xref: /dragonfly/sys/vm/vm_pager.c (revision 0fe46dc6)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_pager.c	8.6 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_pager.c,v 1.54.2.2 2001/11/18 07:11:00 dillon Exp $
63  */
64 
65 /*
66  *	Paging space routine stubs.  Emulates a matchmaker-like interface
67  *	for builtin pagers.
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/vnode.h>
74 #include <sys/buf.h>
75 #include <sys/ucred.h>
76 #include <sys/dsched.h>
77 #include <sys/proc.h>
78 #include <sys/sysctl.h>
79 #include <sys/thread2.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 
89 #include <sys/buf2.h>
90 #include <vm/vm_page2.h>
91 
92 extern struct pagerops defaultpagerops;
93 extern struct pagerops swappagerops;
94 extern struct pagerops vnodepagerops;
95 extern struct pagerops devicepagerops;
96 extern struct pagerops physpagerops;
97 
98 int cluster_pbuf_freecnt = -1;	/* unlimited to begin with */
99 
100 static int dead_pager_getpage (vm_object_t, vm_page_t *, int);
101 static void dead_pager_putpages (vm_object_t, vm_page_t *, int, int, int *);
102 static boolean_t dead_pager_haspage (vm_object_t, vm_pindex_t);
103 static void dead_pager_dealloc (vm_object_t);
104 
105 /*
106  * No requirements.
107  */
108 static int
109 dead_pager_getpage(vm_object_t obj, vm_page_t *mpp, int seqaccess)
110 {
111 	return VM_PAGER_FAIL;
112 }
113 
114 /*
115  * No requirements.
116  */
117 static void
118 dead_pager_putpages(vm_object_t object, vm_page_t *m, int count, int flags,
119 		    int *rtvals)
120 {
121 	int i;
122 
123 	for (i = 0; i < count; i++) {
124 		rtvals[i] = VM_PAGER_AGAIN;
125 	}
126 }
127 
128 /*
129  * No requirements.
130  */
131 static boolean_t
132 dead_pager_haspage(vm_object_t object, vm_pindex_t pindex)
133 {
134 	return FALSE;
135 }
136 
137 /*
138  * No requirements.
139  */
140 static void
141 dead_pager_dealloc(vm_object_t object)
142 {
143 	KKASSERT(object->swblock_count == 0);
144 	return;
145 }
146 
147 static struct pagerops deadpagerops = {
148 	dead_pager_dealloc,
149 	dead_pager_getpage,
150 	dead_pager_putpages,
151 	dead_pager_haspage
152 };
153 
154 struct pagerops *pagertab[] = {
155 	&defaultpagerops,	/* OBJT_DEFAULT */
156 	&swappagerops,		/* OBJT_SWAP */
157 	&vnodepagerops,		/* OBJT_VNODE */
158 	&devicepagerops,	/* OBJT_DEVICE */
159 	&devicepagerops,	/* OBJT_MGTDEVICE */
160 	&physpagerops,		/* OBJT_PHYS */
161 	&deadpagerops		/* OBJT_DEAD */
162 };
163 
164 int npagers = NELEM(pagertab);
165 
166 /*
167  * Kernel address space for mapping pages.
168  * Used by pagers where KVAs are needed for IO.
169  *
170  * XXX needs to be large enough to support the number of pending async
171  * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
172  * (MAXPHYS == 64k) if you want to get the most efficiency.
