xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision a68e0df0)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
24  */
25 
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/user.h>
43 #include <sys/vmmeter.h>
44 #include <sys/resource.h>
45 #include <sys/rtprio.h>
46 
47 /* Swap */
48 #include <stdlib.h>
49 #include <stdio.h>
50 #include <sys/conf.h>
51 
52 #include <osreldate.h>		/* for changes in kernel structures */
53 
54 #include <sys/kinfo.h>
55 #include <kinfo.h>
56 #include "top.h"
57 #include "display.h"
58 #include "machine.h"
59 #include "screen.h"
60 #include "utils.h"
61 
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 static int namelength;
65 static int cmdlength;
66 static int show_fullcmd;
67 
68 int n_cpus = 0;
69 
70 /*
71  * needs to be a global symbol, so wrapper can be modified accordingly.
72  */
73 static int show_threads = 0;
74 
75 /* get_process_info passes back a handle.  This is what it looks like: */
76 
77 struct handle {
78 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79 	int remaining;		/* number of pointers remaining */
80 };
81 
82 /* declarations for load_avg */
83 #include "loadavg.h"
84 
85 #define PP(pp, field) ((pp)->kp_ ## field)
86 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
87 #define VP(pp, field) ((pp)->kp_vm_ ## field)
88 
89 /* define what weighted cpu is.  */
90 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
91 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
92 
93 /* what we consider to be process size: */
94 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
95 
96 /*
97  * These definitions control the format of the per-process area
98  */
99 
100 static char smp_header[] =
101 "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   CTIME   CPU COMMAND";
102 
103 #define smp_Proc_format \
104 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %7s %5.2f%% %.*s"
105 
106 static char up_header[] =
107 "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   CTIME   CPU COMMAND";
108 
109 #define up_Proc_format \
110 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %7s %5.2f%% %.*s"
111 
112 
113 
114 /* process state names for the "STATE" column of the display */
115 /*
116  * the extra nulls in the string "run" are for adding a slash and the
117  * processor number when needed
118  */
119 
120 const char *state_abbrev[] = {
121 	"", "RUN\0\0\0", "STOP", "SLEEP",
122 };
123 
124 
125 static kvm_t *kd;
126 
127 /* values that we stash away in _init and use in later routines */
128 
129 static double logcpu;
130 
131 static long lastpid;
132 static int ccpu;
133 
134 /* these are for calculating cpu state percentages */
135 
136 static struct kinfo_cputime *cp_time, *cp_old;
137 
138 /* these are for detailing the process states */
139 
140 int process_states[6];
141 char *procstatenames[] = {
142 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
143 	" zombie, ",
144 	NULL
145 };
146 
147 /* these are for detailing the cpu states */
148 #define CPU_STATES 5
149 int *cpu_states;
150 char *cpustatenames[CPU_STATES + 1] = {
151 	"user", "nice", "system", "interrupt", "idle", NULL
152 };
153 
154 /* these are for detailing the memory statistics */
155 
156 long memory_stats[7];
157 char *memorynames[] = {
158 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
159 	NULL
160 };
161 
162 long swap_stats[7];
163 char *swapnames[] = {
164 	/* 0           1            2           3            4       5 */
165 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
166 	NULL
167 };
168 
169 
170 /* these are for keeping track of the proc array */
171 
172 static int nproc;
173 static int onproc = -1;
174 static int pref_len;
175 static struct kinfo_proc *pbase;
176 static struct kinfo_proc **pref;
177 
178 /* these are for getting the memory statistics */
179 
180 static int pageshift;		/* log base 2 of the pagesize */
181 
182 /* define pagetok in terms of pageshift */
183 
184 #define pagetok(size) ((size) << pageshift)
185 
186 /* sorting orders. first is default */
187 char *ordernames[] = {
188 	"cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  NULL
189 };
190 
191 /* compare routines */
192 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
198 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
199 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
200 
