xref: /dragonfly/sys/vm/vm_pageout.c (revision 9bb2a92d)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.9 2004/03/01 06:33:24 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_page2.h>
99 
100 /*
101  * System initialization
102  */
103 
104 /* the kernel process "vm_pageout"*/
105 static void vm_pageout (void);
106 static int vm_pageout_clean (vm_page_t);
107 static void vm_pageout_scan (int pass);
108 static int vm_pageout_free_page_calc (vm_size_t count);
109 struct thread *pagethread;
110 
111 static struct kproc_desc page_kp = {
112 	"pagedaemon",
113 	vm_pageout,
114 	&pagethread
115 };
116 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117 
118 #if !defined(NO_SWAPPING)
119 /* the kernel process "vm_daemon"*/
120 static void vm_daemon (void);
121 static struct	thread *vmthread;
122 
123 static struct kproc_desc vm_kp = {
124 	"vmdaemon",
125 	vm_daemon,
126 	&vmthread
127 };
128 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129 #endif
130 
131 
132 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
133 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
134 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
135 
136 #if !defined(NO_SWAPPING)
137 static int vm_pageout_req_swapout;	/* XXX */
138 static int vm_daemon_needed;
139 #endif
140 extern int vm_swap_size;
141 static int vm_max_launder = 32;
142 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143 static int vm_pageout_full_stats_interval = 0;
144 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
145 static int defer_swap_pageouts=0;
146 static int disable_swap_pageouts=0;
147 
148 #if defined(NO_SWAPPING)
149 static int vm_swap_enabled=0;
150 static int vm_swap_idle_enabled=0;
151 #else
152 static int vm_swap_enabled=1;
153 static int vm_swap_idle_enabled=0;
154 #endif
155 
156 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
158 
159 SYSCTL_INT(_vm, OID_AUTO, max_launder,
160 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
161 
162 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
163 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
166 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
167 
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
169 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
170 
171 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
172 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
173 
174 #if defined(NO_SWAPPING)
175 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
177 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
179 #else
180 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
182 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
184 #endif
185 
186 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
187 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
188 
189 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
190 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
191 
192 static int pageout_lock_miss;
193 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
194 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
195 
196 #define VM_PAGEOUT_PAGE_COUNT 16
197 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198 
199 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
200 
201 #if !defined(NO_SWAPPING)
202 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
203 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
204 static freeer_fcn_t vm_pageout_object_deactivate_pages;
205 static void vm_req_vmdaemon (void);
206 #endif
207 static void vm_pageout_page_stats(void);
208 
209 /*
210  * vm_pageout_clean:
211  *
212  * Clean the page and remove it from the laundry.
213  *
214  * We set the busy bit to cause potential page faults on this page to
215  * block.  Note the careful timing, however, the busy bit isn't set till
216  * late and we cannot do anything that will mess with the page.
217  */
218 
219 static int
220 vm_pageout_clean(m)
221 	vm_page_t m;
222 {
223 	vm_object_t object;
224 	vm_page_t mc[2*vm_pageout_page_count];
225 	int pageout_count;
226 	int ib, is, page_base;
227 	vm_pindex_t pindex = m->pindex;
228 
229 	object = m->object;
230 
231 	/*
232 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
233 	 * with the new swapper, but we could have serious problems paging
234 	 * out other object types if there is insufficient memory.
235 	 *
236 	 * Unfortunately, checking free memory here is far too late, so the
237 	 * check has been moved up a procedural level.
238 	 */
239 
240 	/*
241 	 * Don't mess with the page if it's busy, held, or special
242 	 */
243 	if ((m->hold_count != 0) ||
244 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
245 		return 0;
246 	}
247 
248 	mc[vm_pageout_page_count] = m;
249 	pageout_count = 1;
250 	page_base = vm_pageout_page_count;
251 	ib = 1;
252 	is = 1;
253 
254 	/*
255 	 * Scan object for clusterable pages.
256 	 *
257 	 * We can cluster ONLY if: ->> the page is NOT
258 	 * clean, wired, busy, held, or mapped into a
259 	 * buffer, and one of the following:
260 	 * 1) The page is inactive, or a seldom used
261 	 *    active page.
262 	 * -or-
263 	 * 2) we force the issue.
264 	 *
265 	 * During heavy mmap/modification loads the pageout
266 	 * daemon can really fragment the underlying file
267 	 * due to flushing pages out of order and not trying
268 	 * align the clusters (which leave sporatic out-of-order
269 	 * holes).  To solve this problem we do the reverse scan
270 	 * first and attempt to align our cluster, then do a
271 	 * forward scan if room remains.
272 	 */
273 
274 more:
275 	while (ib && pageout_count < vm_pageout_page_count) {
276 		vm_page_t p;
277 
278 		if (ib > pindex) {
279 			ib = 0;
280 			break;
281 		}
282 
283 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
284 			ib = 0;
285 			break;
286 		}
287 		if (((p->queue - p->pc) == PQ_CACHE) ||
288 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
289 			ib = 0;
290 			break;
291 		}
292 		vm_page_test_dirty(p);
293 		if ((p->dirty & p->valid) == 0 ||
294 		    p->queue != PQ_INACTIVE ||
295 		    p->wire_count != 0 ||	/* may be held by buf cache */
296 		    p->hold_count != 0) {	/* may be undergoing I/O */
297 			ib = 0;
298 			break;
299 		}
300 		mc[--page_base] = p;
301 		++pageout_count;
302 		++ib;
303 		/*
304 		 * alignment boundry, stop here and switch directions.  Do
305 		 * not clear ib.
