1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 38 * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $ 39 */ 40 41 /* 42 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 43 * All rights reserved. 44 * 45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 46 * 47 * Permission to use, copy, modify and distribute this software and 48 * its documentation is hereby granted, provided that both the copyright 49 * notice and this permission notice appear in all copies of the 50 * software, derivative works or modified versions, and any portions 51 * thereof, and that both notices appear in supporting documentation. 52 * 53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 56 * 57 * Carnegie Mellon requests users of this software to return to 58 * 59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 60 * School of Computer Science 61 * Carnegie Mellon University 62 * Pittsburgh PA 15213-3890 63 * 64 * any improvements or extensions that they make and grant Carnegie the 65 * rights to redistribute these changes. 66 */ 67 /* 68 * Resident memory management module. The module manipulates 'VM pages'. 69 * A VM page is the core building block for memory management. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/proc.h> 76 #include <sys/vmmeter.h> 77 #include <sys/vnode.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/vm_page2.h> 91 92 static void vm_page_queue_init(void); 93 static void vm_page_free_wakeup(void); 94 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t); 95 static vm_page_t _vm_page_list_find2(int basequeue, int index); 96 97 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */ 98 99 #define ASSERT_IN_CRIT_SECTION() KKASSERT(crit_test(curthread)); 100 101 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 102 vm_pindex_t, pindex); 103 104 static void 105 vm_page_queue_init(void) 106 { 107 int i; 108 109 for (i = 0; i < PQ_L2_SIZE; i++) 110 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 111 for (i = 0; i < PQ_L2_SIZE; i++) 112 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 113 114 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count; 115 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count; 116 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count; 117 /* PQ_NONE has no queue */ 118 119 for (i = 0; i < PQ_COUNT; i++) 120 TAILQ_INIT(&vm_page_queues[i].pl); 121 } 122 123 /* 124 * note: place in initialized data section? Is this necessary? 125 */ 126 long first_page = 0; 127 int vm_page_array_size = 0; 128 int vm_page_zero_count = 0; 129 vm_page_t vm_page_array = 0; 130 131 /* 132 * (low level boot) 133 * 134 * Sets the page size, perhaps based upon the memory size. 135 * Must be called before any use of page-size dependent functions. 136 */ 137 void 138 vm_set_page_size(void) 139 { 140 if (vmstats.v_page_size == 0) 141 vmstats.v_page_size = PAGE_SIZE; 142 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 143 panic("vm_set_page_size: page size not a power of two"); 144 } 145 146 /* 147 * (low level boot) 148 * 149 * Add a new page to the freelist for use by the system. New pages 150 * are added to both the head and tail of the associated free page 151 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 152 * requests pull 'recent' adds (higher physical addresses) first. 153 * 154 * Must be called in a critical section. 155 */ 156 vm_page_t 157 vm_add_new_page(vm_paddr_t pa) 158 { 159 struct vpgqueues *vpq; 160 vm_page_t m; 161 162 ++vmstats.v_page_count; 163 ++vmstats.v_free_count; 164 m = PHYS_TO_VM_PAGE(pa); 165 m->phys_addr = pa; 166 m->flags = 0; 167 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 168 m->queue = m->pc + PQ_FREE; 169 KKASSERT(m->dirty == 0); 170 171 vpq = &vm_page_queues[m->queue]; 172 if (vpq->flipflop) 173 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 174 else 175 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 176 vpq->flipflop = 1 - vpq->flipflop; 177 178 vm_page_queues[m->queue].lcnt++; 179 return (m); 180 } 181 182 /* 183 * (low level boot) 184 * 185 * Initializes the resident memory module. 186 * 187 * Allocates memory for the page cells, and for the object/offset-to-page 188 * hash table headers. Each page cell is initialized and placed on the 189 * free list. 190 * 191 * starta/enda represents the range of physical memory addresses available 192 * for use (skipping memory already used by the kernel), subject to 193 * phys_avail[]. Note that phys_avail[] has already mapped out memory 194 * already in use by the kernel. 195 */ 196 vm_offset_t 197 vm_page_startup(vm_offset_t vaddr) 198 { 199 vm_offset_t mapped; 200 vm_size_t npages; 201 vm_paddr_t page_range; 202 vm_paddr_t new_end; 203 int i; 204 vm_paddr_t pa; 205 int nblocks; 206 vm_paddr_t last_pa; 207 vm_paddr_t end; 208 vm_paddr_t biggestone, biggestsize; 209 vm_paddr_t total; 210 211 total = 0; 212 biggestsize = 0; 213 biggestone = 0; 214 nblocks = 0; 215 vaddr = round_page(vaddr); 216 217 for (i = 0; phys_avail[i + 1]; i += 2) { 218 phys_avail[i] = round_page(phys_avail[i]); 219 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]); 220 } 221 222 for (i = 0; phys_avail[i + 1]; i += 2) { 223 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 224 225 if (size > biggestsize) { 226 biggestone = i; 227 biggestsize = size; 228 } 229 ++nblocks; 230 total += size; 231 } 232 233 end = phys_avail[biggestone+1]; 234 end = trunc_page(end); 235 236 /* 237 * Initialize the queue headers for the free queue, the active queue 238 * and the inactive queue. 239 */ 240 241 vm_page_queue_init(); 242 243 /* 244 * Compute the number of pages of memory that will be available for 245 * use (taking into account the overhead of a page structure per 246 * page). 