		}
485 		spin_lock(&vm_contig_spin);
486 	}
487 	spin_unlock(&vm_contig_spin);
488 
489 	/*
490 	 * Print out how much DMA space drivers have already allocated and
491 	 * how much is left over.
492 	 */
493 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
494 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
495 		(PAGE_SIZE / 1024),
496 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
497 }
498 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
499 	vm_page_startup_finish, NULL)
500 
501 
502 /*
503  * Scan comparison function for Red-Black tree scans.  An inclusive
504  * (start,end) is expected.  Other fields are not used.
505  */
506 int
507 rb_vm_page_scancmp(struct vm_page *p, void *data)
508 {
509 	struct rb_vm_page_scan_info *info = data;
510 
511 	if (p->pindex < info->start_pindex)
512 		return(-1);
513 	if (p->pindex > info->end_pindex)
514 		return(1);
515 	return(0);
516 }
517 
518 int
519 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
520 {
521 	if (p1->pindex < p2->pindex)
522 		return(-1);
523 	if (p1->pindex > p2->pindex)
524 		return(1);
525 	return(0);
526 }
527 
528 /*
529  * Each page queue has its own spin lock, which is fairly optimal for
530  * allocating and freeing pages at least.
531  *
532  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
533  * queue spinlock via this function.  Also note that m->queue cannot change
534  * unless both the page and queue are locked.
535  */
536 static __inline
537 void
538 _vm_page_queue_spin_lock(vm_page_t m)
539 {
540 	u_short queue;
541 
542 	queue = m->queue;
543 	if (queue != PQ_NONE) {
544 		spin_lock(&vm_page_queues[queue].spin);
545 		KKASSERT(queue == m->queue);
546 	}
547 }
548 
549 static __inline
550 void
551 _vm_page_queue_spin_unlock(vm_page_t m)
552 {
553 	u_short queue;
554 
555 	queue = m->queue;
556 	cpu_ccfence();
557 	if (queue != PQ_NONE)
558 		spin_unlock(&vm_page_queues[queue].spin);
559 }
560 
561 static __inline
562 void
563 _vm_page_queues_spin_lock(u_short queue)
564 {
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_lock(&vm_page_queues[queue].spin);
568 }
569 
570 
571 static __inline
572 void
573 _vm_page_queues_spin_unlock(u_short queue)
574 {
575 	cpu_ccfence();
576 	if (queue != PQ_NONE)
577 		spin_unlock(&vm_page_queues[queue].spin);
578 }
579 
580 void
581 vm_page_queue_spin_lock(vm_page_t m)
582 {
583 	_vm_page_queue_spin_lock(m);
584 }
585 
586 void
587 vm_page_queues_spin_lock(u_short queue)
588 {
589 	_vm_page_queues_spin_lock(queue);
590 }
591 
592 void
593 vm_page_queue_spin_unlock(vm_page_t m)
594 {
595 	_vm_page_queue_spin_unlock(m);
596 }
597 
598 void
599 vm_page_queues_spin_unlock(u_short queue)
600 {
601 	_vm_page_queues_spin_unlock(queue);
602 }
603 
604 /*
605  * This locks the specified vm_page and its queue in the proper order
606  * (page first, then queue).  The queue may change so the caller must
607  * recheck on return.
608  */
609 static __inline
610 void
611 _vm_page_and_queue_spin_lock(vm_page_t m)
612 {
613 	vm_page_spin_lock(m);
614 	_vm_page_queue_spin_lock(m);
615 }
616 
617 static __inline
618 void
619 _vm_page_and_queue_spin_unlock(vm_page_t m)
620 {
621 	_vm_page_queues_spin_unlock(m->queue);
622 	vm_page_spin_unlock(m);
623 }
624 
625 void
626 vm_page_and_queue_spin_unlock(vm_page_t m)
627 {
628 	_vm_page_and_queue_spin_unlock(m);
629 }
630 
631 void
632 vm_page_and_queue_spin_lock(vm_page_t m)
633 {
634 	_vm_page_and_queue_spin_lock(m);
635 }
636 
637 /*
638  * Helper function removes vm_page from its current queue.
639  * Returns the base queue the page used to be on.
640  *
641  * The vm_page and the queue must be spinlocked.
642  * This function will unlock the queue but leave the page spinlocked.
643  */
644 static __inline u_short
645 _vm_page_rem_queue_spinlocked(vm_page_t m)
646 {
647 	struct vpgqueues *pq;
648 	u_short queue;
649 
650 	queue = m->queue;
651 	if (queue != PQ_NONE) {
652 		pq = &vm_page_queues[queue];
653 		TAILQ_REMOVE(&pq->pl, m, pageq);
654 		atomic_add_int(pq->cnt, -1);
655 		pq->lcnt--;
656 		m->queue = PQ_NONE;
657 		vm_page_queues_spin_unlock(queue);
658 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
659 			atomic_subtract_int(&vm_page_zero_count, 1);
660 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
661 			return (queue - m->pc);
662 	}
663 	return queue;
664 }
665 
666 /*
667  * Helper function places the vm_page on the specified queue.
668  *
669  * The vm_page must be spinlocked.
670  * This function will return with both the page and the queue locked.
671  */
672 static __inline void
673 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
674 {
675 	struct vpgqueues *pq;
676 
677 	KKASSERT(m->queue == PQ_NONE);
678 
679 	if (queue != PQ_NONE) {
680 		vm_page_queues_spin_lock(queue);
681 		pq = &vm_page_queues[queue];
682 		++pq->lcnt;
683 		atomic_add_int(pq->cnt, 1);
684 		m->queue = queue;
685 
686 		/*
687 		 * Put zero'd pages on the end ( where we look for zero'd pages
688 		 * first ) and non-zerod pages at the head.
689 		 */
690 		if (queue - m->pc == PQ_FREE) {
691 			if (m->flags & PG_ZERO) {
692 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
693 				atomic_add_int(&vm_page_zero_count, 1);
694 			} else {
695 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
696 			}
697 		} else if (athead) {
698 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
699 		} else {
700 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
701 		}
702 		/* leave the queue spinlocked */
703 	}
704 }
705 
706 /*
707  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
708  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
709  * did not.  Only one sleep call will be made before returning.
710  *
711  * This function does NOT busy the page and on return the page is not
712  * guaranteed to be available.
713  */
714 void
715 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
716 {
717 	u_int32_t flags;
718 
719 	for (;;) {
720 		flags = m->flags;
721 		cpu_ccfence();
722 
723 		if ((flags & PG_BUSY) == 0 &&
724 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
725 			break;
726 		}
727 		tsleep_interlock(m, 0);
728 		if (atomic_cmpset_int(&m->flags, flags,
729 				      flags | PG_WANTED | PG_REFERENCED)) {
730 			tsleep(m, PINTERLOCKED, msg, 0);
731 			break;
732 		}
733 	}
734 }
735 
736 /*
737  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
738  * also wait for m->busy to become 0 before setting PG_BUSY.
739  */
740 void
741 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
742 				     int also_m_busy, const char *msg
743 				     VM_PAGE_DEBUG_ARGS)
744 {
745 	u_int32_t flags;
746 
747 	for (;;) {
748 		flags = m->flags;
749 		cpu_ccfence();
750 		if (flags & PG_BUSY) {
751 			tsleep_interlock(m, 0);
752 			if (atomic_cmpset_int(&m->flags, flags,
753 					  flags | PG_WANTED | PG_REFERENCED)) {
754 				tsleep(m, PINTERLOCKED, msg, 0);
755 			}
756 		} else if (also_m_busy && (flags & PG_SBUSY)) {
757 			tsleep_interlock(m, 0);
758 			if (atomic_cmpset_int(&m->flags, flags,
759 					  flags | PG_WANTED | PG_REFERENCED)) {
760 				tsleep(m, PINTERLOCKED, msg, 0);
761 			}
762 		} else {
763 			if (atomic_cmpset_int(&m->flags, flags,
764 					      flags | PG_BUSY)) {
765 #ifdef VM_PAGE_DEBUG
766 				m->busy_func = func;
767 				m->busy_line = lineno;
768 #endif
769 				break;
770 			}
771 		}
772 	}
773 }
774 
775 /*
776  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
777  * is also 0.
778  *
779  * Returns non-zero on failure.
780  */
781 int
782 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
783 				    VM_PAGE_DEBUG_ARGS)
784 {
785 	u_int32_t flags;
786 
787 	for (;;) {
788 		flags = m->flags;
789 		cpu_ccfence();
790 		if (flags & PG_BUSY)
791 			return TRUE;
792 		if (also_m_busy && (flags & PG_SBUSY))
793 			return TRUE;
794 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
795 #ifdef VM_PAGE_DEBUG
796 				m->busy_func = func;
797 				m->busy_line = lineno;
798 #endif
799 			return FALSE;
800 		}
801 	}
802 }
803 
804 /*
805  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
806  * that a wakeup() should be performed.
807  *
808  * The vm_page must be spinlocked and will remain spinlocked on return.
809  * The related queue must NOT be spinlocked (which could deadlock us).
810  *
811  * (inline version)
812  */
813 static __inline
814 int
815 _vm_page_wakeup(vm_page_t m)
816 {
817 	u_int32_t flags;
818 
819 	for (;;) {
820 		flags = m->flags;
821 		cpu_ccfence();
822 		if (atomic_cmpset_int(&m->flags, flags,
823 				      flags & ~(PG_BUSY | PG_WANTED))) {
824 			break;
825 		}
826 	}
827 	return(flags & PG_WANTED);
828 }
829 
830 /*
831  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
832  * is typically the last call you make on a page before moving onto
833  * other things.
