1 /*
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2022 Tomohiro Kusumi <tkusumi@netbsd.org>
5  * Copyright (c) 2011-2022 The DragonFly Project.  All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@dragonflybsd.org>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 /*
38  * This module implements the hammer2 helper thread API, including
39  * the frontend/backend XOP API.
40  */
41 #include "hammer2.h"
42 
43 #define H2XOPDESCRIPTOR(label)					\
44 	hammer2_xop_desc_t hammer2_##label##_desc = {		\
45 		.storage_func = hammer2_xop_##label,		\
46 		.id = #label					\
47 	}
48 
49 H2XOPDESCRIPTOR(ipcluster);
50 H2XOPDESCRIPTOR(readdir);
51 H2XOPDESCRIPTOR(nresolve);
52 H2XOPDESCRIPTOR(unlink);
53 H2XOPDESCRIPTOR(nrename);
54 H2XOPDESCRIPTOR(scanlhc);
55 H2XOPDESCRIPTOR(scanall);
56 H2XOPDESCRIPTOR(lookup);
57 H2XOPDESCRIPTOR(delete);
58 H2XOPDESCRIPTOR(inode_mkdirent);
59 H2XOPDESCRIPTOR(inode_create);
60 H2XOPDESCRIPTOR(inode_create_det);
61 H2XOPDESCRIPTOR(inode_create_ins);
62 H2XOPDESCRIPTOR(inode_destroy);
63 H2XOPDESCRIPTOR(inode_chain_sync);
64 H2XOPDESCRIPTOR(inode_unlinkall);
65 H2XOPDESCRIPTOR(inode_connect);
66 H2XOPDESCRIPTOR(inode_flush);
67 H2XOPDESCRIPTOR(strategy_read);
68 H2XOPDESCRIPTOR(strategy_write);
69 
70 //struct objcache *cache_xops;
71 static struct thread dummy_td;
72 struct thread *curthread = &dummy_td;
73 
74 /*
75  * Set flags and wakeup any waiters.
76  *
77  * WARNING! During teardown (thr) can disappear the instant our cmpset
78  *	    succeeds.
79  */
80 void
81 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
82 {
83 	uint32_t oflags;
84 	uint32_t nflags;
85 
86 	for (;;) {
87 		oflags = thr->flags;
88 		cpu_ccfence();
89 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
90 
91 		if (oflags & HAMMER2_THREAD_WAITING) {
92 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
93 				wakeup(&thr->flags);
94 				break;
95 			}
96 		} else {
97 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
98 				break;
99 		}
100 	}
101 }
102 
103 /*
104  * Set and clear flags and wakeup any waiters.
105  *
106  * WARNING! During teardown (thr) can disappear the instant our cmpset
107  *	    succeeds.
108  */
109 void
110 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
111 {
112 	uint32_t oflags;
113 	uint32_t nflags;
114 
115 	for (;;) {
116 		oflags = thr->flags;
117 		cpu_ccfence();
118 		nflags = (oflags | posflags) &
119 			~(negflags | HAMMER2_THREAD_WAITING);
120 		if (oflags & HAMMER2_THREAD_WAITING) {
121 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
122 				wakeup(&thr->flags);
123 				break;
124 			}
125 		} else {
126 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
127 				break;
128 		}
129 	}
130 }
131 
132 /*
133  * Wait until all the bits in flags are set.
134  *
135  * WARNING! During teardown (thr) can disappear the instant our cmpset
136  *	    succeeds.
137  */
138 void
139 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
140 {
141 	uint32_t oflags;
142 	uint32_t nflags;
143 
144 	for (;;) {
145 		oflags = thr->flags;
146 		cpu_ccfence();
147 		if ((oflags & flags) == flags)
148 			break;
149 		nflags = oflags | HAMMER2_THREAD_WAITING;
150 		tsleep_interlock(&thr->flags, 0);
151 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
152 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
153 		}
154 	}
155 }
156 
157 /*
158  * Wait until any of the bits in flags are set, with timeout.
159  *
160  * WARNING! During teardown (thr) can disappear the instant our cmpset
161  *	    succeeds.
162  */
163 int
164 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
165 {
166 	uint32_t oflags;
167 	uint32_t nflags;
168 	int error;
169 
170 	error = 0;
171 	for (;;) {
172 		oflags = thr->flags;
173 		cpu_ccfence();
174 		if (oflags & flags)
175 			break;
176 		nflags = oflags | HAMMER2_THREAD_WAITING;
177 		tsleep_interlock(&thr->flags, 0);
178 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
179 			error = tsleep(&thr->flags, PINTERLOCKED,
180 				       "h2twait", timo);
181 		}
182 		if (error == ETIMEDOUT) {
183 			error = HAMMER2_ERROR_ETIMEDOUT;
184 			break;
185 		}
186 	}
187 	return error;
188 }
189 
190 /*
191  * Wait until the bits in flags are clear.
