xref: /dragonfly/sys/vm/vm_page.c (revision d9d67b59)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
33  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
34  */
35 
36 /*
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 /*
63  * Resident memory management module.  The module manipulates 'VM pages'.
64  * A VM page is the core building block for memory management.
65  */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/malloc.h>
70 #include <sys/proc.h>
71 #include <sys/vmmeter.h>
72 #include <sys/vnode.h>
73 #include <sys/kernel.h>
74 #include <sys/alist.h>
75 #include <sys/sysctl.h>
76 #include <sys/cpu_topology.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 #include <sys/lock.h>
81 #include <vm/vm_kern.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 
91 #include <machine/inttypes.h>
92 #include <machine/md_var.h>
93 #include <machine/specialreg.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 /*
99  * SET - Minimum required set associative size, must be a power of 2.  We
100  *	 want this to match or exceed the set-associativeness of the cpu.
101  *
102  * GRP - A larger set that allows bleed-over into the domains of other
103  *	 nearby cpus.  Also must be a power of 2.  Used by the page zeroing
104  *	 code to smooth things out a bit.
105  */
106 #define PQ_SET_ASSOC		16
107 #define PQ_SET_ASSOC_MASK	(PQ_SET_ASSOC - 1)
108 
109 #define PQ_GRP_ASSOC		(PQ_SET_ASSOC * 2)
110 #define PQ_GRP_ASSOC_MASK	(PQ_GRP_ASSOC - 1)
111 
112 static void vm_page_queue_init(void);
113 static void vm_page_free_wakeup(void);
114 static vm_page_t vm_page_select_cache(u_short pg_color);
115 static vm_page_t _vm_page_list_find2(int basequeue, int index);
116 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
117 
118 /*
119  * Array of tailq lists
120  */
121 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
122 
123 static volatile int vm_pages_waiting;
124 static struct alist vm_contig_alist;
125 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
126 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin, "vm_contig_spin");
127 
128 static u_long vm_dma_reserved = 0;
129 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
130 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
131 	    "Memory reserved for DMA");
132 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
133 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
134 
135 static int vm_contig_verbose = 0;
136 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
137 
138 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
139 	     vm_pindex_t, pindex);
140 
141 static void
142 vm_page_queue_init(void)
143 {
144 	int i;
145 
146 	for (i = 0; i < PQ_L2_SIZE; i++)
147 		vm_page_queues[PQ_FREE+i].cnt_offset =
148 			offsetof(struct vmstats, v_free_count);
149 	for (i = 0; i < PQ_L2_SIZE; i++)
150 		vm_page_queues[PQ_CACHE+i].cnt_offset =
151 			offsetof(struct vmstats, v_cache_count);
152 	for (i = 0; i < PQ_L2_SIZE; i++)
153 		vm_page_queues[PQ_INACTIVE+i].cnt_offset =
154 			offsetof(struct vmstats, v_inactive_count);
155 	for (i = 0; i < PQ_L2_SIZE; i++)
156 		vm_page_queues[PQ_ACTIVE+i].cnt_offset =
157 			offsetof(struct vmstats, v_active_count);
158 	for (i = 0; i < PQ_L2_SIZE; i++)
159 		vm_page_queues[PQ_HOLD+i].cnt_offset =
160 			offsetof(struct vmstats, v_active_count);
161 	/* PQ_NONE has no queue */
162 
163 	for (i = 0; i < PQ_COUNT; i++) {
164 		TAILQ_INIT(&vm_page_queues[i].pl);
165 		spin_init(&vm_page_queues[i].spin, "vm_page_queue_init");
166 	}
167 }
168 
169 /*
170  * note: place in initialized data section?  Is this necessary?
171  */
172 long first_page = 0;
173 int vm_page_array_size = 0;
174 vm_page_t vm_page_array = NULL;
175 vm_paddr_t vm_low_phys_reserved;
176 
177 /*
178  * (low level boot)
179  *
180  * Sets the page size, perhaps based upon the memory size.
181  * Must be called before any use of page-size dependent functions.
182  */
183 void
184 vm_set_page_size(void)
185 {
186 	if (vmstats.v_page_size == 0)
187 		vmstats.v_page_size = PAGE_SIZE;
188 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
189 		panic("vm_set_page_size: page size not a power of two");
190 }
191 
192 /*
193  * (low level boot)
194  *
195  * Add a new page to the freelist for use by the system.  New pages
196  * are added to both the head and tail of the associated free page
197  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
198  * requests pull 'recent' adds (higher physical addresses) first.
199  *
200  * Beware that the page zeroing daemon will also be running soon after
201  * boot, moving pages from the head to the tail of the PQ_FREE queues.
202  *
203  * Must be called in a critical section.
204  */
205 static void
206 vm_add_new_page(vm_paddr_t pa)
207 {
208 	struct vpgqueues *vpq;
209 	vm_page_t m;
210 
211 	m = PHYS_TO_VM_PAGE(pa);
212 	m->phys_addr = pa;
213 	m->flags = 0;
214 	m->pat_mode = PAT_WRITE_BACK;
215 	m->pc = (pa >> PAGE_SHIFT);
216 
217 	/*
218 	 * Twist for cpu localization in addition to page coloring, so
219 	 * different cpus selecting by m->queue get different page colors.
220 	 */
221 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE);
222 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE));
223 	m->pc &= PQ_L2_MASK;
224 
225 	/*
226 	 * Reserve a certain number of contiguous low memory pages for
227 	 * contigmalloc() to use.
228 	 */
229 	if (pa < vm_low_phys_reserved) {
230 		atomic_add_int(&vmstats.v_page_count, 1);
231 		atomic_add_int(&vmstats.v_dma_pages, 1);
232 		m->queue = PQ_NONE;
233 		m->wire_count = 1;
234 		atomic_add_int(&vmstats.v_wire_count, 1);
235 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
236 		return;
237 	}
238 
239 	/*
240 	 * General page
241 	 */
242 	m->queue = m->pc + PQ_FREE;
243 	KKASSERT(m->dirty == 0);
244 
245 	atomic_add_int(&vmstats.v_page_count, 1);
246 	atomic_add_int(&vmstats.v_free_count, 1);
247 	vpq = &vm_page_queues[m->queue];
248 	TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
249 	++vpq->lcnt;
250 }
251 
252 /*
253  * (low level boot)
254  *
255  * Initializes the resident memory module.
256  *
257  * Preallocates memory for critical VM structures and arrays prior to
258  * kernel_map becoming available.
259  *
260  * Memory is allocated from (virtual2_start, virtual2_end) if available,
261  * otherwise memory is allocated from (virtual_start, virtual_end).
262  *
263  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
264  * large enough to hold vm_page_array & other structures for machines with
265  * large amounts of ram, so we want to use virtual2* when available.
266  */
267 void
268 vm_page_startup(void)
269 {
270 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
271 	vm_offset_t mapped;
272 	vm_size_t npages;
273 	vm_paddr_t page_range;
274 	vm_paddr_t new_end;
275 	int i;
276 	vm_paddr_t pa;
277 	vm_paddr_t last_pa;
278 	vm_paddr_t end;
279 	vm_paddr_t biggestone, biggestsize;
280 	vm_paddr_t total;
281 	vm_page_t m;
282 
283 	total = 0;
284 	biggestsize = 0;
285 	biggestone = 0;
286 	vaddr = round_page(vaddr);
287 
288 	/*
289 	 * Make sure ranges are page-aligned.
290 	 */
291 	for (i = 0; phys_avail[i].phys_end; ++i) {
292 		phys_avail[i].phys_beg = round_page64(phys_avail[i].phys_beg);
293 		phys_avail[i].phys_end = trunc_page64(phys_avail[i].phys_end);
294 		if (phys_avail[i].phys_end < phys_avail[i].phys_beg)
295 			phys_avail[i].phys_end = phys_avail[i].phys_beg;
296 	}
297 
298 	/*
299 	 * Locate largest block
300 	 */
301 	for (i = 0; phys_avail[i].phys_end; ++i) {
302 		vm_paddr_t size = phys_avail[i].phys_end -
303 				  phys_avail[i].phys_beg;
304 
305 		if (size > biggestsize) {
306 			biggestone = i;
307 			biggestsize = size;
308 		}
309 		total += size;
310 	}
311 	--i;	/* adjust to last entry for use down below */
312 
313 	end = phys_avail[biggestone].phys_end;
314 	end = trunc_page(end);
315 
316 	/*
317 	 * Initialize the queue headers for the free queue, the active queue
318 	 * and the inactive queue.
319 	 */
320 	vm_page_queue_init();
321 
322 #if !defined(_KERNEL_VIRTUAL)
323 	/*
324 	 * VKERNELs don't support minidumps and as such don't need
325 	 * vm_page_dump
326 	 *
327 	 * Allocate a bitmap to indicate that a random physical page
328 	 * needs to be included in a minidump.
329 	 *
330 	 * The amd64 port needs this to indicate which direct map pages
331 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
332 	 *
333 	 * However, i386 still needs this workspace internally within the
334 	 * minidump code.  In theory, they are not needed on i386, but are
335 	 * included should the sf_buf code decide to use them.
336 	 */
337 	page_range = phys_avail[i].phys_end / PAGE_SIZE;
338 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
339 	end -= vm_page_dump_size;
340 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
341 					VM_PROT_READ | VM_PROT_WRITE);
342 	bzero((void *)vm_page_dump, vm_page_dump_size);
343 #endif
344 	/*
345 	 * Compute the number of pages of memory that will be available for
346 	 * use (taking into account the overhead of a page structure per
347 	 * page).
348 	 */
349 	first_page = phys_avail[0].phys_beg / PAGE_SIZE;
350 	page_range = phys_avail[i].phys_end / PAGE_SIZE - first_page;
351 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
352 
353 #ifndef _KERNEL_VIRTUAL
354 	/*
355 	 * (only applies to real kernels)
356 	 *
357 	 * Reserve a large amount of low memory for potential 32-bit DMA
358 	 * space allocations.  Once device initialization is complete we
359 	 * release most of it, but keep (vm_dma_reserved) memory reserved
360 	 * for later use.  Typically for X / graphics.  Through trial and
361 	 * error we find that GPUs usually requires ~60-100MB or so.
362 	 *
363 	 * By default, 128M is left in reserve on machines with 2G+ of ram.
364 	 */
365 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
366 	if (vm_low_phys_reserved > total / 4)
367 		vm_low_phys_reserved = total / 4;
368 	if (vm_dma_reserved == 0) {
369 		vm_dma_reserved = 128 * 1024 * 1024;	/* 128MB */
370 		if (vm_dma_reserved > total / 16)
371 			vm_dma_reserved = total / 16;
372 	}
373 #endif
374 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
375 		   ALIST_RECORDS_65536);
376 
377 	/*
378 	 * Initialize the mem entry structures now, and put them in the free
379 	 * queue.
380 	 */
381 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
382 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
383 	vm_page_array = (vm_page_t)mapped;
384 
385 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
386 	/*
387 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
388 	 * we have to manually add these pages to the minidump tracking so
389 	 * that they can be dumped, including the vm_page_array.
390 	 */
391 	for (pa = new_end;
392 	     pa < phys_avail[biggestone].phys_end;
393 	     pa += PAGE_SIZE) {
394 		dump_add_page(pa);
395 	}
396 #endif
397 
398 	/*
399 	 * Clear all of the page structures, run basic initialization so
400 	 * PHYS_TO_VM_PAGE() operates properly even on pages not in the
401 	 * map.
402 	 */
403 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
404 	vm_page_array_size = page_range;
405 
406 	m = &vm_page_array[0];
407 	pa = ptoa(first_page);
408 	for (i = 0; i < page_range; ++i) {
409 		spin_init(&m->spin, "vm_page");
410 		m->phys_addr = pa;
411 		pa += PAGE_SIZE;
412 		++m;
413 	}
414 
415 	/*
416 	 * Construct the free queue(s) in ascending order (by physical
417 	 * address) so that the first 16MB of physical memory is allocated
418 	 * last rather than first.  On large-memory machines, this avoids
419 	 * the exhaustion of low physical memory before isa_dmainit has run.
420 	 */
421 	vmstats.v_page_count = 0;
422 	vmstats.v_free_count = 0;
423 	for (i = 0; phys_avail[i].phys_end && npages > 0; ++i) {
424 		pa = phys_avail[i].phys_beg;
425 		if (i == biggestone)
426 			last_pa = new_end;
427 		else
428 			last_pa = phys_avail[i].phys_end;
429 		while (pa < last_pa && npages-- > 0) {
430 			vm_add_new_page(pa);
431 			pa += PAGE_SIZE;
432 		}
433 	}
434 	if (virtual2_start)
435 		virtual2_start = vaddr;
436 	else
437 		virtual_start = vaddr;
438 	mycpu->gd_vmstats = vmstats;
439 }
440 
441 /*
442  * Reorganize VM pages based on numa data.  May be called as many times as
443  * necessary.  Will reorganize the vm_page_t page color and related queue(s)
444  * to allow vm_page_alloc() to choose pages based on socket affinity.