834  */
835 void
836 vm_page_wakeup(vm_page_t m)
837 {
838         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
839 	vm_page_spin_lock(m);
840 	if (_vm_page_wakeup(m)) {
841 		vm_page_spin_unlock(m);
842 		wakeup(m);
843 	} else {
844 		vm_page_spin_unlock(m);
845 	}
846 }
847 
848 /*
849  * Holding a page keeps it from being reused.  Other parts of the system
850  * can still disassociate the page from its current object and free it, or
851  * perform read or write I/O on it and/or otherwise manipulate the page,
852  * but if the page is held the VM system will leave the page and its data
853  * intact and not reuse the page for other purposes until the last hold
854  * reference is released.  (see vm_page_wire() if you want to prevent the
855  * page from being disassociated from its object too).
856  *
857  * The caller must still validate the contents of the page and, if necessary,
858  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
859  * before manipulating the page.
860  *
861  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
862  */
863 void
864 vm_page_hold(vm_page_t m)
865 {
866 	vm_page_spin_lock(m);
867 	atomic_add_int(&m->hold_count, 1);
868 	if (m->queue - m->pc == PQ_FREE) {
869 		_vm_page_queue_spin_lock(m);
870 		_vm_page_rem_queue_spinlocked(m);
871 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
872 		_vm_page_queue_spin_unlock(m);
873 	}
874 	vm_page_spin_unlock(m);
875 }
876 
877 /*
878  * The opposite of vm_page_hold().  A page can be freed while being held,
879  * which places it on the PQ_HOLD queue.  If we are able to busy the page
880  * after the hold count drops to zero we will move the page to the
881  * appropriate PQ_FREE queue by calling vm_page_free_toq().
882  */
883 void
884 vm_page_unhold(vm_page_t m)
885 {
886 	vm_page_spin_lock(m);
887 	atomic_add_int(&m->hold_count, -1);
888 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
889 		_vm_page_queue_spin_lock(m);
890 		_vm_page_rem_queue_spinlocked(m);
891 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
892 		_vm_page_queue_spin_unlock(m);
893 	}
894 	vm_page_spin_unlock(m);
895 }
896 
897 /*
898  * Inserts the given vm_page into the object and object list.
899  *
900  * The pagetables are not updated but will presumably fault the page
901  * in if necessary, or if a kernel page the caller will at some point
902  * enter the page into the kernel's pmap.  We are not allowed to block
903  * here so we *can't* do this anyway.
904  *
905  * This routine may not block.
906  * This routine must be called with the vm_object held.
907  * This routine must be called with a critical section held.
908  *
909  * This routine returns TRUE if the page was inserted into the object
910  * successfully, and FALSE if the page already exists in the object.
911  */
912 int
913 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
914 {
915 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
916 	if (m->object != NULL)
917 		panic("vm_page_insert: already inserted");
918 
919 	object->generation++;
920 
921 	/*
922 	 * Record the object/offset pair in this page and add the
923 	 * pv_list_count of the page to the object.
924 	 *
925 	 * The vm_page spin lock is required for interactions with the pmap.
926 	 */
927 	vm_page_spin_lock(m);
928 	m->object = object;
929 	m->pindex = pindex;
930 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
931 		m->object = NULL;
932 		m->pindex = 0;
933 		vm_page_spin_unlock(m);
934 		return FALSE;
935 	}
936 	object->resident_page_count++;
937 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
938 	vm_page_spin_unlock(m);
939 
940 	/*
941 	 * Since we are inserting a new and possibly dirty page,
942 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
943 	 */
944 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
945 		vm_object_set_writeable_dirty(object);
946 
947 	/*
948 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
949 	 */
950 	swap_pager_page_inserted(m);
951 	return TRUE;
952 }
953 
954 /*
955  * Removes the given vm_page_t from the (object,index) table
956  *
957  * The underlying pmap entry (if any) is NOT removed here.
958  * This routine may not block.
959  *
960  * The page must be BUSY and will remain BUSY on return.
961  * No other requirements.
962  *
963  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
964  *	 it busy.
965  */
966 void
967 vm_page_remove(vm_page_t m)
968 {
969 	vm_object_t object;
970 
971 	if (m->object == NULL) {
972 		return;
973 	}
974 
975 	if ((m->flags & PG_BUSY) == 0)
976 		panic("vm_page_remove: page not busy");
977 
978 	object = m->object;
979 
980 	vm_object_hold(object);
981 
982 	/*
983 	 * Remove the page from the object and update the object.
984 	 *
985 	 * The vm_page spin lock is required for interactions with the pmap.
986 	 */
987 	vm_page_spin_lock(m);
988 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
989 	object->resident_page_count--;
990 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
991 	m->object = NULL;
992 	vm_page_spin_unlock(m);
993 
994 	object->generation++;
995 
996 	vm_object_drop(object);
997 }
998 
999 /*
1000  * Locate and return the page at (object, pindex), or NULL if the
1001  * page could not be found.
1002  *
1003  * The caller must hold the vm_object token.
1004  */
1005 vm_page_t
1006 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1007 {
1008 	vm_page_t m;
1009 
1010 	/*
1011 	 * Search the hash table for this object/offset pair
1012 	 */
1013 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1014 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1015 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1016 	return(m);
1017 }
1018 
1019 vm_page_t
1020 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1021 					    vm_pindex_t pindex,
1022 					    int also_m_busy, const char *msg
1023 					    VM_PAGE_DEBUG_ARGS)
1024 {
1025 	u_int32_t flags;
1026 	vm_page_t m;
1027 
1028 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1029 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1030 	while (m) {
1031 		KKASSERT(m->object == object && m->pindex == pindex);
1032 		flags = m->flags;
1033 		cpu_ccfence();
1034 		if (flags & PG_BUSY) {
1035 			tsleep_interlock(m, 0);
1036 			if (atomic_cmpset_int(&m->flags, flags,
1037 					  flags | PG_WANTED | PG_REFERENCED)) {
1038 				tsleep(m, PINTERLOCKED, msg, 0);
1039 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1040 							      pindex);
1041 			}
1042 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1043 			tsleep_interlock(m, 0);
1044 			if (atomic_cmpset_int(&m->flags, flags,
1045 					  flags | PG_WANTED | PG_REFERENCED)) {
1046 				tsleep(m, PINTERLOCKED, msg, 0);
1047 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1048 							      pindex);
1049 			}
1050 		} else if (atomic_cmpset_int(&m->flags, flags,
1051 					     flags | PG_BUSY)) {
1052 #ifdef VM_PAGE_DEBUG
1053 			m->busy_func = func;
1054 			m->busy_line = lineno;
1055 #endif
1056 			break;
1057 		}
1058 	}
1059 	return m;
1060 }
1061 
1062 /*
1063  * Attempt to lookup and busy a page.
1064  *
1065  * Returns NULL if the page could not be found
1066  *
1067  * Returns a vm_page and error == TRUE if the page exists but could not
1068  * be busied.
1069  *
1070  * Returns a vm_page and error == FALSE on success.
1071  */
1072 vm_page_t
1073 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1074 					   vm_pindex_t pindex,
1075 					   int also_m_busy, int *errorp
1076 					   VM_PAGE_DEBUG_ARGS)
1077 {
1078 	u_int32_t flags;
1079 	vm_page_t m;
1080 
1081 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1082 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1083 	*errorp = FALSE;
1084 	while (m) {
1085 		KKASSERT(m->object == object && m->pindex == pindex);
1086 		flags = m->flags;
1087 		cpu_ccfence();
1088 		if (flags & PG_BUSY) {
1089 			*errorp = TRUE;
1090 			break;
1091 		}
1092 		if (also_m_busy && (flags & PG_SBUSY)) {
1093 			*errorp = TRUE;
1094 			break;
1095 		}
1096 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1097 #ifdef VM_PAGE_DEBUG
1098 			m->busy_func = func;
1099 			m->busy_line = lineno;
1100 #endif
1101 			break;
1102 		}
1103 	}
1104 	return m;
1105 }
1106 
1107 /*
1108  * Caller must hold the related vm_object
1109  */
1110 vm_page_t
1111 vm_page_next(vm_page_t m)
1112 {
1113 	vm_page_t next;
1114 
1115 	next = vm_page_rb_tree_RB_NEXT(m);
1116 	if (next && next->pindex != m->pindex + 1)
1117 		next = NULL;
1118 	return (next);
1119 }
1120 
1121 /*
1122  * vm_page_rename()
1123  *
1124  * Move the given vm_page from its current object to the specified
1125  * target object/offset.  The page must be busy and will remain so
1126  * on return.
1127  *
1128  * new_object must be held.
1129  * This routine might block. XXX ?
1130  *
1131  * NOTE: Swap associated with the page must be invalidated by the move.  We
1132  *       have to do this for several reasons:  (1) we aren't freeing the
1133  *       page, (2) we are dirtying the page, (3) the VM system is probably
1134  *       moving the page from object A to B, and will then later move
1135  *       the backing store from A to B and we can't have a conflict.
1136  *
1137  * NOTE: We *always* dirty the page.  It is necessary both for the
1138  *       fact that we moved it, and because we may be invalidating
1139  *	 swap.  If the page is on the cache, we have to deactivate it
1140  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1141  *	 on the cache.
1142  */
1143 void
1144 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1145 {
1146 	KKASSERT(m->flags & PG_BUSY);
1147 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object));
1148 	if (m->object) {
1149 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object));
1150 		vm_page_remove(m);
1151 	}
1152 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1153 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1154 		      new_object, new_pindex);
1155 	}
1156 	if (m->queue - m->pc == PQ_CACHE)
1157 		vm_page_deactivate(m);
1158 	vm_page_dirty(m);
1159 }
1160 
1161 /*
1162  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1163  * is being moved between queues or otherwise is to remain BUSYied by the
1164  * caller.
1165  *
1166  * This routine may not block.