192  *
193  * WARNING! During teardown (thr) can disappear the instant our cmpset
194  *	    succeeds.
195  */
196 void
197 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
198 {
199 	uint32_t oflags;
200 	uint32_t nflags;
201 
202 	for (;;) {
203 		oflags = thr->flags;
204 		cpu_ccfence();
205 		if ((oflags & flags) == 0)
206 			break;
207 		nflags = oflags | HAMMER2_THREAD_WAITING;
208 		tsleep_interlock(&thr->flags, 0);
209 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
210 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
211 		}
212 	}
213 }
214 
215 /*
216  * Initialize the supplied thread structure, starting the specified
217  * thread.
218  *
219  * NOTE: thr structure can be retained across mounts and unmounts for this
220  *	 pmp, so make sure the flags are in a sane state.
221  */
222 void
223 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
224 		   hammer2_dev_t *hmp,
225 		   const char *id, int clindex, int repidx,
226 		   void (*func)(void *arg))
227 {
228 	thr->pmp = pmp;		/* xop helpers */
229 	thr->hmp = hmp;		/* bulkfree */
230 	thr->clindex = clindex;
231 	thr->repidx = repidx;
232 	TAILQ_INIT(&thr->xopq);
233 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
234 				      HAMMER2_THREAD_STOPPED |
235 				      HAMMER2_THREAD_FREEZE |
236 				      HAMMER2_THREAD_FROZEN);
237 	if (thr->scratch == NULL)
238 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
239 #if 0
240 	if (repidx >= 0) {
241 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
242 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
243 	} else if (pmp) {
244 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
245 			    "%s-%s", id, pmp->pfs_names[clindex]);
246 	} else {
247 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
248 	}
249 #else
250 	thr->td = &dummy_td;
251 #endif
252 }
253 
254 /*
255  * Terminate a thread.  This function will silently return if the thread
256  * was never initialized or has already been deleted.
257  *
258  * This is accomplished by setting the STOP flag and waiting for the td
259  * structure to become NULL.
260  */
261 void
262 hammer2_thr_delete(hammer2_thread_t *thr)
263 {
264 	if (thr->td == NULL)
265 		return;
266 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
267 	/* Don't wait, there's no such thread in makefs */
268 	//hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
269 	thr->pmp = NULL;
270 	if (thr->scratch) {
271 		kfree(thr->scratch, M_HAMMER2);
272 		thr->scratch = NULL;
273 	}
274 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
275 }
276 
277 /*
278  * Asynchronous remaster request.  Ask the synchronization thread to
279  * start over soon (as if it were frozen and unfrozen, but without waiting).
280  * The thread always recalculates mastership relationships when restarting.
281  */
282 void
283 hammer2_thr_remaster(hammer2_thread_t *thr)
284 {
285 	if (thr->td == NULL)
286 		return;
287 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
288 }
289 
290 void
291 hammer2_thr_freeze_async(hammer2_thread_t *thr)
292 {
293 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
294 }
295 
296 void
297 hammer2_thr_freeze(hammer2_thread_t *thr)
298 {
299 	if (thr->td == NULL)
300 		return;
301 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
302 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
303 }
304 
305 void
306 hammer2_thr_unfreeze(hammer2_thread_t *thr)
307 {
308 	if (thr->td == NULL)
309 		return;
310 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
311 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
312 }
313 
314 int
315 hammer2_thr_break(hammer2_thread_t *thr)
316 {
317 	if (thr->flags & (HAMMER2_THREAD_STOP |
318 			  HAMMER2_THREAD_REMASTER |
319 			  HAMMER2_THREAD_FREEZE)) {
320 		return 1;
321 	}
322 	return 0;
323 }
324 
325 /****************************************************************************
326  *			    HAMMER2 XOPS API	 			    *
327  ****************************************************************************/
328 
329 /*
330  * Allocate a XOP request.
331  *
332  * Once allocated a XOP request can be started, collected, and retired,
333  * and can be retired early if desired.