445  *
446  * NOTE: This function is only called while we are still in UP mode, so
447  *	 we only need a critical section to protect the queues (which
448  *	 saves a lot of time, there are likely a ton of pages).
449  */
450 void
451 vm_numa_organize(vm_paddr_t ran_beg, vm_paddr_t bytes, int physid)
452 {
453 	vm_paddr_t scan_beg;
454 	vm_paddr_t scan_end;
455 	vm_paddr_t ran_end;
456 	struct vpgqueues *vpq;
457 	vm_page_t m;
458 	vm_page_t mend;
459 	int i;
460 	int socket_mod;
461 	int socket_value;
462 
463 	/*
464 	 * Check if no physical information, or there was only one socket
465 	 * (so don't waste time doing nothing!).
466 	 */
467 	if (cpu_topology_phys_ids <= 1 ||
468 	    cpu_topology_core_ids == 0) {
469 		return;
470 	}
471 
472 	/*
473 	 * Setup for our iteration.  Note that ACPI may iterate CPU
474 	 * sockets starting at 0 or 1 or some other number.  The
475 	 * cpu_topology code mod's it against the socket count.
476 	 */
477 	ran_end = ran_beg + bytes;
478 	physid %= cpu_topology_phys_ids;
479 
480 	socket_mod = PQ_L2_SIZE / cpu_topology_phys_ids;
481 	socket_value = physid * socket_mod;
482 	mend = &vm_page_array[vm_page_array_size];
483 
484 	crit_enter();
485 
486 	/*
487 	 * Adjust vm_page->pc and requeue all affected pages.  The
488 	 * allocator will then be able to localize memory allocations
489 	 * to some degree.
490 	 */
491 	for (i = 0; phys_avail[i].phys_end; ++i) {
492 		scan_beg = phys_avail[i].phys_beg;
493 		scan_end = phys_avail[i].phys_end;
494 		if (scan_end <= ran_beg)
495 			continue;
496 		if (scan_beg >= ran_end)
497 			continue;
498 		if (scan_beg < ran_beg)
499 			scan_beg = ran_beg;
500 		if (scan_end > ran_end)
501 			scan_end = ran_end;
502 		if (atop(scan_end) > first_page + vm_page_array_size)
503 			scan_end = ptoa(first_page + vm_page_array_size);
504 
505 		m = PHYS_TO_VM_PAGE(scan_beg);
506 		while (scan_beg < scan_end) {
507 			KKASSERT(m < mend);
508 			if (m->queue != PQ_NONE) {
509 				vpq = &vm_page_queues[m->queue];
510 				TAILQ_REMOVE(&vpq->pl, m, pageq);
511 				--vpq->lcnt;
512 				/* queue doesn't change, no need to adj cnt */
513 				m->queue -= m->pc;
514 				m->pc %= socket_mod;
515 				m->pc += socket_value;
516 				m->pc &= PQ_L2_MASK;
517 				m->queue += m->pc;
518 				vpq = &vm_page_queues[m->queue];
519 				TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
520 				++vpq->lcnt;
521 				/* queue doesn't change, no need to adj cnt */
522 			} else {
523 				m->pc %= socket_mod;
524 				m->pc += socket_value;
525 				m->pc &= PQ_L2_MASK;
526 			}
527 			scan_beg += PAGE_SIZE;
528 			++m;
529 		}
530 	}
531 	crit_exit();
532 }
533 
534 /*
535  * We tended to reserve a ton of memory for contigmalloc().  Now that most
536  * drivers have initialized we want to return most the remaining free
537  * reserve back to the VM page queues so they can be used for normal
538  * allocations.
539  *
540  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
541  */
542 static void
543 vm_page_startup_finish(void *dummy __unused)
544 {
545 	alist_blk_t blk;
546 	alist_blk_t rblk;
547 	alist_blk_t count;
548 	alist_blk_t xcount;
549 	alist_blk_t bfree;
550 	vm_page_t m;
551 
552 	spin_lock(&vm_contig_spin);
553 	for (;;) {
554 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
555 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
556 			break;
557 		if (count == 0)
558 			break;
559 
560 		/*
561 		 * Figure out how much of the initial reserve we have to
562 		 * free in order to reach our target.
563 		 */
564 		bfree -= vm_dma_reserved / PAGE_SIZE;
565 		if (count > bfree) {
566 			blk += count - bfree;
567 			count = bfree;
568 		}
569 
570 		/*
571 		 * Calculate the nearest power of 2 <= count.
572 		 */
573 		for (xcount = 1; xcount <= count; xcount <<= 1)
574 			;
575 		xcount >>= 1;
576 		blk += count - xcount;
577 		count = xcount;
578 
579 		/*
580 		 * Allocate the pages from the alist, then free them to
581 		 * the normal VM page queues.
582 		 *
583 		 * Pages allocated from the alist are wired.  We have to
584 		 * busy, unwire, and free them.  We must also adjust
585 		 * vm_low_phys_reserved before freeing any pages to prevent
586 		 * confusion.
587 		 */
588 		rblk = alist_alloc(&vm_contig_alist, blk, count);
589 		if (rblk != blk) {
590 			kprintf("vm_page_startup_finish: Unable to return "
591 				"dma space @0x%08x/%d -> 0x%08x\n",
592 				blk, count, rblk);
593 			break;
594 		}
595 		atomic_add_int(&vmstats.v_dma_pages, -count);
596 		spin_unlock(&vm_contig_spin);
597 
598 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
599 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
600 		while (count) {
601 			vm_page_busy_wait(m, FALSE, "cpgfr");
602 			vm_page_unwire(m, 0);
603 			vm_page_free(m);
604 			--count;
605 			++m;
606 		}
607 		spin_lock(&vm_contig_spin);
608 	}
609 	spin_unlock(&vm_contig_spin);
610 
611 	/*
612 	 * Print out how much DMA space drivers have already allocated and
613 	 * how much is left over.
614 	 */
615 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
616 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
617 		(PAGE_SIZE / 1024),
618 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
619 }
620 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
621 	vm_page_startup_finish, NULL);
622 
623 
624 /*
625  * Scan comparison function for Red-Black tree scans.  An inclusive
626  * (start,end) is expected.  Other fields are not used.
627  */
628 int
629 rb_vm_page_scancmp(struct vm_page *p, void *data)
630 {
631 	struct rb_vm_page_scan_info *info = data;
632 
633 	if (p->pindex < info->start_pindex)
634 		return(-1);
635 	if (p->pindex > info->end_pindex)
636 		return(1);
637 	return(0);
638 }
639 
640 int
641 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
642 {
643 	if (p1->pindex < p2->pindex)
644 		return(-1);
645 	if (p1->pindex > p2->pindex)
646 		return(1);
647 	return(0);
648 }
649 
650 void
651 vm_page_init(vm_page_t m)
652 {
653 	/* do nothing for now.  Called from pmap_page_init() */
654 }
655 
656 /*
657  * Each page queue has its own spin lock, which is fairly optimal for
658  * allocating and freeing pages at least.
659  *
660  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
661  * queue spinlock via this function.  Also note that m->queue cannot change
662  * unless both the page and queue are locked.
663  */
664 static __inline
665 void
666 _vm_page_queue_spin_lock(vm_page_t m)
667 {
668 	u_short queue;
669 
670 	queue = m->queue;
671 	if (queue != PQ_NONE) {
672 		spin_lock(&vm_page_queues[queue].spin);
673 		KKASSERT(queue == m->queue);
674 	}
675 }
676 
677 static __inline
678 void
679 _vm_page_queue_spin_unlock(vm_page_t m)
680 {
681 	u_short queue;
682 
683 	queue = m->queue;
684 	cpu_ccfence();
685 	if (queue != PQ_NONE)
686 		spin_unlock(&vm_page_queues[queue].spin);
687 }
688 
689 static __inline
690 void
691 _vm_page_queues_spin_lock(u_short queue)
692 {
693 	cpu_ccfence();
694 	if (queue != PQ_NONE)
695 		spin_lock(&vm_page_queues[queue].spin);
696 }
697 
698 
699 static __inline
700 void
701 _vm_page_queues_spin_unlock(u_short queue)
702 {
703 	cpu_ccfence();
704 	if (queue != PQ_NONE)
705 		spin_unlock(&vm_page_queues[queue].spin);
706 }
707 
708 void
709 vm_page_queue_spin_lock(vm_page_t m)
710 {
711 	_vm_page_queue_spin_lock(m);
712 }
713 
714 void
715 vm_page_queues_spin_lock(u_short queue)
716 {
717 	_vm_page_queues_spin_lock(queue);
718 }
719 
720 void
721 vm_page_queue_spin_unlock(vm_page_t m)
722 {
723 	_vm_page_queue_spin_unlock(m);
724 }
725 
726 void
727 vm_page_queues_spin_unlock(u_short queue)
728 {
729 	_vm_page_queues_spin_unlock(queue);
730 }
731 
732 /*
733  * This locks the specified vm_page and its queue in the proper order
734  * (page first, then queue).  The queue may change so the caller must
735  * recheck on return.
736  */
737 static __inline
738 void
739 _vm_page_and_queue_spin_lock(vm_page_t m)
740 {
741 	vm_page_spin_lock(m);
742 	_vm_page_queue_spin_lock(m);
743 }
744 
745 static __inline
746 void
747 _vm_page_and_queue_spin_unlock(vm_page_t m)
748 {
749 	_vm_page_queues_spin_unlock(m->queue);
750 	vm_page_spin_unlock(m);
751 }
752 
753 void
754 vm_page_and_queue_spin_unlock(vm_page_t m)
755 {
756 	_vm_page_and_queue_spin_unlock(m);
757 }
758 
759 void
760 vm_page_and_queue_spin_lock(vm_page_t m)
761 {
762 	_vm_page_and_queue_spin_lock(m);
763 }
764 
765 /*
766  * Helper function removes vm_page from its current queue.
767  * Returns the base queue the page used to be on.
768  *
769  * The vm_page and the queue must be spinlocked.
770  * This function will unlock the queue but leave the page spinlocked.
771  */
772 static __inline u_short
773 _vm_page_rem_queue_spinlocked(vm_page_t m)
774 {
775 	struct vpgqueues *pq;
776 	u_short queue;
777 	u_short oqueue;
778 	int *cnt;
779 
780 	queue = m->queue;
781 	if (queue != PQ_NONE) {
782 		pq = &vm_page_queues[queue];
783 		TAILQ_REMOVE(&pq->pl, m, pageq);
784 
785 		/*
786 		 * Adjust our pcpu stats.  In order for the nominal low-memory
787 		 * algorithms to work properly we don't let any pcpu stat get
788 		 * too negative before we force it to be rolled-up into the
789 		 * global stats.  Otherwise our pageout and vm_wait tests
790 		 * will fail badly.
791 		 *
792 		 * The idea here is to reduce unnecessary SMP cache
793 		 * mastership changes in the global vmstats, which can be
794 		 * particularly bad in multi-socket systems.
795 		 */
796 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
797 		atomic_add_int(cnt, -1);
798 		if (*cnt < -VMMETER_SLOP_COUNT) {
799 			u_int copy = atomic_swap_int(cnt, 0);
800 			cnt = (int *)((char *)&vmstats + pq->cnt_offset);
801 			atomic_add_int(cnt, copy);
802 			cnt = (int *)((char *)&mycpu->gd_vmstats +
803 				      pq->cnt_offset);
804 			atomic_add_int(cnt, copy);
805 		}
806 		pq->lcnt--;
807 		m->queue = PQ_NONE;
808 		oqueue = queue;
809 		queue -= m->pc;
810 		vm_page_queues_spin_unlock(oqueue);	/* intended */
811 	}
812 	return queue;
813 }
814 
815 /*
816  * Helper function places the vm_page on the specified queue.  Generally
817  * speaking only PQ_FREE pages are placed at the head, to allow them to
818  * be allocated sooner rather than later on the assumption that they
819  * are cache-hot.
820  *
821  * The vm_page must be spinlocked.
822  * This function will return with both the page and the queue locked.
823  */
824 static __inline void
825 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
826 {
827 	struct vpgqueues *pq;
828 	u_int *cnt;
829 
830 	KKASSERT(m->queue == PQ_NONE);
831 
832 	if (queue != PQ_NONE) {
833 		vm_page_queues_spin_lock(queue);
834 		pq = &vm_page_queues[queue];
835 		++pq->lcnt;
836 
837 		/*
838 		 * Adjust our pcpu stats.  If a system entity really needs
839 		 * to incorporate the count it will call vmstats_rollup()
840 		 * to roll it all up into the global vmstats strufture.
841 		 */
842 		cnt = (int *)((char *)&mycpu->gd_vmstats_adj + pq->cnt_offset);
843 		atomic_add_int(cnt, 1);
844 
845 		/*
846 		 * PQ_FREE is always handled LIFO style to try to provide
847 		 * cache-hot pages to programs.
848 		 */
849 		m->queue = queue;
850 		if (queue - m->pc == PQ_FREE) {
851 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
852 		} else if (athead) {
853 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
854 		} else {
855 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
856 		}
857 		/* leave the queue spinlocked */
858 	}
859 }
860 
861 /*
862  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
863  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
864  * did not.  Only one sleep call will be made before returning.
