xref: /dragonfly/sys/vm/vm_page.c (revision a639f788)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
34  */
35 
36 /*
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 /*
63  * Resident memory management module.  The module manipulates 'VM pages'.
64  * A VM page is the core building block for memory management.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 /*
99  * Action hash for user umtx support.
100  */
101 #define VMACTION_HSIZE		256
102 #define VMACTION_HMASK		(VMACTION_HSIZE - 1)
103 
104 /*
105  * SET - Minimum required set associative size, must be a power of 2.  We
106  *	 want this to match or exceed the set-associativeness of the cpu.
107  *
108  * GRP - A larger set that allows bleed-over into the domains of other
109  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
110  *	 code to smooth things out a bit.
111  */
112 #define PQ_SET_ASSOC		16
113 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
114 
115 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
116 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
117 
118 static void vm_page_queue_init(void);
119 static void vm_page_free_wakeup(void);
120 static vm_page_t vm_page_select_cache(u_short pg_color);
121 static vm_page_t _vm_page_list_find2(int basequeue, int index);
122 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
123 
124 /*
125  * Array of tailq lists
126  */
127 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
128 
129 LIST_HEAD(vm_page_action_list, vm_page_action);
130 struct vm_page_action_list	action_list[VMACTION_HSIZE];
131 static volatile int vm_pages_waiting;
132 
133 static struct alist vm_contig_alist;
134 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
135 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
136 
137 static u_long vm_dma_reserved = 0;
138 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
139 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
140 	    "Memory reserved for DMA");
141 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
142 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
143 
144 static int vm_contig_verbose = 0;
145 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
146 
147 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
148 	     vm_pindex_t, pindex);
149 
150 static void
151 vm_page_queue_init(void)
152 {
153 	int i;
154 
155 	for (i = 0; i < PQ_L2_SIZE; i++)
156 		vm_page_queues[PQ_FREE+i].cnt_offset =
157 			offsetof(struct vmstats, v_free_count);
158 	for (i = 0; i < PQ_L2_SIZE; i++)
159 		vm_page_queues[PQ_CACHE+i].cnt_offset =
160 			offsetof(struct vmstats, v_cache_count);
161 	for (i = 0; i < PQ_L2_SIZE; i++)
162 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
163 			offsetof(struct vmstats, v_inactive_count);
164 	for (i = 0; i < PQ_L2_SIZE; i++)
165 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
166 			offsetof(struct vmstats, v_active_count);
167 	for (i = 0; i < PQ_L2_SIZE; i++)
168 		vm_page_queues[PQ_HOLD+i].cnt_offset =
169 			offsetof(struct vmstats, v_active_count);
170 	/* PQ_NONE has no queue */
171 
172 	for (i = 0; i < PQ_COUNT; i++) {
173 		TAILQ_INIT(&vm_page_queues[i].pl);
174 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
175 	}
176 
177 	for (i = 0; i < VMACTION_HSIZE; i++)
178 		LIST_INIT(&action_list[i]);
179 }
180 
181 /*
182  * note: place in initialized data section?  Is this necessary?
183  */
184 long first_page = 0;
185 int vm_page_array_size = 0;
186 vm_page_t vm_page_array = NULL;
187 vm_paddr_t vm_low_phys_reserved;
188 
189 /*
190  * (low level boot)
191  *
192  * Sets the page size, perhaps based upon the memory size.
193  * Must be called before any use of page-size dependent functions.
194  */
195 void
196 vm_set_page_size(void)
197 {
198 	if (vmstats.v_page_size == 0)
199 		vmstats.v_page_size = PAGE_SIZE;
200 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
201 		panic("vm_set_page_size: page size not a power of two");
202 }
203 
204 /*
205  * (low level boot)
206  *
207  * Add a new page to the freelist for use by the system.  New pages
208  * are added to both the head and tail of the associated free page
209  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
210  * requests pull 'recent' adds (higher physical addresses) first.
211  *
212  * Beware that the page zeroing daemon will also be running soon after
213  * boot, moving pages from the head to the tail of the PQ_FREE queues.
214  *
215  * Must be called in a critical section.
216  */
217 static void
218 vm_add_new_page(vm_paddr_t pa)
219 {
220 	struct vpgqueues *vpq;
221 	vm_page_t m;
222 
223 	m = PHYS_TO_VM_PAGE(pa);
224 	m->phys_addr = pa;
225 	m->flags = 0;
226 	m->pat_mode = PAT_WRITE_BACK;
227 	m->pc = (pa >> PAGE_SHIFT);
228 
229 	/*
230 	 * Twist for cpu localization in addition to page coloring, so
231 	 * different cpus selecting by m->queue get different page colors.
232 	 */
233 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
234 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
235 	m->pc &= PQ_L2_MASK;
236 
237 	/*
238 	 * Reserve a certain number of contiguous low memory pages for
239 	 * contigmalloc() to use.
240 	 */
241 	if (pa < vm_low_phys_reserved) {
242 		atomic_add_int(&vmstats.v_page_count, 1);
243 		atomic_add_int(&vmstats.v_dma_pages, 1);
244 		m->queue = PQ_NONE;
245 		m->wire_count = 1;
246 		atomic_add_int(&vmstats.v_wire_count, 1);
247 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
248 		return;
249 	}
250 
251 	/*
252 	 * General page
253 	 */
254 	m->queue = m->pc + PQ_FREE;
255 	KKASSERT(m->dirty == 0);
256 
257 	atomic_add_int(&vmstats.v_page_count, 1);
258 	atomic_add_int(&vmstats.v_free_count, 1);
259 	vpq = &vm_page_queues[m->queue];
260 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
261 	++vpq->lcnt;
262 }
263 
264 /*
265  * (low level boot)
266  *
267  * Initializes the resident memory module.
268  *
269  * Preallocates memory for critical VM structures and arrays prior to
270  * kernel_map becoming available.
271  *
272  * Memory is allocated from (virtual2_start, virtual2_end) if available,
273  * otherwise memory is allocated from (virtual_start, virtual_end).
274  *
275  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
276  * large enough to hold vm_page_array & other structures for machines with
277  * large amounts of ram, so we want to use virtual2* when available.
278  */
279 void
280 vm_page_startup(void)
281 {
282 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
283 	vm_offset_t mapped;
284 	vm_size_t npages;
285 	vm_paddr_t page_range;
286 	vm_paddr_t new_end;
287 	int i;
288 	vm_paddr_t pa;
289 	vm_paddr_t last_pa;
290 	vm_paddr_t end;
291 	vm_paddr_t biggestone, biggestsize;
292 	vm_paddr_t total;
293 	vm_page_t m;
294 
295 	total = 0;
296 	biggestsize = 0;
297 	biggestone = 0;
298 	vaddr = round_page(vaddr);
299 
300 	/*
301 	 * Make sure ranges are page-aligned.
302 	 */
303 	for (i = 0; phys_avail[i].phys_end; ++i) {
304 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
305 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
306 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
307 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
308 	}
309 
310 	/*
311 	 * Locate largest block
312 	 */
313 	for (i = 0; phys_avail[i].phys_end; ++i) {
314 		vm_paddr_t size = phys_avail[i].phys_end -
315 				  phys_avail[i].phys_beg;
316 
317 		if (size > biggestsize) {
318 			biggestone = i;
319 			biggestsize = size;
320 		}
321 		total += size;
322 	}
323 	--i;	/* adjust to last entry for use down below */
324 
325 	end = phys_avail[biggestone].phys_end;
326 	end = trunc_page(end);
327 
328 	/*
329 	 * Initialize the queue headers for the free queue, the active queue
330 	 * and the inactive queue.
331 	 */
332 	vm_page_queue_init();
333 
334 #if !defined(_KERNEL_VIRTUAL)
335 	/*
336 	 * VKERNELs don't support minidumps and as such don't need
337 	 * vm_page_dump
338 	 *
339 	 * Allocate a bitmap to indicate that a random physical page
340 	 * needs to be included in a minidump.
341 	 *
342 	 * The amd64 port needs this to indicate which direct map pages
343 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
344 	 *
345 	 * However, i386 still needs this workspace internally within the
346 	 * minidump code.  In theory, they are not needed on i386, but are
347 	 * included should the sf_buf code decide to use them.
348 	 */
349 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
350 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
351 	end -= vm_page_dump_size;
352 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
353 					VM_PROT_READ | VM_PROT_WRITE);
354 	bzero((void *)vm_page_dump, vm_page_dump_size);
355 #endif
356 	/*
357 	 * Compute the number of pages of memory that will be available for
358 	 * use (taking into account the overhead of a page structure per
359 	 * page).
360 	 */
361 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
362 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
363 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
364 
365 #ifndef _KERNEL_VIRTUAL
366 	/*
367 	 * (only applies to real kernels)
368 	 *
369 	 * Reserve a large amount of low memory for potential 32-bit DMA
370 	 * space allocations.  Once device initialization is complete we
371 	 * release most of it, but keep (vm_dma_reserved) memory reserved
372 	 * for later use.  Typically for X / graphics.  Through trial and
373 	 * error we find that GPUs usually requires ~60-100MB or so.
374 	 *
375 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
376 	 */
377 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
378 	if (vm_low_phys_reserved > total / 4)
379 		vm_low_phys_reserved = total / 4;
380 	if (vm_dma_reserved == 0) {
381 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
382 		if (vm_dma_reserved > total / 16)
383 			vm_dma_reserved = total / 16;
384 	}
385 #endif
386 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
387 		   ALIST_RECORDS_65536);
388 
389 	/*
390 	 * Initialize the mem entry structures now, and put them in the free
391 	 * queue.
392 	 */
393 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
394 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
395 	vm_page_array = (vm_page_t)mapped;
396 
397 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
398 	/*
399 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
400 	 * we have to manually add these pages to the minidump tracking so
401 	 * that they can be dumped, including the vm_page_array.
402 	 */
403 	for (pa = new_end;
404 	     pa < phys_avail[biggestone].phys_end;
405 	     pa += PAGE_SIZE) {
406 		dump_add_page(pa);
407 	}
408 #endif
409 
410 	/*
411 	 * Clear all of the page structures, run basic initialization so
412 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
413 	 * map.
414 	 */
415 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
416 	vm_page_array_size = page_range;
417 
418 	m = &vm_page_array[0];
419 	pa = ptoa(first_page);
420 	for (i = 0; i < page_range; ++i) {
421 		spin_init(&m->spin, "vm_page");
422 		m->phys_addr = pa;
423 		pa += PAGE_SIZE;
424 		++m;
425 	}
426 
427 	/*
428 	 * Construct the free queue(s) in ascending order (by physical
429 	 * address) so that the first 16MB of physical memory is allocated
430 	 * last rather than first.  On large-memory machines, this avoids
431 	 * the exhaustion of low physical memory before isa_dmainit has run.
432 	 */
433 	vmstats.v_page_count = 0;
434 	vmstats.v_free_count = 0;
435 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
436 		pa = phys_avail[i].phys_beg;
437 		if (i == biggestone)
438 			last_pa = new_end;
439 		else
440 			last_pa = phys_avail[i].phys_end;
441 		while (pa < last_pa && npages-- > 0) {
442 			vm_add_new_page(pa);
443 			pa += PAGE_SIZE;
444 		}
445 	}
446 	if (virtual2_start)
447 		virtual2_start = vaddr;
448 	else
449 		virtual_start = vaddr;
450 	mycpu->gd_vmstats = vmstats;
451 }
452 
453 /*
454  * Reorganize VM pages based on numa data.  May be called as many times as
455  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
456  * to allow vm_page_alloc() to choose pages based on socket affinity.
457  *
458  * NOTE: This function is only called while we are still in UP mode, so
459  *	 we only need a critical section to protect the queues (which
460  *	 saves a lot of time, there are likely a ton of pages).
461  */
462 void
463 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
464 {
465 	vm_paddr_t scan_beg;
466 	vm_paddr_t scan_end;
467 	vm_paddr_t ran_end;
468 	struct vpgqueues *vpq;
469 	vm_page_t m;
470 	vm_page_t mend;
471 	int i;
472 	int socket_mod;
473 	int socket_value;
474 
475 	/*
476 	 * Check if no physical information, or there was only one socket
477 	 * (so don't waste time doing nothing!).
478 	 */
479 	if (cpu_topology_phys_ids <= 1 ||
480 	    cpu_topology_core_ids == 0) {
481 		return;
482 	}
483 
484 	/*
485 	 * Setup for our iteration.  Note that ACPI may iterate CPU
486 	 * sockets starting at 0 or 1 or some other number.  The
487 	 * cpu_topology code mod's it against the socket count.
488 	 */
489 	ran_end = ran_beg + bytes;
490 	physid %= cpu_topology_phys_ids;
491 
492 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
493 	socket_value = physid * socket_mod;
494 	mend = &vm_page_array[vm_page_array_size];
495 
496 	crit_enter();
497 
498 	/*
499 	 * Adjust vm_page->pc and requeue all affected pages.  The
500 	 * allocator will then be able to localize memory allocations
501 	 * to some degree.
