xref: /dragonfly/sys/vm/vm_pageout.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 static int vm_max_launder = 32;
143 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
144 static int vm_pageout_full_stats_interval = 0;
145 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
146 static int defer_swap_pageouts=0;
147 static int disable_swap_pageouts=0;
148 
149 #if defined(NO_SWAPPING)
150 static int vm_swap_enabled=0;
151 static int vm_swap_idle_enabled=0;
152 #else
153 static int vm_swap_enabled=1;
154 static int vm_swap_idle_enabled=0;
155 #endif
156 
157 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
158 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
159 
160 SYSCTL_INT(_vm, OID_AUTO, max_launder,
161 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
162 
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
164 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
165 
166 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
167 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
168 
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
170 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
171 
172 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
173 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
174 
175 #if defined(NO_SWAPPING)
176 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
177 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
178 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
179 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
180 #else
181 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
182 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
183 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
184 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
185 #endif
186 
187 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
188 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
189 
190 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
191 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
192 
193 static int pageout_lock_miss;
194 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
195 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
196 
197 int vm_load;
198 SYSCTL_INT(_vm, OID_AUTO, vm_load,
199 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
200 int vm_load_enable = 1;
201 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
202 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
203 #ifdef INVARIANTS
204 int vm_load_debug;
205 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
206 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
207 #endif
208 
209 #define VM_PAGEOUT_PAGE_COUNT 16
210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211 
212 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
213 
214 #if !defined(NO_SWAPPING)
215 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
216 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
217 static freeer_fcn_t vm_pageout_object_deactivate_pages;
218 static void vm_req_vmdaemon (void);
219 #endif
220 static void vm_pageout_page_stats(void);
221 
222 /*
223  * Update vm_load to slow down faulting processes.
224  */
225 void
226 vm_fault_ratecheck(void)
227 {
228 	if (vm_pages_needed) {
229 		if (vm_load < 1000)
230 			++vm_load;
231 	} else {
232 		if (vm_load > 0)
233 			--vm_load;
234 	}
235 }
236 
237 /*
238  * vm_pageout_clean:
239  *
240  * Clean the page and remove it from the laundry.  The page must not be
241  * busy on-call.
242  *
243  * We set the busy bit to cause potential page faults on this page to
244  * block.  Note the careful timing, however, the busy bit isn't set till
245  * late and we cannot do anything that will mess with the page.
246  */
247 
248 static int
249 vm_pageout_clean(vm_page_t m)
250 {
251 	vm_object_t object;
252 	vm_page_t mc[2*vm_pageout_page_count];
253 	int pageout_count;
254 	int ib, is, page_base;
255 	vm_pindex_t pindex = m->pindex;
256 
257 	object = m->object;
258 
259 	/*
260 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
261 	 * with the new swapper, but we could have serious problems paging
262 	 * out other object types if there is insufficient memory.
263 	 *
264 	 * Unfortunately, checking free memory here is far too late, so the
265 	 * check has been moved up a procedural level.
266 	 */
267 
268 	/*
269 	 * Don't mess with the page if it's busy, held, or special
270 	 */
271 	if ((m->hold_count != 0) ||
272 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
273 		return 0;
274 	}
275 
276 	mc[vm_pageout_page_count] = m;
277 	pageout_count = 1;
278 	page_base = vm_pageout_page_count;
279 	ib = 1;
280 	is = 1;
281 
282 	/*
283 	 * Scan object for clusterable pages.
284 	 *
285 	 * We can cluster ONLY if: ->> the page is NOT
286 	 * clean, wired, busy, held, or mapped into a
287 	 * buffer, and one of the following:
288 	 * 1) The page is inactive, or a seldom used
289 	 *    active page.
290 	 * -or-
291 	 * 2) we force the issue.
292 	 *
293 	 * During heavy mmap/modification loads the pageout
294 	 * daemon can really fragment the underlying file
295 	 * due to flushing pages out of order and not trying
296 	 * align the clusters (which leave sporatic out-of-order
297 	 * holes).  To solve this problem we do the reverse scan
298 	 * first and attempt to align our cluster, then do a
299 	 * forward scan if room remains.
300 	 */
301 
302 more:
303 	while (ib && pageout_count < vm_pageout_page_count) {
304 		vm_page_t p;
305 
306 		if (ib > pindex) {
307 			ib = 0;
308 			break;
309 		}
310 
311 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
312 			ib = 0;
313 			break;
314 		}
315 		if (((p->queue - p->pc) == PQ_CACHE) ||
316 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
317 			ib = 0;
318 			break;
319 		}
320 		vm_page_test_dirty(p);
321 		if ((p->dirty & p->valid) == 0 ||
322 		    p->queue != PQ_INACTIVE ||
323 		    p->wire_count != 0 ||	/* may be held by buf cache */
324 		    p->hold_count != 0) {	/* may be undergoing I/O */
325 			ib = 0;
326 			break;
327 		}
328 		mc[--page_base] = p;
329 		++pageout_count;
330 		++ib;
331 		/*
332 		 * alignment boundry, stop here and switch directions.  Do
333 		 * not clear ib.
334 		 */
335 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
336 			break;
337 	}
338 
339 	while (pageout_count < vm_pageout_page_count &&
340 	    pindex + is < object->size) {
341 		vm_page_t p;
342 
343 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
344 			break;
345 		if (((p->queue - p->pc) == PQ_CACHE) ||
346 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
347 			break;
348 		}
349 		vm_page_test_dirty(p);
350 		if ((p->dirty & p->valid) == 0 ||
351 		    p->queue != PQ_INACTIVE ||
352 		    p->wire_count != 0 ||	/* may be held by buf cache */
353 		    p->hold_count != 0) {	/* may be undergoing I/O */
354 			break;
355 		}
356 		mc[page_base + pageout_count] = p;
357 		++pageout_count;
358 		++is;
359 	}
360 
361 	/*
362 	 * If we exhausted our forward scan, continue with the reverse scan
363 	 * when possible, even past a page boundry.  This catches boundry
364 	 * conditions.
365 	 */
366 	if (ib && pageout_count < vm_pageout_page_count)
367 		goto more;
368 
369 	/*
370 	 * we allow reads during pageouts...
