xref: /dragonfly/sys/vm/vm_page.h (revision 984263bc)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_PAGE_
72 #define	_VM_PAGE_
73 
74 #if !defined(KLD_MODULE)
75 #include "opt_vmpage.h"
76 #endif
77 
78 #include <vm/pmap.h>
79 #include <machine/atomic.h>
80 
81 /*
82  *	Management of resident (logical) pages.
83  *
84  *	A small structure is kept for each resident
85  *	page, indexed by page number.  Each structure
86  *	is an element of several lists:
87  *
88  *		A hash table bucket used to quickly
89  *		perform object/offset lookups
90  *
91  *		A list of all pages for a given object,
92  *		so they can be quickly deactivated at
93  *		time of deallocation.
94  *
95  *		An ordered list of pages due for pageout.
96  *
97  *	In addition, the structure contains the object
98  *	and offset to which this page belongs (for pageout),
99  *	and sundry status bits.
100  *
101  *	Fields in this structure are locked either by the lock on the
102  *	object that the page belongs to (O) or by the lock on the page
103  *	queues (P).
104  *
105  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
106  *	bits set without having associated valid bits set.  This is used by
107  *	NFS to implement piecemeal writes.
108  */
109 
110 TAILQ_HEAD(pglist, vm_page);
111 
112 struct vm_page {
113 	TAILQ_ENTRY(vm_page) pageq;	/* queue info for FIFO queue or free list (P) */
114 	struct vm_page	*hnext;		/* hash table link (O,P)	*/
115 	TAILQ_ENTRY(vm_page) listq;	/* pages in same object (O) 	*/
116 
117 	vm_object_t object;		/* which object am I in (O,P)*/
118 	vm_pindex_t pindex;		/* offset into object (O,P) */
119 	vm_offset_t phys_addr;		/* physical address of page */
120 	struct md_page md;		/* machine dependant stuff */
121 	u_short	queue;			/* page queue index */
122 	u_short	flags,			/* see below */
123 		pc;			/* page color */
124 	u_short wire_count;		/* wired down maps refs (P) */
125 	short hold_count;		/* page hold count */
126 	u_char	act_count;		/* page usage count */
127 	u_char	busy;			/* page busy count */
128 	/* NOTE that these must support one bit per DEV_BSIZE in a page!!! */
129 	/* so, on normal X86 kernels, they must be at least 8 bits wide */
130 #if PAGE_SIZE == 4096
131 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
132 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
133 #elif PAGE_SIZE == 8192
134 	u_short	valid;			/* map of valid DEV_BSIZE chunks */
135 	u_short	dirty;			/* map of dirty DEV_BSIZE chunks */
136 #endif
137 };
138 
139 /*
140  * note: currently use SWAPBLK_NONE as an absolute value rather then
141  * a flag bit.
142  */
143 
144 #define SWAPBLK_MASK	((daddr_t)((u_daddr_t)-1 >> 1))		/* mask */
145 #define SWAPBLK_NONE	((daddr_t)((u_daddr_t)SWAPBLK_MASK + 1))/* flag */
146 
147 #if !defined(KLD_MODULE)
148 
149 /*
150  * Page coloring parameters
151  */
152 /* Each of PQ_FREE, and PQ_CACHE have PQ_HASH_SIZE entries */
153 
154 /* Backward compatibility for existing PQ_*CACHE config options. */
155 #if !defined(PQ_CACHESIZE)
156 #if defined(PQ_HUGECACHE)
157 #define PQ_CACHESIZE 1024
158 #elif defined(PQ_LARGECACHE)
159 #define PQ_CACHESIZE 512
160 #elif defined(PQ_MEDIUMCACHE)
161 #define PQ_CACHESIZE 256
162 #elif defined(PQ_NORMALCACHE)
163 #define PQ_CACHESIZE 64
164 #elif defined(PQ_NOOPT)
165 #define PQ_CACHESIZE 0
166 #else
167 #define PQ_CACHESIZE 128
168 #endif
169 #endif
170 
171 #if PQ_CACHESIZE >= 1024
172 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
173 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
174 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
175 
176 #elif PQ_CACHESIZE >= 512
177 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
178 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
179 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
180 
181 #elif PQ_CACHESIZE >= 256
182 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
183 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
184 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
185 
186 #elif PQ_CACHESIZE >= 128
187 #define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
188 #define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
189 #define PQ_L2_SIZE 32	/* A number of colors opt for 128k cache */
190 
191 #elif PQ_CACHESIZE >= 64
192 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
193 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
194 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
195 
196 #else
197 #define PQ_PRIME1 1	/* Disable page coloring. */
198 #define PQ_PRIME2 1
199 #define PQ_L2_SIZE 1
200 
201 #endif
202 
203 #define PQ_L2_MASK (PQ_L2_SIZE - 1)
204 
205 #define PQ_NONE 0
206 #define PQ_FREE	1
207 #define PQ_INACTIVE (1 + 1*PQ_L2_SIZE)
208 #define PQ_ACTIVE (2 + 1*PQ_L2_SIZE)
209 #define PQ_CACHE (3 + 1*PQ_L2_SIZE)
210 #define PQ_HOLD  (3 + 2*PQ_L2_SIZE)
211 #define PQ_COUNT (4 + 2*PQ_L2_SIZE)
212 
213 struct vpgqueues {
214 	struct pglist pl;
215 	int	*cnt;
216 	int	lcnt;
217 };
218 
219 extern struct vpgqueues vm_page_queues[PQ_COUNT];
220 
221 #endif
222 
223 /*
224  * These are the flags defined for vm_page.
