xref: /freebsd/bin/pax/tables.c (revision 38a52bd3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992 Keith Muller.
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * Keith Muller of the University of California, San Diego.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #ifndef lint
37 #if 0
38 static char sccsid[] = "@(#)tables.c	8.1 (Berkeley) 5/31/93";
39 #endif
40 #endif /* not lint */
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include <sys/types.h>
45 #include <sys/time.h>
46 #include <sys/stat.h>
47 #include <sys/fcntl.h>
48 #include <errno.h>
49 #include <stdio.h>
50 #include <stdlib.h>
51 #include <string.h>
52 #include <unistd.h>
53 #include "pax.h"
54 #include "tables.h"
55 #include "extern.h"
56 
57 /*
58  * Routines for controlling the contents of all the different databases pax
59  * keeps. Tables are dynamically created only when they are needed. The
60  * goal was speed and the ability to work with HUGE archives. The databases
61  * were kept simple, but do have complex rules for when the contents change.
62  * As of this writing, the POSIX library functions were more complex than
63  * needed for this application (pax databases have very short lifetimes and
64  * do not survive after pax is finished). Pax is required to handle very
65  * large archives. These database routines carefully combine memory usage and
66  * temporary file storage in ways which will not significantly impact runtime
67  * performance while allowing the largest possible archives to be handled.
68  * Trying to force the fit to the POSIX database routines was not considered
69  * time well spent.
70  */
71 
72 static HRDLNK **ltab = NULL;	/* hard link table for detecting hard links */
73 static FTM **ftab = NULL;	/* file time table for updating arch */
74 static NAMT **ntab = NULL;	/* interactive rename storage table */
75 static DEVT **dtab = NULL;	/* device/inode mapping tables */
76 static ATDIR **atab = NULL;	/* file tree directory time reset table */
77 static int dirfd = -1;		/* storage for setting created dir time/mode */
78 static u_long dircnt;		/* entries in dir time/mode storage */
79 static int ffd = -1;		/* tmp file for file time table name storage */
80 
81 static DEVT *chk_dev(dev_t, int);
82 
83 /*
84  * hard link table routines
85  *
86  * The hard link table tries to detect hard links to files using the device and
87  * inode values. We do this when writing an archive, so we can tell the format
88  * write routine that this file is a hard link to another file. The format
89  * write routine then can store this file in whatever way it wants (as a hard
90  * link if the format supports that like tar, or ignore this info like cpio).
91  * (Actually a field in the format driver table tells us if the format wants
92  * hard link info. if not, we do not waste time looking for them). We also use
93  * the same table when reading an archive. In that situation, this table is
94  * used by the format read routine to detect hard links from stored dev and
95  * inode numbers (like cpio). This will allow pax to create a link when one
96  * can be detected by the archive format.
97  */
98 
99 /*
100  * lnk_start
101  *	Creates the hard link table.
102  * Return:
103  *	0 if created, -1 if failure
104  */
105 
106 int
107 lnk_start(void)
108 {
109 	if (ltab != NULL)
110 		return(0);
111  	if ((ltab = (HRDLNK **)calloc(L_TAB_SZ, sizeof(HRDLNK *))) == NULL) {
112 		paxwarn(1, "Cannot allocate memory for hard link table");
113 		return(-1);
114 	}
115 	return(0);
116 }
117 
118 /*
119  * chk_lnk()
120  *	Looks up entry in hard link hash table. If found, it copies the name
121  *	of the file it is linked to (we already saw that file) into ln_name.
122  *	lnkcnt is decremented and if goes to 1 the node is deleted from the
123  *	database. (We have seen all the links to this file). If not found,
124  *	we add the file to the database if it has the potential for having
125  *	hard links to other files we may process (it has a link count > 1)
126  * Return:
127  *	if found returns 1; if not found returns 0; -1 on error
128  */
129 
130 int
131 chk_lnk(ARCHD *arcn)
132 {
133 	HRDLNK *pt;
134 	HRDLNK **ppt;
135 	u_int indx;
136 
137 	if (ltab == NULL)
138 		return(-1);
139 	/*
140 	 * ignore those nodes that cannot have hard links
141 	 */
142 	if ((arcn->type == PAX_DIR) || (arcn->sb.st_nlink <= 1))
143 		return(0);
144 
145 	/*
146 	 * hash inode number and look for this file
147 	 */
148 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
149 	if ((pt = ltab[indx]) != NULL) {
150 		/*
151 		 * it's hash chain in not empty, walk down looking for it
152 		 */
153 		ppt = &(ltab[indx]);
154 		while (pt != NULL) {
155 			if ((pt->ino == arcn->sb.st_ino) &&
156 			    (pt->dev == arcn->sb.st_dev))
157 				break;
158 			ppt = &(pt->fow);
159 			pt = pt->fow;
160 		}
161 
162 		if (pt != NULL) {
163 			/*
164 			 * found a link. set the node type and copy in the
165 			 * name of the file it is to link to. we need to
166 			 * handle hardlinks to regular files differently than
167 			 * other links.