371 	 */
372 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
373 }
374 
375 /*
376  * vm_pageout_flush() - launder the given pages
377  *
378  *	The given pages are laundered.  Note that we setup for the start of
379  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
380  *	reference count all in here rather then in the parent.  If we want
381  *	the parent to do more sophisticated things we may have to change
382  *	the ordering.
383  */
384 int
385 vm_pageout_flush(vm_page_t *mc, int count, int flags)
386 {
387 	vm_object_t object;
388 	int pageout_status[count];
389 	int numpagedout = 0;
390 	int i;
391 
392 	/*
393 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
394 	 */
395 	for (i = 0; i < count; i++) {
396 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
397 		vm_page_io_start(mc[i]);
398 	}
399 
400 	/*
401 	 * We must make the pages read-only.  This will also force the
402 	 * modified bit in the related pmaps to be cleared.  The pager
403 	 * cannot clear the bit for us since the I/O completion code
404 	 * typically runs from an interrupt.  The act of making the page
405 	 * read-only handles the case for us.
406 	 */
407 	for (i = 0; i < count; i++) {
408 		vm_page_protect(mc[i], VM_PROT_READ);
409 	}
410 
411 	object = mc[0]->object;
412 	vm_object_pip_add(object, count);
413 
414 	vm_pager_put_pages(object, mc, count,
415 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
416 	    pageout_status);
417 
418 	for (i = 0; i < count; i++) {
419 		vm_page_t mt = mc[i];
420 
421 		switch (pageout_status[i]) {
422 		case VM_PAGER_OK:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_PEND:
426 			numpagedout++;
427 			break;
428 		case VM_PAGER_BAD:
429 			/*
430 			 * Page outside of range of object. Right now we
431 			 * essentially lose the changes by pretending it
432 			 * worked.
433 			 */
434 			pmap_clear_modify(mt);
435 			vm_page_undirty(mt);
436 			break;
437 		case VM_PAGER_ERROR:
438 		case VM_PAGER_FAIL:
439 			/*
440 			 * A page typically cannot be paged out when we
441 			 * have run out of swap.  We leave the page
442 			 * marked inactive and will try to page it out
443 			 * again later.
444 			 *
445 			 * Starvation of the active page list is used to
446 			 * determine when the system is massively memory
447 			 * starved.
448 			 */
449 			break;
450 		case VM_PAGER_AGAIN:
451 			break;
452 		}
453 
454 		/*
455 		 * If the operation is still going, leave the page busy to
456 		 * block all other accesses. Also, leave the paging in
457 		 * progress indicator set so that we don't attempt an object
458 		 * collapse.
459 		 *
460 		 * For any pages which have completed synchronously,
461 		 * deactivate the page if we are under a severe deficit.
462 		 * Do not try to enter them into the cache, though, they
463 		 * might still be read-heavy.
464 		 */
465 		if (pageout_status[i] != VM_PAGER_PEND) {
466 			vm_object_pip_wakeup(object);
467 			vm_page_io_finish(mt);
468 			if (vm_page_count_severe())
469 				vm_page_deactivate(mt);
470 #if 0
471 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
472 				vm_page_protect(mt, VM_PROT_READ);
473 #endif
474 		}
475 	}
476 	return numpagedout;
477 }
478 
479 #if !defined(NO_SWAPPING)
480 /*
481  *	vm_pageout_object_deactivate_pages
482  *
483  *	deactivate enough pages to satisfy the inactive target
484  *	requirements or if vm_page_proc_limit is set, then
485  *	deactivate all of the pages in the object and its
486  *	backing_objects.
487  *
488  *	The object and map must be locked.
489  */
490 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
491 
492 static void
493 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
494 	vm_pindex_t desired, int map_remove_only)
495 {
496 	struct rb_vm_page_scan_info info;
497 	int remove_mode;
498 
499 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
500 		return;
501 
502 	while (object) {
503 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
504 			return;
505 		if (object->paging_in_progress)
506 			return;
507 
508 		remove_mode = map_remove_only;
509 		if (object->shadow_count > 1)
510 			remove_mode = 1;
511 
512 		/*
513 		 * scan the objects entire memory queue.  spl protection is
514 		 * required to avoid an interrupt unbusy/free race against
515 		 * our busy check.
516 		 */
517 		crit_enter();
518 		info.limit = remove_mode;
519 		info.map = map;
520 		info.desired = desired;
521 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
522 				vm_pageout_object_deactivate_pages_callback,
523 				&info
524 		);
525 		crit_exit();
526 		object = object->backing_object;
527 	}
528 }
529 
530 static int
531 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
532 {
533 	struct rb_vm_page_scan_info *info = data;
534 	int actcount;
535 
536 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
537 		return(-1);
538 	}
539 	mycpu->gd_cnt.v_pdpages++;
540 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
541 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
542 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
543 		return(0);
544 	}
545 
546 	actcount = pmap_ts_referenced(p);
547 	if (actcount) {
548 		vm_page_flag_set(p, PG_REFERENCED);
549 	} else if (p->flags & PG_REFERENCED) {
550 		actcount = 1;
551 	}
552 
553 	if ((p->queue != PQ_ACTIVE) &&
554 		(p->flags & PG_REFERENCED)) {
555 		vm_page_activate(p);
556 		p->act_count += actcount;
557 		vm_page_flag_clear(p, PG_REFERENCED);
558 	} else if (p->queue == PQ_ACTIVE) {
559 		if ((p->flags & PG_REFERENCED) == 0) {
560 			p->act_count -= min(p->act_count, ACT_DECLINE);
561 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
562 				vm_page_busy(p);
563 				vm_page_protect(p, VM_PROT_NONE);
564 				vm_page_wakeup(p);
565 				vm_page_deactivate(p);
566 			} else {
567 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
568 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569 			}
570 		} else {
571 			vm_page_activate(p);
572 			vm_page_flag_clear(p, PG_REFERENCED);
573 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
574 				p->act_count += ACT_ADVANCE;
575 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
576 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577 		}
578 	} else if (p->queue == PQ_INACTIVE) {
579 		vm_page_busy(p);
580 		vm_page_protect(p, VM_PROT_NONE);
581 		vm_page_wakeup(p);
582 	}
583 	return(0);
584 }
585 
586 /*
587  * deactivate some number of pages in a map, try to do it fairly, but
588  * that is really hard to do.