306 		 */
307 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
308 			break;
309 	}
310 
311 	while (pageout_count < vm_pageout_page_count &&
312 	    pindex + is < object->size) {
313 		vm_page_t p;
314 
315 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
316 			break;
317 		if (((p->queue - p->pc) == PQ_CACHE) ||
318 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			break;
327 		}
328 		mc[page_base + pageout_count] = p;
329 		++pageout_count;
330 		++is;
331 	}
332 
333 	/*
334 	 * If we exhausted our forward scan, continue with the reverse scan
335 	 * when possible, even past a page boundry.  This catches boundry
336 	 * conditions.
337 	 */
338 	if (ib && pageout_count < vm_pageout_page_count)
339 		goto more;
340 
341 	/*
342 	 * we allow reads during pageouts...
343 	 */
344 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
345 }
346 
347 /*
348  * vm_pageout_flush() - launder the given pages
349  *
350  *	The given pages are laundered.  Note that we setup for the start of
351  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
352  *	reference count all in here rather then in the parent.  If we want
353  *	the parent to do more sophisticated things we may have to change
354  *	the ordering.
355  */
356 
357 int
358 vm_pageout_flush(mc, count, flags)
359 	vm_page_t *mc;
360 	int count;
361 	int flags;
362 {
363 	vm_object_t object;
364 	int pageout_status[count];
365 	int numpagedout = 0;
366 	int i;
367 
368 	/*
369 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
370 	 * mark the pages read-only.
371 	 *
372 	 * We do not have to fixup the clean/dirty bits here... we can
373 	 * allow the pager to do it after the I/O completes.
374 	 */
375 
376 	for (i = 0; i < count; i++) {
377 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
378 		vm_page_io_start(mc[i]);
379 		vm_page_protect(mc[i], VM_PROT_READ);
380 	}
381 
382 	object = mc[0]->object;
383 	vm_object_pip_add(object, count);
384 
385 	vm_pager_put_pages(object, mc, count,
386 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
387 	    pageout_status);
388 
389 	for (i = 0; i < count; i++) {
390 		vm_page_t mt = mc[i];
391 
392 		switch (pageout_status[i]) {
393 		case VM_PAGER_OK:
394 			numpagedout++;
395 			break;
396 		case VM_PAGER_PEND:
397 			numpagedout++;
398 			break;
399 		case VM_PAGER_BAD:
400 			/*
401 			 * Page outside of range of object. Right now we
402 			 * essentially lose the changes by pretending it
403 			 * worked.
404 			 */
405 			pmap_clear_modify(mt);
406 			vm_page_undirty(mt);
407 			break;
408 		case VM_PAGER_ERROR:
409 		case VM_PAGER_FAIL:
410 			/*
411 			 * If page couldn't be paged out, then reactivate the
412 			 * page so it doesn't clog the inactive list.  (We
413 			 * will try paging out it again later).
414 			 */
415 			vm_page_activate(mt);
416 			break;
417 		case VM_PAGER_AGAIN:
418 			break;
419 		}
420 
421 		/*
422 		 * If the operation is still going, leave the page busy to
423 		 * block all other accesses. Also, leave the paging in
424 		 * progress indicator set so that we don't attempt an object
425 		 * collapse.
426 		 */
427 		if (pageout_status[i] != VM_PAGER_PEND) {
428 			vm_object_pip_wakeup(object);
429 			vm_page_io_finish(mt);
430 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
431 				vm_page_protect(mt, VM_PROT_READ);
432 		}
433 	}
434 	return numpagedout;
435 }
436 
437 #if !defined(NO_SWAPPING)
438 /*
439  *	vm_pageout_object_deactivate_pages
440  *
441  *	deactivate enough pages to satisfy the inactive target
442  *	requirements or if vm_page_proc_limit is set, then
443  *	deactivate all of the pages in the object and its
444  *	backing_objects.
445  *
446  *	The object and map must be locked.