1167  */
1168 void
1169 vm_page_unqueue_nowakeup(vm_page_t m)
1170 {
1171 	vm_page_and_queue_spin_lock(m);
1172 	(void)_vm_page_rem_queue_spinlocked(m);
1173 	vm_page_spin_unlock(m);
1174 }
1175 
1176 /*
1177  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1178  * if necessary.
1179  *
1180  * This routine may not block.
1181  */
1182 void
1183 vm_page_unqueue(vm_page_t m)
1184 {
1185 	u_short queue;
1186 
1187 	vm_page_and_queue_spin_lock(m);
1188 	queue = _vm_page_rem_queue_spinlocked(m);
1189 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1190 		vm_page_spin_unlock(m);
1191 		pagedaemon_wakeup();
1192 	} else {
1193 		vm_page_spin_unlock(m);
1194 	}
1195 }
1196 
1197 /*
1198  * vm_page_list_find()
1199  *
1200  * Find a page on the specified queue with color optimization.
1201  *
1202  * The page coloring optimization attempts to locate a page that does
1203  * not overload other nearby pages in the object in the cpu's L1 or L2
1204  * caches.  We need this optimization because cpu caches tend to be
1205  * physical caches, while object spaces tend to be virtual.
1206  *
1207  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1208  * and the algorithm is adjusted to localize allocations on a per-core basis.
1209  * This is done by 'twisting' the colors.
1210  *
1211  * The page is returned spinlocked and removed from its queue (it will
1212  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1213  * is responsible for dealing with the busy-page case (usually by
1214  * deactivating the page and looping).
1215  *
1216  * NOTE:  This routine is carefully inlined.  A non-inlined version
1217  *	  is available for outside callers but the only critical path is
1218  *	  from within this source file.
1219  *
1220  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1221  *	  represent stable storage, allowing us to order our locks vm_page
1222  *	  first, then queue.
1223  */
1224 static __inline
1225 vm_page_t
1226 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1227 {
1228 	vm_page_t m;
1229 
1230 	for (;;) {
1231 		if (prefer_zero)
1232 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1233 		else
1234 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1235 		if (m == NULL) {
1236 			m = _vm_page_list_find2(basequeue, index);
1237 			return(m);
1238 		}
1239 		vm_page_and_queue_spin_lock(m);
1240 		if (m->queue == basequeue + index) {
1241 			_vm_page_rem_queue_spinlocked(m);
1242 			/* vm_page_t spin held, no queue spin */
1243 			break;
1244 		}
1245 		vm_page_and_queue_spin_unlock(m);
1246 	}
1247 	return(m);
1248 }
1249 
1250 static vm_page_t
1251 _vm_page_list_find2(int basequeue, int index)
1252 {
1253 	int i;
1254 	vm_page_t m = NULL;
1255 	struct vpgqueues *pq;
1256 
1257 	pq = &vm_page_queues[basequeue];
1258 
1259 	/*
1260 	 * Note that for the first loop, index+i and index-i wind up at the
1261 	 * same place.  Even though this is not totally optimal, we've already
1262 	 * blown it by missing the cache case so we do not care.
1263 	 */
1264 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1265 		for (;;) {
1266 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1267 			if (m) {
1268 				_vm_page_and_queue_spin_lock(m);
1269 				if (m->queue ==
1270 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1271 					_vm_page_rem_queue_spinlocked(m);
1272 					return(m);
1273 				}
1274 				_vm_page_and_queue_spin_unlock(m);
1275 				continue;
1276 			}
1277 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1278 			if (m) {
1279 				_vm_page_and_queue_spin_lock(m);
1280 				if (m->queue ==
1281 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1282 					_vm_page_rem_queue_spinlocked(m);
1283 					return(m);
1284 				}
1285 				_vm_page_and_queue_spin_unlock(m);
1286 				continue;
1287 			}
1288 			break;	/* next i */
1289 		}
1290 	}
1291 	return(m);
1292 }
1293 
1294 /*
1295  * Returns a vm_page candidate for allocation.  The page is not busied so
1296  * it can move around.  The caller must busy the page (and typically
1297  * deactivate it if it cannot be busied!)
1298  *
1299  * Returns a spinlocked vm_page that has been removed from its queue.
1300  */
1301 vm_page_t
1302 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1303 {
1304 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1305 }
1306 
1307 /*
1308  * Find a page on the cache queue with color optimization, remove it
1309  * from the queue, and busy it.  The returned page will not be spinlocked.
1310  *
1311  * A candidate failure will be deactivated.  Candidates can fail due to
1312  * being busied by someone else, in which case they will be deactivated.
1313  *
1314  * This routine may not block.
1315  *
1316  */
1317 static vm_page_t
1318 vm_page_select_cache(u_short pg_color)
1319 {
1320 	vm_page_t m;
1321 
1322 	for (;;) {
1323 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1324 		if (m == NULL)
1325 			break;
1326 		/*
1327 		 * (m) has been removed from its queue and spinlocked
1328 		 */
1329 		if (vm_page_busy_try(m, TRUE)) {
1330 			_vm_page_deactivate_locked(m, 0);
1331 			vm_page_spin_unlock(m);
1332 #ifdef INVARIANTS
1333                         kprintf("Warning: busy page %p found in cache\n", m);
1334 #endif
1335 		} else {
1336 			/*
1337 			 * We successfully busied the page
1338 			 */
1339 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1340 			    m->hold_count == 0 &&
1341 			    m->wire_count == 0 &&
1342 			    (m->dirty & m->valid) == 0) {
1343 				vm_page_spin_unlock(m);
1344 				pagedaemon_wakeup();
1345 				return(m);
1346 			}
1347 
1348 			/*
1349 			 * The page cannot be recycled, deactivate it.
1350 			 */
1351 			_vm_page_deactivate_locked(m, 0);
1352 			if (_vm_page_wakeup(m)) {
1353 				vm_page_spin_unlock(m);
1354 				wakeup(m);
1355 			} else {
1356 				vm_page_spin_unlock(m);
1357 			}
1358 		}
1359 	}
1360 	return (m);
1361 }
1362 
1363 /*
1364  * Find a free or zero page, with specified preference.  We attempt to
1365  * inline the nominal case and fall back to _vm_page_select_free()
1366  * otherwise.  A busied page is removed from the queue and returned.
1367  *
1368  * This routine may not block.
1369  */
1370 static __inline vm_page_t
1371 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1372 {
1373 	vm_page_t m;
1374 
1375 	for (;;) {
1376 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1377 				       prefer_zero);
1378 		if (m == NULL)
1379 			break;
1380 		if (vm_page_busy_try(m, TRUE)) {
1381 			/*
1382 			 * Various mechanisms such as a pmap_collect can
1383 			 * result in a busy page on the free queue.  We
1384 			 * have to move the page out of the way so we can
1385 			 * retry the allocation.  If the other thread is not
1386 			 * allocating the page then m->valid will remain 0 and
1387 			 * the pageout daemon will free the page later on.
1388 			 *
1389 			 * Since we could not busy the page, however, we
1390 			 * cannot make assumptions as to whether the page
1391 			 * will be allocated by the other thread or not,
1392 			 * so all we can do is deactivate it to move it out
1393 			 * of the way.  In particular, if the other thread
1394 			 * wires the page it may wind up on the inactive
1395 			 * queue and the pageout daemon will have to deal
1396 			 * with that case too.
1397 			 */
1398 			_vm_page_deactivate_locked(m, 0);
1399 			vm_page_spin_unlock(m);
1400 #ifdef INVARIANTS
1401                         kprintf("Warning: busy page %p found in cache\n", m);
1402 #endif
1403 		} else {
1404 			/*
1405 			 * Theoretically if we are able to busy the page
1406 			 * atomic with the queue removal (using the vm_page
1407 			 * lock) nobody else should be able to mess with the
1408 			 * page before us.
1409 			 */
1410 			KKASSERT((m->flags & (PG_UNMANAGED |
1411 					      PG_NEED_COMMIT)) == 0);
1412 			KKASSERT(m->hold_count == 0);
1413 			KKASSERT(m->wire_count == 0);
1414 			vm_page_spin_unlock(m);
1415 			pagedaemon_wakeup();
1416 
1417 			/* return busied and removed page */
1418 			return(m);
1419 		}
1420 	}
1421 	return(m);
1422 }
1423 
1424 /*
1425  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1426  * The idea is to populate this cache prior to acquiring any locks so
1427  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1428  * holding potentialy contending locks.
1429  *
1430  * Note that we allocate the page uninserted into anything and use a pindex
1431  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1432  * allocations should wind up being uncontended.  However, we still want
1433  * to rove across PQ_L2_SIZE.
1434  */
1435 void
1436 vm_page_pcpu_cache(void)
1437 {
1438 #if 0
1439 	globaldata_t gd = mycpu;
1440 	vm_page_t m;
1441 
1442 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1443 		crit_enter_gd(gd);
1444 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1445 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1446 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1447 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1448 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1449 				if ((m->flags & PG_ZERO) == 0) {
1450 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1451 					vm_page_flag_set(m, PG_ZERO);
1452 				}
1453 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1454 			} else {
1455 				vm_page_free(m);
1456 			}
1457 		}
1458 		crit_exit_gd(gd);
1459 	}
1460 #endif
1461 }
1462 
1463 /*
1464  * vm_page_alloc()
1465  *
1466  * Allocate and return a memory cell associated with this VM object/offset
1467  * pair.  If object is NULL an unassociated page will be allocated.
1468  *
1469  * The returned page will be busied and removed from its queues.  This
1470  * routine can block and may return NULL if a race occurs and the page
1471  * is found to already exist at the specified (object, pindex).
1472  *
1473  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1474  *	VM_ALLOC_QUICK		like normal but cannot use cache
1475  *	VM_ALLOC_SYSTEM		greater free drain
1476  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1477  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1478  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1479  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1480  *				(see vm_page_grab())
1481  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1482  *
1483  * The object must be held if not NULL
1484  * This routine may not block
1485  *
1486  * Additional special handling is required when called from an interrupt
1487  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1488  * in this case.