589  */
590 static void
591 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
592 {
593 	vm_map_entry_t tmpe;
594 	vm_object_t obj, bigobj;
595 	int nothingwired;
596 
597 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
598 		return;
599 	}
600 
601 	bigobj = NULL;
602 	nothingwired = TRUE;
603 
604 	/*
605 	 * first, search out the biggest object, and try to free pages from
606 	 * that.
607 	 */
608 	tmpe = map->header.next;
609 	while (tmpe != &map->header) {
610 		switch(tmpe->maptype) {
611 		case VM_MAPTYPE_NORMAL:
612 		case VM_MAPTYPE_VPAGETABLE:
613 			obj = tmpe->object.vm_object;
614 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
615 				((bigobj == NULL) ||
616 				 (bigobj->resident_page_count < obj->resident_page_count))) {
617 				bigobj = obj;
618 			}
619 			break;
620 		default:
621 			break;
622 		}
623 		if (tmpe->wired_count > 0)
624 			nothingwired = FALSE;
625 		tmpe = tmpe->next;
626 	}
627 
628 	if (bigobj)
629 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
630 
631 	/*
632 	 * Next, hunt around for other pages to deactivate.  We actually
633 	 * do this search sort of wrong -- .text first is not the best idea.
634 	 */
635 	tmpe = map->header.next;
636 	while (tmpe != &map->header) {
637 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
638 			break;
639 		switch(tmpe->maptype) {
640 		case VM_MAPTYPE_NORMAL:
641 		case VM_MAPTYPE_VPAGETABLE:
642 			obj = tmpe->object.vm_object;
643 			if (obj)
644 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
645 			break;
646 		default:
647 			break;
648 		}
649 		tmpe = tmpe->next;
650 	};
651 
652 	/*
653 	 * Remove all mappings if a process is swapped out, this will free page
654 	 * table pages.
655 	 */
656 	if (desired == 0 && nothingwired)
657 		pmap_remove(vm_map_pmap(map),
658 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
659 	vm_map_unlock(map);
660 }
661 #endif
662 
663 /*
664  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
665  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
666  * be trivially freed.
667  */
668 void
669 vm_pageout_page_free(vm_page_t m)
670 {
671 	vm_object_t object = m->object;
672 	int type = object->type;
673 
674 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
675 		vm_object_reference(object);
676 	vm_page_busy(m);
677 	vm_page_protect(m, VM_PROT_NONE);
678 	vm_page_free(m);
679 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
680 		vm_object_deallocate(object);
681 }
682 
683 /*
684  * vm_pageout_scan does the dirty work for the pageout daemon.
685  */
686 struct vm_pageout_scan_info {
687 	struct proc *bigproc;
688 	vm_offset_t bigsize;
689 };
690 
691 static int vm_pageout_scan_callback(struct proc *p, void *data);
692 
693 static int
694 vm_pageout_scan(int pass)
695 {
696 	struct vm_pageout_scan_info info;
697 	vm_page_t m, next;
698 	struct vm_page marker;
699 	int maxscan, pcount;
700 	int recycle_count;
701 	int inactive_shortage, active_shortage;
702 	int inactive_original_shortage;
703 	vm_object_t object;
704 	int actcount;
705 	int vnodes_skipped = 0;
706 	int maxlaunder;
707 
708 	/*
709 	 * Do whatever cleanup that the pmap code can.
710 	 */
711 	pmap_collect();
712 
713 	/*
714 	 * Calculate our target for the number of free+cache pages we
715 	 * want to get to.  This is higher then the number that causes
716 	 * allocations to stall (severe) in order to provide hysteresis,
717 	 * and if we don't make it all the way but get to the minimum
718 	 * we're happy.
719 	 */
720 	inactive_shortage = vm_paging_target() + vm_pageout_deficit;
721 	inactive_original_shortage = inactive_shortage;
722 	vm_pageout_deficit = 0;
723 
724 	/*
725 	 * Initialize our marker
726 	 */
727 	bzero(&marker, sizeof(marker));
728 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
729 	marker.queue = PQ_INACTIVE;
730 	marker.wire_count = 1;
731 
732 	/*
733 	 * Start scanning the inactive queue for pages we can move to the
734 	 * cache or free.  The scan will stop when the target is reached or
735 	 * we have scanned the entire inactive queue.  Note that m->act_count
736 	 * is not used to form decisions for the inactive queue, only for the
737 	 * active queue.
738 	 *
739 	 * maxlaunder limits the number of dirty pages we flush per scan.
740 	 * For most systems a smaller value (16 or 32) is more robust under
741 	 * extreme memory and disk pressure because any unnecessary writes
742 	 * to disk can result in extreme performance degredation.  However,
743 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
744 	 * used) will die horribly with limited laundering.  If the pageout
745 	 * daemon cannot clean enough pages in the first pass, we let it go
746 	 * all out in succeeding passes.
747 	 */
748 	if ((maxlaunder = vm_max_launder) <= 1)
749 		maxlaunder = 1;
750 	if (pass)
751 		maxlaunder = 10000;
752 
753 	/*
754 	 * We will generally be in a critical section throughout the
755 	 * scan, but we can release it temporarily when we are sitting on a
756 	 * non-busy page without fear.  this is required to prevent an
757 	 * interrupt from unbusying or freeing a page prior to our busy
758 	 * check, leaving us on the wrong queue or checking the wrong
759 	 * page.
760 	 */
761 	crit_enter();
762 rescan0:
763 	maxscan = vmstats.v_inactive_count;
764 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
765 	     m != NULL && maxscan-- > 0 && inactive_shortage > 0;
766 	     m = next
767 	 ) {
768 		mycpu->gd_cnt.v_pdpages++;
769 
770 		/*
771 		 * Give interrupts a chance
772 		 */
773 		crit_exit();
774 		crit_enter();
775 
776 		/*
777 		 * It's easier for some of the conditions below to just loop
778 		 * and catch queue changes here rather then check everywhere
779 		 * else.
780 		 */
781 		if (m->queue != PQ_INACTIVE)
782 			goto rescan0;
783 		next = TAILQ_NEXT(m, pageq);
784 
785 		/*
786 		 * skip marker pages
787 		 */
788 		if (m->flags & PG_MARKER)
789 			continue;
790 
791 		/*
792 		 * A held page may be undergoing I/O, so skip it.