247 */ 248 first_page = phys_avail[0] / PAGE_SIZE; 249 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 250 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 251 252 /* 253 * Initialize the mem entry structures now, and put them in the free 254 * queue. 255 */ 256 vm_page_array = (vm_page_t) vaddr; 257 mapped = vaddr; 258 259 /* 260 * Validate these addresses. 261 */ 262 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 263 mapped = pmap_map(mapped, new_end, end, 264 VM_PROT_READ | VM_PROT_WRITE); 265 266 /* 267 * Clear all of the page structures 268 */ 269 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 270 vm_page_array_size = page_range; 271 272 /* 273 * Construct the free queue(s) in ascending order (by physical 274 * address) so that the first 16MB of physical memory is allocated 275 * last rather than first. On large-memory machines, this avoids 276 * the exhaustion of low physical memory before isa_dmainit has run. 277 */ 278 vmstats.v_page_count = 0; 279 vmstats.v_free_count = 0; 280 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 281 pa = phys_avail[i]; 282 if (i == biggestone) 283 last_pa = new_end; 284 else 285 last_pa = phys_avail[i + 1]; 286 while (pa < last_pa && npages-- > 0) { 287 vm_add_new_page(pa); 288 pa += PAGE_SIZE; 289 } 290 } 291 return (mapped); 292 } 293 294 /* 295 * Scan comparison function for Red-Black tree scans. An inclusive 296 * (start,end) is expected. Other fields are not used. 297 */ 298 int 299 rb_vm_page_scancmp(struct vm_page *p, void *data) 300 { 301 struct rb_vm_page_scan_info *info = data; 302 303 if (p->pindex < info->start_pindex) 304 return(-1); 305 if (p->pindex > info->end_pindex) 306 return(1); 307 return(0); 308 } 309 310 int 311 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 312 { 313 if (p1->pindex < p2->pindex) 314 return(-1); 315 if (p1->pindex > p2->pindex) 316 return(1); 317 return(0); 318 } 319 320 /* 321 * The opposite of vm_page_hold(). A page can be freed while being held, 322 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq() 323 * in this case to actually free it once the hold count drops to 0. 324 * 325 * This routine must be called at splvm(). 326 */ 327 void 328 vm_page_unhold(vm_page_t mem) 329 { 330 --mem->hold_count; 331 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 332 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) { 333 vm_page_busy(mem); 334 vm_page_free_toq(mem); 335 } 336 } 337 338 /* 339 * Inserts the given mem entry into the object and object list. 340 * 341 * The pagetables are not updated but will presumably fault the page 342 * in if necessary, or if a kernel page the caller will at some point 343 * enter the page into the kernel's pmap. We are not allowed to block 344 * here so we *can't* do this anyway. 345 * 346 * This routine may not block. 347 * This routine must be called with a critical section held. 348 */ 349 void 350 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 351 { 352 ASSERT_IN_CRIT_SECTION(); 353 if (m->object != NULL) 354 panic("vm_page_insert: already inserted"); 355 356 /* 357 * Record the object/offset pair in this page 358 */ 359 m->object = object; 360 m->pindex = pindex; 361 362 /* 363 * Insert it into the object. 364 */ 365 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m); 366 object->generation++; 367 368 /* 369 * show that the object has one more resident page. 370 */ 371 object->resident_page_count++; 372 373 /* 374 * Since we are inserting a new and possibly dirty page, 375 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 376 */ 377 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 378 vm_object_set_writeable_dirty(object); 379 } 380 381 /* 382 * Removes the given vm_page_t from the global (object,index) hash table 383 * and from the object's memq. 384 * 385 * The underlying pmap entry (if any) is NOT removed here. 386 * This routine may not block. 387 * 388 * The page must be BUSY and will remain BUSY on return. No spl needs to be 389 * held on call to this routine. 390 * 391 * note: FreeBSD side effect was to unbusy the page on return. We leave 392 * it busy. 393 */ 394 void 395 vm_page_remove(vm_page_t m) 396 { 397 vm_object_t object; 398 399 crit_enter(); 400 if (m->object == NULL) { 401 crit_exit(); 402 return; 403 } 404 405 if ((m->flags & PG_BUSY) == 0) 406 panic("vm_page_remove: page not busy"); 407 408 object = m->object; 409 410 /* 411 * Remove the page from the object and update the object. 412 */ 413 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 414 object->resident_page_count--; 415 object->generation++; 416 m->object = NULL; 417 418 crit_exit(); 419 } 420 421 /* 422 * Locate and return the page at (object, pindex), or NULL if the 423 * page could not be found. 424 * 425 * This routine will operate properly without spl protection, but 426 * the returned page could be in flux if it is busy. Because an 427 * interrupt can race a caller's busy check (unbusying and freeing the 428 * page we return before the caller is able to check the busy bit), 429 * the caller should generally call this routine with a critical 430 * section held. 431 * 432 * Callers may call this routine without spl protection if they know 433 * 'for sure' that the page will not be ripped out from under them 434 * by an interrupt. 435 */ 436 vm_page_t 437 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 438 { 439 vm_page_t m; 440 441 /* 442 * Search the hash table for this object/offset pair 443 */ 444 crit_enter(); 445 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 446 crit_exit(); 447 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 448 return(m); 449 } 450 451 /* 452 * vm_page_rename() 453 * 454 * Move the given memory entry from its current object to the specified 455 * target object/offset. 