334  *
335  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
336  */
337 void *
338 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
339 {
340 	hammer2_xop_t *xop;
341 
342 	xop = ecalloc(1, sizeof(*xop));
343 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
344 
345 	xop->head.ip1 = ip;
346 	xop->head.desc = NULL;
347 	xop->head.flags = flags;
348 	xop->head.state = 0;
349 	xop->head.error = 0;
350 	xop->head.collect_key = 0;
351 	xop->head.focus_dio = NULL;
352 
353 	if (flags & HAMMER2_XOP_MODIFYING)
354 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
355 	else
356 		xop->head.mtid = 0;
357 
358 	xop->head.cluster.nchains = ip->cluster.nchains;
359 	xop->head.cluster.pmp = ip->pmp;
360 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
361 
362 	/*
363 	 * run_mask - Active thread (or frontend) associated with XOP
364 	 */
365 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
366 
367 	hammer2_inode_ref(ip);
368 
369 	return xop;
370 }
371 
372 void
373 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
374 {
375 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
376 	xop->name1_len = name_len;
377 	bcopy(name, xop->name1, name_len);
378 }
379 
380 void
381 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
382 {
383 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
384 	xop->name2_len = name_len;
385 	bcopy(name, xop->name2, name_len);
386 }
387 
388 size_t
389 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
390 {
391 	const size_t name_len = 18;
392 
393 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
394 	xop->name1_len = name_len;
395 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
396 
397 	return name_len;
398 }
399 
400 
401 void
402 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
403 {
404 	xop->ip2 = ip2;
405 	hammer2_inode_ref(ip2);
406 }
407 
408 void
409 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
410 {
411 	xop->ip3 = ip3;
412 	hammer2_inode_ref(ip3);
413 }
414 
415 void
416 hammer2_xop_setip4(hammer2_xop_head_t *xop, hammer2_inode_t *ip4)
417 {
418 	xop->ip4 = ip4;
419 	hammer2_inode_ref(ip4);
420 }
421 
422 void
423 hammer2_xop_reinit(hammer2_xop_head_t *xop)
424 {
425 	xop->state = 0;
426 	xop->error = 0;
427 	xop->collect_key = 0;
428 	xop->run_mask = HAMMER2_XOPMASK_VOP;
429 }
430 
431 /*
432  * A mounted PFS needs Xops threads to support frontend operations.
433  */
434 void
435 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
436 {
437 	int i;
438 	int j;
439 
440 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
441 	pmp->has_xop_threads = 1;
442 
443 	pmp->xop_groups = kmalloc(hammer2_xop_nthreads *
444 				  sizeof(hammer2_xop_group_t),
445 				  M_HAMMER2, M_WAITOK | M_ZERO);
446 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
447 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
448 			if (pmp->xop_groups[j].thrs[i].td)
449 				continue;
450 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
451 					   pmp, NULL,
452 					   "h2xop", i, j,
453 					   hammer2_primary_xops_thread);
454 		}
455 	}
456 	lockmgr(&pmp->lock, LK_RELEASE);
457 }
458 
459 void
460 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
461 {
462 	int i;
463 	int j;
464 
465 	if (pmp->xop_groups == NULL) {
466 		KKASSERT(pmp->has_xop_threads == 0);
467 		return;
468 	}
469 
470 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
471 		for (j = 0; j < hammer2_xop_nthreads; ++j) {
472 			if (pmp->xop_groups[j].thrs[i].td)
473 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
474 		}
475 	}
476 	pmp->has_xop_threads = 0;
477 	kfree(pmp->xop_groups, M_HAMMER2);
478 	pmp->xop_groups = NULL;
479 }
480 
481 /*
482  * Start a XOP request, queueing it to all nodes in the cluster to
483  * execute the cluster op.
484  *
485  * XXX optimize single-target case.
486  */
487 void
488 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc,
489 			 int notidx)
490 {
491 	hammer2_inode_t *ip1;
492 	hammer2_pfs_t *pmp;
493 	hammer2_thread_t *thr;
494 	int i;
495 	int ng;
496 	int nchains;
497 
498 	ip1 = xop->ip1;
499 	pmp = ip1->pmp;
500 	if (pmp->has_xop_threads == 0)
501 		hammer2_xop_helper_create(pmp);
502 
503 	/*
504 	 * The sequencer assigns a worker thread to the XOP.
505 	 *
506 	 * (1) The worker threads are partitioned into two sets, one for
507 	 *     NON-STRATEGY XOPs, and the other for STRATEGY XOPs.  This
508 	 *     guarantees that strategy calls will always be able to make
509 	 *     progress and will not deadlock against non-strategy calls.
510 	 *
511 	 * (2) If clustered, non-strategy operations to the same inode must
512 	 *     be serialized.  This is to avoid confusion when issuing
513 	 *     modifying operations because a XOP completes the instant a
514 	 *     quorum is reached.
515 	 *
516 	 * TODO - RENAME fails here because it is potentially modifying
517 	 *	  three different inodes, but we triple-lock the inodes
518 	 *	  involved so it shouldn't create a sequencing schism.
519 	 */
520 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
521 		/*
522 		 * Use worker space 0 associated with the current cpu
523 		 * for strategy ops.
524 		 */
525 		/*
526 		hammer2_xop_strategy_t *xopst;
527 		u_int which;
528 
529 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
530 		which = ((unsigned int)ip1->ihash +
531 			 ((unsigned int)xopst->lbase >> HAMMER2_PBUFRADIX)) %
532 			hammer2_xop_sgroups;
533 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
534 		     hammer2_xop_mod * which;
535 		*/
536 		ng = 0;
537 	} else if (hammer2_spread_workers == 0 && ip1->cluster.nchains == 1) {
538 		/*
539 		 * For now try to keep the work on the same cpu to reduce
540 		 * IPI overhead.  Several threads are assigned to each cpu,
541 		 * don't be very smart and select the one to use based on
542 		 * the inode hash.