225  *
226  * Note: PG_FILLED and PG_DIRTY are added for the filesystems.
227  *
228  * Note: PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
229  * 	 not under PV management but otherwise should be treated as a
230  *	 normal page.  Pages not under PV management cannot be paged out
231  *	 via the object/vm_page_t because there is no knowledge of their
232  *	 pte mappings, nor can they be removed from their objects via
233  *	 the object, and such pages are also not on any PQ queue.
234  */
235 #define	PG_BUSY		0x0001		/* page is in transit (O) */
236 #define	PG_WANTED	0x0002		/* someone is waiting for page (O) */
237 #define PG_WINATCFLS	0x0004		/* flush dirty page on inactive q */
238 #define	PG_FICTITIOUS	0x0008		/* physical page doesn't exist (O) */
239 #define	PG_WRITEABLE	0x0010		/* page is mapped writeable */
240 #define PG_MAPPED	0x0020		/* page is mapped */
241 #define	PG_ZERO		0x0040		/* page is zeroed */
242 #define PG_REFERENCED	0x0080		/* page has been referenced */
243 #define PG_CLEANCHK	0x0100		/* page will be checked for cleaning */
244 #define PG_SWAPINPROG	0x0200		/* swap I/O in progress on page	     */
245 #define PG_NOSYNC	0x0400		/* do not collect for syncer */
246 #define PG_UNMANAGED	0x0800		/* No PV management for page */
247 #define PG_MARKER	0x1000		/* special queue marker page */
248 
249 /*
250  * Misc constants.
251  */
252 
253 #define ACT_DECLINE		1
254 #define ACT_ADVANCE		3
255 #define ACT_INIT		5
256 #define ACT_MAX			64
257 #define PFCLUSTER_BEHIND	3
258 #define PFCLUSTER_AHEAD		3
259 
260 #ifdef _KERNEL
261 /*
262  * Each pageable resident page falls into one of four lists:
263  *
264  *	free
265  *		Available for allocation now.
266  *
267  * The following are all LRU sorted:
268  *
269  *	cache
270  *		Almost available for allocation. Still in an
271  *		object, but clean and immediately freeable at
272  *		non-interrupt times.
273  *
274  *	inactive
275  *		Low activity, candidates for reclamation.
276  *		This is the list of pages that should be
277  *		paged out next.
278  *
279  *	active
280  *		Pages that are "active" i.e. they have been
281  *		recently referenced.
282  *
283  *	zero
284  *		Pages that are really free and have been pre-zeroed
285  *
286  */
287 
288 extern int vm_page_zero_count;
289 
290 extern vm_page_t vm_page_array;		/* First resident page in table */
291 extern int vm_page_array_size;		/* number of vm_page_t's */
292 extern long first_page;			/* first physical page number */
293 
294 #define VM_PAGE_TO_PHYS(entry)	((entry)->phys_addr)
295 
296 #define PHYS_TO_VM_PAGE(pa) \
297 		(&vm_page_array[atop(pa) - first_page ])
298 
299 /*
300  *	Functions implemented as macros
301  */
302 
303 static __inline void
304 vm_page_flag_set(vm_page_t m, unsigned int bits)
305 {
306 	atomic_set_short(&(m)->flags, bits);
307 }
308 
309 static __inline void
310 vm_page_flag_clear(vm_page_t m, unsigned int bits)
311 {
312 	atomic_clear_short(&(m)->flags, bits);
313 }
314 
315 #if 0
316 static __inline void
317 vm_page_assert_wait(vm_page_t m, int interruptible)
318 {
319 	vm_page_flag_set(m, PG_WANTED);
320 	assert_wait((int) m, interruptible);
321 }
322 #endif
323 
324 static __inline void
325 vm_page_busy(vm_page_t m)
326 {
327 	KASSERT((m->flags & PG_BUSY) == 0, ("vm_page_busy: page already busy!!!"));
328 	vm_page_flag_set(m, PG_BUSY);
329 }
330 
331 /*
332  *	vm_page_flash:
333  *
334  *	wakeup anyone waiting for the page.