865  *
866  * This function does NOT busy the page and on return the page is not
867  * guaranteed to be available.
868  */
869 void
870 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
871 {
872 	u_int32_t flags;
873 
874 	for (;;) {
875 		flags = m->flags;
876 		cpu_ccfence();
877 
878 		if ((flags & PG_BUSY) == 0 &&
879 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
880 			break;
881 		}
882 		tsleep_interlock(m, 0);
883 		if (atomic_cmpset_int(&m->flags, flags,
884 				      flags | PG_WANTED | PG_REFERENCED)) {
885 			tsleep(m, PINTERLOCKED, msg, 0);
886 			break;
887 		}
888 	}
889 }
890 
891 /*
892  * This calculates and returns a page color given an optional VM object and
893  * either a pindex or an iterator.  We attempt to return a cpu-localized
894  * pg_color that is still roughly 16-way set-associative.  The CPU topology
895  * is used if it was probed.
896  *
897  * The caller may use the returned value to index into e.g. PQ_FREE when
898  * allocating a page in order to nominally obtain pages that are hopefully
899  * already localized to the requesting cpu.  This function is not able to
900  * provide any sort of guarantee of this, but does its best to improve
901  * hardware cache management performance.
902  *
903  * WARNING! The caller must mask the returned value with PQ_L2_MASK.
904  */
905 u_short
906 vm_get_pg_color(int cpuid, vm_object_t object, vm_pindex_t pindex)
907 {
908 	u_short pg_color;
909 	int phys_id;
910 	int core_id;
911 	int object_pg_color;
912 
913 	phys_id = get_cpu_phys_id(cpuid);
914 	core_id = get_cpu_core_id(cpuid);
915 	object_pg_color = object ? object->pg_color : 0;
916 
917 	if (cpu_topology_phys_ids && cpu_topology_core_ids) {
918 		int grpsize;
919 
920 		/*
921 		 * Break us down by socket and cpu
922 		 */
923 		pg_color = phys_id * PQ_L2_SIZE / cpu_topology_phys_ids;
924 		pg_color += core_id * PQ_L2_SIZE /
925 			    (cpu_topology_core_ids * cpu_topology_phys_ids);
926 
927 		/*
928 		 * Calculate remaining component for object/queue color
929 		 */
930 		grpsize = PQ_L2_SIZE / (cpu_topology_core_ids *
931 					cpu_topology_phys_ids);
932 		if (grpsize >= 8) {
933 			pg_color += (pindex + object_pg_color) % grpsize;
934 		} else {
935 			if (grpsize <= 2) {
936 				grpsize = 8;
937 			} else {
938 				/* 3->9, 4->8, 5->10, 6->12, 7->14 */
939 				grpsize += grpsize;
940 				if (grpsize < 8)
941 					grpsize += grpsize;
942 			}
943 			pg_color += (pindex + object_pg_color) % grpsize;
944 		}
945 	} else {
946 		/*
947 		 * Unknown topology, distribute things evenly.
948 		 */
949 		pg_color = cpuid * PQ_L2_SIZE / ncpus;
950 		pg_color += pindex + object_pg_color;
951 	}
952 	return (pg_color & PQ_L2_MASK);
953 }
954 
955 /*
956  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
957  * also wait for m->busy to become 0 before setting PG_BUSY.
958  */
959 void
960 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
961 				     int also_m_busy, const char *msg
962 				     VM_PAGE_DEBUG_ARGS)
963 {
964 	u_int32_t flags;
965 
966 	for (;;) {
967 		flags = m->flags;
968 		cpu_ccfence();
969 		if (flags & PG_BUSY) {
970 			tsleep_interlock(m, 0);
971 			if (atomic_cmpset_int(&m->flags, flags,
972 					  flags | PG_WANTED | PG_REFERENCED)) {
973 				tsleep(m, PINTERLOCKED, msg, 0);
974 			}
975 		} else if (also_m_busy && (flags & PG_SBUSY)) {
976 			tsleep_interlock(m, 0);
977 			if (atomic_cmpset_int(&m->flags, flags,
978 					  flags | PG_WANTED | PG_REFERENCED)) {
979 				tsleep(m, PINTERLOCKED, msg, 0);
980 			}
981 		} else {
982 			if (atomic_cmpset_int(&m->flags, flags,
983 					      flags | PG_BUSY)) {
984 #ifdef VM_PAGE_DEBUG
985 				m->busy_func = func;
986 				m->busy_line = lineno;
987 #endif
988 				break;
989 			}
990 		}
991 	}
992 }
993 
994 /*
995  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
996  * is also 0.
997  *
998  * Returns non-zero on failure.
999  */
1000 int
1001 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
1002 				    VM_PAGE_DEBUG_ARGS)
1003 {
1004 	u_int32_t flags;
1005 
1006 	for (;;) {
1007 		flags = m->flags;
1008 		cpu_ccfence();
1009 		if (flags & PG_BUSY)
1010 			return TRUE;
1011 		if (also_m_busy && (flags & PG_SBUSY))
1012 			return TRUE;
1013 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1014 #ifdef VM_PAGE_DEBUG
1015 				m->busy_func = func;
1016 				m->busy_line = lineno;
1017 #endif
1018 			return FALSE;
1019 		}
1020 	}
1021 }
1022 
1023 /*
1024  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
1025  * that a wakeup() should be performed.
1026  *
1027  * The vm_page must be spinlocked and will remain spinlocked on return.
1028  * The related queue must NOT be spinlocked (which could deadlock us).
1029  *
1030  * (inline version)
1031  */
1032 static __inline
1033 int
1034 _vm_page_wakeup(vm_page_t m)
1035 {
1036 	u_int32_t flags;
1037 
1038 	for (;;) {
1039 		flags = m->flags;
1040 		cpu_ccfence();
1041 		if (atomic_cmpset_int(&m->flags, flags,
1042 				      flags & ~(PG_BUSY | PG_WANTED))) {
1043 			break;
1044 		}
1045 	}
1046 	return(flags & PG_WANTED);
1047 }
1048 
1049 /*
1050  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
1051  * is typically the last call you make on a page before moving onto
1052  * other things.
1053  */
1054 void
1055 vm_page_wakeup(vm_page_t m)
1056 {
1057         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
1058 	vm_page_spin_lock(m);
1059 	if (_vm_page_wakeup(m)) {
1060 		vm_page_spin_unlock(m);
1061 		wakeup(m);
1062 	} else {
1063 		vm_page_spin_unlock(m);
1064 	}
1065 }
1066 
1067 /*
1068  * Holding a page keeps it from being reused.  Other parts of the system
1069  * can still disassociate the page from its current object and free it, or
1070  * perform read or write I/O on it and/or otherwise manipulate the page,
1071  * but if the page is held the VM system will leave the page and its data
1072  * intact and not reuse the page for other purposes until the last hold
1073  * reference is released.  (see vm_page_wire() if you want to prevent the
1074  * page from being disassociated from its object too).
1075  *
1076  * The caller must still validate the contents of the page and, if necessary,
1077  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
1078  * before manipulating the page.
1079  *
1080  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
1081  */
1082 void
1083 vm_page_hold(vm_page_t m)
1084 {
1085 	vm_page_spin_lock(m);
1086 	atomic_add_int(&m->hold_count, 1);
1087 	if (m->queue - m->pc == PQ_FREE) {
1088 		_vm_page_queue_spin_lock(m);
1089 		_vm_page_rem_queue_spinlocked(m);
1090 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1091 		_vm_page_queue_spin_unlock(m);
1092 	}
1093 	vm_page_spin_unlock(m);
1094 }
1095 
1096 /*
1097  * The opposite of vm_page_hold().  If the page is on the HOLD queue
1098  * it was freed while held and must be moved back to the FREE queue.
1099  */
1100 void
1101 vm_page_unhold(vm_page_t m)
1102 {
1103 	KASSERT(m->hold_count > 0 && m->queue - m->pc != PQ_FREE,
1104 		("vm_page_unhold: pg %p illegal hold_count (%d) or on FREE queue (%d)",
1105 		 m, m->hold_count, m->queue - m->pc));
1106 	vm_page_spin_lock(m);
1107 	atomic_add_int(&m->hold_count, -1);
1108 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
1109 		_vm_page_queue_spin_lock(m);
1110 		_vm_page_rem_queue_spinlocked(m);
1111 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
1112 		_vm_page_queue_spin_unlock(m);
1113 	}
1114 	vm_page_spin_unlock(m);
1115 }
1116 
1117 /*
1118  *	vm_page_getfake:
1119  *
1120  *	Create a fictitious page with the specified physical address and
1121  *	memory attribute.  The memory attribute is the only the machine-
1122  *	dependent aspect of a fictitious page that must be initialized.
1123  */
1124 
1125 void
1126 vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
1127 {
1128 
1129 	if ((m->flags & PG_FICTITIOUS) != 0) {
1130 		/*
1131 		 * The page's memattr might have changed since the
1132 		 * previous initialization.  Update the pmap to the
1133 		 * new memattr.
1134 		 */
1135 		goto memattr;
1136 	}
1137 	m->phys_addr = paddr;
1138 	m->queue = PQ_NONE;
1139 	/* Fictitious pages don't use "segind". */
1140 	/* Fictitious pages don't use "order" or "pool". */
1141 	m->flags = PG_FICTITIOUS | PG_UNMANAGED | PG_BUSY;
1142 	m->wire_count = 1;
1143 	spin_init(&m->spin, "fake_page");
1144 	pmap_page_init(m);
1145 memattr:
1146 	pmap_page_set_memattr(m, memattr);
1147 }
1148 
1149 /*
1150  * Inserts the given vm_page into the object and object list.
1151  *
1152  * The pagetables are not updated but will presumably fault the page
1153  * in if necessary, or if a kernel page the caller will at some point
1154  * enter the page into the kernel's pmap.  We are not allowed to block
1155  * here so we *can't* do this anyway.
1156  *
1157  * This routine may not block.
1158  * This routine must be called with the vm_object held.
1159  * This routine must be called with a critical section held.
1160  *
1161  * This routine returns TRUE if the page was inserted into the object
1162  * successfully, and FALSE if the page already exists in the object.
1163  */
1164 int
1165 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
1166 {
1167 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
1168 	if (m->object != NULL)
1169 		panic("vm_page_insert: already inserted");
1170 
1171 	atomic_add_int(&object->generation, 1);
1172 
1173 	/*
1174 	 * Record the object/offset pair in this page and add the
1175 	 * pv_list_count of the page to the object.
1176 	 *
1177 	 * The vm_page spin lock is required for interactions with the pmap.
1178 	 */
1179 	vm_page_spin_lock(m);
1180 	m->object = object;
1181 	m->pindex = pindex;
1182 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
1183 		m->object = NULL;
1184 		m->pindex = 0;
1185 		vm_page_spin_unlock(m);
1186 		return FALSE;
1187 	}
1188 	++object->resident_page_count;
1189 	++mycpu->gd_vmtotal.t_rm;
1190 	vm_page_spin_unlock(m);
1191 
1192 	/*
1193 	 * Since we are inserting a new and possibly dirty page,
1194 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
1195 	 */
1196 	if ((m->valid & m->dirty) ||
1197 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
1198 		vm_object_set_writeable_dirty(object);
1199 
1200 	/*
1201 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
1202 	 */
1203 	swap_pager_page_inserted(m);
1204 	return TRUE;
1205 }
1206 
1207 /*
1208  * Removes the given vm_page_t from the (object,index) table
1209  *
1210  * The underlying pmap entry (if any) is NOT removed here.
1211  * This routine may not block.
1212  *
1213  * The page must be BUSY and will remain BUSY on return.
1214  * No other requirements.
1215  *
1216  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
1217  *	 it busy.
1218  */
1219 void
1220 vm_page_remove(vm_page_t m)
1221 {
1222 	vm_object_t object;
1223 
1224 	if (m->object == NULL) {
1225 		return;
1226 	}
1227 
1228 	if ((m->flags & PG_BUSY) == 0)
1229 		panic("vm_page_remove: page not busy");
1230 
1231 	object = m->object;
1232 
1233 	vm_object_hold(object);
1234 
1235 	/*
1236 	 * Remove the page from the object and update the object.
1237 	 *
1238 	 * The vm_page spin lock is required for interactions with the pmap.
1239 	 */
1240 	vm_page_spin_lock(m);
1241 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
1242 	--object->resident_page_count;
1243 	--mycpu->gd_vmtotal.t_rm;
1244 	m->object = NULL;
1245 	atomic_add_int(&object->generation, 1);
1246 	vm_page_spin_unlock(m);
1247 
1248 	vm_object_drop(object);
1249 }
1250 
1251 /*
1252  * Locate and return the page at (object, pindex), or NULL if the
1253  * page could not be found.
1254  *
1255  * The caller must hold the vm_object token.
