xref: /freebsd/contrib/libpcap/gencode.c (revision d184218c)
1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  *
22  * $FreeBSD$
23  */
24 #ifndef lint
25 static const char rcsid[] _U_ =
26     "@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.309 2008-12-23 20:13:29 guy Exp $ (LBL)";
27 #endif
28 
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32 
33 #ifdef WIN32
34 #include <pcap-stdinc.h>
35 #else /* WIN32 */
36 #if HAVE_INTTYPES_H
37 #include <inttypes.h>
38 #elif HAVE_STDINT_H
39 #include <stdint.h>
40 #endif
41 #ifdef HAVE_SYS_BITYPES_H
42 #include <sys/bitypes.h>
43 #endif
44 #include <sys/types.h>
45 #include <sys/socket.h>
46 #endif /* WIN32 */
47 
48 /*
49  * XXX - why was this included even on UNIX?
50  */
51 #ifdef __MINGW32__
52 #include "ip6_misc.h"
53 #endif
54 
55 #ifndef WIN32
56 
57 #ifdef __NetBSD__
58 #include <sys/param.h>
59 #endif
60 
61 #include <netinet/in.h>
62 #include <arpa/inet.h>
63 
64 #endif /* WIN32 */
65 
66 #include <stdlib.h>
67 #include <string.h>
68 #include <memory.h>
69 #include <setjmp.h>
70 #include <stdarg.h>
71 
72 #ifdef MSDOS
73 #include "pcap-dos.h"
74 #endif
75 
76 #include "pcap-int.h"
77 
78 #include "ethertype.h"
79 #include "nlpid.h"
80 #include "llc.h"
81 #include "gencode.h"
82 #include "ieee80211.h"
83 #include "atmuni31.h"
84 #include "sunatmpos.h"
85 #include "ppp.h"
86 #include "pcap/sll.h"
87 #include "pcap/ipnet.h"
88 #include "arcnet.h"
89 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
90 #include <linux/types.h>
91 #include <linux/if_packet.h>
92 #include <linux/filter.h>
93 #endif
94 #ifdef HAVE_NET_PFVAR_H
95 #include <sys/socket.h>
96 #include <net/if.h>
97 #include <net/pfvar.h>
98 #include <net/if_pflog.h>
99 #endif
100 #ifndef offsetof
101 #define offsetof(s, e) ((size_t)&((s *)0)->e)
102 #endif
103 #ifdef INET6
104 #ifndef WIN32
105 #include <netdb.h>	/* for "struct addrinfo" */
106 #endif /* WIN32 */
107 #endif /*INET6*/
108 #include <pcap/namedb.h>
109 
110 #define ETHERMTU	1500
111 
112 #ifndef IPPROTO_SCTP
113 #define IPPROTO_SCTP 132
114 #endif
115 
116 #ifdef HAVE_OS_PROTO_H
117 #include "os-proto.h"
118 #endif
119 
120 #define JMP(c) ((c)|BPF_JMP|BPF_K)
121 
122 /* Locals */
123 static jmp_buf top_ctx;
124 static pcap_t *bpf_pcap;
125 
126 /* Hack for updating VLAN, MPLS, and PPPoE offsets. */
127 #ifdef WIN32
128 static u_int	orig_linktype = (u_int)-1, orig_nl = (u_int)-1, label_stack_depth = (u_int)-1;
129 #else
130 static u_int	orig_linktype = -1U, orig_nl = -1U, label_stack_depth = -1U;
131 #endif
132 
133 /* XXX */
134 #ifdef PCAP_FDDIPAD
135 static int	pcap_fddipad;
136 #endif
137 
138 /* VARARGS */
139 void
140 bpf_error(const char *fmt, ...)
141 {
142 	va_list ap;
143 
144 	va_start(ap, fmt);
145 	if (bpf_pcap != NULL)
146 		(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
147 		    fmt, ap);
148 	va_end(ap);
149 	longjmp(top_ctx, 1);
150 	/* NOTREACHED */
151 }
152 
153 static void init_linktype(pcap_t *);
154 
155 static void init_regs(void);
156 static int alloc_reg(void);
157 static void free_reg(int);
158 
159 static struct block *root;
160 
161 /*
162  * Value passed to gen_load_a() to indicate what the offset argument
163  * is relative to.
164  */
165 enum e_offrel {
166 	OR_PACKET,	/* relative to the beginning of the packet */
167 	OR_LINK,	/* relative to the beginning of the link-layer header */
168 	OR_MACPL,	/* relative to the end of the MAC-layer header */
169 	OR_NET,		/* relative to the network-layer header */
170 	OR_NET_NOSNAP,	/* relative to the network-layer header, with no SNAP header at the link layer */
171 	OR_TRAN_IPV4,	/* relative to the transport-layer header, with IPv4 network layer */
172 	OR_TRAN_IPV6	/* relative to the transport-layer header, with IPv6 network layer */
173 };
174 
175 #ifdef INET6
176 /*
177  * As errors are handled by a longjmp, anything allocated must be freed
178  * in the longjmp handler, so it must be reachable from that handler.
179  * One thing that's allocated is the result of pcap_nametoaddrinfo();
180  * it must be freed with freeaddrinfo().  This variable points to any
181  * addrinfo structure that would need to be freed.
182  */
183 static struct addrinfo *ai;
184 #endif
185 
186 /*
187  * We divy out chunks of memory rather than call malloc each time so
188  * we don't have to worry about leaking memory.  It's probably
189  * not a big deal if all this memory was wasted but if this ever
190  * goes into a library that would probably not be a good idea.
191  *
192  * XXX - this *is* in a library....
193  */
194 #define NCHUNKS 16
195 #define CHUNK0SIZE 1024
196 struct chunk {
197 	u_int n_left;
198 	void *m;
199 };
200 
201 static struct chunk chunks[NCHUNKS];
202 static int cur_chunk;
203 
204 static void *newchunk(u_int);
205 static void freechunks(void);
206 static inline struct block *new_block(int);
207 static inline struct slist *new_stmt(int);
208 static struct block *gen_retblk(int);
209 static inline void syntax(void);
210 
211 static void backpatch(struct block *, struct block *);
212 static void merge(struct block *, struct block *);
213 static struct block *gen_cmp(enum e_offrel, u_int, u_int, bpf_int32);
214 static struct block *gen_cmp_gt(enum e_offrel, u_int, u_int, bpf_int32);
215 static struct block *gen_cmp_ge(enum e_offrel, u_int, u_int, bpf_int32);
216 static struct block *gen_cmp_lt(enum e_offrel, u_int, u_int, bpf_int32);
217 static struct block *gen_cmp_le(enum e_offrel, u_int, u_int, bpf_int32);
218 static struct block *gen_mcmp(enum e_offrel, u_int, u_int, bpf_int32,
219     bpf_u_int32);
220 static struct block *gen_bcmp(enum e_offrel, u_int, u_int, const u_char *);
221 static struct block *gen_ncmp(enum e_offrel, bpf_u_int32, bpf_u_int32,
222     bpf_u_int32, bpf_u_int32, int, bpf_int32);
223 static struct slist *gen_load_llrel(u_int, u_int);
224 static struct slist *gen_load_macplrel(u_int, u_int);
225 static struct slist *gen_load_a(enum e_offrel, u_int, u_int);
226 static struct slist *gen_loadx_iphdrlen(void);
227 static struct block *gen_uncond(int);
228 static inline struct block *gen_true(void);
229 static inline struct block *gen_false(void);
230 static struct block *gen_ether_linktype(int);
231 static struct block *gen_ipnet_linktype(int);
232 static struct block *gen_linux_sll_linktype(int);
233 static struct slist *gen_load_prism_llprefixlen(void);
234 static struct slist *gen_load_avs_llprefixlen(void);
235 static struct slist *gen_load_radiotap_llprefixlen(void);
236 static struct slist *gen_load_ppi_llprefixlen(void);
237 static void insert_compute_vloffsets(struct block *);
238 static struct slist *gen_llprefixlen(void);
239 static struct slist *gen_off_macpl(void);
240 static int ethertype_to_ppptype(int);
241 static struct block *gen_linktype(int);
242 static struct block *gen_snap(bpf_u_int32, bpf_u_int32);
243 static struct block *gen_llc_linktype(int);
244 static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
245 #ifdef INET6
246 static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
247 #endif
248 static struct block *gen_ahostop(const u_char *, int);
249 static struct block *gen_ehostop(const u_char *, int);
250 static struct block *gen_fhostop(const u_char *, int);
251 static struct block *gen_thostop(const u_char *, int);
252 static struct block *gen_wlanhostop(const u_char *, int);
253 static struct block *gen_ipfchostop(const u_char *, int);
254 static struct block *gen_dnhostop(bpf_u_int32, int);
255 static struct block *gen_mpls_linktype(int);
256 static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int, int);
257 #ifdef INET6
258 static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int, int);
259 #endif
260 #ifndef INET6
261 static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
262 #endif
263 static struct block *gen_ipfrag(void);
264 static struct block *gen_portatom(int, bpf_int32);
265 static struct block *gen_portrangeatom(int, bpf_int32, bpf_int32);
266 #ifdef INET6
267 static struct block *gen_portatom6(int, bpf_int32);
268 static struct block *gen_portrangeatom6(int, bpf_int32, bpf_int32);
269 #endif
270 struct block *gen_portop(int, int, int);
271 static struct block *gen_port(int, int, int);
272 struct block *gen_portrangeop(int, int, int, int);
273 static struct block *gen_portrange(int, int, int, int);
274 #ifdef INET6
275 struct block *gen_portop6(int, int, int);
276 static struct block *gen_port6(int, int, int);
277 struct block *gen_portrangeop6(int, int, int, int);
278 static struct block *gen_portrange6(int, int, int, int);
279 #endif
280 static int lookup_proto(const char *, int);
281 static struct block *gen_protochain(int, int, int);
282 static struct block *gen_proto(int, int, int);
283 static struct slist *xfer_to_x(struct arth *);
284 static struct slist *xfer_to_a(struct arth *);
285 static struct block *gen_mac_multicast(int);
286 static struct block *gen_len(int, int);
287 static struct block *gen_check_802_11_data_frame(void);
288 
289 static struct block *gen_ppi_dlt_check(void);
290 static struct block *gen_msg_abbrev(int type);
291 
292 static void *
293 newchunk(n)
294 	u_int n;
295 {
296 	struct chunk *cp;
297 	int k;
298 	size_t size;
299 
300 #ifndef __NetBSD__
301 	/* XXX Round up to nearest long. */
302 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
303 #else
304 	/* XXX Round up to structure boundary. */
305 	n = ALIGN(n);
306 #endif
307 
308 	cp = &chunks[cur_chunk];
309 	if (n > cp->n_left) {
310 		++cp, k = ++cur_chunk;
311 		if (k >= NCHUNKS)
312 			bpf_error("out of memory");
313 		size = CHUNK0SIZE << k;
314 		cp->m = (void *)malloc(size);
315 		if (cp->m == NULL)
316 			bpf_error("out of memory");
317 		memset((char *)cp->m, 0, size);
318 		cp->n_left = size;
319 		if (n > size)
320 			bpf_error("out of memory");
321 	}
322 	cp->n_left -= n;
323 	return (void *)((char *)cp->m + cp->n_left);
324 }
325 
326 static void
327 freechunks()
328 {
329 	int i;
330 
331 	cur_chunk = 0;
332 	for (i = 0; i < NCHUNKS; ++i)
333 		if (chunks[i].m != NULL) {
334 			free(chunks[i].m);
335 			chunks[i].m = NULL;
336 		}
337 }
338 
339 /*
340  * A strdup whose allocations are freed after code generation is over.
341  */
342 char *
343 sdup(s)
344 	register const char *s;
345 {
346 	int n = strlen(s) + 1;
347 	char *cp = newchunk(n);
348 
349 	strlcpy(cp, s, n);
350 	return (cp);
351 }
352 
353 static inline struct block *
354 new_block(code)
355 	int code;
356 {
357 	struct block *p;
358 
359 	p = (struct block *)newchunk(sizeof(*p));
360 	p->s.code = code;
361 	p->head = p;
362 
363 	return p;
364 }
365 
366 static inline struct slist *
367 new_stmt(code)
368 	int code;
369 {
370 	struct slist *p;
371 
372 	p = (struct slist *)newchunk(sizeof(*p));
373 	p->s.code = code;
374 
375 	return p;
376 }
377 
378 static struct block *
379 gen_retblk(v)
380 	int v;
381 {
382 	struct block *b = new_block(BPF_RET|BPF_K);
383 
384 	b->s.k = v;
385 	return b;
386 }
387 
388 static inline void
389 syntax()
390 {
391 	bpf_error("syntax error in filter expression");
392 }
393 
394 static bpf_u_int32 netmask;
395 static int snaplen;
396 int no_optimize;
397 #ifdef WIN32
398 static int
399 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
400 	     const char *buf, int optimize, bpf_u_int32 mask);
401 
402 int
403 pcap_compile(pcap_t *p, struct bpf_program *program,
404 	     const char *buf, int optimize, bpf_u_int32 mask)
405 {
406 	int result;
407 
408 	EnterCriticalSection(&g_PcapCompileCriticalSection);
409 
410 	result = pcap_compile_unsafe(p, program, buf, optimize, mask);
411 
412 	LeaveCriticalSection(&g_PcapCompileCriticalSection);
413 
414 	return result;
415 }
416 
417 static int
418 pcap_compile_unsafe(pcap_t *p, struct bpf_program *program,
419 	     const char *buf, int optimize, bpf_u_int32 mask)
420 #else /* WIN32 */
421 int
422 pcap_compile(pcap_t *p, struct bpf_program *program,
423 	     const char *buf, int optimize, bpf_u_int32 mask)
424 #endif /* WIN32 */
425 {
426 	extern int n_errors;
427 	const char * volatile xbuf = buf;
428 	u_int len;
429 
430 	no_optimize = 0;
431 	n_errors = 0;
432 	root = NULL;
433 	bpf_pcap = p;
434 	init_regs();
435 	if (setjmp(top_ctx)) {
436 #ifdef INET6
437 		if (ai != NULL) {
438 			freeaddrinfo(ai);
439 			ai = NULL;
440 		}
441 #endif
442 		lex_cleanup();
443 		freechunks();
444 		return (-1);
445 	}
446 
447 	netmask = mask;
448 
449 	snaplen = pcap_snapshot(p);
450 	if (snaplen == 0) {
451 		snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
452 			 "snaplen of 0 rejects all packets");
453 		return -1;
454 	}
455 
456 	lex_init(xbuf ? xbuf : "");
457 	init_linktype(p);
458 	(void)pcap_parse();
459 
460 	if (n_errors)
461 		syntax();
462 
463 	if (root == NULL)
464 		root = gen_retblk(snaplen);
465 
466 	if (optimize && !no_optimize) {
467 		bpf_optimize(&root);
468 		if (root == NULL ||
469 		    (root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
470 			bpf_error("expression rejects all packets");
471 	}
472 	program->bf_insns = icode_to_fcode(root, &len);
473 	program->bf_len = len;
474 
475 	lex_cleanup();
476 	freechunks();
477 	return (0);
478 }
479 
480 /*
481  * entry point for using the compiler with no pcap open
482  * pass in all the stuff that is needed explicitly instead.
483  */
484 int
485 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
486 		    struct bpf_program *program,
487 	     const char *buf, int optimize, bpf_u_int32 mask)
488 {
489 	pcap_t *p;
490 	int ret;
491 
492 	p = pcap_open_dead(linktype_arg, snaplen_arg);
493 	if (p == NULL)
494 		return (-1);
495 	ret = pcap_compile(p, program, buf, optimize, mask);
496 	pcap_close(p);
497 	return (ret);
498 }
499 
500 /*
501  * Clean up a "struct bpf_program" by freeing all the memory allocated
502  * in it.
503  */
504 void
505 pcap_freecode(struct bpf_program *program)
506 {
507 	program->bf_len = 0;
508 	if (program->bf_insns != NULL) {
509 		free((char *)program->bf_insns);
510 		program->bf_insns = NULL;
511 	}
512 }
513 
514 /*
515  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
516  * which of the jt and jf fields has been resolved and which is a pointer
517  * back to another unresolved block (or nil).  At least one of the fields
518  * in each block is already resolved.
519  */
520 static void
521 backpatch(list, target)
522 	struct block *list, *target;
523 {
524 	struct block *next;
525 
526 	while (list) {
527 		if (!list->sense) {
528 			next = JT(list);
529 			JT(list) = target;
530 		} else {
531 			next = JF(list);
532 			JF(list) = target;
533 		}
534 		list = next;
535 	}
536 }
537 
538 /*
539  * Merge the lists in b0 and b1, using the 'sense' field to indicate
540  * which of jt and jf is the link.
541  */
542 static void
543 merge(b0, b1)
544 	struct block *b0, *b1;
545 {
546 	register struct block **p = &b0;
547 
548 	/* Find end of list. */
549 	while (*p)
550 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
551 
552 	/* Concatenate the lists. */
553 	*p = b1;
554 }
555 
556 void
557 finish_parse(p)
558 	struct block *p;
559 {
560 	struct block *ppi_dlt_check;
561 
562 	/*
563 	 * Insert before the statements of the first (root) block any
564 	 * statements needed to load the lengths of any variable-length
565 	 * headers into registers.
566 	 *
567 	 * XXX - a fancier strategy would be to insert those before the
568 	 * statements of all blocks that use those lengths and that
569 	 * have no predecessors that use them, so that we only compute
570 	 * the lengths if we need them.  There might be even better
571 	 * approaches than that.
572 	 *
573 	 * However, those strategies would be more complicated, and
574 	 * as we don't generate code to compute a length if the
575 	 * program has no tests that use the length, and as most
576 	 * tests will probably use those lengths, we would just
577 	 * postpone computing the lengths so that it's not done
578 	 * for tests that fail early, and it's not clear that's
579 	 * worth the effort.