793 		 */
794 		if (m->hold_count) {
795 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
797 			++vm_swapcache_inactive_heuristic;
798 			continue;
799 		}
800 
801 		/*
802 		 * Dont mess with busy pages, keep in the front of the
803 		 * queue, most likely are being paged out.
804 		 */
805 		if (m->busy || (m->flags & PG_BUSY)) {
806 			continue;
807 		}
808 
809 		if (m->object->ref_count == 0) {
810 			/*
811 			 * If the object is not being used, we ignore previous
812 			 * references.
813 			 */
814 			vm_page_flag_clear(m, PG_REFERENCED);
815 			pmap_clear_reference(m);
816 
817 		} else if (((m->flags & PG_REFERENCED) == 0) &&
818 			    (actcount = pmap_ts_referenced(m))) {
819 			/*
820 			 * Otherwise, if the page has been referenced while
821 			 * in the inactive queue, we bump the "activation
822 			 * count" upwards, making it less likely that the
823 			 * page will be added back to the inactive queue
824 			 * prematurely again.  Here we check the page tables
825 			 * (or emulated bits, if any), given the upper level
826 			 * VM system not knowing anything about existing
827 			 * references.
828 			 */
829 			vm_page_activate(m);
830 			m->act_count += (actcount + ACT_ADVANCE);
831 			continue;
832 		}
833 
834 		/*
835 		 * If the upper level VM system knows about any page
836 		 * references, we activate the page.  We also set the
837 		 * "activation count" higher than normal so that we will less
838 		 * likely place pages back onto the inactive queue again.
839 		 */
840 		if ((m->flags & PG_REFERENCED) != 0) {
841 			vm_page_flag_clear(m, PG_REFERENCED);
842 			actcount = pmap_ts_referenced(m);
843 			vm_page_activate(m);
844 			m->act_count += (actcount + ACT_ADVANCE + 1);
845 			continue;
846 		}
847 
848 		/*
849 		 * If the upper level VM system doesn't know anything about
850 		 * the page being dirty, we have to check for it again.  As
851 		 * far as the VM code knows, any partially dirty pages are
852 		 * fully dirty.
853 		 *
854 		 * Pages marked PG_WRITEABLE may be mapped into the user
855 		 * address space of a process running on another cpu.  A
856 		 * user process (without holding the MP lock) running on
857 		 * another cpu may be able to touch the page while we are
858 		 * trying to remove it.  vm_page_cache() will handle this
859 		 * case for us.
860 		 */
861 		if (m->dirty == 0) {
862 			vm_page_test_dirty(m);
863 		} else {
864 			vm_page_dirty(m);
865 		}
866 
867 		if (m->valid == 0) {
868 			/*
869 			 * Invalid pages can be easily freed
870 			 */
871 			vm_pageout_page_free(m);
872 			mycpu->gd_cnt.v_dfree++;
873 			--inactive_shortage;
874 		} else if (m->dirty == 0) {
875 			/*
876 			 * Clean pages can be placed onto the cache queue.
877 			 * This effectively frees them.
878 			 */
879 			vm_page_cache(m);
880 			--inactive_shortage;
881 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
882 			/*
883 			 * Dirty pages need to be paged out, but flushing
884 			 * a page is extremely expensive verses freeing
885 			 * a clean page.  Rather then artificially limiting
886 			 * the number of pages we can flush, we instead give
887 			 * dirty pages extra priority on the inactive queue
888 			 * by forcing them to be cycled through the queue
889 			 * twice before being flushed, after which the
890 			 * (now clean) page will cycle through once more
891 			 * before being freed.  This significantly extends
892 			 * the thrash point for a heavily loaded machine.
893 			 */
894 			vm_page_flag_set(m, PG_WINATCFLS);
895 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
897 			++vm_swapcache_inactive_heuristic;
898 		} else if (maxlaunder > 0) {
899 			/*
900 			 * We always want to try to flush some dirty pages if
901 			 * we encounter them, to keep the system stable.
902 			 * Normally this number is small, but under extreme
903 			 * pressure where there are insufficient clean pages
904 			 * on the inactive queue, we may have to go all out.
905 			 */
906 			int swap_pageouts_ok;
907 			struct vnode *vp = NULL;
908 
909 			object = m->object;
910 
911 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
912 				swap_pageouts_ok = 1;
913 			} else {
914 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
915 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
916 				vm_page_count_min(0));
917 
918 			}
919 
920 			/*
921 			 * We don't bother paging objects that are "dead".
922 			 * Those objects are in a "rundown" state.
923 			 */
924 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
925 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
926 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
927 				++vm_swapcache_inactive_heuristic;
928 				continue;
929 			}
930 
931 			/*
932 			 * The object is already known NOT to be dead.   It
933 			 * is possible for the vget() to block the whole
934 			 * pageout daemon, but the new low-memory handling
935 			 * code should prevent it.
936 			 *
937 			 * The previous code skipped locked vnodes and, worse,
938 			 * reordered pages in the queue.  This results in
939 			 * completely non-deterministic operation because,
940 			 * quite often, a vm_fault has initiated an I/O and
941 			 * is holding a locked vnode at just the point where
942 			 * the pageout daemon is woken up.
943 			 *
944 			 * We can't wait forever for the vnode lock, we might
945 			 * deadlock due to a vn_read() getting stuck in
946 			 * vm_wait while holding this vnode.  We skip the
947 			 * vnode if we can't get it in a reasonable amount
948 			 * of time.
949 			 */
950 
951 			if (object->type == OBJT_VNODE) {
952 				vp = object->handle;
953 
954 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
955 					++pageout_lock_miss;
956 					if (object->flags & OBJ_MIGHTBEDIRTY)
957 						    vnodes_skipped++;
958 					continue;
959 				}
960 
961 				/*
962 				 * The page might have been moved to another
963 				 * queue during potential blocking in vget()
964 				 * above.  The page might have been freed and
965 				 * reused for another vnode.  The object might
966 				 * have been reused for another vnode.