1489  */
1490 vm_page_t
1491 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1492 {
1493 #ifdef SMP
1494 	globaldata_t gd = mycpu;
1495 #endif
1496 	vm_object_t obj;
1497 	vm_page_t m;
1498 	u_short pg_color;
1499 
1500 #if 0
1501 	/*
1502 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1503 	 * and pre-zerod for us.
1504 	 */
1505 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1506 		crit_enter_gd(gd);
1507 		if (gd->gd_vmpg_count) {
1508 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1509 			crit_exit_gd(gd);
1510 			goto done;
1511                 }
1512 		crit_exit_gd(gd);
1513         }
1514 #endif
1515 	m = NULL;
1516 
1517 #ifdef SMP
1518 	/*
1519 	 * Cpu twist - cpu localization algorithm
1520 	 */
1521 	if (object) {
1522 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1523 			   (object->pg_color & ~ncpus_fit_mask);
1524 	} else {
1525 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1526 	}
1527 #else
1528 	/*
1529 	 * Normal page coloring algorithm
1530 	 */
1531 	if (object) {
1532 		pg_color = object->pg_color + pindex;
1533 	} else {
1534 		pg_color = pindex;
1535 	}
1536 #endif
1537 	KKASSERT(page_req &
1538 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1539 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1540 
1541 	/*
1542 	 * Certain system threads (pageout daemon, buf_daemon's) are
1543 	 * allowed to eat deeper into the free page list.
1544 	 */
1545 	if (curthread->td_flags & TDF_SYSTHREAD)
1546 		page_req |= VM_ALLOC_SYSTEM;
1547 
1548 loop:
1549 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1550 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1551 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1552 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1553 	) {
1554 		/*
1555 		 * The free queue has sufficient free pages to take one out.
1556 		 */
1557 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1558 			m = vm_page_select_free(pg_color, TRUE);
1559 		else
1560 			m = vm_page_select_free(pg_color, FALSE);
1561 	} else if (page_req & VM_ALLOC_NORMAL) {
1562 		/*
1563 		 * Allocatable from the cache (non-interrupt only).  On
1564 		 * success, we must free the page and try again, thus
1565 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1566 		 */
1567 #ifdef INVARIANTS
1568 		if (curthread->td_preempted) {
1569 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1570 				" cache page from preempting interrupt\n");
1571 			m = NULL;
1572 		} else {
1573 			m = vm_page_select_cache(pg_color);
1574 		}
1575 #else
1576 		m = vm_page_select_cache(pg_color);
1577 #endif
1578 		/*
1579 		 * On success move the page into the free queue and loop.
1580 		 *
1581 		 * Only do this if we can safely acquire the vm_object lock,
1582 		 * because this is effectively a random page and the caller
1583 		 * might be holding the lock shared, we don't want to
1584 		 * deadlock.
1585 		 */
1586 		if (m != NULL) {
1587 			KASSERT(m->dirty == 0,
1588 				("Found dirty cache page %p", m));
1589 			if ((obj = m->object) != NULL) {
1590 				if (vm_object_hold_try(obj)) {
1591 					vm_page_protect(m, VM_PROT_NONE);
1592 					vm_page_free(m);
1593 					/* m->object NULL here */
1594 					vm_object_drop(obj);
1595 				} else {
1596 					vm_page_deactivate(m);
1597 					vm_page_wakeup(m);
1598 				}
1599 			} else {
1600 				vm_page_protect(m, VM_PROT_NONE);
1601 				vm_page_free(m);
1602 			}
1603 			goto loop;
1604 		}
1605 
1606 		/*
1607 		 * On failure return NULL
1608 		 */
1609 #if defined(DIAGNOSTIC)
1610 		if (vmstats.v_cache_count > 0)
1611 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1612 #endif
1613 		vm_pageout_deficit++;
1614 		pagedaemon_wakeup();
1615 		return (NULL);
1616 	} else {
1617 		/*
1618 		 * No pages available, wakeup the pageout daemon and give up.
1619 		 */
1620 		vm_pageout_deficit++;
1621 		pagedaemon_wakeup();
1622 		return (NULL);
1623 	}
1624 
1625 	/*
1626 	 * v_free_count can race so loop if we don't find the expected
1627 	 * page.
1628 	 */
1629 	if (m == NULL)
1630 		goto loop;
1631 
1632 	/*
1633 	 * Good page found.  The page has already been busied for us and
1634 	 * removed from its queues.
1635 	 */
1636 	KASSERT(m->dirty == 0,
1637 		("vm_page_alloc: free/cache page %p was dirty", m));
1638 	KKASSERT(m->queue == PQ_NONE);
1639 
1640 #if 0
1641 done:
1642 #endif
1643 	/*
1644 	 * Initialize the structure, inheriting some flags but clearing
1645 	 * all the rest.  The page has already been busied for us.
1646 	 */
1647 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1648 	KKASSERT(m->wire_count == 0);
1649 	KKASSERT(m->busy == 0);
1650 	m->act_count = 0;
1651 	m->valid = 0;
1652 
1653 	/*
1654 	 * Caller must be holding the object lock (asserted by
1655 	 * vm_page_insert()).
1656 	 *
1657 	 * NOTE: Inserting a page here does not insert it into any pmaps
1658 	 *	 (which could cause us to block allocating memory).
1659 	 *
1660 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1661 	 *	 can be used by the caller for any purpose.
1662 	 */
1663 	if (object) {
1664 		if (vm_page_insert(m, object, pindex) == FALSE) {
1665 			kprintf("PAGE RACE (%p:%d,%"PRIu64")\n",
1666 				object, object->type, pindex);
1667 			vm_page_free(m);
1668 			m = NULL;
1669 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1670 				panic("PAGE RACE");
1671 		}
1672 	} else {
1673 		m->pindex = pindex;
1674 	}
1675 
1676 	/*
1677 	 * Don't wakeup too often - wakeup the pageout daemon when
1678 	 * we would be nearly out of memory.
1679 	 */
1680 	pagedaemon_wakeup();
1681 
1682 	/*
1683 	 * A PG_BUSY page is returned.
1684 	 */
1685 	return (m);
1686 }
1687 
1688 /*
1689  * Attempt to allocate contiguous physical memory with the specified
1690  * requirements.
1691  */
1692 vm_page_t
1693 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1694 		     unsigned long alignment, unsigned long boundary,
1695 		     unsigned long size)
1696 {
1697 	alist_blk_t blk;
1698 
1699 	alignment >>= PAGE_SHIFT;
1700 	if (alignment == 0)
1701 		alignment = 1;
1702 	boundary >>= PAGE_SHIFT;
1703 	if (boundary == 0)
1704 		boundary = 1;
1705 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1706 
1707 	spin_lock(&vm_contig_spin);
1708 	blk = alist_alloc(&vm_contig_alist, 0, size);
1709 	if (blk == ALIST_BLOCK_NONE) {
1710 		spin_unlock(&vm_contig_spin);
1711 		if (bootverbose) {
1712 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1713 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1714 		}
1715 		return(NULL);
1716 	}
1717 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1718 		alist_free(&vm_contig_alist, blk, size);
1719 		spin_unlock(&vm_contig_spin);
1720 		if (bootverbose) {
1721 			kprintf("vm_page_alloc_contig: %ldk high "
1722 				"%016jx failed\n",
1723 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1724 				(intmax_t)high);
1725 		}
1726 		return(NULL);
1727 	}
1728 	spin_unlock(&vm_contig_spin);
1729 	if (bootverbose) {
1730 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1731 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1732 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1733 	}
1734 	return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT));
1735 }
1736 
1737 /*
1738  * Free contiguously allocated pages.  The pages will be wired but not busy.
1739  * When freeing to the alist we leave them wired and not busy.
1740  */
1741 void
1742 vm_page_free_contig(vm_page_t m, unsigned long size)
1743 {
1744 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1745 	vm_pindex_t start = pa >> PAGE_SHIFT;
1746 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1747 
1748 	if (bootverbose) {
1749 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1750 			(intmax_t)pa, size / 1024);
1751 	}
1752 	if (pa < vm_low_phys_reserved) {
1753 		KKASSERT(pa + size <= vm_low_phys_reserved);
1754 		spin_lock(&vm_contig_spin);
1755 		alist_free(&vm_contig_alist, start, pages);
1756 		spin_unlock(&vm_contig_spin);
1757 	} else {
1758 		while (pages) {
1759 			vm_page_busy_wait(m, FALSE, "cpgfr");
1760 			vm_page_unwire(m, 0);
1761 			vm_page_free(m);
1762 			--pages;
1763 			++m;
1764 		}
1765 
1766 	}
1767 }
1768 
1769 
1770 /*
1771  * Wait for sufficient free memory for nominal heavy memory use kernel
1772  * operations.
1773  *
1774  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1775  *	     will trivially deadlock the system.
1776  */
1777 void
1778 vm_wait_nominal(void)
1779 {
1780 	while (vm_page_count_min(0))
1781 		vm_wait(0);
1782 }
1783 
1784 /*
1785  * Test if vm_wait_nominal() would block.
1786  */
1787 int
1788 vm_test_nominal(void)
1789 {
1790 	if (vm_page_count_min(0))
1791 		return(1);
1792 	return(0);
1793 }
1794 
1795 /*
1796  * Block until free pages are available for allocation, called in various
1797  * places before memory allocations.
1798  *
1799  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1800  * more generous then that.
1801  */
1802 void
1803 vm_wait(int timo)
1804 {
1805 	/*
1806 	 * never wait forever
1807 	 */
1808 	if (timo == 0)
1809 		timo = hz;
1810 	lwkt_gettoken(&vm_token);
1811 
1812 	if (curthread == pagethread) {
1813 		/*
1814 		 * The pageout daemon itself needs pages, this is bad.