201 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
202 	proc_compare,
203 	compare_size,
204 	compare_res,
205 	compare_time,
206 	compare_prio,
207 	compare_thr,
208 	compare_pid,
209 	compare_ctime,
210 	NULL
211 };
212 
213 static void
214 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
215     struct kinfo_cputime *old)
216 {
217 	struct kinfo_cputime diffs;
218 	uint64_t total_change, half_total;
219 
220 	/* initialization */
221 	total_change = 0;
222 
223 	diffs.cp_user = new->cp_user - old->cp_user;
224 	diffs.cp_nice = new->cp_nice - old->cp_nice;
225 	diffs.cp_sys = new->cp_sys - old->cp_sys;
226 	diffs.cp_intr = new->cp_intr - old->cp_intr;
227 	diffs.cp_idle = new->cp_idle - old->cp_idle;
228 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
229 	    diffs.cp_intr + diffs.cp_idle;
230 	old->cp_user = new->cp_user;
231 	old->cp_nice = new->cp_nice;
232 	old->cp_sys = new->cp_sys;
233 	old->cp_intr = new->cp_intr;
234 	old->cp_idle = new->cp_idle;
235 
236 	/* avoid divide by zero potential */
237 	if (total_change == 0)
238 		total_change = 1;
239 
240 	/* calculate percentages based on overall change, rounding up */
241 	half_total = total_change >> 1;
242 
243 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
244 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
245 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
246 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
247 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
248 }
249 
250 int
251 machine_init(struct statics *statics)
252 {
253 	int pagesize;
254 	size_t modelen;
255 	struct passwd *pw;
256 	struct timeval boottime;
257 
258 	if (n_cpus < 1) {
259 		if (kinfo_get_cpus(&n_cpus))
260 			err(1, "kinfo_get_cpus failed");
261 	}
262 	/* get boot time */
263 	modelen = sizeof(boottime);
264 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
265 		/* we have no boottime to report */
266 		boottime.tv_sec = -1;
267 	}
268 	modelen = sizeof(smpmode);
269 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
270 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
271 	    modelen != sizeof(smpmode))
272 		smpmode = 0;
273 
274 	while ((pw = getpwent()) != NULL) {
275 		if ((int)strlen(pw->pw_name) > namelength)
276 			namelength = strlen(pw->pw_name);
277 	}
278 	if (namelength < 8)
279 		namelength = 8;
280 	if (smpmode && namelength > 13)
281 		namelength = 13;
282 	else if (namelength > 15)
283 		namelength = 15;
284 
285 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
286 		return -1;
287 
288 	if (kinfo_get_sched_ccpu(&ccpu)) {
289 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
290 		return (-1);
291 	}
292 	/* this is used in calculating WCPU -- calculate it ahead of time */
293 	logcpu = log(loaddouble(ccpu));
294 
295 	pbase = NULL;
296 	pref = NULL;
297 	nproc = 0;
298 	onproc = -1;
299 	/*
300 	 * get the page size with "getpagesize" and calculate pageshift from
301 	 * it
302 	 */
303 	pagesize = getpagesize();
304 	pageshift = 0;
305 	while (pagesize > 1) {
306 		pageshift++;
307 		pagesize >>= 1;
308 	}
309 
310 	/* we only need the amount of log(2)1024 for our conversion */
311 	pageshift -= LOG1024;
312 
313 	/* fill in the statics information */
314 	statics->procstate_names = procstatenames;
315 	statics->cpustate_names = cpustatenames;
316 	statics->memory_names = memorynames;
317 	statics->boottime = boottime.tv_sec;
318 	statics->swap_names = swapnames;
319 	statics->order_names = ordernames;
320 	/* we need kvm descriptor in order to show full commands */
321 	statics->flags.fullcmds = kd != NULL;
322 
323 	/* all done! */
324 	return (0);
325 }
326 
327 char *
328 format_header(char *uname_field)
329 {
330 	static char Header[128];
331 
332 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
333 	    namelength, namelength, uname_field);
334 
335 	if (screen_width <= 79)
336 		cmdlength = 80;
337 	else
338 		cmdlength = screen_width;
339 
340 	cmdlength = cmdlength - strlen(Header) + 6;
341 
342 	return Header;
343 }
344 
345 static int swappgsin = -1;
346 static int swappgsout = -1;
347 extern struct timeval timeout;
348 
349 void
350 get_system_info(struct system_info *si)
351 {
352 	size_t len;
353 	int cpu;
354 
355 	if (cpu_states == NULL) {
356 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
357 		if (cpu_states == NULL)