967 				 */
968 				if (m->queue != PQ_INACTIVE ||
969 				    m->object != object ||
970 				    object->handle != vp) {
971 					if (object->flags & OBJ_MIGHTBEDIRTY)
972 						vnodes_skipped++;
973 					vput(vp);
974 					continue;
975 				}
976 
977 				/*
978 				 * The page may have been busied during the
979 				 * blocking in vput();  We don't move the
980 				 * page back onto the end of the queue so that
981 				 * statistics are more correct if we don't.
982 				 */
983 				if (m->busy || (m->flags & PG_BUSY)) {
984 					vput(vp);
985 					continue;
986 				}
987 
988 				/*
989 				 * If the page has become held it might
990 				 * be undergoing I/O, so skip it
991 				 */
992 				if (m->hold_count) {
993 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
994 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
995 					++vm_swapcache_inactive_heuristic;
996 					if (object->flags & OBJ_MIGHTBEDIRTY)
997 						vnodes_skipped++;
998 					vput(vp);
999 					continue;
1000 				}
1001 			}
1002 
1003 			/*
1004 			 * If a page is dirty, then it is either being washed
1005 			 * (but not yet cleaned) or it is still in the
1006 			 * laundry.  If it is still in the laundry, then we
1007 			 * start the cleaning operation.
1008 			 *
1009 			 * This operation may cluster, invalidating the 'next'
1010 			 * pointer.  To prevent an inordinate number of
1011 			 * restarts we use our marker to remember our place.
1012 			 *
1013 			 * decrement inactive_shortage on success to account
1014 			 * for the (future) cleaned page.  Otherwise we
1015 			 * could wind up laundering or cleaning too many
1016 			 * pages.
1017 			 */
1018 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1019 			if (vm_pageout_clean(m) != 0) {
1020 				--inactive_shortage;
1021 				--maxlaunder;
1022 			}
1023 			next = TAILQ_NEXT(&marker, pageq);
1024 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1025 			if (vp != NULL)
1026 				vput(vp);
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * We want to move pages from the active queue to the inactive
1032 	 * queue to get the inactive queue to the inactive target.  If
1033 	 * we still have a page shortage from above we try to directly free
1034 	 * clean pages instead of moving them.
1035 	 *
1036 	 * If we do still have a shortage we keep track of the number of
1037 	 * pages we free or cache (recycle_count) as a measure of thrashing
1038 	 * between the active and inactive queues.
1039 	 *
1040 	 * If we were able to completely satisfy the free+cache targets
1041 	 * from the inactive pool we limit the number of pages we move
1042 	 * from the active pool to the inactive pool to 2x the pages we
1043 	 * had removed from the inactive pool (with a minimum of 1/5 the
1044 	 * inactive target).  If we were not able to completely satisfy
1045 	 * the free+cache targets we go for the whole target aggressively.
1046 	 *
1047 	 * NOTE: Both variables can end up negative.
1048 	 * NOTE: We are still in a critical section.
1049 	 */
1050 	active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1051 	if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1052 		inactive_original_shortage = vmstats.v_inactive_target / 10;
1053 	if (inactive_shortage <= 0 &&
1054 	    active_shortage > inactive_original_shortage * 2) {
1055 		active_shortage = inactive_original_shortage * 2;
1056 	}
1057 
1058 	pcount = vmstats.v_active_count;
1059 	recycle_count = 0;
1060 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1061 
1062 	while ((m != NULL) && (pcount-- > 0) &&
1063 	       (inactive_shortage > 0 || active_shortage > 0)
1064 	) {
1065 		/*
1066 		 * Give interrupts a chance.
1067 		 */
1068 		crit_exit();
1069 		crit_enter();
1070 
1071 		/*
1072 		 * If the page was ripped out from under us, just stop.
1073 		 */
1074 		if (m->queue != PQ_ACTIVE)
1075 			break;
1076 		next = TAILQ_NEXT(m, pageq);
1077 
1078 		/*
1079 		 * Don't deactivate pages that are busy.
1080 		 */
1081 		if ((m->busy != 0) ||
1082 		    (m->flags & PG_BUSY) ||
1083 		    (m->hold_count != 0)) {
1084 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1085 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1086 			m = next;
1087 			continue;
1088 		}
1089 
1090 		/*
1091 		 * The count for pagedaemon pages is done after checking the
1092 		 * page for eligibility...
1093 		 */
1094 		mycpu->gd_cnt.v_pdpages++;
1095 
1096 		/*
1097 		 * Check to see "how much" the page has been used and clear
1098 		 * the tracking access bits.  If the object has no references
1099 		 * don't bother paying the expense.
1100 		 */
1101 		actcount = 0;
1102 		if (m->object->ref_count != 0) {
1103 			if (m->flags & PG_REFERENCED)
1104 				++actcount;
1105 			actcount += pmap_ts_referenced(m);
1106 			if (actcount) {
1107 				m->act_count += ACT_ADVANCE + actcount;
1108 				if (m->act_count > ACT_MAX)
1109 					m->act_count = ACT_MAX;
1110 			}
1111 		}
1112 		vm_page_flag_clear(m, PG_REFERENCED);
1113 
1114 		/*
1115 		 * actcount is only valid if the object ref_count is non-zero.
1116 		 */
1117 		if (actcount && m->object->ref_count != 0) {
1118 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1119 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1120 		} else {
1121 			m->act_count -= min(m->act_count, ACT_DECLINE);
1122 			if (vm_pageout_algorithm ||
1123 			    m->object->ref_count == 0 ||
1124 			    m->act_count < pass + 1
1125 			) {
1126 				/*
1127 				 * Deactivate the page.  If we had a
1128 				 * shortage from our inactive scan try to
1129 				 * free (cache) the page instead.
1130 				 *
1131 				 * Don't just blindly cache the page if
1132 				 * we do not have a shortage from the
1133 				 * inactive scan, that could lead to
1134 				 * gigabytes being moved.