1815 		 */
1816 		if (vm_page_count_min(0)) {
1817 			vm_pageout_pages_needed = 1;
1818 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1819 		}
1820 	} else {
1821 		/*
1822 		 * Wakeup the pageout daemon if necessary and wait.
1823 		 */
1824 		if (vm_page_count_target()) {
1825 			if (vm_pages_needed == 0) {
1826 				vm_pages_needed = 1;
1827 				wakeup(&vm_pages_needed);
1828 			}
1829 			++vm_pages_waiting;	/* SMP race ok */
1830 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1831 		}
1832 	}
1833 	lwkt_reltoken(&vm_token);
1834 }
1835 
1836 /*
1837  * Block until free pages are available for allocation
1838  *
1839  * Called only from vm_fault so that processes page faulting can be
1840  * easily tracked.
1841  */
1842 void
1843 vm_waitpfault(void)
1844 {
1845 	/*
1846 	 * Wakeup the pageout daemon if necessary and wait.
1847 	 */
1848 	if (vm_page_count_target()) {
1849 		lwkt_gettoken(&vm_token);
1850 		if (vm_page_count_target()) {
1851 			if (vm_pages_needed == 0) {
1852 				vm_pages_needed = 1;
1853 				wakeup(&vm_pages_needed);
1854 			}
1855 			++vm_pages_waiting;	/* SMP race ok */
1856 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1857 		}
1858 		lwkt_reltoken(&vm_token);
1859 	}
1860 }
1861 
1862 /*
1863  * Put the specified page on the active list (if appropriate).  Ensure
1864  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1865  *
1866  * The caller should be holding the page busied ? XXX
1867  * This routine may not block.
1868  */
1869 void
1870 vm_page_activate(vm_page_t m)
1871 {
1872 	u_short oqueue;
1873 
1874 	vm_page_spin_lock(m);
1875 	if (m->queue - m->pc != PQ_ACTIVE) {
1876 		_vm_page_queue_spin_lock(m);
1877 		oqueue = _vm_page_rem_queue_spinlocked(m);
1878 		/* page is left spinlocked, queue is unlocked */
1879 
1880 		if (oqueue == PQ_CACHE)
1881 			mycpu->gd_cnt.v_reactivated++;
1882 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1883 			if (m->act_count < ACT_INIT)
1884 				m->act_count = ACT_INIT;
1885 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1886 		}
1887 		_vm_page_and_queue_spin_unlock(m);
1888 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1889 			pagedaemon_wakeup();
1890 	} else {
1891 		if (m->act_count < ACT_INIT)
1892 			m->act_count = ACT_INIT;
1893 		vm_page_spin_unlock(m);
1894 	}
1895 }
1896 
1897 /*
1898  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1899  * routine is called when a page has been added to the cache or free
1900  * queues.
1901  *
1902  * This routine may not block.
1903  */
1904 static __inline void
1905 vm_page_free_wakeup(void)
1906 {
1907 	/*
1908 	 * If the pageout daemon itself needs pages, then tell it that
1909 	 * there are some free.
1910 	 */
1911 	if (vm_pageout_pages_needed &&
1912 	    vmstats.v_cache_count + vmstats.v_free_count >=
1913 	    vmstats.v_pageout_free_min
1914 	) {
1915 		wakeup(&vm_pageout_pages_needed);
1916 		vm_pageout_pages_needed = 0;
1917 	}
1918 
1919 	/*
1920 	 * Wakeup processes that are waiting on memory.
1921 	 *
1922 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1923 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1924 	 *	 to wake processes up prior to the pageout daemon reaching
1925 	 *	 its target to provide some hysteresis.
1926 	 */
1927 	if (vm_pages_waiting) {
1928 		if (!vm_page_count_target()) {
1929 			/*
1930 			 * Plenty of pages are free, wakeup everyone.
1931 			 */
1932 			vm_pages_waiting = 0;
1933 			wakeup(&vmstats.v_free_count);
1934 			++mycpu->gd_cnt.v_ppwakeups;
1935 		} else if (!vm_page_count_min(0)) {
1936 			/*
1937 			 * Some pages are free, wakeup someone.
1938 			 */
1939 			int wcount = vm_pages_waiting;
1940 			if (wcount > 0)
1941 				--wcount;
1942 			vm_pages_waiting = wcount;
1943 			wakeup_one(&vmstats.v_free_count);
1944 			++mycpu->gd_cnt.v_ppwakeups;
1945 		}
1946 	}
1947 }
1948 
1949 /*
1950  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1951  * it from its VM object.
1952  *
1953  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1954  * return (the page will have been freed).
1955  */
1956 void
1957 vm_page_free_toq(vm_page_t m)
1958 {
1959 	mycpu->gd_cnt.v_tfree++;
1960 	KKASSERT((m->flags & PG_MAPPED) == 0);
1961 	KKASSERT(m->flags & PG_BUSY);
1962 
1963 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1964 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
1965 			"PG_BUSY(%d), hold(%d)\n",
1966 			(u_long)m->pindex, m->busy,
1967 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
1968 		if ((m->queue - m->pc) == PQ_FREE)
1969 			panic("vm_page_free: freeing free page");
1970 		else
1971 			panic("vm_page_free: freeing busy page");
1972 	}
1973 
1974 	/*
1975 	 * Remove from object, spinlock the page and its queues and
1976 	 * remove from any queue.  No queue spinlock will be held
1977 	 * after this section (because the page was removed from any
1978 	 * queue).
1979 	 */
1980 	vm_page_remove(m);
1981 	vm_page_and_queue_spin_lock(m);
1982 	_vm_page_rem_queue_spinlocked(m);
1983 
1984 	/*
1985 	 * No further management of fictitious pages occurs beyond object
1986 	 * and queue removal.
1987 	 */
1988 	if ((m->flags & PG_FICTITIOUS) != 0) {
1989 		vm_page_spin_unlock(m);
1990 		vm_page_wakeup(m);
1991 		return;
1992 	}
1993 
1994 	m->valid = 0;
1995 	vm_page_undirty(m);
1996 
1997 	if (m->wire_count != 0) {
1998 		if (m->wire_count > 1) {
1999 		    panic(
2000 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2001 			m->wire_count, (long)m->pindex);
2002 		}
2003 		panic("vm_page_free: freeing wired page");
2004 	}
2005 
2006 	/*
2007 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2008 	 * Clear the NEED_COMMIT flag
2009 	 */
2010 	if (m->flags & PG_UNMANAGED)
2011 		vm_page_flag_clear(m, PG_UNMANAGED);
2012 	if (m->flags & PG_NEED_COMMIT)
2013 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2014 
2015 	if (m->hold_count != 0) {
2016 		vm_page_flag_clear(m, PG_ZERO);
2017 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2018 	} else {
2019 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2020 	}
2021 
2022 	/*
2023 	 * This sequence allows us to clear PG_BUSY while still holding
2024 	 * its spin lock, which reduces contention vs allocators.  We
2025 	 * must not leave the queue locked or _vm_page_wakeup() may
2026 	 * deadlock.
2027 	 */
2028 	_vm_page_queue_spin_unlock(m);
2029 	if (_vm_page_wakeup(m)) {
2030 		vm_page_spin_unlock(m);
2031 		wakeup(m);
2032 	} else {
2033 		vm_page_spin_unlock(m);
2034 	}
2035 	vm_page_free_wakeup();
2036 }
2037 
2038 /*
2039  * vm_page_free_fromq_fast()
2040  *
2041  * Remove a non-zero page from one of the free queues; the page is removed for
2042  * zeroing, so do not issue a wakeup.
2043  */
2044 vm_page_t
2045 vm_page_free_fromq_fast(void)
2046 {
2047 	static int qi;
2048 	vm_page_t m;
2049 	int i;
2050 
2051 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2052 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2053 		/* page is returned spinlocked and removed from its queue */
2054 		if (m) {
2055 			if (vm_page_busy_try(m, TRUE)) {
2056 				/*
2057 				 * We were unable to busy the page, deactivate
2058 				 * it and loop.
2059 				 */
2060 				_vm_page_deactivate_locked(m, 0);
2061 				vm_page_spin_unlock(m);
2062 			} else if (m->flags & PG_ZERO) {
2063 				/*
2064 				 * The page is PG_ZERO, requeue it and loop
2065 				 */
2066 				_vm_page_add_queue_spinlocked(m,
2067 							      PQ_FREE + m->pc,
2068 							      0);
2069 				vm_page_queue_spin_unlock(m);
2070 				if (_vm_page_wakeup(m)) {
2071 					vm_page_spin_unlock(m);
2072 					wakeup(m);
2073 				} else {
2074 					vm_page_spin_unlock(m);
2075 				}
2076 			} else {
2077 				/*
2078 				 * The page is not PG_ZERO'd so return it.
2079 				 */
2080 				vm_page_spin_unlock(m);
2081 				KKASSERT((m->flags & (PG_UNMANAGED |
2082 						      PG_NEED_COMMIT)) == 0);
2083 				KKASSERT(m->hold_count == 0);
2084 				KKASSERT(m->wire_count == 0);
2085 				break;
2086 			}
2087 			m = NULL;
2088 		}
2089 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2090 	}
2091 	return (m);
2092 }
2093 
2094 /*
2095  * vm_page_unmanage()
2096  *
2097  * Prevent PV management from being done on the page.  The page is
2098  * removed from the paging queues as if it were wired, and as a
2099  * consequence of no longer being managed the pageout daemon will not
2100  * touch it (since there is no way to locate the pte mappings for the
2101  * page).  madvise() calls that mess with the pmap will also no longer
2102  * operate on the page.
2103  *
2104  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2105  * will clear the flag.
2106  *
2107  * This routine is used by OBJT_PHYS objects - objects using unswappable
2108  * physical memory as backing store rather then swap-backed memory and
2109  * will eventually be extended to support 4MB unmanaged physical
2110  * mappings.