580 	 */
581 	insert_compute_vloffsets(p->head);
582 
583 	/*
584 	 * For DLT_PPI captures, generate a check of the per-packet
585 	 * DLT value to make sure it's DLT_IEEE802_11.
586 	 */
587 	ppi_dlt_check = gen_ppi_dlt_check();
588 	if (ppi_dlt_check != NULL)
589 		gen_and(ppi_dlt_check, p);
590 
591 	backpatch(p, gen_retblk(snaplen));
592 	p->sense = !p->sense;
593 	backpatch(p, gen_retblk(0));
594 	root = p->head;
595 }
596 
597 void
598 gen_and(b0, b1)
599 	struct block *b0, *b1;
600 {
601 	backpatch(b0, b1->head);
602 	b0->sense = !b0->sense;
603 	b1->sense = !b1->sense;
604 	merge(b1, b0);
605 	b1->sense = !b1->sense;
606 	b1->head = b0->head;
607 }
608 
609 void
610 gen_or(b0, b1)
611 	struct block *b0, *b1;
612 {
613 	b0->sense = !b0->sense;
614 	backpatch(b0, b1->head);
615 	b0->sense = !b0->sense;
616 	merge(b1, b0);
617 	b1->head = b0->head;
618 }
619 
620 void
621 gen_not(b)
622 	struct block *b;
623 {
624 	b->sense = !b->sense;
625 }
626 
627 static struct block *
628 gen_cmp(offrel, offset, size, v)
629 	enum e_offrel offrel;
630 	u_int offset, size;
631 	bpf_int32 v;
632 {
633 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
634 }
635 
636 static struct block *
637 gen_cmp_gt(offrel, offset, size, v)
638 	enum e_offrel offrel;
639 	u_int offset, size;
640 	bpf_int32 v;
641 {
642 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
643 }
644 
645 static struct block *
646 gen_cmp_ge(offrel, offset, size, v)
647 	enum e_offrel offrel;
648 	u_int offset, size;
649 	bpf_int32 v;
650 {
651 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
652 }
653 
654 static struct block *
655 gen_cmp_lt(offrel, offset, size, v)
656 	enum e_offrel offrel;
657 	u_int offset, size;
658 	bpf_int32 v;
659 {
660 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
661 }
662 
663 static struct block *
664 gen_cmp_le(offrel, offset, size, v)
665 	enum e_offrel offrel;
666 	u_int offset, size;
667 	bpf_int32 v;
668 {
669 	return gen_ncmp(offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
670 }
671 
672 static struct block *
673 gen_mcmp(offrel, offset, size, v, mask)
674 	enum e_offrel offrel;
675 	u_int offset, size;
676 	bpf_int32 v;
677 	bpf_u_int32 mask;
678 {
679 	return gen_ncmp(offrel, offset, size, mask, BPF_JEQ, 0, v);
680 }
681 
682 static struct block *
683 gen_bcmp(offrel, offset, size, v)
684 	enum e_offrel offrel;
685 	register u_int offset, size;
686 	register const u_char *v;
687 {
688 	register struct block *b, *tmp;
689 
690 	b = NULL;
691 	while (size >= 4) {
692 		register const u_char *p = &v[size - 4];
693 		bpf_int32 w = ((bpf_int32)p[0] << 24) |
694 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
695 
696 		tmp = gen_cmp(offrel, offset + size - 4, BPF_W, w);
697 		if (b != NULL)
698 			gen_and(b, tmp);
699 		b = tmp;
700 		size -= 4;
701 	}
702 	while (size >= 2) {
703 		register const u_char *p = &v[size - 2];
704 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
705 
706 		tmp = gen_cmp(offrel, offset + size - 2, BPF_H, w);
707 		if (b != NULL)
708 			gen_and(b, tmp);
709 		b = tmp;
710 		size -= 2;
711 	}
712 	if (size > 0) {
713 		tmp = gen_cmp(offrel, offset, BPF_B, (bpf_int32)v[0]);
714 		if (b != NULL)
715 			gen_and(b, tmp);
716 		b = tmp;
717 	}
718 	return b;
719 }
720 
721 /*
722  * AND the field of size "size" at offset "offset" relative to the header
723  * specified by "offrel" with "mask", and compare it with the value "v"
724  * with the test specified by "jtype"; if "reverse" is true, the test
725  * should test the opposite of "jtype".
726  */
727 static struct block *
728 gen_ncmp(offrel, offset, size, mask, jtype, reverse, v)
729 	enum e_offrel offrel;
730 	bpf_int32 v;
731 	bpf_u_int32 offset, size, mask, jtype;
732 	int reverse;
733 {
734 	struct slist *s, *s2;
735 	struct block *b;
736 
737 	s = gen_load_a(offrel, offset, size);
738 
739 	if (mask != 0xffffffff) {
740 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
741 		s2->s.k = mask;
742 		sappend(s, s2);
743 	}
744 
745 	b = new_block(JMP(jtype));
746 	b->stmts = s;
747 	b->s.k = v;
748 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
749 		gen_not(b);
750 	return b;
751 }
752 
753 /*
754  * Various code constructs need to know the layout of the data link
755  * layer.  These variables give the necessary offsets from the beginning
756  * of the packet data.
757  */
758 
759 /*
760  * This is the offset of the beginning of the link-layer header from
761  * the beginning of the raw packet data.
762  *
763  * It's usually 0, except for 802.11 with a fixed-length radio header.
764  * (For 802.11 with a variable-length radio header, we have to generate
765  * code to compute that offset; off_ll is 0 in that case.)
766  */
767 static u_int off_ll;
768 
769 /*
770  * If there's a variable-length header preceding the link-layer header,
771  * "reg_off_ll" is the register number for a register containing the
772  * length of that header, and therefore the offset of the link-layer
773  * header from the beginning of the raw packet data.  Otherwise,
774  * "reg_off_ll" is -1.
775  */
776 static int reg_off_ll;
777 
778 /*
779  * This is the offset of the beginning of the MAC-layer header from
780  * the beginning of the link-layer header.
781  * It's usually 0, except for ATM LANE, where it's the offset, relative
782  * to the beginning of the raw packet data, of the Ethernet header, and
783  * for Ethernet with various additional information.
784  */
785 static u_int off_mac;
786 
787 /*
788  * This is the offset of the beginning of the MAC-layer payload,
789  * from the beginning of the raw packet data.
790  *
791  * I.e., it's the sum of the length of the link-layer header (without,
792  * for example, any 802.2 LLC header, so it's the MAC-layer
793  * portion of that header), plus any prefix preceding the
794  * link-layer header.
795  */
796 static u_int off_macpl;
797 
798 /*
799  * This is 1 if the offset of the beginning of the MAC-layer payload
800  * from the beginning of the link-layer header is variable-length.
801  */
802 static int off_macpl_is_variable;
803 
804 /*
805  * If the link layer has variable_length headers, "reg_off_macpl"
806  * is the register number for a register containing the length of the
807  * link-layer header plus the length of any variable-length header
808  * preceding the link-layer header.  Otherwise, "reg_off_macpl"
809  * is -1.
810  */
811 static int reg_off_macpl;
812 
813 /*
814  * "off_linktype" is the offset to information in the link-layer header
815  * giving the packet type.  This offset is relative to the beginning
816  * of the link-layer header (i.e., it doesn't include off_ll).
817  *
818  * For Ethernet, it's the offset of the Ethernet type field.
819  *
820  * For link-layer types that always use 802.2 headers, it's the
821  * offset of the LLC header.
822  *
823  * For PPP, it's the offset of the PPP type field.
824  *
825  * For Cisco HDLC, it's the offset of the CHDLC type field.
826  *
827  * For BSD loopback, it's the offset of the AF_ value.
828  *
829  * For Linux cooked sockets, it's the offset of the type field.
830  *
831  * It's set to -1 for no encapsulation, in which case, IP is assumed.
832  */
833 static u_int off_linktype;
834 
835 /*
836  * TRUE if "pppoes" appeared in the filter; it causes link-layer type
837  * checks to check the PPP header, assumed to follow a LAN-style link-
838  * layer header and a PPPoE session header.
839  */
840 static int is_pppoes = 0;
841 
842 /*
843  * TRUE if the link layer includes an ATM pseudo-header.
844  */
845 static int is_atm = 0;
846 
847 /*
848  * TRUE if "lane" appeared in the filter; it causes us to generate
849  * code that assumes LANE rather than LLC-encapsulated traffic in SunATM.
850  */
851 static int is_lane = 0;
852 
853 /*
854  * These are offsets for the ATM pseudo-header.
855  */
856 static u_int off_vpi;
857 static u_int off_vci;
858 static u_int off_proto;
859 
860 /*
861  * These are offsets for the MTP2 fields.
862  */
863 static u_int off_li;
864 
865 /*
866  * These are offsets for the MTP3 fields.
867  */
868 static u_int off_sio;
869 static u_int off_opc;
870 static u_int off_dpc;
871 static u_int off_sls;
872 
873 /*
874  * This is the offset of the first byte after the ATM pseudo_header,
875  * or -1 if there is no ATM pseudo-header.
876  */
877 static u_int off_payload;
878 
879 /*
880  * These are offsets to the beginning of the network-layer header.
881  * They are relative to the beginning of the MAC-layer payload (i.e.,
882  * they don't include off_ll or off_macpl).
883  *
884  * If the link layer never uses 802.2 LLC:
885  *
886  *	"off_nl" and "off_nl_nosnap" are the same.
887  *
888  * If the link layer always uses 802.2 LLC:
889  *
890  *	"off_nl" is the offset if there's a SNAP header following
891  *	the 802.2 header;
892  *
893  *	"off_nl_nosnap" is the offset if there's no SNAP header.
894  *
895  * If the link layer is Ethernet:
896  *
897  *	"off_nl" is the offset if the packet is an Ethernet II packet
898  *	(we assume no 802.3+802.2+SNAP);
899  *
900  *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
901  *	with an 802.2 header following it.
902  */
903 static u_int off_nl;
904 static u_int off_nl_nosnap;
905 
906 static int linktype;
907 
908 static void
909 init_linktype(p)
910 	pcap_t *p;
911 {
912 	linktype = pcap_datalink(p);
913 #ifdef PCAP_FDDIPAD
914 	pcap_fddipad = p->fddipad;
915 #endif
916 
917 	/*
918 	 * Assume it's not raw ATM with a pseudo-header, for now.
919 	 */
920 	off_mac = 0;
921 	is_atm = 0;
922 	is_lane = 0;
923 	off_vpi = -1;
924 	off_vci = -1;
925 	off_proto = -1;
926 	off_payload = -1;
927 
928 	/*
929 	 * And that we're not doing PPPoE.
930 	 */
931 	is_pppoes = 0;
932 
933 	/*
934 	 * And assume we're not doing SS7.
935 	 */
936 	off_li = -1;
937 	off_sio = -1;
938 	off_opc = -1;
939 	off_dpc = -1;
940 	off_sls = -1;
941 
942 	/*
943 	 * Also assume it's not 802.11.
944 	 */
945 	off_ll = 0;
946 	off_macpl = 0;
947 	off_macpl_is_variable = 0;
948 
949 	orig_linktype = -1;
950 	orig_nl = -1;
951         label_stack_depth = 0;
952 
953 	reg_off_ll = -1;
954 	reg_off_macpl = -1;
955 
956 	switch (linktype) {
957 
958 	case DLT_ARCNET:
959 		off_linktype = 2;
960 		off_macpl = 6;
961 		off_nl = 0;		/* XXX in reality, variable! */
962 		off_nl_nosnap = 0;	/* no 802.2 LLC */
963 		return;
964 
965 	case DLT_ARCNET_LINUX:
966 		off_linktype = 4;
967 		off_macpl = 8;
968 		off_nl = 0;		/* XXX in reality, variable! */
969 		off_nl_nosnap = 0;	/* no 802.2 LLC */
970 		return;
971 
972 	case DLT_EN10MB:
973 		off_linktype = 12;
974 		off_macpl = 14;		/* Ethernet header length */
975 		off_nl = 0;		/* Ethernet II */
976 		off_nl_nosnap = 3;	/* 802.3+802.2 */
977 		return;
978 
979 	case DLT_SLIP:
980 		/*
981 		 * SLIP doesn't have a link level type.  The 16 byte
982 		 * header is hacked into our SLIP driver.
983 		 */
984 		off_linktype = -1;
985 		off_macpl = 16;
986 		off_nl = 0;
987 		off_nl_nosnap = 0;	/* no 802.2 LLC */
988 		return;
989 
990 	case DLT_SLIP_BSDOS:
991 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
992 		off_linktype = -1;
993 		/* XXX end */
994 		off_macpl = 24;
995 		off_nl = 0;
996 		off_nl_nosnap = 0;	/* no 802.2 LLC */
997 		return;
998 
999 	case DLT_NULL:
1000 	case DLT_LOOP:
1001 		off_linktype = 0;
1002 		off_macpl = 4;
1003 		off_nl = 0;
1004 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1005 		return;
1006 
1007 	case DLT_ENC:
1008 		off_linktype = 0;
1009 		off_macpl = 12;
1010 		off_nl = 0;
1011 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1012 		return;
1013 
1014 	case DLT_PPP:
1015 	case DLT_PPP_PPPD:
1016 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1017 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1018 		off_linktype = 2;
1019 		off_macpl = 4;
1020 		off_nl = 0;
1021 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1022 		return;
1023 
1024 	case DLT_PPP_ETHER:
1025 		/*
1026 		 * This does no include the Ethernet header, and
1027 		 * only covers session state.
1028 		 */
1029 		off_linktype = 6;
1030 		off_macpl = 8;
1031 		off_nl = 0;
1032 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1033 		return;
1034 
1035 	case DLT_PPP_BSDOS:
1036 		off_linktype = 5;
1037 		off_macpl = 24;
1038 		off_nl = 0;
1039 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1040 		return;
1041 
1042 	case DLT_FDDI:
1043 		/*
1044 		 * FDDI doesn't really have a link-level type field.
1045 		 * We set "off_linktype" to the offset of the LLC header.
1046 		 *
1047 		 * To check for Ethernet types, we assume that SSAP = SNAP
1048 		 * is being used and pick out the encapsulated Ethernet type.
1049 		 * XXX - should we generate code to check for SNAP?
1050 		 */
1051 		off_linktype = 13;
1052 #ifdef PCAP_FDDIPAD
1053 		off_linktype += pcap_fddipad;
1054 #endif
1055 		off_macpl = 13;		/* FDDI MAC header length */
1056 #ifdef PCAP_FDDIPAD
1057 		off_macpl += pcap_fddipad;
1058 #endif
1059 		off_nl = 8;		/* 802.2+SNAP */
1060 		off_nl_nosnap = 3;	/* 802.2 */
1061 		return;
1062 
1063 	case DLT_IEEE802:
1064 		/*
1065 		 * Token Ring doesn't really have a link-level type field.
1066 		 * We set "off_linktype" to the offset of the LLC header.
1067 		 *
1068 		 * To check for Ethernet types, we assume that SSAP = SNAP
1069 		 * is being used and pick out the encapsulated Ethernet type.
1070 		 * XXX - should we generate code to check for SNAP?
1071 		 *
1072 		 * XXX - the header is actually variable-length.
1073 		 * Some various Linux patched versions gave 38
1074 		 * as "off_linktype" and 40 as "off_nl"; however,
1075 		 * if a token ring packet has *no* routing
1076 		 * information, i.e. is not source-routed, the correct
1077 		 * values are 20 and 22, as they are in the vanilla code.
1078 		 *
1079 		 * A packet is source-routed iff the uppermost bit
1080 		 * of the first byte of the source address, at an
1081 		 * offset of 8, has the uppermost bit set.  If the
1082 		 * packet is source-routed, the total number of bytes
1083 		 * of routing information is 2 plus bits 0x1F00 of
1084 		 * the 16-bit value at an offset of 14 (shifted right
1085 		 * 8 - figure out which byte that is).
1086 		 */
1087 		off_linktype = 14;
1088 		off_macpl = 14;		/* Token Ring MAC header length */
1089 		off_nl = 8;		/* 802.2+SNAP */
1090 		off_nl_nosnap = 3;	/* 802.2 */
1091 		return;
1092 
1093 	case DLT_IEEE802_11:
1094 	case DLT_PRISM_HEADER:
1095 	case DLT_IEEE802_11_RADIO_AVS:
1096 	case DLT_IEEE802_11_RADIO:
1097 		/*
1098 		 * 802.11 doesn't really have a link-level type field.
1099 		 * We set "off_linktype" to the offset of the LLC header.
1100 		 *
1101 		 * To check for Ethernet types, we assume that SSAP = SNAP
1102 		 * is being used and pick out the encapsulated Ethernet type.
1103 		 * XXX - should we generate code to check for SNAP?
1104 		 *
1105 		 * We also handle variable-length radio headers here.
1106 		 * The Prism header is in theory variable-length, but in
1107 		 * practice it's always 144 bytes long.  However, some
1108 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1109 		 * sometimes or always supply an AVS header, so we
1110 		 * have to check whether the radio header is a Prism
1111 		 * header or an AVS header, so, in practice, it's
1112 		 * variable-length.
1113 		 */
1114 		off_linktype = 24;
1115 		off_macpl = 0;		/* link-layer header is variable-length */
1116 		off_macpl_is_variable = 1;
1117 		off_nl = 8;		/* 802.2+SNAP */
1118 		off_nl_nosnap = 3;	/* 802.2 */
1119 		return;
1120 
1121 	case DLT_PPI:
1122 		/*
1123 		 * At the moment we treat PPI the same way that we treat
1124 		 * normal Radiotap encoded packets. The difference is in
1125 		 * the function that generates the code at the beginning
1126 		 * to compute the header length.  Since this code generator
1127 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1128 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1129 		 * generate code to check for this too.