502 	 */
503 	for (i = 0; phys_avail[i].phys_end; ++i) {
504 		scan_beg = phys_avail[i].phys_beg;
505 		scan_end = phys_avail[i].phys_end;
506 		if (scan_end <= ran_beg)
507 			continue;
508 		if (scan_beg >= ran_end)
509 			continue;
510 		if (scan_beg < ran_beg)
511 			scan_beg = ran_beg;
512 		if (scan_end > ran_end)
513 			scan_end = ran_end;
514 		if (atop(scan_end) > first_page + vm_page_array_size)
515 			scan_end = ptoa(first_page + vm_page_array_size);
516 
517 		m = PHYS_TO_VM_PAGE(scan_beg);
518 		while (scan_beg < scan_end) {
519 			KKASSERT(m < mend);
520 			if (m->queue != PQ_NONE) {
521 				vpq = &vm_page_queues[m->queue];
522 				TAILQ_REMOVE(&vpq->pl, m, pageq);
523 				--vpq->lcnt;
524 				/* queue doesn't change, no need to adj cnt */
525 				m->queue -= m->pc;
526 				m->pc %= socket_mod;
527 				m->pc += socket_value;
528 				m->pc &= PQ_L2_MASK;
529 				m->queue += m->pc;
530 				vpq = &vm_page_queues[m->queue];
531 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
532 				++vpq->lcnt;
533 				/* queue doesn't change, no need to adj cnt */
534 			} else {
535 				m->pc %= socket_mod;
536 				m->pc += socket_value;
537 				m->pc &= PQ_L2_MASK;
538 			}
539 			scan_beg += PAGE_SIZE;
540 			++m;
541 		}
542 	}
543 	crit_exit();
544 }
545 
546 /*
547  * We tended to reserve a ton of memory for contigmalloc().  Now that most
548  * drivers have initialized we want to return most the remaining free
549  * reserve back to the VM page queues so they can be used for normal
550  * allocations.
551  *
552  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
553  */
554 static void
555 vm_page_startup_finish(void *dummy __unused)
556 {
557 	alist_blk_t blk;
558 	alist_blk_t rblk;
559 	alist_blk_t count;
560 	alist_blk_t xcount;
561 	alist_blk_t bfree;
562 	vm_page_t m;
563 
564 	spin_lock(&vm_contig_spin);
565 	for (;;) {
566 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
567 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
568 			break;
569 		if (count == 0)
570 			break;
571 
572 		/*
573 		 * Figure out how much of the initial reserve we have to
574 		 * free in order to reach our target.
575 		 */
576 		bfree -= vm_dma_reserved / PAGE_SIZE;
577 		if (count > bfree) {
578 			blk += count - bfree;
579 			count = bfree;
580 		}
581 
582 		/*
583 		 * Calculate the nearest power of 2 <= count.
584 		 */
585 		for (xcount = 1; xcount <= count; xcount <<= 1)
586 			;
587 		xcount >>= 1;
588 		blk += count - xcount;
589 		count = xcount;
590 
591 		/*
592 		 * Allocate the pages from the alist, then free them to
593 		 * the normal VM page queues.
594 		 *
595 		 * Pages allocated from the alist are wired.  We have to
596 		 * busy, unwire, and free them.  We must also adjust
597 		 * vm_low_phys_reserved before freeing any pages to prevent
598 		 * confusion.
599 		 */
600 		rblk = alist_alloc(&vm_contig_alist, blk, count);
601 		if (rblk != blk) {
602 			kprintf("vm_page_startup_finish: Unable to return "
603 				"dma space @0x%08x/%d -> 0x%08x\n",
604 				blk, count, rblk);
605 			break;
606 		}
607 		atomic_add_int(&vmstats.v_dma_pages, -count);
608 		spin_unlock(&vm_contig_spin);
609 
610 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
611 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
612 		while (count) {
613 			vm_page_busy_wait(m, FALSE, "cpgfr");
614 			vm_page_unwire(m, 0);
615 			vm_page_free(m);
616 			--count;
617 			++m;
618 		}
619 		spin_lock(&vm_contig_spin);
620 	}
621 	spin_unlock(&vm_contig_spin);
622 
623 	/*
624 	 * Print out how much DMA space drivers have already allocated and
625 	 * how much is left over.
626 	 */
627 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
628 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
629 		(PAGE_SIZE / 1024),
630 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
631 }
632 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
633 	vm_page_startup_finish, NULL);
634 
635 
636 /*
637  * Scan comparison function for Red-Black tree scans.  An inclusive
638  * (start,end) is expected.  Other fields are not used.
639  */
640 int
641 rb_vm_page_scancmp(struct vm_page *p, void *data)
642 {
643 	struct rb_vm_page_scan_info *info = data;
644 
645 	if (p->pindex < info->start_pindex)
646 		return(-1);
647 	if (p->pindex > info->end_pindex)
648 		return(1);
649 	return(0);
650 }
651 
652 int
653 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
654 {
655 	if (p1->pindex < p2->pindex)
656 		return(-1);
657 	if (p1->pindex > p2->pindex)
658 		return(1);
659 	return(0);
660 }
661 
662 void
663 vm_page_init(vm_page_t m)
664 {
665 	/* do nothing for now.  Called from pmap_page_init() */
666 }
667 
668 /*
669  * Each page queue has its own spin lock, which is fairly optimal for
670  * allocating and freeing pages at least.
671  *
672  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
673  * queue spinlock via this function.  Also note that m->queue cannot change
674  * unless both the page and queue are locked.
675  */
676 static __inline
677 void
678 _vm_page_queue_spin_lock(vm_page_t m)
679 {
680 	u_short queue;
681 
682 	queue = m->queue;
683 	if (queue != PQ_NONE) {
684 		spin_lock(&vm_page_queues[queue].spin);
685 		KKASSERT(queue == m->queue);
686 	}
687 }
688 
689 static __inline
690 void
691 _vm_page_queue_spin_unlock(vm_page_t m)
692 {
693 	u_short queue;
694 
695 	queue = m->queue;
696 	cpu_ccfence();
697 	if (queue != PQ_NONE)
698 		spin_unlock(&vm_page_queues[queue].spin);
699 }
700 
701 static __inline
702 void
703 _vm_page_queues_spin_lock(u_short queue)
704 {
705 	cpu_ccfence();
706 	if (queue != PQ_NONE)
707 		spin_lock(&vm_page_queues[queue].spin);
708 }
709 
710 
711 static __inline
712 void
713 _vm_page_queues_spin_unlock(u_short queue)
714 {
715 	cpu_ccfence();
716 	if (queue != PQ_NONE)
717 		spin_unlock(&vm_page_queues[queue].spin);
718 }
719 
720 void
721 vm_page_queue_spin_lock(vm_page_t m)
722 {
723 	_vm_page_queue_spin_lock(m);
724 }
725 
726 void
727 vm_page_queues_spin_lock(u_short queue)
728 {
729 	_vm_page_queues_spin_lock(queue);
730 }
731 
732 void
733 vm_page_queue_spin_unlock(vm_page_t m)
734 {
735 	_vm_page_queue_spin_unlock(m);
736 }
737 
738 void
739 vm_page_queues_spin_unlock(u_short queue)
740 {
741 	_vm_page_queues_spin_unlock(queue);
742 }
743 
744 /*
745  * This locks the specified vm_page and its queue in the proper order
746  * (page first, then queue).  The queue may change so the caller must
747  * recheck on return.
748  */
749 static __inline
750 void
751 _vm_page_and_queue_spin_lock(vm_page_t m)
752 {
753 	vm_page_spin_lock(m);
754 	_vm_page_queue_spin_lock(m);
755 }
756 
757 static __inline
758 void
759 _vm_page_and_queue_spin_unlock(vm_page_t m)
760 {
761 	_vm_page_queues_spin_unlock(m->queue);
762 	vm_page_spin_unlock(m);
763 }
764 
765 void
766 vm_page_and_queue_spin_unlock(vm_page_t m)
767 {
768 	_vm_page_and_queue_spin_unlock(m);
769 }
770 
771 void
772 vm_page_and_queue_spin_lock(vm_page_t m)
773 {
774 	_vm_page_and_queue_spin_lock(m);
775 }
776 
777 /*
778  * Helper function removes vm_page from its current queue.
779  * Returns the base queue the page used to be on.
780  *
781  * The vm_page and the queue must be spinlocked.
782  * This function will unlock the queue but leave the page spinlocked.
783  */
784 static __inline u_short
785 _vm_page_rem_queue_spinlocked(vm_page_t m)
786 {
787 	struct vpgqueues *pq;
788 	u_short queue;
789 	u_short oqueue;
790 	int *cnt;
791 
792 	queue = m->queue;
793 	if (queue != PQ_NONE) {
794 		pq = &vm_page_queues[queue];
795 		TAILQ_REMOVE(&pq->pl, m, pageq);
796 
797 		/*
798 		 * Adjust our pcpu stats.  In order for the nominal low-memory
799 		 * algorithms to work properly we don't let any pcpu stat get
800 		 * too negative before we force it to be rolled-up into the
801 		 * global stats.  Otherwise our pageout and vm_wait tests
802 		 * will fail badly.
803 		 *
804 		 * The idea here is to reduce unnecessary SMP cache
805 		 * mastership changes in the global vmstats, which can be
806 		 * particularly bad in multi-socket systems.
807 		 */
808 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
809 		atomic_add_int(cnt, -1);
810 		if (*cnt < -VMMETER_SLOP_COUNT) {
811 			u_int copy = atomic_swap_int(cnt, 0);
812 			cnt = (int *)((char *)&vmstats + pq->cnt_offset);
813 			atomic_add_int(cnt, copy);
814 			cnt = (int *)((char *)&mycpu->gd_vmstats +
815 				      pq->cnt_offset);
816 			atomic_add_int(cnt, copy);
817 		}
818 		pq->lcnt--;
819 		m->queue = PQ_NONE;
820 		oqueue = queue;
821 		queue -= m->pc;
822 		vm_page_queues_spin_unlock(oqueue);	/* intended */
823 	}
824 	return queue;
825 }
826 
827 /*
828  * Helper function places the vm_page on the specified queue.
829  *
830  * The vm_page must be spinlocked.
831  * This function will return with both the page and the queue locked.
832  */
833 static __inline void
834 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
835 {
836 	struct vpgqueues *pq;
837 	u_int *cnt;
838 
839 	KKASSERT(m->queue == PQ_NONE);
840 
841 	if (queue != PQ_NONE) {
842 		vm_page_queues_spin_lock(queue);
843 		pq = &vm_page_queues[queue];
844 		++pq->lcnt;
845 
846 		/*
847 		 * Adjust our pcpu stats.  If a system entity really needs
848 		 * to incorporate the count it will call vmstats_rollup()
849 		 * to roll it all up into the global vmstats strufture.
850 		 */
851 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
852 		atomic_add_int(cnt, 1);
853 
854 		/*
855 		 * PQ_FREE is always handled LIFO style to try to provide
856 		 * cache-hot pages to programs.
857 		 */
858 		m->queue = queue;
859 		if (queue - m->pc == PQ_FREE) {
860 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
861 		} else if (athead) {
862 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
863 		} else {
864 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
865 		}
866 		/* leave the queue spinlocked */
867 	}
868 }
869 
870 /*
871  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
872  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
873  * did not.  Only one sleep call will be made before returning.
874  *
875  * This function does NOT busy the page and on return the page is not
876  * guaranteed to be available.
877  */
878 void
879 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
880 {
881 	u_int32_t flags;
882 
883 	for (;;) {
884 		flags = m->flags;
885 		cpu_ccfence();
886 
887 		if ((flags & PG_BUSY) == 0 &&
888 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
889 			break;
890 		}
891 		tsleep_interlock(m, 0);
892 		if (atomic_cmpset_int(&m->flags, flags,
893 				      flags | PG_WANTED | PG_REFERENCED)) {
894 			tsleep(m, PINTERLOCKED, msg, 0);
895 			break;
896 		}
897 	}
898 }
899 
900 /*
901  * This calculates and returns a page color given an optional VM object and
902  * either a pindex or an iterator.  We attempt to return a cpu-localized
903  * pg_color that is still roughly 16-way set-associative.  The CPU topology
904  * is used if it was probed.
905  *
906  * The caller may use the returned value to index into e.g. PQ_FREE when
907  * allocating a page in order to nominally obtain pages that are hopefully
908  * already localized to the requesting cpu.  This function is not able to
909  * provide any sort of guarantee of this, but does its best to improve
910  * hardware cache management performance.
