xref: /dragonfly/sys/vm/vm_swapcache.c (revision fcf53d9b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <vm/vm_page2.h>
80 
81 #define INACTIVE_LIST	(&vm_page_queues[PQ_INACTIVE].pl)
82 
83 /* the kernel process "vm_pageout"*/
84 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
85 static int vm_swapcache_test(vm_page_t m);
86 static void vm_swapcache_writing(vm_page_t marker);
87 static void vm_swapcache_cleaning(vm_object_t marker);
88 struct thread *swapcached_thread;
89 
90 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
91 
92 int vm_swapcache_read_enable;
93 int vm_swapcache_inactive_heuristic;
94 static int vm_swapcache_sleep;
95 static int vm_swapcache_maxlaunder = 256;
96 static int vm_swapcache_data_enable = 0;
97 static int vm_swapcache_meta_enable = 0;
98 static int vm_swapcache_maxswappct = 75;
99 static int vm_swapcache_hysteresis;
100 int vm_swapcache_use_chflags = 1;	/* require chflags cache */
101 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
102 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
103 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
104 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
105 static int64_t vm_swapcache_write_count;
106 static int64_t vm_swapcache_maxfilesize;
107 
108 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
109 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
110 
111 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
112 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
114 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
116 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
117 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
118 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
120 	CTLFLAG_RW, &vm_swapcache_hysteresis, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
122 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
123 
124 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
125 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
126 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
127 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
128 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
129 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
130 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
131 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
132 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
133 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
135 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
136 
137 #define SWAPMAX(adj)	\
138 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
139 
140 /*
141  * When shutting down the machine we want to stop swapcache operation
142  * immediately so swap is not accessed after devices have been shuttered.
143  */
144 static void
145 shutdown_swapcache(void *arg __unused)
146 {
147 	vm_swapcache_read_enable = 0;
148 	vm_swapcache_data_enable = 0;
149 	vm_swapcache_meta_enable = 0;
150 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
151 }
152 
153 /*
154  * vm_swapcached is the high level pageout daemon.
155  *
156  * No requirements.
157  */
158 static void
159 vm_swapcached_thread(void)
160 {
161 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
162 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
163 	struct vm_page page_marker;
164 	struct vm_object object_marker;
165 
166 	/*
167 	 * Thread setup
168 	 */
169 	curthread->td_flags |= TDF_SYSTHREAD;
170 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
171 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
172 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
173 			      NULL, SHUTDOWN_PRI_SECOND);
174 	lwkt_gettoken(&vm_token);
175 	crit_enter();
176 
177 	/*
178 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
179 	 */
180 	bzero(&page_marker, sizeof(page_marker));
181 	page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
182 	page_marker.queue = PQ_INACTIVE;
183 	page_marker.wire_count = 1;
184 	TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
185 	vm_swapcache_hysteresis = vmstats.v_inactive_target / 2;
186 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
187 
188 	/*
189 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
190 	 */
191 	bzero(&object_marker, sizeof(object_marker));
192 	object_marker.type = OBJT_MARKER;
193 	lwkt_gettoken(&vmobj_token);
194 	TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
195 	lwkt_reltoken(&vmobj_token);
196 
197 	for (;;) {
198 		/*
199 		 * Handle shutdown
200 		 */
201 		kproc_suspend_loop();
202 
203 		/*
204 		 * Check every 5 seconds when not enabled or if no swap
205 		 * is present.
206 		 */
207 		if ((vm_swapcache_data_enable == 0 &&
208 		     vm_swapcache_meta_enable == 0) ||
209 		    vm_swap_max == 0) {
210 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
211 			continue;
212 		}
213 
214 		/*
215 		 * Polling rate when enabled is approximately 10 hz.
216 		 */
217 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
218 
219 		/*
220 		 * State hysteresis.  Generate write activity up to 75% of
221 		 * swap, then clean out swap assignments down to 70%, then
222 		 * repeat.
223 		 */
224 		if (state == SWAPC_WRITING) {
225 			if (vm_swap_cache_use > SWAPMAX(0))
226 				state = SWAPC_CLEANING;
227 		} else {
228 			if (vm_swap_cache_use < SWAPMAX(-5))
229 				state = SWAPC_WRITING;
230 		}
231 
232 		/*
233 		 * We are allowed to continue accumulating burst value
234 		 * in either state.  Allow the user to set curburst > maxburst
235 		 * for the initial load-in.