173  */
174 #define PAGER_MAP_SIZE	(8 * 1024 * 1024)
175 
176 #define BSWHSIZE	16
177 #define BSWHMASK	(BSWHSIZE - 1)
178 
179 TAILQ_HEAD(swqueue, buf);
180 
181 int pager_map_size = PAGER_MAP_SIZE;
182 struct vm_map pager_map;
183 
184 static vm_offset_t swapbkva_mem;	/* swap buffers kva */
185 static vm_offset_t swapbkva_kva;	/* swap buffers kva */
186 static struct swqueue bswlist_mem[BSWHSIZE];	/* with preallocated memory */
187 static struct swqueue bswlist_kva[BSWHSIZE];	/* with kva */
188 static struct swqueue bswlist_raw[BSWHSIZE];	/* without kva */
189 static struct spinlock bswspin_mem[BSWHSIZE];
190 static struct spinlock bswspin_kva[BSWHSIZE];
191 static struct spinlock bswspin_raw[BSWHSIZE];
192 static int pbuf_raw_count;
193 static int pbuf_kva_count;
194 static int pbuf_mem_count;
195 
196 SYSCTL_INT(_vfs, OID_AUTO, pbuf_raw_count, CTLFLAG_RD, &pbuf_raw_count, 0,
197     "Kernel pbuf raw reservations");
198 SYSCTL_INT(_vfs, OID_AUTO, pbuf_kva_count, CTLFLAG_RD, &pbuf_kva_count, 0,
199     "Kernel pbuf kva reservations");
200 SYSCTL_INT(_vfs, OID_AUTO, pbuf_mem_count, CTLFLAG_RD, &pbuf_mem_count, 0,
201     "Kernel pbuf mem reservations");
202 
203 /*
204  * Initialize the swap buffer list.
205  *
206  * Called from the low level boot code only.
207  */
208 static void
209 vm_pager_init(void *arg __unused)
210 {
211 	int i;
212 
213 	for (i = 0; i < BSWHSIZE; ++i) {
214 		TAILQ_INIT(&bswlist_mem[i]);
215 		TAILQ_INIT(&bswlist_kva[i]);
216 		TAILQ_INIT(&bswlist_raw[i]);
217 		spin_init(&bswspin_mem[i], "bswmem");
218 		spin_init(&bswspin_kva[i], "bswkva");
219 		spin_init(&bswspin_raw[i], "bswraw");
220 	}
221 }
222 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_SECOND, vm_pager_init, NULL);
223 
224 /*
225  * Called from the low level boot code only.
226  */
227 static
228 void
229 vm_pager_bufferinit(void *dummy __unused)
230 {
231 	struct buf *bp;
232 	long i;
233 
234 	/*
235 	 * Reserve KVM space for pbuf data.
236 	 */
237 	swapbkva_mem = kmem_alloc_pageable(&pager_map, nswbuf_mem * MAXPHYS);
238 	if (!swapbkva_mem)
239 		panic("Not enough pager_map VM space for physical buffers");
240 	swapbkva_kva = kmem_alloc_pageable(&pager_map, nswbuf_kva * MAXPHYS);
241 	if (!swapbkva_kva)
242 		panic("Not enough pager_map VM space for physical buffers");
243 
244 	/*
245 	 * Initial pbuf setup.
246 	 *
247 	 * mem - These pbufs have permanently allocated memory
248 	 * kva - These pbufs have unallocated kva reservations
249 	 * raw - These pbufs have no kva reservations
250 	 */
251 
252 	/*
253 	 * Buffers with pre-allocated kernel memory can be convenient for
254 	 * copyin/copyout because no SMP page invalidation or other pmap
255 	 * operations are needed.
256 	 */
257 #if 1
258 	bp = swbuf_mem;
259 	for (i = 0; i < nswbuf_mem; ++i, ++bp) {
260 		vm_page_t m;
261 		vm_pindex_t pg;
262 		int j;
263 
264 		bp->b_kvabase = (caddr_t)((intptr_t)i * MAXPHYS) + swapbkva_mem;
265 		bp->b_kvasize = MAXPHYS;
266 		bp->b_swindex = i & BSWHMASK;
267 		BUF_LOCKINIT(bp);
268 		buf_dep_init(bp);
269 		TAILQ_INSERT_HEAD(&bswlist_mem[i & BSWHMASK], bp, b_freelist);
270 		atomic_add_int(&pbuf_mem_count, 1);
271 		bp->b_data = bp->b_kvabase;
272 		bp->b_bcount = MAXPHYS;
273 		bp->b_xio.xio_pages = bp->b_xio.xio_internal_pages;
274 
275 		pg = (vm_offset_t)bp->b_kvabase >> PAGE_SHIFT;
276 		vm_object_hold(&kernel_object);
277 		for (j = 0; j < MAXPHYS / PAGE_SIZE; ++j) {
278 			m = vm_page_alloc(&kernel_object, pg, VM_ALLOC_NORMAL |
279 							      VM_ALLOC_SYSTEM);
280 			KKASSERT(m != NULL);
281 			bp->b_xio.xio_internal_pages[j] = m;
282 			vm_page_wire(m);
283 			/* early boot, no other cpus running yet */
284 			pmap_kenter_noinval(pg * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
285 			cpu_invlpg((void *)(pg * PAGE_SIZE));
286 			vm_page_wakeup(m);
287 			++pg;
288 		}
289 		vm_object_drop(&kernel_object);
290 		bp->b_xio.xio_npages = j;
291 	}
292 #endif
293 
294 	/*
295 	 * Buffers with pre-assigned KVA bases.  The KVA has no memory pages
296 	 * assigned to it.  Saves the caller from having to reserve KVA for
297 	 * the page map.