543 		 */
544 		/*
545 		u_int which;
546 
547 		which = (unsigned int)ip1->ihash % hammer2_xop_xgroups;
548 		ng = mycpu->gd_cpuid % hammer2_xop_mod +
549 		     (which * hammer2_xop_mod) +
550 		     hammer2_xop_xbase;
551 		*/
552 		ng = 0;
553 	} else {
554 		/*
555 		 * Hash based on inode only, must serialize inode to same
556 		 * thread regardless of current cpu.
557 		 */
558 		/*
559 		ng = (unsigned int)ip1->ihash %
560 		     (hammer2_xop_mod * hammer2_xop_xgroups) +
561 		     hammer2_xop_xbase;
562 		*/
563 		ng = 0;
564 	}
565 	xop->desc = desc;
566 
567 	/*
568 	 * The instant xop is queued another thread can pick it off.  In the
569 	 * case of asynchronous ops, another thread might even finish and
570 	 * deallocate it.
571 	 */
572 	hammer2_spin_ex(&pmp->xop_spin);
573 	nchains = ip1->cluster.nchains;
574 	for (i = 0; i < nchains; ++i) {
575 		/*
576 		 * XXX ip1->cluster.array* not stable here.  This temporary
577 		 *     hack fixes basic issues in target XOPs which need to
578 		 *     obtain a starting chain from the inode but does not
579 		 *     address possible races against inode updates which
580 		 *     might NULL-out a chain.
581 		 */
582 		if (i != notidx && ip1->cluster.array[i].chain) {
583 			thr = &pmp->xop_groups[ng].thrs[i];
584 			atomic_set_64(&xop->run_mask, 1LLU << i);
585 			atomic_set_64(&xop->chk_mask, 1LLU << i);
586 			xop->collect[i].thr = thr;
587 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
588 		}
589 	}
590 	hammer2_spin_unex(&pmp->xop_spin);
591 	/* xop can become invalid at this point */
592 
593 	/*
594 	 * Each thread has its own xopq
595 	 */
596 	for (i = 0; i < nchains; ++i) {
597 		if (i != notidx) {
598 			thr = &pmp->xop_groups[ng].thrs[i];
599 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
600 			hammer2_primary_xops_thread(thr);
601 		}
602 	}
603 }
604 
605 void
606 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc)
607 {
608 	hammer2_xop_start_except(xop, desc, -1);
609 }
610 
611 /*
612  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
613  */
614 void
615 hammer2_xop_retire(hammer2_xop_head_t *xop, uint64_t mask)
616 {
617 	hammer2_chain_t *chain;
618 	uint64_t nmask;
619 	int i;
620 
621 	/*
622 	 * Remove the frontend collector or remove a backend feeder.
623 	 *
624 	 * When removing the frontend we must wakeup any backend feeders
625 	 * who are waiting for FIFO space.
626 	 *
627 	 * When removing the last backend feeder we must wakeup any waiting
628 	 * frontend.
629 	 */
630 	KKASSERT(xop->run_mask & mask);
631 	nmask = atomic_fetchadd_64(&xop->run_mask,
632 				   -mask + HAMMER2_XOPMASK_FEED);
633 
634 	/*
635 	 * More than one entity left
636 	 */
637 	if ((nmask & HAMMER2_XOPMASK_ALLDONE) != mask) {
638 		/*
639 		 * Frontend terminating, wakeup any backends waiting on
640 		 * fifo full.
641 		 *
642 		 * NOTE!!! The xop can get ripped out from under us at
643 		 *	   this point, so do not reference it again.
644 		 *	   The wakeup(xop) doesn't touch the xop and
645 		 *	   is ok.
646 		 */
647 		if (mask == HAMMER2_XOPMASK_VOP) {
648 			if (nmask & HAMMER2_XOPMASK_FIFOW)
649 				wakeup(xop);
650 		}
651 
652 		/*
653 		 * Wakeup frontend if the last backend is terminating.
654 		 */
655 		nmask -= mask;
656 		if ((nmask & HAMMER2_XOPMASK_ALLDONE) == HAMMER2_XOPMASK_VOP) {
657 			if (nmask & HAMMER2_XOPMASK_WAIT)
658 				wakeup(xop);
659 		}
660 
661 		return;
662 	}
663 	/* else nobody else left, we can ignore FIFOW */
664 
665 	/*
666 	 * All collectors are gone, we can cleanup and dispose of the XOP.
667 	 * Note that this can wind up being a frontend OR a backend.
668 	 * Pending chains are locked shared and not owned by any thread.