236 		 */
237 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
238 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
239 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
240 				vm_swapcache_curburst = vm_swapcache_maxburst;
241 		}
242 
243 		/*
244 		 * We don't want to nickle-and-dime the scan as that will
245 		 * create unnecessary fragmentation.  The minimum burst
246 		 * is one-seconds worth of accumulation.
247 		 */
248 		if (state == SWAPC_WRITING) {
249 			if (vm_swapcache_curburst >= vm_swapcache_accrate) {
250 				if (burst == SWAPB_BURSTING) {
251 					vm_swapcache_writing(&page_marker);
252 					if (vm_swapcache_curburst <= 0)
253 						burst = SWAPB_RECOVERING;
254 				} else if (vm_swapcache_curburst >
255 					   vm_swapcache_minburst) {
256 					vm_swapcache_writing(&page_marker);
257 					burst = SWAPB_BURSTING;
258 				}
259 			}
260 		} else {
261 			vm_swapcache_cleaning(&object_marker);
262 		}
263 	}
264 
265 	/*
266 	 * Cleanup (NOT REACHED)
267 	 */
268 	TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
269 	crit_exit();
270 	lwkt_reltoken(&vm_token);
271 
272 	lwkt_gettoken(&vmobj_token);
273 	TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
274 	lwkt_reltoken(&vmobj_token);
275 }
276 
277 static struct kproc_desc swpc_kp = {
278 	"swapcached",
279 	vm_swapcached_thread,
280 	&swapcached_thread
281 };
282 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
283 
284 /*
285  * The caller must hold vm_token.
286  */
287 static void
288 vm_swapcache_writing(vm_page_t marker)
289 {
290 	vm_object_t object;
291 	struct vnode *vp;
292 	vm_page_t m;
293 	int count;
294 	int isblkdev;
295 
296 	/*
297 	 * Deal with an overflow of the heuristic counter or if the user
298 	 * manually changes the hysteresis.
299 	 *
300 	 * Try to avoid small incremental pageouts by waiting for enough
301 	 * pages to buildup in the inactive queue to hopefully get a good
302 	 * burst in.  This heuristic is bumped by the VM system and reset
303 	 * when our scan hits the end of the queue.
304 	 */
305 	if (vm_swapcache_inactive_heuristic < -vm_swapcache_hysteresis)
306 		vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
307 	if (vm_swapcache_inactive_heuristic < 0)
308 		return;
309 
310 	/*
311 	 * Scan the inactive queue from our marker to locate
312 	 * suitable pages to push to the swap cache.
313 	 *
314 	 * We are looking for clean vnode-backed pages.
315 	 *
316 	 * NOTE: PG_SWAPPED pages in particular are not part of
317 	 *	 our count because once the cache stabilizes we
318 	 *	 can end up with a very high datarate of VM pages
319 	 *	 cycling from it.
320 	 */
321 	m = marker;
322 	count = vm_swapcache_maxlaunder;
323 
324 	while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
325 		if (m->flags & (PG_MARKER | PG_SWAPPED)) {
326 			++count;
327 			continue;
328 		}
329 		if (vm_swapcache_curburst < 0)
330 			break;
331 		if (vm_swapcache_test(m))
332 			continue;
333 		object = m->object;
334 		vp = object->handle;
335 		if (vp == NULL)
336 			continue;
337 
338 		switch(vp->v_type) {
339 		case VREG:
340 			/*
341 			 * PG_NOTMETA generically means 'don't swapcache this',
342 			 * and HAMMER will set this for regular data buffers
343 			 * (and leave it unset for meta-data buffers) as
344 			 * appropriate when double buffering is enabled.
345 			 */
346 			if (m->flags & PG_NOTMETA)
347 				continue;
348 
349 			/*
350 			 * If data_enable is 0 do not try to swapcache data.