335  */
336 
337 static __inline void
338 vm_page_flash(vm_page_t m)
339 {
340 	if (m->flags & PG_WANTED) {
341 		vm_page_flag_clear(m, PG_WANTED);
342 		wakeup(m);
343 	}
344 }
345 
346 /*
347  *	vm_page_wakeup:
348  *
349  *	clear the PG_BUSY flag and wakeup anyone waiting for the
350  *	page.
351  *
352  */
353 
354 static __inline void
355 vm_page_wakeup(vm_page_t m)
356 {
357 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
358 	vm_page_flag_clear(m, PG_BUSY);
359 	vm_page_flash(m);
360 }
361 
362 /*
363  *
364  *
365  */
366 
367 static __inline void
368 vm_page_io_start(vm_page_t m)
369 {
370 	atomic_add_char(&(m)->busy, 1);
371 }
372 
373 static __inline void
374 vm_page_io_finish(vm_page_t m)
375 {
376 	atomic_subtract_char(&m->busy, 1);
377 	if (m->busy == 0)
378 		vm_page_flash(m);
379 }
380 
381 
382 #if PAGE_SIZE == 4096
383 #define VM_PAGE_BITS_ALL 0xff
384 #endif
385 
386 #if PAGE_SIZE == 8192
387 #define VM_PAGE_BITS_ALL 0xffff
388 #endif
389 
390 #define VM_ALLOC_NORMAL		0
391 #define VM_ALLOC_INTERRUPT	1
392 #define VM_ALLOC_SYSTEM		2
393 #define	VM_ALLOC_ZERO		3
394 #define	VM_ALLOC_RETRY		0x80
395 
396 void vm_page_unhold(vm_page_t mem);
397 
398 void vm_page_activate (vm_page_t);
399 vm_page_t vm_page_alloc (vm_object_t, vm_pindex_t, int);
400 vm_page_t vm_page_grab (vm_object_t, vm_pindex_t, int);
401 void vm_page_cache (register vm_page_t);
402 int vm_page_try_to_cache (vm_page_t);
403 int vm_page_try_to_free (vm_page_t);
404 void vm_page_dontneed (register vm_page_t);
405 static __inline void vm_page_copy (vm_page_t, vm_page_t);
406 static __inline void vm_page_free (vm_page_t);
407 static __inline void vm_page_free_zero (vm_page_t);
408 void vm_page_deactivate (vm_page_t);
409 void vm_page_insert (vm_page_t, vm_object_t, vm_pindex_t);
410 vm_page_t vm_page_lookup (vm_object_t, vm_pindex_t);
411 void vm_page_remove (vm_page_t);
412 void vm_page_rename (vm_page_t, vm_object_t, vm_pindex_t);
413 vm_offset_t vm_page_startup (vm_offset_t, vm_offset_t, vm_offset_t);
414 vm_page_t vm_add_new_page (vm_offset_t pa);
415 void vm_page_unmanage (vm_page_t);
416 void vm_page_unwire (vm_page_t, int);
417 void vm_page_wire (vm_page_t);
418 void vm_page_unqueue (vm_page_t);
419 void vm_page_unqueue_nowakeup (vm_page_t);
420 void vm_page_set_validclean (vm_page_t, int, int);
421 void vm_page_set_dirty (vm_page_t, int, int);
422 void vm_page_clear_dirty (vm_page_t, int, int);
423 void vm_page_set_invalid (vm_page_t, int, int);
424 static __inline boolean_t vm_page_zero_fill (vm_page_t);
425 int vm_page_is_valid (vm_page_t, int, int);
426 void vm_page_test_dirty (vm_page_t);
427 int vm_page_bits (int, int);
428 vm_page_t _vm_page_list_find (int, int);
429 #if 0
430 int vm_page_sleep(vm_page_t m, char *msg, char *busy);
431 int vm_page_asleep(vm_page_t m, char *msg, char *busy);
432 #endif
433 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
434 void vm_page_free_toq(vm_page_t m);
435 
436 /*
437  * Keep page from being freed by the page daemon
438  * much of the same effect as wiring, except much lower
439  * overhead and should be used only for *very* temporary
440  * holding ("wiring").
441  */
442 static __inline void
443 vm_page_hold(vm_page_t mem)
444 {
445 	mem->hold_count++;
446 }
447 
448 /*
449  * 	vm_page_protect:
450  *
451  *	Reduce the protection of a page.  This routine never raises the
452  *	protection and therefore can be safely called if the page is already
453  *	at VM_PROT_NONE (it will be a NOP effectively ).