168 			 */
169 			arcn->ln_nlen = l_strncpy(arcn->ln_name, pt->name,
170 				sizeof(arcn->ln_name) - 1);
171 			arcn->ln_name[arcn->ln_nlen] = '\0';
172 			if (arcn->type == PAX_REG)
173 				arcn->type = PAX_HRG;
174 			else
175 				arcn->type = PAX_HLK;
176 
177 			/*
178 			 * if we have found all the links to this file, remove
179 			 * it from the database
180 			 */
181 			if (--pt->nlink <= 1) {
182 				*ppt = pt->fow;
183 				free(pt->name);
184 				free(pt);
185 			}
186 			return(1);
187 		}
188 	}
189 
190 	/*
191 	 * we never saw this file before. It has links so we add it to the
192 	 * front of this hash chain
193 	 */
194 	if ((pt = (HRDLNK *)malloc(sizeof(HRDLNK))) != NULL) {
195 		if ((pt->name = strdup(arcn->name)) != NULL) {
196 			pt->dev = arcn->sb.st_dev;
197 			pt->ino = arcn->sb.st_ino;
198 			pt->nlink = arcn->sb.st_nlink;
199 			pt->fow = ltab[indx];
200 			ltab[indx] = pt;
201 			return(0);
202 		}
203 		free(pt);
204 	}
205 
206 	paxwarn(1, "Hard link table out of memory");
207 	return(-1);
208 }
209 
210 /*
211  * purg_lnk
212  *	remove reference for a file that we may have added to the data base as
213  *	a potential source for hard links. We ended up not using the file, so
214  *	we do not want to accidentally point another file at it later on.
215  */
216 
217 void
218 purg_lnk(ARCHD *arcn)
219 {
220 	HRDLNK *pt;
221 	HRDLNK **ppt;
222 	u_int indx;
223 
224 	if (ltab == NULL)
225 		return;
226 	/*
227 	 * do not bother to look if it could not be in the database
228 	 */
229 	if ((arcn->sb.st_nlink <= 1) || (arcn->type == PAX_DIR) ||
230 	    (arcn->type == PAX_HLK) || (arcn->type == PAX_HRG))
231 		return;
232 
233 	/*
234 	 * find the hash chain for this inode value, if empty return
235 	 */
236 	indx = ((unsigned)arcn->sb.st_ino) % L_TAB_SZ;
237 	if ((pt = ltab[indx]) == NULL)
238 		return;
239 
240 	/*
241 	 * walk down the list looking for the inode/dev pair, unlink and
242 	 * free if found
243 	 */
244 	ppt = &(ltab[indx]);
245 	while (pt != NULL) {
246 		if ((pt->ino == arcn->sb.st_ino) &&
247 		    (pt->dev == arcn->sb.st_dev))
248 			break;
249 		ppt = &(pt->fow);
250 		pt = pt->fow;
251 	}
252 	if (pt == NULL)
253 		return;
254 
255 	/*
256 	 * remove and free it
257 	 */
258 	*ppt = pt->fow;
259 	free(pt->name);
260 	free(pt);
261 }
262 
263 /*
264  * lnk_end()
265  *	Pull apart an existing link table so we can reuse it. We do this between
266  *	read and write phases of append with update. (The format may have
267  *	used the link table, and we need to start with a fresh table for the
268  *	write phase).
269  */
270 
271 void
272 lnk_end(void)
273 {
274 	int i;
275 	HRDLNK *pt;
276 	HRDLNK *ppt;
277 
278 	if (ltab == NULL)
279 		return;
280 
281 	for (i = 0; i < L_TAB_SZ; ++i) {
282 		if (ltab[i] == NULL)
283 			continue;
284 		pt = ltab[i];
285 		ltab[i] = NULL;
286 
287 		/*
288 		 * free up each entry on this chain
289 		 */
290 		while (pt != NULL) {
291 			ppt = pt;
292 			pt = ppt->fow;
293 			free(ppt->name);
294 			free(ppt);
295 		}
296 	}
297 	return;
298 }
299 
300 /*
301  * modification time table routines
302  *
303  * The modification time table keeps track of last modification times for all
304  * files stored in an archive during a write phase when -u is set. We only
305  * add a file to the archive if it is newer than a file with the same name
306  * already stored on the archive (if there is no other file with the same
307  * name on the archive it is added). This applies to writes and appends.
308  * An append with an -u must read the archive and store the modification time
309  * for every file on that archive before starting the write phase. It is clear
310  * that this is one HUGE database. To save memory space, the actual file names
311  * are stored in a scratch file and indexed by an in memory hash table. The
312  * hash table is indexed by hashing the file path. The nodes in the table store
313  * the length of the filename and the lseek offset within the scratch file
314  * where the actual name is stored. Since there are never any deletions from
315  * this table, fragmentation of the scratch file is never an issue. Lookups
316  * seem to not exhibit any locality at all (files in the database are rarely
317  * looked up more than once...). So caching is just a waste of memory. The
318  * only limitation is the amount of scratch file space available to store the
319  * path names.
320  */
321 
322 /*
323  * ftime_start()
324  *	create the file time hash table and open for read/write the scratch
325  *	file. (after created it is unlinked, so when we exit we leave
326  *	no witnesses).
327  * Return:
328  *	0 if the table and file was created ok, -1 otherwise
329  */
330 
331 int
332 ftime_start(void)
333 {
334 
335 	if (ftab != NULL)
336 		return(0);
337  	if ((ftab = (FTM **)calloc(F_TAB_SZ, sizeof(FTM *))) == NULL) {
338 		paxwarn(1, "Cannot allocate memory for file time table");
339 		return(-1);
340 	}
341 
342 	/*
343 	 * get random name and create temporary scratch file, unlink name
344 	 * so it will get removed on exit
345 	 */
346 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
347 	if ((ffd = mkstemp(tempfile)) < 0) {
348 		syswarn(1, errno, "Unable to create temporary file: %s",
349 		    tempfile);
350 		return(-1);
351 	}
352 	(void)unlink(tempfile);
353 
354 	return(0);
355 }
356 
357 /*
358  * chk_ftime()
359  *	looks up entry in file time hash table. If not found, the file is
360  *	added to the hash table and the file named stored in the scratch file.