358 			err(1, "malloc");
359 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
360 	}
361 	if (cp_time == NULL) {
362 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
363 		if (cp_time == NULL)
364 			err(1, "cp_time");
365 		cp_old = cp_time + n_cpus;
366 
367 		len = n_cpus * sizeof(cp_old[0]);
368 		bzero(cp_time, len);
369 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
370 			err(1, "kern.cputime");
371 	}
372 	len = n_cpus * sizeof(cp_time[0]);
373 	bzero(cp_time, len);
374 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
375 		err(1, "kern.cputime");
376 
377 	getloadavg(si->load_avg, 3);
378 
379 	lastpid = 0;
380 
381 	/* convert cp_time counts to percentages */
382 	for (cpu = 0; cpu < n_cpus; ++cpu) {
383 		cputime_percentages(cpu_states + cpu * CPU_STATES,
384 		    &cp_time[cpu], &cp_old[cpu]);
385 	}
386 
387 	/* sum memory & swap statistics */
388 	{
389 		struct vmmeter vmm;
390 		struct vmstats vms;
391 		size_t vms_size = sizeof(vms);
392 		size_t vmm_size = sizeof(vmm);
393 		static unsigned int swap_delay = 0;
394 		static int swapavail = 0;
395 		static int swapfree = 0;
396 		static int bufspace = 0;
397 
398 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
399 			err(1, "sysctlbyname: vm.vmstats");
400 
401 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
402 			err(1, "sysctlbyname: vm.vmmeter");
403 
404 		if (kinfo_get_vfs_bufspace(&bufspace))
405 			err(1, "kinfo_get_vfs_bufspace");
406 
407 		/* convert memory stats to Kbytes */
408 		memory_stats[0] = pagetok(vms.v_active_count);
409 		memory_stats[1] = pagetok(vms.v_inactive_count);
410 		memory_stats[2] = pagetok(vms.v_wire_count);
411 		memory_stats[3] = pagetok(vms.v_cache_count);
412 		memory_stats[4] = bufspace / 1024;
413 		memory_stats[5] = pagetok(vms.v_free_count);
414 		memory_stats[6] = -1;
415 
416 		/* first interval */
417 		if (swappgsin < 0) {
418 			swap_stats[4] = 0;
419 			swap_stats[5] = 0;
420 		}
421 		/* compute differences between old and new swap statistic */
422 		else {
423 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
424 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
425 		}
426 
427 		swappgsin = vmm.v_swappgsin;
428 		swappgsout = vmm.v_swappgsout;
429 
430 		/* call CPU heavy swapmode() only for changes */
431 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
432 			swap_stats[3] = swapmode(&swapavail, &swapfree);
433 			swap_stats[0] = swapavail;
434 			swap_stats[1] = swapavail - swapfree;
435 			swap_stats[2] = swapfree;
436 		}
437 		swap_delay = 1;
438 		swap_stats[6] = -1;
439 	}
440 
441 	/* set arrays and strings */
442 	si->cpustates = cpu_states;
443 	si->memory = memory_stats;
444 	si->swap = swap_stats;
445 
446 
447 	if (lastpid > 0) {
448 		si->last_pid = lastpid;
449 	} else {
450 		si->last_pid = -1;
451 	}
452 }
453 
454 
455 static struct handle handle;
456 
457 caddr_t
458 get_process_info(struct system_info *si, struct process_select *sel,
459     int compare_index)
460 {
461 	int i;
462 	int total_procs;
463 	int active_procs;
464 	struct kinfo_proc **prefp;
465 	struct kinfo_proc *pp;
466 
467 	/* these are copied out of sel for speed */
468 	int show_idle;
469 	int show_system;
470 	int show_uid;
471 
472 
473 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
474 	if (nproc > onproc)
475 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
476 		    * (onproc = nproc));
477 	if (pref == NULL || pbase == NULL) {
478 		(void)fprintf(stderr, "top: Out of memory.\n");
479 		quit(23);
480 	}
481 	/* get a pointer to the states summary array */
482 	si->procstates = process_states;
483 
484 	/* set up flags which define what we are going to select */
485 	show_idle = sel->idle;
486 	show_system = sel->system;
487 	show_uid = sel->uid != -1;
488 	show_fullcmd = sel->fullcmd;
489 
490 	/* count up process states and get pointers to interesting procs */
491 	total_procs = 0;
492 	active_procs = 0;
493 	memset((char *)process_states, 0, sizeof(process_states));
494 	prefp = pref;
495 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
496 		/*
497 		 * Place pointers to each valid proc structure in pref[].
498 		 * Process slots that are actually in use have a non-zero
499 		 * status field.  Processes with P_SYSTEM set are system
500 		 * processes---these get ignored unless show_sysprocs is set.