669 	 *
670 	 * Cleanup the collection cluster.
671 	 */
672 	for (i = 0; i < xop->cluster.nchains; ++i) {
673 		xop->cluster.array[i].flags = 0;
674 		chain = xop->cluster.array[i].chain;
675 		if (chain) {
676 			xop->cluster.array[i].chain = NULL;
677 			hammer2_chain_drop_unhold(chain);
678 		}
679 	}
680 
681 	/*
682 	 * Cleanup the fifos.  Since we are the only entity left on this
683 	 * xop we don't have to worry about fifo flow control, and one
684 	 * lfence() will do the job.
685 	 */
686 	cpu_lfence();
687 	mask = xop->chk_mask;
688 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
689 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
690 		while (fifo->ri != fifo->wi) {
691 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
692 			if (chain)
693 				hammer2_chain_drop_unhold(chain);
694 			++fifo->ri;
695 		}
696 		mask &= ~(1U << i);
697 	}
698 
699 	/*
700 	 * The inode is only held at this point, simply drop it.
701 	 */
702 	if (xop->ip1) {
703 		hammer2_inode_drop(xop->ip1);
704 		xop->ip1 = NULL;
705 	}
706 	if (xop->ip2) {
707 		hammer2_inode_drop(xop->ip2);
708 		xop->ip2 = NULL;
709 	}
710 	if (xop->ip3) {
711 		hammer2_inode_drop(xop->ip3);
712 		xop->ip3 = NULL;
713 	}
714 	if (xop->ip4) {
715 		hammer2_inode_drop(xop->ip4);
716 		xop->ip4 = NULL;
717 	}
718 	if (xop->name1) {
719 		kfree(xop->name1, M_HAMMER2);
720 		xop->name1 = NULL;
721 		xop->name1_len = 0;
722 	}
723 	if (xop->name2) {
724 		kfree(xop->name2, M_HAMMER2);
725 		xop->name2 = NULL;
726 		xop->name2_len = 0;
727 	}
728 
729 	free(xop);
730 }
731 
732 /*
733  * (Backend) Returns non-zero if the frontend is still attached.
734  */
735 int
736 hammer2_xop_active(hammer2_xop_head_t *xop)
737 {
738 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
739 		return 1;
740 	else
741 		return 0;
742 }
743 
744 /*
745  * (Backend) Feed chain data through the cluster validator and back to
746  * the frontend.  Chains are fed from multiple nodes concurrently
747  * and pipelined via per-node FIFOs in the XOP.
748  *
749  * The chain must be locked (either shared or exclusive).  The caller may
750  * unlock and drop the chain on return.  This function will add an extra
751  * ref and hold the chain's data for the pass-back.
752  *
753  * No xop lock is needed because we are only manipulating fields under
754  * our direct control.
755  *
756  * Returns 0 on success and a hammer2 error code if sync is permanently
757  * lost.  The caller retains a ref on the chain but by convention
758  * the lock is typically inherited by the xop (caller loses lock).
759  *
760  * Returns non-zero on error.  In this situation the caller retains a
761  * ref on the chain but loses the lock (we unlock here).
762  */
763 int
764 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
765 		 int clindex, int error)
766 {
767 	hammer2_xop_fifo_t *fifo;
768 	uint64_t mask;
769 
770 	/*
771 	 * Early termination (typicaly of xop_readir)
772 	 */
773 	if (hammer2_xop_active(xop) == 0) {
774 		error = HAMMER2_ERROR_ABORTED;
775 		goto done;
776 	}
777 
778 	/*
779 	 * Multi-threaded entry into the XOP collector.  We own the
780 	 * fifo->wi for our clindex.
781 	 */
782 	fifo = &xop->collect[clindex];
783 
784 	/*
785 	 * makefs HAMMER2 has no dedicated XOP threads,
786 	 * so nothing we can do once fifo reaches HAMMER2_XOPFIFO.
787 	 * Fortunately, readdir VOP is the only VOP causes this,
788 	 * and makefs HAMMER2 doesn't implement it.
789 	 */
790 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
791 		panic("hammer2: \"%s\" reached fifo limit %d",
792 			xop->desc->id, HAMMER2_XOPFIFO);
793 
794 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
795 		lwkt_yield();
796 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
797 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
798 		mask = xop->run_mask;
799 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
800 			error = HAMMER2_ERROR_ABORTED;
801 			goto done;
802 		}
803 		tsleep_interlock(xop, 0);
804 		if (atomic_cmpset_64(&xop->run_mask, mask,
805 				     mask | HAMMER2_XOPMASK_FIFOW)) {
806 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
807 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
808 			}
809 		}
810 		/* retry */
811 	}
812 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
813 	if (chain)
814 		hammer2_chain_ref_hold(chain);
815 	if (error == 0 && chain)
816 		error = chain->error;
817 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
818 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
819 	cpu_sfence();
820 	++fifo->wi;
821 
822 	mask = atomic_fetchadd_64(&xop->run_mask, HAMMER2_XOPMASK_FEED);
823 	if (mask & HAMMER2_XOPMASK_WAIT) {
824 		atomic_clear_64(&xop->run_mask, HAMMER2_XOPMASK_WAIT);
825 		wakeup(xop);
826 	}
827 	error = 0;
828 
829 	/*
830 	 * Cleanup.  If an error occurred we eat the lock.  If no error
831 	 * occurred the fifo inherits the lock and gains an additional ref.
