xref: /freebsd/contrib/libcxxrt/guard.cc (revision 1323ec57)
1 /*
2  * Copyright 2010-2012 PathScale, Inc. All rights reserved.
3  * Copyright 2021 David Chisnall. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *    this list of conditions and the following disclaimer in the documentation
13  *    and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
16  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
17  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
19  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /**
29  * guard.cc: Functions for thread-safe static initialisation.
30  *
31  * Static values in C++ can be initialised lazily their first use.  This file
32  * contains functions that are used to ensure that two threads attempting to
33  * initialize the same static do not call the constructor twice.  This is
34  * important because constructors can have side effects, so calling the
35  * constructor twice may be very bad.
36  *
37  * Statics that require initialisation are protected by a 64-bit value.  Any
38  * platform that can do 32-bit atomic test and set operations can use this
39  * value as a low-overhead lock.  Because statics (in most sane code) are
40  * accessed far more times than they are initialised, this lock implementation
41  * is heavily optimised towards the case where the static has already been
42  * initialised.
43  */
44 #include "atomic.h"
45 #include <assert.h>
46 #include <pthread.h>
47 #include <stdint.h>
48 #include <stdlib.h>
49 
50 // Older GCC doesn't define __LITTLE_ENDIAN__
51 #ifndef __LITTLE_ENDIAN__
52 // If __BYTE_ORDER__ is defined, use that instead
53 #	ifdef __BYTE_ORDER__
54 #		if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
55 #			define __LITTLE_ENDIAN__
56 #		endif
57 // x86 and ARM are the most common little-endian CPUs, so let's have a
58 // special case for them (ARM is already special cased).  Assume everything
59 // else is big endian.
60 #	elif defined(__x86_64) || defined(__i386)
61 #		define __LITTLE_ENDIAN__
62 #	endif
63 #endif
64 
65 /*
66  * The Itanium C++ ABI defines guard words that are 64-bit (32-bit on AArch32)
67  * values with one bit defined to indicate that the guarded variable is and
68  * another bit to indicate that it's currently locked (initialisation in
69  * progress).  The bit to use depends on the byte order of the target.
70  *
71  * On many 32-bit platforms, 64-bit atomics are unavailable (or slow) and so we
72  * treat the two halves of the 64-bit word as independent values and establish
73  * an ordering on them such that the guard word is never modified unless the
74  * lock word is in the locked state.  This means that we can do double-checked
75  * locking by loading the guard word and, if it is not initialised, trying to
76  * transition the lock word from the unlocked to locked state, and then
77  * manipulate the guard word.
78  */
79 namespace
80 {
81 	/**
82 	 * The state of the guard variable when an attempt is made to lock it.
83 	 */
84 	enum class GuardState
85 	{
86 		/**
87 		 * The lock is not held but is not needed because initialisation is
88 		 * one.
89 		 */
90 		InitDone,
91 
92 		/**
93 		 * Initialisation is not done but the lock is held by the caller.
94 		 */
95 		InitLockSucceeded,
96 
97 		/**
98 		 * Attempting to acquire the lock failed.
99 		 */
100 		InitLockFailed
101 	};
102 
103 	/**
104 	 * Class encapsulating a single atomic word being used to represent the
105 	 * guard.  The word size is defined by the type of `GuardWord`.  The bit
106 	 * used to indicate the locked state is `1<<LockedBit`, the bit used to
107 	 * indicate the initialised state is `1<<InitBit`.
108 	 */
109 	template<typename GuardWord, int LockedBit, int InitBit>
110 	struct SingleWordGuard
111 	{
112 		/**
113 		 * The value indicating that the lock bit is set (and no other bits).
114 		 */
115 		static constexpr GuardWord locked = static_cast<GuardWord>(1)
116 		                                    << LockedBit;
117 
118 		/**
119 		 * The value indicating that the initialised bit is set (and all other
120 		 * bits are zero).
121 		 */
122 		static constexpr GuardWord initialised = static_cast<GuardWord>(1)
123 		                                         << InitBit;
124 
125 		/**
126 		 * The guard variable.
127 		 */
128 		atomic<GuardWord> val;
129 
130 		public:
131 		/**
132 		 * Release the lock and set the initialised state.  In the single-word
133 		 * implementation here, these are both done by a single store.