456 * 457 * The object must be locked. 458 * This routine may not block. 459 * 460 * Note: This routine will raise itself to splvm(), the caller need not. 461 * 462 * Note: Swap associated with the page must be invalidated by the move. We 463 * have to do this for several reasons: (1) we aren't freeing the 464 * page, (2) we are dirtying the page, (3) the VM system is probably 465 * moving the page from object A to B, and will then later move 466 * the backing store from A to B and we can't have a conflict. 467 * 468 * Note: We *always* dirty the page. It is necessary both for the 469 * fact that we moved it, and because we may be invalidating 470 * swap. If the page is on the cache, we have to deactivate it 471 * or vm_page_dirty() will panic. Dirty pages are not allowed 472 * on the cache. 473 */ 474 void 475 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 476 { 477 crit_enter(); 478 vm_page_remove(m); 479 vm_page_insert(m, new_object, new_pindex); 480 if (m->queue - m->pc == PQ_CACHE) 481 vm_page_deactivate(m); 482 vm_page_dirty(m); 483 vm_page_wakeup(m); 484 crit_exit(); 485 } 486 487 /* 488 * vm_page_unqueue() without any wakeup. This routine is used when a page 489 * is being moved between queues or otherwise is to remain BUSYied by the 490 * caller. 491 * 492 * This routine must be called at splhigh(). 493 * This routine may not block. 494 */ 495 void 496 vm_page_unqueue_nowakeup(vm_page_t m) 497 { 498 int queue = m->queue; 499 struct vpgqueues *pq; 500 501 if (queue != PQ_NONE) { 502 pq = &vm_page_queues[queue]; 503 m->queue = PQ_NONE; 504 TAILQ_REMOVE(&pq->pl, m, pageq); 505 (*pq->cnt)--; 506 pq->lcnt--; 507 } 508 } 509 510 /* 511 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 512 * if necessary. 513 * 514 * This routine must be called at splhigh(). 515 * This routine may not block. 516 */ 517 void 518 vm_page_unqueue(vm_page_t m) 519 { 520 int queue = m->queue; 521 struct vpgqueues *pq; 522 523 if (queue != PQ_NONE) { 524 m->queue = PQ_NONE; 525 pq = &vm_page_queues[queue]; 526 TAILQ_REMOVE(&pq->pl, m, pageq); 527 (*pq->cnt)--; 528 pq->lcnt--; 529 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 530 pagedaemon_wakeup(); 531 } 532 } 533 534 /* 535 * vm_page_list_find() 536 * 537 * Find a page on the specified queue with color optimization. 538 * 539 * The page coloring optimization attempts to locate a page that does 540 * not overload other nearby pages in the object in the cpu's L1 or L2 541 * caches. We need this optimization because cpu caches tend to be 542 * physical caches, while object spaces tend to be virtual. 543 * 544 * This routine must be called at splvm(). 545 * This routine may not block. 546 * 547 * Note that this routine is carefully inlined. A non-inlined version 548 * is available for outside callers but the only critical path is 549 * from within this source file. 550 */ 551 static __inline 552 vm_page_t 553 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 554 { 555 vm_page_t m; 556 557 if (prefer_zero) 558 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 559 else 560 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 561 if (m == NULL) 562 m = _vm_page_list_find2(basequeue, index); 563 return(m); 564 } 565 566 static vm_page_t 567 _vm_page_list_find2(int basequeue, int index) 568 { 569 int i; 570 vm_page_t m = NULL; 571 struct vpgqueues *pq; 572 573 pq = &vm_page_queues[basequeue]; 574 575 /* 576 * Note that for the first loop, index+i and index-i wind up at the 577 * same place. Even though this is not totally optimal, we've already 578 * blown it by missing the cache case so we do not care. 579 */ 580 581 for(i = PQ_L2_SIZE / 2; i > 0; --i) { 582 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL) 583 break; 584 585 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL) 586 break; 587 } 588 return(m); 589 } 590 591 vm_page_t 592 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 593 { 594 return(_vm_page_list_find(basequeue, index, prefer_zero)); 595 } 596 597 /* 598 * Find a page on the cache queue with color optimization. As pages 599 * might be found, but not applicable, they are deactivated. This 600 * keeps us from using potentially busy cached pages. 601 * 602 * This routine must be called with a critical section held. 603 * This routine may not block. 604 */ 605 vm_page_t 606 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 607 { 608 vm_page_t m; 609 610 while (TRUE) { 611 m = _vm_page_list_find( 612 PQ_CACHE, 613 (pindex + object->pg_color) & PQ_L2_MASK, 614 FALSE 615 ); 616 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 617 m->hold_count || m->wire_count)) { 618 vm_page_deactivate(m); 619 continue; 620 } 621 return m; 622 } 623 /* not reached */ 624 } 625 626 /* 627 * Find a free or zero page, with specified preference. We attempt to 628 * inline the nominal case and fall back to _vm_page_select_free() 629 * otherwise. 630 * 631 * This routine must be called with a critical section held. 632 * This routine may not block. 633 */ 634 static __inline vm_page_t 635 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 636 { 637 vm_page_t m; 638 639 m = _vm_page_list_find( 640 PQ_FREE, 641 (pindex + object->pg_color) & PQ_L2_MASK, 642 prefer_zero 643 ); 644 return(m); 645 } 646 647 /* 648 * vm_page_alloc() 649 * 650 * Allocate and return a memory cell associated with this VM object/offset 651 * pair. 652 * 653 * page_req classes: 654 * 655 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 656 * VM_ALLOC_SYSTEM greater free drain 657 * VM_ALLOC_INTERRUPT allow free list to be completely drained 658 * VM_ALLOC_ZERO advisory request for pre-zero'd page 659 * 660 * The object must be locked. 