298 	 */
299 	bp = swbuf_kva;
300 	for (i = 0; i < nswbuf_kva; ++i, ++bp) {
301 		bp->b_kvabase = (caddr_t)((intptr_t)i * MAXPHYS) + swapbkva_kva;
302 		bp->b_kvasize = MAXPHYS;
303 		bp->b_swindex = i & BSWHMASK;
304 		BUF_LOCKINIT(bp);
305 		buf_dep_init(bp);
306 		TAILQ_INSERT_HEAD(&bswlist_kva[i & BSWHMASK], bp, b_freelist);
307 		atomic_add_int(&pbuf_kva_count, 1);
308 	}
309 
310 	/*
311 	 * RAW buffers with no KVA mappings.
312 	 *
313 	 * NOTE: We use KM_NOTLBSYNC here to reduce unnecessary IPIs
314 	 *	 during startup, which can really slow down emulated
315 	 *	 systems.
316 	 */
317 	nswbuf_raw = nbuf * 2;
318 	swbuf_raw = (void *)kmem_alloc3(&kernel_map,
319 				round_page(nswbuf_raw * sizeof(struct buf)),
320 				KM_NOTLBSYNC);
321 	smp_invltlb();
322 	bp = swbuf_raw;
323 	for (i = 0; i < nswbuf_raw; ++i, ++bp) {
324 		bp->b_swindex = i & BSWHMASK;
325 		BUF_LOCKINIT(bp);
326 		buf_dep_init(bp);
327 		TAILQ_INSERT_HEAD(&bswlist_raw[i & BSWHMASK], bp, b_freelist);
328 		atomic_add_int(&pbuf_raw_count, 1);
329 	}
330 
331 	/*
332 	 * Allow the clustering code to use half of our pbufs.
333 	 */
334 	cluster_pbuf_freecnt = nswbuf_kva / 2;
335 }
336 
337 SYSINIT(do_vmpg, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, vm_pager_bufferinit, NULL);
338 
339 /*
340  * No requirements.
341  */
342 void
343 vm_pager_deallocate(vm_object_t object)
344 {
345 	(*pagertab[object->type]->pgo_dealloc) (object);
346 }
347 
348 /*
349  * vm_pager_get_pages() - inline, see vm/vm_pager.h
350  * vm_pager_put_pages() - inline, see vm/vm_pager.h
351  * vm_pager_has_page() - inline, see vm/vm_pager.h
352  * vm_pager_page_inserted() - inline, see vm/vm_pager.h
353  * vm_pager_page_removed() - inline, see vm/vm_pager.h
354  */
355 
356 /*
357  * Search the specified pager object list for an object with the
358  * specified handle.  If an object with the specified handle is found,
359  * increase its reference count and return it.  Otherwise, return NULL.
360  *
361  * The pager object list must be locked.
362  */
363 vm_object_t
364 vm_pager_object_lookup(struct pagerlst *pg_list, void *handle)
365 {
366 	vm_object_t object;
367 
368 	TAILQ_FOREACH(object, pg_list, pager_object_list) {
369 		if (object->handle == handle) {
370 			VM_OBJECT_LOCK(object);
371 			if ((object->flags & OBJ_DEAD) == 0) {
372 				vm_object_reference_locked(object);
373 				VM_OBJECT_UNLOCK(object);
374 				break;
375 			}
376 			VM_OBJECT_UNLOCK(object);
377 		}
378 	}
379 	return (object);
380 }
381 
382 /*
383  * Initialize a physical buffer.
384  *
385  * No requirements.
