xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 89a89091)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int smpmode;
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
64 
65 int n_cpus = 0;
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle {
70 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71 	int remaining;		/* number of pointers remaining */
72 };
73 
74 /* declarations for load_avg */
75 #include "loadavg.h"
76 
77 #define PP(pp, field) ((pp)->kp_ ## field)
78 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
79 #define VP(pp, field) ((pp)->kp_vm_ ## field)
80 
81 /* define what weighted cpu is.  */
82 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
83 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
84 
85 /* what we consider to be process size: */
86 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
87 
88 /*
89  * These definitions control the format of the per-process area
90  */
91 
92 static char smp_header[] =
93 "  PID %-*.*s NICE  SIZE   PRES   STATE CPU  TIME   CTIME    CPU COMMAND";
94 
95 #define smp_Proc_format \
96 	"%5d %-*.*s %3d%7s %6s %7.7s %2d %6s %7s %5.2f%% %.*s"
97 
98 static char up_header[] =
99 "  PID %-*.*s NICE  SIZE   PRES   STATE    TIME   CTIME    CPU COMMAND";
100 
101 #define up_Proc_format \
102 	"%5d %-*.*s %3d%7s %6s %7.7s%.0d %7s %7s %5.2f%% %.*s"
103 
104 
105 /* process state names for the "STATE" column of the display */
106 /*
107  * the extra nulls in the string "run" are for adding a slash and the
108  * processor number when needed
109  */
110 
111 const char *state_abbrev[] = {
112 	"", "RUN\0\0\0", "STOP", "SLEEP",
113 };
114 
115 
116 static kvm_t *kd;
117 
118 /* values that we stash away in _init and use in later routines */
119 
120 static double logcpu;
121 
122 static long lastpid;
123 static int ccpu;
124 
125 /* these are for calculating cpu state percentages */
126 
127 static struct kinfo_cputime *cp_time, *cp_old;
128 
129 /* these are for detailing the process states */
130 
131 int process_states[6];
132 char *procstatenames[] = {
133 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
134 	NULL
135 };
136 
137 /* these are for detailing the cpu states */
138 #define CPU_STATES 5
139 int *cpu_states;
140 char *cpustatenames[CPU_STATES + 1] = {
141 	"user", "nice", "system", "interrupt", "idle", NULL
142 };
143 
144 /* these are for detailing the memory statistics */
145 
146 long memory_stats[7];
147 char *memorynames[] = {
148 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
149 	NULL
150 };
151 
152 long swap_stats[7];
153 char *swapnames[] = {
154 	/* 0           1            2           3            4       5 */
155 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
156 	NULL
157 };
158 
159 
160 /* these are for keeping track of the proc array */
161 
162 static int nproc;
163 static int onproc = -1;
164 static int pref_len;
165 static struct kinfo_proc *pbase;
166 static struct kinfo_proc **pref;
167 
168 /* these are for getting the memory statistics */
169 
170 static int pageshift;		/* log base 2 of the pagesize */
171 
172 /* define pagetok in terms of pageshift */
173 
174 #define pagetok(size) ((size) << pageshift)
175 
176 /* sorting orders. first is default */
177 char *ordernames[] = {
178   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
179 };
180 
181 /* compare routines */
182 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
183 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
184 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
185 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
186 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
187 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
188 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
189 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
190 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
191 
192 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
193 	proc_compare,
194 	compare_size,
195 	compare_res,
196 	compare_time,
197 	compare_prio,
198 	compare_thr,
199 	compare_pid,
200 	compare_ctime,
201 	compare_pres,
202 	NULL
203 };
204 
205 static void
206 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