2111  *
2112  * Caller must be holding the page busy.
2113  */
2114 void
2115 vm_page_unmanage(vm_page_t m)
2116 {
2117 	KKASSERT(m->flags & PG_BUSY);
2118 	if ((m->flags & PG_UNMANAGED) == 0) {
2119 		if (m->wire_count == 0)
2120 			vm_page_unqueue(m);
2121 	}
2122 	vm_page_flag_set(m, PG_UNMANAGED);
2123 }
2124 
2125 /*
2126  * Mark this page as wired down by yet another map, removing it from
2127  * paging queues as necessary.
2128  *
2129  * Caller must be holding the page busy.
2130  */
2131 void
2132 vm_page_wire(vm_page_t m)
2133 {
2134 	/*
2135 	 * Only bump the wire statistics if the page is not already wired,
2136 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2137 	 * it is already off the queues).  Don't do anything with fictitious
2138 	 * pages because they are always wired.
2139 	 */
2140 	KKASSERT(m->flags & PG_BUSY);
2141 	if ((m->flags & PG_FICTITIOUS) == 0) {
2142 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2143 			if ((m->flags & PG_UNMANAGED) == 0)
2144 				vm_page_unqueue(m);
2145 			atomic_add_int(&vmstats.v_wire_count, 1);
2146 		}
2147 		KASSERT(m->wire_count != 0,
2148 			("vm_page_wire: wire_count overflow m=%p", m));
2149 	}
2150 }
2151 
2152 /*
2153  * Release one wiring of this page, potentially enabling it to be paged again.
2154  *
2155  * Many pages placed on the inactive queue should actually go
2156  * into the cache, but it is difficult to figure out which.  What
2157  * we do instead, if the inactive target is well met, is to put
2158  * clean pages at the head of the inactive queue instead of the tail.
2159  * This will cause them to be moved to the cache more quickly and
2160  * if not actively re-referenced, freed more quickly.  If we just
2161  * stick these pages at the end of the inactive queue, heavy filesystem
2162  * meta-data accesses can cause an unnecessary paging load on memory bound
2163  * processes.  This optimization causes one-time-use metadata to be
2164  * reused more quickly.
2165  *
2166  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2167  * the inactive queue.  This helps the pageout daemon determine memory
2168  * pressure and act on out-of-memory situations more quickly.
2169  *
2170  * BUT, if we are in a low-memory situation we have no choice but to
2171  * put clean pages on the cache queue.
2172  *
2173  * A number of routines use vm_page_unwire() to guarantee that the page
2174  * will go into either the inactive or active queues, and will NEVER
2175  * be placed in the cache - for example, just after dirtying a page.
2176  * dirty pages in the cache are not allowed.
2177  *
2178  * The page queues must be locked.
2179  * This routine may not block.
2180  */
2181 void
2182 vm_page_unwire(vm_page_t m, int activate)
2183 {
2184 	KKASSERT(m->flags & PG_BUSY);
2185 	if (m->flags & PG_FICTITIOUS) {
2186 		/* do nothing */
2187 	} else if (m->wire_count <= 0) {
2188 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2189 	} else {
2190 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2191 			atomic_add_int(&vmstats.v_wire_count, -1);
2192 			if (m->flags & PG_UNMANAGED) {
2193 				;
2194 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2195 				vm_page_spin_lock(m);
2196 				_vm_page_add_queue_spinlocked(m,
2197 							PQ_ACTIVE + m->pc, 0);
2198 				_vm_page_and_queue_spin_unlock(m);
2199 			} else {
2200 				vm_page_spin_lock(m);
2201 				vm_page_flag_clear(m, PG_WINATCFLS);
2202 				_vm_page_add_queue_spinlocked(m,
2203 							PQ_INACTIVE + m->pc, 0);
2204 				++vm_swapcache_inactive_heuristic;
2205 				_vm_page_and_queue_spin_unlock(m);
2206 			}
2207 		}
2208 	}
2209 }
2210 
2211 /*
2212  * Move the specified page to the inactive queue.  If the page has
2213  * any associated swap, the swap is deallocated.
2214  *
2215  * Normally athead is 0 resulting in LRU operation.  athead is set
2216  * to 1 if we want this page to be 'as if it were placed in the cache',
2217  * except without unmapping it from the process address space.
2218  *
2219  * vm_page's spinlock must be held on entry and will remain held on return.
2220  * This routine may not block.
2221  */
2222 static void
2223 _vm_page_deactivate_locked(vm_page_t m, int athead)
2224 {
2225 	u_short oqueue;
2226 
2227 	/*
2228 	 * Ignore if already inactive.
2229 	 */
2230 	if (m->queue - m->pc == PQ_INACTIVE)
2231 		return;
2232 	_vm_page_queue_spin_lock(m);
2233 	oqueue = _vm_page_rem_queue_spinlocked(m);
2234 
2235 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2236 		if (oqueue == PQ_CACHE)
2237 			mycpu->gd_cnt.v_reactivated++;
2238 		vm_page_flag_clear(m, PG_WINATCFLS);
2239 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2240 		if (athead == 0)
2241 			++vm_swapcache_inactive_heuristic;
2242 	}
2243 	_vm_page_queue_spin_unlock(m);
2244 	/* leaves vm_page spinlocked */
2245 }
2246 
2247 /*
2248  * Attempt to deactivate a page.
2249  *
2250  * No requirements.
2251  */
2252 void
2253 vm_page_deactivate(vm_page_t m)
2254 {
2255 	vm_page_spin_lock(m);
2256 	_vm_page_deactivate_locked(m, 0);
2257 	vm_page_spin_unlock(m);
2258 }
2259 
2260 void
2261 vm_page_deactivate_locked(vm_page_t m)
2262 {
2263 	_vm_page_deactivate_locked(m, 0);
2264 }
2265 
2266 /*
2267  * Attempt to move a page to PQ_CACHE.
2268  *
2269  * Returns 0 on failure, 1 on success
2270  *
2271  * The page should NOT be busied by the caller.  This function will validate
2272  * whether the page can be safely moved to the cache.
2273  */
2274 int
2275 vm_page_try_to_cache(vm_page_t m)
2276 {
2277 	vm_page_spin_lock(m);
2278 	if (vm_page_busy_try(m, TRUE)) {
2279 		vm_page_spin_unlock(m);
2280 		return(0);
2281 	}
2282 	if (m->dirty || m->hold_count || m->wire_count ||
2283 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2284 		if (_vm_page_wakeup(m)) {
2285 			vm_page_spin_unlock(m);
2286 			wakeup(m);
2287 		} else {
2288 			vm_page_spin_unlock(m);
2289 		}
2290 		return(0);
2291 	}
2292 	vm_page_spin_unlock(m);
2293 
2294 	/*
2295 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2296 	 * be moved to the cache.
2297 	 */
2298 	vm_page_test_dirty(m);
2299 	if (m->dirty) {
2300 		vm_page_wakeup(m);
2301 		return(0);
2302 	}
2303 	vm_page_cache(m);
2304 	return(1);
2305 }
2306 
2307 /*
2308  * Attempt to free the page.  If we cannot free it, we do nothing.
2309  * 1 is returned on success, 0 on failure.
2310  *
2311  * No requirements.
2312  */
2313 int
2314 vm_page_try_to_free(vm_page_t m)
2315 {
2316 	vm_page_spin_lock(m);
2317 	if (vm_page_busy_try(m, TRUE)) {
2318 		vm_page_spin_unlock(m);
2319 		return(0);
2320 	}
2321 
2322 	/*
2323 	 * The page can be in any state, including already being on the free
2324 	 * queue.  Check to see if it really can be freed.
2325 	 */
2326 	if (m->dirty ||				/* can't free if it is dirty */
2327 	    m->hold_count ||			/* or held (XXX may be wrong) */
2328 	    m->wire_count ||			/* or wired */
2329 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2330 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2331 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2332 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2333 		if (_vm_page_wakeup(m)) {
2334 			vm_page_spin_unlock(m);
2335 			wakeup(m);
2336 		} else {
2337 			vm_page_spin_unlock(m);
2338 		}
2339 		return(0);
2340 	}
2341 	vm_page_spin_unlock(m);
2342 
2343 	/*
2344 	 * We can probably free the page.
2345 	 *
2346 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2347 	 * not be freed by this function.    We have to re-test the
2348 	 * dirty bit after cleaning out the pmaps.
2349 	 */
2350 	vm_page_test_dirty(m);
2351 	if (m->dirty) {
2352 		vm_page_wakeup(m);
2353 		return(0);
2354 	}
2355 	vm_page_protect(m, VM_PROT_NONE);
2356 	if (m->dirty) {
2357 		vm_page_wakeup(m);
2358 		return(0);
2359 	}
2360 	vm_page_free(m);
2361 	return(1);
2362 }
2363 
2364 /*
2365  * vm_page_cache
2366  *
2367  * Put the specified page onto the page cache queue (if appropriate).
2368  *
2369  * The page must be busy, and this routine will release the busy and
2370  * possibly even free the page.
2371  */
2372 void
2373 vm_page_cache(vm_page_t m)
2374 {
2375 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2376 	    m->busy || m->wire_count || m->hold_count) {
2377 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2378 		vm_page_wakeup(m);
2379 		return;
2380 	}
2381 
2382 	/*
2383 	 * Already in the cache (and thus not mapped)
2384 	 */
2385 	if ((m->queue - m->pc) == PQ_CACHE) {
2386 		KKASSERT((m->flags & PG_MAPPED) == 0);
2387 		vm_page_wakeup(m);
2388 		return;
2389 	}
2390 
2391 	/*
2392 	 * Caller is required to test m->dirty, but note that the act of
2393 	 * removing the page from its maps can cause it to become dirty
2394 	 * on an SMP system due to another cpu running in usermode.