661 * This routine may not block. 662 * The returned page will be marked PG_BUSY 663 * 664 * Additional special handling is required when called from an interrupt 665 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 666 * in this case. 667 */ 668 vm_page_t 669 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 670 { 671 vm_page_t m = NULL; 672 673 KKASSERT(object != NULL); 674 KASSERT(!vm_page_lookup(object, pindex), 675 ("vm_page_alloc: page already allocated")); 676 KKASSERT(page_req & 677 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 678 679 /* 680 * Certain system threads (pageout daemon, buf_daemon's) are 681 * allowed to eat deeper into the free page list. 682 */ 683 if (curthread->td_flags & TDF_SYSTHREAD) 684 page_req |= VM_ALLOC_SYSTEM; 685 686 crit_enter(); 687 loop: 688 if (vmstats.v_free_count > vmstats.v_free_reserved || 689 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 690 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 691 vmstats.v_free_count > vmstats.v_interrupt_free_min) 692 ) { 693 /* 694 * The free queue has sufficient free pages to take one out. 695 */ 696 if (page_req & VM_ALLOC_ZERO) 697 m = vm_page_select_free(object, pindex, TRUE); 698 else 699 m = vm_page_select_free(object, pindex, FALSE); 700 } else if (page_req & VM_ALLOC_NORMAL) { 701 /* 702 * Allocatable from the cache (non-interrupt only). On 703 * success, we must free the page and try again, thus 704 * ensuring that vmstats.v_*_free_min counters are replenished. 705 */ 706 #ifdef INVARIANTS 707 if (curthread->td_preempted) { 708 kprintf("vm_page_alloc(): warning, attempt to allocate" 709 " cache page from preempting interrupt\n"); 710 m = NULL; 711 } else { 712 m = vm_page_select_cache(object, pindex); 713 } 714 #else 715 m = vm_page_select_cache(object, pindex); 716 #endif 717 /* 718 * On success move the page into the free queue and loop. 719 */ 720 if (m != NULL) { 721 KASSERT(m->dirty == 0, 722 ("Found dirty cache page %p", m)); 723 vm_page_busy(m); 724 vm_page_protect(m, VM_PROT_NONE); 725 vm_page_free(m); 726 goto loop; 727 } 728 729 /* 730 * On failure return NULL 731 */ 732 crit_exit(); 733 #if defined(DIAGNOSTIC) 734 if (vmstats.v_cache_count > 0) 735 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 736 #endif 737 vm_pageout_deficit++; 738 pagedaemon_wakeup(); 739 return (NULL); 740 } else { 741 /* 742 * No pages available, wakeup the pageout daemon and give up. 743 */ 744 crit_exit(); 745 vm_pageout_deficit++; 746 pagedaemon_wakeup(); 747 return (NULL); 748 } 749 750 /* 751 * Good page found. The page has not yet been busied. We are in 752 * a critical section. 753 */ 754 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n")); 755 KASSERT(m->dirty == 0, 756 ("vm_page_alloc: free/cache page %p was dirty", m)); 757 758 /* 759 * Remove from free queue 760 */ 761 vm_page_unqueue_nowakeup(m); 762 763 /* 764 * Initialize structure. Only the PG_ZERO flag is inherited. Set 765 * the page PG_BUSY 766 */ 767 if (m->flags & PG_ZERO) { 768 vm_page_zero_count--; 769 m->flags = PG_ZERO | PG_BUSY; 770 } else { 771 m->flags = PG_BUSY; 772 } 773 m->wire_count = 0; 774 m->hold_count = 0; 775 m->act_count = 0; 776 m->busy = 0; 777 m->valid = 0; 778 779 /* 780 * vm_page_insert() is safe prior to the crit_exit(). Note also that 781 * inserting a page here does not insert it into the pmap (which 782 * could cause us to block allocating memory). We cannot block 783 * anywhere. 784 */ 785 vm_page_insert(m, object, pindex); 786 787 /* 788 * Don't wakeup too often - wakeup the pageout daemon when 789 * we would be nearly out of memory. 790 */ 791 pagedaemon_wakeup(); 792 793 crit_exit(); 794 795 /* 796 * A PG_BUSY page is returned. 797 */ 798 return (m); 799 } 800 801 /* 802 * Block until free pages are available for allocation, called in various 803 * places before memory allocations. 804 */ 805 void 806 vm_wait(int timo) 807 { 808 crit_enter(); 809 if (curthread == pagethread) { 810 vm_pageout_pages_needed = 1; 811 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 812 } else { 813 if (vm_pages_needed == 0) { 814 vm_pages_needed = 1; 815 wakeup(&vm_pages_needed); 816 } 817 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 818 } 819 crit_exit(); 820 } 821 822 /* 823 * Block until free pages are available for allocation 824 * 825 * Called only in vm_fault so that processes page faulting can be 826 * easily tracked. 827 */ 828 void 829 vm_waitpfault(void) 830 { 831 crit_enter(); 832 if (vm_pages_needed == 0) { 833 vm_pages_needed = 1; 834 wakeup(&vm_pages_needed); 835 } 836 tsleep(&vmstats.v_free_count, 0, "pfault", 0); 837 crit_exit(); 838 } 839 840 /* 841 * Put the specified page on the active list (if appropriate). Ensure 842 * that act_count is at least ACT_INIT but do not otherwise mess with it. 843 * 844 * The page queues must be locked. 845 * This routine may not block. 846 */ 847 void 848 vm_page_activate(vm_page_t m) 849 { 850 crit_enter(); 851 if (m->queue != PQ_ACTIVE) { 852 if ((m->queue - m->pc) == PQ_CACHE) 853 mycpu->gd_cnt.v_reactivated++; 854 855 vm_page_unqueue(m); 856 857 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 858 m->queue = PQ_ACTIVE; 859 vm_page_queues[PQ_ACTIVE].lcnt++; 860 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, 861 m, pageq); 862 if (m->act_count < ACT_INIT) 863 m->act_count = ACT_INIT; 864 vmstats.v_active_count++; 865 } 866 } else { 867 if (m->act_count < ACT_INIT) 868 m->act_count = ACT_INIT; 869 } 870 crit_exit(); 871 } 872 873 /* 874 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 875 * routine is called when a page has been added to the cache or free 876 * queues. 