832 	 *
833 	 * The caller's ref remains in both cases.
834 	 */
835 done:
836 	return error;
837 }
838 
839 /*
840  * (Frontend) collect a response from a running cluster op.
841  *
842  * Responses are fed from all appropriate nodes concurrently
843  * and collected into a cohesive response >= collect_key.
844  *
845  * The collector will return the instant quorum or other requirements
846  * are met, even if some nodes get behind or become non-responsive.
847  *
848  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
849  *				  usually called synchronously from the
850  *				  node XOPs for the strategy code to
851  *				  fake the frontend collection and complete
852  *				  the BIO as soon as possible.
853  *
854  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
855  *				  cluster index, prevents looping when that
856  *				  index is out of sync so caller can act on
857  *				  the out of sync element.  ESRCH and EDEADLK
858  *				  can be returned if this flag is specified.
859  *
860  * Returns 0 on success plus a filled out xop->cluster structure.
861  * Return ENOENT on normal termination.
862  * Otherwise return an error.
863  *
864  * WARNING! If the xop returns a cluster with a non-NULL focus, note that
865  *	    none of the chains in the cluster (or the focus) are either
866  *	    locked or I/O synchronized with the cpu.  hammer2_xop_gdata()
867  *	    and hammer2_xop_pdata() must be used to safely access the focus
868  *	    chain's content.
869  *
870  *	    The frontend can make certain assumptions based on higher-level
871  *	    locking done by the frontend, but data integrity absolutely
872  *	    requires using the gdata/pdata API.
873  */
874 int
875 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
876 {
877 	hammer2_xop_fifo_t *fifo;
878 	hammer2_chain_t *chain;
879 	hammer2_key_t lokey;
880 	uint64_t mask;
881 	int error;
882 	int keynull;
883 	int adv;		/* advance the element */
884 	int i;
885 
886 loop:
887 	/*
888 	 * First loop tries to advance pieces of the cluster which
889 	 * are out of sync.
890 	 */
891 	lokey = HAMMER2_KEY_MAX;
892 	keynull = HAMMER2_CHECK_NULL;
893 	mask = xop->run_mask;
894 	cpu_lfence();
895 
896 	for (i = 0; i < xop->cluster.nchains; ++i) {
897 		chain = xop->cluster.array[i].chain;
898 		if (chain == NULL) {
899 			adv = 1;
900 		} else if (chain->bref.key < xop->collect_key) {
901 			adv = 1;
902 		} else {
903 			keynull &= ~HAMMER2_CHECK_NULL;
904 			if (lokey > chain->bref.key)
905 				lokey = chain->bref.key;
906 			adv = 0;
907 		}
908 		if (adv == 0)
909 			continue;
910 
911 		/*
912 		 * Advance element if possible, advanced element may be NULL.
913 		 */
914 		if (chain)
915 			hammer2_chain_drop_unhold(chain);
916 
917 		fifo = &xop->collect[i];
918 		if (fifo->ri != fifo->wi) {
919 			cpu_lfence();
920 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
921 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
922 			++fifo->ri;
923 			xop->cluster.array[i].chain = chain;
924 			xop->cluster.array[i].error = error;
925 			if (chain == NULL) {
926 				/* XXX */
927 				xop->cluster.array[i].flags |=
928 							HAMMER2_CITEM_NULL;
929 			}
930 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
931 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
932 					atomic_clear_int(&fifo->flags,
933 						    HAMMER2_XOP_FIFO_STALL);
934 					wakeup(xop);
935 					lwkt_yield();
936 				}
937 			}
938 			--i;		/* loop on same index */
939 		} else {
940 			/*
941 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
942 			 * If not, the NULL,0 combination indicates an
943 			 * operation in-progress.
944 			 */
945 			xop->cluster.array[i].chain = NULL;
946 			/* retain any CITEM_NULL setting */
947 		}
948 	}
949 
950 	/*
951 	 * Determine whether the lowest collected key meets clustering
952 	 * requirements.  Returns HAMMER2_ERROR_*:
953 	 *
954 	 * 0	 	 - key valid, cluster can be returned.
955 	 *
956 	 * ENOENT	 - normal end of scan, return ENOENT.
957 	 *
958 	 * ESRCH	 - sufficient elements collected, quorum agreement
959 	 *		   that lokey is not a valid element and should be
960 	 *		   skipped.