1256  */
1257 vm_page_t
1258 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1259 {
1260 	vm_page_t m;
1261 
1262 	/*
1263 	 * Search the hash table for this object/offset pair
1264 	 */
1265 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1266 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1267 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1268 	return(m);
1269 }
1270 
1271 vm_page_t
1272 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1273 					    vm_pindex_t pindex,
1274 					    int also_m_busy, const char *msg
1275 					    VM_PAGE_DEBUG_ARGS)
1276 {
1277 	u_int32_t flags;
1278 	vm_page_t m;
1279 
1280 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1281 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1282 	while (m) {
1283 		KKASSERT(m->object == object && m->pindex == pindex);
1284 		flags = m->flags;
1285 		cpu_ccfence();
1286 		if (flags & PG_BUSY) {
1287 			tsleep_interlock(m, 0);
1288 			if (atomic_cmpset_int(&m->flags, flags,
1289 					  flags | PG_WANTED | PG_REFERENCED)) {
1290 				tsleep(m, PINTERLOCKED, msg, 0);
1291 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1292 							      pindex);
1293 			}
1294 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1295 			tsleep_interlock(m, 0);
1296 			if (atomic_cmpset_int(&m->flags, flags,
1297 					  flags | PG_WANTED | PG_REFERENCED)) {
1298 				tsleep(m, PINTERLOCKED, msg, 0);
1299 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1300 							      pindex);
1301 			}
1302 		} else if (atomic_cmpset_int(&m->flags, flags,
1303 					     flags | PG_BUSY)) {
1304 #ifdef VM_PAGE_DEBUG
1305 			m->busy_func = func;
1306 			m->busy_line = lineno;
1307 #endif
1308 			break;
1309 		}
1310 	}
1311 	return m;
1312 }
1313 
1314 /*
1315  * Attempt to lookup and busy a page.
1316  *
1317  * Returns NULL if the page could not be found
1318  *
1319  * Returns a vm_page and error == TRUE if the page exists but could not
1320  * be busied.
1321  *
1322  * Returns a vm_page and error == FALSE on success.
1323  */
1324 vm_page_t
1325 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1326 					   vm_pindex_t pindex,
1327 					   int also_m_busy, int *errorp
1328 					   VM_PAGE_DEBUG_ARGS)
1329 {
1330 	u_int32_t flags;
1331 	vm_page_t m;
1332 
1333 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1334 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1335 	*errorp = FALSE;
1336 	while (m) {
1337 		KKASSERT(m->object == object && m->pindex == pindex);
1338 		flags = m->flags;
1339 		cpu_ccfence();
1340 		if (flags & PG_BUSY) {
1341 			*errorp = TRUE;
1342 			break;
1343 		}
1344 		if (also_m_busy && (flags & PG_SBUSY)) {
1345 			*errorp = TRUE;
1346 			break;
1347 		}
1348 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1349 #ifdef VM_PAGE_DEBUG
1350 			m->busy_func = func;
1351 			m->busy_line = lineno;
1352 #endif
1353 			break;
1354 		}
1355 	}
1356 	return m;
1357 }
1358 
1359 /*
1360  * Attempt to repurpose the passed-in page.  If the passed-in page cannot
1361  * be repurposed it will be released, *must_reenter will be set to 1, and
1362  * this function will fall-through to vm_page_lookup_busy_try().
1363  *
1364  * The passed-in page must be wired and not busy.  The returned page will
1365  * be busied and not wired.
1366  *
1367  * A different page may be returned.  The returned page will be busied and
1368  * not wired.
1369  *
1370  * NULL can be returned.  If so, the required page could not be busied.
1371  * The passed-in page will be unwired.
1372  */
1373 vm_page_t
1374 vm_page_repurpose(struct vm_object *object, vm_pindex_t pindex,
1375 		  int also_m_busy, int *errorp, vm_page_t m,
1376 		  int *must_reenter, int *iswired)
1377 {
1378 	if (m) {
1379 		/*
1380 		 * Do not mess with pages in a complex state, such as pages
1381 		 * which are mapped, as repurposing such pages can be more
1382 		 * expensive than simply allocatin a new one.
1383 		 *
1384 		 * NOTE: Soft-busying can deadlock against putpages or I/O
1385 		 *	 so we only allow hard-busying here.
1386 		 */
1387 		KKASSERT(also_m_busy == FALSE);
1388 		vm_page_busy_wait(m, also_m_busy, "biodep");
1389 
1390 		if ((m->flags & (PG_UNMANAGED | PG_MAPPED |
1391 				 PG_FICTITIOUS | PG_SBUSY)) ||
1392 		    m->busy || m->wire_count != 1 || m->hold_count) {
1393 			vm_page_unwire(m, 0);
1394 			vm_page_wakeup(m);
1395 			/* fall through to normal lookup */
1396 		} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
1397 			vm_page_unwire(m, 0);
1398 			vm_page_deactivate(m);
1399 			vm_page_wakeup(m);
1400 			/* fall through to normal lookup */
1401 		} else {
1402 			/*
1403 			 * We can safely repurpose the page.  It should
1404 			 * already be unqueued.
1405 			 */
1406 			KKASSERT(m->queue == PQ_NONE && m->dirty == 0);
1407 			vm_page_remove(m);
1408 			m->valid = 0;
1409 			m->act_count = 0;
1410 			if (vm_page_insert(m, object, pindex)) {
1411 				*errorp = 0;
1412 				*iswired = 1;
1413 
1414 				return m;
1415 			}
1416 			vm_page_unwire(m, 0);
1417 			vm_page_free(m);
1418 			/* fall through to normal lookup */
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Cannot repurpose page, attempt to locate the desired page.  May
1424 	 * return NULL.
1425 	 */
1426 	*must_reenter = 1;
1427 	*iswired = 0;
1428 	m = vm_page_lookup_busy_try(object, pindex, also_m_busy, errorp);
1429 
1430 	return m;
1431 }
1432 
1433 /*
1434  * Caller must hold the related vm_object
1435  */
1436 vm_page_t
1437 vm_page_next(vm_page_t m)
1438 {
1439 	vm_page_t next;
1440 
1441 	next = vm_page_rb_tree_RB_NEXT(m);
1442 	if (next && next->pindex != m->pindex + 1)
1443 		next = NULL;
1444 	return (next);
1445 }
1446 
1447 /*
1448  * vm_page_rename()
1449  *
1450  * Move the given vm_page from its current object to the specified
1451  * target object/offset.  The page must be busy and will remain so
1452  * on return.
1453  *
1454  * new_object must be held.
1455  * This routine might block. XXX ?
1456  *
1457  * NOTE: Swap associated with the page must be invalidated by the move.  We
1458  *       have to do this for several reasons:  (1) we aren't freeing the
1459  *       page, (2) we are dirtying the page, (3) the VM system is probably
1460  *       moving the page from object A to B, and will then later move
1461  *       the backing store from A to B and we can't have a conflict.
1462  *
1463  * NOTE: We *always* dirty the page.  It is necessary both for the
1464  *       fact that we moved it, and because we may be invalidating
1465  *	 swap.  If the page is on the cache, we have to deactivate it
1466  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1467  *	 on the cache.
1468  */
1469 void
1470 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1471 {
1472 	KKASSERT(m->flags & PG_BUSY);
1473 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1474 	if (m->object) {
1475 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1476 		vm_page_remove(m);
1477 	}
1478 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1479 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1480 		      new_object, new_pindex);
1481 	}
1482 	if (m->queue - m->pc == PQ_CACHE)
1483 		vm_page_deactivate(m);
1484 	vm_page_dirty(m);
1485 }
1486 
1487 /*
1488  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1489  * is to remain BUSYied by the caller.
1490  *
1491  * This routine may not block.
1492  */
1493 void
1494 vm_page_unqueue_nowakeup(vm_page_t m)
1495 {
1496 	vm_page_and_queue_spin_lock(m);
1497 	(void)_vm_page_rem_queue_spinlocked(m);
1498 	vm_page_spin_unlock(m);
1499 }
1500 
1501 /*
1502  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1503  * if necessary.
1504  *
1505  * This routine may not block.
1506  */
1507 void
1508 vm_page_unqueue(vm_page_t m)
1509 {
1510 	u_short queue;
1511 
1512 	vm_page_and_queue_spin_lock(m);
1513 	queue = _vm_page_rem_queue_spinlocked(m);
1514 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1515 		vm_page_spin_unlock(m);
1516 		pagedaemon_wakeup();
1517 	} else {
1518 		vm_page_spin_unlock(m);
1519 	}
1520 }
1521 
1522 /*
1523  * vm_page_list_find()
1524  *
1525  * Find a page on the specified queue with color optimization.
1526  *
1527  * The page coloring optimization attempts to locate a page that does
1528  * not overload other nearby pages in the object in the cpu's L1 or L2
1529  * caches.  We need this optimization because cpu caches tend to be
1530  * physical caches, while object spaces tend to be virtual.
1531  *
1532  * The page coloring optimization also, very importantly, tries to localize
1533  * memory to cpus and physical sockets.
1534  *
1535  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1536  * and the algorithm is adjusted to localize allocations on a per-core basis.
1537  * This is done by 'twisting' the colors.
1538  *
1539  * The page is returned spinlocked and removed from its queue (it will
1540  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1541  * is responsible for dealing with the busy-page case (usually by
1542  * deactivating the page and looping).
1543  *
1544  * NOTE:  This routine is carefully inlined.  A non-inlined version
1545  *	  is available for outside callers but the only critical path is
1546  *	  from within this source file.
1547  *
1548  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1549  *	  represent stable storage, allowing us to order our locks vm_page
1550  *	  first, then queue.
1551  */
1552 static __inline
1553 vm_page_t
1554 _vm_page_list_find(int basequeue, int index)
1555 {
1556 	vm_page_t m;
1557 
1558 	for (;;) {
1559 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1560 		if (m == NULL) {
1561 			m = _vm_page_list_find2(basequeue, index);
1562 			return(m);
1563 		}
1564 		vm_page_and_queue_spin_lock(m);
1565 		if (m->queue == basequeue + index) {
1566 			_vm_page_rem_queue_spinlocked(m);
1567 			/* vm_page_t spin held, no queue spin */
1568 			break;
1569 		}
1570 		vm_page_and_queue_spin_unlock(m);
1571 	}
1572 	return(m);
1573 }
1574 
1575 /*
1576  * If we could not find the page in the desired queue try to find it in
1577  * a nearby queue.
1578  */
1579 static vm_page_t
1580 _vm_page_list_find2(int basequeue, int index)
1581 {
1582 	struct vpgqueues *pq;
1583 	vm_page_t m = NULL;
1584 	int pqmask = PQ_SET_ASSOC_MASK >> 1;
1585 	int pqi;
1586 	int i;
1587 
1588 	index &= PQ_L2_MASK;
1589 	pq = &vm_page_queues[basequeue];
1590 
1591 	/*
1592 	 * Run local sets of 16, 32, 64, 128, and the whole queue if all
1593 	 * else fails (PQ_L2_MASK which is 255).
1594 	 */
1595 	do {
1596 		pqmask = (pqmask << 1) | 1;
1597 		for (i = 0; i <= pqmask; ++i) {
1598 			pqi = (index & ~pqmask) | ((index + i) & pqmask);
1599 			m = TAILQ_FIRST(&pq[pqi].pl);
1600 			if (m) {
1601 				_vm_page_and_queue_spin_lock(m);
1602 				if (m->queue == basequeue + pqi) {
1603 					_vm_page_rem_queue_spinlocked(m);
1604 					return(m);
1605 				}
1606 				_vm_page_and_queue_spin_unlock(m);
1607 				--i;
1608 				continue;
1609 			}
1610 		}
1611 	} while (pqmask != PQ_L2_MASK);
1612 
1613 	return(m);
1614 }
1615 
1616 /*
1617  * Returns a vm_page candidate for allocation.  The page is not busied so
1618  * it can move around.  The caller must busy the page (and typically
1619  * deactivate it if it cannot be busied!)
1620  *
1621  * Returns a spinlocked vm_page that has been removed from its queue.
1622  */
1623 vm_page_t
1624 vm_page_list_find(int basequeue, int index)
1625 {
1626 	return(_vm_page_list_find(basequeue, index));
1627 }
1628 
1629 /*
1630  * Find a page on the cache queue with color optimization, remove it
1631  * from the queue, and busy it.  The returned page will not be spinlocked.
1632  *
1633  * A candidate failure will be deactivated.  Candidates can fail due to
1634  * being busied by someone else, in which case they will be deactivated.
1635  *
1636  * This routine may not block.
1637  *
1638  */
1639 static vm_page_t
1640 vm_page_select_cache(u_short pg_color)
1641 {
1642 	vm_page_t m;
1643 
1644 	for (;;) {
1645 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK);
1646 		if (m == NULL)
1647 			break;
1648 		/*
1649 		 * (m) has been removed from its queue and spinlocked
1650 		 */
1651 		if (vm_page_busy_try(m, TRUE)) {
1652 			_vm_page_deactivate_locked(m, 0);
1653 			vm_page_spin_unlock(m);
1654 		} else {
1655 			/*
1656 			 * We successfully busied the page
1657 			 */
1658 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1659 			    m->hold_count == 0 &&
1660 			    m->wire_count == 0 &&
1661 			    (m->dirty & m->valid) == 0) {
1662 				vm_page_spin_unlock(m);
1663 				pagedaemon_wakeup();
1664 				return(m);
1665 			}
1666 
1667 			/*
1668 			 * The page cannot be recycled, deactivate it.