877 * 878 * This routine may not block. 879 * This routine must be called at splvm() 880 */ 881 static __inline void 882 vm_page_free_wakeup(void) 883 { 884 /* 885 * if pageout daemon needs pages, then tell it that there are 886 * some free. 887 */ 888 if (vm_pageout_pages_needed && 889 vmstats.v_cache_count + vmstats.v_free_count >= 890 vmstats.v_pageout_free_min 891 ) { 892 wakeup(&vm_pageout_pages_needed); 893 vm_pageout_pages_needed = 0; 894 } 895 896 /* 897 * wakeup processes that are waiting on memory if we hit a 898 * high water mark. And wakeup scheduler process if we have 899 * lots of memory. this process will swapin processes. 900 */ 901 if (vm_pages_needed && !vm_page_count_min(0)) { 902 vm_pages_needed = 0; 903 wakeup(&vmstats.v_free_count); 904 } 905 } 906 907 /* 908 * vm_page_free_toq: 909 * 910 * Returns the given page to the PQ_FREE list, disassociating it with 911 * any VM object. 912 * 913 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 914 * return (the page will have been freed). No particular spl is required 915 * on entry. 916 * 917 * This routine may not block. 918 */ 919 void 920 vm_page_free_toq(vm_page_t m) 921 { 922 struct vpgqueues *pq; 923 924 crit_enter(); 925 mycpu->gd_cnt.v_tfree++; 926 927 KKASSERT((m->flags & PG_MAPPED) == 0); 928 929 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 930 kprintf( 931 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 932 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 933 m->hold_count); 934 if ((m->queue - m->pc) == PQ_FREE) 935 panic("vm_page_free: freeing free page"); 936 else 937 panic("vm_page_free: freeing busy page"); 938 } 939 940 /* 941 * unqueue, then remove page. Note that we cannot destroy 942 * the page here because we do not want to call the pager's 943 * callback routine until after we've put the page on the 944 * appropriate free queue. 945 */ 946 vm_page_unqueue_nowakeup(m); 947 vm_page_remove(m); 948 949 /* 950 * No further management of fictitious pages occurs beyond object 951 * and queue removal. 952 */ 953 if ((m->flags & PG_FICTITIOUS) != 0) { 954 vm_page_wakeup(m); 955 crit_exit(); 956 return; 957 } 958 959 m->valid = 0; 960 vm_page_undirty(m); 961 962 if (m->wire_count != 0) { 963 if (m->wire_count > 1) { 964 panic( 965 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 966 m->wire_count, (long)m->pindex); 967 } 968 panic("vm_page_free: freeing wired page"); 969 } 970 971 /* 972 * Clear the UNMANAGED flag when freeing an unmanaged page. 973 */ 974 if (m->flags & PG_UNMANAGED) { 975 m->flags &= ~PG_UNMANAGED; 976 } 977 978 if (m->hold_count != 0) { 979 m->flags &= ~PG_ZERO; 980 m->queue = PQ_HOLD; 981 } else { 982 m->queue = PQ_FREE + m->pc; 983 } 984 pq = &vm_page_queues[m->queue]; 985 pq->lcnt++; 986 ++(*pq->cnt); 987 988 /* 989 * Put zero'd pages on the end ( where we look for zero'd pages 990 * first ) and non-zerod pages at the head. 991 */ 992 if (m->flags & PG_ZERO) { 993 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 994 ++vm_page_zero_count; 995 } else { 996 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 997 } 998 vm_page_wakeup(m); 999 vm_page_free_wakeup(); 1000 crit_exit(); 1001 } 1002 1003 /* 1004 * vm_page_unmanage() 1005 * 1006 * Prevent PV management from being done on the page. The page is 1007 * removed from the paging queues as if it were wired, and as a 1008 * consequence of no longer being managed the pageout daemon will not 1009 * touch it (since there is no way to locate the pte mappings for the 1010 * page). madvise() calls that mess with the pmap will also no longer 1011 * operate on the page. 1012 * 1013 * Beyond that the page is still reasonably 'normal'. Freeing the page 1014 * will clear the flag. 1015 * 1016 * This routine is used by OBJT_PHYS objects - objects using unswappable 1017 * physical memory as backing store rather then swap-backed memory and 1018 * will eventually be extended to support 4MB unmanaged physical 1019 * mappings. 1020 * 1021 * Must be called with a critical section held. 1022 */ 1023 void 1024 vm_page_unmanage(vm_page_t m) 1025 { 1026 ASSERT_IN_CRIT_SECTION(); 1027 if ((m->flags & PG_UNMANAGED) == 0) { 1028 if (m->wire_count == 0) 1029 vm_page_unqueue(m); 1030 } 1031 vm_page_flag_set(m, PG_UNMANAGED); 1032 } 1033 1034 /* 1035 * Mark this page as wired down by yet another map, removing it from 1036 * paging queues as necessary. 1037 * 1038 * The page queues must be locked. 1039 * This routine may not block. 1040 */ 1041 void 1042 vm_page_wire(vm_page_t m) 1043 { 1044 /* 1045 * Only bump the wire statistics if the page is not already wired, 1046 * and only unqueue the page if it is on some queue (if it is unmanaged 1047 * it is already off the queues). Don't do anything with fictitious 1048 * pages because they are always wired. 1049 */ 1050 crit_enter(); 1051 if ((m->flags & PG_FICTITIOUS) == 0) { 1052 if (m->wire_count == 0) { 1053 if ((m->flags & PG_UNMANAGED) == 0) 1054 vm_page_unqueue(m); 1055 vmstats.v_wire_count++; 1056 } 1057 m->wire_count++; 1058 KASSERT(m->wire_count != 0, 1059 ("vm_page_wire: wire_count overflow m=%p", m)); 1060 } 1061 crit_exit(); 1062 } 1063 1064 /* 1065 * Release one wiring of this page, potentially enabling it to be paged again. 1066 * 1067 * Many pages placed on the inactive queue should actually go 1068 * into the cache, but it is difficult to figure out which. What 1069 * we do instead, if the inactive target is well met, is to put 1070 * clean pages at the head of the inactive queue instead of the tail. 1071 * This will cause them to be moved to the cache more quickly and 1072 * if not actively re-referenced, freed more quickly. If we just 1073 * stick these pages at the end of the inactive queue, heavy filesystem 1074 * meta-data accesses can cause an unnecessary paging load on memory bound 1075 * processes. This optimization causes one-time-use metadata to be 1076 * reused more quickly. 