911  *
912  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
913  */
914 u_short
915 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
916 {
917 	u_short pg_color;
918 	int phys_id;
919 	int core_id;
920 	int object_pg_color;
921 
922 	phys_id = get_cpu_phys_id(cpuid);
923 	core_id = get_cpu_core_id(cpuid);
924 	object_pg_color = object ? object->pg_color : 0;
925 
926 	if (cpu_topology_phys_ids && cpu_topology_core_ids) {
927 		int grpsize;
928 
929 		/*
930 		 * Break us down by socket and cpu
931 		 */
932 		pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
933 		pg_color += core_id * PQ_L2_SIZE /
934 			    (cpu_topology_core_ids * cpu_topology_phys_ids);
935 
936 		/*
937 		 * Calculate remaining component for object/queue color
938 		 */
939 		grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
940 					cpu_topology_phys_ids);
941 		if (grpsize >= 8) {
942 			pg_color += (pindex + object_pg_color) % grpsize;
943 		} else {
944 			if (grpsize <= 2) {
945 				grpsize = 8;
946 			} else {
947 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
948 				grpsize += grpsize;
949 				if (grpsize < 8)
950 					grpsize += grpsize;
951 			}
952 			pg_color += (pindex + object_pg_color) % grpsize;
953 		}
954 	} else {
955 		/*
956 		 * Unknown topology, distribute things evenly.
957 		 */
958 		pg_color = cpuid * PQ_L2_SIZE / ncpus;
959 		pg_color += pindex + object_pg_color;
960 	}
961 	return (pg_color & PQ_L2_MASK);
962 }
963 
964 /*
965  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
966  * also wait for m->busy to become 0 before setting PG_BUSY.
967  */
968 void
969 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
970 				     int also_m_busy, const char *msg
971 				     VM_PAGE_DEBUG_ARGS)
972 {
973 	u_int32_t flags;
974 
975 	for (;;) {
976 		flags = m->flags;
977 		cpu_ccfence();
978 		if (flags & PG_BUSY) {
979 			tsleep_interlock(m, 0);
980 			if (atomic_cmpset_int(&m->flags, flags,
981 					  flags | PG_WANTED | PG_REFERENCED)) {
982 				tsleep(m, PINTERLOCKED, msg, 0);
983 			}
984 		} else if (also_m_busy && (flags & PG_SBUSY)) {
985 			tsleep_interlock(m, 0);
986 			if (atomic_cmpset_int(&m->flags, flags,
987 					  flags | PG_WANTED | PG_REFERENCED)) {
988 				tsleep(m, PINTERLOCKED, msg, 0);
989 			}
990 		} else {
991 			if (atomic_cmpset_int(&m->flags, flags,
992 					      flags | PG_BUSY)) {
993 #ifdef VM_PAGE_DEBUG
994 				m->busy_func = func;
995 				m->busy_line = lineno;
996 #endif
997 				break;
998 			}
999 		}
1000 	}
1001 }
1002 
1003 /*
1004  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
1005  * is also 0.
1006  *
1007  * Returns non-zero on failure.
1008  */
1009 int
1010 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1011 				    VM_PAGE_DEBUG_ARGS)
1012 {
1013 	u_int32_t flags;
1014 
1015 	for (;;) {
1016 		flags = m->flags;
1017 		cpu_ccfence();
1018 		if (flags & PG_BUSY)
1019 			return TRUE;
1020 		if (also_m_busy && (flags & PG_SBUSY))
1021 			return TRUE;
1022 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1023 #ifdef VM_PAGE_DEBUG
1024 				m->busy_func = func;
1025 				m->busy_line = lineno;
1026 #endif
1027 			return FALSE;
1028 		}
1029 	}
1030 }
1031 
1032 /*
1033  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1034  * that a wakeup() should be performed.
1035  *
1036  * The vm_page must be spinlocked and will remain spinlocked on return.
1037  * The related queue must NOT be spinlocked (which could deadlock us).
1038  *
1039  * (inline version)
1040  */
1041 static __inline
1042 int
1043 _vm_page_wakeup(vm_page_t m)
1044 {
1045 	u_int32_t flags;
1046 
1047 	for (;;) {
1048 		flags = m->flags;
1049 		cpu_ccfence();
1050 		if (atomic_cmpset_int(&m->flags, flags,
1051 				      flags & ~(PG_BUSY | PG_WANTED))) {
1052 			break;
1053 		}
1054 	}
1055 	return(flags & PG_WANTED);
1056 }
1057 
1058 /*
1059  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
1060  * is typically the last call you make on a page before moving onto
1061  * other things.
1062  */
1063 void
1064 vm_page_wakeup(vm_page_t m)
1065 {
1066         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1067 	vm_page_spin_lock(m);
1068 	if (_vm_page_wakeup(m)) {
1069 		vm_page_spin_unlock(m);
1070 		wakeup(m);
1071 	} else {
1072 		vm_page_spin_unlock(m);
1073 	}
1074 }
1075 
1076 /*
1077  * Holding a page keeps it from being reused.  Other parts of the system
1078  * can still disassociate the page from its current object and free it, or
1079  * perform read or write I/O on it and/or otherwise manipulate the page,
1080  * but if the page is held the VM system will leave the page and its data
1081  * intact and not reuse the page for other purposes until the last hold
1082  * reference is released.  (see vm_page_wire() if you want to prevent the
1083  * page from being disassociated from its object too).
1084  *
1085  * The caller must still validate the contents of the page and, if necessary,
1086  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1087  * before manipulating the page.
1088  *
1089  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1090  */
1091 void
1092 vm_page_hold(vm_page_t m)
1093 {
1094 	vm_page_spin_lock(m);
1095 	atomic_add_int(&m->hold_count, 1);
1096 	if (m->queue - m->pc == PQ_FREE) {
1097 		_vm_page_queue_spin_lock(m);
1098 		_vm_page_rem_queue_spinlocked(m);
1099 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1100 		_vm_page_queue_spin_unlock(m);
1101 	}
1102 	vm_page_spin_unlock(m);
1103 }
1104 
1105 /*
1106  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1107  * it was freed while held and must be moved back to the FREE queue.
1108  */
1109 void
1110 vm_page_unhold(vm_page_t m)
1111 {
1112 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1113 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1114 		 m, m->hold_count, m->queue - m->pc));
1115 	vm_page_spin_lock(m);
1116 	atomic_add_int(&m->hold_count, -1);
1117 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1118 		_vm_page_queue_spin_lock(m);
1119 		_vm_page_rem_queue_spinlocked(m);
1120 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
1121 		_vm_page_queue_spin_unlock(m);
1122 	}
1123 	vm_page_spin_unlock(m);
1124 }
1125 
1126 /*
1127  *	vm_page_getfake:
1128  *
1129  *	Create a fictitious page with the specified physical address and
1130  *	memory attribute.  The memory attribute is the only the machine-
1131  *	dependent aspect of a fictitious page that must be initialized.
1132  */
1133 
1134 void
1135 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1136 {
1137 
1138 	if ((m->flags & PG_FICTITIOUS) != 0) {
1139 		/*
1140 		 * The page's memattr might have changed since the
1141 		 * previous initialization.  Update the pmap to the
1142 		 * new memattr.
1143 		 */
1144 		goto memattr;
1145 	}
1146 	m->phys_addr = paddr;
1147 	m->queue = PQ_NONE;
1148 	/* Fictitious pages don't use "segind". */
1149 	/* Fictitious pages don't use "order" or "pool". */
1150 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1151 	m->wire_count = 1;
1152 	spin_init(&m->spin, "fake_page");
1153 	pmap_page_init(m);
1154 memattr:
1155 	pmap_page_set_memattr(m, memattr);
1156 }
1157 
1158 /*
1159  * Inserts the given vm_page into the object and object list.
1160  *
1161  * The pagetables are not updated but will presumably fault the page
1162  * in if necessary, or if a kernel page the caller will at some point
1163  * enter the page into the kernel's pmap.  We are not allowed to block
1164  * here so we *can't* do this anyway.
1165  *
1166  * This routine may not block.
1167  * This routine must be called with the vm_object held.
1168  * This routine must be called with a critical section held.
1169  *
1170  * This routine returns TRUE if the page was inserted into the object
1171  * successfully, and FALSE if the page already exists in the object.
1172  */
1173 int
1174 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1175 {
1176 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1177 	if (m->object != NULL)
1178 		panic("vm_page_insert: already inserted");
1179 
1180 	object->generation++;
1181 
1182 	/*
1183 	 * Record the object/offset pair in this page and add the
1184 	 * pv_list_count of the page to the object.
1185 	 *
1186 	 * The vm_page spin lock is required for interactions with the pmap.
1187 	 */
1188 	vm_page_spin_lock(m);
1189 	m->object = object;
1190 	m->pindex = pindex;
1191 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1192 		m->object = NULL;
1193 		m->pindex = 0;
1194 		vm_page_spin_unlock(m);
1195 		return FALSE;
1196 	}
1197 	++object->resident_page_count;
1198 	++mycpu->gd_vmtotal.t_rm;
1199 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
1200 	vm_page_spin_unlock(m);
1201 
1202 	/*
1203 	 * Since we are inserting a new and possibly dirty page,
1204 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1205 	 */
1206 	if ((m->valid & m->dirty) ||
1207 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1208 		vm_object_set_writeable_dirty(object);
1209 
1210 	/*
1211 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1212 	 */
1213 	swap_pager_page_inserted(m);
1214 	return TRUE;
1215 }
1216 
1217 /*
1218  * Removes the given vm_page_t from the (object,index) table
1219  *
1220  * The underlying pmap entry (if any) is NOT removed here.
1221  * This routine may not block.
1222  *
1223  * The page must be BUSY and will remain BUSY on return.
1224  * No other requirements.
1225  *
1226  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1227  *	 it busy.
1228  */
1229 void
1230 vm_page_remove(vm_page_t m)
1231 {
1232 	vm_object_t object;
1233 
1234 	if (m->object == NULL) {
1235 		return;
1236 	}
1237 
1238 	if ((m->flags & PG_BUSY) == 0)
1239 		panic("vm_page_remove: page not busy");
1240 
1241 	object = m->object;
1242 
1243 	vm_object_hold(object);
1244 
1245 	/*
1246 	 * Remove the page from the object and update the object.
1247 	 *
1248 	 * The vm_page spin lock is required for interactions with the pmap.
1249 	 */
1250 	vm_page_spin_lock(m);
1251 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1252 	--object->resident_page_count;
1253 	--mycpu->gd_vmtotal.t_rm;
1254 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1255 	m->object = NULL;
1256 	vm_page_spin_unlock(m);
1257 
1258 	object->generation++;
1259 
1260 	vm_object_drop(object);
1261 }
1262 
1263 /*
1264  * Locate and return the page at (object, pindex), or NULL if the
1265  * page could not be found.
1266  *
1267  * The caller must hold the vm_object token.
1268  */
1269 vm_page_t
1270 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1271 {
1272 	vm_page_t m;
1273 
1274 	/*
1275 	 * Search the hash table for this object/offset pair
1276 	 */
1277 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1278 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1279 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1280 	return(m);
1281 }
1282 
1283 vm_page_t
1284 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1285 					    vm_pindex_t pindex,
1286 					    int also_m_busy, const char *msg
1287 					    VM_PAGE_DEBUG_ARGS)
1288 {
1289 	u_int32_t flags;
1290 	vm_page_t m;
1291 
1292 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1293 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1294 	while (m) {
1295 		KKASSERT(m->object == object && m->pindex == pindex);
1296 		flags = m->flags;
1297 		cpu_ccfence();
1298 		if (flags & PG_BUSY) {
1299 			tsleep_interlock(m, 0);
1300 			if (atomic_cmpset_int(&m->flags, flags,
1301 					  flags | PG_WANTED | PG_REFERENCED)) {
1302 				tsleep(m, PINTERLOCKED, msg, 0);
1303 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1304 							      pindex);
1305 			}
1306 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1307 			tsleep_interlock(m, 0);
1308 			if (atomic_cmpset_int(&m->flags, flags,
1309 					  flags | PG_WANTED | PG_REFERENCED)) {
1310 				tsleep(m, PINTERLOCKED, msg, 0);
1311 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1312 							      pindex);
1313 			}
1314 		} else if (atomic_cmpset_int(&m->flags, flags,
1315 					     flags | PG_BUSY)) {
1316 #ifdef VM_PAGE_DEBUG
1317 			m->busy_func = func;
1318 			m->busy_line = lineno;
1319 #endif
1320 			break;
1321 		}
1322 	}
1323 	return m;
1324 }
1325 
1326 /*
1327  * Attempt to lookup and busy a page.
1328  *
1329  * Returns NULL if the page could not be found
1330  *
1331  * Returns a vm_page and error == TRUE if the page exists but could not
1332  * be busied.
1333  *
1334  * Returns a vm_page and error == FALSE on success.