1130 		 */
1131 		off_linktype = 24;
1132 		off_macpl = 0;		/* link-layer header is variable-length */
1133 		off_macpl_is_variable = 1;
1134 		off_nl = 8;		/* 802.2+SNAP */
1135 		off_nl_nosnap = 3;	/* 802.2 */
1136 		return;
1137 
1138 	case DLT_ATM_RFC1483:
1139 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1140 		/*
1141 		 * assume routed, non-ISO PDUs
1142 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1143 		 *
1144 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1145 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1146 		 * latter would presumably be treated the way PPPoE
1147 		 * should be, so you can do "pppoe and udp port 2049"
1148 		 * or "pppoa and tcp port 80" and have it check for
1149 		 * PPPo{A,E} and a PPP protocol of IP and....
1150 		 */
1151 		off_linktype = 0;
1152 		off_macpl = 0;		/* packet begins with LLC header */
1153 		off_nl = 8;		/* 802.2+SNAP */
1154 		off_nl_nosnap = 3;	/* 802.2 */
1155 		return;
1156 
1157 	case DLT_SUNATM:
1158 		/*
1159 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1160 		 * pseudo-header.
1161 		 */
1162 		is_atm = 1;
1163 		off_vpi = SUNATM_VPI_POS;
1164 		off_vci = SUNATM_VCI_POS;
1165 		off_proto = PROTO_POS;
1166 		off_mac = -1;	/* assume LLC-encapsulated, so no MAC-layer header */
1167 		off_payload = SUNATM_PKT_BEGIN_POS;
1168 		off_linktype = off_payload;
1169 		off_macpl = off_payload;	/* if LLC-encapsulated */
1170 		off_nl = 8;		/* 802.2+SNAP */
1171 		off_nl_nosnap = 3;	/* 802.2 */
1172 		return;
1173 
1174 	case DLT_RAW:
1175 	case DLT_IPV4:
1176 	case DLT_IPV6:
1177 		off_linktype = -1;
1178 		off_macpl = 0;
1179 		off_nl = 0;
1180 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1181 		return;
1182 
1183 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */
1184 		off_linktype = 14;
1185 		off_macpl = 16;
1186 		off_nl = 0;
1187 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1188 		return;
1189 
1190 	case DLT_LTALK:
1191 		/*
1192 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1193 		 * but really it just indicates whether there is a "short" or
1194 		 * "long" DDP packet following.
1195 		 */
1196 		off_linktype = -1;
1197 		off_macpl = 0;
1198 		off_nl = 0;
1199 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1200 		return;
1201 
1202 	case DLT_IP_OVER_FC:
1203 		/*
1204 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1205 		 * link-level type field.  We set "off_linktype" to the
1206 		 * offset of the LLC header.
1207 		 *
1208 		 * To check for Ethernet types, we assume that SSAP = SNAP
1209 		 * is being used and pick out the encapsulated Ethernet type.
1210 		 * XXX - should we generate code to check for SNAP? RFC
1211 		 * 2625 says SNAP should be used.
1212 		 */
1213 		off_linktype = 16;
1214 		off_macpl = 16;
1215 		off_nl = 8;		/* 802.2+SNAP */
1216 		off_nl_nosnap = 3;	/* 802.2 */
1217 		return;
1218 
1219 	case DLT_FRELAY:
1220 		/*
1221 		 * XXX - we should set this to handle SNAP-encapsulated
1222 		 * frames (NLPID of 0x80).
1223 		 */
1224 		off_linktype = -1;
1225 		off_macpl = 0;
1226 		off_nl = 0;
1227 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1228 		return;
1229 
1230                 /*
1231                  * the only BPF-interesting FRF.16 frames are non-control frames;
1232                  * Frame Relay has a variable length link-layer
1233                  * so lets start with offset 4 for now and increments later on (FIXME);
1234                  */
1235 	case DLT_MFR:
1236 		off_linktype = -1;
1237 		off_macpl = 0;
1238 		off_nl = 4;
1239 		off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1240 		return;
1241 
1242 	case DLT_APPLE_IP_OVER_IEEE1394:
1243 		off_linktype = 16;
1244 		off_macpl = 18;
1245 		off_nl = 0;
1246 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1247 		return;
1248 
1249 	case DLT_SYMANTEC_FIREWALL:
1250 		off_linktype = 6;
1251 		off_macpl = 44;
1252 		off_nl = 0;		/* Ethernet II */
1253 		off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1254 		return;
1255 
1256 #ifdef HAVE_NET_PFVAR_H
1257 	case DLT_PFLOG:
1258 		off_linktype = 0;
1259 		off_macpl = PFLOG_HDRLEN;
1260 		off_nl = 0;
1261 		off_nl_nosnap = 0;	/* no 802.2 LLC */
1262 		return;
1263 #endif
1264 
1265         case DLT_JUNIPER_MFR:
1266         case DLT_JUNIPER_MLFR:
1267         case DLT_JUNIPER_MLPPP:
1268         case DLT_JUNIPER_PPP:
1269         case DLT_JUNIPER_CHDLC:
1270         case DLT_JUNIPER_FRELAY:
1271                 off_linktype = 4;
1272 		off_macpl = 4;
1273 		off_nl = 0;
1274 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1275                 return;
1276 
1277 	case DLT_JUNIPER_ATM1:
1278 		off_linktype = 4;	/* in reality variable between 4-8 */
1279 		off_macpl = 4;	/* in reality variable between 4-8 */
1280 		off_nl = 0;
1281 		off_nl_nosnap = 10;
1282 		return;
1283 
1284 	case DLT_JUNIPER_ATM2:
1285 		off_linktype = 8;	/* in reality variable between 8-12 */
1286 		off_macpl = 8;	/* in reality variable between 8-12 */
1287 		off_nl = 0;
1288 		off_nl_nosnap = 10;
1289 		return;
1290 
1291 		/* frames captured on a Juniper PPPoE service PIC
1292 		 * contain raw ethernet frames */
1293 	case DLT_JUNIPER_PPPOE:
1294         case DLT_JUNIPER_ETHER:
1295         	off_macpl = 14;
1296 		off_linktype = 16;
1297 		off_nl = 18;		/* Ethernet II */
1298 		off_nl_nosnap = 21;	/* 802.3+802.2 */
1299 		return;
1300 
1301 	case DLT_JUNIPER_PPPOE_ATM:
1302 		off_linktype = 4;
1303 		off_macpl = 6;
1304 		off_nl = 0;
1305 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1306 		return;
1307 
1308 	case DLT_JUNIPER_GGSN:
1309 		off_linktype = 6;
1310 		off_macpl = 12;
1311 		off_nl = 0;
1312 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1313 		return;
1314 
1315 	case DLT_JUNIPER_ES:
1316 		off_linktype = 6;
1317 		off_macpl = -1;		/* not really a network layer but raw IP addresses */
1318 		off_nl = -1;		/* not really a network layer but raw IP addresses */
1319 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1320 		return;
1321 
1322 	case DLT_JUNIPER_MONITOR:
1323 		off_linktype = 12;
1324 		off_macpl = 12;
1325 		off_nl = 0;		/* raw IP/IP6 header */
1326 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1327 		return;
1328 
1329 	case DLT_JUNIPER_SERVICES:
1330 		off_linktype = 12;
1331 		off_macpl = -1;		/* L3 proto location dep. on cookie type */
1332 		off_nl = -1;		/* L3 proto location dep. on cookie type */
1333 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1334 		return;
1335 
1336 	case DLT_JUNIPER_VP:
1337 		off_linktype = 18;
1338 		off_macpl = -1;
1339 		off_nl = -1;
1340 		off_nl_nosnap = -1;
1341 		return;
1342 
1343 	case DLT_JUNIPER_ST:
1344 		off_linktype = 18;
1345 		off_macpl = -1;
1346 		off_nl = -1;
1347 		off_nl_nosnap = -1;
1348 		return;
1349 
1350 	case DLT_JUNIPER_ISM:
1351 		off_linktype = 8;
1352 		off_macpl = -1;
1353 		off_nl = -1;
1354 		off_nl_nosnap = -1;
1355 		return;
1356 
1357 	case DLT_JUNIPER_VS:
1358 	case DLT_JUNIPER_SRX_E2E:
1359 	case DLT_JUNIPER_FIBRECHANNEL:
1360 	case DLT_JUNIPER_ATM_CEMIC:
1361 		off_linktype = 8;
1362 		off_macpl = -1;
1363 		off_nl = -1;
1364 		off_nl_nosnap = -1;
1365 		return;
1366 
1367 	case DLT_MTP2:
1368 		off_li = 2;
1369 		off_sio = 3;
1370 		off_opc = 4;
1371 		off_dpc = 4;
1372 		off_sls = 7;
1373 		off_linktype = -1;
1374 		off_macpl = -1;
1375 		off_nl = -1;
1376 		off_nl_nosnap = -1;
1377 		return;
1378 
1379 	case DLT_MTP2_WITH_PHDR:
1380 		off_li = 6;
1381 		off_sio = 7;
1382 		off_opc = 8;
1383 		off_dpc = 8;
1384 		off_sls = 11;
1385 		off_linktype = -1;
1386 		off_macpl = -1;
1387 		off_nl = -1;
1388 		off_nl_nosnap = -1;
1389 		return;
1390 
1391 	case DLT_ERF:
1392 		off_li = 22;
1393 		off_sio = 23;
1394 		off_opc = 24;
1395 		off_dpc = 24;
1396 		off_sls = 27;
1397 		off_linktype = -1;
1398 		off_macpl = -1;
1399 		off_nl = -1;
1400 		off_nl_nosnap = -1;
1401 		return;
1402 
1403 	case DLT_PFSYNC:
1404 		off_linktype = -1;
1405 		off_macpl = 4;
1406 		off_nl = 0;
1407 		off_nl_nosnap = 0;
1408 		return;
1409 
1410 	case DLT_AX25_KISS:
1411 		/*
1412 		 * Currently, only raw "link[N:M]" filtering is supported.
1413 		 */
1414 		off_linktype = -1;	/* variable, min 15, max 71 steps of 7 */
1415 		off_macpl = -1;
1416 		off_nl = -1;		/* variable, min 16, max 71 steps of 7 */
1417 		off_nl_nosnap = -1;	/* no 802.2 LLC */
1418 		off_mac = 1;		/* step over the kiss length byte */
1419 		return;
1420 
1421 	case DLT_IPNET:
1422 		off_linktype = 1;
1423 		off_macpl = 24;		/* ipnet header length */
1424 		off_nl = 0;
1425 		off_nl_nosnap = -1;
1426 		return;
1427 
1428 	case DLT_NETANALYZER:
1429 		off_mac = 4;		/* MAC header is past 4-byte pseudo-header */
1430 		off_linktype = 16;	/* includes 4-byte pseudo-header */
1431 		off_macpl = 18;		/* pseudo-header+Ethernet header length */
1432 		off_nl = 0;		/* Ethernet II */
1433 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1434 		return;
1435 
1436 	case DLT_NETANALYZER_TRANSPARENT:
1437 		off_mac = 12;		/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1438 		off_linktype = 24;	/* includes 4-byte pseudo-header+preamble+SFD */
1439 		off_macpl = 26;		/* pseudo-header+preamble+SFD+Ethernet header length */
1440 		off_nl = 0;		/* Ethernet II */
1441 		off_nl_nosnap = 3;	/* 802.3+802.2 */
1442 		return;
1443 
1444 	default:
1445 		/*
1446 		 * For values in the range in which we've assigned new
1447 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1448 		 */
1449 		if (linktype >= DLT_MATCHING_MIN &&
1450 		    linktype <= DLT_MATCHING_MAX) {
1451 			off_linktype = -1;
1452 			off_macpl = -1;
1453 			off_nl = -1;
1454 			off_nl_nosnap = -1;
1455 			return;
1456 		}
1457 
1458 	}
1459 	bpf_error("unknown data link type %d", linktype);
1460 	/* NOTREACHED */
1461 }
1462 
1463 /*
1464  * Load a value relative to the beginning of the link-layer header.
1465  * The link-layer header doesn't necessarily begin at the beginning
1466  * of the packet data; there might be a variable-length prefix containing
1467  * radio information.
1468  */
1469 static struct slist *
1470 gen_load_llrel(offset, size)
1471 	u_int offset, size;
1472 {
1473 	struct slist *s, *s2;
1474 
1475 	s = gen_llprefixlen();
1476 
1477 	/*
1478 	 * If "s" is non-null, it has code to arrange that the X register
1479 	 * contains the length of the prefix preceding the link-layer
1480 	 * header.
1481 	 *
1482 	 * Otherwise, the length of the prefix preceding the link-layer
1483 	 * header is "off_ll".
1484 	 */
1485 	if (s != NULL) {
1486 		/*
1487 		 * There's a variable-length prefix preceding the
1488 		 * link-layer header.  "s" points to a list of statements
1489 		 * that put the length of that prefix into the X register.
1490 		 * do an indirect load, to use the X register as an offset.
1491 		 */
1492 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1493 		s2->s.k = offset;
1494 		sappend(s, s2);
1495 	} else {
1496 		/*
1497 		 * There is no variable-length header preceding the
1498 		 * link-layer header; add in off_ll, which, if there's
1499 		 * a fixed-length header preceding the link-layer header,
1500 		 * is the length of that header.
1501 		 */
1502 		s = new_stmt(BPF_LD|BPF_ABS|size);
1503 		s->s.k = offset + off_ll;
1504 	}
1505 	return s;
1506 }
1507 
1508 /*
1509  * Load a value relative to the beginning of the MAC-layer payload.
1510  */
1511 static struct slist *
1512 gen_load_macplrel(offset, size)
1513 	u_int offset, size;
1514 {
1515 	struct slist *s, *s2;
1516 
1517 	s = gen_off_macpl();
1518 
1519 	/*
1520 	 * If s is non-null, the offset of the MAC-layer payload is
1521 	 * variable, and s points to a list of instructions that
1522 	 * arrange that the X register contains that offset.
1523 	 *
1524 	 * Otherwise, the offset of the MAC-layer payload is constant,
1525 	 * and is in off_macpl.
1526 	 */
1527 	if (s != NULL) {
1528 		/*
1529 		 * The offset of the MAC-layer payload is in the X
1530 		 * register.  Do an indirect load, to use the X register
1531 		 * as an offset.
1532 		 */
1533 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1534 		s2->s.k = offset;
1535 		sappend(s, s2);
1536 	} else {
1537 		/*
1538 		 * The offset of the MAC-layer payload is constant,
1539 		 * and is in off_macpl; load the value at that offset
1540 		 * plus the specified offset.
1541 		 */
1542 		s = new_stmt(BPF_LD|BPF_ABS|size);
1543 		s->s.k = off_macpl + offset;
1544 	}
1545 	return s;
1546 }
1547 
1548 /*
1549  * Load a value relative to the beginning of the specified header.
1550  */
1551 static struct slist *
1552 gen_load_a(offrel, offset, size)
1553 	enum e_offrel offrel;
1554 	u_int offset, size;
1555 {
1556 	struct slist *s, *s2;
1557 
1558 	switch (offrel) {
1559 
1560 	case OR_PACKET:
1561                 s = new_stmt(BPF_LD|BPF_ABS|size);
1562                 s->s.k = offset;
1563 		break;
1564 
1565 	case OR_LINK:
1566 		s = gen_load_llrel(offset, size);
1567 		break;
1568 
1569 	case OR_MACPL:
1570 		s = gen_load_macplrel(offset, size);
1571 		break;
1572 
1573 	case OR_NET:
1574 		s = gen_load_macplrel(off_nl + offset, size);
1575 		break;
1576 
1577 	case OR_NET_NOSNAP:
1578 		s = gen_load_macplrel(off_nl_nosnap + offset, size);
1579 		break;
1580 
1581 	case OR_TRAN_IPV4:
1582 		/*
1583 		 * Load the X register with the length of the IPv4 header
1584 		 * (plus the offset of the link-layer header, if it's
1585 		 * preceded by a variable-length header such as a radio
1586 		 * header), in bytes.
1587 		 */
1588 		s = gen_loadx_iphdrlen();
1589 
1590 		/*
1591 		 * Load the item at {offset of the MAC-layer payload} +
1592 		 * {offset, relative to the start of the MAC-layer
1593 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1594 		 * {specified offset}.
1595 		 *
1596 		 * (If the offset of the MAC-layer payload is variable,
1597 		 * it's included in the value in the X register, and
1598 		 * off_macpl is 0.)
1599 		 */
1600 		s2 = new_stmt(BPF_LD|BPF_IND|size);
1601 		s2->s.k = off_macpl + off_nl + offset;
1602 		sappend(s, s2);
1603 		break;
1604 
1605 	case OR_TRAN_IPV6:
1606 		s = gen_load_macplrel(off_nl + 40 + offset, size);
1607 		break;
1608 
1609 	default:
1610 		abort();
1611 		return NULL;
1612 	}
1613 	return s;
1614 }
1615 
1616 /*
1617  * Generate code to load into the X register the sum of the length of
1618  * the IPv4 header and any variable-length header preceding the link-layer
1619  * header.
1620  */
1621 static struct slist *
1622 gen_loadx_iphdrlen()
1623 {
1624 	struct slist *s, *s2;
1625 
1626 	s = gen_off_macpl();
1627 	if (s != NULL) {
1628 		/*
1629 		 * There's a variable-length prefix preceding the
1630 		 * link-layer header, or the link-layer header is itself
1631 		 * variable-length.  "s" points to a list of statements
1632 		 * that put the offset of the MAC-layer payload into
1633 		 * the X register.