361  *	If a file with the same name is found, the file times are compared and
362  *	the most recent file time is retained. If the new file was younger (or
363  *	was not in the database) the new file is selected for storage.
364  * Return:
365  *	0 if file should be added to the archive, 1 if it should be skipped,
366  *	-1 on error
367  */
368 
369 int
370 chk_ftime(ARCHD *arcn)
371 {
372 	FTM *pt;
373 	int namelen;
374 	u_int indx;
375 	char ckname[PAXPATHLEN+1];
376 
377 	/*
378 	 * no info, go ahead and add to archive
379 	 */
380 	if (ftab == NULL)
381 		return(0);
382 
383 	/*
384 	 * hash the pathname and look up in table
385 	 */
386 	namelen = arcn->nlen;
387 	indx = st_hash(arcn->name, namelen, F_TAB_SZ);
388 	if ((pt = ftab[indx]) != NULL) {
389 		/*
390 		 * the hash chain is not empty, walk down looking for match
391 		 * only read up the path names if the lengths match, speeds
392 		 * up the search a lot
393 		 */
394 		while (pt != NULL) {
395 			if (pt->namelen == namelen) {
396 				/*
397 				 * potential match, have to read the name
398 				 * from the scratch file.
399 				 */
400 				if (lseek(ffd,pt->seek,SEEK_SET) != pt->seek) {
401 					syswarn(1, errno,
402 					    "Failed ftime table seek");
403 					return(-1);
404 				}
405 				if (read(ffd, ckname, namelen) != namelen) {
406 					syswarn(1, errno,
407 					    "Failed ftime table read");
408 					return(-1);
409 				}
410 
411 				/*
412 				 * if the names match, we are done
413 				 */
414 				if (!strncmp(ckname, arcn->name, namelen))
415 					break;
416 			}
417 
418 			/*
419 			 * try the next entry on the chain
420 			 */
421 			pt = pt->fow;
422 		}
423 
424 		if (pt != NULL) {
425 			/*
426 			 * found the file, compare the times, save the newer
427 			 */
428 			if (arcn->sb.st_mtime > pt->mtime) {
429 				/*
430 				 * file is newer
431 				 */
432 				pt->mtime = arcn->sb.st_mtime;
433 				return(0);
434 			}
435 			/*
436 			 * file is older
437 			 */
438 			return(1);
439 		}
440 	}
441 
442 	/*
443 	 * not in table, add it
444 	 */
445 	if ((pt = (FTM *)malloc(sizeof(FTM))) != NULL) {
446 		/*
447 		 * add the name at the end of the scratch file, saving the
448 		 * offset. add the file to the head of the hash chain
449 		 */
450 		if ((pt->seek = lseek(ffd, (off_t)0, SEEK_END)) >= 0) {
451 			if (write(ffd, arcn->name, namelen) == namelen) {
452 				pt->mtime = arcn->sb.st_mtime;
453 				pt->namelen = namelen;
454 				pt->fow = ftab[indx];
455 				ftab[indx] = pt;
456 				return(0);
457 			}
458 			syswarn(1, errno, "Failed write to file time table");
459 		} else
460 			syswarn(1, errno, "Failed seek on file time table");
461 	} else
462 		paxwarn(1, "File time table ran out of memory");
463 
464 	if (pt != NULL)
465 		free(pt);
466 	return(-1);
467 }
468 
469 /*
470  * Interactive rename table routines
471  *
472  * The interactive rename table keeps track of the new names that the user
473  * assigns to files from tty input. Since this map is unique for each file
474  * we must store it in case there is a reference to the file later in archive
475  * (a link). Otherwise we will be unable to find the file we know was
476  * extracted. The remapping of these files is stored in a memory based hash
477  * table (it is assumed since input must come from /dev/tty, it is unlikely to
478  * be a very large table).
479  */
480 
481 /*
482  * name_start()
483  *	create the interactive rename table
484  * Return:
485  *	0 if successful, -1 otherwise
486  */
487 
488 int
489 name_start(void)
490 {
491 	if (ntab != NULL)
492 		return(0);
493  	if ((ntab = (NAMT **)calloc(N_TAB_SZ, sizeof(NAMT *))) == NULL) {
494 		paxwarn(1, "Cannot allocate memory for interactive rename table");
495 		return(-1);
496 	}
497 	return(0);
498 }
499 
500 /*
501  * add_name()
502  *	add the new name to old name mapping just created by the user.
503  *	If an old name mapping is found (there may be duplicate names on an
504  *	archive) only the most recent is kept.