1335  */
1336 vm_page_t
1337 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1338 					   vm_pindex_t pindex,
1339 					   int also_m_busy, int *errorp
1340 					   VM_PAGE_DEBUG_ARGS)
1341 {
1342 	u_int32_t flags;
1343 	vm_page_t m;
1344 
1345 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1346 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1347 	*errorp = FALSE;
1348 	while (m) {
1349 		KKASSERT(m->object == object && m->pindex == pindex);
1350 		flags = m->flags;
1351 		cpu_ccfence();
1352 		if (flags & PG_BUSY) {
1353 			*errorp = TRUE;
1354 			break;
1355 		}
1356 		if (also_m_busy && (flags & PG_SBUSY)) {
1357 			*errorp = TRUE;
1358 			break;
1359 		}
1360 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1361 #ifdef VM_PAGE_DEBUG
1362 			m->busy_func = func;
1363 			m->busy_line = lineno;
1364 #endif
1365 			break;
1366 		}
1367 	}
1368 	return m;
1369 }
1370 
1371 /*
1372  * Attempt to repurpose the passed-in page.  If the passed-in page cannot
1373  * be repurposed it will be released, *must_reenter will be set to 1, and
1374  * this function will fall-through to vm_page_lookup_busy_try().
1375  *
1376  * The passed-in page must be wired and not busy.  The returned page will
1377  * be busied and not wired.
1378  *
1379  * A different page may be returned.  The returned page will be busied and
1380  * not wired.
1381  *
1382  * NULL can be returned.  If so, the required page could not be busied.
1383  * The passed-in page will be unwired.
1384  */
1385 vm_page_t
1386 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1387 		  int also_m_busy, int *errorp, vm_page_t m,
1388 		  int *must_reenter, int *iswired)
1389 {
1390 	if (m) {
1391 		/*
1392 		 * Do not mess with pages in a complex state, such as pages
1393 		 * which are mapped, as repurposing such pages can be more
1394 		 * expensive than simply allocatin a new one.
1395 		 *
1396 		 * NOTE: Soft-busying can deadlock against putpages or I/O
1397 		 *	 so we only allow hard-busying here.
1398 		 */
1399 		KKASSERT(also_m_busy == FALSE);
1400 		vm_page_busy_wait(m, also_m_busy, "biodep");
1401 
1402 		if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1403 				 PG_FICTITIOUS | PG_SBUSY)) ||
1404 		    m->busy || m->wire_count != 1 || m->hold_count) {
1405 			vm_page_unwire(m, 0);
1406 			vm_page_wakeup(m);
1407 			/* fall through to normal lookup */
1408 		} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1409 			vm_page_unwire(m, 0);
1410 			vm_page_deactivate(m);
1411 			vm_page_wakeup(m);
1412 			/* fall through to normal lookup */
1413 		} else {
1414 			/*
1415 			 * We can safely repurpose the page.  It should
1416 			 * already be unqueued.
1417 			 */
1418 			KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1419 			vm_page_remove(m);
1420 			m->valid = 0;
1421 			m->act_count = 0;
1422 			if (vm_page_insert(m, object, pindex)) {
1423 				*errorp = 0;
1424 				*iswired = 1;
1425 
1426 				return m;
1427 			}
1428 			vm_page_unwire(m, 0);
1429 			vm_page_free(m);
1430 			/* fall through to normal lookup */
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Cannot repurpose page, attempt to locate the desired page.  May
1436 	 * return NULL.
1437 	 */
1438 	*must_reenter = 1;
1439 	*iswired = 0;
1440 	m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1441 
1442 	return m;
1443 }
1444 
1445 /*
1446  * Caller must hold the related vm_object
1447  */
1448 vm_page_t
1449 vm_page_next(vm_page_t m)
1450 {
1451 	vm_page_t next;
1452 
1453 	next = vm_page_rb_tree_RB_NEXT(m);
1454 	if (next && next->pindex != m->pindex + 1)
1455 		next = NULL;
1456 	return (next);
1457 }
1458 
1459 /*
1460  * vm_page_rename()
1461  *
1462  * Move the given vm_page from its current object to the specified
1463  * target object/offset.  The page must be busy and will remain so
1464  * on return.
1465  *
1466  * new_object must be held.
1467  * This routine might block. XXX ?
1468  *
1469  * NOTE: Swap associated with the page must be invalidated by the move.  We
1470  *       have to do this for several reasons:  (1) we aren't freeing the
1471  *       page, (2) we are dirtying the page, (3) the VM system is probably
1472  *       moving the page from object A to B, and will then later move
1473  *       the backing store from A to B and we can't have a conflict.
1474  *
1475  * NOTE: We *always* dirty the page.  It is necessary both for the
1476  *       fact that we moved it, and because we may be invalidating
1477  *	 swap.  If the page is on the cache, we have to deactivate it
1478  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1479  *	 on the cache.
1480  */
1481 void
1482 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1483 {
1484 	KKASSERT(m->flags & PG_BUSY);
1485 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1486 	if (m->object) {
1487 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1488 		vm_page_remove(m);
1489 	}
1490 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1491 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1492 		      new_object, new_pindex);
1493 	}
1494 	if (m->queue - m->pc == PQ_CACHE)
1495 		vm_page_deactivate(m);
1496 	vm_page_dirty(m);
1497 }
1498 
1499 /*
1500  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1501  * is to remain BUSYied by the caller.
1502  *
1503  * This routine may not block.
1504  */
1505 void
1506 vm_page_unqueue_nowakeup(vm_page_t m)
1507 {
1508 	vm_page_and_queue_spin_lock(m);
1509 	(void)_vm_page_rem_queue_spinlocked(m);
1510 	vm_page_spin_unlock(m);
1511 }
1512 
1513 /*
1514  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1515  * if necessary.
1516  *
1517  * This routine may not block.
1518  */
1519 void
1520 vm_page_unqueue(vm_page_t m)
1521 {
1522 	u_short queue;
1523 
1524 	vm_page_and_queue_spin_lock(m);
1525 	queue = _vm_page_rem_queue_spinlocked(m);
1526 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1527 		vm_page_spin_unlock(m);
1528 		pagedaemon_wakeup();
1529 	} else {
1530 		vm_page_spin_unlock(m);
1531 	}
1532 }
1533 
1534 /*
1535  * vm_page_list_find()
1536  *
1537  * Find a page on the specified queue with color optimization.
1538  *
1539  * The page coloring optimization attempts to locate a page that does
1540  * not overload other nearby pages in the object in the cpu's L1 or L2
1541  * caches.  We need this optimization because cpu caches tend to be
1542  * physical caches, while object spaces tend to be virtual.
1543  *
1544  * The page coloring optimization also, very importantly, tries to localize
1545  * memory to cpus and physical sockets.
1546  *
1547  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1548  * and the algorithm is adjusted to localize allocations on a per-core basis.
1549  * This is done by 'twisting' the colors.
1550  *
1551  * The page is returned spinlocked and removed from its queue (it will
1552  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1553  * is responsible for dealing with the busy-page case (usually by
1554  * deactivating the page and looping).
1555  *
1556  * NOTE:  This routine is carefully inlined.  A non-inlined version
1557  *	  is available for outside callers but the only critical path is
1558  *	  from within this source file.
1559  *
1560  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1561  *	  represent stable storage, allowing us to order our locks vm_page
1562  *	  first, then queue.
1563  */
1564 static __inline
1565 vm_page_t
1566 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1567 {
1568 	vm_page_t m;
1569 
1570 	for (;;) {
1571 		if (prefer_zero) {
1572 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl,
1573 				       pglist);
1574 		} else {
1575 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1576 		}
1577 		if (m == NULL) {
1578 			m = _vm_page_list_find2(basequeue, index);
1579 			return(m);
1580 		}
1581 		vm_page_and_queue_spin_lock(m);
1582 		if (m->queue == basequeue + index) {
1583 			_vm_page_rem_queue_spinlocked(m);
1584 			/* vm_page_t spin held, no queue spin */
1585 			break;
1586 		}
1587 		vm_page_and_queue_spin_unlock(m);
1588 	}
1589 	return(m);
1590 }
1591 
1592 /*
1593  * If we could not find the page in the desired queue try to find it in
1594  * a nearby queue.
1595  */
1596 static vm_page_t
1597 _vm_page_list_find2(int basequeue, int index)
1598 {
1599 	struct vpgqueues *pq;
1600 	vm_page_t m = NULL;
1601 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1602 	int pqi;
1603 	int i;
1604 
1605 	index &= PQ_L2_MASK;
1606 	pq = &vm_page_queues[basequeue];
1607 
1608 	/*
1609 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1610 	 * else fails (PQ_L2_MASK which is 255).
1611 	 */
1612 	do {
1613 		pqmask = (pqmask << 1) | 1;
1614 		for (i = 0; i <= pqmask; ++i) {
1615 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1616 			m = TAILQ_FIRST(&pq[pqi].pl);
1617 			if (m) {
1618 				_vm_page_and_queue_spin_lock(m);
1619 				if (m->queue == basequeue + pqi) {
1620 					_vm_page_rem_queue_spinlocked(m);
1621 					return(m);
1622 				}
1623 				_vm_page_and_queue_spin_unlock(m);
1624 				--i;
1625 				continue;
1626 			}
1627 		}
1628 	} while (pqmask != PQ_L2_MASK);
1629 
1630 	return(m);
1631 }
1632 
1633 /*
1634  * Returns a vm_page candidate for allocation.  The page is not busied so
1635  * it can move around.  The caller must busy the page (and typically
1636  * deactivate it if it cannot be busied!)
1637  *
1638  * Returns a spinlocked vm_page that has been removed from its queue.
1639  */
1640 vm_page_t
1641 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1642 {
1643 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1644 }
1645 
1646 /*
1647  * Find a page on the cache queue with color optimization, remove it
1648  * from the queue, and busy it.  The returned page will not be spinlocked.
1649  *
1650  * A candidate failure will be deactivated.  Candidates can fail due to
1651  * being busied by someone else, in which case they will be deactivated.
1652  *
1653  * This routine may not block.
1654  *
1655  */
1656 static vm_page_t
1657 vm_page_select_cache(u_short pg_color)
1658 {
1659 	vm_page_t m;
1660 
1661 	for (;;) {
1662 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1663 		if (m == NULL)
1664 			break;
1665 		/*
1666 		 * (m) has been removed from its queue and spinlocked
1667 		 */
1668 		if (vm_page_busy_try(m, TRUE)) {
1669 			_vm_page_deactivate_locked(m, 0);
1670 			vm_page_spin_unlock(m);
1671 		} else {
1672 			/*
1673 			 * We successfully busied the page
1674 			 */
1675 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1676 			    m->hold_count == 0 &&
1677 			    m->wire_count == 0 &&
1678 			    (m->dirty & m->valid) == 0) {
1679 				vm_page_spin_unlock(m);
1680 				pagedaemon_wakeup();
1681 				return(m);
1682 			}
1683 
1684 			/*
1685 			 * The page cannot be recycled, deactivate it.
1686 			 */
1687 			_vm_page_deactivate_locked(m, 0);
1688 			if (_vm_page_wakeup(m)) {
1689 				vm_page_spin_unlock(m);
1690 				wakeup(m);
1691 			} else {
1692 				vm_page_spin_unlock(m);
1693 			}
1694 		}
1695 	}
1696 	return (m);
1697 }
1698 
1699 /*
1700  * Find a free or zero page, with specified preference.  We attempt to
1701  * inline the nominal case and fall back to _vm_page_select_free()
1702  * otherwise.  A busied page is removed from the queue and returned.
1703  *
1704  * This routine may not block.
1705  */
1706 static __inline vm_page_t
1707 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1708 {
1709 	vm_page_t m;
1710 
1711 	for (;;) {
1712 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1713 				       prefer_zero);
1714 		if (m == NULL)
1715 			break;
1716 		if (vm_page_busy_try(m, TRUE)) {
1717 			/*
1718 			 * Various mechanisms such as a pmap_collect can
1719 			 * result in a busy page on the free queue.  We
1720 			 * have to move the page out of the way so we can
1721 			 * retry the allocation.  If the other thread is not
1722 			 * allocating the page then m->valid will remain 0 and
1723 			 * the pageout daemon will free the page later on.
1724 			 *
1725 			 * Since we could not busy the page, however, we
1726 			 * cannot make assumptions as to whether the page
1727 			 * will be allocated by the other thread or not,
1728 			 * so all we can do is deactivate it to move it out
1729 			 * of the way.  In particular, if the other thread
1730 			 * wires the page it may wind up on the inactive
1731 			 * queue and the pageout daemon will have to deal
1732 			 * with that case too.
1733 			 */
1734 			_vm_page_deactivate_locked(m, 0);
1735 			vm_page_spin_unlock(m);
1736 		} else {
1737 			/*
1738 			 * Theoretically if we are able to busy the page
1739 			 * atomic with the queue removal (using the vm_page
1740 			 * lock) nobody else should be able to mess with the
1741 			 * page before us.