454  */
455 
456 static __inline void
457 vm_page_protect(vm_page_t mem, int prot)
458 {
459 	if (prot == VM_PROT_NONE) {
460 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
461 			pmap_page_protect(mem, VM_PROT_NONE);
462 			vm_page_flag_clear(mem, PG_WRITEABLE|PG_MAPPED);
463 		}
464 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
465 		pmap_page_protect(mem, VM_PROT_READ);
466 		vm_page_flag_clear(mem, PG_WRITEABLE);
467 	}
468 }
469 
470 /*
471  *	vm_page_zero_fill:
472  *
473  *	Zero-fill the specified page.
474  *	Written as a standard pagein routine, to
475  *	be used by the zero-fill object.
476  */
477 static __inline boolean_t
478 vm_page_zero_fill(m)
479 	vm_page_t m;
480 {
481 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
482 	return (TRUE);
483 }
484 
485 /*
486  *	vm_page_copy:
487  *
488  *	Copy one page to another
489  */
490 static __inline void
491 vm_page_copy(src_m, dest_m)
492 	vm_page_t src_m;
493 	vm_page_t dest_m;
494 {
495 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
496 	dest_m->valid = VM_PAGE_BITS_ALL;
497 }
498 
499 /*
500  *	vm_page_free:
501  *
502  *	Free a page
503  *
504  *	The clearing of PG_ZERO is a temporary safety until the code can be
505  *	reviewed to determine that PG_ZERO is being properly cleared on
506  *	write faults or maps.  PG_ZERO was previously cleared in
507  *	vm_page_alloc().
508  */
509 static __inline void
510 vm_page_free(m)
511 	vm_page_t m;
512 {
513 	vm_page_flag_clear(m, PG_ZERO);
514 	vm_page_free_toq(m);
515 }
516 
517 /*
518  *	vm_page_free_zero:
519  *
520  *	Free a page to the zerod-pages queue
521  */
522 static __inline void
523 vm_page_free_zero(m)
524 	vm_page_t m;
525 {
526 	vm_page_flag_set(m, PG_ZERO);
527 	vm_page_free_toq(m);
528 }
529 
530 /*
531  *	vm_page_sleep_busy:
532  *
533  *	Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
534  *	m->busy is zero.  Returns TRUE if it had to sleep ( including if
535  *	it almost had to sleep and made temporary spl*() mods), FALSE
536  *	otherwise.
537  *
538  *	This routine assumes that interrupts can only remove the busy
539  *	status from a page, not set the busy status or change it from
540  *	PG_BUSY to m->busy or vise versa (which would create a timing
541  *	window).
542  *
543  *	Note that being an inline, this code will be well optimized.
544  */
545 
546 static __inline int
547 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
548 {
549 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
550 		int s = splvm();
551 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
552 			/*
553 			 * Page is busy. Wait and retry.
554 			 */
555 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
556 			tsleep(m, PVM, msg, 0);
557 		}
558 		splx(s);
559 		return(TRUE);
560 		/* not reached */
561 	}
562 	return(FALSE);
563 }
564 
565 /*
566  *	vm_page_dirty:
567  *
568  *	make page all dirty
569  */
570 
571 static __inline void
572 vm_page_dirty(vm_page_t m)
573 {
574 #if !defined(KLD_MODULE)
575 	KASSERT(m->queue - m->pc != PQ_CACHE, ("vm_page_dirty: page in cache!"));
576 #endif
577 	m->dirty = VM_PAGE_BITS_ALL;
578 }
579 
580 /*
581  *	vm_page_undirty:
582  *
583  *	Set page to not be dirty.  Note: does not clear pmap modify bits
584  */
585 
586 static __inline void
587 vm_page_undirty(vm_page_t m)
588 {
589 	m->dirty = 0;
590 }
591 
592 #if !defined(KLD_MODULE)
593 
594 static __inline vm_page_t
595 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
596 {
597 	vm_page_t m;
598 
599 #if PQ_L2_SIZE > 1
600 	if (prefer_zero) {
601 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
602 	} else {
603 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
604 	}
605 	if (m == NULL)
606 		m = _vm_page_list_find(basequeue, index);
607 #else
608 	if (prefer_zero) {
609 		m = TAILQ_LAST(&vm_page_queues[basequeue].pl, pglist);
610 	} else {
611 		m = TAILQ_FIRST(&vm_page_queues[basequeue].pl);
612 	}
613 #endif
614 	return(m);
615 }
616 
617 #endif
618 
619 #endif				/* _KERNEL */
620 #endif				/* !_VM_PAGE_ */
621