505  * Return:
506  *	0 if added, -1 otherwise
507  */
508 
509 int
510 add_name(char *oname, int onamelen, char *nname)
511 {
512 	NAMT *pt;
513 	u_int indx;
514 
515 	if (ntab == NULL) {
516 		/*
517 		 * should never happen
518 		 */
519 		paxwarn(0, "No interactive rename table, links may fail\n");
520 		return(0);
521 	}
522 
523 	/*
524 	 * look to see if we have already mapped this file, if so we
525 	 * will update it
526 	 */
527 	indx = st_hash(oname, onamelen, N_TAB_SZ);
528 	if ((pt = ntab[indx]) != NULL) {
529 		/*
530 		 * look down the has chain for the file
531 		 */
532 		while ((pt != NULL) && (strcmp(oname, pt->oname) != 0))
533 			pt = pt->fow;
534 
535 		if (pt != NULL) {
536 			/*
537 			 * found an old mapping, replace it with the new one
538 			 * the user just input (if it is different)
539 			 */
540 			if (strcmp(nname, pt->nname) == 0)
541 				return(0);
542 
543 			free(pt->nname);
544 			if ((pt->nname = strdup(nname)) == NULL) {
545 				paxwarn(1, "Cannot update rename table");
546 				return(-1);
547 			}
548 			return(0);
549 		}
550 	}
551 
552 	/*
553 	 * this is a new mapping, add it to the table
554 	 */
555 	if ((pt = (NAMT *)malloc(sizeof(NAMT))) != NULL) {
556 		if ((pt->oname = strdup(oname)) != NULL) {
557 			if ((pt->nname = strdup(nname)) != NULL) {
558 				pt->fow = ntab[indx];
559 				ntab[indx] = pt;
560 				return(0);
561 			}
562 			free(pt->oname);
563 		}
564 		free(pt);
565 	}
566 	paxwarn(1, "Interactive rename table out of memory");
567 	return(-1);
568 }
569 
570 /*
571  * sub_name()
572  *	look up a link name to see if it points at a file that has been
573  *	remapped by the user. If found, the link is adjusted to contain the
574  *	new name (oname is the link to name)
575  */
576 
577 void
578 sub_name(char *oname, int *onamelen, size_t onamesize)
579 {
580 	NAMT *pt;
581 	u_int indx;
582 
583 	if (ntab == NULL)
584 		return;
585 	/*
586 	 * look the name up in the hash table
587 	 */
588 	indx = st_hash(oname, *onamelen, N_TAB_SZ);
589 	if ((pt = ntab[indx]) == NULL)
590 		return;
591 
592 	while (pt != NULL) {
593 		/*
594 		 * walk down the hash chain looking for a match
595 		 */
596 		if (strcmp(oname, pt->oname) == 0) {
597 			/*
598 			 * found it, replace it with the new name
599 			 * and return (we know that oname has enough space)
600 			 */
601 			*onamelen = l_strncpy(oname, pt->nname, onamesize - 1);
602 			oname[*onamelen] = '\0';
603 			return;
604 		}
605 		pt = pt->fow;
606 	}
607 
608 	/*
609 	 * no match, just return
610 	 */
611 	return;
612 }
613 
614 /*
615  * device/inode mapping table routines
616  * (used with formats that store device and inodes fields)
617  *
618  * device/inode mapping tables remap the device field in an archive header. The
619  * device/inode fields are used to determine when files are hard links to each
620  * other. However these values have very little meaning outside of that. This
621  * database is used to solve one of two different problems.
622  *
623  * 1) when files are appended to an archive, while the new files may have hard
624  * links to each other, you cannot determine if they have hard links to any
625  * file already stored on the archive from a prior run of pax. We must assume
626  * that these inode/device pairs are unique only within a SINGLE run of pax
627  * (which adds a set of files to an archive). So we have to make sure the
628  * inode/dev pairs we add each time are always unique. We do this by observing
629  * while the inode field is very dense, the use of the dev field is fairly
630  * sparse. Within each run of pax, we remap any device number of a new archive
631  * member that has a device number used in a prior run and already stored in a
632  * file on the archive. During the read phase of the append, we store the
633  * device numbers used and mark them to not be used by any file during the
634  * write phase. If during write we go to use one of those old device numbers,
635  * we remap it to a new value.
636  *
637  * 2) Often the fields in the archive header used to store these values are
638  * too small to store the entire value. The result is an inode or device value
639  * which can be truncated. This really can foul up an archive. With truncation
640  * we end up creating links between files that are really not links (after
641  * truncation the inodes are the same value). We address that by detecting
642  * truncation and forcing a remap of the device field to split truncated
643  * inodes away from each other. Each truncation creates a pattern of bits that
644  * are removed. We use this pattern of truncated bits to partition the inodes
645  * on a single device to many different devices (each one represented by the
646  * truncated bit pattern). All inodes on the same device that have the same
647  * truncation pattern are mapped to the same new device. Two inodes that
648  * truncate to the same value clearly will always have different truncation
649  * bit patterns, so they will be split from away each other. When we spot
650  * device truncation we remap the device number to a non truncated value.
651  * (for more info see table.h for the data structures involved).
652  */
653 
654 /*
655  * dev_start()
656  *	create the device mapping table
657  * Return:
658  *	0 if successful, -1 otherwise
659  */
660 
661 int
662 dev_start(void)
663 {
664 	if (dtab != NULL)
665 		return(0);
666  	if ((dtab = (DEVT **)calloc(D_TAB_SZ, sizeof(DEVT *))) == NULL) {
667 		paxwarn(1, "Cannot allocate memory for device mapping table");
668 		return(-1);
669 	}
670 	return(0);
671 }
672 
673 /*
674  * add_dev()
675  *	add a device number to the table. this will force the device to be
676  *	remapped to a new value if it be used during a write phase. This
677  *	function is called during the read phase of an append to prohibit the
678  *	use of any device number already in the archive.