1077 * 1078 * BUT, if we are in a low-memory situation we have no choice but to 1079 * put clean pages on the cache queue. 1080 * 1081 * A number of routines use vm_page_unwire() to guarantee that the page 1082 * will go into either the inactive or active queues, and will NEVER 1083 * be placed in the cache - for example, just after dirtying a page. 1084 * dirty pages in the cache are not allowed. 1085 * 1086 * The page queues must be locked. 1087 * This routine may not block. 1088 */ 1089 void 1090 vm_page_unwire(vm_page_t m, int activate) 1091 { 1092 crit_enter(); 1093 if (m->flags & PG_FICTITIOUS) { 1094 /* do nothing */ 1095 } else if (m->wire_count <= 0) { 1096 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1097 } else { 1098 if (--m->wire_count == 0) { 1099 --vmstats.v_wire_count; 1100 if (m->flags & PG_UNMANAGED) { 1101 ; 1102 } else if (activate) { 1103 TAILQ_INSERT_TAIL( 1104 &vm_page_queues[PQ_ACTIVE].pl, m, pageq); 1105 m->queue = PQ_ACTIVE; 1106 vm_page_queues[PQ_ACTIVE].lcnt++; 1107 vmstats.v_active_count++; 1108 } else { 1109 vm_page_flag_clear(m, PG_WINATCFLS); 1110 TAILQ_INSERT_TAIL( 1111 &vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1112 m->queue = PQ_INACTIVE; 1113 vm_page_queues[PQ_INACTIVE].lcnt++; 1114 vmstats.v_inactive_count++; 1115 } 1116 } 1117 } 1118 crit_exit(); 1119 } 1120 1121 1122 /* 1123 * Move the specified page to the inactive queue. If the page has 1124 * any associated swap, the swap is deallocated. 1125 * 1126 * Normally athead is 0 resulting in LRU operation. athead is set 1127 * to 1 if we want this page to be 'as if it were placed in the cache', 1128 * except without unmapping it from the process address space. 1129 * 1130 * This routine may not block. 1131 */ 1132 static __inline void 1133 _vm_page_deactivate(vm_page_t m, int athead) 1134 { 1135 /* 1136 * Ignore if already inactive. 1137 */ 1138 if (m->queue == PQ_INACTIVE) 1139 return; 1140 1141 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1142 if ((m->queue - m->pc) == PQ_CACHE) 1143 mycpu->gd_cnt.v_reactivated++; 1144 vm_page_flag_clear(m, PG_WINATCFLS); 1145 vm_page_unqueue(m); 1146 if (athead) 1147 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1148 else 1149 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1150 m->queue = PQ_INACTIVE; 1151 vm_page_queues[PQ_INACTIVE].lcnt++; 1152 vmstats.v_inactive_count++; 1153 } 1154 } 1155 1156 void 1157 vm_page_deactivate(vm_page_t m) 1158 { 1159 crit_enter(); 1160 _vm_page_deactivate(m, 0); 1161 crit_exit(); 1162 } 1163 1164 /* 1165 * vm_page_try_to_cache: 1166 * 1167 * Returns 0 on failure, 1 on success 1168 */ 1169 int 1170 vm_page_try_to_cache(vm_page_t m) 1171 { 1172 crit_enter(); 1173 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1174 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1175 crit_exit(); 1176 return(0); 1177 } 1178 vm_page_test_dirty(m); 1179 if (m->dirty) { 1180 crit_exit(); 1181 return(0); 1182 } 1183 vm_page_cache(m); 1184 crit_exit(); 1185 return(1); 1186 } 1187 1188 /* 1189 * Attempt to free the page. If we cannot free it, we do nothing. 1190 * 1 is returned on success, 0 on failure. 1191 */ 1192 int 1193 vm_page_try_to_free(vm_page_t m) 1194 { 1195 crit_enter(); 1196 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1197 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1198 crit_exit(); 1199 return(0); 1200 } 1201 vm_page_test_dirty(m); 1202 if (m->dirty) { 1203 crit_exit(); 1204 return(0); 1205 } 1206 vm_page_busy(m); 1207 vm_page_protect(m, VM_PROT_NONE); 1208 vm_page_free(m); 1209 crit_exit(); 1210 return(1); 1211 } 1212 1213 /* 1214 * vm_page_cache 1215 * 1216 * Put the specified page onto the page cache queue (if appropriate). 1217 * 1218 * This routine may not block. 1219 */ 1220 void 1221 vm_page_cache(vm_page_t m) 1222 { 1223 ASSERT_IN_CRIT_SECTION(); 1224 1225 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1226 m->wire_count || m->hold_count) { 1227 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 1228 return; 1229 } 1230 1231 /* 1232 * Already in the cache (and thus not mapped) 1233 */ 1234 if ((m->queue - m->pc) == PQ_CACHE) { 1235 KKASSERT((m->flags & PG_MAPPED) == 0); 1236 return; 1237 } 1238 1239 /* 1240 * Caller is required to test m->dirty, but note that the act of 1241 * removing the page from its maps can cause it to become dirty 1242 * on an SMP system due to another cpu running in usermode. 1243 */ 1244 if (m->dirty) { 1245 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1246 (long)m->pindex); 1247 } 1248 1249 /* 1250 * Remove all pmaps and indicate that the page is not 1251 * writeable or mapped. Our vm_page_protect() call may 1252 * have blocked (especially w/ VM_PROT_NONE), so recheck 1253 * everything. 1254 */ 1255 vm_page_busy(m); 1256 vm_page_protect(m, VM_PROT_NONE); 1257 vm_page_wakeup(m); 1258 if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy || 1259 m->wire_count || m->hold_count) { 1260 /* do nothing */ 1261 } else if (m->dirty) { 1262 vm_page_deactivate(m); 1263 } else { 1264 vm_page_unqueue_nowakeup(m); 1265 m->queue = PQ_CACHE + m->pc; 1266 vm_page_queues[m->queue].lcnt++; 1267 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq); 1268 vmstats.v_cache_count++; 1269 vm_page_free_wakeup(); 1270 } 1271 } 1272 1273 /* 1274 * vm_page_dontneed() 1275 * 1276 * Cache, deactivate, or do nothing as appropriate. This routine 1277 * is typically used by madvise() MADV_DONTNEED. 