1669 			 */
1670 			_vm_page_deactivate_locked(m, 0);
1671 			if (_vm_page_wakeup(m)) {
1672 				vm_page_spin_unlock(m);
1673 				wakeup(m);
1674 			} else {
1675 				vm_page_spin_unlock(m);
1676 			}
1677 		}
1678 	}
1679 	return (m);
1680 }
1681 
1682 /*
1683  * Find a free page.  We attempt to inline the nominal case and fall back
1684  * to _vm_page_select_free() otherwise.  A busied page is removed from
1685  * the queue and returned.
1686  *
1687  * This routine may not block.
1688  */
1689 static __inline vm_page_t
1690 vm_page_select_free(u_short pg_color)
1691 {
1692 	vm_page_t m;
1693 
1694 	for (;;) {
1695 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK);
1696 		if (m == NULL)
1697 			break;
1698 		if (vm_page_busy_try(m, TRUE)) {
1699 			/*
1700 			 * Various mechanisms such as a pmap_collect can
1701 			 * result in a busy page on the free queue.  We
1702 			 * have to move the page out of the way so we can
1703 			 * retry the allocation.  If the other thread is not
1704 			 * allocating the page then m->valid will remain 0 and
1705 			 * the pageout daemon will free the page later on.
1706 			 *
1707 			 * Since we could not busy the page, however, we
1708 			 * cannot make assumptions as to whether the page
1709 			 * will be allocated by the other thread or not,
1710 			 * so all we can do is deactivate it to move it out
1711 			 * of the way.  In particular, if the other thread
1712 			 * wires the page it may wind up on the inactive
1713 			 * queue and the pageout daemon will have to deal
1714 			 * with that case too.
1715 			 */
1716 			_vm_page_deactivate_locked(m, 0);
1717 			vm_page_spin_unlock(m);
1718 		} else {
1719 			/*
1720 			 * Theoretically if we are able to busy the page
1721 			 * atomic with the queue removal (using the vm_page
1722 			 * lock) nobody else should be able to mess with the
1723 			 * page before us.
1724 			 */
1725 			KKASSERT((m->flags & (PG_UNMANAGED |
1726 					      PG_NEED_COMMIT)) == 0);
1727 			KASSERT(m->hold_count == 0, ("m->hold_count is not zero "
1728 						     "pg %p q=%d flags=%08x hold=%d wire=%d",
1729 						     m, m->queue, m->flags, m->hold_count, m->wire_count));
1730 			KKASSERT(m->wire_count == 0);
1731 			vm_page_spin_unlock(m);
1732 			pagedaemon_wakeup();
1733 
1734 			/* return busied and removed page */
1735 			return(m);
1736 		}
1737 	}
1738 	return(m);
1739 }
1740 
1741 /*
1742  * vm_page_alloc()
1743  *
1744  * Allocate and return a memory cell associated with this VM object/offset
1745  * pair.  If object is NULL an unassociated page will be allocated.
1746  *
1747  * The returned page will be busied and removed from its queues.  This
1748  * routine can block and may return NULL if a race occurs and the page
1749  * is found to already exist at the specified (object, pindex).
1750  *
1751  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1752  *	VM_ALLOC_QUICK		like normal but cannot use cache
1753  *	VM_ALLOC_SYSTEM		greater free drain
1754  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1755  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1756  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1757  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1758  *				(see vm_page_grab())
1759  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1760  *
1761  *	VM_ALLOC_CPU(n)		allocate using specified cpu localization
1762  *
1763  * The object must be held if not NULL
1764  * This routine may not block
1765  *
1766  * Additional special handling is required when called from an interrupt
1767  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1768  * in this case.
1769  */
1770 vm_page_t
1771 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1772 {
1773 	globaldata_t gd;
1774 	vm_object_t obj;
1775 	vm_page_t m;
1776 	u_short pg_color;
1777 	int cpuid_local;
1778 
1779 #if 0
1780 	/*
1781 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1782 	 * and pre-zerod for us.
1783 	 */
1784 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1785 		crit_enter_gd(gd);
1786 		if (gd->gd_vmpg_count) {
1787 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1788 			crit_exit_gd(gd);
1789 			goto done;
1790                 }
1791 		crit_exit_gd(gd);
1792         }
1793 #endif
1794 	m = NULL;
1795 
1796 	/*
1797 	 * CPU LOCALIZATION
1798 	 *
1799 	 * CPU localization algorithm.  Break the page queues up by physical
1800 	 * id and core id (note that two cpu threads will have the same core
1801 	 * id, and core_id != gd_cpuid).
1802 	 *
1803 	 * This is nowhere near perfect, for example the last pindex in a
1804 	 * subgroup will overflow into the next cpu or package.  But this
1805 	 * should get us good page reuse locality in heavy mixed loads.
1806 	 *
1807 	 * (may be executed before the APs are started, so other GDs might
1808 	 *  not exist!)
1809 	 */
1810 	if (page_req & VM_ALLOC_CPU_SPEC)
1811 		cpuid_local = VM_ALLOC_GETCPU(page_req);
1812 	else
1813 		cpuid_local = mycpu->gd_cpuid;
1814 
1815 	pg_color = vm_get_pg_color(cpuid_local, object, pindex);
1816 
1817 	KKASSERT(page_req &
1818 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1819 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1820 
1821 	/*
1822 	 * Certain system threads (pageout daemon, buf_daemon's) are
1823 	 * allowed to eat deeper into the free page list.
1824 	 */
1825 	if (curthread->td_flags & TDF_SYSTHREAD)
1826 		page_req |= VM_ALLOC_SYSTEM;
1827 
1828 	/*
1829 	 * Impose various limitations.  Note that the v_free_reserved test
1830 	 * must match the opposite of vm_page_count_target() to avoid
1831 	 * livelocks, be careful.
1832 	 */
1833 loop:
1834 	gd = mycpu;
1835 	if (gd->gd_vmstats.v_free_count >= gd->gd_vmstats.v_free_reserved ||
1836 	    ((page_req & VM_ALLOC_INTERRUPT) &&
1837 	     gd->gd_vmstats.v_free_count > 0) ||
1838 	    ((page_req & VM_ALLOC_SYSTEM) &&
1839 	     gd->gd_vmstats.v_cache_count == 0 &&
1840 		gd->gd_vmstats.v_free_count >
1841 		gd->gd_vmstats.v_interrupt_free_min)
1842 	) {
1843 		/*
1844 		 * The free queue has sufficient free pages to take one out.
1845 		 */
1846 		m = vm_page_select_free(pg_color);
1847 	} else if (page_req & VM_ALLOC_NORMAL) {
1848 		/*
1849 		 * Allocatable from the cache (non-interrupt only).  On
1850 		 * success, we must free the page and try again, thus
1851 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1852 		 */
1853 #ifdef INVARIANTS
1854 		if (curthread->td_preempted) {
1855 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1856 				" cache page from preempting interrupt\n");
1857 			m = NULL;
1858 		} else {
1859 			m = vm_page_select_cache(pg_color);
1860 		}
1861 #else
1862 		m = vm_page_select_cache(pg_color);
1863 #endif
1864 		/*
1865 		 * On success move the page into the free queue and loop.
1866 		 *
1867 		 * Only do this if we can safely acquire the vm_object lock,
1868 		 * because this is effectively a random page and the caller
1869 		 * might be holding the lock shared, we don't want to
1870 		 * deadlock.
1871 		 */
1872 		if (m != NULL) {
1873 			KASSERT(m->dirty == 0,
1874 				("Found dirty cache page %p", m));
1875 			if ((obj = m->object) != NULL) {
1876 				if (vm_object_hold_try(obj)) {
1877 					vm_page_protect(m, VM_PROT_NONE);
1878 					vm_page_free(m);
1879 					/* m->object NULL here */
1880 					vm_object_drop(obj);
1881 				} else {
1882 					vm_page_deactivate(m);
1883 					vm_page_wakeup(m);
1884 				}
1885 			} else {
1886 				vm_page_protect(m, VM_PROT_NONE);
1887 				vm_page_free(m);
1888 			}
1889 			goto loop;
1890 		}
1891 
1892 		/*
1893 		 * On failure return NULL
1894 		 */
1895 		atomic_add_int(&vm_pageout_deficit, 1);
1896 		pagedaemon_wakeup();
1897 		return (NULL);
1898 	} else {
1899 		/*
1900 		 * No pages available, wakeup the pageout daemon and give up.
1901 		 */
1902 		atomic_add_int(&vm_pageout_deficit, 1);
1903 		pagedaemon_wakeup();
1904 		return (NULL);
1905 	}
1906 
1907 	/*
1908 	 * v_free_count can race so loop if we don't find the expected
1909 	 * page.
1910 	 */
1911 	if (m == NULL) {
1912 		vmstats_rollup();
1913 		goto loop;
1914 	}
1915 
1916 	/*
1917 	 * Good page found.  The page has already been busied for us and
1918 	 * removed from its queues.
1919 	 */
1920 	KASSERT(m->dirty == 0,
1921 		("vm_page_alloc: free/cache page %p was dirty", m));
1922 	KKASSERT(m->queue == PQ_NONE);
1923 
1924 #if 0
1925 done:
1926 #endif
1927 	/*
1928 	 * Initialize the structure, inheriting some flags but clearing
1929 	 * all the rest.  The page has already been busied for us.
1930 	 */
1931 	vm_page_flag_clear(m, ~PG_KEEP_NEWPAGE_MASK);
1932 
1933 	KKASSERT(m->wire_count == 0);
1934 	KKASSERT(m->busy == 0);
1935 	m->act_count = 0;
1936 	m->valid = 0;
1937 
1938 	/*
1939 	 * Caller must be holding the object lock (asserted by
1940 	 * vm_page_insert()).
1941 	 *
1942 	 * NOTE: Inserting a page here does not insert it into any pmaps
1943 	 *	 (which could cause us to block allocating memory).
1944 	 *
1945 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1946 	 *	 can be used by the caller for any purpose.
1947 	 */
1948 	if (object) {
1949 		if (vm_page_insert(m, object, pindex) == FALSE) {
1950 			vm_page_free(m);
1951 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1952 				panic("PAGE RACE %p[%ld]/%p",
1953 				      object, (long)pindex, m);
1954 			m = NULL;
1955 		}
1956 	} else {
1957 		m->pindex = pindex;
1958 	}
1959 
1960 	/*
1961 	 * Don't wakeup too often - wakeup the pageout daemon when
1962 	 * we would be nearly out of memory.
1963 	 */
1964 	pagedaemon_wakeup();
1965 
1966 	/*
1967 	 * A PG_BUSY page is returned.
1968 	 */
1969 	return (m);
1970 }
1971 
1972 /*
1973  * Returns number of pages available in our DMA memory reserve
1974  * (adjusted with vm.dma_reserved=<value>m in /boot/loader.conf)
1975  */
1976 vm_size_t
1977 vm_contig_avail_pages(void)
1978 {
1979 	alist_blk_t blk;
1980 	alist_blk_t count;
1981 	alist_blk_t bfree;
1982 	spin_lock(&vm_contig_spin);
1983 	bfree = alist_free_info(&vm_contig_alist, &blk, &count);
1984 	spin_unlock(&vm_contig_spin);
1985 
1986 	return bfree;
1987 }
1988 
1989 /*
1990  * Attempt to allocate contiguous physical memory with the specified
1991  * requirements.
1992  */
1993 vm_page_t
1994 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1995 		     unsigned long alignment, unsigned long boundary,
1996 		     unsigned long size, vm_memattr_t memattr)
1997 {
1998 	alist_blk_t blk;
1999 	vm_page_t m;
2000 	int i;
2001 
2002 	alignment >>= PAGE_SHIFT;
2003 	if (alignment == 0)
2004 		alignment = 1;
2005 	boundary >>= PAGE_SHIFT;
2006 	if (boundary == 0)
2007 		boundary = 1;
2008 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
2009 
2010 	spin_lock(&vm_contig_spin);
2011 	blk = alist_alloc(&vm_contig_alist, 0, size);
2012 	if (blk == ALIST_BLOCK_NONE) {
2013 		spin_unlock(&vm_contig_spin);
2014 		if (bootverbose) {
2015 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
2016 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2017 		}
2018 		return(NULL);
2019 	}
2020 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
2021 		alist_free(&vm_contig_alist, blk, size);
2022 		spin_unlock(&vm_contig_spin);
2023 		if (bootverbose) {
2024 			kprintf("vm_page_alloc_contig: %ldk high "
2025 				"%016jx failed\n",
2026 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
2027 				(intmax_t)high);
2028 		}
2029 		return(NULL);
2030 	}
2031 	spin_unlock(&vm_contig_spin);
2032 	if (vm_contig_verbose) {
2033 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
2034 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
2035 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
2036 	}
2037 
2038 	m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
2039 	if (memattr != VM_MEMATTR_DEFAULT)
2040 		for (i = 0;i < size;i++)
2041 			pmap_page_set_memattr(&m[i], memattr);
2042 	return m;
2043 }
2044 
2045 /*
2046  * Free contiguously allocated pages.  The pages will be wired but not busy.