501 		 */
502 		if ((show_threads && (LP(pp, pid) == -1)) ||
503 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
504 			total_procs++;
505 			process_states[(unsigned char)PP(pp, stat)]++;
506 			if ((show_threads && (LP(pp, pid) == -1)) ||
507 			    (show_idle || (LP(pp, pctcpu) != 0) ||
508 			    (LP(pp, stat) == LSRUN)) &&
509 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
510 				*prefp++ = pp;
511 				active_procs++;
512 			}
513 		}
514 	}
515 
516 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
517 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
518 
519 	/* remember active and total counts */
520 	si->p_total = total_procs;
521 	si->p_active = pref_len = active_procs;
522 
523 	/* pass back a handle */
524 	handle.next_proc = pref;
525 	handle.remaining = active_procs;
526 	return ((caddr_t) & handle);
527 }
528 
529 char fmt[128];			/* static area where result is built */
530 
531 char *
532 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
533 {
534 	struct kinfo_proc *pp;
535 	long cputime;
536 	long ccputime;
537 	double pct;
538 	struct handle *hp;
539 	char status[16];
540 	int state;
541 	int xnice;
542 	char **comm_full;
543 	char *comm;
544 	char cputime_fmt[10], ccputime_fmt[10];
545 
546 	/* find and remember the next proc structure */
547 	hp = (struct handle *)xhandle;
548 	pp = *(hp->next_proc++);
549 	hp->remaining--;
550 
551 	/* get the process's command name */
552 	if (show_fullcmd) {
553 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
554 			return (fmt);
555 		}
556 	}
557 	else {
558 		comm = PP(pp, comm);
559 	}
560 
561 	/*
562 	 * Convert the process's runtime from microseconds to seconds.  This
563 	 * time includes the interrupt time to be in compliance with ps output.
564 	*/
565 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
566 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
567 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
568 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
569 
570 	/* calculate the base for cpu percentages */
571 	pct = pctdouble(LP(pp, pctcpu));
572 
573 	/* generate "STATE" field */
574 	switch (state = LP(pp, stat)) {
575 	case LSRUN:
576 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
577 			sprintf(status, "CPU%d", LP(pp, cpuid));
578 		else
579 			strcpy(status, "RUN");
580 		break;
581 	case LSSLEEP:
582 		if (LP(pp, wmesg) != NULL) {
583 			sprintf(status, "%.6s", LP(pp, wmesg));
584 			break;
585 		}
586 		/* fall through */
587 	default:
588 
589 		if (state >= 0 &&
590 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
591 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
592 		else
593 			sprintf(status, "?%5d", state);
594 		break;
595 	}
596 
597 	if (PP(pp, stat) == SZOMB)
598 		strcpy(status, "ZOMB");
599 
600 	/*
601 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
602 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
603 	 * 0 - 31 -> nice value -53 -
604 	 */
605 	switch (LP(pp, rtprio.type)) {
606 	case RTP_PRIO_REALTIME:
607 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
608 		break;
609 	case RTP_PRIO_IDLE:
610 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
611 		break;
612 	case RTP_PRIO_THREAD:
613 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
614 		break;
615 	default:
616 		xnice = PP(pp, nice);
617 		break;
618 	}
619 
620 	/* format this entry */
621 	snprintf(fmt, sizeof(fmt),
622 	    smpmode ? smp_Proc_format : up_Proc_format,
623 	    (int)PP(pp, pid),
624 	    namelength, namelength,
625 	    get_userid(PP(pp, ruid)),
626 	    (int)((show_threads && (LP(pp, pid) == -1)) ?
627 	    LP(pp, tdprio) : LP(pp, prio)),
628 	    (int)xnice,
629 	    format_k(PROCSIZE(pp)),
630 	    format_k(pagetok(VP(pp, rssize))),
631 	    status,
632 	    (int)(smpmode ? LP(pp, cpuid) : 0),
633 	    cputime_fmt,
634 	    ccputime_fmt,
635 	    100.0 * pct,
636 	    cmdlength,
637 	    show_fullcmd ? *comm_full : comm);
638 
639 	/* return the result */
640 	return (fmt);
641 }
642 
643 /* comparison routines for qsort */
644 
645 /*
646  *  proc_compare - comparison function for "qsort"
647  *	Compares the resource consumption of two processes using five
648  *  	distinct keys.  The keys (in descending order of importance) are:
649  *  	percent cpu, cpu ticks, state, resident set size, total virtual
650  *  	memory usage.  The process states are ordered as follows (from least
651  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
652  *  	array declaration below maps a process state index into a number
653  *  	that reflects this ordering.