1634 		 *
1635 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1636 		 * don't have a constant offset, so we have to load the
1637 		 * value in question into the A register and add to it
1638 		 * the value from the X register.
1639 		 */
1640 		s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
1641 		s2->s.k = off_nl;
1642 		sappend(s, s2);
1643 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
1644 		s2->s.k = 0xf;
1645 		sappend(s, s2);
1646 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
1647 		s2->s.k = 2;
1648 		sappend(s, s2);
1649 
1650 		/*
1651 		 * The A register now contains the length of the
1652 		 * IP header.  We need to add to it the offset of
1653 		 * the MAC-layer payload, which is still in the X
1654 		 * register, and move the result into the X register.
1655 		 */
1656 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
1657 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
1658 	} else {
1659 		/*
1660 		 * There is no variable-length header preceding the
1661 		 * link-layer header, and the link-layer header is
1662 		 * fixed-length; load the length of the IPv4 header,
1663 		 * which is at an offset of off_nl from the beginning
1664 		 * of the MAC-layer payload, and thus at an offset
1665 		 * of off_mac_pl + off_nl from the beginning of the
1666 		 * raw packet data.
1667 		 */
1668 		s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
1669 		s->s.k = off_macpl + off_nl;
1670 	}
1671 	return s;
1672 }
1673 
1674 static struct block *
1675 gen_uncond(rsense)
1676 	int rsense;
1677 {
1678 	struct block *b;
1679 	struct slist *s;
1680 
1681 	s = new_stmt(BPF_LD|BPF_IMM);
1682 	s->s.k = !rsense;
1683 	b = new_block(JMP(BPF_JEQ));
1684 	b->stmts = s;
1685 
1686 	return b;
1687 }
1688 
1689 static inline struct block *
1690 gen_true()
1691 {
1692 	return gen_uncond(1);
1693 }
1694 
1695 static inline struct block *
1696 gen_false()
1697 {
1698 	return gen_uncond(0);
1699 }
1700 
1701 /*
1702  * Byte-swap a 32-bit number.
1703  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1704  * big-endian platforms.)
1705  */
1706 #define	SWAPLONG(y) \
1707 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1708 
1709 /*
1710  * Generate code to match a particular packet type.
1711  *
1712  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1713  * value, if <= ETHERMTU.  We use that to determine whether to
1714  * match the type/length field or to check the type/length field for
1715  * a value <= ETHERMTU to see whether it's a type field and then do
1716  * the appropriate test.
1717  */
1718 static struct block *
1719 gen_ether_linktype(proto)
1720 	register int proto;
1721 {
1722 	struct block *b0, *b1;
1723 
1724 	switch (proto) {
1725 
1726 	case LLCSAP_ISONS:
1727 	case LLCSAP_IP:
1728 	case LLCSAP_NETBEUI:
1729 		/*
1730 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1731 		 * so we check the DSAP and SSAP.
1732 		 *
1733 		 * LLCSAP_IP checks for IP-over-802.2, rather
1734 		 * than IP-over-Ethernet or IP-over-SNAP.
1735 		 *
1736 		 * XXX - should we check both the DSAP and the
1737 		 * SSAP, like this, or should we check just the
1738 		 * DSAP, as we do for other types <= ETHERMTU
1739 		 * (i.e., other SAP values)?
1740 		 */
1741 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1742 		gen_not(b0);
1743 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1744 			     ((proto << 8) | proto));
1745 		gen_and(b0, b1);
1746 		return b1;
1747 
1748 	case LLCSAP_IPX:
1749 		/*
1750 		 * Check for;
1751 		 *
1752 		 *	Ethernet_II frames, which are Ethernet
1753 		 *	frames with a frame type of ETHERTYPE_IPX;
1754 		 *
1755 		 *	Ethernet_802.3 frames, which are 802.3
1756 		 *	frames (i.e., the type/length field is
1757 		 *	a length field, <= ETHERMTU, rather than
1758 		 *	a type field) with the first two bytes
1759 		 *	after the Ethernet/802.3 header being
1760 		 *	0xFFFF;
1761 		 *
1762 		 *	Ethernet_802.2 frames, which are 802.3
1763 		 *	frames with an 802.2 LLC header and
1764 		 *	with the IPX LSAP as the DSAP in the LLC
1765 		 *	header;
1766 		 *
1767 		 *	Ethernet_SNAP frames, which are 802.3
1768 		 *	frames with an LLC header and a SNAP
1769 		 *	header and with an OUI of 0x000000
1770 		 *	(encapsulated Ethernet) and a protocol
1771 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1772 		 *
1773 		 * XXX - should we generate the same code both
1774 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
1775 		 */
1776 
1777 		/*
1778 		 * This generates code to check both for the
1779 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
1780 		 */
1781 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1782 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)0xFFFF);
1783 		gen_or(b0, b1);
1784 
1785 		/*
1786 		 * Now we add code to check for SNAP frames with
1787 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
1788 		 */
1789 		b0 = gen_snap(0x000000, ETHERTYPE_IPX);
1790 		gen_or(b0, b1);
1791 
1792 		/*
1793 		 * Now we generate code to check for 802.3
1794 		 * frames in general.
1795 		 */
1796 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1797 		gen_not(b0);
1798 
1799 		/*
1800 		 * Now add the check for 802.3 frames before the
1801 		 * check for Ethernet_802.2 and Ethernet_802.3,
1802 		 * as those checks should only be done on 802.3
1803 		 * frames, not on Ethernet frames.
1804 		 */
1805 		gen_and(b0, b1);
1806 
1807 		/*
1808 		 * Now add the check for Ethernet_II frames, and
1809 		 * do that before checking for the other frame
1810 		 * types.
1811 		 */
1812 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
1813 		    (bpf_int32)ETHERTYPE_IPX);
1814 		gen_or(b0, b1);
1815 		return b1;
1816 
1817 	case ETHERTYPE_ATALK:
1818 	case ETHERTYPE_AARP:
1819 		/*
1820 		 * EtherTalk (AppleTalk protocols on Ethernet link
1821 		 * layer) may use 802.2 encapsulation.
1822 		 */
1823 
1824 		/*
1825 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
1826 		 * we check for an Ethernet type field less than
1827 		 * 1500, which means it's an 802.3 length field.
1828 		 */
1829 		b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1830 		gen_not(b0);
1831 
1832 		/*
1833 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
1834 		 * SNAP packets with an organization code of
1835 		 * 0x080007 (Apple, for Appletalk) and a protocol
1836 		 * type of ETHERTYPE_ATALK (Appletalk).
1837 		 *
1838 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
1839 		 * SNAP packets with an organization code of
1840 		 * 0x000000 (encapsulated Ethernet) and a protocol
1841 		 * type of ETHERTYPE_AARP (Appletalk ARP).
1842 		 */
1843 		if (proto == ETHERTYPE_ATALK)
1844 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
1845 		else	/* proto == ETHERTYPE_AARP */
1846 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
1847 		gen_and(b0, b1);
1848 
1849 		/*
1850 		 * Check for Ethernet encapsulation (Ethertalk
1851 		 * phase 1?); we just check for the Ethernet
1852 		 * protocol type.
1853 		 */
1854 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
1855 
1856 		gen_or(b0, b1);
1857 		return b1;
1858 
1859 	default:
1860 		if (proto <= ETHERMTU) {
1861 			/*
1862 			 * This is an LLC SAP value, so the frames
1863 			 * that match would be 802.2 frames.
1864 			 * Check that the frame is an 802.2 frame
1865 			 * (i.e., that the length/type field is
1866 			 * a length field, <= ETHERMTU) and
1867 			 * then check the DSAP.
1868 			 */
1869 			b0 = gen_cmp_gt(OR_LINK, off_linktype, BPF_H, ETHERMTU);
1870 			gen_not(b0);
1871 			b1 = gen_cmp(OR_LINK, off_linktype + 2, BPF_B,
1872 			    (bpf_int32)proto);
1873 			gen_and(b0, b1);
1874 			return b1;
1875 		} else {
1876 			/*
1877 			 * This is an Ethernet type, so compare
1878 			 * the length/type field with it (if
1879 			 * the frame is an 802.2 frame, the length
1880 			 * field will be <= ETHERMTU, and, as
1881 			 * "proto" is > ETHERMTU, this test
1882 			 * will fail and the frame won't match,
1883 			 * which is what we want).
1884 			 */
1885 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
1886 			    (bpf_int32)proto);
1887 		}
1888 	}
1889 }
1890 
1891 /*
1892  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
1893  * or IPv6 then we have an error.
1894  */
1895 static struct block *
1896 gen_ipnet_linktype(proto)
1897 	register int proto;
1898 {
1899 	switch (proto) {
1900 
1901 	case ETHERTYPE_IP:
1902 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1903 		    (bpf_int32)IPH_AF_INET);
1904 		/* NOTREACHED */
1905 
1906 	case ETHERTYPE_IPV6:
1907 		return gen_cmp(OR_LINK, off_linktype, BPF_B,
1908 		    (bpf_int32)IPH_AF_INET6);
1909 		/* NOTREACHED */
1910 
1911 	default:
1912 		break;
1913 	}
1914 
1915 	return gen_false();
1916 }
1917 
1918 /*
1919  * Generate code to match a particular packet type.
1920  *
1921  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1922  * value, if <= ETHERMTU.  We use that to determine whether to
1923  * match the type field or to check the type field for the special
1924  * LINUX_SLL_P_802_2 value and then do the appropriate test.
1925  */
1926 static struct block *
1927 gen_linux_sll_linktype(proto)
1928 	register int proto;
1929 {
1930 	struct block *b0, *b1;
1931 
1932 	switch (proto) {
1933 
1934 	case LLCSAP_ISONS:
1935 	case LLCSAP_IP:
1936 	case LLCSAP_NETBEUI:
1937 		/*
1938 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1939 		 * so we check the DSAP and SSAP.
1940 		 *
1941 		 * LLCSAP_IP checks for IP-over-802.2, rather
1942 		 * than IP-over-Ethernet or IP-over-SNAP.
1943 		 *
1944 		 * XXX - should we check both the DSAP and the
1945 		 * SSAP, like this, or should we check just the
1946 		 * DSAP, as we do for other types <= ETHERMTU
1947 		 * (i.e., other SAP values)?
1948 		 */
1949 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1950 		b1 = gen_cmp(OR_MACPL, 0, BPF_H, (bpf_int32)
1951 			     ((proto << 8) | proto));
1952 		gen_and(b0, b1);
1953 		return b1;
1954 
1955 	case LLCSAP_IPX:
1956 		/*
1957 		 *	Ethernet_II frames, which are Ethernet
1958 		 *	frames with a frame type of ETHERTYPE_IPX;
1959 		 *
1960 		 *	Ethernet_802.3 frames, which have a frame
1961 		 *	type of LINUX_SLL_P_802_3;
1962 		 *
1963 		 *	Ethernet_802.2 frames, which are 802.3
1964 		 *	frames with an 802.2 LLC header (i.e, have
1965 		 *	a frame type of LINUX_SLL_P_802_2) and
1966 		 *	with the IPX LSAP as the DSAP in the LLC
1967 		 *	header;
1968 		 *
1969 		 *	Ethernet_SNAP frames, which are 802.3
1970 		 *	frames with an LLC header and a SNAP
1971 		 *	header and with an OUI of 0x000000
1972 		 *	(encapsulated Ethernet) and a protocol
1973 		 *	ID of ETHERTYPE_IPX in the SNAP header.
1974 		 *
1975 		 * First, do the checks on LINUX_SLL_P_802_2
1976 		 * frames; generate the check for either
1977 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
1978 		 * then put a check for LINUX_SLL_P_802_2 frames
1979 		 * before it.
1980 		 */
1981 		b0 = gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
1982 		b1 = gen_snap(0x000000, ETHERTYPE_IPX);
1983 		gen_or(b0, b1);
1984 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
1985 		gen_and(b0, b1);
1986 
1987 		/*
1988 		 * Now check for 802.3 frames and OR that with
1989 		 * the previous test.
1990 		 */
1991 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_3);
1992 		gen_or(b0, b1);
1993 
1994 		/*
1995 		 * Now add the check for Ethernet_II frames, and
1996 		 * do that before checking for the other frame
1997 		 * types.
1998 		 */
1999 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2000 		    (bpf_int32)ETHERTYPE_IPX);
2001 		gen_or(b0, b1);
2002 		return b1;
2003 
2004 	case ETHERTYPE_ATALK:
2005 	case ETHERTYPE_AARP:
2006 		/*
2007 		 * EtherTalk (AppleTalk protocols on Ethernet link
2008 		 * layer) may use 802.2 encapsulation.
2009 		 */
2010 
2011 		/*
2012 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2013 		 * we check for the 802.2 protocol type in the
2014 		 * "Ethernet type" field.
2015 		 */
2016 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, LINUX_SLL_P_802_2);
2017 
2018 		/*
2019 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2020 		 * SNAP packets with an organization code of
2021 		 * 0x080007 (Apple, for Appletalk) and a protocol
2022 		 * type of ETHERTYPE_ATALK (Appletalk).
2023 		 *
2024 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2025 		 * SNAP packets with an organization code of
2026 		 * 0x000000 (encapsulated Ethernet) and a protocol
2027 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2028 		 */
2029 		if (proto == ETHERTYPE_ATALK)
2030 			b1 = gen_snap(0x080007, ETHERTYPE_ATALK);
2031 		else	/* proto == ETHERTYPE_AARP */
2032 			b1 = gen_snap(0x000000, ETHERTYPE_AARP);
2033 		gen_and(b0, b1);
2034 
2035 		/*
2036 		 * Check for Ethernet encapsulation (Ethertalk
2037 		 * phase 1?); we just check for the Ethernet
2038 		 * protocol type.
2039 		 */
2040 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
2041 
2042 		gen_or(b0, b1);
2043 		return b1;
2044 
2045 	default:
2046 		if (proto <= ETHERMTU) {
2047 			/*
2048 			 * This is an LLC SAP value, so the frames
2049 			 * that match would be 802.2 frames.
2050 			 * Check for the 802.2 protocol type
2051 			 * in the "Ethernet type" field, and
2052 			 * then check the DSAP.
2053 			 */
2054 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
2055 			    LINUX_SLL_P_802_2);
2056 			b1 = gen_cmp(OR_LINK, off_macpl, BPF_B,
2057 			     (bpf_int32)proto);
2058 			gen_and(b0, b1);
2059 			return b1;
2060 		} else {
2061 			/*
2062 			 * This is an Ethernet type, so compare
2063 			 * the length/type field with it (if
2064 			 * the frame is an 802.2 frame, the length
2065 			 * field will be <= ETHERMTU, and, as
2066 			 * "proto" is > ETHERMTU, this test
2067 			 * will fail and the frame won't match,
2068 			 * which is what we want).
2069 			 */
2070 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2071 			    (bpf_int32)proto);
2072 		}
2073 	}
2074 }
2075 
2076 static struct slist *
2077 gen_load_prism_llprefixlen()
2078 {
2079 	struct slist *s1, *s2;
2080 	struct slist *sjeq_avs_cookie;
2081 	struct slist *sjcommon;
2082 
2083 	/*
2084 	 * This code is not compatible with the optimizer, as
2085 	 * we are generating jmp instructions within a normal
2086 	 * slist of instructions
2087 	 */
2088 	no_optimize = 1;
2089 
2090 	/*
2091 	 * Generate code to load the length of the radio header into
2092 	 * the register assigned to hold that length, if one has been
2093 	 * assigned.  (If one hasn't been assigned, no code we've
2094 	 * generated uses that prefix, so we don't need to generate any
2095 	 * code to load it.)
2096 	 *
2097 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2098 	 * or always use the AVS header rather than the Prism header.
2099 	 * We load a 4-byte big-endian value at the beginning of the
2100 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2101 	 * it's equal to 0x80211000.  If so, that indicates that it's
2102 	 * an AVS header (the masked-out bits are the version number).
2103 	 * Otherwise, it's a Prism header.
2104 	 *
2105 	 * XXX - the Prism header is also, in theory, variable-length,
2106 	 * but no known software generates headers that aren't 144
2107 	 * bytes long.
2108 	 */
2109 	if (reg_off_ll != -1) {
2110 		/*
2111 		 * Load the cookie.
2112 		 */
2113 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2114 		s1->s.k = 0;
2115 
2116 		/*
2117 		 * AND it with 0xFFFFF000.
2118 		 */
2119 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_K);
2120 		s2->s.k = 0xFFFFF000;
2121 		sappend(s1, s2);
2122 
2123 		/*
2124 		 * Compare with 0x80211000.
2125 		 */
2126 		sjeq_avs_cookie = new_stmt(JMP(BPF_JEQ));
2127 		sjeq_avs_cookie->s.k = 0x80211000;
2128 		sappend(s1, sjeq_avs_cookie);
2129 
2130 		/*
2131 		 * If it's AVS:
2132 		 *
2133 		 * The 4 bytes at an offset of 4 from the beginning of
2134 		 * the AVS header are the length of the AVS header.
2135 		 * That field is big-endian.
2136 		 */
2137 		s2 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2138 		s2->s.k = 4;
2139 		sappend(s1, s2);
2140 		sjeq_avs_cookie->s.jt = s2;
2141 
2142 		/*
2143 		 * Now jump to the code to allocate a register
2144 		 * into which to save the header length and
2145 		 * store the length there.  (The "jump always"
2146 		 * instruction needs to have the k field set;
2147 		 * it's added to the PC, so, as we're jumping
2148 		 * over a single instruction, it should be 1.)
2149 		 */
2150 		sjcommon = new_stmt(JMP(BPF_JA));
2151 		sjcommon->s.k = 1;
2152 		sappend(s1, sjcommon);
2153 
2154 		/*
2155 		 * Now for the code that handles the Prism header.