1135 				 */
1136 				--active_shortage;
1137 				if (inactive_shortage > 0 ||
1138 				    m->object->ref_count == 0) {
1139 					if (inactive_shortage > 0)
1140 						++recycle_count;
1141 					vm_page_busy(m);
1142 					vm_page_protect(m, VM_PROT_NONE);
1143 					vm_page_wakeup(m);
1144 					if (m->dirty == 0 &&
1145 					    inactive_shortage > 0) {
1146 						--inactive_shortage;
1147 						vm_page_cache(m);
1148 					} else {
1149 						vm_page_deactivate(m);
1150 					}
1151 				} else {
1152 					vm_page_deactivate(m);
1153 				}
1154 			} else {
1155 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1156 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1157 			}
1158 		}
1159 		m = next;
1160 	}
1161 
1162 	/*
1163 	 * We try to maintain some *really* free pages, this allows interrupt
1164 	 * code to be guaranteed space.  Since both cache and free queues
1165 	 * are considered basically 'free', moving pages from cache to free
1166 	 * does not effect other calculations.
1167 	 *
1168 	 * NOTE: we are still in a critical section.
1169 	 *
1170 	 * Pages moved from PQ_CACHE to totally free are not counted in the
1171 	 * pages_freed counter.
1172 	 */
1173 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1174 		static int cache_rover = 0;
1175 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1176 		if (m == NULL)
1177 			break;
1178 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1179 		    m->busy ||
1180 		    m->hold_count ||
1181 		    m->wire_count) {
1182 #ifdef INVARIANTS
1183 			kprintf("Warning: busy page %p found in cache\n", m);
1184 #endif
1185 			vm_page_deactivate(m);
1186 			continue;
1187 		}
1188 		KKASSERT((m->flags & PG_MAPPED) == 0);
1189 		KKASSERT(m->dirty == 0);
1190 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1191 		vm_pageout_page_free(m);
1192 		mycpu->gd_cnt.v_dfree++;
1193 	}
1194 
1195 	crit_exit();
1196 
1197 #if !defined(NO_SWAPPING)
1198 	/*
1199 	 * Idle process swapout -- run once per second.
1200 	 */
1201 	if (vm_swap_idle_enabled) {
1202 		static long lsec;
1203 		if (time_second != lsec) {
1204 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1205 			vm_req_vmdaemon();
1206 			lsec = time_second;
1207 		}
1208 	}
1209 #endif
1210 
1211 	/*
1212 	 * If we didn't get enough free pages, and we have skipped a vnode
1213 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1214 	 * if we did not get enough free pages.
1215 	 */
1216 	if (vm_paging_target() > 0) {
1217 		if (vnodes_skipped && vm_page_count_min(0))
1218 			speedup_syncer();
1219 #if !defined(NO_SWAPPING)
1220 		if (vm_swap_enabled && vm_page_count_target()) {
1221 			vm_req_vmdaemon();
1222 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1223 		}
1224 #endif
1225 	}
1226 
1227 	/*
1228 	 * Handle catastrophic conditions.  Under good conditions we should
1229 	 * be at the target, well beyond our minimum.  If we could not even
1230 	 * reach our minimum the system is under heavy stress.
1231 	 *
1232 	 * Determine whether we have run out of memory.  This occurs when
1233 	 * swap_pager_full is TRUE and the only pages left in the page
1234 	 * queues are dirty.  We will still likely have page shortages.
1235 	 *
1236 	 * - swap_pager_full is set if insufficient swap was
1237 	 *   available to satisfy a requested pageout.
1238 	 *
1239 	 * - the inactive queue is bloated (4 x size of active queue),
1240 	 *   meaning it is unable to get rid of dirty pages and.
1241 	 *
1242 	 * - vm_page_count_min() without counting pages recycled from the
1243 	 *   active queue (recycle_count) means we could not recover
1244 	 *   enough pages to meet bare minimum needs.  This test only
1245 	 *   works if the inactive queue is bloated.
1246 	 *
1247 	 * - due to a positive inactive_shortage we shifted the remaining
1248 	 *   dirty pages from the active queue to the inactive queue
1249 	 *   trying to find clean ones to free.
1250 	 */
1251 	if (swap_pager_full && vm_page_count_min(recycle_count))
1252 		kprintf("Warning: system low on memory+swap!\n");
1253 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1254 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1255 	    inactive_shortage > 0) {
1256 		/*
1257 		 * Kill something.
1258 		 */
1259 		info.bigproc = NULL;
1260 		info.bigsize = 0;
1261 		allproc_scan(vm_pageout_scan_callback, &info);
1262 		if (info.bigproc != NULL) {
1263 			killproc(info.bigproc, "out of swap space");
1264 			info.bigproc->p_nice = PRIO_MIN;
1265 			info.bigproc->p_usched->resetpriority(
1266 				FIRST_LWP_IN_PROC(info.bigproc));
1267 			wakeup(&vmstats.v_free_count);
1268 			PRELE(info.bigproc);
1269 		}
1270 	}
1271 	return(inactive_shortage);
1272 }
1273 
1274 static int
1275 vm_pageout_scan_callback(struct proc *p, void *data)
1276 {
1277 	struct vm_pageout_scan_info *info = data;
1278 	vm_offset_t size;
1279 
1280 	/*
1281 	 * Never kill system processes or init.  If we have configured swap
1282 	 * then try to avoid killing low-numbered pids.
1283 	 */
1284 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1285 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1286 		return (0);
1287 	}
1288 
1289 	/*
1290 	 * if the process is in a non-running type state,
1291 	 * don't touch it.
1292 	 */
1293 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1294 		return (0);
1295 
1296 	/*
1297 	 * Get the approximate process size.  Note that anonymous pages
1298 	 * with backing swap will be counted twice, but there should not
1299 	 * be too many such pages due to the stress the VM system is
1300 	 * under at this point.
1301 	 */
1302 	size = vmspace_anonymous_count(p->p_vmspace) +
1303 		vmspace_swap_count(p->p_vmspace);
1304 
1305 	/*
1306 	 * If the this process is bigger than the biggest one
1307 	 * remember it.
1308 	 */
1309 	if (info->bigsize < size) {
1310 		if (info->bigproc)
1311 			PRELE(info->bigproc);
1312 		PHOLD(p);
1313 		info->bigproc = p;
1314 		info->bigsize = size;
1315 	}
1316 	return(0);
1317 }
1318 
1319 /*
1320  * This routine tries to maintain the pseudo LRU active queue,
1321  * so that during long periods of time where there is no paging,
1322  * that some statistic accumulation still occurs.  This code
1323  * helps the situation where paging just starts to occur.