207     struct kinfo_cputime *old)
208 {
209 	struct kinfo_cputime diffs;
210 	uint64_t total_change, half_total;
211 
212 	/* initialization */
213 	total_change = 0;
214 
215 	diffs.cp_user = new->cp_user - old->cp_user;
216 	diffs.cp_nice = new->cp_nice - old->cp_nice;
217 	diffs.cp_sys = new->cp_sys - old->cp_sys;
218 	diffs.cp_intr = new->cp_intr - old->cp_intr;
219 	diffs.cp_idle = new->cp_idle - old->cp_idle;
220 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
221 	    diffs.cp_intr + diffs.cp_idle;
222 	old->cp_user = new->cp_user;
223 	old->cp_nice = new->cp_nice;
224 	old->cp_sys = new->cp_sys;
225 	old->cp_intr = new->cp_intr;
226 	old->cp_idle = new->cp_idle;
227 
228 	/* avoid divide by zero potential */
229 	if (total_change == 0)
230 		total_change = 1;
231 
232 	/* calculate percentages based on overall change, rounding up */
233 	half_total = total_change >> 1;
234 
235 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
236 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
237 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
238 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
239 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
240 }
241 
242 int
243 machine_init(struct statics *statics)
244 {
245 	int pagesize;
246 	size_t modelen;
247 	struct passwd *pw;
248 	struct timeval boottime;
249 
250 	if (n_cpus < 1) {
251 		if (kinfo_get_cpus(&n_cpus))
252 			err(1, "kinfo_get_cpus failed");
253 	}
254 	/* get boot time */
255 	modelen = sizeof(boottime);
256 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
257 		/* we have no boottime to report */
258 		boottime.tv_sec = -1;
259 	}
260 	modelen = sizeof(smpmode);
261 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
262 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
263 	    modelen != sizeof(smpmode))
264 		smpmode = 0;
265 
266 	while ((pw = getpwent()) != NULL) {
267 		if ((int)strlen(pw->pw_name) > namelength)
268 			namelength = strlen(pw->pw_name);
269 	}
270 	if (namelength < 8)
271 		namelength = 8;
272 	if (smpmode && namelength > 13)
273 		namelength = 13;
274 	else if (namelength > 15)
275 		namelength = 15;
276 
277 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
278 		return -1;
279 
280 	if (kinfo_get_sched_ccpu(&ccpu)) {
281 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
282 		return (-1);
283 	}
284 	/* this is used in calculating WCPU -- calculate it ahead of time */
285 	logcpu = log(loaddouble(ccpu));
286 
287 	pbase = NULL;
288 	pref = NULL;
289 	nproc = 0;
290 	onproc = -1;
291 	/*
292 	 * get the page size with "getpagesize" and calculate pageshift from
293 	 * it
294 	 */
295 	pagesize = getpagesize();
296 	pageshift = 0;
297 	while (pagesize > 1) {
298 		pageshift++;
299 		pagesize >>= 1;
300 	}
301 
302 	/* we only need the amount of log(2)1024 for our conversion */
303 	pageshift -= LOG1024;
304 
305 	/* fill in the statics information */
306 	statics->procstate_names = procstatenames;
307 	statics->cpustate_names = cpustatenames;
308 	statics->memory_names = memorynames;
309 	statics->boottime = boottime.tv_sec;
310 	statics->swap_names = swapnames;
311 	statics->order_names = ordernames;
312 	/* we need kvm descriptor in order to show full commands */
313 	statics->flags.fullcmds = kd != NULL;
314 
315 	/* all done! */
316 	return (0);
317 }
318 
319 char *
320 format_header(char *uname_field)
321 {
322 	static char Header[128];
323 
324 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
325 	    namelength, namelength, uname_field);
326 
327 	if (screen_width <= 79)
328 		cmdlength = 80;
329 	else
330 		cmdlength = screen_width;
331 
332 	cmdlength = cmdlength - strlen(Header) + 6;
333 
334 	return Header;
335 }
336 
337 static int swappgsin = -1;
338 static int swappgsout = -1;
339 extern struct timeval timeout;
340 
341 void
342 get_system_info(struct system_info *si)
343 {
344 	size_t len;
345 	int cpu;
346 
347 	if (cpu_states == NULL) {
348 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
349 		if (cpu_states == NULL)
350 			err(1, "malloc");
351 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
352 	}
353 	if (cp_time == NULL) {
354 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
355 		if (cp_time == NULL)