961 	 *
962 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
963 	 *		   (and no agreement possible).  In this situation a
964 	 *		   repair is needed, for now we loop.
965 	 *
966 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
967 	 *		   for event and loop.
968 	 *
969 	 * EIO/ECHECK	 - IO error or CRC check error from hammer2_cluster_check()
970 	 */
971 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
972 	    (mask & HAMMER2_XOPMASK_ALLDONE) != HAMMER2_XOPMASK_VOP) {
973 		error = HAMMER2_ERROR_EINPROGRESS;
974 	} else {
975 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
976 	}
977 	if (error == HAMMER2_ERROR_EINPROGRESS) {
978 		if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
979 			goto done;
980 		tsleep_interlock(xop, 0);
981 		if (atomic_cmpset_64(&xop->run_mask,
982 				     mask, mask | HAMMER2_XOPMASK_WAIT)) {
983 			tsleep(xop, PINTERLOCKED, "h2coll", hz*60);
984 		}
985 		goto loop;
986 	}
987 	if (error == HAMMER2_ERROR_ESRCH) {
988 		if (lokey != HAMMER2_KEY_MAX) {
989 			xop->collect_key = lokey + 1;
990 			goto loop;
991 		}
992 		error = HAMMER2_ERROR_ENOENT;
993 	}
994 	if (error == HAMMER2_ERROR_EDEADLK) {
995 		kprintf("hammer2: no quorum possible lokey %016jx\n",
996 			lokey);
997 		if (lokey != HAMMER2_KEY_MAX) {
998 			xop->collect_key = lokey + 1;
999 			goto loop;
1000 		}
1001 		error = HAMMER2_ERROR_ENOENT;
1002 	}
1003 	if (lokey == HAMMER2_KEY_MAX)
1004 		xop->collect_key = lokey;
1005 	else
1006 		xop->collect_key = lokey + 1;
1007 done:
1008 	return error;
1009 }
1010 
1011 /*
1012  * N x M processing threads are available to handle XOPs, N per cluster
1013  * index x M cluster nodes.
1014  *
1015  * Locate and return the next runnable xop, or NULL if no xops are
1016  * present or none of the xops are currently runnable (for various reasons).
1017  * The xop is left on the queue and serves to block other dependent xops
1018  * from being run.
1019  *
1020  * Dependent xops will not be returned.
1021  *
1022  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
1023  *
1024  * NOTE! Xops run concurrently for each cluster index.
1025  */
1026 #define XOP_HASH_SIZE	16
1027 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
1028 
1029 static __inline
1030 int
1031 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1032 {
1033 	uint32_t mask;
1034 	int hv;
1035 
1036 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1037 	mask = 1U << (hv & 31);
1038 	hv >>= 5;
1039 
1040 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
1041 }
1042 
1043 static __inline
1044 void
1045 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1046 {
1047 	uint32_t mask;
1048 	int hv;
1049 
1050 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1051 	mask = 1U << (hv & 31);
1052 	hv >>= 5;
1053 
1054 	hash[hv & XOP_HASH_MASK] |= mask;
1055 }
1056 
1057 static
1058 hammer2_xop_head_t *
1059 hammer2_xop_next(hammer2_thread_t *thr)
1060 {
1061 	hammer2_pfs_t *pmp = thr->pmp;
1062 	int clindex = thr->clindex;
1063 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
1064 	hammer2_xop_head_t *xop;
1065 
1066 	hammer2_spin_ex(&pmp->xop_spin);
1067 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
1068 		/*
1069 		 * Check dependency
1070 		 */
1071 		if (xop_testhash(thr, xop->ip1, hash) ||
1072 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
1073 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash)) ||
1074 		    (xop->ip4 && xop_testhash(thr, xop->ip4, hash)))
1075 		{
1076 			continue;
1077 		}
1078 		xop_sethash(thr, xop->ip1, hash);
1079 		if (xop->ip2)
1080 			xop_sethash(thr, xop->ip2, hash);
1081 		if (xop->ip3)
1082 			xop_sethash(thr, xop->ip3, hash);
1083 		if (xop->ip4)
1084 			xop_sethash(thr, xop->ip4, hash);
1085 
1086 		/*
1087 		 * Check already running
1088 		 */
1089 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
1090 			continue;
1091 
1092 		/*
1093 		 * Found a good one, return it.
1094 		 */
1095 		atomic_set_int(&xop->collect[clindex].flags,
1096 			       HAMMER2_XOP_FIFO_RUN);
1097 		break;
1098 	}
1099 	hammer2_spin_unex(&pmp->xop_spin);
1100 
1101 	return xop;
1102 }
1103 
1104 /*
1105  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
1106  *
1107  * NOTE! Xops run concurrently for each cluster index.