1324  */
1325 static void
1326 vm_pageout_page_stats(void)
1327 {
1328 	vm_page_t m,next;
1329 	int pcount,tpcount;		/* Number of pages to check */
1330 	static int fullintervalcount = 0;
1331 	int page_shortage;
1332 
1333 	page_shortage =
1334 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1335 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1336 
1337 	if (page_shortage <= 0)
1338 		return;
1339 
1340 	crit_enter();
1341 
1342 	pcount = vmstats.v_active_count;
1343 	fullintervalcount += vm_pageout_stats_interval;
1344 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1345 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1346 		if (pcount > tpcount)
1347 			pcount = tpcount;
1348 	} else {
1349 		fullintervalcount = 0;
1350 	}
1351 
1352 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1353 	while ((m != NULL) && (pcount-- > 0)) {
1354 		int actcount;
1355 
1356 		if (m->queue != PQ_ACTIVE) {
1357 			break;
1358 		}
1359 
1360 		next = TAILQ_NEXT(m, pageq);
1361 		/*
1362 		 * Don't deactivate pages that are busy.
1363 		 */
1364 		if ((m->busy != 0) ||
1365 		    (m->flags & PG_BUSY) ||
1366 		    (m->hold_count != 0)) {
1367 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1368 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1369 			m = next;
1370 			continue;
1371 		}
1372 
1373 		actcount = 0;
1374 		if (m->flags & PG_REFERENCED) {
1375 			vm_page_flag_clear(m, PG_REFERENCED);
1376 			actcount += 1;
1377 		}
1378 
1379 		actcount += pmap_ts_referenced(m);
1380 		if (actcount) {
1381 			m->act_count += ACT_ADVANCE + actcount;
1382 			if (m->act_count > ACT_MAX)
1383 				m->act_count = ACT_MAX;
1384 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1385 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1386 		} else {
1387 			if (m->act_count == 0) {
1388 				/*
1389 				 * We turn off page access, so that we have
1390 				 * more accurate RSS stats.  We don't do this
1391 				 * in the normal page deactivation when the
1392 				 * system is loaded VM wise, because the
1393 				 * cost of the large number of page protect
1394 				 * operations would be higher than the value
1395 				 * of doing the operation.
1396 				 */
1397 				vm_page_busy(m);
1398 				vm_page_protect(m, VM_PROT_NONE);
1399 				vm_page_wakeup(m);
1400 				vm_page_deactivate(m);
1401 			} else {
1402 				m->act_count -= min(m->act_count, ACT_DECLINE);
1403 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1404 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1405 			}
1406 		}
1407 
1408 		m = next;
1409 	}
1410 	crit_exit();
1411 }
1412 
1413 static int
1414 vm_pageout_free_page_calc(vm_size_t count)
1415 {
1416 	if (count < vmstats.v_page_count)
1417 		 return 0;
1418 	/*
1419 	 * free_reserved needs to include enough for the largest swap pager
1420 	 * structures plus enough for any pv_entry structs when paging.
1421 	 */
1422 	if (vmstats.v_page_count > 1024)
1423 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1424 	else
1425 		vmstats.v_free_min = 4;
1426 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1427 		vmstats.v_interrupt_free_min;
1428 	vmstats.v_free_reserved = vm_pageout_page_count +
1429 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1430 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1431 	vmstats.v_free_min += vmstats.v_free_reserved;
1432 	vmstats.v_free_severe += vmstats.v_free_reserved;
1433 	return 1;
1434 }
1435 
1436 
1437 /*
1438  * vm_pageout is the high level pageout daemon.
1439  */
1440 static void
1441 vm_pageout(void)
1442 {
1443 	int pass;
1444 	int inactive_shortage;
1445 
1446 	/*
1447 	 * Initialize some paging parameters.
1448 	 */
1449 	curthread->td_flags |= TDF_SYSTHREAD;
1450 
1451 	vmstats.v_interrupt_free_min = 2;
1452 	if (vmstats.v_page_count < 2000)
1453 		vm_pageout_page_count = 8;
1454 
1455 	vm_pageout_free_page_calc(vmstats.v_page_count);
1456 
1457 	/*
1458 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1459 	 * that these are more a measure of the VM cache queue hysteresis
1460 	 * then the VM free queue.  Specifically, v_free_target is the
1461 	 * high water mark (free+cache pages).
1462 	 *
1463 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1464 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1465 	 * be big enough to handle memory needs while the pageout daemon
1466 	 * is signalled and run to free more pages.
1467 	 */
1468 	if (vmstats.v_free_count > 6144)
1469 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1470 	else
1471 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1472 
1473 	/*
1474 	 * NOTE: With the new buffer cache b_act_count we want the default
1475 	 *	 inactive target to be a percentage of available memory.
1476 	 *
1477 	 *	 The inactive target essentially determines the minimum
1478 	 *	 number of 'temporary' pages capable of caching one-time-use
1479 	 *	 files when the VM system is otherwise full of pages
1480 	 *	 belonging to multi-time-use files or active program data.
1481 	 *
1482 	 * NOTE: The inactive target is aggressively persued only if the
1483 	 *	 inactive queue becomes too small.  If the inactive queue
1484 	 *	 is large enough to satisfy page movement to free+cache
1485 	 *	 then it is repopulated more slowly from the active queue.
1486 	 *	 This allows a general inactive_target default to be set.
1487 	 *
1488 	 *	 There is an issue here for processes which sit mostly idle
1489 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1490 	 *	 the active queue will eventually cause such pages to
1491 	 *	 recycle eventually causing a lot of paging in the morning.
1492 	 *	 To reduce the incidence of this pages cycled out of the
1493 	 *	 buffer cache are moved directly to the inactive queue if
1494 	 *	 they were only used once or twice.
1495 	 *
1496 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1497 	 *	 Increasing the value (up to 64) increases the number of
1498 	 *	 buffer recyclements which go directly to the inactive queue.
1499 	 */
1500 	if (vmstats.v_free_count > 2048) {
1501 		vmstats.v_cache_min = vmstats.v_free_target;
1502 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1503 	} else {
1504 		vmstats.v_cache_min = 0;
1505 		vmstats.v_cache_max = 0;
1506 	}
1507 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1508 
1509 	/* XXX does not really belong here */
1510 	if (vm_page_max_wired == 0)
1511 		vm_page_max_wired = vmstats.v_free_count / 3;
1512 
1513 	if (vm_pageout_stats_max == 0)
1514 		vm_pageout_stats_max = vmstats.v_free_target;
1515 
1516 	/*
1517 	 * Set interval in seconds for stats scan.