679  * Return:
680  *	0 if added ok, -1 otherwise
681  */
682 
683 int
684 add_dev(ARCHD *arcn)
685 {
686 	if (chk_dev(arcn->sb.st_dev, 1) == NULL)
687 		return(-1);
688 	return(0);
689 }
690 
691 /*
692  * chk_dev()
693  *	check for a device value in the device table. If not found and the add
694  *	flag is set, it is added. This does NOT assign any mapping values, just
695  *	adds the device number as one that need to be remapped. If this device
696  *	is already mapped, just return with a pointer to that entry.
697  * Return:
698  *	pointer to the entry for this device in the device map table. Null
699  *	if the add flag is not set and the device is not in the table (it is
700  *	not been seen yet). If add is set and the device cannot be added, null
701  *	is returned (indicates an error).
702  */
703 
704 static DEVT *
705 chk_dev(dev_t dev, int add)
706 {
707 	DEVT *pt;
708 	u_int indx;
709 
710 	if (dtab == NULL)
711 		return(NULL);
712 	/*
713 	 * look to see if this device is already in the table
714 	 */
715 	indx = ((unsigned)dev) % D_TAB_SZ;
716 	if ((pt = dtab[indx]) != NULL) {
717 		while ((pt != NULL) && (pt->dev != dev))
718 			pt = pt->fow;
719 
720 		/*
721 		 * found it, return a pointer to it
722 		 */
723 		if (pt != NULL)
724 			return(pt);
725 	}
726 
727 	/*
728 	 * not in table, we add it only if told to as this may just be a check
729 	 * to see if a device number is being used.
730 	 */
731 	if (add == 0)
732 		return(NULL);
733 
734 	/*
735 	 * allocate a node for this device and add it to the front of the hash
736 	 * chain. Note we do not assign remaps values here, so the pt->list
737 	 * list must be NULL.
738 	 */
739 	if ((pt = (DEVT *)malloc(sizeof(DEVT))) == NULL) {
740 		paxwarn(1, "Device map table out of memory");
741 		return(NULL);
742 	}
743 	pt->dev = dev;
744 	pt->list = NULL;
745 	pt->fow = dtab[indx];
746 	dtab[indx] = pt;
747 	return(pt);
748 }
749 /*
750  * map_dev()
751  *	given an inode and device storage mask (the mask has a 1 for each bit
752  *	the archive format is able to store in a header), we check for inode
753  *	and device truncation and remap the device as required. Device mapping
754  *	can also occur when during the read phase of append a device number was
755  *	seen (and was marked as do not use during the write phase). WE ASSUME
756  *	that unsigned longs are the same size or bigger than the fields used
757  *	for ino_t and dev_t. If not the types will have to be changed.
758  * Return:
759  *	0 if all ok, -1 otherwise.
760  */
761 
762 int
763 map_dev(ARCHD *arcn, u_long dev_mask, u_long ino_mask)
764 {
765 	DEVT *pt;
766 	DLIST *dpt;
767 	static dev_t lastdev = 0;	/* next device number to try */
768 	int trc_ino = 0;
769 	int trc_dev = 0;
770 	ino_t trunc_bits = 0;
771 	ino_t nino;
772 
773 	if (dtab == NULL)
774 		return(0);
775 	/*
776 	 * check for device and inode truncation, and extract the truncated
777 	 * bit pattern.
778 	 */
779 	if ((arcn->sb.st_dev & (dev_t)dev_mask) != arcn->sb.st_dev)
780 		++trc_dev;
781 	if ((nino = arcn->sb.st_ino & (ino_t)ino_mask) != arcn->sb.st_ino) {
782 		++trc_ino;
783 		trunc_bits = arcn->sb.st_ino & (ino_t)(~ino_mask);
784 	}
785 
786 	/*
787 	 * see if this device is already being mapped, look up the device
788 	 * then find the truncation bit pattern which applies
789 	 */
790 	if ((pt = chk_dev(arcn->sb.st_dev, 0)) != NULL) {
791 		/*
792 		 * this device is already marked to be remapped
793 		 */
794 		for (dpt = pt->list; dpt != NULL; dpt = dpt->fow)
795 			if (dpt->trunc_bits == trunc_bits)
796 				break;
797 
798 		if (dpt != NULL) {
799 			/*
800 			 * we are being remapped for this device and pattern
801 			 * change the device number to be stored and return
802 			 */
803 			arcn->sb.st_dev = dpt->dev;
804 			arcn->sb.st_ino = nino;
805 			return(0);
806 		}
807 	} else {
808 		/*
809 		 * this device is not being remapped YET. if we do not have any
810 		 * form of truncation, we do not need a remap
811 		 */
812 		if (!trc_ino && !trc_dev)
813 			return(0);
814 
815 		/*
816 		 * we have truncation, have to add this as a device to remap
817 		 */
818 		if ((pt = chk_dev(arcn->sb.st_dev, 1)) == NULL)
819 			goto bad;
820 
821 		/*
822 		 * if we just have a truncated inode, we have to make sure that
823 		 * all future inodes that do not truncate (they have the
824 		 * truncation pattern of all 0's) continue to map to the same
825 		 * device number. We probably have already written inodes with
826 		 * this device number to the archive with the truncation
827 		 * pattern of all 0's. So we add the mapping for all 0's to the
828 		 * same device number.