1108  */
1109 static
1110 void
1111 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
1112 {
1113 	hammer2_pfs_t *pmp = thr->pmp;
1114 	int clindex = thr->clindex;
1115 
1116 	hammer2_spin_ex(&pmp->xop_spin);
1117 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
1118 	atomic_clear_int(&xop->collect[clindex].flags,
1119 			 HAMMER2_XOP_FIFO_RUN);
1120 	hammer2_spin_unex(&pmp->xop_spin);
1121 	if (TAILQ_FIRST(&thr->xopq))
1122 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
1123 }
1124 
1125 /*
1126  * Primary management thread for xops support.  Each node has several such
1127  * threads which replicate front-end operations on cluster nodes.
1128  *
1129  * XOPS thread node operations, allowing the function to focus on a single
1130  * node in the cluster after validating the operation with the cluster.
1131  * This is primarily what prevents dead or stalled nodes from stalling
1132  * the front-end.
1133  */
1134 void
1135 hammer2_primary_xops_thread(void *arg)
1136 {
1137 	hammer2_thread_t *thr = arg;
1138 	hammer2_xop_head_t *xop;
1139 	uint64_t mask;
1140 	uint32_t flags;
1141 	uint32_t nflags;
1142 
1143 	mask = 1LLU << thr->clindex;
1144 
1145 	for (;;) {
1146 		flags = thr->flags;
1147 
1148 		/*
1149 		 * Handle stop request
1150 		 */
1151 		if (flags & HAMMER2_THREAD_STOP)
1152 			break;
1153 
1154 		/*
1155 		 * Handle freeze request
1156 		 */
1157 		if (flags & HAMMER2_THREAD_FREEZE) {
1158 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1159 						 HAMMER2_THREAD_FREEZE);
1160 			continue;
1161 		}
1162 
1163 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1164 			hammer2_thr_signal2(thr, 0,
1165 						 HAMMER2_THREAD_FROZEN |
1166 						 HAMMER2_THREAD_UNFREEZE);
1167 			continue;
1168 		}
1169 
1170 		/*
1171 		 * Force idle if frozen until unfrozen or stopped.
1172 		 */
1173 		if (flags & HAMMER2_THREAD_FROZEN) {
1174 			hammer2_thr_wait_any(thr,
1175 					     HAMMER2_THREAD_UNFREEZE |
1176 					     HAMMER2_THREAD_STOP,
1177 					     0);
1178 			continue;
1179 		}
1180 
1181 		/*
1182 		 * Reset state on REMASTER request
1183 		 */
1184 		if (flags & HAMMER2_THREAD_REMASTER) {
1185 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1186 			/* reset state here */
1187 			continue;
1188 		}
1189 
1190 		/*
1191 		 * Process requests.  Each request can be multi-queued.
1192 		 *
1193 		 * If we get behind and the frontend VOP is no longer active,
1194 		 * we retire the request without processing it.  The callback
1195 		 * may also abort processing if the frontend VOP becomes
1196 		 * inactive.
1197 		 */
1198 		if (flags & HAMMER2_THREAD_XOPQ) {
1199 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1200 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1201 				continue;
1202 			flags = nflags;
1203 			/* fall through */
1204 		}
1205 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1206 			if (hammer2_xop_active(xop)) {
1207 				xop->desc->storage_func((hammer2_xop_t *)xop,
1208 							thr->scratch,
1209 							thr->clindex);
1210 				hammer2_xop_dequeue(thr, xop);
1211 				hammer2_xop_retire(xop, mask);
1212 			} else {
1213 				hammer2_xop_feed(xop, NULL, thr->clindex,
1214 						 ECONNABORTED);
1215 				hammer2_xop_dequeue(thr, xop);
1216 				hammer2_xop_retire(xop, mask);
1217 			}
1218 		}
1219 
1220 		/* Don't wait, this is a XOP caller thread in makefs */
1221 		break;
1222 
1223 		/*
1224 		 * Wait for event, interlock using THREAD_WAITING and
1225 		 * THREAD_SIGNAL.
1226 		 *
1227 		 * For robustness poll on a 30-second interval, but nominally
1228 		 * expect to be woken up.
1229 		 */
1230 		nflags = flags | HAMMER2_THREAD_WAITING;
1231 
1232 		tsleep_interlock(&thr->flags, 0);
1233 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1234 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1235 		}
1236 	}
1237 
1238 #if 0
1239 	/*
1240 	 * Cleanup / termination
1241 	 */
1242 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1243 		kprintf("hammer2_thread: aborting xop %s\n", xop->desc->id);
1244 		TAILQ_REMOVE(&thr->xopq, xop,
1245 			     collect[thr->clindex].entry);
1246 		hammer2_xop_retire(xop, mask);
1247 	}
1248 #endif
1249 	thr->td = NULL;
1250 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1251 	/* thr structure can go invalid after this point */
1252 }
1253