2047  * When freeing to the alist we leave them wired and not busy.
2048  */
2049 void
2050 vm_page_free_contig(vm_page_t m, unsigned long size)
2051 {
2052 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
2053 	vm_pindex_t start = pa >> PAGE_SHIFT;
2054 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
2055 
2056 	if (vm_contig_verbose) {
2057 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
2058 			(intmax_t)pa, size / 1024);
2059 	}
2060 	if (pa < vm_low_phys_reserved) {
2061 		KKASSERT(pa + size <= vm_low_phys_reserved);
2062 		spin_lock(&vm_contig_spin);
2063 		alist_free(&vm_contig_alist, start, pages);
2064 		spin_unlock(&vm_contig_spin);
2065 	} else {
2066 		while (pages) {
2067 			vm_page_busy_wait(m, FALSE, "cpgfr");
2068 			vm_page_unwire(m, 0);
2069 			vm_page_free(m);
2070 			--pages;
2071 			++m;
2072 		}
2073 
2074 	}
2075 }
2076 
2077 
2078 /*
2079  * Wait for sufficient free memory for nominal heavy memory use kernel
2080  * operations.
2081  *
2082  * WARNING!  Be sure never to call this in any vm_pageout code path, which
2083  *	     will trivially deadlock the system.
2084  */
2085 void
2086 vm_wait_nominal(void)
2087 {
2088 	while (vm_page_count_min(0))
2089 		vm_wait(0);
2090 }
2091 
2092 /*
2093  * Test if vm_wait_nominal() would block.
2094  */
2095 int
2096 vm_test_nominal(void)
2097 {
2098 	if (vm_page_count_min(0))
2099 		return(1);
2100 	return(0);
2101 }
2102 
2103 /*
2104  * Block until free pages are available for allocation, called in various
2105  * places before memory allocations.
2106  *
2107  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
2108  * more generous then that.
2109  */
2110 void
2111 vm_wait(int timo)
2112 {
2113 	/*
2114 	 * never wait forever
2115 	 */
2116 	if (timo == 0)
2117 		timo = hz;
2118 	lwkt_gettoken(&vm_token);
2119 
2120 	if (curthread == pagethread ||
2121 	    curthread == emergpager) {
2122 		/*
2123 		 * The pageout daemon itself needs pages, this is bad.
2124 		 */
2125 		if (vm_page_count_min(0)) {
2126 			vm_pageout_pages_needed = 1;
2127 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
2128 		}
2129 	} else {
2130 		/*
2131 		 * Wakeup the pageout daemon if necessary and wait.
2132 		 *
2133 		 * Do not wait indefinitely for the target to be reached,
2134 		 * as load might prevent it from being reached any time soon.
2135 		 * But wait a little to try to slow down page allocations
2136 		 * and to give more important threads (the pagedaemon)
2137 		 * allocation priority.
2138 		 */
2139 		if (vm_page_count_target()) {
2140 			if (vm_pages_needed == 0) {
2141 				vm_pages_needed = 1;
2142 				wakeup(&vm_pages_needed);
2143 			}
2144 			++vm_pages_waiting;	/* SMP race ok */
2145 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
2146 		}
2147 	}
2148 	lwkt_reltoken(&vm_token);
2149 }
2150 
2151 /*
2152  * Block until free pages are available for allocation
2153  *
2154  * Called only from vm_fault so that processes page faulting can be
2155  * easily tracked.
2156  */
2157 void
2158 vm_wait_pfault(void)
2159 {
2160 	/*
2161 	 * Wakeup the pageout daemon if necessary and wait.
2162 	 *
2163 	 * Do not wait indefinitely for the target to be reached,
2164 	 * as load might prevent it from being reached any time soon.
2165 	 * But wait a little to try to slow down page allocations
2166 	 * and to give more important threads (the pagedaemon)
2167 	 * allocation priority.
2168 	 */
2169 	if (vm_page_count_min(0)) {
2170 		lwkt_gettoken(&vm_token);
2171 		while (vm_page_count_severe()) {
2172 			if (vm_page_count_target()) {
2173 				thread_t td;
2174 
2175 				if (vm_pages_needed == 0) {
2176 					vm_pages_needed = 1;
2177 					wakeup(&vm_pages_needed);
2178 				}
2179 				++vm_pages_waiting;	/* SMP race ok */
2180 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
2181 
2182 				/*
2183 				 * Do not stay stuck in the loop if the system is trying
2184 				 * to kill the process.
2185 				 */
2186 				td = curthread;
2187 				if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
2188 					break;
2189 			}
2190 		}
2191 		lwkt_reltoken(&vm_token);
2192 	}
2193 }
2194 
2195 /*
2196  * Put the specified page on the active list (if appropriate).  Ensure
2197  * that act_count is at least ACT_INIT but do not otherwise mess with it.
2198  *
2199  * The caller should be holding the page busied ? XXX
2200  * This routine may not block.
2201  */
2202 void
2203 vm_page_activate(vm_page_t m)
2204 {
2205 	u_short oqueue;
2206 
2207 	vm_page_spin_lock(m);
2208 	if (m->queue - m->pc != PQ_ACTIVE) {
2209 		_vm_page_queue_spin_lock(m);
2210 		oqueue = _vm_page_rem_queue_spinlocked(m);
2211 		/* page is left spinlocked, queue is unlocked */
2212 
2213 		if (oqueue == PQ_CACHE)
2214 			mycpu->gd_cnt.v_reactivated++;
2215 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2216 			if (m->act_count < ACT_INIT)
2217 				m->act_count = ACT_INIT;
2218 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
2219 		}
2220 		_vm_page_and_queue_spin_unlock(m);
2221 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
2222 			pagedaemon_wakeup();
2223 	} else {
2224 		if (m->act_count < ACT_INIT)
2225 			m->act_count = ACT_INIT;
2226 		vm_page_spin_unlock(m);
2227 	}
2228 }
2229 
2230 /*
2231  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
2232  * routine is called when a page has been added to the cache or free
2233  * queues.
2234  *
2235  * This routine may not block.
2236  */
2237 static __inline void
2238 vm_page_free_wakeup(void)
2239 {
2240 	globaldata_t gd = mycpu;
2241 
2242 	/*
2243 	 * If the pageout daemon itself needs pages, then tell it that
2244 	 * there are some free.
2245 	 */
2246 	if (vm_pageout_pages_needed &&
2247 	    gd->gd_vmstats.v_cache_count + gd->gd_vmstats.v_free_count >=
2248 	    gd->gd_vmstats.v_pageout_free_min
2249 	) {
2250 		vm_pageout_pages_needed = 0;
2251 		wakeup(&vm_pageout_pages_needed);
2252 	}
2253 
2254 	/*
2255 	 * Wakeup processes that are waiting on memory.
2256 	 *
2257 	 * Generally speaking we want to wakeup stuck processes as soon as
2258 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
2259 	 * where we can do this.  Wait a bit longer to reduce degenerate
2260 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
2261 	 * to make sure the min-check w/hysteresis does not exceed the
2262 	 * normal target.
2263 	 */
2264 	if (vm_pages_waiting) {
2265 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
2266 		    !vm_page_count_target()) {
2267 			vm_pages_waiting = 0;
2268 			wakeup(&vmstats.v_free_count);
2269 			++mycpu->gd_cnt.v_ppwakeups;
2270 		}
2271 #if 0
2272 		if (!vm_page_count_target()) {
2273 			/*
2274 			 * Plenty of pages are free, wakeup everyone.
2275 			 */
2276 			vm_pages_waiting = 0;
2277 			wakeup(&vmstats.v_free_count);
2278 			++mycpu->gd_cnt.v_ppwakeups;
2279 		} else if (!vm_page_count_min(0)) {
2280 			/*
2281 			 * Some pages are free, wakeup someone.
2282 			 */
2283 			int wcount = vm_pages_waiting;
2284 			if (wcount > 0)
2285 				--wcount;
2286 			vm_pages_waiting = wcount;
2287 			wakeup_one(&vmstats.v_free_count);
2288 			++mycpu->gd_cnt.v_ppwakeups;
2289 		}
2290 #endif
2291 	}
2292 }
2293 
2294 /*
2295  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
2296  * it from its VM object.
2297  *
2298  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
2299  * return (the page will have been freed).
2300  */
2301 void
2302 vm_page_free_toq(vm_page_t m)
2303 {
2304 	mycpu->gd_cnt.v_tfree++;
2305 	KKASSERT((m->flags & PG_MAPPED) == 0);
2306 	KKASSERT(m->flags & PG_BUSY);
2307 
2308 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
2309 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
2310 			"PG_BUSY(%d), hold(%d)\n",
2311 			(u_long)m->pindex, m->busy,
2312 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
2313 		if ((m->queue - m->pc) == PQ_FREE)
2314 			panic("vm_page_free: freeing free page");
2315 		else
2316 			panic("vm_page_free: freeing busy page");
2317 	}
2318 
2319 	/*
2320 	 * Remove from object, spinlock the page and its queues and
2321 	 * remove from any queue.  No queue spinlock will be held
2322 	 * after this section (because the page was removed from any
2323 	 * queue).
2324 	 */
2325 	vm_page_remove(m);
2326 	vm_page_and_queue_spin_lock(m);
2327 	_vm_page_rem_queue_spinlocked(m);
2328 
2329 	/*
2330 	 * No further management of fictitious pages occurs beyond object
2331 	 * and queue removal.
2332 	 */
2333 	if ((m->flags & PG_FICTITIOUS) != 0) {
2334 		vm_page_spin_unlock(m);
2335 		vm_page_wakeup(m);
2336 		return;
2337 	}
2338 
2339 	m->valid = 0;
2340 	vm_page_undirty(m);
2341 
2342 	if (m->wire_count != 0) {
2343 		if (m->wire_count > 1) {
2344 		    panic(
2345 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2346 			m->wire_count, (long)m->pindex);
2347 		}
2348 		panic("vm_page_free: freeing wired page");
2349 	}
2350 
2351 	/*
2352 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2353 	 * Clear the NEED_COMMIT flag
2354 	 */
2355 	if (m->flags & PG_UNMANAGED)
2356 		vm_page_flag_clear(m, PG_UNMANAGED);
2357 	if (m->flags & PG_NEED_COMMIT)
2358 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2359 
2360 	if (m->hold_count != 0) {
2361 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2362 	} else {
2363 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 1);
2364 	}
2365 
2366 	/*
2367 	 * This sequence allows us to clear PG_BUSY while still holding
2368 	 * its spin lock, which reduces contention vs allocators.  We
2369 	 * must not leave the queue locked or _vm_page_wakeup() may
2370 	 * deadlock.
2371 	 */
2372 	_vm_page_queue_spin_unlock(m);
2373 	if (_vm_page_wakeup(m)) {
2374 		vm_page_spin_unlock(m);
2375 		wakeup(m);
2376 	} else {
2377 		vm_page_spin_unlock(m);
2378 	}
2379 	vm_page_free_wakeup();
2380 }
2381 
2382 /*
2383  * vm_page_unmanage()
2384  *
2385  * Prevent PV management from being done on the page.  The page is
2386  * removed from the paging queues as if it were wired, and as a
2387  * consequence of no longer being managed the pageout daemon will not
2388  * touch it (since there is no way to locate the pte mappings for the
2389  * page).  madvise() calls that mess with the pmap will also no longer
2390  * operate on the page.
2391  *
2392  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2393  * will clear the flag.
2394  *
2395  * This routine is used by OBJT_PHYS objects - objects using unswappable
2396  * physical memory as backing store rather then swap-backed memory and
2397  * will eventually be extended to support 4MB unmanaged physical
2398  * mappings.
2399  *
2400  * Caller must be holding the page busy.
2401  */
2402 void
2403 vm_page_unmanage(vm_page_t m)
2404 {
2405 	KKASSERT(m->flags & PG_BUSY);
2406 	if ((m->flags & PG_UNMANAGED) == 0) {
2407 		if (m->wire_count == 0)
2408 			vm_page_unqueue(m);
2409 	}
2410 	vm_page_flag_set(m, PG_UNMANAGED);
2411 }
2412 
2413 /*
2414  * Mark this page as wired down by yet another map, removing it from
2415  * paging queues as necessary.
2416  *
2417  * Caller must be holding the page busy.
2418  */
2419 void
2420 vm_page_wire(vm_page_t m)
2421 {
2422 	/*
2423 	 * Only bump the wire statistics if the page is not already wired,
2424 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2425 	 * it is already off the queues).  Don't do anything with fictitious
2426 	 * pages because they are always wired.
2427 	 */
2428 	KKASSERT(m->flags & PG_BUSY);
2429 	if ((m->flags & PG_FICTITIOUS) == 0) {
2430 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2431 			if ((m->flags & PG_UNMANAGED) == 0)
2432 				vm_page_unqueue(m);
2433 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, 1);
2434 		}
2435 		KASSERT(m->wire_count != 0,
2436 			("vm_page_wire: wire_count overflow m=%p", m));
2437 	}
2438 }
2439 
2440 /*
2441  * Release one wiring of this page, potentially enabling it to be paged again.