356 			err(1, "cp_time");
357 		cp_old = cp_time + n_cpus;
358 		len = n_cpus * sizeof(cp_old[0]);
359 		bzero(cp_time, len);
360 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
361 			err(1, "kern.cputime");
362 	}
363 	len = n_cpus * sizeof(cp_time[0]);
364 	bzero(cp_time, len);
365 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
366 		err(1, "kern.cputime");
367 
368 	getloadavg(si->load_avg, 3);
369 
370 	lastpid = 0;
371 
372 	/* convert cp_time counts to percentages */
373 	for (cpu = 0; cpu < n_cpus; ++cpu) {
374 		cputime_percentages(cpu_states + cpu * CPU_STATES,
375 		    &cp_time[cpu], &cp_old[cpu]);
376 	}
377 
378 	/* sum memory & swap statistics */
379 	{
380 		struct vmmeter vmm;
381 		struct vmstats vms;
382 		size_t vms_size = sizeof(vms);
383 		size_t vmm_size = sizeof(vmm);
384 		static unsigned int swap_delay = 0;
385 		static int swapavail = 0;
386 		static int swapfree = 0;
387 		static long bufspace = 0;
388 
389 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
390 			err(1, "sysctlbyname: vm.vmstats");
391 
392 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
393 			err(1, "sysctlbyname: vm.vmmeter");
394 
395 		if (kinfo_get_vfs_bufspace(&bufspace))
396 			err(1, "kinfo_get_vfs_bufspace");
397 
398 		/* convert memory stats to Kbytes */
399 		memory_stats[0] = pagetok(vms.v_active_count);
400 		memory_stats[1] = pagetok(vms.v_inactive_count);
401 		memory_stats[2] = pagetok(vms.v_wire_count);
402 		memory_stats[3] = pagetok(vms.v_cache_count);
403 		memory_stats[4] = bufspace / 1024;
404 		memory_stats[5] = pagetok(vms.v_free_count);
405 		memory_stats[6] = -1;
406 
407 		/* first interval */
408 		if (swappgsin < 0) {
409 			swap_stats[4] = 0;
410 			swap_stats[5] = 0;
411 		}
412 		/* compute differences between old and new swap statistic */
413 		else {
414 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
415 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
416 		}
417 
418 		swappgsin = vmm.v_swappgsin;
419 		swappgsout = vmm.v_swappgsout;
420 
421 		/* call CPU heavy swapmode() only for changes */
422 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
423 			swap_stats[3] = swapmode(&swapavail, &swapfree);
424 			swap_stats[0] = swapavail;
425 			swap_stats[1] = swapavail - swapfree;
426 			swap_stats[2] = swapfree;
427 		}
428 		swap_delay = 1;
429 		swap_stats[6] = -1;
430 	}
431 
432 	/* set arrays and strings */
433 	si->cpustates = cpu_states;
434 	si->memory = memory_stats;
435 	si->swap = swap_stats;
436 
437 
438 	if (lastpid > 0) {
439 		si->last_pid = lastpid;
440 	} else {
441 		si->last_pid = -1;
442 	}
443 }
444 
445 
446 static struct handle handle;
447 
448 caddr_t
449 get_process_info(struct system_info *si, struct process_select *sel,
450     int compare_index)
451 {
452 	int i;
453 	int total_procs;
454 	int active_procs;
455 	struct kinfo_proc **prefp;
456 	struct kinfo_proc *pp;
457 
458 	/* these are copied out of sel for speed */
459 	int show_idle;
460 	int show_system;
461 	int show_uid;
462 	int show_threads;
463 
464 	show_threads = sel->threads;
465 
466 
467 	pbase = kvm_getprocs(kd,
468 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
469 	if (nproc > onproc)
470 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
471 		    * (onproc = nproc));
472 	if (pref == NULL || pbase == NULL) {
473 		(void)fprintf(stderr, "top: Out of memory.\n");
474 		quit(23);
475 	}
476 	/* get a pointer to the states summary array */
477 	si->procstates = process_states;
478 
479 	/* set up flags which define what we are going to select */
480 	show_idle = sel->idle;
481 	show_system = sel->system;
482 	show_uid = sel->uid != -1;
483 	show_fullcmd = sel->fullcmd;
484 
485 	/* count up process states and get pointers to interesting procs */
486 	total_procs = 0;
487 	active_procs = 0;
488 	memset((char *)process_states, 0, sizeof(process_states));
489 	prefp = pref;
490 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
491 		/*
492 		 * Place pointers to each valid proc structure in pref[].
493 		 * Process slots that are actually in use have a non-zero
494 		 * status field.  Processes with P_SYSTEM set are system
495 		 * processes---these get ignored unless show_sysprocs is set.