1278 * 1279 * Generally speaking we want to move the page into the cache so 1280 * it gets reused quickly. However, this can result in a silly syndrome 1281 * due to the page recycling too quickly. Small objects will not be 1282 * fully cached. On the otherhand, if we move the page to the inactive 1283 * queue we wind up with a problem whereby very large objects 1284 * unnecessarily blow away our inactive and cache queues. 1285 * 1286 * The solution is to move the pages based on a fixed weighting. We 1287 * either leave them alone, deactivate them, or move them to the cache, 1288 * where moving them to the cache has the highest weighting. 1289 * By forcing some pages into other queues we eventually force the 1290 * system to balance the queues, potentially recovering other unrelated 1291 * space from active. The idea is to not force this to happen too 1292 * often. 1293 */ 1294 void 1295 vm_page_dontneed(vm_page_t m) 1296 { 1297 static int dnweight; 1298 int dnw; 1299 int head; 1300 1301 dnw = ++dnweight; 1302 1303 /* 1304 * occassionally leave the page alone 1305 */ 1306 crit_enter(); 1307 if ((dnw & 0x01F0) == 0 || 1308 m->queue == PQ_INACTIVE || 1309 m->queue - m->pc == PQ_CACHE 1310 ) { 1311 if (m->act_count >= ACT_INIT) 1312 --m->act_count; 1313 crit_exit(); 1314 return; 1315 } 1316 1317 if (m->dirty == 0) 1318 vm_page_test_dirty(m); 1319 1320 if (m->dirty || (dnw & 0x0070) == 0) { 1321 /* 1322 * Deactivate the page 3 times out of 32. 1323 */ 1324 head = 0; 1325 } else { 1326 /* 1327 * Cache the page 28 times out of every 32. Note that 1328 * the page is deactivated instead of cached, but placed 1329 * at the head of the queue instead of the tail. 1330 */ 1331 head = 1; 1332 } 1333 _vm_page_deactivate(m, head); 1334 crit_exit(); 1335 } 1336 1337 /* 1338 * Grab a page, blocking if it is busy and allocating a page if necessary. 1339 * A busy page is returned or NULL. 1340 * 1341 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified. 1342 * If VM_ALLOC_RETRY is not specified 1343 * 1344 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 1345 * always returned if we had blocked. 1346 * This routine will never return NULL if VM_ALLOC_RETRY is set. 1347 * This routine may not be called from an interrupt. 1348 * The returned page may not be entirely valid. 1349 * 1350 * This routine may be called from mainline code without spl protection and 1351 * be guarenteed a busied page associated with the object at the specified 1352 * index. 1353 */ 1354 vm_page_t 1355 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1356 { 1357 vm_page_t m; 1358 int generation; 1359 1360 KKASSERT(allocflags & 1361 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1362 crit_enter(); 1363 retrylookup: 1364 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1365 if (m->busy || (m->flags & PG_BUSY)) { 1366 generation = object->generation; 1367 1368 while ((object->generation == generation) && 1369 (m->busy || (m->flags & PG_BUSY))) { 1370 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1371 tsleep(m, 0, "pgrbwt", 0); 1372 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1373 m = NULL; 1374 goto done; 1375 } 1376 } 1377 goto retrylookup; 1378 } else { 1379 vm_page_busy(m); 1380 goto done; 1381 } 1382 } 1383 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1384 if (m == NULL) { 1385 vm_wait(0); 1386 if ((allocflags & VM_ALLOC_RETRY) == 0) 1387 goto done; 1388 goto retrylookup; 1389 } 1390 done: 1391 crit_exit(); 1392 return(m); 1393 } 1394 1395 /* 1396 * Mapping function for valid bits or for dirty bits in 1397 * a page. May not block. 1398 * 1399 * Inputs are required to range within a page. 1400 */ 1401 __inline int 1402 vm_page_bits(int base, int size) 1403 { 1404 int first_bit; 1405 int last_bit; 1406 1407 KASSERT( 1408 base + size <= PAGE_SIZE, 1409 ("vm_page_bits: illegal base/size %d/%d", base, size) 1410 ); 1411 1412 if (size == 0) /* handle degenerate case */ 1413 return(0); 1414 1415 first_bit = base >> DEV_BSHIFT; 1416 last_bit = (base + size - 1) >> DEV_BSHIFT; 1417 1418 return ((2 << last_bit) - (1 << first_bit)); 1419 } 1420 1421 /* 1422 * Sets portions of a page valid and clean. The arguments are expected 1423 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1424 * of any partial chunks touched by the range. The invalid portion of 1425 * such chunks will be zero'd. 1426 * 1427 * This routine may not block. 1428 * 1429 * (base + size) must be less then or equal to PAGE_SIZE. 1430 */ 1431 void 1432 vm_page_set_validclean(vm_page_t m, int base, int size) 1433 { 1434 int pagebits; 1435 int frag; 1436 int endoff; 1437 1438 if (size == 0) /* handle degenerate case */ 1439 return; 1440 1441 /* 1442 * If the base is not DEV_BSIZE aligned and the valid 1443 * bit is clear, we have to zero out a portion of the 1444 * first block. 1445 */ 1446 1447 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1448 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 1449 ) { 1450 pmap_zero_page_area( 1451 VM_PAGE_TO_PHYS(m), 1452 frag, 1453 base - frag 1454 ); 1455 } 1456 1457 /* 1458 * If the ending offset is not DEV_BSIZE aligned and the 1459 * valid bit is clear, we have to zero out a portion of 1460 * the last block. 1461 */ 1462 1463 endoff = base + size; 1464 1465 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1466 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 1467 ) { 1468 pmap_zero_page_area( 1469 VM_PAGE_TO_PHYS(m), 1470 endoff, 1471 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 1472 ); 1473 } 1474 1475 /* 1476 * Set valid, clear dirty bits. If validating the entire 1477 * page we can safely clear the pmap modify bit. We also 1478 * use this opportunity to clear the PG_NOSYNC flag. If a process 1479 * takes a write fault on a MAP_NOSYNC memory area the flag will 1480 * be set again. 