2395 	 */
2396 	if (m->dirty) {
2397 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2398 			(long)m->pindex);
2399 	}
2400 
2401 	/*
2402 	 * Remove all pmaps and indicate that the page is not
2403 	 * writeable or mapped.  Our vm_page_protect() call may
2404 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2405 	 * everything.
2406 	 */
2407 	vm_page_protect(m, VM_PROT_NONE);
2408 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2409 	    m->busy || m->wire_count || m->hold_count) {
2410 		vm_page_wakeup(m);
2411 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2412 		vm_page_deactivate(m);
2413 		vm_page_wakeup(m);
2414 	} else {
2415 		_vm_page_and_queue_spin_lock(m);
2416 		_vm_page_rem_queue_spinlocked(m);
2417 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2418 		_vm_page_queue_spin_unlock(m);
2419 		if (_vm_page_wakeup(m)) {
2420 			vm_page_spin_unlock(m);
2421 			wakeup(m);
2422 		} else {
2423 			vm_page_spin_unlock(m);
2424 		}
2425 		vm_page_free_wakeup();
2426 	}
2427 }
2428 
2429 /*
2430  * vm_page_dontneed()
2431  *
2432  * Cache, deactivate, or do nothing as appropriate.  This routine
2433  * is typically used by madvise() MADV_DONTNEED.
2434  *
2435  * Generally speaking we want to move the page into the cache so
2436  * it gets reused quickly.  However, this can result in a silly syndrome
2437  * due to the page recycling too quickly.  Small objects will not be
2438  * fully cached.  On the otherhand, if we move the page to the inactive
2439  * queue we wind up with a problem whereby very large objects
2440  * unnecessarily blow away our inactive and cache queues.
2441  *
2442  * The solution is to move the pages based on a fixed weighting.  We
2443  * either leave them alone, deactivate them, or move them to the cache,
2444  * where moving them to the cache has the highest weighting.
2445  * By forcing some pages into other queues we eventually force the
2446  * system to balance the queues, potentially recovering other unrelated
2447  * space from active.  The idea is to not force this to happen too
2448  * often.
2449  *
2450  * The page must be busied.
2451  */
2452 void
2453 vm_page_dontneed(vm_page_t m)
2454 {
2455 	static int dnweight;
2456 	int dnw;
2457 	int head;
2458 
2459 	dnw = ++dnweight;
2460 
2461 	/*
2462 	 * occassionally leave the page alone
2463 	 */
2464 	if ((dnw & 0x01F0) == 0 ||
2465 	    m->queue - m->pc == PQ_INACTIVE ||
2466 	    m->queue - m->pc == PQ_CACHE
2467 	) {
2468 		if (m->act_count >= ACT_INIT)
2469 			--m->act_count;
2470 		return;
2471 	}
2472 
2473 	/*
2474 	 * If vm_page_dontneed() is inactivating a page, it must clear
2475 	 * the referenced flag; otherwise the pagedaemon will see references
2476 	 * on the page in the inactive queue and reactivate it. Until the
2477 	 * page can move to the cache queue, madvise's job is not done.
2478 	 */
2479 	vm_page_flag_clear(m, PG_REFERENCED);
2480 	pmap_clear_reference(m);
2481 
2482 	if (m->dirty == 0)
2483 		vm_page_test_dirty(m);
2484 
2485 	if (m->dirty || (dnw & 0x0070) == 0) {
2486 		/*
2487 		 * Deactivate the page 3 times out of 32.
2488 		 */
2489 		head = 0;
2490 	} else {
2491 		/*
2492 		 * Cache the page 28 times out of every 32.  Note that
2493 		 * the page is deactivated instead of cached, but placed
2494 		 * at the head of the queue instead of the tail.
2495 		 */
2496 		head = 1;
2497 	}
2498 	vm_page_spin_lock(m);
2499 	_vm_page_deactivate_locked(m, head);
2500 	vm_page_spin_unlock(m);
2501 }
2502 
2503 /*
2504  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2505  * is almost like PG_BUSY except that it allows certain compatible operations
2506  * to occur on the page while it is busy.  For example, a page undergoing a
2507  * write can still be mapped read-only.
2508  *
2509  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2510  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2511  * busy bit is cleared.
2512  */
2513 void
2514 vm_page_io_start(vm_page_t m)
2515 {
2516         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2517         atomic_add_char(&m->busy, 1);
2518 	vm_page_flag_set(m, PG_SBUSY);
2519 }
2520 
2521 void
2522 vm_page_io_finish(vm_page_t m)
2523 {
2524         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2525         atomic_subtract_char(&m->busy, 1);
2526 	if (m->busy == 0)
2527 		vm_page_flag_clear(m, PG_SBUSY);
2528 }
2529 
2530 /*
2531  * Indicate that a clean VM page requires a filesystem commit and cannot
2532  * be reused.  Used by tmpfs.
2533  */
2534 void
2535 vm_page_need_commit(vm_page_t m)
2536 {
2537 	vm_page_flag_set(m, PG_NEED_COMMIT);
2538 }
2539 
2540 void
2541 vm_page_clear_commit(vm_page_t m)
2542 {
2543 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2544 }
2545 
2546 /*
2547  * Grab a page, blocking if it is busy and allocating a page if necessary.
2548  * A busy page is returned or NULL.  The page may or may not be valid and
2549  * might not be on a queue (the caller is responsible for the disposition of
2550  * the page).
2551  *
2552  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2553  * page will be zero'd and marked valid.
2554  *
2555  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2556  * valid even if it already exists.
2557  *
2558  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2559  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2560  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2561  *
2562  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2563  * always returned if we had blocked.
2564  *
2565  * This routine may not be called from an interrupt.
2566  *
2567  * PG_ZERO is *ALWAYS* cleared by this routine.
2568  *
2569  * No other requirements.
2570  */
2571 vm_page_t
2572 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2573 {
2574 	vm_page_t m;
2575 	int error;
2576 
2577 	KKASSERT(allocflags &
2578 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2579 	vm_object_hold(object);
2580 	for (;;) {
2581 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2582 		if (error) {
2583 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2584 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2585 				m = NULL;
2586 				break;
2587 			}
2588 			/* retry */
2589 		} else if (m == NULL) {
2590 			if (allocflags & VM_ALLOC_RETRY)
2591 				allocflags |= VM_ALLOC_NULL_OK;
2592 			m = vm_page_alloc(object, pindex,
2593 					  allocflags & ~VM_ALLOC_RETRY);
2594 			if (m)
2595 				break;
2596 			vm_wait(0);
2597 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2598 				goto failed;
2599 		} else {
2600 			/* m found */
2601 			break;
2602 		}
2603 	}
2604 
2605 	/*
2606 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2607 	 *
2608 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2609 	 * valid even if already valid.
2610 	 */
2611 	if (m->valid == 0) {
2612 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2613 			if ((m->flags & PG_ZERO) == 0)
2614 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2615 			m->valid = VM_PAGE_BITS_ALL;
2616 		}
2617 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2618 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2619 		m->valid = VM_PAGE_BITS_ALL;
2620 	}
2621 	vm_page_flag_clear(m, PG_ZERO);
2622 failed:
2623 	vm_object_drop(object);
2624 	return(m);
2625 }
2626 
2627 /*
2628  * Mapping function for valid bits or for dirty bits in
2629  * a page.  May not block.
2630  *
2631  * Inputs are required to range within a page.
2632  *
2633  * No requirements.
2634  * Non blocking.
2635  */
2636 int
2637 vm_page_bits(int base, int size)
2638 {
2639 	int first_bit;
2640 	int last_bit;
2641 
2642 	KASSERT(
2643 	    base + size <= PAGE_SIZE,
2644 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2645 	);
2646 
2647 	if (size == 0)		/* handle degenerate case */
2648 		return(0);
2649 
2650 	first_bit = base >> DEV_BSHIFT;
2651 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2652 
2653 	return ((2 << last_bit) - (1 << first_bit));
2654 }
2655 
2656 /*
2657  * Sets portions of a page valid and clean.  The arguments are expected
2658  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2659  * of any partial chunks touched by the range.  The invalid portion of
2660  * such chunks will be zero'd.
2661  *
2662  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2663  *	 align base to DEV_BSIZE so as not to mark clean a partially
2664  *	 truncated device block.  Otherwise the dirty page status might be
2665  *	 lost.
2666  *
2667  * This routine may not block.
2668  *
2669  * (base + size) must be less then or equal to PAGE_SIZE.
2670  */
2671 static void
2672 _vm_page_zero_valid(vm_page_t m, int base, int size)
2673 {
2674 	int frag;
2675 	int endoff;
2676 
2677 	if (size == 0)	/* handle degenerate case */
2678 		return;
2679 
2680 	/*
2681 	 * If the base is not DEV_BSIZE aligned and the valid
2682 	 * bit is clear, we have to zero out a portion of the
2683 	 * first block.
2684 	 */
2685 
2686 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2687 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2688 	) {
2689 		pmap_zero_page_area(
2690 		    VM_PAGE_TO_PHYS(m),
2691 		    frag,
2692 		    base - frag
2693 		);
2694 	}
2695 
2696 	/*
2697 	 * If the ending offset is not DEV_BSIZE aligned and the
2698 	 * valid bit is clear, we have to zero out a portion of
2699 	 * the last block.
2700 	 */
2701 
2702 	endoff = base + size;
2703 
2704 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2705 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2706 	) {
2707 		pmap_zero_page_area(
2708 		    VM_PAGE_TO_PHYS(m),
2709 		    endoff,
2710 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2711 		);
2712 	}
2713 }
2714 
2715 /*
2716  * Set valid, clear dirty bits.  If validating the entire
2717  * page we can safely clear the pmap modify bit.  We also
2718  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2719  * takes a write fault on a MAP_NOSYNC memory area the flag will
2720  * be set again.