1742 			 */
1743 			KKASSERT((m->flags & (PG_UNMANAGED |
1744 					      PG_NEED_COMMIT)) == 0);
1745 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1746 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1747 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1748 			KKASSERT(m->wire_count == 0);
1749 			vm_page_spin_unlock(m);
1750 			pagedaemon_wakeup();
1751 
1752 			/* return busied and removed page */
1753 			return(m);
1754 		}
1755 	}
1756 	return(m);
1757 }
1758 
1759 /*
1760  * vm_page_alloc()
1761  *
1762  * Allocate and return a memory cell associated with this VM object/offset
1763  * pair.  If object is NULL an unassociated page will be allocated.
1764  *
1765  * The returned page will be busied and removed from its queues.  This
1766  * routine can block and may return NULL if a race occurs and the page
1767  * is found to already exist at the specified (object, pindex).
1768  *
1769  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1770  *	VM_ALLOC_QUICK		like normal but cannot use cache
1771  *	VM_ALLOC_SYSTEM		greater free drain
1772  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1773  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1774  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1775  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1776  *				(see vm_page_grab())
1777  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1778  *
1779  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
1780  *
1781  * The object must be held if not NULL
1782  * This routine may not block
1783  *
1784  * Additional special handling is required when called from an interrupt
1785  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1786  * in this case.
1787  */
1788 vm_page_t
1789 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1790 {
1791 	globaldata_t gd;
1792 	vm_object_t obj;
1793 	vm_page_t m;
1794 	u_short pg_color;
1795 	int cpuid_local;
1796 
1797 #if 0
1798 	/*
1799 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1800 	 * and pre-zerod for us.
1801 	 */
1802 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1803 		crit_enter_gd(gd);
1804 		if (gd->gd_vmpg_count) {
1805 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1806 			crit_exit_gd(gd);
1807 			goto done;
1808                 }
1809 		crit_exit_gd(gd);
1810         }
1811 #endif
1812 	m = NULL;
1813 
1814 	/*
1815 	 * CPU LOCALIZATION
1816 	 *
1817 	 * CPU localization algorithm.  Break the page queues up by physical
1818 	 * id and core id (note that two cpu threads will have the same core
1819 	 * id, and core_id != gd_cpuid).
1820 	 *
1821 	 * This is nowhere near perfect, for example the last pindex in a
1822 	 * subgroup will overflow into the next cpu or package.  But this
1823 	 * should get us good page reuse locality in heavy mixed loads.
1824 	 *
1825 	 * (may be executed before the APs are started, so other GDs might
1826 	 *  not exist!)
1827 	 */
1828 	if (page_req & VM_ALLOC_CPU_SPEC)
1829 		cpuid_local = VM_ALLOC_GETCPU(page_req);
1830 	else
1831 		cpuid_local = mycpu->gd_cpuid;
1832 
1833 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1834 
1835 	KKASSERT(page_req &
1836 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1837 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1838 
1839 	/*
1840 	 * Certain system threads (pageout daemon, buf_daemon's) are
1841 	 * allowed to eat deeper into the free page list.
1842 	 */
1843 	if (curthread->td_flags & TDF_SYSTHREAD)
1844 		page_req |= VM_ALLOC_SYSTEM;
1845 
1846 	/*
1847 	 * Impose various limitations.  Note that the v_free_reserved test
1848 	 * must match the opposite of vm_page_count_target() to avoid
1849 	 * livelocks, be careful.
1850 	 */
1851 loop:
1852 	gd = mycpu;
1853 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1854 	    ((page_req & VM_ALLOC_INTERRUPT) &&
1855 	     gd->gd_vmstats.v_free_count > 0) ||
1856 	    ((page_req & VM_ALLOC_SYSTEM) &&
1857 	     gd->gd_vmstats.v_cache_count == 0 &&
1858 		gd->gd_vmstats.v_free_count >
1859 		gd->gd_vmstats.v_interrupt_free_min)
1860 	) {
1861 		/*
1862 		 * The free queue has sufficient free pages to take one out.
1863 		 */
1864 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1865 			m = vm_page_select_free(pg_color, TRUE);
1866 		else
1867 			m = vm_page_select_free(pg_color, FALSE);
1868 	} else if (page_req & VM_ALLOC_NORMAL) {
1869 		/*
1870 		 * Allocatable from the cache (non-interrupt only).  On
1871 		 * success, we must free the page and try again, thus
1872 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1873 		 */
1874 #ifdef INVARIANTS
1875 		if (curthread->td_preempted) {
1876 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1877 				" cache page from preempting interrupt\n");
1878 			m = NULL;
1879 		} else {
1880 			m = vm_page_select_cache(pg_color);
1881 		}
1882 #else
1883 		m = vm_page_select_cache(pg_color);
1884 #endif
1885 		/*
1886 		 * On success move the page into the free queue and loop.
1887 		 *
1888 		 * Only do this if we can safely acquire the vm_object lock,
1889 		 * because this is effectively a random page and the caller
1890 		 * might be holding the lock shared, we don't want to
1891 		 * deadlock.
1892 		 */
1893 		if (m != NULL) {
1894 			KASSERT(m->dirty == 0,
1895 				("Found dirty cache page %p", m));
1896 			if ((obj = m->object) != NULL) {
1897 				if (vm_object_hold_try(obj)) {
1898 					vm_page_protect(m, VM_PROT_NONE);
1899 					vm_page_free(m);
1900 					/* m->object NULL here */
1901 					vm_object_drop(obj);
1902 				} else {
1903 					vm_page_deactivate(m);
1904 					vm_page_wakeup(m);
1905 				}
1906 			} else {
1907 				vm_page_protect(m, VM_PROT_NONE);
1908 				vm_page_free(m);
1909 			}
1910 			goto loop;
1911 		}
1912 
1913 		/*
1914 		 * On failure return NULL
1915 		 */
1916 		atomic_add_int(&vm_pageout_deficit, 1);
1917 		pagedaemon_wakeup();
1918 		return (NULL);
1919 	} else {
1920 		/*
1921 		 * No pages available, wakeup the pageout daemon and give up.
1922 		 */
1923 		atomic_add_int(&vm_pageout_deficit, 1);
1924 		pagedaemon_wakeup();
1925 		return (NULL);
1926 	}
1927 
1928 	/*
1929 	 * v_free_count can race so loop if we don't find the expected
1930 	 * page.
1931 	 */
1932 	if (m == NULL) {
1933 		vmstats_rollup();
1934 		goto loop;
1935 	}
1936 
1937 	/*
1938 	 * Good page found.  The page has already been busied for us and
1939 	 * removed from its queues.
1940 	 */
1941 	KASSERT(m->dirty == 0,
1942 		("vm_page_alloc: free/cache page %p was dirty", m));
1943 	KKASSERT(m->queue == PQ_NONE);
1944 
1945 #if 0
1946 done:
1947 #endif
1948 	/*
1949 	 * Initialize the structure, inheriting some flags but clearing
1950 	 * all the rest.  The page has already been busied for us.
1951 	 */
1952 	vm_page_flag_clear(m, ~(PG_BUSY | PG_SBUSY));
1953 	KKASSERT(m->wire_count == 0);
1954 	KKASSERT(m->busy == 0);
1955 	m->act_count = 0;
1956 	m->valid = 0;
1957 
1958 	/*
1959 	 * Caller must be holding the object lock (asserted by
1960 	 * vm_page_insert()).
1961 	 *
1962 	 * NOTE: Inserting a page here does not insert it into any pmaps
1963 	 *	 (which could cause us to block allocating memory).
1964 	 *
1965 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1966 	 *	 can be used by the caller for any purpose.
1967 	 */
1968 	if (object) {
1969 		if (vm_page_insert(m, object, pindex) == FALSE) {
1970 			vm_page_free(m);
1971 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1972 				panic("PAGE RACE %p[%ld]/%p",
1973 				      object, (long)pindex, m);
1974 			m = NULL;
1975 		}
1976 	} else {
1977 		m->pindex = pindex;
1978 	}
1979 
1980 	/*
1981 	 * Don't wakeup too often - wakeup the pageout daemon when
1982 	 * we would be nearly out of memory.
1983 	 */
1984 	pagedaemon_wakeup();
1985 
1986 	/*
1987 	 * A PG_BUSY page is returned.
1988 	 */
1989 	return (m);
1990 }
1991 
1992 /*
1993  * Returns number of pages available in our DMA memory reserve
1994  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1995  */
1996 vm_size_t
1997 vm_contig_avail_pages(void)
1998 {
1999 	alist_blk_t blk;
2000 	alist_blk_t count;
2001 	alist_blk_t bfree;
2002 	spin_lock(&vm_contig_spin);
2003 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
2004 	spin_unlock(&vm_contig_spin);
2005 
2006 	return bfree;
2007 }
2008 
2009 /*
2010  * Attempt to allocate contiguous physical memory with the specified
2011  * requirements.
2012  */
2013 vm_page_t
2014 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
2015 		     unsigned long alignment, unsigned long boundary,
2016 		     unsigned long size, vm_memattr_t memattr)
2017 {
2018 	alist_blk_t blk;
2019 	vm_page_t m;
2020 	int i;
2021 
2022 	alignment >>= PAGE_SHIFT;
2023 	if (alignment == 0)
2024 		alignment = 1;
2025 	boundary >>= PAGE_SHIFT;
2026 	if (boundary == 0)
2027 		boundary = 1;
2028 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2029 
2030 	spin_lock(&vm_contig_spin);
2031 	blk = alist_alloc(&vm_contig_alist, 0, size);
2032 	if (blk == ALIST_BLOCK_NONE) {
2033 		spin_unlock(&vm_contig_spin);
2034 		if (bootverbose) {
2035 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
2036 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2037 		}
2038 		return(NULL);
2039 	}
2040 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2041 		alist_free(&vm_contig_alist, blk, size);
2042 		spin_unlock(&vm_contig_spin);
2043 		if (bootverbose) {
2044 			kprintf("vm_page_alloc_contig: %ldk high "
2045 				"%016jx failed\n",
2046 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
2047 				(intmax_t)high);
2048 		}
2049 		return(NULL);
2050 	}
2051 	spin_unlock(&vm_contig_spin);
2052 	if (vm_contig_verbose) {
2053 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2054 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2055 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2056 	}
2057 
2058 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2059 	if (memattr != VM_MEMATTR_DEFAULT)
2060 		for (i = 0;i < size;i++)
2061 			pmap_page_set_memattr(&m[i], memattr);
2062 	return m;
2063 }
2064 
2065 /*
2066  * Free contiguously allocated pages.  The pages will be wired but not busy.
2067  * When freeing to the alist we leave them wired and not busy.
2068  */
2069 void
2070 vm_page_free_contig(vm_page_t m, unsigned long size)
2071 {
2072 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2073 	vm_pindex_t start = pa >> PAGE_SHIFT;
2074 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2075 
2076 	if (vm_contig_verbose) {
2077 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2078 			(intmax_t)pa, size / 1024);
2079 	}
2080 	if (pa < vm_low_phys_reserved) {
2081 		KKASSERT(pa + size <= vm_low_phys_reserved);
2082 		spin_lock(&vm_contig_spin);
2083 		alist_free(&vm_contig_alist, start, pages);
2084 		spin_unlock(&vm_contig_spin);
2085 	} else {
2086 		while (pages) {
2087 			vm_page_busy_wait(m, FALSE, "cpgfr");
2088 			vm_page_unwire(m, 0);
2089 			vm_page_free(m);
2090 			--pages;
2091 			++m;
2092 		}
2093 
2094 	}
2095 }
2096 
2097 
2098 /*
2099  * Wait for sufficient free memory for nominal heavy memory use kernel
2100  * operations.
2101  *
2102  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2103  *	     will trivially deadlock the system.
2104  */
2105 void
2106 vm_wait_nominal(void)
2107 {
2108 	while (vm_page_count_min(0))
2109 		vm_wait(0);
2110 }
2111 
2112 /*
2113  * Test if vm_wait_nominal() would block.
2114  */
2115 int
2116 vm_test_nominal(void)
2117 {
2118 	if (vm_page_count_min(0))
2119 		return(1);
2120 	return(0);
2121 }
2122 
2123 /*
2124  * Block until free pages are available for allocation, called in various
2125  * places before memory allocations.
2126  *
2127  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2128  * more generous then that.
2129  */
2130 void
2131 vm_wait(int timo)
2132 {
2133 	/*
2134 	 * never wait forever
2135 	 */
2136 	if (timo == 0)
2137 		timo = hz;
2138 	lwkt_gettoken(&vm_token);
2139 
2140 	if (curthread == pagethread) {
2141 		/*
2142 		 * The pageout daemon itself needs pages, this is bad.