1481 * 1482 * We set valid bits inclusive of any overlap, but we can only 1483 * clear dirty bits for DEV_BSIZE chunks that are fully within 1484 * the range. 1485 */ 1486 1487 pagebits = vm_page_bits(base, size); 1488 m->valid |= pagebits; 1489 #if 0 /* NOT YET */ 1490 if ((frag = base & (DEV_BSIZE - 1)) != 0) { 1491 frag = DEV_BSIZE - frag; 1492 base += frag; 1493 size -= frag; 1494 if (size < 0) 1495 size = 0; 1496 } 1497 pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1)); 1498 #endif 1499 m->dirty &= ~pagebits; 1500 if (base == 0 && size == PAGE_SIZE) { 1501 pmap_clear_modify(m); 1502 vm_page_flag_clear(m, PG_NOSYNC); 1503 } 1504 } 1505 1506 void 1507 vm_page_clear_dirty(vm_page_t m, int base, int size) 1508 { 1509 m->dirty &= ~vm_page_bits(base, size); 1510 } 1511 1512 /* 1513 * Make the page all-dirty. 1514 * 1515 * Also make sure the related object and vnode reflect the fact that the 1516 * object may now contain a dirty page. 1517 */ 1518 void 1519 vm_page_dirty(vm_page_t m) 1520 { 1521 #ifdef INVARIANTS 1522 int pqtype = m->queue - m->pc; 1523 #endif 1524 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 1525 ("vm_page_dirty: page in free/cache queue!")); 1526 if (m->dirty != VM_PAGE_BITS_ALL) { 1527 m->dirty = VM_PAGE_BITS_ALL; 1528 if (m->object) 1529 vm_object_set_writeable_dirty(m->object); 1530 } 1531 } 1532 1533 /* 1534 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1535 * valid and dirty bits for the effected areas are cleared. 1536 * 1537 * May not block. 1538 */ 1539 void 1540 vm_page_set_invalid(vm_page_t m, int base, int size) 1541 { 1542 int bits; 1543 1544 bits = vm_page_bits(base, size); 1545 m->valid &= ~bits; 1546 m->dirty &= ~bits; 1547 m->object->generation++; 1548 } 1549 1550 /* 1551 * The kernel assumes that the invalid portions of a page contain 1552 * garbage, but such pages can be mapped into memory by user code. 1553 * When this occurs, we must zero out the non-valid portions of the 1554 * page so user code sees what it expects. 1555 * 1556 * Pages are most often semi-valid when the end of a file is mapped 1557 * into memory and the file's size is not page aligned. 1558 */ 1559 void 1560 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1561 { 1562 int b; 1563 int i; 1564 1565 /* 1566 * Scan the valid bits looking for invalid sections that 1567 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1568 * valid bit may be set ) have already been zerod by 1569 * vm_page_set_validclean(). 1570 */ 1571 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1572 if (i == (PAGE_SIZE / DEV_BSIZE) || 1573 (m->valid & (1 << i)) 1574 ) { 1575 if (i > b) { 1576 pmap_zero_page_area( 1577 VM_PAGE_TO_PHYS(m), 1578 b << DEV_BSHIFT, 1579 (i - b) << DEV_BSHIFT 1580 ); 1581 } 1582 b = i + 1; 1583 } 1584 } 1585 1586 /* 1587 * setvalid is TRUE when we can safely set the zero'd areas 1588 * as being valid. We can do this if there are no cache consistency 1589 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1590 */ 1591 if (setvalid) 1592 m->valid = VM_PAGE_BITS_ALL; 1593 } 1594 1595 /* 1596 * Is a (partial) page valid? Note that the case where size == 0 1597 * will return FALSE in the degenerate case where the page is entirely 1598 * invalid, and TRUE otherwise. 1599 * 1600 * May not block. 1601 */ 1602 int 1603 vm_page_is_valid(vm_page_t m, int base, int size) 1604 { 1605 int bits = vm_page_bits(base, size); 1606 1607 if (m->valid && ((m->valid & bits) == bits)) 1608 return 1; 1609 else 1610 return 0; 1611 } 1612 1613 /* 1614 * update dirty bits from pmap/mmu. May not block. 1615 */ 1616 void 1617 vm_page_test_dirty(vm_page_t m) 1618 { 1619 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1620 vm_page_dirty(m); 1621 } 1622 } 1623 1624 /* 1625 * Issue an event on a VM page. Corresponding action structures are 1626 * removed from the page's list and called. 1627 */ 1628 void 1629 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 1630 { 1631 struct vm_page_action *scan, *next; 1632 1633 LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) { 1634 if (scan->event == event) { 1635 scan->event = VMEVENT_NONE; 1636 LIST_REMOVE(scan, entry); 1637 scan->func(m, scan); 1638 } 1639 } 1640 } 1641 1642 #include "opt_ddb.h" 1643 #ifdef DDB 1644 #include <sys/kernel.h> 1645 1646 #include <ddb/ddb.h> 1647 1648 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1649 { 1650 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 1651 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 1652 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 1653 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 1654 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 1655 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 1656 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 1657 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 1658 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 1659 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 1660 } 1661 1662 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1663 { 1664 int i; 1665 db_printf("PQ_FREE:"); 1666 for(i=0;i<PQ_L2_SIZE;i++) { 1667 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1668 } 1669 db_printf("\n"); 1670 1671 db_printf("PQ_CACHE:"); 1672 for(i=0;i<PQ_L2_SIZE;i++) { 1673 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1674 } 1675 db_printf("\n"); 1676 1677 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1678 vm_page_queues[PQ_ACTIVE].lcnt, 1679 vm_page_queues[PQ_INACTIVE].lcnt); 1680 } 1681 #endif /* DDB */ 1682