447  */
448 static void
449 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
450 	vm_map_t map;
451 	vm_object_t object;
452 	vm_pindex_t desired;
453 	int map_remove_only;
454 {
455 	vm_page_t p, next;
456 	int rcount;
457 	int remove_mode;
458 	int s;
459 
460 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
461 		return;
462 
463 	while (object) {
464 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
465 			return;
466 		if (object->paging_in_progress)
467 			return;
468 
469 		remove_mode = map_remove_only;
470 		if (object->shadow_count > 1)
471 			remove_mode = 1;
472 	/*
473 	 * scan the objects entire memory queue
474 	 */
475 		rcount = object->resident_page_count;
476 		p = TAILQ_FIRST(&object->memq);
477 		while (p && (rcount-- > 0)) {
478 			int actcount;
479 			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
480 				return;
481 			next = TAILQ_NEXT(p, listq);
482 			mycpu->gd_cnt.v_pdpages++;
483 			if (p->wire_count != 0 ||
484 			    p->hold_count != 0 ||
485 			    p->busy != 0 ||
486 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
487 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
488 				p = next;
489 				continue;
490 			}
491 
492 			actcount = pmap_ts_referenced(p);
493 			if (actcount) {
494 				vm_page_flag_set(p, PG_REFERENCED);
495 			} else if (p->flags & PG_REFERENCED) {
496 				actcount = 1;
497 			}
498 
499 			if ((p->queue != PQ_ACTIVE) &&
500 				(p->flags & PG_REFERENCED)) {
501 				vm_page_activate(p);
502 				p->act_count += actcount;
503 				vm_page_flag_clear(p, PG_REFERENCED);
504 			} else if (p->queue == PQ_ACTIVE) {
505 				if ((p->flags & PG_REFERENCED) == 0) {
506 					p->act_count -= min(p->act_count, ACT_DECLINE);
507 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
508 						vm_page_protect(p, VM_PROT_NONE);
509 						vm_page_deactivate(p);
510 					} else {
511 						s = splvm();
512 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
513 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
514 						splx(s);
515 					}
516 				} else {
517 					vm_page_activate(p);
518 					vm_page_flag_clear(p, PG_REFERENCED);
519 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
520 						p->act_count += ACT_ADVANCE;
521 					s = splvm();
522 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
523 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
524 					splx(s);
525 				}
526 			} else if (p->queue == PQ_INACTIVE) {
527 				vm_page_protect(p, VM_PROT_NONE);
528 			}
529 			p = next;
530 		}
531 		object = object->backing_object;
532 	}
533 	return;
534 }
535 
536 /*
537  * deactivate some number of pages in a map, try to do it fairly, but
538  * that is really hard to do.
539  */
540 static void
541 vm_pageout_map_deactivate_pages(map, desired)
542 	vm_map_t map;
543 	vm_pindex_t desired;
544 {
545 	vm_map_entry_t tmpe;
546 	vm_object_t obj, bigobj;
547 	int nothingwired;
548 
549 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread)) {
550 		return;
551 	}
552 
553 	bigobj = NULL;
554 	nothingwired = TRUE;
555 
556 	/*
557 	 * first, search out the biggest object, and try to free pages from
558 	 * that.
559 	 */
560 	tmpe = map->header.next;
561 	while (tmpe != &map->header) {
562 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
563 			obj = tmpe->object.vm_object;
564 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
565 				((bigobj == NULL) ||
566 				 (bigobj->resident_page_count < obj->resident_page_count))) {
567 				bigobj = obj;
568 			}
569 		}
570 		if (tmpe->wired_count > 0)
571 			nothingwired = FALSE;
572 		tmpe = tmpe->next;
573 	}
574 
575 	if (bigobj)
576 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
577 
578 	/*
579 	 * Next, hunt around for other pages to deactivate.  We actually
580 	 * do this search sort of wrong -- .text first is not the best idea.
581 	 */
582 	tmpe = map->header.next;
583 	while (tmpe != &map->header) {
584 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
585 			break;
586 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
587 			obj = tmpe->object.vm_object;
588 			if (obj)
589 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
590 		}
591 		tmpe = tmpe->next;
592 	};
593 
594 	/*
595 	 * Remove all mappings if a process is swapped out, this will free page
596 	 * table pages.
597 	 */
598 	if (desired == 0 && nothingwired)
599 		pmap_remove(vm_map_pmap(map),
600 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
601 	vm_map_unlock(map);
602 	return;
603 }
604 #endif
605 
606 /*
607  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
608  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
609  * which we know can be trivially freed.
610  */
611 
612 void
613 vm_pageout_page_free(vm_page_t m) {
614 	vm_object_t object = m->object;
615 	int type = object->type;
616 
617 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
618 		vm_object_reference(object);
619 	vm_page_busy(m);
620 	vm_page_protect(m, VM_PROT_NONE);
621 	vm_page_free(m);
622 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
623 		vm_object_deallocate(object);
624 }
625 
626 /*
627  *	vm_pageout_scan does the dirty work for the pageout daemon.
628  */
629 static void
630 vm_pageout_scan(int pass)
631 {
632 	vm_page_t m, next;
633 	struct vm_page marker;
634 	int page_shortage, maxscan, pcount;
635 	int addl_page_shortage, addl_page_shortage_init;
636 	struct proc *p, *bigproc;
637 	vm_offset_t size, bigsize;
638 	vm_object_t object;
639 	int actcount;
640 	int vnodes_skipped = 0;
641 	int maxlaunder;
642 	int s;
643 
644 	/*
645 	 * Do whatever cleanup that the pmap code can.
646 	 */
647 	pmap_collect();
648 
649 	addl_page_shortage_init = vm_pageout_deficit;
650 	vm_pageout_deficit = 0;
651 
652 	/*
653 	 * Calculate the number of pages we want to either free or move
654 	 * to the cache.
655 	 */
656 	page_shortage = vm_paging_target() + addl_page_shortage_init;
657 
658 	/*
659 	 * Initialize our marker
660 	 */
661 	bzero(&marker, sizeof(marker));
662 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
663 	marker.queue = PQ_INACTIVE;
664 	marker.wire_count = 1;
665 
666 	/*
667 	 * Start scanning the inactive queue for pages we can move to the
668 	 * cache or free.  The scan will stop when the target is reached or
669 	 * we have scanned the entire inactive queue.  Note that m->act_count
670 	 * is not used to form decisions for the inactive queue, only for the
671 	 * active queue.