2143 		 */
2144 		if (vm_page_count_min(0)) {
2145 			vm_pageout_pages_needed = 1;
2146 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2147 		}
2148 	} else {
2149 		/*
2150 		 * Wakeup the pageout daemon if necessary and wait.
2151 		 *
2152 		 * Do not wait indefinitely for the target to be reached,
2153 		 * as load might prevent it from being reached any time soon.
2154 		 * But wait a little to try to slow down page allocations
2155 		 * and to give more important threads (the pagedaemon)
2156 		 * allocation priority.
2157 		 */
2158 		if (vm_page_count_target()) {
2159 			if (vm_pages_needed == 0) {
2160 				vm_pages_needed = 1;
2161 				wakeup(&vm_pages_needed);
2162 			}
2163 			++vm_pages_waiting;	/* SMP race ok */
2164 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2165 		}
2166 	}
2167 	lwkt_reltoken(&vm_token);
2168 }
2169 
2170 /*
2171  * Block until free pages are available for allocation
2172  *
2173  * Called only from vm_fault so that processes page faulting can be
2174  * easily tracked.
2175  */
2176 void
2177 vm_wait_pfault(void)
2178 {
2179 	/*
2180 	 * Wakeup the pageout daemon if necessary and wait.
2181 	 *
2182 	 * Do not wait indefinitely for the target to be reached,
2183 	 * as load might prevent it from being reached any time soon.
2184 	 * But wait a little to try to slow down page allocations
2185 	 * and to give more important threads (the pagedaemon)
2186 	 * allocation priority.
2187 	 */
2188 	if (vm_page_count_min(0)) {
2189 		lwkt_gettoken(&vm_token);
2190 		while (vm_page_count_severe()) {
2191 			if (vm_page_count_target()) {
2192 				thread_t td;
2193 
2194 				if (vm_pages_needed == 0) {
2195 					vm_pages_needed = 1;
2196 					wakeup(&vm_pages_needed);
2197 				}
2198 				++vm_pages_waiting;	/* SMP race ok */
2199 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2200 
2201 				/*
2202 				 * Do not stay stuck in the loop if the system is trying
2203 				 * to kill the process.
2204 				 */
2205 				td = curthread;
2206 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2207 					break;
2208 			}
2209 		}
2210 		lwkt_reltoken(&vm_token);
2211 	}
2212 }
2213 
2214 /*
2215  * Put the specified page on the active list (if appropriate).  Ensure
2216  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2217  *
2218  * The caller should be holding the page busied ? XXX
2219  * This routine may not block.
2220  */
2221 void
2222 vm_page_activate(vm_page_t m)
2223 {
2224 	u_short oqueue;
2225 
2226 	vm_page_spin_lock(m);
2227 	if (m->queue - m->pc != PQ_ACTIVE) {
2228 		_vm_page_queue_spin_lock(m);
2229 		oqueue = _vm_page_rem_queue_spinlocked(m);
2230 		/* page is left spinlocked, queue is unlocked */
2231 
2232 		if (oqueue == PQ_CACHE)
2233 			mycpu->gd_cnt.v_reactivated++;
2234 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2235 			if (m->act_count < ACT_INIT)
2236 				m->act_count = ACT_INIT;
2237 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2238 		}
2239 		_vm_page_and_queue_spin_unlock(m);
2240 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2241 			pagedaemon_wakeup();
2242 	} else {
2243 		if (m->act_count < ACT_INIT)
2244 			m->act_count = ACT_INIT;
2245 		vm_page_spin_unlock(m);
2246 	}
2247 }
2248 
2249 /*
2250  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2251  * routine is called when a page has been added to the cache or free
2252  * queues.
2253  *
2254  * This routine may not block.
2255  */
2256 static __inline void
2257 vm_page_free_wakeup(void)
2258 {
2259 	globaldata_t gd = mycpu;
2260 
2261 	/*
2262 	 * If the pageout daemon itself needs pages, then tell it that
2263 	 * there are some free.
2264 	 */
2265 	if (vm_pageout_pages_needed &&
2266 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2267 	    gd->gd_vmstats.v_pageout_free_min
2268 	) {
2269 		vm_pageout_pages_needed = 0;
2270 		wakeup(&vm_pageout_pages_needed);
2271 	}
2272 
2273 	/*
2274 	 * Wakeup processes that are waiting on memory.
2275 	 *
2276 	 * Generally speaking we want to wakeup stuck processes as soon as
2277 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2278 	 * where we can do this.  Wait a bit longer to reduce degenerate
2279 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2280 	 * to make sure the min-check w/hysteresis does not exceed the
2281 	 * normal target.
2282 	 */
2283 	if (vm_pages_waiting) {
2284 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2285 		    !vm_page_count_target()) {
2286 			vm_pages_waiting = 0;
2287 			wakeup(&vmstats.v_free_count);
2288 			++mycpu->gd_cnt.v_ppwakeups;
2289 		}
2290 #if 0
2291 		if (!vm_page_count_target()) {
2292 			/*
2293 			 * Plenty of pages are free, wakeup everyone.
2294 			 */
2295 			vm_pages_waiting = 0;
2296 			wakeup(&vmstats.v_free_count);
2297 			++mycpu->gd_cnt.v_ppwakeups;
2298 		} else if (!vm_page_count_min(0)) {
2299 			/*
2300 			 * Some pages are free, wakeup someone.
2301 			 */
2302 			int wcount = vm_pages_waiting;
2303 			if (wcount > 0)
2304 				--wcount;
2305 			vm_pages_waiting = wcount;
2306 			wakeup_one(&vmstats.v_free_count);
2307 			++mycpu->gd_cnt.v_ppwakeups;
2308 		}
2309 #endif
2310 	}
2311 }
2312 
2313 /*
2314  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2315  * it from its VM object.
2316  *
2317  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2318  * return (the page will have been freed).
2319  */
2320 void
2321 vm_page_free_toq(vm_page_t m)
2322 {
2323 	mycpu->gd_cnt.v_tfree++;
2324 	KKASSERT((m->flags & PG_MAPPED) == 0);
2325 	KKASSERT(m->flags & PG_BUSY);
2326 
2327 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2328 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2329 			"PG_BUSY(%d), hold(%d)\n",
2330 			(u_long)m->pindex, m->busy,
2331 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2332 		if ((m->queue - m->pc) == PQ_FREE)
2333 			panic("vm_page_free: freeing free page");
2334 		else
2335 			panic("vm_page_free: freeing busy page");
2336 	}
2337 
2338 	/*
2339 	 * Remove from object, spinlock the page and its queues and
2340 	 * remove from any queue.  No queue spinlock will be held
2341 	 * after this section (because the page was removed from any
2342 	 * queue).
2343 	 */
2344 	vm_page_remove(m);
2345 	vm_page_and_queue_spin_lock(m);
2346 	_vm_page_rem_queue_spinlocked(m);
2347 
2348 	/*
2349 	 * No further management of fictitious pages occurs beyond object
2350 	 * and queue removal.
2351 	 */
2352 	if ((m->flags & PG_FICTITIOUS) != 0) {
2353 		vm_page_spin_unlock(m);
2354 		vm_page_wakeup(m);
2355 		return;
2356 	}
2357 
2358 	m->valid = 0;
2359 	vm_page_undirty(m);
2360 
2361 	if (m->wire_count != 0) {
2362 		if (m->wire_count > 1) {
2363 		    panic(
2364 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2365 			m->wire_count, (long)m->pindex);
2366 		}
2367 		panic("vm_page_free: freeing wired page");
2368 	}
2369 
2370 	/*
2371 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2372 	 * Clear the NEED_COMMIT flag
2373 	 */
2374 	if (m->flags & PG_UNMANAGED)
2375 		vm_page_flag_clear(m, PG_UNMANAGED);
2376 	if (m->flags & PG_NEED_COMMIT)
2377 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2378 
2379 	if (m->hold_count != 0) {
2380 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2381 	} else {
2382 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2383 	}
2384 
2385 	/*
2386 	 * This sequence allows us to clear PG_BUSY while still holding
2387 	 * its spin lock, which reduces contention vs allocators.  We
2388 	 * must not leave the queue locked or _vm_page_wakeup() may
2389 	 * deadlock.
2390 	 */
2391 	_vm_page_queue_spin_unlock(m);
2392 	if (_vm_page_wakeup(m)) {
2393 		vm_page_spin_unlock(m);
2394 		wakeup(m);
2395 	} else {
2396 		vm_page_spin_unlock(m);
2397 	}
2398 	vm_page_free_wakeup();
2399 }
2400 
2401 /*
2402  * vm_page_unmanage()
2403  *
2404  * Prevent PV management from being done on the page.  The page is
2405  * removed from the paging queues as if it were wired, and as a
2406  * consequence of no longer being managed the pageout daemon will not
2407  * touch it (since there is no way to locate the pte mappings for the
2408  * page).  madvise() calls that mess with the pmap will also no longer
2409  * operate on the page.
2410  *
2411  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2412  * will clear the flag.
2413  *
2414  * This routine is used by OBJT_PHYS objects - objects using unswappable
2415  * physical memory as backing store rather then swap-backed memory and
2416  * will eventually be extended to support 4MB unmanaged physical
2417  * mappings.
2418  *
2419  * Caller must be holding the page busy.
2420  */
2421 void
2422 vm_page_unmanage(vm_page_t m)
2423 {
2424 	KKASSERT(m->flags & PG_BUSY);
2425 	if ((m->flags & PG_UNMANAGED) == 0) {
2426 		if (m->wire_count == 0)
2427 			vm_page_unqueue(m);
2428 	}
2429 	vm_page_flag_set(m, PG_UNMANAGED);
2430 }
2431 
2432 /*
2433  * Mark this page as wired down by yet another map, removing it from
2434  * paging queues as necessary.
2435  *
2436  * Caller must be holding the page busy.
2437  */
2438 void
2439 vm_page_wire(vm_page_t m)
2440 {
2441 	/*
2442 	 * Only bump the wire statistics if the page is not already wired,
2443 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2444 	 * it is already off the queues).  Don't do anything with fictitious
2445 	 * pages because they are always wired.
2446 	 */
2447 	KKASSERT(m->flags & PG_BUSY);
2448 	if ((m->flags & PG_FICTITIOUS) == 0) {
2449 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2450 			if ((m->flags & PG_UNMANAGED) == 0)
2451 				vm_page_unqueue(m);
2452 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2453 		}
2454 		KASSERT(m->wire_count != 0,
2455 			("vm_page_wire: wire_count overflow m=%p", m));
2456 	}
2457 }
2458 
2459 /*
2460  * Release one wiring of this page, potentially enabling it to be paged again.
2461  *
2462  * Many pages placed on the inactive queue should actually go
2463  * into the cache, but it is difficult to figure out which.  What
2464  * we do instead, if the inactive target is well met, is to put
2465  * clean pages at the head of the inactive queue instead of the tail.
2466  * This will cause them to be moved to the cache more quickly and
2467  * if not actively re-referenced, freed more quickly.  If we just
2468  * stick these pages at the end of the inactive queue, heavy filesystem
2469  * meta-data accesses can cause an unnecessary paging load on memory bound
2470  * processes.  This optimization causes one-time-use metadata to be
2471  * reused more quickly.
2472  *
2473  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2474  * the inactive queue.  This helps the pageout daemon determine memory
2475  * pressure and act on out-of-memory situations more quickly.
2476  *
2477  * BUT, if we are in a low-memory situation we have no choice but to
2478  * put clean pages on the cache queue.
2479  *
2480  * A number of routines use vm_page_unwire() to guarantee that the page
2481  * will go into either the inactive or active queues, and will NEVER
2482  * be placed in the cache - for example, just after dirtying a page.
2483  * dirty pages in the cache are not allowed.
2484  *
2485  * This routine may not block.
2486  */
2487 void
2488 vm_page_unwire(vm_page_t m, int activate)
2489 {
2490 	KKASSERT(m->flags & PG_BUSY);
2491 	if (m->flags & PG_FICTITIOUS) {
2492 		/* do nothing */
2493 	} else if (m->wire_count <= 0) {
2494 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2495 	} else {
2496 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2497 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2498 			if (m->flags & PG_UNMANAGED) {
2499 				;
2500 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2501 				vm_page_spin_lock(m);
2502 				_vm_page_add_queue_spinlocked(m,
2503 							PQ_ACTIVE + m->pc, 0);
2504 				_vm_page_and_queue_spin_unlock(m);
2505 			} else {
2506 				vm_page_spin_lock(m);
2507 				vm_page_flag_clear(m, PG_WINATCFLS);
2508 				_vm_page_add_queue_spinlocked(m,
2509 							PQ_INACTIVE + m->pc, 0);
2510 				++vm_swapcache_inactive_heuristic;
2511 				_vm_page_and_queue_spin_unlock(m);
2512 			}
2513 		}
2514 	}
2515 }
2516 
2517 /*
2518  * Move the specified page to the inactive queue.  If the page has
2519  * any associated swap, the swap is deallocated.