2156 		 * Just load the length of the Prism header (144)
2157 		 * into the A register.  Have the test for an AVS
2158 		 * header branch here if we don't have an AVS header.
2159 		 */
2160 		s2 = new_stmt(BPF_LD|BPF_W|BPF_IMM);
2161 		s2->s.k = 144;
2162 		sappend(s1, s2);
2163 		sjeq_avs_cookie->s.jf = s2;
2164 
2165 		/*
2166 		 * Now allocate a register to hold that value and store
2167 		 * it.  The code for the AVS header will jump here after
2168 		 * loading the length of the AVS header.
2169 		 */
2170 		s2 = new_stmt(BPF_ST);
2171 		s2->s.k = reg_off_ll;
2172 		sappend(s1, s2);
2173 		sjcommon->s.jf = s2;
2174 
2175 		/*
2176 		 * Now move it into the X register.
2177 		 */
2178 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2179 		sappend(s1, s2);
2180 
2181 		return (s1);
2182 	} else
2183 		return (NULL);
2184 }
2185 
2186 static struct slist *
2187 gen_load_avs_llprefixlen()
2188 {
2189 	struct slist *s1, *s2;
2190 
2191 	/*
2192 	 * Generate code to load the length of the AVS header into
2193 	 * the register assigned to hold that length, if one has been
2194 	 * assigned.  (If one hasn't been assigned, no code we've
2195 	 * generated uses that prefix, so we don't need to generate any
2196 	 * code to load it.)
2197 	 */
2198 	if (reg_off_ll != -1) {
2199 		/*
2200 		 * The 4 bytes at an offset of 4 from the beginning of
2201 		 * the AVS header are the length of the AVS header.
2202 		 * That field is big-endian.
2203 		 */
2204 		s1 = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2205 		s1->s.k = 4;
2206 
2207 		/*
2208 		 * Now allocate a register to hold that value and store
2209 		 * it.
2210 		 */
2211 		s2 = new_stmt(BPF_ST);
2212 		s2->s.k = reg_off_ll;
2213 		sappend(s1, s2);
2214 
2215 		/*
2216 		 * Now move it into the X register.
2217 		 */
2218 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2219 		sappend(s1, s2);
2220 
2221 		return (s1);
2222 	} else
2223 		return (NULL);
2224 }
2225 
2226 static struct slist *
2227 gen_load_radiotap_llprefixlen()
2228 {
2229 	struct slist *s1, *s2;
2230 
2231 	/*
2232 	 * Generate code to load the length of the radiotap header into
2233 	 * the register assigned to hold that length, if one has been
2234 	 * assigned.  (If one hasn't been assigned, no code we've
2235 	 * generated uses that prefix, so we don't need to generate any
2236 	 * code to load it.)
2237 	 */
2238 	if (reg_off_ll != -1) {
2239 		/*
2240 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2241 		 * of the radiotap header are the length of the radiotap
2242 		 * header; unfortunately, it's little-endian, so we have
2243 		 * to load it a byte at a time and construct the value.
2244 		 */
2245 
2246 		/*
2247 		 * Load the high-order byte, at an offset of 3, shift it
2248 		 * left a byte, and put the result in the X register.
2249 		 */
2250 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2251 		s1->s.k = 3;
2252 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2253 		sappend(s1, s2);
2254 		s2->s.k = 8;
2255 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2256 		sappend(s1, s2);
2257 
2258 		/*
2259 		 * Load the next byte, at an offset of 2, and OR the
2260 		 * value from the X register into it.
2261 		 */
2262 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2263 		sappend(s1, s2);
2264 		s2->s.k = 2;
2265 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2266 		sappend(s1, s2);
2267 
2268 		/*
2269 		 * Now allocate a register to hold that value and store
2270 		 * it.
2271 		 */
2272 		s2 = new_stmt(BPF_ST);
2273 		s2->s.k = reg_off_ll;
2274 		sappend(s1, s2);
2275 
2276 		/*
2277 		 * Now move it into the X register.
2278 		 */
2279 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2280 		sappend(s1, s2);
2281 
2282 		return (s1);
2283 	} else
2284 		return (NULL);
2285 }
2286 
2287 /*
2288  * At the moment we treat PPI as normal Radiotap encoded
2289  * packets. The difference is in the function that generates
2290  * the code at the beginning to compute the header length.
2291  * Since this code generator of PPI supports bare 802.11
2292  * encapsulation only (i.e. the encapsulated DLT should be
2293  * DLT_IEEE802_11) we generate code to check for this too;
2294  * that's done in finish_parse().
2295  */
2296 static struct slist *
2297 gen_load_ppi_llprefixlen()
2298 {
2299 	struct slist *s1, *s2;
2300 
2301 	/*
2302 	 * Generate code to load the length of the radiotap header
2303 	 * into the register assigned to hold that length, if one has
2304 	 * been assigned.
2305 	 */
2306 	if (reg_off_ll != -1) {
2307 		/*
2308 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2309 		 * of the radiotap header are the length of the radiotap
2310 		 * header; unfortunately, it's little-endian, so we have
2311 		 * to load it a byte at a time and construct the value.
2312 		 */
2313 
2314 		/*
2315 		 * Load the high-order byte, at an offset of 3, shift it
2316 		 * left a byte, and put the result in the X register.
2317 		 */
2318 		s1 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2319 		s1->s.k = 3;
2320 		s2 = new_stmt(BPF_ALU|BPF_LSH|BPF_K);
2321 		sappend(s1, s2);
2322 		s2->s.k = 8;
2323 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2324 		sappend(s1, s2);
2325 
2326 		/*
2327 		 * Load the next byte, at an offset of 2, and OR the
2328 		 * value from the X register into it.
2329 		 */
2330 		s2 = new_stmt(BPF_LD|BPF_B|BPF_ABS);
2331 		sappend(s1, s2);
2332 		s2->s.k = 2;
2333 		s2 = new_stmt(BPF_ALU|BPF_OR|BPF_X);
2334 		sappend(s1, s2);
2335 
2336 		/*
2337 		 * Now allocate a register to hold that value and store
2338 		 * it.
2339 		 */
2340 		s2 = new_stmt(BPF_ST);
2341 		s2->s.k = reg_off_ll;
2342 		sappend(s1, s2);
2343 
2344 		/*
2345 		 * Now move it into the X register.
2346 		 */
2347 		s2 = new_stmt(BPF_MISC|BPF_TAX);
2348 		sappend(s1, s2);
2349 
2350 		return (s1);
2351 	} else
2352 		return (NULL);
2353 }
2354 
2355 /*
2356  * Load a value relative to the beginning of the link-layer header after the 802.11
2357  * header, i.e. LLC_SNAP.
2358  * The link-layer header doesn't necessarily begin at the beginning
2359  * of the packet data; there might be a variable-length prefix containing
2360  * radio information.
2361  */
2362 static struct slist *
2363 gen_load_802_11_header_len(struct slist *s, struct slist *snext)
2364 {
2365 	struct slist *s2;
2366 	struct slist *sjset_data_frame_1;
2367 	struct slist *sjset_data_frame_2;
2368 	struct slist *sjset_qos;
2369 	struct slist *sjset_radiotap_flags;
2370 	struct slist *sjset_radiotap_tsft;
2371 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2372 	struct slist *s_roundup;
2373 
2374 	if (reg_off_macpl == -1) {
2375 		/*
2376 		 * No register has been assigned to the offset of
2377 		 * the MAC-layer payload, which means nobody needs
2378 		 * it; don't bother computing it - just return
2379 		 * what we already have.
2380 		 */
2381 		return (s);
2382 	}
2383 
2384 	/*
2385 	 * This code is not compatible with the optimizer, as
2386 	 * we are generating jmp instructions within a normal
2387 	 * slist of instructions
2388 	 */
2389 	no_optimize = 1;
2390 
2391 	/*
2392 	 * If "s" is non-null, it has code to arrange that the X register
2393 	 * contains the length of the prefix preceding the link-layer
2394 	 * header.
2395 	 *
2396 	 * Otherwise, the length of the prefix preceding the link-layer
2397 	 * header is "off_ll".
2398 	 */
2399 	if (s == NULL) {
2400 		/*
2401 		 * There is no variable-length header preceding the
2402 		 * link-layer header.
2403 		 *
2404 		 * Load the length of the fixed-length prefix preceding
2405 		 * the link-layer header (if any) into the X register,
2406 		 * and store it in the reg_off_macpl register.
2407 		 * That length is off_ll.
2408 		 */
2409 		s = new_stmt(BPF_LDX|BPF_IMM);
2410 		s->s.k = off_ll;
2411 	}
2412 
2413 	/*
2414 	 * The X register contains the offset of the beginning of the
2415 	 * link-layer header; add 24, which is the minimum length
2416 	 * of the MAC header for a data frame, to that, and store it
2417 	 * in reg_off_macpl, and then load the Frame Control field,
2418 	 * which is at the offset in the X register, with an indexed load.
2419 	 */
2420 	s2 = new_stmt(BPF_MISC|BPF_TXA);
2421 	sappend(s, s2);
2422 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
2423 	s2->s.k = 24;
2424 	sappend(s, s2);
2425 	s2 = new_stmt(BPF_ST);
2426 	s2->s.k = reg_off_macpl;
2427 	sappend(s, s2);
2428 
2429 	s2 = new_stmt(BPF_LD|BPF_IND|BPF_B);
2430 	s2->s.k = 0;
2431 	sappend(s, s2);
2432 
2433 	/*
2434 	 * Check the Frame Control field to see if this is a data frame;
2435 	 * a data frame has the 0x08 bit (b3) in that field set and the
2436 	 * 0x04 bit (b2) clear.
2437 	 */
2438 	sjset_data_frame_1 = new_stmt(JMP(BPF_JSET));
2439 	sjset_data_frame_1->s.k = 0x08;
2440 	sappend(s, sjset_data_frame_1);
2441 
2442 	/*
2443 	 * If b3 is set, test b2, otherwise go to the first statement of
2444 	 * the rest of the program.
2445 	 */
2446 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(JMP(BPF_JSET));
2447 	sjset_data_frame_2->s.k = 0x04;
2448 	sappend(s, sjset_data_frame_2);
2449 	sjset_data_frame_1->s.jf = snext;
2450 
2451 	/*
2452 	 * If b2 is not set, this is a data frame; test the QoS bit.
2453 	 * Otherwise, go to the first statement of the rest of the
2454 	 * program.
2455 	 */
2456 	sjset_data_frame_2->s.jt = snext;
2457 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(JMP(BPF_JSET));
2458 	sjset_qos->s.k = 0x80;	/* QoS bit */
2459 	sappend(s, sjset_qos);
2460 
2461 	/*
2462 	 * If it's set, add 2 to reg_off_macpl, to skip the QoS
2463 	 * field.
2464 	 * Otherwise, go to the first statement of the rest of the
2465 	 * program.
2466 	 */
2467 	sjset_qos->s.jt = s2 = new_stmt(BPF_LD|BPF_MEM);
2468 	s2->s.k = reg_off_macpl;
2469 	sappend(s, s2);
2470 	s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2471 	s2->s.k = 2;
2472 	sappend(s, s2);
2473 	s2 = new_stmt(BPF_ST);
2474 	s2->s.k = reg_off_macpl;
2475 	sappend(s, s2);
2476 
2477 	/*
2478 	 * If we have a radiotap header, look at it to see whether
2479 	 * there's Atheros padding between the MAC-layer header
2480 	 * and the payload.
2481 	 *
2482 	 * Note: all of the fields in the radiotap header are
2483 	 * little-endian, so we byte-swap all of the values
2484 	 * we test against, as they will be loaded as big-endian
2485 	 * values.
2486 	 */
2487 	if (linktype == DLT_IEEE802_11_RADIO) {
2488 		/*
2489 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2490 		 * in the presence flag?
2491 		 */
2492 		sjset_qos->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_W);
2493 		s2->s.k = 4;
2494 		sappend(s, s2);
2495 
2496 		sjset_radiotap_flags = new_stmt(JMP(BPF_JSET));
2497 		sjset_radiotap_flags->s.k = SWAPLONG(0x00000002);
2498 		sappend(s, sjset_radiotap_flags);
2499 
2500 		/*
2501 		 * If not, skip all of this.
2502 		 */
2503 		sjset_radiotap_flags->s.jf = snext;
2504 
2505 		/*
2506 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2507 		 */
2508 		sjset_radiotap_tsft = sjset_radiotap_flags->s.jt =
2509 		    new_stmt(JMP(BPF_JSET));
2510 		sjset_radiotap_tsft->s.k = SWAPLONG(0x00000001);
2511 		sappend(s, sjset_radiotap_tsft);
2512 
2513 		/*
2514 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2515 		 * at an offset of 16 from the beginning of the raw packet
2516 		 * data (8 bytes for the radiotap header and 8 bytes for
2517 		 * the TSFT field).
2518 		 *
2519 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2520 		 * is set.
2521 		 */
2522 		sjset_radiotap_tsft->s.jt = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2523 		s2->s.k = 16;
2524 		sappend(s, s2);
2525 
2526 		sjset_tsft_datapad = new_stmt(JMP(BPF_JSET));
2527 		sjset_tsft_datapad->s.k = 0x20;
2528 		sappend(s, sjset_tsft_datapad);
2529 
2530 		/*
2531 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2532 		 * at an offset of 8 from the beginning of the raw packet
2533 		 * data (8 bytes for the radiotap header).
2534 		 *
2535 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2536 		 * is set.
2537 		 */
2538 		sjset_radiotap_tsft->s.jf = s2 = new_stmt(BPF_LD|BPF_ABS|BPF_B);
2539 		s2->s.k = 8;
2540 		sappend(s, s2);
2541 
2542 		sjset_notsft_datapad = new_stmt(JMP(BPF_JSET));
2543 		sjset_notsft_datapad->s.k = 0x20;
2544 		sappend(s, sjset_notsft_datapad);
2545 
2546 		/*
2547 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2548 		 * set, round the length of the 802.11 header to
2549 		 * a multiple of 4.  Do that by adding 3 and then
2550 		 * dividing by and multiplying by 4, which we do by
2551 		 * ANDing with ~3.
2552 		 */
2553 		s_roundup = new_stmt(BPF_LD|BPF_MEM);
2554 		s_roundup->s.k = reg_off_macpl;
2555 		sappend(s, s_roundup);
2556 		s2 = new_stmt(BPF_ALU|BPF_ADD|BPF_IMM);
2557 		s2->s.k = 3;
2558 		sappend(s, s2);
2559 		s2 = new_stmt(BPF_ALU|BPF_AND|BPF_IMM);
2560 		s2->s.k = ~3;
2561 		sappend(s, s2);
2562 		s2 = new_stmt(BPF_ST);
2563 		s2->s.k = reg_off_macpl;
2564 		sappend(s, s2);
2565 
2566 		sjset_tsft_datapad->s.jt = s_roundup;
2567 		sjset_tsft_datapad->s.jf = snext;
2568 		sjset_notsft_datapad->s.jt = s_roundup;
2569 		sjset_notsft_datapad->s.jf = snext;
2570 	} else
2571 		sjset_qos->s.jf = snext;
2572 
2573 	return s;
2574 }
2575 
2576 static void
2577 insert_compute_vloffsets(b)
2578 	struct block *b;
2579 {
2580 	struct slist *s;
2581 
2582 	/*
2583 	 * For link-layer types that have a variable-length header
2584 	 * preceding the link-layer header, generate code to load
2585 	 * the offset of the link-layer header into the register
2586 	 * assigned to that offset, if any.
2587 	 */
2588 	switch (linktype) {
2589 
2590 	case DLT_PRISM_HEADER:
2591 		s = gen_load_prism_llprefixlen();
2592 		break;
2593 
2594 	case DLT_IEEE802_11_RADIO_AVS:
2595 		s = gen_load_avs_llprefixlen();
2596 		break;
2597 
2598 	case DLT_IEEE802_11_RADIO:
2599 		s = gen_load_radiotap_llprefixlen();
2600 		break;
2601 
2602 	case DLT_PPI:
2603 		s = gen_load_ppi_llprefixlen();
2604 		break;
2605 
2606 	default:
2607 		s = NULL;
2608 		break;
2609 	}
2610 
2611 	/*
2612 	 * For link-layer types that have a variable-length link-layer
2613 	 * header, generate code to load the offset of the MAC-layer
2614 	 * payload into the register assigned to that offset, if any.
2615 	 */
2616 	switch (linktype) {
2617 
2618 	case DLT_IEEE802_11:
2619 	case DLT_PRISM_HEADER:
2620 	case DLT_IEEE802_11_RADIO_AVS:
2621 	case DLT_IEEE802_11_RADIO:
2622 	case DLT_PPI:
2623 		s = gen_load_802_11_header_len(s, b->stmts);
2624 		break;
2625 	}
2626 
2627 	/*
2628 	 * If we have any offset-loading code, append all the
2629 	 * existing statements in the block to those statements,
2630 	 * and make the resulting list the list of statements
2631 	 * for the block.
2632 	 */
2633 	if (s != NULL) {
2634 		sappend(s, b->stmts);
2635 		b->stmts = s;
2636 	}
2637 }
2638 
2639 static struct block *
2640 gen_ppi_dlt_check(void)
2641 {
2642 	struct slist *s_load_dlt;
2643 	struct block *b;
2644 
2645 	if (linktype == DLT_PPI)
2646 	{
2647 		/* Create the statements that check for the DLT
2648 		 */
2649 		s_load_dlt = new_stmt(BPF_LD|BPF_W|BPF_ABS);
2650 		s_load_dlt->s.k = 4;
2651 
2652 		b = new_block(JMP(BPF_JEQ));
2653 
2654 		b->stmts = s_load_dlt;
2655 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2656 	}
2657 	else
2658 	{
2659 		b = NULL;
2660 	}
2661 
2662 	return b;
2663 }
2664 
2665 static struct slist *
2666 gen_prism_llprefixlen(void)
2667 {
2668 	struct slist *s;
2669 
2670 	if (reg_off_ll == -1) {
2671 		/*
2672 		 * We haven't yet assigned a register for the length
2673 		 * of the radio header; allocate one.