672 	 *
673 	 * maxlaunder limits the number of dirty pages we flush per scan.
674 	 * For most systems a smaller value (16 or 32) is more robust under
675 	 * extreme memory and disk pressure because any unnecessary writes
676 	 * to disk can result in extreme performance degredation.  However,
677 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
678 	 * used) will die horribly with limited laundering.  If the pageout
679 	 * daemon cannot clean enough pages in the first pass, we let it go
680 	 * all out in succeeding passes.
681 	 */
682 	if ((maxlaunder = vm_max_launder) <= 1)
683 		maxlaunder = 1;
684 	if (pass)
685 		maxlaunder = 10000;
686 
687 rescan0:
688 	addl_page_shortage = addl_page_shortage_init;
689 	maxscan = vmstats.v_inactive_count;
690 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
691 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
692 	     m = next) {
693 
694 		mycpu->gd_cnt.v_pdpages++;
695 
696 		if (m->queue != PQ_INACTIVE) {
697 			goto rescan0;
698 		}
699 
700 		next = TAILQ_NEXT(m, pageq);
701 
702 		/*
703 		 * skip marker pages
704 		 */
705 		if (m->flags & PG_MARKER)
706 			continue;
707 
708 		/*
709 		 * A held page may be undergoing I/O, so skip it.
710 		 */
711 		if (m->hold_count) {
712 			s = splvm();
713 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
714 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
715 			splx(s);
716 			addl_page_shortage++;
717 			continue;
718 		}
719 		/*
720 		 * Dont mess with busy pages, keep in the front of the
721 		 * queue, most likely are being paged out.
722 		 */
723 		if (m->busy || (m->flags & PG_BUSY)) {
724 			addl_page_shortage++;
725 			continue;
726 		}
727 
728 		/*
729 		 * If the object is not being used, we ignore previous
730 		 * references.
731 		 */
732 		if (m->object->ref_count == 0) {
733 			vm_page_flag_clear(m, PG_REFERENCED);
734 			pmap_clear_reference(m);
735 
736 		/*
737 		 * Otherwise, if the page has been referenced while in the
738 		 * inactive queue, we bump the "activation count" upwards,
739 		 * making it less likely that the page will be added back to
740 		 * the inactive queue prematurely again.  Here we check the
741 		 * page tables (or emulated bits, if any), given the upper
742 		 * level VM system not knowing anything about existing
743 		 * references.
744 		 */
745 		} else if (((m->flags & PG_REFERENCED) == 0) &&
746 			(actcount = pmap_ts_referenced(m))) {
747 			vm_page_activate(m);
748 			m->act_count += (actcount + ACT_ADVANCE);
749 			continue;
750 		}
751 
752 		/*
753 		 * If the upper level VM system knows about any page
754 		 * references, we activate the page.  We also set the
755 		 * "activation count" higher than normal so that we will less
756 		 * likely place pages back onto the inactive queue again.
757 		 */
758 		if ((m->flags & PG_REFERENCED) != 0) {
759 			vm_page_flag_clear(m, PG_REFERENCED);
760 			actcount = pmap_ts_referenced(m);
761 			vm_page_activate(m);
762 			m->act_count += (actcount + ACT_ADVANCE + 1);
763 			continue;
764 		}
765 
766 		/*
767 		 * If the upper level VM system doesn't know anything about
768 		 * the page being dirty, we have to check for it again.  As
769 		 * far as the VM code knows, any partially dirty pages are
770 		 * fully dirty.
771 		 *
772 		 * Pages marked PG_WRITEABLE may be mapped into the user
773 		 * address space of a process running on another cpu.  A
774 		 * user process (without holding the MP lock) running on
775 		 * another cpu may be able to touch the page while we are
776 		 * trying to remove it.  To prevent this from occuring we
777 		 * must call pmap_remove_all() or otherwise make the page
778 		 * read-only.  If the race occured pmap_remove_all() is
779 		 * responsible for setting m->dirty.
780 		 */
781 		if (m->dirty == 0) {
782 			vm_page_test_dirty(m);
783 #if 0
784 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
785 				pmap_remove_all(m);
786 #endif
787 		} else {
788 			vm_page_dirty(m);
789 		}
790 
791 		if (m->valid == 0) {
792 			/*
793 			 * Invalid pages can be easily freed
794 			 */
795 			vm_pageout_page_free(m);
796 			mycpu->gd_cnt.v_dfree++;
797 			--page_shortage;
798 		} else if (m->dirty == 0) {
799 			/*
800 			 * Clean pages can be placed onto the cache queue.
801 			 * This effectively frees them.
802 			 */
803 			vm_page_cache(m);
804 			--page_shortage;
805 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
806 			/*
807 			 * Dirty pages need to be paged out, but flushing
808 			 * a page is extremely expensive verses freeing
809 			 * a clean page.  Rather then artificially limiting
810 			 * the number of pages we can flush, we instead give
811 			 * dirty pages extra priority on the inactive queue
812 			 * by forcing them to be cycled through the queue
813 			 * twice before being flushed, after which the
814 			 * (now clean) page will cycle through once more
815 			 * before being freed.  This significantly extends
816 			 * the thrash point for a heavily loaded machine.