2520  *
2521  * Normally athead is 0 resulting in LRU operation.  athead is set
2522  * to 1 if we want this page to be 'as if it were placed in the cache',
2523  * except without unmapping it from the process address space.
2524  *
2525  * vm_page's spinlock must be held on entry and will remain held on return.
2526  * This routine may not block.
2527  */
2528 static void
2529 _vm_page_deactivate_locked(vm_page_t m, int athead)
2530 {
2531 	u_short oqueue;
2532 
2533 	/*
2534 	 * Ignore if already inactive.
2535 	 */
2536 	if (m->queue - m->pc == PQ_INACTIVE)
2537 		return;
2538 	_vm_page_queue_spin_lock(m);
2539 	oqueue = _vm_page_rem_queue_spinlocked(m);
2540 
2541 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2542 		if (oqueue == PQ_CACHE)
2543 			mycpu->gd_cnt.v_reactivated++;
2544 		vm_page_flag_clear(m, PG_WINATCFLS);
2545 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2546 		if (athead == 0)
2547 			++vm_swapcache_inactive_heuristic;
2548 	}
2549 	/* NOTE: PQ_NONE if condition not taken */
2550 	_vm_page_queue_spin_unlock(m);
2551 	/* leaves vm_page spinlocked */
2552 }
2553 
2554 /*
2555  * Attempt to deactivate a page.
2556  *
2557  * No requirements.
2558  */
2559 void
2560 vm_page_deactivate(vm_page_t m)
2561 {
2562 	vm_page_spin_lock(m);
2563 	_vm_page_deactivate_locked(m, 0);
2564 	vm_page_spin_unlock(m);
2565 }
2566 
2567 void
2568 vm_page_deactivate_locked(vm_page_t m)
2569 {
2570 	_vm_page_deactivate_locked(m, 0);
2571 }
2572 
2573 /*
2574  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2575  *
2576  * This function returns non-zero if it successfully moved the page to
2577  * PQ_CACHE.
2578  *
2579  * This function unconditionally unbusies the page on return.
2580  */
2581 int
2582 vm_page_try_to_cache(vm_page_t m)
2583 {
2584 	vm_page_spin_lock(m);
2585 	if (m->dirty || m->hold_count || m->wire_count ||
2586 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2587 		if (_vm_page_wakeup(m)) {
2588 			vm_page_spin_unlock(m);
2589 			wakeup(m);
2590 		} else {
2591 			vm_page_spin_unlock(m);
2592 		}
2593 		return(0);
2594 	}
2595 	vm_page_spin_unlock(m);
2596 
2597 	/*
2598 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2599 	 * be moved to the cache.
2600 	 */
2601 	vm_page_test_dirty(m);
2602 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2603 		vm_page_wakeup(m);
2604 		return(0);
2605 	}
2606 	vm_page_cache(m);
2607 	return(1);
2608 }
2609 
2610 /*
2611  * Attempt to free the page.  If we cannot free it, we do nothing.
2612  * 1 is returned on success, 0 on failure.
2613  *
2614  * No requirements.
2615  */
2616 int
2617 vm_page_try_to_free(vm_page_t m)
2618 {
2619 	vm_page_spin_lock(m);
2620 	if (vm_page_busy_try(m, TRUE)) {
2621 		vm_page_spin_unlock(m);
2622 		return(0);
2623 	}
2624 
2625 	/*
2626 	 * The page can be in any state, including already being on the free
2627 	 * queue.  Check to see if it really can be freed.
2628 	 */
2629 	if (m->dirty ||				/* can't free if it is dirty */
2630 	    m->hold_count ||			/* or held (XXX may be wrong) */
2631 	    m->wire_count ||			/* or wired */
2632 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2633 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2634 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2635 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2636 		if (_vm_page_wakeup(m)) {
2637 			vm_page_spin_unlock(m);
2638 			wakeup(m);
2639 		} else {
2640 			vm_page_spin_unlock(m);
2641 		}
2642 		return(0);
2643 	}
2644 	vm_page_spin_unlock(m);
2645 
2646 	/*
2647 	 * We can probably free the page.
2648 	 *
2649 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2650 	 * not be freed by this function.    We have to re-test the
2651 	 * dirty bit after cleaning out the pmaps.
2652 	 */
2653 	vm_page_test_dirty(m);
2654 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2655 		vm_page_wakeup(m);
2656 		return(0);
2657 	}
2658 	vm_page_protect(m, VM_PROT_NONE);
2659 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2660 		vm_page_wakeup(m);
2661 		return(0);
2662 	}
2663 	vm_page_free(m);
2664 	return(1);
2665 }
2666 
2667 /*
2668  * vm_page_cache
2669  *
2670  * Put the specified page onto the page cache queue (if appropriate).
2671  *
2672  * The page must be busy, and this routine will release the busy and
2673  * possibly even free the page.
2674  */
2675 void
2676 vm_page_cache(vm_page_t m)
2677 {
2678 	/*
2679 	 * Not suitable for the cache
2680 	 */
2681 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2682 	    m->busy || m->wire_count || m->hold_count) {
2683 		vm_page_wakeup(m);
2684 		return;
2685 	}
2686 
2687 	/*
2688 	 * Already in the cache (and thus not mapped)
2689 	 */
2690 	if ((m->queue - m->pc) == PQ_CACHE) {
2691 		KKASSERT((m->flags & PG_MAPPED) == 0);
2692 		vm_page_wakeup(m);
2693 		return;
2694 	}
2695 
2696 	/*
2697 	 * Caller is required to test m->dirty, but note that the act of
2698 	 * removing the page from its maps can cause it to become dirty
2699 	 * on an SMP system due to another cpu running in usermode.
2700 	 */
2701 	if (m->dirty) {
2702 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2703 			(long)m->pindex);
2704 	}
2705 
2706 	/*
2707 	 * Remove all pmaps and indicate that the page is not
2708 	 * writeable or mapped.  Our vm_page_protect() call may
2709 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2710 	 * everything.
2711 	 */
2712 	vm_page_protect(m, VM_PROT_NONE);
2713 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2714 	    m->busy || m->wire_count || m->hold_count) {
2715 		vm_page_wakeup(m);
2716 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2717 		vm_page_deactivate(m);
2718 		vm_page_wakeup(m);
2719 	} else {
2720 		_vm_page_and_queue_spin_lock(m);
2721 		_vm_page_rem_queue_spinlocked(m);
2722 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2723 		_vm_page_queue_spin_unlock(m);
2724 		if (_vm_page_wakeup(m)) {
2725 			vm_page_spin_unlock(m);
2726 			wakeup(m);
2727 		} else {
2728 			vm_page_spin_unlock(m);
2729 		}
2730 		vm_page_free_wakeup();
2731 	}
2732 }
2733 
2734 /*
2735  * vm_page_dontneed()
2736  *
2737  * Cache, deactivate, or do nothing as appropriate.  This routine
2738  * is typically used by madvise() MADV_DONTNEED.
2739  *
2740  * Generally speaking we want to move the page into the cache so
2741  * it gets reused quickly.  However, this can result in a silly syndrome
2742  * due to the page recycling too quickly.  Small objects will not be
2743  * fully cached.  On the otherhand, if we move the page to the inactive
2744  * queue we wind up with a problem whereby very large objects
2745  * unnecessarily blow away our inactive and cache queues.
2746  *
2747  * The solution is to move the pages based on a fixed weighting.  We
2748  * either leave them alone, deactivate them, or move them to the cache,
2749  * where moving them to the cache has the highest weighting.
2750  * By forcing some pages into other queues we eventually force the
2751  * system to balance the queues, potentially recovering other unrelated
2752  * space from active.  The idea is to not force this to happen too
2753  * often.
2754  *
2755  * The page must be busied.
2756  */
2757 void
2758 vm_page_dontneed(vm_page_t m)
2759 {
2760 	static int dnweight;
2761 	int dnw;
2762 	int head;
2763 
2764 	dnw = ++dnweight;
2765 
2766 	/*
2767 	 * occassionally leave the page alone
2768 	 */
2769 	if ((dnw & 0x01F0) == 0 ||
2770 	    m->queue - m->pc == PQ_INACTIVE ||
2771 	    m->queue - m->pc == PQ_CACHE
2772 	) {
2773 		if (m->act_count >= ACT_INIT)
2774 			--m->act_count;
2775 		return;
2776 	}
2777 
2778 	/*
2779 	 * If vm_page_dontneed() is inactivating a page, it must clear
2780 	 * the referenced flag; otherwise the pagedaemon will see references
2781 	 * on the page in the inactive queue and reactivate it. Until the
2782 	 * page can move to the cache queue, madvise's job is not done.
2783 	 */
2784 	vm_page_flag_clear(m, PG_REFERENCED);
2785 	pmap_clear_reference(m);
2786 
2787 	if (m->dirty == 0)
2788 		vm_page_test_dirty(m);
2789 
2790 	if (m->dirty || (dnw & 0x0070) == 0) {
2791 		/*
2792 		 * Deactivate the page 3 times out of 32.
2793 		 */
2794 		head = 0;
2795 	} else {
2796 		/*
2797 		 * Cache the page 28 times out of every 32.  Note that
2798 		 * the page is deactivated instead of cached, but placed
2799 		 * at the head of the queue instead of the tail.
2800 		 */
2801 		head = 1;
2802 	}
2803 	vm_page_spin_lock(m);
2804 	_vm_page_deactivate_locked(m, head);
2805 	vm_page_spin_unlock(m);
2806 }
2807 
2808 /*
2809  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2810  * is almost like PG_BUSY except that it allows certain compatible operations
2811  * to occur on the page while it is busy.  For example, a page undergoing a
2812  * write can still be mapped read-only.
2813  *
2814  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2815  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2816  * busy bit is cleared.
2817  */
2818 void
2819 vm_page_io_start(vm_page_t m)
2820 {
2821         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2822         atomic_add_char(&m->busy, 1);
2823 	vm_page_flag_set(m, PG_SBUSY);
2824 }
2825 
2826 void
2827 vm_page_io_finish(vm_page_t m)
2828 {
2829         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2830         atomic_subtract_char(&m->busy, 1);
2831 	if (m->busy == 0)
2832 		vm_page_flag_clear(m, PG_SBUSY);
2833 }
2834 
2835 /*
2836  * Indicate that a clean VM page requires a filesystem commit and cannot
2837  * be reused.  Used by tmpfs.
2838  */
2839 void
2840 vm_page_need_commit(vm_page_t m)
2841 {
2842 	vm_page_flag_set(m, PG_NEED_COMMIT);
2843 	vm_object_set_writeable_dirty(m->object);
2844 }
2845 
2846 void
2847 vm_page_clear_commit(vm_page_t m)
2848 {
2849 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2850 }
2851 
2852 /*
2853  * Grab a page, blocking if it is busy and allocating a page if necessary.
2854  * A busy page is returned or NULL.  The page may or may not be valid and
2855  * might not be on a queue (the caller is responsible for the disposition of
2856  * the page).
2857  *
2858  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2859  * page will be zero'd and marked valid.
2860  *
2861  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2862  * valid even if it already exists.
2863  *
2864  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2865  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2866  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2867  *
2868  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2869  * always returned if we had blocked.
2870  *
2871  * This routine may not be called from an interrupt.
2872  *
2873  * No other requirements.
2874  */
2875 vm_page_t
2876 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2877 {
2878 	vm_page_t m;
2879 	int error;
2880 	int shared = 1;
2881 
2882 	KKASSERT(allocflags &
2883 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2884 	vm_object_hold_shared(object);
2885 	for (;;) {
2886 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2887 		if (error) {
2888 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2889 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2890 				m = NULL;
2891 				break;
2892 			}
2893 			/* retry */
2894 		} else if (m == NULL) {
2895 			if (shared) {
2896 				vm_object_upgrade(object);
2897 				shared = 0;
2898 			}
2899 			if (allocflags & VM_ALLOC_RETRY)
2900 				allocflags |= VM_ALLOC_NULL_OK;
2901 			m = vm_page_alloc(object, pindex,
2902 					  allocflags & ~VM_ALLOC_RETRY);
2903 			if (m)
2904 				break;
2905 			vm_wait(0);
2906 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2907 				goto failed;
2908 		} else {
2909 			/* m found */
2910 			break;
2911 		}
2912 	}
2913 
2914 	/*
2915 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2916 	 *
2917 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2918 	 * valid even if already valid.
2919 	 *
2920 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
2921 	 *	  removed the idle zeroing code.  These optimizations actually
2922 	 *	  slow things down on modern cpus because the zerod area is
2923 	 *	  likely uncached, placing a memory-access burden on the
2924 	 *	  accesors taking the fault.
2925 	 *
2926 	 *	  By always zeroing the page in-line with the fault, no
2927 	 *	  dynamic ram reads are needed and the caches are hot, ready
2928 	 *	  for userland to access the memory.