1518 	 */
1519 	if (vm_pageout_stats_interval == 0)
1520 		vm_pageout_stats_interval = 5;
1521 	if (vm_pageout_full_stats_interval == 0)
1522 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1523 
1524 
1525 	/*
1526 	 * Set maximum free per pass
1527 	 */
1528 	if (vm_pageout_stats_free_max == 0)
1529 		vm_pageout_stats_free_max = 5;
1530 
1531 	swap_pager_swap_init();
1532 	pass = 0;
1533 
1534 	/*
1535 	 * The pageout daemon is never done, so loop forever.
1536 	 */
1537 	while (TRUE) {
1538 		int error;
1539 
1540 		/*
1541 		 * Wait for an action request
1542 		 */
1543 		crit_enter();
1544 		if (vm_pages_needed == 0) {
1545 			error = tsleep(&vm_pages_needed,
1546 				       0, "psleep",
1547 				       vm_pageout_stats_interval * hz);
1548 			if (error && vm_pages_needed == 0) {
1549 				vm_pageout_page_stats();
1550 				continue;
1551 			}
1552 			vm_pages_needed = 1;
1553 		}
1554 		crit_exit();
1555 
1556 		/*
1557 		 * If we have enough free memory, wakeup waiters.
1558 		 * (This is optional here)
1559 		 */
1560 		crit_enter();
1561 		if (!vm_page_count_min(0))
1562 			wakeup(&vmstats.v_free_count);
1563 		mycpu->gd_cnt.v_pdwakeups++;
1564 		crit_exit();
1565 
1566 		/*
1567 		 * Scan for pageout.  Try to avoid thrashing the system
1568 		 * with activity.
1569 		 */
1570 		inactive_shortage = vm_pageout_scan(pass);
1571 		if (inactive_shortage > 0) {
1572 			++pass;
1573 			if (swap_pager_full) {
1574 				/*
1575 				 * Running out of memory, catastrophic back-off
1576 				 * to one-second intervals.
1577 				 */
1578 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1579 			} else if (pass < 10 && vm_pages_needed > 1) {
1580 				/*
1581 				 * Normal operation, additional processes
1582 				 * have already kicked us.  Retry immediately.
1583 				 */
1584 			} else if (pass < 10) {
1585 				/*
1586 				 * Normal operation, fewer processes.  Delay
1587 				 * a bit but allow wakeups.
1588 				 */
1589 				vm_pages_needed = 0;
1590 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1591 				vm_pages_needed = 1;
1592 			} else {
1593 				/*
1594 				 * We've taken too many passes, forced delay.
1595 				 */
1596 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1597 			}
1598 		} else {
1599 			/*
1600 			 * Interlocked wakeup of waiters (non-optional)
1601 			 */
1602 			pass = 0;
1603 			if (vm_pages_needed && !vm_page_count_min(0)) {
1604 				wakeup(&vmstats.v_free_count);
1605 				vm_pages_needed = 0;
1606 			}
1607 		}
1608 	}
1609 }
1610 
1611 /*
1612  * Called after allocating a page out of the cache or free queue
1613  * to possibly wake the pagedaemon up to replentish our supply.
1614  *
1615  * We try to generate some hysteresis by waking the pagedaemon up
1616  * when our free+cache pages go below the severe level.  The pagedaemon
1617  * tries to get the count back up to at least the minimum, and through
1618  * to the target level if possible.
1619  *
1620  * If the pagedaemon is already active bump vm_pages_needed as a hint
1621  * that there are even more requests pending.
1622  */
1623 void
1624 pagedaemon_wakeup(void)
1625 {
1626 	if (vm_page_count_severe() && curthread != pagethread) {
1627 		if (vm_pages_needed == 0) {
1628 			vm_pages_needed = 1;
1629 			wakeup(&vm_pages_needed);
1630 		} else if (vm_page_count_min(0)) {
1631 			++vm_pages_needed;
1632 		}
1633 	}
1634 }
1635 
1636 #if !defined(NO_SWAPPING)
1637 static void
1638 vm_req_vmdaemon(void)
1639 {
1640 	static int lastrun = 0;
1641 
1642 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1643 		wakeup(&vm_daemon_needed);
1644 		lastrun = ticks;
1645 	}
1646 }
1647 
1648 static int vm_daemon_callback(struct proc *p, void *data __unused);
1649 
1650 static void
1651 vm_daemon(void)
1652 {
1653 	while (TRUE) {
1654 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1655 		if (vm_pageout_req_swapout) {
1656 			swapout_procs(vm_pageout_req_swapout);
1657 			vm_pageout_req_swapout = 0;
1658 		}
1659 		/*
1660 		 * scan the processes for exceeding their rlimits or if
1661 		 * process is swapped out -- deactivate pages
1662 		 */
1663 		allproc_scan(vm_daemon_callback, NULL);
1664 	}
1665 }
1666 
1667 static int
1668 vm_daemon_callback(struct proc *p, void *data __unused)
1669 {
1670 	vm_pindex_t limit, size;
1671 
1672 	/*
1673 	 * if this is a system process or if we have already
1674 	 * looked at this process, skip it.
1675 	 */
1676 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1677 		return (0);
1678 
1679 	/*
1680 	 * if the process is in a non-running type state,
1681 	 * don't touch it.
1682 	 */
1683 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1684 		return (0);
1685 
1686 	/*
1687 	 * get a limit
1688 	 */
1689 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1690 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1691 
1692 	/*
1693 	 * let processes that are swapped out really be
1694 	 * swapped out.  Set the limit to nothing to get as
1695 	 * many pages out to swap as possible.
1696 	 */
1697 	if (p->p_flag & P_SWAPPEDOUT)
1698 		limit = 0;
1699 
1700 	size = vmspace_resident_count(p->p_vmspace);
1701 	if (limit >= 0 && size >= limit) {
1702 		vm_pageout_map_deactivate_pages(
1703 		    &p->p_vmspace->vm_map, limit);
1704 	}
1705 	return (0);
1706 }
1707 
1708 #endif
1709