817 			 */
818 			s = splvm();
819 			vm_page_flag_set(m, PG_WINATCFLS);
820 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
821 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
822 			splx(s);
823 		} else if (maxlaunder > 0) {
824 			/*
825 			 * We always want to try to flush some dirty pages if
826 			 * we encounter them, to keep the system stable.
827 			 * Normally this number is small, but under extreme
828 			 * pressure where there are insufficient clean pages
829 			 * on the inactive queue, we may have to go all out.
830 			 */
831 			int swap_pageouts_ok;
832 			struct vnode *vp = NULL;
833 
834 			object = m->object;
835 
836 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
837 				swap_pageouts_ok = 1;
838 			} else {
839 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
840 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
841 				vm_page_count_min());
842 
843 			}
844 
845 			/*
846 			 * We don't bother paging objects that are "dead".
847 			 * Those objects are in a "rundown" state.
848 			 */
849 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
850 				s = splvm();
851 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
852 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
853 				splx(s);
854 				continue;
855 			}
856 
857 			/*
858 			 * The object is already known NOT to be dead.   It
859 			 * is possible for the vget() to block the whole
860 			 * pageout daemon, but the new low-memory handling
861 			 * code should prevent it.
862 			 *
863 			 * The previous code skipped locked vnodes and, worse,
864 			 * reordered pages in the queue.  This results in
865 			 * completely non-deterministic operation because,
866 			 * quite often, a vm_fault has initiated an I/O and
867 			 * is holding a locked vnode at just the point where
868 			 * the pageout daemon is woken up.
869 			 *
870 			 * We can't wait forever for the vnode lock, we might
871 			 * deadlock due to a vn_read() getting stuck in
872 			 * vm_wait while holding this vnode.  We skip the
873 			 * vnode if we can't get it in a reasonable amount
874 			 * of time.
875 			 */
876 
877 			if (object->type == OBJT_VNODE) {
878 				vp = object->handle;
879 
880 				if (vget(vp, NULL, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
881 					++pageout_lock_miss;
882 					if (object->flags & OBJ_MIGHTBEDIRTY)
883 						    vnodes_skipped++;
884 					continue;
885 				}
886 
887 				/*
888 				 * The page might have been moved to another
889 				 * queue during potential blocking in vget()
890 				 * above.  The page might have been freed and
891 				 * reused for another vnode.  The object might
892 				 * have been reused for another vnode.
893 				 */
894 				if (m->queue != PQ_INACTIVE ||
895 				    m->object != object ||
896 				    object->handle != vp) {
897 					if (object->flags & OBJ_MIGHTBEDIRTY)
898 						vnodes_skipped++;
899 					vput(vp);
900 					continue;
901 				}
902 
903 				/*
904 				 * The page may have been busied during the
905 				 * blocking in vput();  We don't move the
906 				 * page back onto the end of the queue so that
907 				 * statistics are more correct if we don't.
908 				 */
909 				if (m->busy || (m->flags & PG_BUSY)) {
910 					vput(vp);
911 					continue;
912 				}
913 
914 				/*
915 				 * If the page has become held it might
916 				 * be undergoing I/O, so skip it
917 				 */
918 				if (m->hold_count) {
919 					s = splvm();
920 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
921 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
922 					splx(s);
923 					if (object->flags & OBJ_MIGHTBEDIRTY)
924 						vnodes_skipped++;
925 					vput(vp);
926 					continue;
927 				}
928 			}
929 
930 			/*
931 			 * If a page is dirty, then it is either being washed
932 			 * (but not yet cleaned) or it is still in the
933 			 * laundry.  If it is still in the laundry, then we
934 			 * start the cleaning operation.
935 			 *
936 			 * This operation may cluster, invalidating the 'next'
937 			 * pointer.  To prevent an inordinate number of
938 			 * restarts we use our marker to remember our place.
939 			 *
940 			 * decrement page_shortage on success to account for
941 			 * the (future) cleaned page.  Otherwise we could wind
942 			 * up laundering or cleaning too many pages.
943 			 */
944 			s = splvm();
945 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
946 			splx(s);
947 			if (vm_pageout_clean(m) != 0) {
948 				--page_shortage;
949 				--maxlaunder;
950 			}
951 			s = splvm();
952 			next = TAILQ_NEXT(&marker, pageq);
953 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
954 			splx(s);
955 			if (vp != NULL)
956 				vput(vp);
957 		}
958 	}
959 
960 	/*
961 	 * Compute the number of pages we want to try to move from the
962 	 * active queue to the inactive queue.
963 	 */
964 	page_shortage = vm_paging_target() +
965 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
966 	page_shortage += addl_page_shortage;
967 
968 	/*
969 	 * Scan the active queue for things we can deactivate. We nominally
970 	 * track the per-page activity counter and use it to locate
971 	 * deactivation candidates.
972 	 */
973 
974 	pcount = vmstats.v_active_count;
975 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
976 
977 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
978 
979 		/*
980 		 * This is a consistency check, and should likely be a panic
981 		 * or warning.