2929 	 */
2930 	if (m->valid == 0) {
2931 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2932 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
2933 			m->valid = VM_PAGE_BITS_ALL;
2934 		}
2935 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2936 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2937 		m->valid = VM_PAGE_BITS_ALL;
2938 	}
2939 failed:
2940 	vm_object_drop(object);
2941 	return(m);
2942 }
2943 
2944 /*
2945  * Mapping function for valid bits or for dirty bits in
2946  * a page.  May not block.
2947  *
2948  * Inputs are required to range within a page.
2949  *
2950  * No requirements.
2951  * Non blocking.
2952  */
2953 int
2954 vm_page_bits(int base, int size)
2955 {
2956 	int first_bit;
2957 	int last_bit;
2958 
2959 	KASSERT(
2960 	    base + size <= PAGE_SIZE,
2961 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2962 	);
2963 
2964 	if (size == 0)		/* handle degenerate case */
2965 		return(0);
2966 
2967 	first_bit = base >> DEV_BSHIFT;
2968 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2969 
2970 	return ((2 << last_bit) - (1 << first_bit));
2971 }
2972 
2973 /*
2974  * Sets portions of a page valid and clean.  The arguments are expected
2975  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2976  * of any partial chunks touched by the range.  The invalid portion of
2977  * such chunks will be zero'd.
2978  *
2979  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2980  *	 align base to DEV_BSIZE so as not to mark clean a partially
2981  *	 truncated device block.  Otherwise the dirty page status might be
2982  *	 lost.
2983  *
2984  * This routine may not block.
2985  *
2986  * (base + size) must be less then or equal to PAGE_SIZE.
2987  */
2988 static void
2989 _vm_page_zero_valid(vm_page_t m, int base, int size)
2990 {
2991 	int frag;
2992 	int endoff;
2993 
2994 	if (size == 0)	/* handle degenerate case */
2995 		return;
2996 
2997 	/*
2998 	 * If the base is not DEV_BSIZE aligned and the valid
2999 	 * bit is clear, we have to zero out a portion of the
3000 	 * first block.
3001 	 */
3002 
3003 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
3004 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
3005 	) {
3006 		pmap_zero_page_area(
3007 		    VM_PAGE_TO_PHYS(m),
3008 		    frag,
3009 		    base - frag
3010 		);
3011 	}
3012 
3013 	/*
3014 	 * If the ending offset is not DEV_BSIZE aligned and the
3015 	 * valid bit is clear, we have to zero out a portion of
3016 	 * the last block.
3017 	 */
3018 
3019 	endoff = base + size;
3020 
3021 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3022 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3023 	) {
3024 		pmap_zero_page_area(
3025 		    VM_PAGE_TO_PHYS(m),
3026 		    endoff,
3027 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3028 		);
3029 	}
3030 }
3031 
3032 /*
3033  * Set valid, clear dirty bits.  If validating the entire
3034  * page we can safely clear the pmap modify bit.  We also
3035  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3036  * takes a write fault on a MAP_NOSYNC memory area the flag will
3037  * be set again.
3038  *
3039  * We set valid bits inclusive of any overlap, but we can only
3040  * clear dirty bits for DEV_BSIZE chunks that are fully within
3041  * the range.
3042  *
3043  * Page must be busied?
3044  * No other requirements.
3045  */
3046 void
3047 vm_page_set_valid(vm_page_t m, int base, int size)
3048 {
3049 	_vm_page_zero_valid(m, base, size);
3050 	m->valid |= vm_page_bits(base, size);
3051 }
3052 
3053 
3054 /*
3055  * Set valid bits and clear dirty bits.
3056  *
3057  * NOTE: This function does not clear the pmap modified bit.
3058  *	 Also note that e.g. NFS may use a byte-granular base
3059  *	 and size.
3060  *
3061  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
3062  *	    this without necessarily busying the page (via bdwrite()).
3063  *	    So for now vm_token must also be held.
3064  *
3065  * No other requirements.
3066  */
3067 void
3068 vm_page_set_validclean(vm_page_t m, int base, int size)
3069 {
3070 	int pagebits;
3071 
3072 	_vm_page_zero_valid(m, base, size);
3073 	pagebits = vm_page_bits(base, size);
3074 	m->valid |= pagebits;
3075 	m->dirty &= ~pagebits;
3076 	if (base == 0 && size == PAGE_SIZE) {
3077 		/*pmap_clear_modify(m);*/
3078 		vm_page_flag_clear(m, PG_NOSYNC);
3079 	}
3080 }
3081 
3082 /*
3083  * Set valid & dirty.  Used by buwrite()
3084  *
3085  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
3086  *	    call this function in buwrite() so for now vm_token must
3087  *	    be held.
3088  *
3089  * No other requirements.
3090  */
3091 void
3092 vm_page_set_validdirty(vm_page_t m, int base, int size)
3093 {
3094 	int pagebits;
3095 
3096 	pagebits = vm_page_bits(base, size);
3097 	m->valid |= pagebits;
3098 	m->dirty |= pagebits;
3099 	if (m->object)
3100 	       vm_object_set_writeable_dirty(m->object);
3101 }
3102 
3103 /*
3104  * Clear dirty bits.
3105  *
3106  * NOTE: This function does not clear the pmap modified bit.
3107  *	 Also note that e.g. NFS may use a byte-granular base
3108  *	 and size.
3109  *
3110  * Page must be busied?
3111  * No other requirements.
3112  */
3113 void
3114 vm_page_clear_dirty(vm_page_t m, int base, int size)
3115 {
3116 	m->dirty &= ~vm_page_bits(base, size);
3117 	if (base == 0 && size == PAGE_SIZE) {
3118 		/*pmap_clear_modify(m);*/
3119 		vm_page_flag_clear(m, PG_NOSYNC);
3120 	}
3121 }
3122 
3123 /*
3124  * Make the page all-dirty.
3125  *
3126  * Also make sure the related object and vnode reflect the fact that the
3127  * object may now contain a dirty page.
3128  *
3129  * Page must be busied?
3130  * No other requirements.
3131  */
3132 void
3133 vm_page_dirty(vm_page_t m)
3134 {
3135 #ifdef INVARIANTS
3136         int pqtype = m->queue - m->pc;
3137 #endif
3138         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3139                 ("vm_page_dirty: page in free/cache queue!"));
3140 	if (m->dirty != VM_PAGE_BITS_ALL) {
3141 		m->dirty = VM_PAGE_BITS_ALL;
3142 		if (m->object)
3143 			vm_object_set_writeable_dirty(m->object);
3144 	}
3145 }
3146 
3147 /*
3148  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3149  * valid and dirty bits for the effected areas are cleared.
3150  *
3151  * Page must be busied?
3152  * Does not block.
3153  * No other requirements.
3154  */
3155 void
3156 vm_page_set_invalid(vm_page_t m, int base, int size)
3157 {
3158 	int bits;
3159 
3160 	bits = vm_page_bits(base, size);
3161 	m->valid &= ~bits;
3162 	m->dirty &= ~bits;
3163 	m->object->generation++;
3164 }
3165 
3166 /*
3167  * The kernel assumes that the invalid portions of a page contain
3168  * garbage, but such pages can be mapped into memory by user code.
3169  * When this occurs, we must zero out the non-valid portions of the
3170  * page so user code sees what it expects.
3171  *
3172  * Pages are most often semi-valid when the end of a file is mapped
3173  * into memory and the file's size is not page aligned.
3174  *
3175  * Page must be busied?
3176  * No other requirements.
3177  */
3178 void
3179 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3180 {
3181 	int b;
3182 	int i;
3183 
3184 	/*
3185 	 * Scan the valid bits looking for invalid sections that
3186 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3187 	 * valid bit may be set ) have already been zerod by
3188 	 * vm_page_set_validclean().
3189 	 */
3190 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3191 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3192 		    (m->valid & (1 << i))
3193 		) {
3194 			if (i > b) {
3195 				pmap_zero_page_area(
3196 				    VM_PAGE_TO_PHYS(m),
3197 				    b << DEV_BSHIFT,
3198 				    (i - b) << DEV_BSHIFT
3199 				);
3200 			}
3201 			b = i + 1;
3202 		}
3203 	}
3204 
3205 	/*
3206 	 * setvalid is TRUE when we can safely set the zero'd areas
3207 	 * as being valid.  We can do this if there are no cache consistency
3208 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3209 	 */
3210 	if (setvalid)
3211 		m->valid = VM_PAGE_BITS_ALL;
3212 }
3213 
3214 /*
3215  * Is a (partial) page valid?  Note that the case where size == 0
3216  * will return FALSE in the degenerate case where the page is entirely
3217  * invalid, and TRUE otherwise.
3218  *
3219  * Does not block.
3220  * No other requirements.
3221  */
3222 int
3223 vm_page_is_valid(vm_page_t m, int base, int size)
3224 {
3225 	int bits = vm_page_bits(base, size);
3226 
3227 	if (m->valid && ((m->valid & bits) == bits))
3228 		return 1;
3229 	else
3230 		return 0;
3231 }
3232 
3233 /*
3234  * update dirty bits from pmap/mmu.  May not block.
3235  *
3236  * Caller must hold the page busy
3237  */
3238 void
3239 vm_page_test_dirty(vm_page_t m)
3240 {
3241 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3242 		vm_page_dirty(m);
3243 	}
3244 }
3245 
3246 /*
3247  * Register an action, associating it with its vm_page
3248  */
3249 void
3250 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
3251 {
3252 	struct vm_page_action_list *list;
3253 	int hv;
3254 
3255 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3256 	list = &action_list[hv];
3257 
3258 	lwkt_gettoken(&vm_token);
3259 	vm_page_flag_set(action->m, PG_ACTIONLIST);
3260 	action->event = event;
3261 	LIST_INSERT_HEAD(list, action, entry);
3262 	lwkt_reltoken(&vm_token);
3263 }
3264 
3265 /*
3266  * Unregister an action, disassociating it from its related vm_page
3267  */
3268 void
3269 vm_page_unregister_action(vm_page_action_t action)
3270 {
3271 	struct vm_page_action_list *list;
3272 	int hv;
3273 
3274 	lwkt_gettoken(&vm_token);
3275 	if (action->event != VMEVENT_NONE) {
3276 		action->event = VMEVENT_NONE;
3277 		LIST_REMOVE(action, entry);
3278 
3279 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
3280 		list = &action_list[hv];
3281 		if (LIST_EMPTY(list))
3282 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
3283 	}
3284 	lwkt_reltoken(&vm_token);
3285 }
3286 
3287 /*
3288  * Issue an event on a VM page.  Corresponding action structures are
3289  * removed from the page's list and called.
3290  *
3291  * If the vm_page has no more pending action events we clear its
3292  * PG_ACTIONLIST flag.
3293  */
3294 void
3295 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
3296 {
3297 	struct vm_page_action_list *list;
3298 	struct vm_page_action *scan;
3299 	struct vm_page_action *next;
3300 	int hv;
3301 	int all;
3302 
3303 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3304 	list = &action_list[hv];
3305 	all = 1;
3306 
3307 	lwkt_gettoken(&vm_token);
3308 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3309 		if (scan->m == m) {
3310 			if (scan->event == event) {
3311 				scan->event = VMEVENT_NONE;
3312 				LIST_REMOVE(scan, entry);
3313 				scan->func(m, scan);
3314 				/* XXX */
3315 			} else {
3316 				all = 0;
3317 			}
3318 		}
3319 	}
3320 	if (all)
3321 		vm_page_flag_clear(m, PG_ACTIONLIST);
3322 	lwkt_reltoken(&vm_token);
3323 }
3324 
3325 #include "opt_ddb.h"
3326 #ifdef DDB
3327 #include <sys/kernel.h>
3328 
3329 #include <ddb/ddb.h>
3330 
3331 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3332 {
3333 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3334 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3335 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3336 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3337 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3338 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3339 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3340 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3341 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3342 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3343 }
3344 
3345 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3346 {
3347 	int i;
3348 	db_printf("PQ_FREE:");
3349 	for (i = 0; i < PQ_L2_SIZE; i++) {
3350 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3351 	}
3352 	db_printf("\n");
3353 
3354 	db_printf("PQ_CACHE:");
3355 	for(i = 0; i < PQ_L2_SIZE; i++) {
3356 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3357 	}
3358 	db_printf("\n");
3359 
3360 	db_printf("PQ_ACTIVE:");
3361 	for(i = 0; i < PQ_L2_SIZE; i++) {
3362 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3363 	}
3364 	db_printf("\n");
3365 
3366 	db_printf("PQ_INACTIVE:");
3367 	for(i = 0; i < PQ_L2_SIZE; i++) {
3368 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3369 	}
3370 	db_printf("\n");
3371 }
3372 #endif /* DDB */
3373