134 		 */
135 		void unlock(bool isInitialised)
136 		{
137 			val.store(isInitialised ? initialised : 0, memory_order::release);
138 #ifndef NDEBUG
139 			GuardWord init_state = initialised;
140 			assert(*reinterpret_cast<uint8_t*>(&init_state) != 0);
141 #endif
142 		}
143 
144 		/**
145 		 * Try to acquire the lock.  This has a tri-state return, indicating
146 		 * either that the lock was acquired, it wasn't acquired because it was
147 		 * contended, or it wasn't acquired because the guarded variable is
148 		 * already initialised.
149 		 */
150 		GuardState try_lock()
151 		{
152 			GuardWord old = 0;
153 			// Try to acquire the lock, assuming that we are in the state where
154 			// the lock is not held and the variable is not initialised (so the
155 			// expected value is 0).
156 			if (val.compare_exchange(old, locked))
157 			{
158 				return GuardState::InitLockSucceeded;
159 			}
160 			// If the CAS failed and the old value indicates that this is
161 			// initialised, return that initialisation is done and skip further
162 			// retries.
163 			if (old == initialised)
164 			{
165 				return GuardState::InitDone;
166 			}
167 			// Otherwise, report failure.
168 			return GuardState::InitLockFailed;
169 		}
170 
171 		/**
172 		 * Check whether the guard indicates that the variable is initialised.
173 		 */
174 		bool is_initialised()
175 		{
176 			return (val.load(memory_order::acquire) & initialised) ==
177 			       initialised;
178 		}
179 	};
180 
181 	/**
182 	 * Class encapsulating using two 32-bit atomic values to represent a 64-bit
183 	 * guard variable.
184 	 */
185 	template<int LockedBit, int InitBit>
186 	class DoubleWordGuard
187 	{
188 		/**
189 		 * The value of `lock_word` when the lock is held.
190 		 */
191 		static constexpr uint32_t locked = static_cast<uint32_t>(1)
192 		                                   << LockedBit;
193 
194 		/**
195 		 * The value of `init_word` when the guarded variable is initialised.
196 		 */
197 		static constexpr uint32_t initialised = static_cast<uint32_t>(1)
198 		                                        << InitBit;
199 
200 		/**
201 		 * The word used for the initialised flag.  This is always the first
202 		 * word irrespective of endian because the generated code compares the
203 		 * first byte in memory against 0.
204 		 */
205 		atomic<uint32_t> init_word;
206 
207 		/**
208 		 * The word used for the lock.
209 		 */
210 		atomic<uint32_t> lock_word;
211 
212 		public:
213 		/**
214 		 * Try to acquire the lock.  This has a tri-state return, indicating
215 		 * either that the lock was acquired, it wasn't acquired because it was
216 		 * contended, or it wasn't acquired because the guarded variable is
217 		 * already initialised.
218 		 */
219 		GuardState try_lock()
220 		{
221 			uint32_t old = 0;
222 			// Try to acquire the lock
223 			if (lock_word.compare_exchange(old, locked))
224 			{
225 				// If we succeeded, check if initialisation has happened.  In
226 				// this version, we don't have atomic manipulation of both the
227 				// lock and initialised bits together.  Instead, we have an
228 				// ordering rule that the initialised bit is only ever updated
229 				// with the lock held.
230 				if (is_initialised())
231 				{
232 					// If another thread did manage to initialise this, release
233 					// the lock and notify the caller that initialisation is
234 					// done.
235 					lock_word.store(0, memory_order::release);
236 					return GuardState::InitDone;
237 				}
238 				return GuardState::InitLockSucceeded;
239 			}
240 			return GuardState::InitLockFailed;
241 		}
242 
243 		/**
244 		 * Set the initialised state and release the lock.  In this
245 		 * implementation, this is ordered, not atomic: the initialise bit is
246 		 * set while the lock is held.
247 		 */
248 		void unlock(bool isInitialised)
249 		{
250 			init_word.store(isInitialised ? initialised : 0,
251 			                  memory_order::release);
252 			lock_word.store(0, memory_order::release);
253 			assert((*reinterpret_cast<uint8_t*>(this) != 0) == isInitialised);
254 		}
255 
256 		/**
257 		 * Return whether the guarded variable is initialised.