2674 		 */
2675 		reg_off_ll = alloc_reg();
2676 	}
2677 
2678 	/*
2679 	 * Load the register containing the radio length
2680 	 * into the X register.
2681 	 */
2682 	s = new_stmt(BPF_LDX|BPF_MEM);
2683 	s->s.k = reg_off_ll;
2684 	return s;
2685 }
2686 
2687 static struct slist *
2688 gen_avs_llprefixlen(void)
2689 {
2690 	struct slist *s;
2691 
2692 	if (reg_off_ll == -1) {
2693 		/*
2694 		 * We haven't yet assigned a register for the length
2695 		 * of the AVS header; allocate one.
2696 		 */
2697 		reg_off_ll = alloc_reg();
2698 	}
2699 
2700 	/*
2701 	 * Load the register containing the AVS length
2702 	 * into the X register.
2703 	 */
2704 	s = new_stmt(BPF_LDX|BPF_MEM);
2705 	s->s.k = reg_off_ll;
2706 	return s;
2707 }
2708 
2709 static struct slist *
2710 gen_radiotap_llprefixlen(void)
2711 {
2712 	struct slist *s;
2713 
2714 	if (reg_off_ll == -1) {
2715 		/*
2716 		 * We haven't yet assigned a register for the length
2717 		 * of the radiotap header; allocate one.
2718 		 */
2719 		reg_off_ll = alloc_reg();
2720 	}
2721 
2722 	/*
2723 	 * Load the register containing the radiotap length
2724 	 * into the X register.
2725 	 */
2726 	s = new_stmt(BPF_LDX|BPF_MEM);
2727 	s->s.k = reg_off_ll;
2728 	return s;
2729 }
2730 
2731 /*
2732  * At the moment we treat PPI as normal Radiotap encoded
2733  * packets. The difference is in the function that generates
2734  * the code at the beginning to compute the header length.
2735  * Since this code generator of PPI supports bare 802.11
2736  * encapsulation only (i.e. the encapsulated DLT should be
2737  * DLT_IEEE802_11) we generate code to check for this too.
2738  */
2739 static struct slist *
2740 gen_ppi_llprefixlen(void)
2741 {
2742 	struct slist *s;
2743 
2744 	if (reg_off_ll == -1) {
2745 		/*
2746 		 * We haven't yet assigned a register for the length
2747 		 * of the radiotap header; allocate one.
2748 		 */
2749 		reg_off_ll = alloc_reg();
2750 	}
2751 
2752 	/*
2753 	 * Load the register containing the PPI length
2754 	 * into the X register.
2755 	 */
2756 	s = new_stmt(BPF_LDX|BPF_MEM);
2757 	s->s.k = reg_off_ll;
2758 	return s;
2759 }
2760 
2761 /*
2762  * Generate code to compute the link-layer header length, if necessary,
2763  * putting it into the X register, and to return either a pointer to a
2764  * "struct slist" for the list of statements in that code, or NULL if
2765  * no code is necessary.
2766  */
2767 static struct slist *
2768 gen_llprefixlen(void)
2769 {
2770 	switch (linktype) {
2771 
2772 	case DLT_PRISM_HEADER:
2773 		return gen_prism_llprefixlen();
2774 
2775 	case DLT_IEEE802_11_RADIO_AVS:
2776 		return gen_avs_llprefixlen();
2777 
2778 	case DLT_IEEE802_11_RADIO:
2779 		return gen_radiotap_llprefixlen();
2780 
2781 	case DLT_PPI:
2782 		return gen_ppi_llprefixlen();
2783 
2784 	default:
2785 		return NULL;
2786 	}
2787 }
2788 
2789 /*
2790  * Generate code to load the register containing the offset of the
2791  * MAC-layer payload into the X register; if no register for that offset
2792  * has been allocated, allocate it first.
2793  */
2794 static struct slist *
2795 gen_off_macpl(void)
2796 {
2797 	struct slist *s;
2798 
2799 	if (off_macpl_is_variable) {
2800 		if (reg_off_macpl == -1) {
2801 			/*
2802 			 * We haven't yet assigned a register for the offset
2803 			 * of the MAC-layer payload; allocate one.
2804 			 */
2805 			reg_off_macpl = alloc_reg();
2806 		}
2807 
2808 		/*
2809 		 * Load the register containing the offset of the MAC-layer
2810 		 * payload into the X register.
2811 		 */
2812 		s = new_stmt(BPF_LDX|BPF_MEM);
2813 		s->s.k = reg_off_macpl;
2814 		return s;
2815 	} else {
2816 		/*
2817 		 * That offset isn't variable, so we don't need to
2818 		 * generate any code.
2819 		 */
2820 		return NULL;
2821 	}
2822 }
2823 
2824 /*
2825  * Map an Ethernet type to the equivalent PPP type.
2826  */
2827 static int
2828 ethertype_to_ppptype(proto)
2829 	int proto;
2830 {
2831 	switch (proto) {
2832 
2833 	case ETHERTYPE_IP:
2834 		proto = PPP_IP;
2835 		break;
2836 
2837 #ifdef INET6
2838 	case ETHERTYPE_IPV6:
2839 		proto = PPP_IPV6;
2840 		break;
2841 #endif
2842 
2843 	case ETHERTYPE_DN:
2844 		proto = PPP_DECNET;
2845 		break;
2846 
2847 	case ETHERTYPE_ATALK:
2848 		proto = PPP_APPLE;
2849 		break;
2850 
2851 	case ETHERTYPE_NS:
2852 		proto = PPP_NS;
2853 		break;
2854 
2855 	case LLCSAP_ISONS:
2856 		proto = PPP_OSI;
2857 		break;
2858 
2859 	case LLCSAP_8021D:
2860 		/*
2861 		 * I'm assuming the "Bridging PDU"s that go
2862 		 * over PPP are Spanning Tree Protocol
2863 		 * Bridging PDUs.
2864 		 */
2865 		proto = PPP_BRPDU;
2866 		break;
2867 
2868 	case LLCSAP_IPX:
2869 		proto = PPP_IPX;
2870 		break;
2871 	}
2872 	return (proto);
2873 }
2874 
2875 /*
2876  * Generate code to match a particular packet type by matching the
2877  * link-layer type field or fields in the 802.2 LLC header.
2878  *
2879  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2880  * value, if <= ETHERMTU.
2881  */
2882 static struct block *
2883 gen_linktype(proto)
2884 	register int proto;
2885 {
2886 	struct block *b0, *b1, *b2;
2887 
2888 	/* are we checking MPLS-encapsulated packets? */
2889 	if (label_stack_depth > 0) {
2890 		switch (proto) {
2891 		case ETHERTYPE_IP:
2892 		case PPP_IP:
2893 			/* FIXME add other L3 proto IDs */
2894 			return gen_mpls_linktype(Q_IP);
2895 
2896 		case ETHERTYPE_IPV6:
2897 		case PPP_IPV6:
2898 			/* FIXME add other L3 proto IDs */
2899 			return gen_mpls_linktype(Q_IPV6);
2900 
2901 		default:
2902 			bpf_error("unsupported protocol over mpls");
2903 			/* NOTREACHED */
2904 		}
2905 	}
2906 
2907 	/*
2908 	 * Are we testing PPPoE packets?
2909 	 */
2910 	if (is_pppoes) {
2911 		/*
2912 		 * The PPPoE session header is part of the
2913 		 * MAC-layer payload, so all references
2914 		 * should be relative to the beginning of
2915 		 * that payload.
2916 		 */
2917 
2918 		/*
2919 		 * We use Ethernet protocol types inside libpcap;
2920 		 * map them to the corresponding PPP protocol types.
2921 		 */
2922 		proto = ethertype_to_ppptype(proto);
2923 		return gen_cmp(OR_MACPL, off_linktype, BPF_H, (bpf_int32)proto);
2924 	}
2925 
2926 	switch (linktype) {
2927 
2928 	case DLT_EN10MB:
2929 	case DLT_NETANALYZER:
2930 	case DLT_NETANALYZER_TRANSPARENT:
2931 		return gen_ether_linktype(proto);
2932 		/*NOTREACHED*/
2933 		break;
2934 
2935 	case DLT_C_HDLC:
2936 		switch (proto) {
2937 
2938 		case LLCSAP_ISONS:
2939 			proto = (proto << 8 | LLCSAP_ISONS);
2940 			/* fall through */
2941 
2942 		default:
2943 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
2944 			    (bpf_int32)proto);
2945 			/*NOTREACHED*/
2946 			break;
2947 		}
2948 		break;
2949 
2950 	case DLT_IEEE802_11:
2951 	case DLT_PRISM_HEADER:
2952 	case DLT_IEEE802_11_RADIO_AVS:
2953 	case DLT_IEEE802_11_RADIO:
2954 	case DLT_PPI:
2955 		/*
2956 		 * Check that we have a data frame.
2957 		 */
2958 		b0 = gen_check_802_11_data_frame();
2959 
2960 		/*
2961 		 * Now check for the specified link-layer type.
2962 		 */
2963 		b1 = gen_llc_linktype(proto);
2964 		gen_and(b0, b1);
2965 		return b1;
2966 		/*NOTREACHED*/
2967 		break;
2968 
2969 	case DLT_FDDI:
2970 		/*
2971 		 * XXX - check for asynchronous frames, as per RFC 1103.
2972 		 */
2973 		return gen_llc_linktype(proto);
2974 		/*NOTREACHED*/
2975 		break;
2976 
2977 	case DLT_IEEE802:
2978 		/*
2979 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
2980 		 */
2981 		return gen_llc_linktype(proto);
2982 		/*NOTREACHED*/
2983 		break;
2984 
2985 	case DLT_ATM_RFC1483:
2986 	case DLT_ATM_CLIP:
2987 	case DLT_IP_OVER_FC:
2988 		return gen_llc_linktype(proto);
2989 		/*NOTREACHED*/
2990 		break;
2991 
2992 	case DLT_SUNATM:
2993 		/*
2994 		 * If "is_lane" is set, check for a LANE-encapsulated
2995 		 * version of this protocol, otherwise check for an
2996 		 * LLC-encapsulated version of this protocol.
2997 		 *
2998 		 * We assume LANE means Ethernet, not Token Ring.
2999 		 */
3000 		if (is_lane) {
3001 			/*
3002 			 * Check that the packet doesn't begin with an
3003 			 * LE Control marker.  (We've already generated
3004 			 * a test for LANE.)
3005 			 */
3006 			b0 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
3007 			    0xFF00);
3008 			gen_not(b0);
3009 
3010 			/*
3011 			 * Now generate an Ethernet test.
3012 			 */
3013 			b1 = gen_ether_linktype(proto);
3014 			gen_and(b0, b1);
3015 			return b1;
3016 		} else {
3017 			/*
3018 			 * Check for LLC encapsulation and then check the
3019 			 * protocol.
3020 			 */
3021 			b0 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3022 			b1 = gen_llc_linktype(proto);
3023 			gen_and(b0, b1);
3024 			return b1;
3025 		}
3026 		/*NOTREACHED*/
3027 		break;
3028 
3029 	case DLT_LINUX_SLL:
3030 		return gen_linux_sll_linktype(proto);
3031 		/*NOTREACHED*/
3032 		break;
3033 
3034 	case DLT_SLIP:
3035 	case DLT_SLIP_BSDOS:
3036 	case DLT_RAW:
3037 		/*
3038 		 * These types don't provide any type field; packets
3039 		 * are always IPv4 or IPv6.
3040 		 *
3041 		 * XXX - for IPv4, check for a version number of 4, and,
3042 		 * for IPv6, check for a version number of 6?
3043 		 */
3044 		switch (proto) {
3045 
3046 		case ETHERTYPE_IP:
3047 			/* Check for a version number of 4. */
3048 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x40, 0xF0);
3049 #ifdef INET6
3050 		case ETHERTYPE_IPV6:
3051 			/* Check for a version number of 6. */
3052 			return gen_mcmp(OR_LINK, 0, BPF_B, 0x60, 0xF0);
3053 #endif
3054 
3055 		default:
3056 			return gen_false();		/* always false */
3057 		}
3058 		/*NOTREACHED*/
3059 		break;
3060 
3061 	case DLT_IPV4:
3062 		/*
3063 		 * Raw IPv4, so no type field.
3064 		 */
3065 		if (proto == ETHERTYPE_IP)
3066 			return gen_true();		/* always true */
3067 
3068 		/* Checking for something other than IPv4; always false */
3069 		return gen_false();
3070 		/*NOTREACHED*/
3071 		break;
3072 
3073 	case DLT_IPV6:
3074 		/*
3075 		 * Raw IPv6, so no type field.
3076 		 */
3077 #ifdef INET6
3078 		if (proto == ETHERTYPE_IPV6)
3079 			return gen_true();		/* always true */
3080 #endif
3081 
3082 		/* Checking for something other than IPv6; always false */
3083 		return gen_false();
3084 		/*NOTREACHED*/
3085 		break;
3086 
3087 	case DLT_PPP:
3088 	case DLT_PPP_PPPD:
3089 	case DLT_PPP_SERIAL:
3090 	case DLT_PPP_ETHER:
3091 		/*
3092 		 * We use Ethernet protocol types inside libpcap;
3093 		 * map them to the corresponding PPP protocol types.
3094 		 */
3095 		proto = ethertype_to_ppptype(proto);
3096 		return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3097 		/*NOTREACHED*/
3098 		break;
3099 
3100 	case DLT_PPP_BSDOS:
3101 		/*
3102 		 * We use Ethernet protocol types inside libpcap;
3103 		 * map them to the corresponding PPP protocol types.
3104 		 */
3105 		switch (proto) {
3106 
3107 		case ETHERTYPE_IP:
3108 			/*
3109 			 * Also check for Van Jacobson-compressed IP.
3110 			 * XXX - do this for other forms of PPP?
3111 			 */
3112 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_IP);
3113 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJC);
3114 			gen_or(b0, b1);
3115 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_H, PPP_VJNC);
3116 			gen_or(b1, b0);
3117 			return b0;
3118 
3119 		default:
3120 			proto = ethertype_to_ppptype(proto);
3121 			return gen_cmp(OR_LINK, off_linktype, BPF_H,
3122 				(bpf_int32)proto);
3123 		}
3124 		/*NOTREACHED*/
3125 		break;
3126 
3127 	case DLT_NULL:
3128 	case DLT_LOOP:
3129 	case DLT_ENC:
3130 		/*
3131 		 * For DLT_NULL, the link-layer header is a 32-bit
3132 		 * word containing an AF_ value in *host* byte order,
3133 		 * and for DLT_ENC, the link-layer header begins
3134 		 * with a 32-bit work containing an AF_ value in
3135 		 * host byte order.
3136 		 *
3137 		 * In addition, if we're reading a saved capture file,
3138 		 * the host byte order in the capture may not be the
3139 		 * same as the host byte order on this machine.
3140 		 *
3141 		 * For DLT_LOOP, the link-layer header is a 32-bit
3142 		 * word containing an AF_ value in *network* byte order.
3143 		 *
3144 		 * XXX - AF_ values may, unfortunately, be platform-
3145 		 * dependent; for example, FreeBSD's AF_INET6 is 24
3146 		 * whilst NetBSD's and OpenBSD's is 26.
3147 		 *
3148 		 * This means that, when reading a capture file, just
3149 		 * checking for our AF_INET6 value won't work if the
3150 		 * capture file came from another OS.
3151 		 */
3152 		switch (proto) {
3153 
3154 		case ETHERTYPE_IP:
3155 			proto = AF_INET;
3156 			break;
3157 
3158 #ifdef INET6
3159 		case ETHERTYPE_IPV6:
3160 			proto = AF_INET6;
3161 			break;
3162 #endif
3163 
3164 		default:
3165 			/*
3166 			 * Not a type on which we support filtering.
3167 			 * XXX - support those that have AF_ values
3168 			 * #defined on this platform, at least?
3169 			 */
3170 			return gen_false();
3171 		}
3172 
3173 		if (linktype == DLT_NULL || linktype == DLT_ENC) {
3174 			/*
3175 			 * The AF_ value is in host byte order, but
3176 			 * the BPF interpreter will convert it to
3177 			 * network byte order.
3178 			 *
3179 			 * If this is a save file, and it's from a
3180 			 * machine with the opposite byte order to
3181 			 * ours, we byte-swap the AF_ value.
3182 			 *
3183 			 * Then we run it through "htonl()", and
3184 			 * generate code to compare against the result.
3185 			 */
3186 			if (bpf_pcap->sf.rfile != NULL &&
3187 			    bpf_pcap->sf.swapped)
3188 				proto = SWAPLONG(proto);
3189 			proto = htonl(proto);
3190 		}
3191 		return (gen_cmp(OR_LINK, 0, BPF_W, (bpf_int32)proto));
3192 
3193 #ifdef HAVE_NET_PFVAR_H
3194 	case DLT_PFLOG:
3195 		/*
3196 		 * af field is host byte order in contrast to the rest of
3197 		 * the packet.
3198 		 */
3199 		if (proto == ETHERTYPE_IP)
3200 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3201 			    BPF_B, (bpf_int32)AF_INET));
3202 #ifdef INET6
3203 		else if (proto == ETHERTYPE_IPV6)
3204 			return (gen_cmp(OR_LINK, offsetof(struct pfloghdr, af),
3205 			    BPF_B, (bpf_int32)AF_INET6));
3206 #endif /* INET6 */
3207 		else
3208 			return gen_false();
3209 		/*NOTREACHED*/
3210 		break;
3211 #endif /* HAVE_NET_PFVAR_H */
3212 
3213 	case DLT_ARCNET:
3214 	case DLT_ARCNET_LINUX:
3215 		/*
3216 		 * XXX should we check for first fragment if the protocol
3217 		 * uses PHDS?