2442  *
2443  * Many pages placed on the inactive queue should actually go
2444  * into the cache, but it is difficult to figure out which.  What
2445  * we do instead, if the inactive target is well met, is to put
2446  * clean pages at the head of the inactive queue instead of the tail.
2447  * This will cause them to be moved to the cache more quickly and
2448  * if not actively re-referenced, freed more quickly.  If we just
2449  * stick these pages at the end of the inactive queue, heavy filesystem
2450  * meta-data accesses can cause an unnecessary paging load on memory bound
2451  * processes.  This optimization causes one-time-use metadata to be
2452  * reused more quickly.
2453  *
2454  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2455  * the inactive queue.  This helps the pageout daemon determine memory
2456  * pressure and act on out-of-memory situations more quickly.
2457  *
2458  * BUT, if we are in a low-memory situation we have no choice but to
2459  * put clean pages on the cache queue.
2460  *
2461  * A number of routines use vm_page_unwire() to guarantee that the page
2462  * will go into either the inactive or active queues, and will NEVER
2463  * be placed in the cache - for example, just after dirtying a page.
2464  * dirty pages in the cache are not allowed.
2465  *
2466  * This routine may not block.
2467  */
2468 void
2469 vm_page_unwire(vm_page_t m, int activate)
2470 {
2471 	KKASSERT(m->flags & PG_BUSY);
2472 	if (m->flags & PG_FICTITIOUS) {
2473 		/* do nothing */
2474 	} else if (m->wire_count <= 0) {
2475 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2476 	} else {
2477 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2478 			atomic_add_int(&mycpu->gd_vmstats_adj.v_wire_count, -1);
2479 			if (m->flags & PG_UNMANAGED) {
2480 				;
2481 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2482 				vm_page_spin_lock(m);
2483 				_vm_page_add_queue_spinlocked(m,
2484 							PQ_ACTIVE + m->pc, 0);
2485 				_vm_page_and_queue_spin_unlock(m);
2486 			} else {
2487 				vm_page_spin_lock(m);
2488 				vm_page_flag_clear(m, PG_WINATCFLS);
2489 				_vm_page_add_queue_spinlocked(m,
2490 							PQ_INACTIVE + m->pc, 0);
2491 				++vm_swapcache_inactive_heuristic;
2492 				_vm_page_and_queue_spin_unlock(m);
2493 			}
2494 		}
2495 	}
2496 }
2497 
2498 /*
2499  * Move the specified page to the inactive queue.  If the page has
2500  * any associated swap, the swap is deallocated.
2501  *
2502  * Normally athead is 0 resulting in LRU operation.  athead is set
2503  * to 1 if we want this page to be 'as if it were placed in the cache',
2504  * except without unmapping it from the process address space.
2505  *
2506  * vm_page's spinlock must be held on entry and will remain held on return.
2507  * This routine may not block.
2508  */
2509 static void
2510 _vm_page_deactivate_locked(vm_page_t m, int athead)
2511 {
2512 	u_short oqueue;
2513 
2514 	/*
2515 	 * Ignore if already inactive.
2516 	 */
2517 	if (m->queue - m->pc == PQ_INACTIVE)
2518 		return;
2519 	_vm_page_queue_spin_lock(m);
2520 	oqueue = _vm_page_rem_queue_spinlocked(m);
2521 
2522 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2523 		if (oqueue == PQ_CACHE)
2524 			mycpu->gd_cnt.v_reactivated++;
2525 		vm_page_flag_clear(m, PG_WINATCFLS);
2526 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2527 		if (athead == 0)
2528 			++vm_swapcache_inactive_heuristic;
2529 	}
2530 	/* NOTE: PQ_NONE if condition not taken */
2531 	_vm_page_queue_spin_unlock(m);
2532 	/* leaves vm_page spinlocked */
2533 }
2534 
2535 /*
2536  * Attempt to deactivate a page.
2537  *
2538  * No requirements.
2539  */
2540 void
2541 vm_page_deactivate(vm_page_t m)
2542 {
2543 	vm_page_spin_lock(m);
2544 	_vm_page_deactivate_locked(m, 0);
2545 	vm_page_spin_unlock(m);
2546 }
2547 
2548 void
2549 vm_page_deactivate_locked(vm_page_t m)
2550 {
2551 	_vm_page_deactivate_locked(m, 0);
2552 }
2553 
2554 /*
2555  * Attempt to move a busied page to PQ_CACHE, then unconditionally unbusy it.
2556  *
2557  * This function returns non-zero if it successfully moved the page to
2558  * PQ_CACHE.
2559  *
2560  * This function unconditionally unbusies the page on return.
2561  */
2562 int
2563 vm_page_try_to_cache(vm_page_t m)
2564 {
2565 	vm_page_spin_lock(m);
2566 	if (m->dirty || m->hold_count || m->wire_count ||
2567 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2568 		if (_vm_page_wakeup(m)) {
2569 			vm_page_spin_unlock(m);
2570 			wakeup(m);
2571 		} else {
2572 			vm_page_spin_unlock(m);
2573 		}
2574 		return(0);
2575 	}
2576 	vm_page_spin_unlock(m);
2577 
2578 	/*
2579 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2580 	 * be moved to the cache.
2581 	 */
2582 	vm_page_test_dirty(m);
2583 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2584 		vm_page_wakeup(m);
2585 		return(0);
2586 	}
2587 	vm_page_cache(m);
2588 	return(1);
2589 }
2590 
2591 /*
2592  * Attempt to free the page.  If we cannot free it, we do nothing.
2593  * 1 is returned on success, 0 on failure.
2594  *
2595  * No requirements.
2596  */
2597 int
2598 vm_page_try_to_free(vm_page_t m)
2599 {
2600 	vm_page_spin_lock(m);
2601 	if (vm_page_busy_try(m, TRUE)) {
2602 		vm_page_spin_unlock(m);
2603 		return(0);
2604 	}
2605 
2606 	/*
2607 	 * The page can be in any state, including already being on the free
2608 	 * queue.  Check to see if it really can be freed.
2609 	 */
2610 	if (m->dirty ||				/* can't free if it is dirty */
2611 	    m->hold_count ||			/* or held (XXX may be wrong) */
2612 	    m->wire_count ||			/* or wired */
2613 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2614 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2615 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2616 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2617 		if (_vm_page_wakeup(m)) {
2618 			vm_page_spin_unlock(m);
2619 			wakeup(m);
2620 		} else {
2621 			vm_page_spin_unlock(m);
2622 		}
2623 		return(0);
2624 	}
2625 	vm_page_spin_unlock(m);
2626 
2627 	/*
2628 	 * We can probably free the page.
2629 	 *
2630 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2631 	 * not be freed by this function.    We have to re-test the
2632 	 * dirty bit after cleaning out the pmaps.
2633 	 */
2634 	vm_page_test_dirty(m);
2635 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2636 		vm_page_wakeup(m);
2637 		return(0);
2638 	}
2639 	vm_page_protect(m, VM_PROT_NONE);
2640 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2641 		vm_page_wakeup(m);
2642 		return(0);
2643 	}
2644 	vm_page_free(m);
2645 	return(1);
2646 }
2647 
2648 /*
2649  * vm_page_cache
2650  *
2651  * Put the specified page onto the page cache queue (if appropriate).
2652  *
2653  * The page must be busy, and this routine will release the busy and
2654  * possibly even free the page.
2655  */
2656 void
2657 vm_page_cache(vm_page_t m)
2658 {
2659 	/*
2660 	 * Not suitable for the cache
2661 	 */
2662 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2663 	    m->busy || m->wire_count || m->hold_count) {
2664 		vm_page_wakeup(m);
2665 		return;
2666 	}
2667 
2668 	/*
2669 	 * Already in the cache (and thus not mapped)
2670 	 */
2671 	if ((m->queue - m->pc) == PQ_CACHE) {
2672 		KKASSERT((m->flags & PG_MAPPED) == 0);
2673 		vm_page_wakeup(m);
2674 		return;
2675 	}
2676 
2677 	/*
2678 	 * Caller is required to test m->dirty, but note that the act of
2679 	 * removing the page from its maps can cause it to become dirty
2680 	 * on an SMP system due to another cpu running in usermode.
2681 	 */
2682 	if (m->dirty) {
2683 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2684 			(long)m->pindex);
2685 	}
2686 
2687 	/*
2688 	 * Remove all pmaps and indicate that the page is not
2689 	 * writeable or mapped.  Our vm_page_protect() call may
2690 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2691 	 * everything.
2692 	 */
2693 	vm_page_protect(m, VM_PROT_NONE);
2694 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2695 	    m->busy || m->wire_count || m->hold_count) {
2696 		vm_page_wakeup(m);
2697 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2698 		vm_page_deactivate(m);
2699 		vm_page_wakeup(m);
2700 	} else {
2701 		_vm_page_and_queue_spin_lock(m);
2702 		_vm_page_rem_queue_spinlocked(m);
2703 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2704 		_vm_page_queue_spin_unlock(m);
2705 		if (_vm_page_wakeup(m)) {
2706 			vm_page_spin_unlock(m);
2707 			wakeup(m);
2708 		} else {
2709 			vm_page_spin_unlock(m);
2710 		}
2711 		vm_page_free_wakeup();
2712 	}
2713 }
2714 
2715 /*
2716  * vm_page_dontneed()
2717  *
2718  * Cache, deactivate, or do nothing as appropriate.  This routine
2719  * is typically used by madvise() MADV_DONTNEED.
2720  *
2721  * Generally speaking we want to move the page into the cache so
2722  * it gets reused quickly.  However, this can result in a silly syndrome
2723  * due to the page recycling too quickly.  Small objects will not be
2724  * fully cached.  On the otherhand, if we move the page to the inactive
2725  * queue we wind up with a problem whereby very large objects
2726  * unnecessarily blow away our inactive and cache queues.
2727  *
2728  * The solution is to move the pages based on a fixed weighting.  We
2729  * either leave them alone, deactivate them, or move them to the cache,
2730  * where moving them to the cache has the highest weighting.
2731  * By forcing some pages into other queues we eventually force the
2732  * system to balance the queues, potentially recovering other unrelated
2733  * space from active.  The idea is to not force this to happen too
2734  * often.
2735  *
2736  * The page must be busied.
2737  */
2738 void
2739 vm_page_dontneed(vm_page_t m)
2740 {
2741 	static int dnweight;
2742 	int dnw;
2743 	int head;
2744 
2745 	dnw = ++dnweight;
2746 
2747 	/*
2748 	 * occassionally leave the page alone
2749 	 */
2750 	if ((dnw & 0x01F0) == 0 ||
2751 	    m->queue - m->pc == PQ_INACTIVE ||
2752 	    m->queue - m->pc == PQ_CACHE
2753 	) {
2754 		if (m->act_count >= ACT_INIT)
2755 			--m->act_count;
2756 		return;
2757 	}
2758 
2759 	/*
2760 	 * If vm_page_dontneed() is inactivating a page, it must clear
2761 	 * the referenced flag; otherwise the pagedaemon will see references
2762 	 * on the page in the inactive queue and reactivate it. Until the
2763 	 * page can move to the cache queue, madvise's job is not done.
2764 	 */
2765 	vm_page_flag_clear(m, PG_REFERENCED);
2766 	pmap_clear_reference(m);
2767 
2768 	if (m->dirty == 0)
2769 		vm_page_test_dirty(m);
2770 
2771 	if (m->dirty || (dnw & 0x0070) == 0) {
2772 		/*
2773 		 * Deactivate the page 3 times out of 32.
2774 		 */
2775 		head = 0;
2776 	} else {
2777 		/*
2778 		 * Cache the page 28 times out of every 32.  Note that
2779 		 * the page is deactivated instead of cached, but placed
2780 		 * at the head of the queue instead of the tail.
2781 		 */
2782 		head = 1;
2783 	}
2784 	vm_page_spin_lock(m);
2785 	_vm_page_deactivate_locked(m, head);
2786 	vm_page_spin_unlock(m);
2787 }
2788 
2789 /*
2790  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2791  * is almost like PG_BUSY except that it allows certain compatible operations
2792  * to occur on the page while it is busy.  For example, a page undergoing a
2793  * write can still be mapped read-only.
2794  *
2795  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2796  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2797  * busy bit is cleared.
2798  *
2799  * The caller must hold the page BUSY when making these two calls.
2800  */
2801 void
2802 vm_page_io_start(vm_page_t m)
2803 {
2804         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2805         atomic_add_char(&m->busy, 1);
2806 	vm_page_flag_set(m, PG_SBUSY);
2807 }
2808 
2809 void
2810 vm_page_io_finish(vm_page_t m)
2811 {
2812         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2813         atomic_subtract_char(&m->busy, 1);
2814 	if (m->busy == 0)
2815 		vm_page_flag_clear(m, PG_SBUSY);
2816 }
2817 
2818 /*
2819  * Indicate that a clean VM page requires a filesystem commit and cannot
2820  * be reused.  Used by tmpfs.