982 		 */
983 		if (m->queue != PQ_ACTIVE) {
984 			break;
985 		}
986 
987 		next = TAILQ_NEXT(m, pageq);
988 		/*
989 		 * Don't deactivate pages that are busy.
990 		 */
991 		if ((m->busy != 0) ||
992 		    (m->flags & PG_BUSY) ||
993 		    (m->hold_count != 0)) {
994 			s = splvm();
995 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
996 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
997 			splx(s);
998 			m = next;
999 			continue;
1000 		}
1001 
1002 		/*
1003 		 * The count for pagedaemon pages is done after checking the
1004 		 * page for eligibility...
1005 		 */
1006 		mycpu->gd_cnt.v_pdpages++;
1007 
1008 		/*
1009 		 * Check to see "how much" the page has been used.
1010 		 */
1011 		actcount = 0;
1012 		if (m->object->ref_count != 0) {
1013 			if (m->flags & PG_REFERENCED) {
1014 				actcount += 1;
1015 			}
1016 			actcount += pmap_ts_referenced(m);
1017 			if (actcount) {
1018 				m->act_count += ACT_ADVANCE + actcount;
1019 				if (m->act_count > ACT_MAX)
1020 					m->act_count = ACT_MAX;
1021 			}
1022 		}
1023 
1024 		/*
1025 		 * Since we have "tested" this bit, we need to clear it now.
1026 		 */
1027 		vm_page_flag_clear(m, PG_REFERENCED);
1028 
1029 		/*
1030 		 * Only if an object is currently being used, do we use the
1031 		 * page activation count stats.
1032 		 */
1033 		if (actcount && (m->object->ref_count != 0)) {
1034 			s = splvm();
1035 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1036 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1037 			splx(s);
1038 		} else {
1039 			m->act_count -= min(m->act_count, ACT_DECLINE);
1040 			if (vm_pageout_algorithm ||
1041 			    m->object->ref_count == 0 ||
1042 			    m->act_count == 0) {
1043 				page_shortage--;
1044 				if (m->object->ref_count == 0) {
1045 					vm_page_protect(m, VM_PROT_NONE);
1046 					if (m->dirty == 0)
1047 						vm_page_cache(m);
1048 					else
1049 						vm_page_deactivate(m);
1050 				} else {
1051 					vm_page_deactivate(m);
1052 				}
1053 			} else {
1054 				s = splvm();
1055 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1056 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1057 				splx(s);
1058 			}
1059 		}
1060 		m = next;
1061 	}
1062 
1063 	s = splvm();
1064 
1065 	/*
1066 	 * We try to maintain some *really* free pages, this allows interrupt
1067 	 * code to be guaranteed space.  Since both cache and free queues
1068 	 * are considered basically 'free', moving pages from cache to free
1069 	 * does not effect other calculations.
1070 	 */
1071 
1072 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1073 		static int cache_rover = 0;
1074 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1075 		if (!m)
1076 			break;
1077 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1078 		    m->busy ||
1079 		    m->hold_count ||
1080 		    m->wire_count) {
1081 #ifdef INVARIANTS
1082 			printf("Warning: busy page %p found in cache\n", m);
1083 #endif
1084 			vm_page_deactivate(m);
1085 			continue;
1086 		}
1087 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1088 		vm_pageout_page_free(m);
1089 		mycpu->gd_cnt.v_dfree++;
1090 	}
1091 	splx(s);
1092 
1093 #if !defined(NO_SWAPPING)
1094 	/*
1095 	 * Idle process swapout -- run once per second.
1096 	 */
1097 	if (vm_swap_idle_enabled) {
1098 		static long lsec;
1099 		if (time_second != lsec) {
1100 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1101 			vm_req_vmdaemon();
1102 			lsec = time_second;
1103 		}
1104 	}
1105 #endif
1106 
1107 	/*
1108 	 * If we didn't get enough free pages, and we have skipped a vnode
1109 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1110 	 * if we did not get enough free pages.
1111 	 */
1112 	if (vm_paging_target() > 0) {
1113 		if (vnodes_skipped && vm_page_count_min())
1114 			(void) speedup_syncer();
1115 #if !defined(NO_SWAPPING)
1116 		if (vm_swap_enabled && vm_page_count_target()) {
1117 			vm_req_vmdaemon();
1118 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1119 		}
1120 #endif
1121 	}
1122 
1123 	/*
1124 	 * If we are out of swap and were not able to reach our paging
1125 	 * target, kill the largest process.
1126 	 */
1127 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1128 	    (swap_pager_full && vm_paging_target() > 0)) {
1129 #if 0
1130 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1131 #endif
1132 		bigproc = NULL;
1133 		bigsize = 0;
1134 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1135 			/*
1136 			 * if this is a system process, skip it
1137 			 */
1138 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1139 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1140 				continue;
1141 			}
1142 			/*
1143 			 * if the process is in a non-running type state,
1144 			 * don't touch it.
1145 			 */
1146 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1147 				continue;
1148 			}
1149 			/*
1150 			 * get the process size
1151 			 */
1152 			size = vmspace_resident_count(p->p_vmspace) +
1153 				vmspace_swap_count(p->p_vmspace);
1154 			/*
1155 			 * if the this process is bigger than the biggest one
1156 			 * remember it.