496 		 */
497 		if ((show_threads && (LP(pp, pid) == -1)) ||
498 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
499 			total_procs++;
500 			if (LP(pp, stat) == LSRUN)
501 				process_states[0]++;
502 			process_states[PP(pp, stat)]++;
503 			if ((show_threads && (LP(pp, pid) == -1)) ||
504 			    (show_idle || (LP(pp, pctcpu) != 0) ||
505 			    (LP(pp, stat) == LSRUN)) &&
506 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
507 				*prefp++ = pp;
508 				active_procs++;
509 			}
510 		}
511 	}
512 
513 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
514 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
515 
516 	/* remember active and total counts */
517 	si->p_total = total_procs;
518 	si->p_active = pref_len = active_procs;
519 
520 	/* pass back a handle */
521 	handle.next_proc = pref;
522 	handle.remaining = active_procs;
523 	return ((caddr_t) & handle);
524 }
525 
526 char fmt[MAX_COLS];		/* static area where result is built */
527 
528 char *
529 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
530 {
531 	struct kinfo_proc *pp;
532 	long cputime;
533 	long ccputime;
534 	double pct;
535 	struct handle *hp;
536 	char status[16];
537 	int state;
538 	int xnice;
539 	char **comm_full;
540 	char *comm;
541 	char cputime_fmt[10], ccputime_fmt[10];
542 
543 	/* find and remember the next proc structure */
544 	hp = (struct handle *)xhandle;
545 	pp = *(hp->next_proc++);
546 	hp->remaining--;
547 
548 	/* get the process's command name */
549 	if (show_fullcmd) {
550 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
551 			return (fmt);
552 		}
553 	}
554 	else {
555 		comm = PP(pp, comm);
556 	}
557 
558 	/*
559 	 * Convert the process's runtime from microseconds to seconds.  This
560 	 * time includes the interrupt time to be in compliance with ps output.
561 	*/
562 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
563 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
564 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
565 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
566 
567 	/* calculate the base for cpu percentages */
568 	pct = pctdouble(LP(pp, pctcpu));
569 
570 	/* generate "STATE" field */
571 	switch (state = LP(pp, stat)) {
572 	case LSRUN:
573 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
574 			sprintf(status, "CPU%d", LP(pp, cpuid));
575 		else
576 			strcpy(status, "RUN");
577 		break;
578 	case LSSLEEP:
579 		if (LP(pp, wmesg) != NULL) {
580 			sprintf(status, "%.6s", LP(pp, wmesg));
581 			break;
582 		}
583 		/* fall through */
584 	default:
585 
586 		if (state >= 0 &&
587 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
588 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
589 		else
590 			sprintf(status, "?%5d", state);
591 		break;
592 	}
593 
594 	if (PP(pp, stat) == SZOMB)
595 		strcpy(status, "ZOMB");
596 
597 	/*
598 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
599 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
600 	 * 0 - 31 -> nice value -53 -
601 	 */
602 	switch (LP(pp, rtprio.type)) {
603 	case RTP_PRIO_REALTIME:
604 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
605 		break;
606 	case RTP_PRIO_IDLE:
607 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
608 		break;
609 	case RTP_PRIO_THREAD:
610 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
611 		break;
612 	default:
613 		xnice = PP(pp, nice);
614 		break;
615 	}
616 
617 	/* format this entry */
618 	snprintf(fmt, sizeof(fmt),
619 	    smpmode ? smp_Proc_format : up_Proc_format,
620 	    (int)PP(pp, pid),
621 	    namelength, namelength,
622 	    get_userid(PP(pp, ruid)),
623 	    (int)xnice,
624 	    format_k(PROCSIZE(pp)),
625 	    format_k(pagetok(VP(pp, prssize))),
626 	    status,
627 	    (int)(smpmode ? LP(pp, cpuid) : 0),
628 	    cputime_fmt,
629 	    ccputime_fmt,
630 	    100.0 * pct,
631 	    cmdlength,
632 	    show_fullcmd ? *comm_full : comm);
633 
634 	/* return the result */
635 	return (fmt);
636 }
637 
638 /* comparison routines for qsort */
639 
640 /*
641  *  proc_compare - comparison function for "qsort"
642  *	Compares the resource consumption of two processes using five
643  *  	distinct keys.  The keys (in descending order of importance) are:
644  *  	percent cpu, cpu ticks, state, resident set size, total virtual
645  *  	memory usage.  The process states are ordered as follows (from least
646  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
647  *  	array declaration below maps a process state index into a number
648  *  	that reflects this ordering.