829 		 */
830 		if (!trc_dev && (trunc_bits != 0)) {
831 			if ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL)
832 				goto bad;
833 			dpt->trunc_bits = 0;
834 			dpt->dev = arcn->sb.st_dev;
835 			dpt->fow = pt->list;
836 			pt->list = dpt;
837 		}
838 	}
839 
840 	/*
841 	 * look for a device number not being used. We must watch for wrap
842 	 * around on lastdev (so we do not get stuck looking forever!)
843 	 */
844 	while (++lastdev > 0) {
845 		if (chk_dev(lastdev, 0) != NULL)
846 			continue;
847 		/*
848 		 * found an unused value. If we have reached truncation point
849 		 * for this format we are hosed, so we give up. Otherwise we
850 		 * mark it as being used.
851 		 */
852 		if (((lastdev & ((dev_t)dev_mask)) != lastdev) ||
853 		    (chk_dev(lastdev, 1) == NULL))
854 			goto bad;
855 		break;
856 	}
857 
858 	if ((lastdev <= 0) || ((dpt = (DLIST *)malloc(sizeof(DLIST))) == NULL))
859 		goto bad;
860 
861 	/*
862 	 * got a new device number, store it under this truncation pattern.
863 	 * change the device number this file is being stored with.
864 	 */
865 	dpt->trunc_bits = trunc_bits;
866 	dpt->dev = lastdev;
867 	dpt->fow = pt->list;
868 	pt->list = dpt;
869 	arcn->sb.st_dev = lastdev;
870 	arcn->sb.st_ino = nino;
871 	return(0);
872 
873     bad:
874 	paxwarn(1, "Unable to fix truncated inode/device field when storing %s",
875 	    arcn->name);
876 	paxwarn(0, "Archive may create improper hard links when extracted");
877 	return(0);
878 }
879 
880 /*
881  * directory access/mod time reset table routines (for directories READ by pax)
882  *
883  * The pax -t flag requires that access times of archive files be the same
884  * before being read by pax. For regular files, access time is restored after
885  * the file has been copied. This database provides the same functionality for
886  * directories read during file tree traversal. Restoring directory access time
887  * is more complex than files since directories may be read several times until
888  * all the descendants in their subtree are visited by fts. Directory access
889  * and modification times are stored during the fts pre-order visit (done
890  * before any descendants in the subtree are visited) and restored after the
891  * fts post-order visit (after all the descendants have been visited). In the
892  * case of premature exit from a subtree (like from the effects of -n), any
893  * directory entries left in this database are reset during final cleanup
894  * operations of pax. Entries are hashed by inode number for fast lookup.
895  */
896 
897 /*
898  * atdir_start()
899  *	create the directory access time database for directories READ by pax.
900  * Return:
901  *	0 is created ok, -1 otherwise.
902  */
903 
904 int
905 atdir_start(void)
906 {
907 	if (atab != NULL)
908 		return(0);
909  	if ((atab = (ATDIR **)calloc(A_TAB_SZ, sizeof(ATDIR *))) == NULL) {
910 		paxwarn(1,"Cannot allocate space for directory access time table");
911 		return(-1);
912 	}
913 	return(0);
914 }
915 
916 
917 /*
918  * atdir_end()
919  *	walk through the directory access time table and reset the access time
920  *	of any directory who still has an entry left in the database. These
921  *	entries are for directories READ by pax
922  */
923 
924 void
925 atdir_end(void)
926 {
927 	ATDIR *pt;
928 	int i;
929 
930 	if (atab == NULL)
931 		return;
932 	/*
933 	 * for each non-empty hash table entry reset all the directories
934 	 * chained there.
935 	 */
936 	for (i = 0; i < A_TAB_SZ; ++i) {
937 		if ((pt = atab[i]) == NULL)
938 			continue;
939 		/*
940 		 * remember to force the times, set_ftime() looks at pmtime
941 		 * and patime, which only applies to things CREATED by pax,
942 		 * not read by pax. Read time reset is controlled by -t.
943 		 */
944 		for (; pt != NULL; pt = pt->fow)
945 			set_ftime(pt->name, pt->mtime, pt->atime, 1);
946 	}
947 }
948 
949 /*
950  * add_atdir()
951  *	add a directory to the directory access time table. Table is hashed
952  *	and chained by inode number. This is for directories READ by pax
953  */
954 
955 void
956 add_atdir(char *fname, dev_t dev, ino_t ino, time_t mtime, time_t atime)
957 {
958 	ATDIR *pt;
959 	u_int indx;
960 
961 	if (atab == NULL)
962 		return;
963 
964 	/*
965 	 * make sure this directory is not already in the table, if so just
966 	 * return (the older entry always has the correct time). The only
967 	 * way this will happen is when the same subtree can be traversed by
968 	 * different args to pax and the -n option is aborting fts out of a
969 	 * subtree before all the post-order visits have been made.
970 	 */
971 	indx = ((unsigned)ino) % A_TAB_SZ;
972 	if ((pt = atab[indx]) != NULL) {
973 		while (pt != NULL) {
974 			if ((pt->ino == ino) && (pt->dev == dev))
975 				break;
976 			pt = pt->fow;
977 		}
978 
979 		/*
980 		 * oops, already there. Leave it alone.