1157 			 */
1158 			if (size > bigsize) {
1159 				bigproc = p;
1160 				bigsize = size;
1161 			}
1162 		}
1163 		if (bigproc != NULL) {
1164 			killproc(bigproc, "out of swap space");
1165 			bigproc->p_estcpu = 0;
1166 			bigproc->p_nice = PRIO_MIN;
1167 			resetpriority(bigproc);
1168 			wakeup(&vmstats.v_free_count);
1169 		}
1170 	}
1171 }
1172 
1173 /*
1174  * This routine tries to maintain the pseudo LRU active queue,
1175  * so that during long periods of time where there is no paging,
1176  * that some statistic accumulation still occurs.  This code
1177  * helps the situation where paging just starts to occur.
1178  */
1179 static void
1180 vm_pageout_page_stats()
1181 {
1182 	int s;
1183 	vm_page_t m,next;
1184 	int pcount,tpcount;		/* Number of pages to check */
1185 	static int fullintervalcount = 0;
1186 	int page_shortage;
1187 	int s0;
1188 
1189 	page_shortage =
1190 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1191 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1192 
1193 	if (page_shortage <= 0)
1194 		return;
1195 
1196 	s0 = splvm();
1197 
1198 	pcount = vmstats.v_active_count;
1199 	fullintervalcount += vm_pageout_stats_interval;
1200 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1201 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1202 		if (pcount > tpcount)
1203 			pcount = tpcount;
1204 	} else {
1205 		fullintervalcount = 0;
1206 	}
1207 
1208 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1209 	while ((m != NULL) && (pcount-- > 0)) {
1210 		int actcount;
1211 
1212 		if (m->queue != PQ_ACTIVE) {
1213 			break;
1214 		}
1215 
1216 		next = TAILQ_NEXT(m, pageq);
1217 		/*
1218 		 * Don't deactivate pages that are busy.
1219 		 */
1220 		if ((m->busy != 0) ||
1221 		    (m->flags & PG_BUSY) ||
1222 		    (m->hold_count != 0)) {
1223 			s = splvm();
1224 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1225 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1226 			splx(s);
1227 			m = next;
1228 			continue;
1229 		}
1230 
1231 		actcount = 0;
1232 		if (m->flags & PG_REFERENCED) {
1233 			vm_page_flag_clear(m, PG_REFERENCED);
1234 			actcount += 1;
1235 		}
1236 
1237 		actcount += pmap_ts_referenced(m);
1238 		if (actcount) {
1239 			m->act_count += ACT_ADVANCE + actcount;
1240 			if (m->act_count > ACT_MAX)
1241 				m->act_count = ACT_MAX;
1242 			s = splvm();
1243 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1244 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1245 			splx(s);
1246 		} else {
1247 			if (m->act_count == 0) {
1248 				/*
1249 				 * We turn off page access, so that we have
1250 				 * more accurate RSS stats.  We don't do this
1251 				 * in the normal page deactivation when the
1252 				 * system is loaded VM wise, because the
1253 				 * cost of the large number of page protect
1254 				 * operations would be higher than the value
1255 				 * of doing the operation.
1256 				 */
1257 				vm_page_protect(m, VM_PROT_NONE);
1258 				vm_page_deactivate(m);
1259 			} else {
1260 				m->act_count -= min(m->act_count, ACT_DECLINE);
1261 				s = splvm();
1262 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1263 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1264 				splx(s);
1265 			}
1266 		}
1267 
1268 		m = next;
1269 	}
1270 	splx(s0);
1271 }
1272 
1273 static int
1274 vm_pageout_free_page_calc(count)
1275 vm_size_t count;
1276 {
1277 	if (count < vmstats.v_page_count)
1278 		 return 0;
1279 	/*
1280 	 * free_reserved needs to include enough for the largest swap pager
1281 	 * structures plus enough for any pv_entry structs when paging.
1282 	 */
1283 	if (vmstats.v_page_count > 1024)
1284 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1285 	else
1286 		vmstats.v_free_min = 4;
1287 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1288 		vmstats.v_interrupt_free_min;
1289 	vmstats.v_free_reserved = vm_pageout_page_count +
1290 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1291 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1292 	vmstats.v_free_min += vmstats.v_free_reserved;
1293 	vmstats.v_free_severe += vmstats.v_free_reserved;
1294 	return 1;
1295 }
1296 
1297 
1298 /*
1299  *	vm_pageout is the high level pageout daemon.
1300  */
1301 static void
1302 vm_pageout()
1303 {
1304 	int pass;
1305 
1306 	/*
1307 	 * Initialize some paging parameters.
1308 	 */
1309 
1310 	vmstats.v_interrupt_free_min = 2;
1311 	if (vmstats.v_page_count < 2000)
1312 		vm_pageout_page_count = 8;
1313 
1314 	vm_pageout_free_page_calc(vmstats.v_page_count);
1315 	/*
1316 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1317 	 * that these are more a measure of the VM cache queue hysteresis
1318 	 * then the VM free queue.  Specifically, v_free_target is the
1319 	 * high water mark (free+cache pages).
1320 	 *
1321 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1322 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1323 	 * be big enough to handle memory needs while the pageout daemon
1324 	 * is signalled and run to free more pages.