2721  *
2722  * We set valid bits inclusive of any overlap, but we can only
2723  * clear dirty bits for DEV_BSIZE chunks that are fully within
2724  * the range.
2725  *
2726  * Page must be busied?
2727  * No other requirements.
2728  */
2729 void
2730 vm_page_set_valid(vm_page_t m, int base, int size)
2731 {
2732 	_vm_page_zero_valid(m, base, size);
2733 	m->valid |= vm_page_bits(base, size);
2734 }
2735 
2736 
2737 /*
2738  * Set valid bits and clear dirty bits.
2739  *
2740  * NOTE: This function does not clear the pmap modified bit.
2741  *	 Also note that e.g. NFS may use a byte-granular base
2742  *	 and size.
2743  *
2744  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2745  *	    this without necessarily busying the page (via bdwrite()).
2746  *	    So for now vm_token must also be held.
2747  *
2748  * No other requirements.
2749  */
2750 void
2751 vm_page_set_validclean(vm_page_t m, int base, int size)
2752 {
2753 	int pagebits;
2754 
2755 	_vm_page_zero_valid(m, base, size);
2756 	pagebits = vm_page_bits(base, size);
2757 	m->valid |= pagebits;
2758 	m->dirty &= ~pagebits;
2759 	if (base == 0 && size == PAGE_SIZE) {
2760 		/*pmap_clear_modify(m);*/
2761 		vm_page_flag_clear(m, PG_NOSYNC);
2762 	}
2763 }
2764 
2765 /*
2766  * Set valid & dirty.  Used by buwrite()
2767  *
2768  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2769  *	    call this function in buwrite() so for now vm_token must
2770  *	    be held.
2771  *
2772  * No other requirements.
2773  */
2774 void
2775 vm_page_set_validdirty(vm_page_t m, int base, int size)
2776 {
2777 	int pagebits;
2778 
2779 	pagebits = vm_page_bits(base, size);
2780 	m->valid |= pagebits;
2781 	m->dirty |= pagebits;
2782 	if (m->object)
2783 	       vm_object_set_writeable_dirty(m->object);
2784 }
2785 
2786 /*
2787  * Clear dirty bits.
2788  *
2789  * NOTE: This function does not clear the pmap modified bit.
2790  *	 Also note that e.g. NFS may use a byte-granular base
2791  *	 and size.
2792  *
2793  * Page must be busied?
2794  * No other requirements.
2795  */
2796 void
2797 vm_page_clear_dirty(vm_page_t m, int base, int size)
2798 {
2799 	m->dirty &= ~vm_page_bits(base, size);
2800 	if (base == 0 && size == PAGE_SIZE) {
2801 		/*pmap_clear_modify(m);*/
2802 		vm_page_flag_clear(m, PG_NOSYNC);
2803 	}
2804 }
2805 
2806 /*
2807  * Make the page all-dirty.
2808  *
2809  * Also make sure the related object and vnode reflect the fact that the
2810  * object may now contain a dirty page.
2811  *
2812  * Page must be busied?
2813  * No other requirements.
2814  */
2815 void
2816 vm_page_dirty(vm_page_t m)
2817 {
2818 #ifdef INVARIANTS
2819         int pqtype = m->queue - m->pc;
2820 #endif
2821         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2822                 ("vm_page_dirty: page in free/cache queue!"));
2823 	if (m->dirty != VM_PAGE_BITS_ALL) {
2824 		m->dirty = VM_PAGE_BITS_ALL;
2825 		if (m->object)
2826 			vm_object_set_writeable_dirty(m->object);
2827 	}
2828 }
2829 
2830 /*
2831  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2832  * valid and dirty bits for the effected areas are cleared.
2833  *
2834  * Page must be busied?
2835  * Does not block.
2836  * No other requirements.
2837  */
2838 void
2839 vm_page_set_invalid(vm_page_t m, int base, int size)
2840 {
2841 	int bits;
2842 
2843 	bits = vm_page_bits(base, size);
2844 	m->valid &= ~bits;
2845 	m->dirty &= ~bits;
2846 	m->object->generation++;
2847 }
2848 
2849 /*
2850  * The kernel assumes that the invalid portions of a page contain
2851  * garbage, but such pages can be mapped into memory by user code.
2852  * When this occurs, we must zero out the non-valid portions of the
2853  * page so user code sees what it expects.
2854  *
2855  * Pages are most often semi-valid when the end of a file is mapped
2856  * into memory and the file's size is not page aligned.
2857  *
2858  * Page must be busied?
2859  * No other requirements.
2860  */
2861 void
2862 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2863 {
2864 	int b;
2865 	int i;
2866 
2867 	/*
2868 	 * Scan the valid bits looking for invalid sections that
2869 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2870 	 * valid bit may be set ) have already been zerod by
2871 	 * vm_page_set_validclean().
2872 	 */
2873 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2874 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2875 		    (m->valid & (1 << i))
2876 		) {
2877 			if (i > b) {
2878 				pmap_zero_page_area(
2879 				    VM_PAGE_TO_PHYS(m),
2880 				    b << DEV_BSHIFT,
2881 				    (i - b) << DEV_BSHIFT
2882 				);
2883 			}
2884 			b = i + 1;
2885 		}
2886 	}
2887 
2888 	/*
2889 	 * setvalid is TRUE when we can safely set the zero'd areas
2890 	 * as being valid.  We can do this if there are no cache consistency
2891 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2892 	 */
2893 	if (setvalid)
2894 		m->valid = VM_PAGE_BITS_ALL;
2895 }
2896 
2897 /*
2898  * Is a (partial) page valid?  Note that the case where size == 0
2899  * will return FALSE in the degenerate case where the page is entirely
2900  * invalid, and TRUE otherwise.
2901  *
2902  * Does not block.
2903  * No other requirements.
2904  */
2905 int
2906 vm_page_is_valid(vm_page_t m, int base, int size)
2907 {
2908 	int bits = vm_page_bits(base, size);
2909 
2910 	if (m->valid && ((m->valid & bits) == bits))
2911 		return 1;
2912 	else
2913 		return 0;
2914 }
2915 
2916 /*
2917  * update dirty bits from pmap/mmu.  May not block.
2918  *
2919  * Caller must hold the page busy
2920  */
2921 void
2922 vm_page_test_dirty(vm_page_t m)
2923 {
2924 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2925 		vm_page_dirty(m);
2926 	}
2927 }
2928 
2929 /*
2930  * Register an action, associating it with its vm_page
2931  */
2932 void
2933 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2934 {
2935 	struct vm_page_action_list *list;
2936 	int hv;
2937 
2938 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2939 	list = &action_list[hv];
2940 
2941 	lwkt_gettoken(&vm_token);
2942 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2943 	action->event = event;
2944 	LIST_INSERT_HEAD(list, action, entry);
2945 	lwkt_reltoken(&vm_token);
2946 }
2947 
2948 /*
2949  * Unregister an action, disassociating it from its related vm_page
2950  */
2951 void
2952 vm_page_unregister_action(vm_page_action_t action)
2953 {
2954 	struct vm_page_action_list *list;
2955 	int hv;
2956 
2957 	lwkt_gettoken(&vm_token);
2958 	if (action->event != VMEVENT_NONE) {
2959 		action->event = VMEVENT_NONE;
2960 		LIST_REMOVE(action, entry);
2961 
2962 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2963 		list = &action_list[hv];
2964 		if (LIST_EMPTY(list))
2965 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
2966 	}
2967 	lwkt_reltoken(&vm_token);
2968 }
2969 
2970 /*
2971  * Issue an event on a VM page.  Corresponding action structures are
2972  * removed from the page's list and called.
2973  *
2974  * If the vm_page has no more pending action events we clear its
2975  * PG_ACTIONLIST flag.
2976  */
2977 void
2978 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2979 {
2980 	struct vm_page_action_list *list;
2981 	struct vm_page_action *scan;
2982 	struct vm_page_action *next;
2983 	int hv;
2984 	int all;
2985 
2986 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
2987 	list = &action_list[hv];
2988 	all = 1;
2989 
2990 	lwkt_gettoken(&vm_token);
2991 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
2992 		if (scan->m == m) {
2993 			if (scan->event == event) {
2994 				scan->event = VMEVENT_NONE;
2995 				LIST_REMOVE(scan, entry);
2996 				scan->func(m, scan);
2997 				/* XXX */
2998 			} else {
2999 				all = 0;
3000 			}
3001 		}
3002 	}
3003 	if (all)
3004 		vm_page_flag_clear(m, PG_ACTIONLIST);
3005 	lwkt_reltoken(&vm_token);
3006 }
3007 
3008 #include "opt_ddb.h"
3009 #ifdef DDB
3010 #include <sys/kernel.h>
3011 
3012 #include <ddb/ddb.h>
3013 
3014 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3015 {
3016 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3017 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3018 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3019 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3020 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3021 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3022 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3023 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3024 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3025 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3026 }
3027 
3028 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3029 {
3030 	int i;
3031 	db_printf("PQ_FREE:");
3032 	for(i=0;i<PQ_L2_SIZE;i++) {
3033 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3034 	}
3035 	db_printf("\n");
3036 
3037 	db_printf("PQ_CACHE:");
3038 	for(i=0;i<PQ_L2_SIZE;i++) {
3039 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3040 	}
3041 	db_printf("\n");
3042 
3043 	db_printf("PQ_ACTIVE:");
3044 	for(i=0;i<PQ_L2_SIZE;i++) {
3045 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3046 	}
3047 	db_printf("\n");
3048 
3049 	db_printf("PQ_INACTIVE:");
3050 	for(i=0;i<PQ_L2_SIZE;i++) {
3051 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3052 	}
3053 	db_printf("\n");
3054 }
3055 #endif /* DDB */
3056