654  */
655 
656 static unsigned char sorted_state[] =
657 {
658 	0,			/* not used		 */
659 	3,			/* sleep		 */
660 	1,			/* ABANDONED (WAIT)	 */
661 	6,			/* run			 */
662 	5,			/* start		 */
663 	2,			/* zombie		 */
664 	4			/* stop			 */
665 };
666 
667 
668 #define ORDERKEY_PCTCPU \
669   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
670      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
671 
672 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
673 
674 #define ORDERKEY_CPTICKS \
675   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
676 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
677 
678 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
679   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
680 
681 #define ORDERKEY_CTIME \
682    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
683 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
684 
685 #define ORDERKEY_STATE \
686   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
687                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
688 
689 #define ORDERKEY_PRIO \
690   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
691 
692 #define ORDERKEY_KTHREADS \
693   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
694 
695 #define ORDERKEY_KTHREADS_PRIO \
696   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
697 
698 #define ORDERKEY_RSSIZE \
699   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
700 
701 #define ORDERKEY_MEM \
702   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
703 
704 #define ORDERKEY_PID \
705   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
706 
707 /* compare_cpu - the comparison function for sorting by cpu percentage */
708 
709 int
710 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
711 {
712 	struct kinfo_proc *p1;
713 	struct kinfo_proc *p2;
714 	int result;
715 	pctcpu lresult;
716 
717 	/* remove one level of indirection */
718 	p1 = *(struct kinfo_proc **) pp1;
719 	p2 = *(struct kinfo_proc **) pp2;
720 
721 	ORDERKEY_PCTCPU
722 	ORDERKEY_CPTICKS
723 	ORDERKEY_STATE
724 	ORDERKEY_PRIO
725 	ORDERKEY_RSSIZE
726 	ORDERKEY_MEM
727 	{}
728 
729 	return (result);
730 }
731 
732 /* compare_size - the comparison function for sorting by total memory usage */
733 
734 int
735 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
736 {
737 	struct kinfo_proc *p1;
738 	struct kinfo_proc *p2;
739 	int result;
740 	pctcpu lresult;
741 
742 	/* remove one level of indirection */
743 	p1 = *(struct kinfo_proc **) pp1;
744 	p2 = *(struct kinfo_proc **) pp2;
745 
746 	ORDERKEY_MEM
747 	ORDERKEY_RSSIZE
748 	ORDERKEY_PCTCPU
749 	ORDERKEY_CPTICKS
750 	ORDERKEY_STATE
751 	ORDERKEY_PRIO
752 	{}
753 
754 	return (result);
755 }
756 
757 /* compare_res - the comparison function for sorting by resident set size */
758 
759 int
760 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
761 {
762 	struct kinfo_proc *p1;
763 	struct kinfo_proc *p2;
764 	int result;
765 	pctcpu lresult;
766 
767 	/* remove one level of indirection */
768 	p1 = *(struct kinfo_proc **) pp1;
769 	p2 = *(struct kinfo_proc **) pp2;
770 
771 	ORDERKEY_RSSIZE
772 	ORDERKEY_MEM
773 	ORDERKEY_PCTCPU
774 	ORDERKEY_CPTICKS
775 	ORDERKEY_STATE
776 	ORDERKEY_PRIO
777 	{}
778 
779 	return (result);
780 }
781 
782 /* compare_time - the comparison function for sorting by total cpu time */
783 
784 int
785 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
786 {
787 	struct kinfo_proc *p1;
788 	struct kinfo_proc *p2;
789 	int result;
790 	pctcpu lresult;
791 
792 	/* remove one level of indirection */
793 	p1 = *(struct kinfo_proc **) pp1;
794 	p2 = *(struct kinfo_proc **) pp2;
795 
796 	ORDERKEY_CPTICKS