3218 		 */
3219 		switch (proto) {
3220 
3221 		default:
3222 			return gen_false();
3223 
3224 #ifdef INET6
3225 		case ETHERTYPE_IPV6:
3226 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3227 				(bpf_int32)ARCTYPE_INET6));
3228 #endif /* INET6 */
3229 
3230 		case ETHERTYPE_IP:
3231 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3232 				     (bpf_int32)ARCTYPE_IP);
3233 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3234 				     (bpf_int32)ARCTYPE_IP_OLD);
3235 			gen_or(b0, b1);
3236 			return (b1);
3237 
3238 		case ETHERTYPE_ARP:
3239 			b0 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3240 				     (bpf_int32)ARCTYPE_ARP);
3241 			b1 = gen_cmp(OR_LINK, off_linktype, BPF_B,
3242 				     (bpf_int32)ARCTYPE_ARP_OLD);
3243 			gen_or(b0, b1);
3244 			return (b1);
3245 
3246 		case ETHERTYPE_REVARP:
3247 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3248 					(bpf_int32)ARCTYPE_REVARP));
3249 
3250 		case ETHERTYPE_ATALK:
3251 			return (gen_cmp(OR_LINK, off_linktype, BPF_B,
3252 					(bpf_int32)ARCTYPE_ATALK));
3253 		}
3254 		/*NOTREACHED*/
3255 		break;
3256 
3257 	case DLT_LTALK:
3258 		switch (proto) {
3259 		case ETHERTYPE_ATALK:
3260 			return gen_true();
3261 		default:
3262 			return gen_false();
3263 		}
3264 		/*NOTREACHED*/
3265 		break;
3266 
3267 	case DLT_FRELAY:
3268 		/*
3269 		 * XXX - assumes a 2-byte Frame Relay header with
3270 		 * DLCI and flags.  What if the address is longer?
3271 		 */
3272 		switch (proto) {
3273 
3274 		case ETHERTYPE_IP:
3275 			/*
3276 			 * Check for the special NLPID for IP.
3277 			 */
3278 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0xcc);
3279 
3280 #ifdef INET6
3281 		case ETHERTYPE_IPV6:
3282 			/*
3283 			 * Check for the special NLPID for IPv6.
3284 			 */
3285 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | 0x8e);
3286 #endif
3287 
3288 		case LLCSAP_ISONS:
3289 			/*
3290 			 * Check for several OSI protocols.
3291 			 *
3292 			 * Frame Relay packets typically have an OSI
3293 			 * NLPID at the beginning; we check for each
3294 			 * of them.
3295 			 *
3296 			 * What we check for is the NLPID and a frame
3297 			 * control field of UI, i.e. 0x03 followed
3298 			 * by the NLPID.
3299 			 */
3300 			b0 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3301 			b1 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3302 			b2 = gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3303 			gen_or(b1, b2);
3304 			gen_or(b0, b2);
3305 			return b2;
3306 
3307 		default:
3308 			return gen_false();
3309 		}
3310 		/*NOTREACHED*/
3311 		break;
3312 
3313 	case DLT_MFR:
3314 		bpf_error("Multi-link Frame Relay link-layer type filtering not implemented");
3315 
3316         case DLT_JUNIPER_MFR:
3317         case DLT_JUNIPER_MLFR:
3318         case DLT_JUNIPER_MLPPP:
3319 	case DLT_JUNIPER_ATM1:
3320 	case DLT_JUNIPER_ATM2:
3321 	case DLT_JUNIPER_PPPOE:
3322 	case DLT_JUNIPER_PPPOE_ATM:
3323         case DLT_JUNIPER_GGSN:
3324         case DLT_JUNIPER_ES:
3325         case DLT_JUNIPER_MONITOR:
3326         case DLT_JUNIPER_SERVICES:
3327         case DLT_JUNIPER_ETHER:
3328         case DLT_JUNIPER_PPP:
3329         case DLT_JUNIPER_FRELAY:
3330         case DLT_JUNIPER_CHDLC:
3331         case DLT_JUNIPER_VP:
3332         case DLT_JUNIPER_ST:
3333         case DLT_JUNIPER_ISM:
3334         case DLT_JUNIPER_VS:
3335         case DLT_JUNIPER_SRX_E2E:
3336         case DLT_JUNIPER_FIBRECHANNEL:
3337 	case DLT_JUNIPER_ATM_CEMIC:
3338 
3339 		/* just lets verify the magic number for now -
3340 		 * on ATM we may have up to 6 different encapsulations on the wire
3341 		 * and need a lot of heuristics to figure out that the payload
3342 		 * might be;
3343 		 *
3344 		 * FIXME encapsulation specific BPF_ filters
3345 		 */
3346 		return gen_mcmp(OR_LINK, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3347 
3348 	case DLT_IPNET:
3349 		return gen_ipnet_linktype(proto);
3350 
3351 	case DLT_LINUX_IRDA:
3352 		bpf_error("IrDA link-layer type filtering not implemented");
3353 
3354 	case DLT_DOCSIS:
3355 		bpf_error("DOCSIS link-layer type filtering not implemented");
3356 
3357 	case DLT_MTP2:
3358 	case DLT_MTP2_WITH_PHDR:
3359 		bpf_error("MTP2 link-layer type filtering not implemented");
3360 
3361 	case DLT_ERF:
3362 		bpf_error("ERF link-layer type filtering not implemented");
3363 
3364 	case DLT_PFSYNC:
3365 		bpf_error("PFSYNC link-layer type filtering not implemented");
3366 
3367 	case DLT_LINUX_LAPD:
3368 		bpf_error("LAPD link-layer type filtering not implemented");
3369 
3370 	case DLT_USB:
3371 	case DLT_USB_LINUX:
3372 	case DLT_USB_LINUX_MMAPPED:
3373 		bpf_error("USB link-layer type filtering not implemented");
3374 
3375 	case DLT_BLUETOOTH_HCI_H4:
3376 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3377 		bpf_error("Bluetooth link-layer type filtering not implemented");
3378 
3379 	case DLT_CAN20B:
3380 	case DLT_CAN_SOCKETCAN:
3381 		bpf_error("CAN link-layer type filtering not implemented");
3382 
3383 	case DLT_IEEE802_15_4:
3384 	case DLT_IEEE802_15_4_LINUX:
3385 	case DLT_IEEE802_15_4_NONASK_PHY:
3386 	case DLT_IEEE802_15_4_NOFCS:
3387 		bpf_error("IEEE 802.15.4 link-layer type filtering not implemented");
3388 
3389 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3390 		bpf_error("IEEE 802.16 link-layer type filtering not implemented");
3391 
3392 	case DLT_SITA:
3393 		bpf_error("SITA link-layer type filtering not implemented");
3394 
3395 	case DLT_RAIF1:
3396 		bpf_error("RAIF1 link-layer type filtering not implemented");
3397 
3398 	case DLT_IPMB:
3399 		bpf_error("IPMB link-layer type filtering not implemented");
3400 
3401 	case DLT_AX25_KISS:
3402 		bpf_error("AX.25 link-layer type filtering not implemented");
3403 	}
3404 
3405 	/*
3406 	 * All the types that have no encapsulation should either be
3407 	 * handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
3408 	 * all packets are IP packets, or should be handled in some
3409 	 * special case, if none of them are (if some are and some
3410 	 * aren't, the lack of encapsulation is a problem, as we'd
3411 	 * have to find some other way of determining the packet type).
3412 	 *
3413 	 * Therefore, if "off_linktype" is -1, there's an error.
3414 	 */
3415 	if (off_linktype == (u_int)-1)
3416 		abort();
3417 
3418 	/*
3419 	 * Any type not handled above should always have an Ethernet
3420 	 * type at an offset of "off_linktype".
3421 	 */
3422 	return gen_cmp(OR_LINK, off_linktype, BPF_H, (bpf_int32)proto);
3423 }
3424 
3425 /*
3426  * Check for an LLC SNAP packet with a given organization code and
3427  * protocol type; we check the entire contents of the 802.2 LLC and
3428  * snap headers, checking for DSAP and SSAP of SNAP and a control
3429  * field of 0x03 in the LLC header, and for the specified organization
3430  * code and protocol type in the SNAP header.
3431  */
3432 static struct block *
3433 gen_snap(orgcode, ptype)
3434 	bpf_u_int32 orgcode;
3435 	bpf_u_int32 ptype;
3436 {
3437 	u_char snapblock[8];
3438 
3439 	snapblock[0] = LLCSAP_SNAP;	/* DSAP = SNAP */
3440 	snapblock[1] = LLCSAP_SNAP;	/* SSAP = SNAP */
3441 	snapblock[2] = 0x03;		/* control = UI */
3442 	snapblock[3] = (orgcode >> 16);	/* upper 8 bits of organization code */
3443 	snapblock[4] = (orgcode >> 8);	/* middle 8 bits of organization code */
3444 	snapblock[5] = (orgcode >> 0);	/* lower 8 bits of organization code */
3445 	snapblock[6] = (ptype >> 8);	/* upper 8 bits of protocol type */
3446 	snapblock[7] = (ptype >> 0);	/* lower 8 bits of protocol type */
3447 	return gen_bcmp(OR_MACPL, 0, 8, snapblock);
3448 }
3449 
3450 /*
3451  * Generate code to match a particular packet type, for link-layer types
3452  * using 802.2 LLC headers.
3453  *
3454  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3455  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3456  *
3457  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3458  * value, if <= ETHERMTU.  We use that to determine whether to
3459  * match the DSAP or both DSAP and LSAP or to check the OUI and
3460  * protocol ID in a SNAP header.
3461  */
3462 static struct block *
3463 gen_llc_linktype(proto)
3464 	int proto;
3465 {
3466 	/*
3467 	 * XXX - handle token-ring variable-length header.
3468 	 */
3469 	switch (proto) {
3470 
3471 	case LLCSAP_IP:
3472 	case LLCSAP_ISONS:
3473 	case LLCSAP_NETBEUI:
3474 		/*
3475 		 * XXX - should we check both the DSAP and the
3476 		 * SSAP, like this, or should we check just the
3477 		 * DSAP, as we do for other types <= ETHERMTU
3478 		 * (i.e., other SAP values)?
3479 		 */
3480 		return gen_cmp(OR_MACPL, 0, BPF_H, (bpf_u_int32)
3481 			     ((proto << 8) | proto));
3482 
3483 	case LLCSAP_IPX:
3484 		/*
3485 		 * XXX - are there ever SNAP frames for IPX on
3486 		 * non-Ethernet 802.x networks?
3487 		 */
3488 		return gen_cmp(OR_MACPL, 0, BPF_B,
3489 		    (bpf_int32)LLCSAP_IPX);
3490 
3491 	case ETHERTYPE_ATALK:
3492 		/*
3493 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3494 		 * SNAP packets with an organization code of
3495 		 * 0x080007 (Apple, for Appletalk) and a protocol
3496 		 * type of ETHERTYPE_ATALK (Appletalk).
3497 		 *
3498 		 * XXX - check for an organization code of
3499 		 * encapsulated Ethernet as well?
3500 		 */
3501 		return gen_snap(0x080007, ETHERTYPE_ATALK);
3502 
3503 	default:
3504 		/*
3505 		 * XXX - we don't have to check for IPX 802.3
3506 		 * here, but should we check for the IPX Ethertype?
3507 		 */
3508 		if (proto <= ETHERMTU) {
3509 			/*
3510 			 * This is an LLC SAP value, so check
3511 			 * the DSAP.
3512 			 */
3513 			return gen_cmp(OR_MACPL, 0, BPF_B, (bpf_int32)proto);
3514 		} else {
3515 			/*
3516 			 * This is an Ethernet type; we assume that it's
3517 			 * unlikely that it'll appear in the right place
3518 			 * at random, and therefore check only the
3519 			 * location that would hold the Ethernet type
3520 			 * in a SNAP frame with an organization code of
3521 			 * 0x000000 (encapsulated Ethernet).
3522 			 *
3523 			 * XXX - if we were to check for the SNAP DSAP and
3524 			 * LSAP, as per XXX, and were also to check for an
3525 			 * organization code of 0x000000 (encapsulated
3526 			 * Ethernet), we'd do
3527 			 *
3528 			 *	return gen_snap(0x000000, proto);
3529 			 *
3530 			 * here; for now, we don't, as per the above.
3531 			 * I don't know whether it's worth the extra CPU
3532 			 * time to do the right check or not.
3533 			 */
3534 			return gen_cmp(OR_MACPL, 6, BPF_H, (bpf_int32)proto);
3535 		}
3536 	}
3537 }
3538 
3539 static struct block *
3540 gen_hostop(addr, mask, dir, proto, src_off, dst_off)
3541 	bpf_u_int32 addr;
3542 	bpf_u_int32 mask;
3543 	int dir, proto;
3544 	u_int src_off, dst_off;
3545 {
3546 	struct block *b0, *b1;
3547 	u_int offset;
3548 
3549 	switch (dir) {
3550 
3551 	case Q_SRC:
3552 		offset = src_off;
3553 		break;
3554 
3555 	case Q_DST:
3556 		offset = dst_off;
3557 		break;
3558 
3559 	case Q_AND:
3560 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3561 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3562 		gen_and(b0, b1);
3563 		return b1;
3564 
3565 	case Q_OR:
3566 	case Q_DEFAULT:
3567 		b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
3568 		b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
3569 		gen_or(b0, b1);
3570 		return b1;
3571 
3572 	default:
3573 		abort();
3574 	}
3575 	b0 = gen_linktype(proto);
3576 	b1 = gen_mcmp(OR_NET, offset, BPF_W, (bpf_int32)addr, mask);
3577 	gen_and(b0, b1);
3578 	return b1;
3579 }
3580 
3581 #ifdef INET6
3582 static struct block *
3583 gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
3584 	struct in6_addr *addr;
3585 	struct in6_addr *mask;
3586 	int dir, proto;
3587 	u_int src_off, dst_off;
3588 {
3589 	struct block *b0, *b1;
3590 	u_int offset;
3591 	u_int32_t *a, *m;
3592 
3593 	switch (dir) {
3594 
3595 	case Q_SRC:
3596 		offset = src_off;
3597 		break;
3598 
3599 	case Q_DST:
3600 		offset = dst_off;
3601 		break;
3602 
3603 	case Q_AND:
3604 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3605 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3606 		gen_and(b0, b1);
3607 		return b1;
3608 
3609 	case Q_OR:
3610 	case Q_DEFAULT:
3611 		b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
3612 		b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
3613 		gen_or(b0, b1);
3614 		return b1;
3615 
3616 	default:
3617 		abort();
3618 	}
3619 	/* this order is important */
3620 	a = (u_int32_t *)addr;
3621 	m = (u_int32_t *)mask;
3622 	b1 = gen_mcmp(OR_NET, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
3623 	b0 = gen_mcmp(OR_NET, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
3624 	gen_and(b0, b1);
3625 	b0 = gen_mcmp(OR_NET, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
3626 	gen_and(b0, b1);
3627 	b0 = gen_mcmp(OR_NET, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
3628 	gen_and(b0, b1);
3629 	b0 = gen_linktype(proto);
3630 	gen_and(b0, b1);
3631 	return b1;
3632 }
3633 #endif /*INET6*/
3634 
3635 static struct block *
3636 gen_ehostop(eaddr, dir)
3637 	register const u_char *eaddr;
3638 	register int dir;
3639 {
3640 	register struct block *b0, *b1;
3641 
3642 	switch (dir) {
3643 	case Q_SRC:
3644 		return gen_bcmp(OR_LINK, off_mac + 6, 6, eaddr);
3645 
3646 	case Q_DST:
3647 		return gen_bcmp(OR_LINK, off_mac + 0, 6, eaddr);
3648 
3649 	case Q_AND:
3650 		b0 = gen_ehostop(eaddr, Q_SRC);
3651 		b1 = gen_ehostop(eaddr, Q_DST);
3652 		gen_and(b0, b1);
3653 		return b1;
3654 
3655 	case Q_DEFAULT:
3656 	case Q_OR:
3657 		b0 = gen_ehostop(eaddr, Q_SRC);
3658 		b1 = gen_ehostop(eaddr, Q_DST);
3659 		gen_or(b0, b1);
3660 		return b1;
3661 
3662 	case Q_ADDR1:
3663 		bpf_error("'addr1' is only supported on 802.11 with 802.11 headers");
3664 		break;
3665 
3666 	case Q_ADDR2:
3667 		bpf_error("'addr2' is only supported on 802.11 with 802.11 headers");
3668 		break;
3669 
3670 	case Q_ADDR3:
3671 		bpf_error("'addr3' is only supported on 802.11 with 802.11 headers");
3672 		break;
3673 
3674 	case Q_ADDR4:
3675 		bpf_error("'addr4' is only supported on 802.11 with 802.11 headers");
3676 		break;
3677 
3678 	case Q_RA:
3679 		bpf_error("'ra' is only supported on 802.11 with 802.11 headers");
3680 		break;
3681 
3682 	case Q_TA:
3683 		bpf_error("'ta' is only supported on 802.11 with 802.11 headers");
3684 		break;
3685 	}
3686 	abort();
3687 	/* NOTREACHED */
3688 }
3689 
3690 /*
3691  * Like gen_ehostop, but for DLT_FDDI
3692  */
3693 static struct block *
3694 gen_fhostop(eaddr, dir)
3695 	register const u_char *eaddr;
3696 	register int dir;
3697 {
3698 	struct block *b0, *b1;
3699 
3700 	switch (dir) {
3701 	case Q_SRC:
3702 #ifdef PCAP_FDDIPAD
3703 		return gen_bcmp(OR_LINK, 6 + 1 + pcap_fddipad, 6, eaddr);
3704 #else
3705 		return gen_bcmp(OR_LINK, 6 + 1, 6, eaddr);
3706 #endif
3707 
3708 	case Q_DST:
3709 #ifdef PCAP_FDDIPAD
3710 		return gen_bcmp(OR_LINK, 0 + 1 + pcap_fddipad, 6, eaddr);
3711 #else
3712 		return gen_bcmp(OR_LINK, 0 + 1, 6, eaddr);
3713 #endif
3714 
3715 	case Q_AND:
3716 		b0 = gen_fhostop(eaddr, Q_SRC);
3717 		b1 = gen_fhostop(eaddr, Q_DST);
3718 		gen_and(b0, b1);
3719 		return b1;
3720 
3721 	case Q_DEFAULT:
3722 	case Q_OR:
3723 		b0 = gen_fhostop(eaddr, Q_SRC);
3724 		b1 = gen_fhostop(eaddr, Q_DST);
3725 		gen_or(b0, b1);
3726 		return b1;
3727 
3728 	case Q_ADDR1:
3729 		bpf_error("'addr1' is only supported on 802.11");
3730 		break;
3731 
3732 	case Q_ADDR2:
3733 		bpf_error("'addr2' is only supported on 802.11");
3734 		break;
3735 
3736 	case Q_ADDR3:
3737 		bpf_error("'addr3' is only supported on 802.11");
3738 		break;
3739 
3740 	case Q_ADDR4:
3741 		bpf_error("'addr4' is only supported on 802.11");
3742 		break;
3743 
3744 	case Q_RA:
3745 		bpf_error("'ra' is only supported on 802.11");
3746 		break;
3747 
3748 	case Q_TA:
3749 		bpf_error("'ta' is only supported on 802.11");
3750 		break;
3751 	}
3752 	abort();
3753 	/* NOTREACHED */
3754 }
3755 
3756 /*
3757  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
3758  */
3759 static struct block *
3760 gen_thostop(eaddr, dir)
3761 	register const u_char *eaddr;
3762 	register int dir;
3763 {
3764 	register struct block *b0, *b1;
3765 
3766 	switch (dir) {
3767 	case Q_SRC:
3768 		return gen_bcmp(OR_LINK, 8, 6, eaddr);
3769 
3770 	case Q_DST:
3771 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
3772 
3773 	case Q_AND:
3774 		b0 = gen_thostop(eaddr, Q_SRC);
3775 		b1 = gen_thostop(eaddr, Q_DST);
3776 		gen_and(b0, b1);
3777 		return b1;
3778 
3779 	case Q_DEFAULT:
3780 	case Q_OR:
3781 		b0 = gen_thostop(eaddr, Q_SRC);
3782 		b1 = gen_thostop(eaddr, Q_DST);
3783 		gen_or(b0, b1);
3784 		return b1;
3785 
3786 	case Q_ADDR1:
3787 		bpf_error("'addr1' is only supported on 802.11");
3788 		break;
3789 
3790 	case Q_ADDR2:
3791 		bpf_error("'addr2' is only supported on 802.11");
3792 		break;
3793 
3794 	case Q_ADDR3:
3795 		bpf_error("'addr3' is only supported on 802.11");
3796 		break;
3797 
3798 	case Q_ADDR4:
3799 		bpf_error("'addr4' is only supported on 802.11");
3800 		break;
3801 
3802 	case Q_RA:
3803 		bpf_error("'ra' is only supported on 802.11");
3804 		break;
3805 
3806 	case Q_TA:
3807 		bpf_error("'ta' is only supported on 802.11");
3808 		break;
3809 	}
3810 	abort();
3811 	/* NOTREACHED */
3812 }
3813 
3814 /*
3815  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
3816  * various 802.11 + radio headers.