649  */
650 
651 static unsigned char sorted_state[] =
652 {
653 	0,			/* not used		 */
654 	3,			/* sleep		 */
655 	1,			/* ABANDONED (WAIT)	 */
656 	6,			/* run			 */
657 	5,			/* start		 */
658 	2,			/* zombie		 */
659 	4			/* stop			 */
660 };
661 
662 
663 #define ORDERKEY_PCTCPU \
664   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
665      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
666 
667 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
668 
669 #define ORDERKEY_CPTICKS \
670   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
671 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
672 
673 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
674   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
675 
676 #define ORDERKEY_CTIME \
677    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
678 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
679 
680 #define ORDERKEY_STATE \
681   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
682                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
683 
684 #define ORDERKEY_PRIO \
685   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
686 
687 #define ORDERKEY_KTHREADS \
688   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
689 
690 #define ORDERKEY_KTHREADS_PRIO \
691   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
692 
693 #define ORDERKEY_RSSIZE \
694   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
695 
696 #define ORDERKEY_MEM \
697   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
698 
699 #define ORDERKEY_PID \
700   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
701 
702 #define ORDERKEY_PRSSIZE \
703   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
704 
705 /* compare_cpu - the comparison function for sorting by cpu percentage */
706 
707 int
708 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
709 {
710 	struct kinfo_proc *p1;
711 	struct kinfo_proc *p2;
712 	int result;
713 	pctcpu lresult;
714 
715 	/* remove one level of indirection */
716 	p1 = *(struct kinfo_proc **) pp1;
717 	p2 = *(struct kinfo_proc **) pp2;
718 
719 	ORDERKEY_PCTCPU
720 	ORDERKEY_CPTICKS
721 	ORDERKEY_STATE
722 	ORDERKEY_PRIO
723 	ORDERKEY_RSSIZE
724 	ORDERKEY_MEM
725 	{}
726 
727 	return (result);
728 }
729 
730 /* compare_size - the comparison function for sorting by total memory usage */
731 
732 int
733 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
734 {
735 	struct kinfo_proc *p1;
736 	struct kinfo_proc *p2;
737 	int result;
738 	pctcpu lresult;
739 
740 	/* remove one level of indirection */
741 	p1 = *(struct kinfo_proc **) pp1;
742 	p2 = *(struct kinfo_proc **) pp2;
743 
744 	ORDERKEY_MEM
745 	ORDERKEY_RSSIZE
746 	ORDERKEY_PCTCPU
747 	ORDERKEY_CPTICKS
748 	ORDERKEY_STATE
749 	ORDERKEY_PRIO
750 	{}
751 
752 	return (result);
753 }
754 
755 /* compare_res - the comparison function for sorting by resident set size */
756 
757 int
758 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
759 {
760 	struct kinfo_proc *p1;
761 	struct kinfo_proc *p2;
762 	int result;
763 	pctcpu lresult;
764 
765 	/* remove one level of indirection */
766 	p1 = *(struct kinfo_proc **) pp1;
767 	p2 = *(struct kinfo_proc **) pp2;
768 
769 	ORDERKEY_RSSIZE
770 	ORDERKEY_MEM
771 	ORDERKEY_PCTCPU
772 	ORDERKEY_CPTICKS
773 	ORDERKEY_STATE
774 	ORDERKEY_PRIO
775 	{}
776 
777 	return (result);
778 }
779 
780 /* compare_pres - the comparison function for sorting by proportional resident set size */
781 
782 int
783 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
784 {
785 	struct kinfo_proc *p1;
786 	struct kinfo_proc *p2;
787 	int result;
788 	pctcpu lresult;
789 
790 	/* remove one level of indirection */
791 	p1 = *(struct kinfo_proc **) pp1;
792 	p2 = *(struct kinfo_proc **) pp2;
793 
794 	ORDERKEY_PRSSIZE
795 	ORDERKEY_RSSIZE
796 	ORDERKEY_MEM
797 	ORDERKEY_PCTCPU
798 	ORDERKEY_CPTICKS
799 	ORDERKEY_STATE
800 	ORDERKEY_PRIO
801 	{}
802 
803 	return (result);
804 }
805 
806 /* compare_time - the comparison function for sorting by total cpu time */