351 			 * If use_chflags is set then only swapcache data for
352 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
353 			 */
354 			if (vm_swapcache_data_enable == 0 ||
355 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
356 			     vm_swapcache_use_chflags)) {
357 				continue;
358 			}
359 			if (vm_swapcache_maxfilesize &&
360 			    object->size >
361 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
362 				continue;
363 			}
364 			isblkdev = 0;
365 			break;
366 		case VCHR:
367 			/*
368 			 * PG_NOTMETA generically means 'don't swapcache this',
369 			 * and HAMMER will set this for regular data buffers
370 			 * (and leave it unset for meta-data buffers) as
371 			 * appropriate when double buffering is enabled.
372 			 */
373 			if (m->flags & PG_NOTMETA)
374 				continue;
375 			if (vm_swapcache_meta_enable == 0)
376 				continue;
377 			isblkdev = 1;
378 			break;
379 		default:
380 			continue;
381 		}
382 
383 		/*
384 		 * Ok, move the marker and soft-busy the page.
385 		 */
386 		TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
387 		TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
388 
389 		/*
390 		 * Assign swap and initiate I/O.
391 		 *
392 		 * (adjust for the --count which also occurs in the loop)
393 		 */
394 		count -= vm_swapcached_flush(m, isblkdev) - 1;
395 
396 		/*
397 		 * Setup for next loop using marker.
398 		 */
399 		m = marker;
400 	}
401 
402 	/*
403 	 * Cleanup marker position.  If we hit the end of the
404 	 * list the marker is placed at the tail.  Newly deactivated
405 	 * pages will be placed after it.
406 	 *
407 	 * Earlier inactive pages that were dirty and become clean
408 	 * are typically moved to the end of PQ_INACTIVE by virtue
409 	 * of vfs_vmio_release() when they become unwired from the
410 	 * buffer cache.
411 	 */
412 	TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
413 	if (m) {
414 		TAILQ_INSERT_BEFORE(m, marker, pageq);
415 	} else {
416 		TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
417 		vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
418 	}
419 }
420 
421 /*
422  * Flush the specified page using the swap_pager.
423  *
424  * Try to collect surrounding pages, including pages which may
425  * have already been assigned swap.  Try to cluster within a
426  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
427  * to match what swap_pager_putpages() can do.
428  *
429  * We also want to try to match against the buffer cache blocksize
430  * but we don't really know what it is here.  Since the buffer cache
431  * wires and unwires pages in groups the fact that we skip wired pages
432  * should be sufficient.
433  *
434  * Returns a count of pages we might have flushed (minimum 1)
435  *
436  * The caller must hold vm_token.
437  */
438 static
439 int
440 vm_swapcached_flush(vm_page_t m, int isblkdev)
441 {
442 	vm_object_t object;
443 	vm_page_t marray[SWAP_META_PAGES];
444 	vm_pindex_t basei;
445 	int rtvals[SWAP_META_PAGES];
446 	int x;
447 	int i;
448 	int j;
449 	int count;
450 
451 	vm_page_io_start(m);
452 	vm_page_protect(m, VM_PROT_READ);
453 	object = m->object;
454 
455 	/*
456 	 * Try to cluster around (m), keeping in mind that the swap pager
457 	 * can only do SMAP_META_PAGES worth of continguous write.
458 	 */
459 	x = (int)m->pindex & SWAP_META_MASK;
460 	marray[x] = m;
461 	basei = m->pindex;
462 
463 	for (i = x - 1; i >= 0; --i) {
464 		m = vm_page_lookup(object, basei - x + i);
465 		if (m == NULL)
466 			break;
467 		if (vm_swapcache_test(m))
468 			break;
469 		if (isblkdev && (m->flags & PG_NOTMETA))
470 			break;
471 		vm_page_io_start(m);
472 		vm_page_protect(m, VM_PROT_READ);
473 		if (m->queue - m->pc == PQ_CACHE) {
474 			vm_page_unqueue_nowakeup(m);
475 			vm_page_deactivate(m);
476 		}
477 		marray[i] = m;
478 	}
479 	++i;
480 
481 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
482 		m = vm_page_lookup(object, basei - x + j);
483 		if (m == NULL)
484 			break;
485 		if (vm_swapcache_test(m))
486 			break;
487 		if (isblkdev && (m->flags & PG_NOTMETA))
488 			break;
489 		vm_page_io_start(m);
490 		vm_page_protect(m, VM_PROT_READ);
491 		if (m->queue - m->pc == PQ_CACHE) {
492 			vm_page_unqueue_nowakeup(m);
493 			vm_page_deactivate(m);
494 		}
495 		marray[j] = m;
496 	}
497 
498 	count = j - i;
499 	vm_object_pip_add(object, count);
500 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
501 	vm_swapcache_write_count += count * PAGE_SIZE;
502 	vm_swapcache_curburst -= count * PAGE_SIZE;
503 
504 	while (i < j) {
505 		if (rtvals[i] != VM_PAGER_PEND) {
506 			vm_page_io_finish(marray[i]);
507 			vm_object_pip_wakeup(object);
508 		}
509 		++i;
510 	}
511 	return(count);
512 }
513 
514 /*
515  * Test whether a VM page is suitable for writing to the swapcache.