797 	ORDERKEY_PCTCPU
798 	ORDERKEY_KTHREADS
799 	ORDERKEY_KTHREADS_PRIO
800 	ORDERKEY_STATE
801 	ORDERKEY_PRIO
802 	ORDERKEY_RSSIZE
803 	ORDERKEY_MEM
804 	{}
805 
806 	return (result);
807 }
808 
809 int
810 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
811 {
812 	struct kinfo_proc *p1;
813 	struct kinfo_proc *p2;
814 	int result;
815 	pctcpu lresult;
816 
817 	/* remove one level of indirection */
818 	p1 = *(struct kinfo_proc **) pp1;
819 	p2 = *(struct kinfo_proc **) pp2;
820 
821 	ORDERKEY_CTIME
822 	ORDERKEY_PCTCPU
823 	ORDERKEY_KTHREADS
824 	ORDERKEY_KTHREADS_PRIO
825 	ORDERKEY_STATE
826 	ORDERKEY_PRIO
827 	ORDERKEY_RSSIZE
828 	ORDERKEY_MEM
829 	{}
830 
831 	return (result);
832 }
833 
834 /* compare_prio - the comparison function for sorting by cpu percentage */
835 
836 int
837 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
838 {
839 	struct kinfo_proc *p1;
840 	struct kinfo_proc *p2;
841 	int result;
842 	pctcpu lresult;
843 
844 	/* remove one level of indirection */
845 	p1 = *(struct kinfo_proc **) pp1;
846 	p2 = *(struct kinfo_proc **) pp2;
847 
848 	ORDERKEY_KTHREADS
849 	ORDERKEY_KTHREADS_PRIO
850 	ORDERKEY_PRIO
851 	ORDERKEY_CPTICKS
852 	ORDERKEY_PCTCPU
853 	ORDERKEY_STATE
854 	ORDERKEY_RSSIZE
855 	ORDERKEY_MEM
856 	{}
857 
858 	return (result);
859 }
860 
861 int
862 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
863 {
864 	struct kinfo_proc *p1;
865 	struct kinfo_proc *p2;
866 	int result;
867 	pctcpu lresult;
868 
869 	/* remove one level of indirection */
870 	p1 = *(struct kinfo_proc **)pp1;
871 	p2 = *(struct kinfo_proc **)pp2;
872 
873 	ORDERKEY_KTHREADS
874 	ORDERKEY_KTHREADS_PRIO
875 	ORDERKEY_CPTICKS
876 	ORDERKEY_PCTCPU
877 	ORDERKEY_STATE
878 	ORDERKEY_RSSIZE
879 	ORDERKEY_MEM
880 	{}
881 
882 	return (result);
883 }
884 
885 /* compare_pid - the comparison function for sorting by process id */
886 
887 int
888 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
889 {
890 	struct kinfo_proc *p1;
891 	struct kinfo_proc *p2;
892 	int result;
893 
894 	/* remove one level of indirection */
895 	p1 = *(struct kinfo_proc **) pp1;
896 	p2 = *(struct kinfo_proc **) pp2;
897 
898 	ORDERKEY_PID
899 	;
900 
901 	return(result);
902 }
903 
904 /*
905  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
906  *		the process does not exist.
907  *		It is EXTREMLY IMPORTANT that this function work correctly.
908  *		If top runs setuid root (as in SVR4), then this function
909  *		is the only thing that stands in the way of a serious
910  *		security problem.  It validates requests for the "kill"
911  *		and "renice" commands.
912  */
913 
914 int
915 proc_owner(int pid)
916 {
917 	int xcnt;
918 	struct kinfo_proc **prefp;
919 	struct kinfo_proc *pp;
920 
921 	prefp = pref;
922 	xcnt = pref_len;
923 	while (--xcnt >= 0) {
924 		pp = *prefp++;
925 		if (PP(pp, pid) == (pid_t) pid) {
926 			return ((int)PP(pp, ruid));
927 		}
928 	}
929 	return (-1);
930 }
931 
932 
933 /*
934  * swapmode is based on a program called swapinfo written
935  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
936  */
937 int
938 swapmode(int *retavail, int *retfree)
939 {
940 	int n;
941 	int pagesize = getpagesize();
942 	struct kvm_swap swapary[1];
943 
944 	*retavail = 0;
945 	*retfree = 0;
946 
947 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
948 
949 	n = kvm_getswapinfo(kd, swapary, 1, 0);
950 	if (n < 0 || swapary[0].ksw_total == 0)
951 		return (0);
952 
953 	*retavail = CONVERT(swapary[0].ksw_total);
954 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
955 
956 	n = (int)((double)swapary[0].ksw_used * 100.0 /
957 	    (double)swapary[0].ksw_total);
958 	return (n);
959 }
960