981 		 */
982 		if (pt != NULL)
983 			return;
984 	}
985 
986 	/*
987 	 * add it to the front of the hash chain
988 	 */
989 	if ((pt = (ATDIR *)malloc(sizeof(ATDIR))) != NULL) {
990 		if ((pt->name = strdup(fname)) != NULL) {
991 			pt->dev = dev;
992 			pt->ino = ino;
993 			pt->mtime = mtime;
994 			pt->atime = atime;
995 			pt->fow = atab[indx];
996 			atab[indx] = pt;
997 			return;
998 		}
999 		free(pt);
1000 	}
1001 
1002 	paxwarn(1, "Directory access time reset table ran out of memory");
1003 	return;
1004 }
1005 
1006 /*
1007  * get_atdir()
1008  *	look up a directory by inode and device number to obtain the access
1009  *	and modification time you want to set to. If found, the modification
1010  *	and access time parameters are set and the entry is removed from the
1011  *	table (as it is no longer needed). These are for directories READ by
1012  *	pax
1013  * Return:
1014  *	0 if found, -1 if not found.
1015  */
1016 
1017 int
1018 get_atdir(dev_t dev, ino_t ino, time_t *mtime, time_t *atime)
1019 {
1020 	ATDIR *pt;
1021 	ATDIR **ppt;
1022 	u_int indx;
1023 
1024 	if (atab == NULL)
1025 		return(-1);
1026 	/*
1027 	 * hash by inode and search the chain for an inode and device match
1028 	 */
1029 	indx = ((unsigned)ino) % A_TAB_SZ;
1030 	if ((pt = atab[indx]) == NULL)
1031 		return(-1);
1032 
1033 	ppt = &(atab[indx]);
1034 	while (pt != NULL) {
1035 		if ((pt->ino == ino) && (pt->dev == dev))
1036 			break;
1037 		/*
1038 		 * no match, go to next one
1039 		 */
1040 		ppt = &(pt->fow);
1041 		pt = pt->fow;
1042 	}
1043 
1044 	/*
1045 	 * return if we did not find it.
1046 	 */
1047 	if (pt == NULL)
1048 		return(-1);
1049 
1050 	/*
1051 	 * found it. return the times and remove the entry from the table.
1052 	 */
1053 	*ppt = pt->fow;
1054 	*mtime = pt->mtime;
1055 	*atime = pt->atime;
1056 	free(pt->name);
1057 	free(pt);
1058 	return(0);
1059 }
1060 
1061 /*
1062  * directory access mode and time storage routines (for directories CREATED
1063  * by pax).
1064  *
1065  * Pax requires that extracted directories, by default, have their access/mod
1066  * times and permissions set to the values specified in the archive. During the
1067  * actions of extracting (and creating the destination subtree during -rw copy)
1068  * directories extracted may be modified after being created. Even worse is
1069  * that these directories may have been created with file permissions which
1070  * prohibits any descendants of these directories from being extracted. When
1071  * directories are created by pax, access rights may be added to permit the
1072  * creation of files in their subtree. Every time pax creates a directory, the
1073  * times and file permissions specified by the archive are stored. After all
1074  * files have been extracted (or copied), these directories have their times
1075  * and file modes reset to the stored values. The directory info is restored in
1076  * reverse order as entries were added to the data file from root to leaf. To
1077  * restore atime properly, we must go backwards. The data file consists of
1078  * records with two parts, the file name followed by a DIRDATA trailer. The
1079  * fixed sized trailer contains the size of the name plus the off_t location in
1080  * the file. To restore we work backwards through the file reading the trailer
1081  * then the file name.
1082  */
1083 
1084 /*
1085  * dir_start()
1086  *	set up the directory time and file mode storage for directories CREATED
1087  *	by pax.
1088  * Return:
1089  *	0 if ok, -1 otherwise
1090  */
1091 
1092 int
1093 dir_start(void)
1094 {
1095 
1096 	if (dirfd != -1)
1097 		return(0);
1098 
1099 	/*
1100 	 * unlink the file so it goes away at termination by itself
1101 	 */
1102 	memcpy(tempbase, _TFILE_BASE, sizeof(_TFILE_BASE));
1103 	if ((dirfd = mkstemp(tempfile)) >= 0) {
1104 		(void)unlink(tempfile);
1105 		return(0);
1106 	}
1107 	paxwarn(1, "Unable to create temporary file for directory times: %s",
1108 	    tempfile);
1109 	return(-1);
1110 }
1111 
1112 /*
1113  * add_dir()
1114  *	add the mode and times for a newly CREATED directory
1115  *	name is name of the directory, psb the stat buffer with the data in it,
1116  *	frc_mode is a flag that says whether to force the setting of the mode
1117  *	(ignoring the user set values for preserving file mode). Frc_mode is
1118  *	for the case where we created a file and found that the resulting
1119  *	directory was not writeable and the user asked for file modes to NOT
1120  *	be preserved. (we have to preserve what was created by default, so we
1121  *	have to force the setting at the end. this is stated explicitly in the
1122  *	pax spec)
1123  */
1124 
1125 void
1126 add_dir(char *name, int nlen, struct stat *psb, int frc_mode)
1127 {
1128 	DIRDATA dblk;
1129 
1130 	if (dirfd < 0)
1131 		return;
1132 
1133 	/*
1134 	 * get current position (where file name will start) so we can store it
1135 	 * in the trailer
1136 	 */
1137 	if ((dblk.npos = lseek(dirfd, 0L, SEEK_CUR)) < 0) {
1138 		paxwarn(1,"Unable to store mode and times for directory: %s",name);
1139 		return;
1140 	}
1141 
1142 	/*
1143 	 * write the file name followed by the trailer
1144 	 */
1145 	dblk.nlen = nlen + 1;
1146 	dblk.mode = psb->st_mode & 0xffff;
1147 	dblk.mtime = psb->st_mtime;
1148 	dblk.atime = psb->st_atime;
1149 	dblk.frc_mode = frc_mode;
1150 	if ((write(dirfd, name, dblk.nlen) == dblk.nlen) &&
1151 	    (write(dirfd, (char *)&dblk, sizeof(dblk)) == sizeof(dblk))) {
1152 		++dircnt;
1153 		return;
1154 	}
1155 
1156 	paxwarn(1,"Unable to store mode and times for created directory: %s",name);
1157 	return;
1158 }
1159 
1160 /*
1161  * proc_dir()
1162  *	process all file modes and times stored for directories CREATED
1163  *	by pax
1164  */
1165 
1166 void
1167 proc_dir(void)
1168 {
1169 	char name[PAXPATHLEN+1];
1170 	DIRDATA dblk;
1171 	u_long cnt;
1172 
1173 	if (dirfd < 0)
1174 		return;
1175 	/*
1176 	 * read backwards through the file and process each directory
1177 	 */
1178 	for (cnt = 0; cnt < dircnt; ++cnt) {
1179 		/*
1180 		 * read the trailer, then the file name, if this fails
1181 		 * just give up.