2821  */
2822 void
2823 vm_page_need_commit(vm_page_t m)
2824 {
2825 	vm_page_flag_set(m, PG_NEED_COMMIT);
2826 	vm_object_set_writeable_dirty(m->object);
2827 }
2828 
2829 void
2830 vm_page_clear_commit(vm_page_t m)
2831 {
2832 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2833 }
2834 
2835 /*
2836  * Grab a page, blocking if it is busy and allocating a page if necessary.
2837  * A busy page is returned or NULL.  The page may or may not be valid and
2838  * might not be on a queue (the caller is responsible for the disposition of
2839  * the page).
2840  *
2841  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2842  * page will be zero'd and marked valid.
2843  *
2844  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2845  * valid even if it already exists.
2846  *
2847  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2848  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2849  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2850  *
2851  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2852  * always returned if we had blocked.
2853  *
2854  * This routine may not be called from an interrupt.
2855  *
2856  * No other requirements.
2857  */
2858 vm_page_t
2859 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2860 {
2861 	vm_page_t m;
2862 	int error;
2863 	int shared = 1;
2864 
2865 	KKASSERT(allocflags &
2866 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2867 	vm_object_hold_shared(object);
2868 	for (;;) {
2869 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2870 		if (error) {
2871 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2872 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2873 				m = NULL;
2874 				break;
2875 			}
2876 			/* retry */
2877 		} else if (m == NULL) {
2878 			if (shared) {
2879 				vm_object_upgrade(object);
2880 				shared = 0;
2881 			}
2882 			if (allocflags & VM_ALLOC_RETRY)
2883 				allocflags |= VM_ALLOC_NULL_OK;
2884 			m = vm_page_alloc(object, pindex,
2885 					  allocflags & ~VM_ALLOC_RETRY);
2886 			if (m)
2887 				break;
2888 			vm_wait(0);
2889 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2890 				goto failed;
2891 		} else {
2892 			/* m found */
2893 			break;
2894 		}
2895 	}
2896 
2897 	/*
2898 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2899 	 *
2900 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2901 	 * valid even if already valid.
2902 	 *
2903 	 * NOTE!  We have removed all of the PG_ZERO optimizations and also
2904 	 *	  removed the idle zeroing code.  These optimizations actually
2905 	 *	  slow things down on modern cpus because the zerod area is
2906 	 *	  likely uncached, placing a memory-access burden on the
2907 	 *	  accesors taking the fault.
2908 	 *
2909 	 *	  By always zeroing the page in-line with the fault, no
2910 	 *	  dynamic ram reads are needed and the caches are hot, ready
2911 	 *	  for userland to access the memory.
2912 	 */
2913 	if (m->valid == 0) {
2914 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2915 			pmap_zero_page(VM_PAGE_TO_PHYS(m));
2916 			m->valid = VM_PAGE_BITS_ALL;
2917 		}
2918 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2919 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2920 		m->valid = VM_PAGE_BITS_ALL;
2921 	}
2922 failed:
2923 	vm_object_drop(object);
2924 	return(m);
2925 }
2926 
2927 /*
2928  * Mapping function for valid bits or for dirty bits in
2929  * a page.  May not block.
2930  *
2931  * Inputs are required to range within a page.
2932  *
2933  * No requirements.
2934  * Non blocking.
2935  */
2936 int
2937 vm_page_bits(int base, int size)
2938 {
2939 	int first_bit;
2940 	int last_bit;
2941 
2942 	KASSERT(
2943 	    base + size <= PAGE_SIZE,
2944 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2945 	);
2946 
2947 	if (size == 0)		/* handle degenerate case */
2948 		return(0);
2949 
2950 	first_bit = base >> DEV_BSHIFT;
2951 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2952 
2953 	return ((2 << last_bit) - (1 << first_bit));
2954 }
2955 
2956 /*
2957  * Sets portions of a page valid and clean.  The arguments are expected
2958  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2959  * of any partial chunks touched by the range.  The invalid portion of
2960  * such chunks will be zero'd.
2961  *
2962  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2963  *	 align base to DEV_BSIZE so as not to mark clean a partially
2964  *	 truncated device block.  Otherwise the dirty page status might be
2965  *	 lost.
2966  *
2967  * This routine may not block.
2968  *
2969  * (base + size) must be less then or equal to PAGE_SIZE.
2970  */
2971 static void
2972 _vm_page_zero_valid(vm_page_t m, int base, int size)
2973 {
2974 	int frag;
2975 	int endoff;
2976 
2977 	if (size == 0)	/* handle degenerate case */
2978 		return;
2979 
2980 	/*
2981 	 * If the base is not DEV_BSIZE aligned and the valid
2982 	 * bit is clear, we have to zero out a portion of the
2983 	 * first block.
2984 	 */
2985 
2986 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2987 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2988 	) {
2989 		pmap_zero_page_area(
2990 		    VM_PAGE_TO_PHYS(m),
2991 		    frag,
2992 		    base - frag
2993 		);
2994 	}
2995 
2996 	/*
2997 	 * If the ending offset is not DEV_BSIZE aligned and the
2998 	 * valid bit is clear, we have to zero out a portion of
2999 	 * the last block.
3000 	 */
3001 
3002 	endoff = base + size;
3003 
3004 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
3005 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
3006 	) {
3007 		pmap_zero_page_area(
3008 		    VM_PAGE_TO_PHYS(m),
3009 		    endoff,
3010 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
3011 		);
3012 	}
3013 }
3014 
3015 /*
3016  * Set valid, clear dirty bits.  If validating the entire
3017  * page we can safely clear the pmap modify bit.  We also
3018  * use this opportunity to clear the PG_NOSYNC flag.  If a process
3019  * takes a write fault on a MAP_NOSYNC memory area the flag will
3020  * be set again.
3021  *
3022  * We set valid bits inclusive of any overlap, but we can only
3023  * clear dirty bits for DEV_BSIZE chunks that are fully within
3024  * the range.
3025  *
3026  * Page must be busied?
3027  * No other requirements.
3028  */
3029 void
3030 vm_page_set_valid(vm_page_t m, int base, int size)
3031 {
3032 	_vm_page_zero_valid(m, base, size);
3033 	m->valid |= vm_page_bits(base, size);
3034 }
3035 
3036 
3037 /*
3038  * Set valid bits and clear dirty bits.
3039  *
3040  * Page must be busied by caller.
3041  *
3042  * NOTE: This function does not clear the pmap modified bit.
3043  *	 Also note that e.g. NFS may use a byte-granular base
3044  *	 and size.
3045  *
3046  * No other requirements.
3047  */
3048 void
3049 vm_page_set_validclean(vm_page_t m, int base, int size)
3050 {
3051 	int pagebits;
3052 
3053 	_vm_page_zero_valid(m, base, size);
3054 	pagebits = vm_page_bits(base, size);
3055 	m->valid |= pagebits;
3056 	m->dirty &= ~pagebits;
3057 	if (base == 0 && size == PAGE_SIZE) {
3058 		/*pmap_clear_modify(m);*/
3059 		vm_page_flag_clear(m, PG_NOSYNC);
3060 	}
3061 }
3062 
3063 /*
3064  * Set valid & dirty.  Used by buwrite()
3065  *
3066  * Page must be busied by caller.
3067  */
3068 void
3069 vm_page_set_validdirty(vm_page_t m, int base, int size)
3070 {
3071 	int pagebits;
3072 
3073 	pagebits = vm_page_bits(base, size);
3074 	m->valid |= pagebits;
3075 	m->dirty |= pagebits;
3076 	if (m->object)
3077 	       vm_object_set_writeable_dirty(m->object);
3078 }
3079 
3080 /*
3081  * Clear dirty bits.
3082  *
3083  * NOTE: This function does not clear the pmap modified bit.
3084  *	 Also note that e.g. NFS may use a byte-granular base
3085  *	 and size.
3086  *
3087  * Page must be busied?
3088  * No other requirements.
3089  */
3090 void
3091 vm_page_clear_dirty(vm_page_t m, int base, int size)
3092 {
3093 	m->dirty &= ~vm_page_bits(base, size);
3094 	if (base == 0 && size == PAGE_SIZE) {
3095 		/*pmap_clear_modify(m);*/
3096 		vm_page_flag_clear(m, PG_NOSYNC);
3097 	}
3098 }
3099 
3100 /*
3101  * Make the page all-dirty.
3102  *
3103  * Also make sure the related object and vnode reflect the fact that the
3104  * object may now contain a dirty page.
3105  *
3106  * Page must be busied?
3107  * No other requirements.
3108  */
3109 void
3110 vm_page_dirty(vm_page_t m)
3111 {
3112 #ifdef INVARIANTS
3113         int pqtype = m->queue - m->pc;
3114 #endif
3115         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
3116                 ("vm_page_dirty: page in free/cache queue!"));
3117 	if (m->dirty != VM_PAGE_BITS_ALL) {
3118 		m->dirty = VM_PAGE_BITS_ALL;
3119 		if (m->object)
3120 			vm_object_set_writeable_dirty(m->object);
3121 	}
3122 }
3123 
3124 /*
3125  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
3126  * valid and dirty bits for the effected areas are cleared.
3127  *
3128  * Page must be busied?
3129  * Does not block.
3130  * No other requirements.
3131  */
3132 void
3133 vm_page_set_invalid(vm_page_t m, int base, int size)
3134 {
3135 	int bits;
3136 
3137 	bits = vm_page_bits(base, size);
3138 	m->valid &= ~bits;
3139 	m->dirty &= ~bits;
3140 	atomic_add_int(&m->object->generation, 1);
3141 }
3142 
3143 /*
3144  * The kernel assumes that the invalid portions of a page contain
3145  * garbage, but such pages can be mapped into memory by user code.
3146  * When this occurs, we must zero out the non-valid portions of the
3147  * page so user code sees what it expects.
3148  *
3149  * Pages are most often semi-valid when the end of a file is mapped
3150  * into memory and the file's size is not page aligned.
3151  *
3152  * Page must be busied?
3153  * No other requirements.
3154  */
3155 void
3156 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
3157 {
3158 	int b;
3159 	int i;
3160 
3161 	/*
3162 	 * Scan the valid bits looking for invalid sections that
3163 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
3164 	 * valid bit may be set ) have already been zerod by
3165 	 * vm_page_set_validclean().
3166 	 */
3167 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
3168 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
3169 		    (m->valid & (1 << i))
3170 		) {
3171 			if (i > b) {
3172 				pmap_zero_page_area(
3173 				    VM_PAGE_TO_PHYS(m),
3174 				    b << DEV_BSHIFT,
3175 				    (i - b) << DEV_BSHIFT
3176 				);
3177 			}
3178 			b = i + 1;
3179 		}
3180 	}
3181 
3182 	/*
3183 	 * setvalid is TRUE when we can safely set the zero'd areas
3184 	 * as being valid.  We can do this if there are no cache consistency
3185 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
3186 	 */
3187 	if (setvalid)
3188 		m->valid = VM_PAGE_BITS_ALL;
3189 }
3190 
3191 /*
3192  * Is a (partial) page valid?  Note that the case where size == 0
3193  * will return FALSE in the degenerate case where the page is entirely
3194  * invalid, and TRUE otherwise.
3195  *
3196  * Does not block.
3197  * No other requirements.
3198  */
3199 int
3200 vm_page_is_valid(vm_page_t m, int base, int size)
3201 {
3202 	int bits = vm_page_bits(base, size);
3203 
3204 	if (m->valid && ((m->valid & bits) == bits))
3205 		return 1;
3206 	else
3207 		return 0;
3208 }
3209 
3210 /*
3211  * update dirty bits from pmap/mmu.  May not block.
3212  *
3213  * Caller must hold the page busy
3214  */
3215 void
3216 vm_page_test_dirty(vm_page_t m)
3217 {
3218 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
3219 		vm_page_dirty(m);
3220 	}
3221 }
3222 
3223 #include "opt_ddb.h"
3224 #ifdef DDB
3225 #include <ddb/ddb.h>
3226 
3227 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3228 {
3229 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3230 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3231 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3232 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3233 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3234 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3235 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3236 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3237 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3238 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3239 }
3240 
3241 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3242 {
3243 	int i;
3244 	db_printf("PQ_FREE:");
3245 	for (i = 0; i < PQ_L2_SIZE; i++) {
3246 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3247 	}
3248 	db_printf("\n");
3249 
3250 	db_printf("PQ_CACHE:");
3251 	for(i = 0; i < PQ_L2_SIZE; i++) {
3252 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3253 	}
3254 	db_printf("\n");
3255 
3256 	db_printf("PQ_ACTIVE:");
3257 	for(i = 0; i < PQ_L2_SIZE; i++) {
3258 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3259 	}
3260 	db_printf("\n");
3261 
3262 	db_printf("PQ_INACTIVE:");
3263 	for(i = 0; i < PQ_L2_SIZE; i++) {
3264 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3265 	}
3266 	db_printf("\n");
3267 }
3268 #endif /* DDB */
3269