516  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
517  *
518  * Returns 0 on success, 1 on failure
519  *
520  * The caller must hold vm_token.
521  */
522 static int
523 vm_swapcache_test(vm_page_t m)
524 {
525 	vm_object_t object;
526 
527 	if (m->flags & (PG_BUSY | PG_UNMANAGED))
528 		return(1);
529 	if (m->busy || m->hold_count || m->wire_count)
530 		return(1);
531 	if (m->valid != VM_PAGE_BITS_ALL)
532 		return(1);
533 	if (m->dirty & m->valid)
534 		return(1);
535 	if ((object = m->object) == NULL)
536 		return(1);
537 	if (object->type != OBJT_VNODE ||
538 	    (object->flags & OBJ_DEAD)) {
539 		return(1);
540 	}
541 	vm_page_test_dirty(m);
542 	if (m->dirty & m->valid)
543 		return(1);
544 	return(0);
545 }
546 
547 /*
548  * Cleaning pass
549  *
550  * The caller must hold vm_token.
551  */
552 static
553 void
554 vm_swapcache_cleaning(vm_object_t marker)
555 {
556 	vm_object_t object;
557 	struct vnode *vp;
558 	int count;
559 	int n;
560 
561 	object = marker;
562 	count = vm_swapcache_maxlaunder;
563 
564 	/*
565 	 * Look for vnode objects
566 	 */
567 	lwkt_gettoken(&vm_token);
568 	lwkt_gettoken(&vmobj_token);
569 
570 	while ((object = TAILQ_NEXT(object, object_list)) != NULL) {
571 		if (--count <= 0)
572 			break;
573 		if (object->type != OBJT_VNODE)
574 			continue;
575 		if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
576 			continue;
577 		if ((vp = object->handle) == NULL)
578 			continue;
579 		if (vp->v_type != VREG && vp->v_type != VCHR)
580 			continue;
581 
582 		/*
583 		 * Adjust iterator.
584 		 */
585 		if (marker->backing_object != object)
586 			marker->size = 0;
587 
588 		/*
589 		 * Move the marker so we can work on the VM object
590 		 */
591 		TAILQ_REMOVE(&vm_object_list, marker, object_list);
592 		TAILQ_INSERT_AFTER(&vm_object_list, object,
593 				   marker, object_list);
594 
595 		/*
596 		 * Look for swblocks starting at our iterator.
597 		 *
598 		 * The swap_pager_condfree() function attempts to free
599 		 * swap space starting at the specified index.  The index
600 		 * will be updated on return.  The function will return
601 		 * a scan factor (NOT the number of blocks freed).
602 		 *
603 		 * If it must cut its scan of the object short due to an
604 		 * excessive number of swblocks, or is able to free the
605 		 * requested number of blocks, it will return n >= count
606 		 * and we break and pick it back up on a future attempt.
607 		 */
608 		n = swap_pager_condfree(object, &marker->size, count);
609 		count -= n;
610 		if (count < 0)
611 			break;
612 
613 		/*
614 		 * Setup for loop.
615 		 */
616 		marker->size = 0;
617 		object = marker;
618 	}
619 
620 	/*
621 	 * Adjust marker so we continue the scan from where we left off.
622 	 * When we reach the end we start back at the beginning.
623 	 */
624 	TAILQ_REMOVE(&vm_object_list, marker, object_list);
625 	if (object)
626 		TAILQ_INSERT_BEFORE(object, marker, object_list);
627 	else
628 		TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
629 	marker->backing_object = object;
630 
631 	lwkt_reltoken(&vmobj_token);
632 	lwkt_reltoken(&vm_token);
633 }
634