1182 		 */
1183 		if (lseek(dirfd, -((off_t)sizeof(dblk)), SEEK_CUR) < 0)
1184 			break;
1185 		if (read(dirfd,(char *)&dblk, sizeof(dblk)) != sizeof(dblk))
1186 			break;
1187 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1188 			break;
1189 		if (read(dirfd, name, dblk.nlen) != dblk.nlen)
1190 			break;
1191 		if (lseek(dirfd, dblk.npos, SEEK_SET) < 0)
1192 			break;
1193 
1194 		/*
1195 		 * frc_mode set, make sure we set the file modes even if
1196 		 * the user didn't ask for it (see file_subs.c for more info)
1197 		 */
1198 		if (pmode || dblk.frc_mode)
1199 			set_pmode(name, dblk.mode);
1200 		if (patime || pmtime)
1201 			set_ftime(name, dblk.mtime, dblk.atime, 0);
1202 	}
1203 
1204 	(void)close(dirfd);
1205 	dirfd = -1;
1206 	if (cnt != dircnt)
1207 		paxwarn(1,"Unable to set mode and times for created directories");
1208 	return;
1209 }
1210 
1211 /*
1212  * database independent routines
1213  */
1214 
1215 /*
1216  * st_hash()
1217  *	hashes filenames to a u_int for hashing into a table. Looks at the tail
1218  *	end of file, as this provides far better distribution than any other
1219  *	part of the name. For performance reasons we only care about the last
1220  *	MAXKEYLEN chars (should be at LEAST large enough to pick off the file
1221  *	name). Was tested on 500,000 name file tree traversal from the root
1222  *	and gave almost a perfectly uniform distribution of keys when used with
1223  *	prime sized tables (MAXKEYLEN was 128 in test). Hashes (sizeof int)
1224  *	chars at a time and pads with 0 for last addition.
1225  * Return:
1226  *	the hash value of the string MOD (%) the table size.
1227  */
1228 
1229 u_int
1230 st_hash(char *name, int len, int tabsz)
1231 {
1232 	char *pt;
1233 	char *dest;
1234 	char *end;
1235 	int i;
1236 	u_int key = 0;
1237 	int steps;
1238 	int res;
1239 	u_int val;
1240 
1241 	/*
1242 	 * only look at the tail up to MAXKEYLEN, we do not need to waste
1243 	 * time here (remember these are pathnames, the tail is what will
1244 	 * spread out the keys)
1245 	 */
1246 	if (len > MAXKEYLEN) {
1247 		pt = &(name[len - MAXKEYLEN]);
1248 		len = MAXKEYLEN;
1249 	} else
1250 		pt = name;
1251 
1252 	/*
1253 	 * calculate the number of u_int size steps in the string and if
1254 	 * there is a runt to deal with
1255 	 */
1256 	steps = len/sizeof(u_int);
1257 	res = len % sizeof(u_int);
1258 
1259 	/*
1260 	 * add up the value of the string in unsigned integer sized pieces
1261 	 * too bad we cannot have unsigned int aligned strings, then we
1262 	 * could avoid the expensive copy.
1263 	 */
1264 	for (i = 0; i < steps; ++i) {
1265 		end = pt + sizeof(u_int);
1266 		dest = (char *)&val;
1267 		while (pt < end)
1268 			*dest++ = *pt++;
1269 		key += val;
1270 	}
1271 
1272 	/*
1273 	 * add in the runt padded with zero to the right
1274 	 */
1275 	if (res) {
1276 		val = 0;
1277 		end = pt + res;
1278 		dest = (char *)&val;
1279 		while (pt < end)
1280 			*dest++ = *pt++;
1281 		key += val;
1282 	}
1283 
1284 	/*
1285 	 * return the result mod the table size
1286 	 */
1287 	return(key % tabsz);
1288 }
1289