258 		 */
259 		bool is_initialised()
260 		{
261 			return (init_word.load(memory_order::acquire) & initialised) ==
262 			       initialised;
263 		}
264 	};
265 
266 	// Check that the two implementations are the correct size.
267 	static_assert(sizeof(SingleWordGuard<uint32_t, 31, 0>) == sizeof(uint32_t),
268 	              "Single-word 32-bit guard must be 32 bits");
269 	static_assert(sizeof(SingleWordGuard<uint64_t, 63, 0>) == sizeof(uint64_t),
270 	              "Single-word 64-bit guard must be 64 bits");
271 	static_assert(sizeof(DoubleWordGuard<31, 0>) == sizeof(uint64_t),
272 	              "Double-word guard must be 64 bits");
273 
274 #ifdef __arm__
275 	/**
276 	 * The Arm PCS defines a variant of the Itanium ABI with 32-bit lock words.
277 	 */
278 	using Guard = SingleWordGuard<uint32_t, 31, 0>;
279 #elif defined(_LP64)
280 #	if defined(__LITTLE_ENDIAN__)
281 	/**
282 	 * On little-endian 64-bit platforms the guard word is a single 64-bit
283 	 * atomic with the lock in the high bit and the initialised flag in the low
284 	 * bit.
285 	 */
286 	using Guard = SingleWordGuard<uint64_t, 63, 0>;
287 #	else
288 	/**
289 	 * On bit-endian 64-bit platforms, the guard word is a single 64-bit atomic
290 	 * with the lock in the low bit and the initialised bit in the highest
291 	 * byte.
292 	 */
293 	using Guard = SingleWordGuard<uint64_t, 0, 56>;
294 #	endif
295 #else
296 #	if defined(__LITTLE_ENDIAN__)
297 	/**
298 	 * 32-bit platforms use the same layout as 64-bit.
299 	 */
300 	using Guard = DoubleWordGuard<31, 0>;
301 #	else
302 	/**
303 	 * 32-bit platforms use the same layout as 64-bit.
304 	 */
305 	using Guard = DoubleWordGuard<0, 24>;
306 #	endif
307 #endif
308 
309 } // namespace
310 
311 /**
312  * Acquires a lock on a guard, returning 0 if the object has already been
313  * initialised, and 1 if it has not.  If the object is already constructed then
314  * this function just needs to read a byte from memory and return.
315  */
316 extern "C" int __cxa_guard_acquire(Guard *guard_object)
317 {
318 	// Check if this is already initialised.  If so, we don't have to do
319 	// anything.
320 	if (guard_object->is_initialised())
321 	{
322 		return 0;
323 	}
324 	// Spin trying to acquire the lock.  If we fail to acquire the lock the
325 	// first time then another thread will *probably* initialise it, but if the
326 	// constructor throws an exception then we may have to try again in this
327 	// thread.
328 	for (;;)
329 	{
330 		// Try to acquire the lock.
331 		switch (guard_object->try_lock())
332 		{
333 			// If we failed to acquire the lock but another thread has
334 			// initialised the lock while we were waiting, return immediately
335 			// indicating that initialisation is not required.
336 			case GuardState::InitDone:
337 				return 0;
338 			// If we acquired the lock, return immediately to start
339 			// initialisation.
340 			case GuardState::InitLockSucceeded:
341 				return 1;
342 			// If we didn't acquire the lock, pause and retry.
343 			case GuardState::InitLockFailed:
344 				break;
345 		}
346 		sched_yield();
347 	}
348 }
349 
350 /**
351  * Releases the lock without marking the object as initialised.  This function
352  * is called if initialising a static causes an exception to be thrown.
353  */
354 extern "C" void __cxa_guard_abort(Guard *guard_object)
355 {
356 	guard_object->unlock(false);
357 }
358 
359 /**
360  * Releases the guard and marks the object as initialised.  This function is
361  * called after successful initialisation of a static.
362  */
363 extern "C" void __cxa_guard_release(Guard *guard_object)
364 {
365 	guard_object->unlock(true);
366 }
367