807 
808 int
809 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
810 {
811 	struct kinfo_proc *p1;
812 	struct kinfo_proc *p2;
813 	int result;
814 	pctcpu lresult;
815 
816 	/* remove one level of indirection */
817 	p1 = *(struct kinfo_proc **) pp1;
818 	p2 = *(struct kinfo_proc **) pp2;
819 
820 	ORDERKEY_CPTICKS
821 	ORDERKEY_PCTCPU
822 	ORDERKEY_KTHREADS
823 	ORDERKEY_KTHREADS_PRIO
824 	ORDERKEY_STATE
825 	ORDERKEY_PRIO
826 	ORDERKEY_RSSIZE
827 	ORDERKEY_MEM
828 	{}
829 
830 	return (result);
831 }
832 
833 int
834 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
835 {
836 	struct kinfo_proc *p1;
837 	struct kinfo_proc *p2;
838 	int result;
839 	pctcpu lresult;
840 
841 	/* remove one level of indirection */
842 	p1 = *(struct kinfo_proc **) pp1;
843 	p2 = *(struct kinfo_proc **) pp2;
844 
845 	ORDERKEY_CTIME
846 	ORDERKEY_PCTCPU
847 	ORDERKEY_KTHREADS
848 	ORDERKEY_KTHREADS_PRIO
849 	ORDERKEY_STATE
850 	ORDERKEY_PRIO
851 	ORDERKEY_RSSIZE
852 	ORDERKEY_MEM
853 	{}
854 
855 	return (result);
856 }
857 
858 /* compare_prio - the comparison function for sorting by cpu percentage */
859 
860 int
861 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
862 {
863 	struct kinfo_proc *p1;
864 	struct kinfo_proc *p2;
865 	int result;
866 	pctcpu lresult;
867 
868 	/* remove one level of indirection */
869 	p1 = *(struct kinfo_proc **) pp1;
870 	p2 = *(struct kinfo_proc **) pp2;
871 
872 	ORDERKEY_KTHREADS
873 	ORDERKEY_KTHREADS_PRIO
874 	ORDERKEY_PRIO
875 	ORDERKEY_CPTICKS
876 	ORDERKEY_PCTCPU
877 	ORDERKEY_STATE
878 	ORDERKEY_RSSIZE
879 	ORDERKEY_MEM
880 	{}
881 
882 	return (result);
883 }
884 
885 int
886 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
887 {
888 	struct kinfo_proc *p1;
889 	struct kinfo_proc *p2;
890 	int result;
891 	pctcpu lresult;
892 
893 	/* remove one level of indirection */
894 	p1 = *(struct kinfo_proc **)pp1;
895 	p2 = *(struct kinfo_proc **)pp2;
896 
897 	ORDERKEY_KTHREADS
898 	ORDERKEY_KTHREADS_PRIO
899 	ORDERKEY_CPTICKS
900 	ORDERKEY_PCTCPU
901 	ORDERKEY_STATE
902 	ORDERKEY_RSSIZE
903 	ORDERKEY_MEM
904 	{}
905 
906 	return (result);
907 }
908 
909 /* compare_pid - the comparison function for sorting by process id */
910 
911 int
912 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
913 {
914 	struct kinfo_proc *p1;
915 	struct kinfo_proc *p2;
916 	int result;
917 
918 	/* remove one level of indirection */
919 	p1 = *(struct kinfo_proc **) pp1;
920 	p2 = *(struct kinfo_proc **) pp2;
921 
922 	ORDERKEY_PID
923 	;
924 
925 	return(result);
926 }
927 
928 /*
929  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
930  *		the process does not exist.
931  *		It is EXTREMLY IMPORTANT that this function work correctly.
932  *		If top runs setuid root (as in SVR4), then this function
933  *		is the only thing that stands in the way of a serious
934  *		security problem.  It validates requests for the "kill"
935  *		and "renice" commands.
936  */
937 
938 int
939 proc_owner(int pid)
940 {
941 	int xcnt;
942 	struct kinfo_proc **prefp;
943 	struct kinfo_proc *pp;
944 
945 	prefp = pref;
946 	xcnt = pref_len;
947 	while (--xcnt >= 0) {
948 		pp = *prefp++;
949 		if (PP(pp, pid) == (pid_t) pid) {
950 			return ((int)PP(pp, ruid));
951 		}
952 	}
953 	return (-1);
954 }
955 
956 
957 /*
958  * swapmode is based on a program called swapinfo written
959  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
960  */
961 int
962 swapmode(int *retavail, int *retfree)
963 {
964 	int n;
965 	int pagesize = getpagesize();
966 	struct kvm_swap swapary[1];
967 
968 	*retavail = 0;
969 	*retfree = 0;
970 
971 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
972 
973 	n = kvm_getswapinfo(kd, swapary, 1, 0);
974 	if (n < 0 || swapary[0].ksw_total == 0)
975 		return (0);
976 
977 	*retavail = CONVERT(swapary[0].ksw_total);
978 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
979 
980 	n = (int)((double)swapary[0].ksw_used * 100.0 /
981 	    (double)swapary[0].ksw_total);
982 	return (n);
983 }
984