386  */
387 static void
388 initpbuf(struct buf *bp)
389 {
390 	bp->b_qindex = 0;		/* BQUEUE_NONE */
391 	bp->b_data = bp->b_kvabase;	/* NULL if pbuf sans kva */
392 	bp->b_flags = B_PAGING;
393 	bp->b_cmd = BUF_CMD_DONE;
394 	bp->b_error = 0;
395 	bp->b_bcount = 0;
396 	bp->b_bufsize = MAXPHYS;
397 	initbufbio(bp);
398 	xio_init(&bp->b_xio);
399 	BUF_LOCK(bp, LK_EXCLUSIVE);
400 }
401 
402 /*
403  * Allocate a physical buffer
404  *
405  *	There are a limited number of physical buffers.  We need to make
406  *	sure that no single subsystem is able to hog all of them,
407  *	so each subsystem implements a counter which is typically initialized
408  *	to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
409  *	increments it on release, and blocks if the counter hits zero.  A
410  *	subsystem may initialize the counter to -1 to disable the feature,
411  *	but it must still be sure to match up all uses of getpbuf() with
412  *	relpbuf() using the same variable.
413  *
414  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
415  *	relatively soon when the rest of the subsystems get smart about it. XXX
416  *
417  *	Physical buffers can be with or without KVA space reserved.  There
418  *	are severe limitations on the ones with KVA reserved, and fewer
419  *	limitations on the ones without.  getpbuf() gets one without,
420  *	getpbuf_kva() gets one with.
421  *
422  * No requirements.
423  */
424 struct buf *
425 getpbuf(int *pfreecnt)	/* raw */
426 {
427 	struct buf *bp;
428 	int iter;
429 	int loops;
430 
431 	for (;;) {
432 		while (pfreecnt && *pfreecnt <= 0) {
433 			tsleep_interlock(pfreecnt, 0);
434 			if ((int)atomic_fetchadd_int(pfreecnt, 0) <= 0)
435 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
436 		}
437 		if (pbuf_raw_count <= 0) {
438 			tsleep_interlock(&pbuf_raw_count, 0);
439 			if ((int)atomic_fetchadd_int(&pbuf_raw_count, 0) <= 0)
440 				tsleep(&pbuf_raw_count, PINTERLOCKED,
441 				       "wswbuf0", 0);
442 			continue;
443 		}
444 		iter = mycpuid & BSWHMASK;
445 		for (loops = BSWHSIZE; loops; --loops) {
446 			if (TAILQ_FIRST(&bswlist_raw[iter]) == NULL) {
447 				iter = (iter + 1) & BSWHMASK;
448 				continue;
449 			}
450 			spin_lock(&bswspin_raw[iter]);
451 			if ((bp = TAILQ_FIRST(&bswlist_raw[iter])) == NULL) {
452 				spin_unlock(&bswspin_raw[iter]);
453 				iter = (iter + 1) & BSWHMASK;
454 				continue;
455 			}
456 			TAILQ_REMOVE(&bswlist_raw[iter], bp, b_freelist);
457 			atomic_add_int(&pbuf_raw_count, -1);
458 			if (pfreecnt)
459 				atomic_add_int(pfreecnt, -1);
460 			spin_unlock(&bswspin_raw[iter]);
461 			initpbuf(bp);
462 
463 			return bp;
464 		}
465 	}
466 	/* not reached */
467 }
468 
469 struct buf *
470 getpbuf_kva(int *pfreecnt)
471 {
472 	struct buf *bp;
473 	int iter;
474 	int loops;
475 
476 	for (;;) {
477 		while (pfreecnt && *pfreecnt <= 0) {
478 			tsleep_interlock(pfreecnt, 0);
479 			if ((int)atomic_fetchadd_int(pfreecnt, 0) <= 0)
480 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
481 		}
482 		if (pbuf_kva_count <= 0) {
483 			tsleep_interlock(&pbuf_kva_count, 0);
484 			if ((int)atomic_fetchadd_int(&pbuf_kva_count, 0) <= 0)
485 				tsleep(&pbuf_kva_count, PINTERLOCKED,
486 				       "wswbuf0", 0);
487 			continue;
488 		}
489 		iter = mycpuid & BSWHMASK;
490 		for (loops = BSWHSIZE; loops; --loops) {
491 			if (TAILQ_FIRST(&bswlist_kva[iter]) == NULL) {
492 				iter = (iter + 1) & BSWHMASK;
493 				continue;
494 			}
495 			spin_lock(&bswspin_kva[iter]);
496 			if ((bp = TAILQ_FIRST(&bswlist_kva[iter])) == NULL) {
497 				spin_unlock(&bswspin_kva[iter]);
498 				iter = (iter + 1) & BSWHMASK;
499 				continue;
500 			}
501 			TAILQ_REMOVE(&bswlist_kva[iter], bp, b_freelist);
502 			atomic_add_int(&pbuf_kva_count, -1);
503 			if (pfreecnt)
504 				atomic_add_int(pfreecnt, -1);
505 			spin_unlock(&bswspin_kva[iter]);
506 			initpbuf(bp);
507 
508 			return bp;
509 		}
510 	}
511 	/* not reached */
512 }
513 
514 /*
515  * Allocate a pbuf with kernel memory already preallocated.  Caller must
516  * not change the mapping.