1325 	 */
1326 	if (vmstats.v_free_count > 6144)
1327 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1328 	else
1329 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1330 
1331 	if (vmstats.v_free_count > 2048) {
1332 		vmstats.v_cache_min = vmstats.v_free_target;
1333 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1334 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1335 	} else {
1336 		vmstats.v_cache_min = 0;
1337 		vmstats.v_cache_max = 0;
1338 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1339 	}
1340 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1341 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1342 
1343 	/* XXX does not really belong here */
1344 	if (vm_page_max_wired == 0)
1345 		vm_page_max_wired = vmstats.v_free_count / 3;
1346 
1347 	if (vm_pageout_stats_max == 0)
1348 		vm_pageout_stats_max = vmstats.v_free_target;
1349 
1350 	/*
1351 	 * Set interval in seconds for stats scan.
1352 	 */
1353 	if (vm_pageout_stats_interval == 0)
1354 		vm_pageout_stats_interval = 5;
1355 	if (vm_pageout_full_stats_interval == 0)
1356 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1357 
1358 
1359 	/*
1360 	 * Set maximum free per pass
1361 	 */
1362 	if (vm_pageout_stats_free_max == 0)
1363 		vm_pageout_stats_free_max = 5;
1364 
1365 	swap_pager_swap_init();
1366 	pass = 0;
1367 	/*
1368 	 * The pageout daemon is never done, so loop forever.
1369 	 */
1370 	while (TRUE) {
1371 		int error;
1372 		int s = splvm();
1373 
1374 		/*
1375 		 * If we have enough free memory, wakeup waiters.  Do
1376 		 * not clear vm_pages_needed until we reach our target,
1377 		 * otherwise we may be woken up over and over again and
1378 		 * waste a lot of cpu.
1379 		 */
1380 		if (vm_pages_needed && !vm_page_count_min()) {
1381 			if (vm_paging_needed() <= 0)
1382 				vm_pages_needed = 0;
1383 			wakeup(&vmstats.v_free_count);
1384 		}
1385 		if (vm_pages_needed) {
1386 			/*
1387 			 * Still not done, take a second pass without waiting
1388 			 * (unlimited dirty cleaning), otherwise sleep a bit
1389 			 * and try again.
1390 			 */
1391 			++pass;
1392 			if (pass > 1)
1393 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1394 		} else {
1395 			/*
1396 			 * Good enough, sleep & handle stats.  Prime the pass
1397 			 * for the next run.
1398 			 */
1399 			if (pass > 1)
1400 				pass = 1;
1401 			else
1402 				pass = 0;
1403 			error = tsleep(&vm_pages_needed,
1404 				0, "psleep", vm_pageout_stats_interval * hz);
1405 			if (error && !vm_pages_needed) {
1406 				splx(s);
1407 				pass = 0;
1408 				vm_pageout_page_stats();
1409 				continue;
1410 			}
1411 		}
1412 
1413 		if (vm_pages_needed)
1414 			mycpu->gd_cnt.v_pdwakeups++;
1415 		splx(s);
1416 		vm_pageout_scan(pass);
1417 		vm_pageout_deficit = 0;
1418 	}
1419 }
1420 
1421 void
1422 pagedaemon_wakeup()
1423 {
1424 	if (!vm_pages_needed && curthread != pagethread) {
1425 		vm_pages_needed++;
1426 		wakeup(&vm_pages_needed);
1427 	}
1428 }
1429 
1430 #if !defined(NO_SWAPPING)
1431 static void
1432 vm_req_vmdaemon()
1433 {
1434 	static int lastrun = 0;
1435 
1436 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1437 		wakeup(&vm_daemon_needed);
1438 		lastrun = ticks;
1439 	}
1440 }
1441 
1442 static void
1443 vm_daemon()
1444 {
1445 	struct proc *p;
1446 
1447 	while (TRUE) {
1448 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1449 		if (vm_pageout_req_swapout) {
1450 			swapout_procs(vm_pageout_req_swapout);
1451 			vm_pageout_req_swapout = 0;
1452 		}
1453 		/*
1454 		 * scan the processes for exceeding their rlimits or if
1455 		 * process is swapped out -- deactivate pages
1456 		 */
1457 
1458 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1459 			vm_pindex_t limit, size;
1460 
1461 			/*
1462 			 * if this is a system process or if we have already
1463 			 * looked at this process, skip it.
1464 			 */
1465 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1466 				continue;
1467 			}
1468 			/*
1469 			 * if the process is in a non-running type state,
1470 			 * don't touch it.
1471 			 */
1472 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1473 				continue;
1474 			}
1475 			/*
1476 			 * get a limit
1477 			 */
1478 			limit = OFF_TO_IDX(
1479 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1480 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1481 
1482 			/*
1483 			 * let processes that are swapped out really be
1484 			 * swapped out set the limit to nothing (will force a
1485 			 * swap-out.)
1486 			 */
1487 			if ((p->p_flag & P_INMEM) == 0)
1488 				limit = 0;	/* XXX */
1489 
1490 			size = vmspace_resident_count(p->p_vmspace);
1491 			if (limit >= 0 && size >= limit) {
1492 				vm_pageout_map_deactivate_pages(
1493 				    &p->p_vmspace->vm_map, limit);
1494 			}
1495 		}
1496 	}
1497 }
1498 #endif
1499