517  */
518 struct buf *
519 getpbuf_mem(int *pfreecnt)
520 {
521 	struct buf *bp;
522 	int iter;
523 	int loops;
524 
525 	for (;;) {
526 		while (pfreecnt && *pfreecnt <= 0) {
527 			tsleep_interlock(pfreecnt, 0);
528 			if ((int)atomic_fetchadd_int(pfreecnt, 0) <= 0)
529 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
530 		}
531 		if (pbuf_mem_count <= 0) {
532 			tsleep_interlock(&pbuf_mem_count, 0);
533 			if ((int)atomic_fetchadd_int(&pbuf_mem_count, 0) <= 0)
534 				tsleep(&pbuf_mem_count, PINTERLOCKED,
535 				       "wswbuf0", 0);
536 			continue;
537 		}
538 		iter = mycpuid & BSWHMASK;
539 		for (loops = BSWHSIZE; loops; --loops) {
540 			if (TAILQ_FIRST(&bswlist_mem[iter]) == NULL) {
541 				iter = (iter + 1) & BSWHMASK;
542 				continue;
543 			}
544 			spin_lock(&bswspin_mem[iter]);
545 			if ((bp = TAILQ_FIRST(&bswlist_mem[iter])) == NULL) {
546 				spin_unlock(&bswspin_mem[iter]);
547 				iter = (iter + 1) & BSWHMASK;
548 				continue;
549 			}
550 			TAILQ_REMOVE(&bswlist_mem[iter], bp, b_freelist);
551 			atomic_add_int(&pbuf_mem_count, -1);
552 			if (pfreecnt)
553 				atomic_add_int(pfreecnt, -1);
554 			spin_unlock(&bswspin_mem[iter]);
555 			initpbuf(bp);
556 
557 			return bp;
558 		}
559 	}
560 	/* not reached */
561 }
562 
563 /*
564  * Allocate a physical buffer, if one is available.
565  *
566  * Note that there is no NULL hack here - all subsystems using this
567  * call understand how to use pfreecnt.
568  *
569  * No requirements.
570  */
571 struct buf *
572 trypbuf(int *pfreecnt)		/* raw */
573 {
574 	struct buf *bp;
575 	int iter = mycpuid & BSWHMASK;
576 	int loops;
577 
578 	for (loops = BSWHSIZE; loops; --loops) {
579 		if (*pfreecnt <= 0 || TAILQ_FIRST(&bswlist_raw[iter]) == NULL) {
580 			iter = (iter + 1) & BSWHMASK;
581 			continue;
582 		}
583 		spin_lock(&bswspin_raw[iter]);
584 		if (*pfreecnt <= 0 ||
585 		    (bp = TAILQ_FIRST(&bswlist_raw[iter])) == NULL) {
586 			spin_unlock(&bswspin_raw[iter]);
587 			iter = (iter + 1) & BSWHMASK;
588 			continue;
589 		}
590 		TAILQ_REMOVE(&bswlist_raw[iter], bp, b_freelist);
591 		atomic_add_int(&pbuf_raw_count, -1);
592 		atomic_add_int(pfreecnt, -1);
593 
594 		spin_unlock(&bswspin_raw[iter]);
595 
596 		initpbuf(bp);
597 
598 		return bp;
599 	}
600 	return NULL;
601 }
602 
603 struct buf *
604 trypbuf_kva(int *pfreecnt)
605 {
606 	struct buf *bp;
607 	int iter = mycpuid & BSWHMASK;
608 	int loops;
609 
610 	for (loops = BSWHSIZE; loops; --loops) {
611 		if (*pfreecnt <= 0 || TAILQ_FIRST(&bswlist_kva[iter]) == NULL) {
612 			iter = (iter + 1) & BSWHMASK;
613 			continue;
614 		}
615 		spin_lock(&bswspin_kva[iter]);
616 		if (*pfreecnt <= 0 ||
617 		    (bp = TAILQ_FIRST(&bswlist_kva[iter])) == NULL) {
618 			spin_unlock(&bswspin_kva[iter]);
619 			iter = (iter + 1) & BSWHMASK;
620 			continue;
621 		}
622 		TAILQ_REMOVE(&bswlist_kva[iter], bp, b_freelist);
623 		atomic_add_int(&pbuf_kva_count, -1);
624 		atomic_add_int(pfreecnt, -1);
625 
626 		spin_unlock(&bswspin_kva[iter]);
627 
628 		initpbuf(bp);
629 
630 		return bp;
631 	}
632 	return NULL;
633 }
634 
635 /*
636  * Release a physical buffer
637  *
638  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
639  *	relatively soon when the rest of the subsystems get smart about it. XXX
640  *
641  * No requirements.
642  */
643 void
644 relpbuf(struct buf *bp, int *pfreecnt)
645 {
646 	int wake = 0;
647 	int wake_free = 0;
648 	int iter = bp->b_swindex;
649 
650 	KKASSERT(bp->b_flags & B_PAGING);
651 	dsched_buf_exit(bp);
652 
653 	BUF_UNLOCK(bp);
654 
655 	if (bp >= swbuf_mem && bp < &swbuf_mem[nswbuf_mem]) {
656 		KKASSERT(bp->b_kvabase);
657 		spin_lock(&bswspin_mem[iter]);
658 		TAILQ_INSERT_HEAD(&bswlist_mem[iter], bp, b_freelist);
659 		if (atomic_fetchadd_int(&pbuf_mem_count, 1) == nswbuf_mem / 4)
660 			wake = 1;
661 		if (pfreecnt) {
662 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
663 				wake_free = 1;
664 		}
665 		spin_unlock(&bswspin_mem[iter]);
666 		if (wake)
667 			wakeup(&pbuf_mem_count);
668 	} else if (bp >= swbuf_kva && bp < &swbuf_kva[nswbuf_kva]) {
669 		KKASSERT(bp->b_kvabase);
670 		spin_lock(&bswspin_kva[iter]);
671 		TAILQ_INSERT_HEAD(&bswlist_kva[iter], bp, b_freelist);
672 		if (atomic_fetchadd_int(&pbuf_kva_count, 1) == nswbuf_kva / 4)
673 			wake = 1;
674 		if (pfreecnt) {
675 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
676 				wake_free = 1;
677 		}
678 		spin_unlock(&bswspin_kva[iter]);
679 		if (wake)
680 			wakeup(&pbuf_kva_count);
681 	} else {
682 		KKASSERT(bp->b_kvabase == NULL);
683 		KKASSERT(bp >= swbuf_raw && bp < &swbuf_raw[nswbuf_raw]);
684 		spin_lock(&bswspin_raw[iter]);
685 		TAILQ_INSERT_HEAD(&bswlist_raw[iter], bp, b_freelist);
686 		if (atomic_fetchadd_int(&pbuf_raw_count, 1) == nswbuf_raw / 4)
687 			wake = 1;
688 		if (pfreecnt) {
689 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
690 				wake_free = 1;
691 		}
692 		spin_unlock(&bswspin_raw[iter]);
693 		if (wake)
694 			wakeup(&pbuf_raw_count);
695 	}
696 	if (wake_free)
697 		wakeup(pfreecnt);
698 }
699 
700 void
701 pbuf_adjcount(int *pfreecnt, int n)
702 {
703 	if (n) {
704 		atomic_add_int(pfreecnt, n);
705 		wakeup(pfreecnt);
706 	}
707 }
708