3817  */
3818 static struct block *
3819 gen_wlanhostop(eaddr, dir)
3820 	register const u_char *eaddr;
3821 	register int dir;
3822 {
3823 	register struct block *b0, *b1, *b2;
3824 	register struct slist *s;
3825 
3826 #ifdef ENABLE_WLAN_FILTERING_PATCH
3827 	/*
3828 	 * TODO GV 20070613
3829 	 * We need to disable the optimizer because the optimizer is buggy
3830 	 * and wipes out some LD instructions generated by the below
3831 	 * code to validate the Frame Control bits
3832 	 */
3833 	no_optimize = 1;
3834 #endif /* ENABLE_WLAN_FILTERING_PATCH */
3835 
3836 	switch (dir) {
3837 	case Q_SRC:
3838 		/*
3839 		 * Oh, yuk.
3840 		 *
3841 		 *	For control frames, there is no SA.
3842 		 *
3843 		 *	For management frames, SA is at an
3844 		 *	offset of 10 from the beginning of
3845 		 *	the packet.
3846 		 *
3847 		 *	For data frames, SA is at an offset
3848 		 *	of 10 from the beginning of the packet
3849 		 *	if From DS is clear, at an offset of
3850 		 *	16 from the beginning of the packet
3851 		 *	if From DS is set and To DS is clear,
3852 		 *	and an offset of 24 from the beginning
3853 		 *	of the packet if From DS is set and To DS
3854 		 *	is set.
3855 		 */
3856 
3857 		/*
3858 		 * Generate the tests to be done for data frames
3859 		 * with From DS set.
3860 		 *
3861 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
3862 		 */
3863 		s = gen_load_a(OR_LINK, 1, BPF_B);
3864 		b1 = new_block(JMP(BPF_JSET));
3865 		b1->s.k = 0x01;	/* To DS */
3866 		b1->stmts = s;
3867 
3868 		/*
3869 		 * If To DS is set, the SA is at 24.
3870 		 */
3871 		b0 = gen_bcmp(OR_LINK, 24, 6, eaddr);
3872 		gen_and(b1, b0);
3873 
3874 		/*
3875 		 * Now, check for To DS not set, i.e. check
3876 		 * "!(link[1] & 0x01)".
3877 		 */
3878 		s = gen_load_a(OR_LINK, 1, BPF_B);
3879 		b2 = new_block(JMP(BPF_JSET));
3880 		b2->s.k = 0x01;	/* To DS */
3881 		b2->stmts = s;
3882 		gen_not(b2);
3883 
3884 		/*
3885 		 * If To DS is not set, the SA is at 16.
3886 		 */
3887 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
3888 		gen_and(b2, b1);
3889 
3890 		/*
3891 		 * Now OR together the last two checks.  That gives
3892 		 * the complete set of checks for data frames with
3893 		 * From DS set.
3894 		 */
3895 		gen_or(b1, b0);
3896 
3897 		/*
3898 		 * Now check for From DS being set, and AND that with
3899 		 * the ORed-together checks.
3900 		 */
3901 		s = gen_load_a(OR_LINK, 1, BPF_B);
3902 		b1 = new_block(JMP(BPF_JSET));
3903 		b1->s.k = 0x02;	/* From DS */
3904 		b1->stmts = s;
3905 		gen_and(b1, b0);
3906 
3907 		/*
3908 		 * Now check for data frames with From DS not set.
3909 		 */
3910 		s = gen_load_a(OR_LINK, 1, BPF_B);
3911 		b2 = new_block(JMP(BPF_JSET));
3912 		b2->s.k = 0x02;	/* From DS */
3913 		b2->stmts = s;
3914 		gen_not(b2);
3915 
3916 		/*
3917 		 * If From DS isn't set, the SA is at 10.
3918 		 */
3919 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3920 		gen_and(b2, b1);
3921 
3922 		/*
3923 		 * Now OR together the checks for data frames with
3924 		 * From DS not set and for data frames with From DS
3925 		 * set; that gives the checks done for data frames.
3926 		 */
3927 		gen_or(b1, b0);
3928 
3929 		/*
3930 		 * Now check for a data frame.
3931 		 * I.e, check "link[0] & 0x08".
3932 		 */
3933 		s = gen_load_a(OR_LINK, 0, BPF_B);
3934 		b1 = new_block(JMP(BPF_JSET));
3935 		b1->s.k = 0x08;
3936 		b1->stmts = s;
3937 
3938 		/*
3939 		 * AND that with the checks done for data frames.
3940 		 */
3941 		gen_and(b1, b0);
3942 
3943 		/*
3944 		 * If the high-order bit of the type value is 0, this
3945 		 * is a management frame.
3946 		 * I.e, check "!(link[0] & 0x08)".
3947 		 */
3948 		s = gen_load_a(OR_LINK, 0, BPF_B);
3949 		b2 = new_block(JMP(BPF_JSET));
3950 		b2->s.k = 0x08;
3951 		b2->stmts = s;
3952 		gen_not(b2);
3953 
3954 		/*
3955 		 * For management frames, the SA is at 10.
3956 		 */
3957 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
3958 		gen_and(b2, b1);
3959 
3960 		/*
3961 		 * OR that with the checks done for data frames.
3962 		 * That gives the checks done for management and
3963 		 * data frames.
3964 		 */
3965 		gen_or(b1, b0);
3966 
3967 		/*
3968 		 * If the low-order bit of the type value is 1,
3969 		 * this is either a control frame or a frame
3970 		 * with a reserved type, and thus not a
3971 		 * frame with an SA.
3972 		 *
3973 		 * I.e., check "!(link[0] & 0x04)".
3974 		 */
3975 		s = gen_load_a(OR_LINK, 0, BPF_B);
3976 		b1 = new_block(JMP(BPF_JSET));
3977 		b1->s.k = 0x04;
3978 		b1->stmts = s;
3979 		gen_not(b1);
3980 
3981 		/*
3982 		 * AND that with the checks for data and management
3983 		 * frames.
3984 		 */
3985 		gen_and(b1, b0);
3986 		return b0;
3987 
3988 	case Q_DST:
3989 		/*
3990 		 * Oh, yuk.
3991 		 *
3992 		 *	For control frames, there is no DA.
3993 		 *
3994 		 *	For management frames, DA is at an
3995 		 *	offset of 4 from the beginning of
3996 		 *	the packet.
3997 		 *
3998 		 *	For data frames, DA is at an offset
3999 		 *	of 4 from the beginning of the packet
4000 		 *	if To DS is clear and at an offset of
4001 		 *	16 from the beginning of the packet
4002 		 *	if To DS is set.
4003 		 */
4004 
4005 		/*
4006 		 * Generate the tests to be done for data frames.
4007 		 *
4008 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4009 		 */
4010 		s = gen_load_a(OR_LINK, 1, BPF_B);
4011 		b1 = new_block(JMP(BPF_JSET));
4012 		b1->s.k = 0x01;	/* To DS */
4013 		b1->stmts = s;
4014 
4015 		/*
4016 		 * If To DS is set, the DA is at 16.
4017 		 */
4018 		b0 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4019 		gen_and(b1, b0);
4020 
4021 		/*
4022 		 * Now, check for To DS not set, i.e. check
4023 		 * "!(link[1] & 0x01)".
4024 		 */
4025 		s = gen_load_a(OR_LINK, 1, BPF_B);
4026 		b2 = new_block(JMP(BPF_JSET));
4027 		b2->s.k = 0x01;	/* To DS */
4028 		b2->stmts = s;
4029 		gen_not(b2);
4030 
4031 		/*
4032 		 * If To DS is not set, the DA is at 4.
4033 		 */
4034 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4035 		gen_and(b2, b1);
4036 
4037 		/*
4038 		 * Now OR together the last two checks.  That gives
4039 		 * the complete set of checks for data frames.
4040 		 */
4041 		gen_or(b1, b0);
4042 
4043 		/*
4044 		 * Now check for a data frame.
4045 		 * I.e, check "link[0] & 0x08".
4046 		 */
4047 		s = gen_load_a(OR_LINK, 0, BPF_B);
4048 		b1 = new_block(JMP(BPF_JSET));
4049 		b1->s.k = 0x08;
4050 		b1->stmts = s;
4051 
4052 		/*
4053 		 * AND that with the checks done for data frames.
4054 		 */
4055 		gen_and(b1, b0);
4056 
4057 		/*
4058 		 * If the high-order bit of the type value is 0, this
4059 		 * is a management frame.
4060 		 * I.e, check "!(link[0] & 0x08)".
4061 		 */
4062 		s = gen_load_a(OR_LINK, 0, BPF_B);
4063 		b2 = new_block(JMP(BPF_JSET));
4064 		b2->s.k = 0x08;
4065 		b2->stmts = s;
4066 		gen_not(b2);
4067 
4068 		/*
4069 		 * For management frames, the DA is at 4.
4070 		 */
4071 		b1 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4072 		gen_and(b2, b1);
4073 
4074 		/*
4075 		 * OR that with the checks done for data frames.
4076 		 * That gives the checks done for management and
4077 		 * data frames.
4078 		 */
4079 		gen_or(b1, b0);
4080 
4081 		/*
4082 		 * If the low-order bit of the type value is 1,
4083 		 * this is either a control frame or a frame
4084 		 * with a reserved type, and thus not a
4085 		 * frame with an SA.
4086 		 *
4087 		 * I.e., check "!(link[0] & 0x04)".
4088 		 */
4089 		s = gen_load_a(OR_LINK, 0, BPF_B);
4090 		b1 = new_block(JMP(BPF_JSET));
4091 		b1->s.k = 0x04;
4092 		b1->stmts = s;
4093 		gen_not(b1);
4094 
4095 		/*
4096 		 * AND that with the checks for data and management
4097 		 * frames.
4098 		 */
4099 		gen_and(b1, b0);
4100 		return b0;
4101 
4102 	case Q_RA:
4103 		/*
4104 		 * Not present in management frames; addr1 in other
4105 		 * frames.
4106 		 */
4107 
4108 		/*
4109 		 * If the high-order bit of the type value is 0, this
4110 		 * is a management frame.
4111 		 * I.e, check "(link[0] & 0x08)".
4112 		 */
4113 		s = gen_load_a(OR_LINK, 0, BPF_B);
4114 		b1 = new_block(JMP(BPF_JSET));
4115 		b1->s.k = 0x08;
4116 		b1->stmts = s;
4117 
4118 		/*
4119 		 * Check addr1.
4120 		 */
4121 		b0 = gen_bcmp(OR_LINK, 4, 6, eaddr);
4122 
4123 		/*
4124 		 * AND that with the check of addr1.
4125 		 */
4126 		gen_and(b1, b0);
4127 		return (b0);
4128 
4129 	case Q_TA:
4130 		/*
4131 		 * Not present in management frames; addr2, if present,
4132 		 * in other frames.
4133 		 */
4134 
4135 		/*
4136 		 * Not present in CTS or ACK control frames.
4137 		 */
4138 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4139 			IEEE80211_FC0_TYPE_MASK);
4140 		gen_not(b0);
4141 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4142 			IEEE80211_FC0_SUBTYPE_MASK);
4143 		gen_not(b1);
4144 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4145 			IEEE80211_FC0_SUBTYPE_MASK);
4146 		gen_not(b2);
4147 		gen_and(b1, b2);
4148 		gen_or(b0, b2);
4149 
4150 		/*
4151 		 * If the high-order bit of the type value is 0, this
4152 		 * is a management frame.
4153 		 * I.e, check "(link[0] & 0x08)".
4154 		 */
4155 		s = gen_load_a(OR_LINK, 0, BPF_B);
4156 		b1 = new_block(JMP(BPF_JSET));
4157 		b1->s.k = 0x08;
4158 		b1->stmts = s;
4159 
4160 		/*
4161 		 * AND that with the check for frames other than
4162 		 * CTS and ACK frames.
4163 		 */
4164 		gen_and(b1, b2);
4165 
4166 		/*
4167 		 * Check addr2.
4168 		 */
4169 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4170 		gen_and(b2, b1);
4171 		return b1;
4172 
4173 	/*
4174 	 * XXX - add BSSID keyword?
4175 	 */
4176 	case Q_ADDR1:
4177 		return (gen_bcmp(OR_LINK, 4, 6, eaddr));
4178 
4179 	case Q_ADDR2:
4180 		/*
4181 		 * Not present in CTS or ACK control frames.
4182 		 */
4183 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4184 			IEEE80211_FC0_TYPE_MASK);
4185 		gen_not(b0);
4186 		b1 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4187 			IEEE80211_FC0_SUBTYPE_MASK);
4188 		gen_not(b1);
4189 		b2 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4190 			IEEE80211_FC0_SUBTYPE_MASK);
4191 		gen_not(b2);
4192 		gen_and(b1, b2);
4193 		gen_or(b0, b2);
4194 		b1 = gen_bcmp(OR_LINK, 10, 6, eaddr);
4195 		gen_and(b2, b1);
4196 		return b1;
4197 
4198 	case Q_ADDR3:
4199 		/*
4200 		 * Not present in control frames.
4201 		 */
4202 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4203 			IEEE80211_FC0_TYPE_MASK);
4204 		gen_not(b0);
4205 		b1 = gen_bcmp(OR_LINK, 16, 6, eaddr);
4206 		gen_and(b0, b1);
4207 		return b1;
4208 
4209 	case Q_ADDR4:
4210 		/*
4211 		 * Present only if the direction mask has both "From DS"
4212 		 * and "To DS" set.  Neither control frames nor management
4213 		 * frames should have both of those set, so we don't
4214 		 * check the frame type.
4215 		 */
4216 		b0 = gen_mcmp(OR_LINK, 1, BPF_B,
4217 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4218 		b1 = gen_bcmp(OR_LINK, 24, 6, eaddr);
4219 		gen_and(b0, b1);
4220 		return b1;
4221 
4222 	case Q_AND:
4223 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4224 		b1 = gen_wlanhostop(eaddr, Q_DST);
4225 		gen_and(b0, b1);
4226 		return b1;
4227 
4228 	case Q_DEFAULT:
4229 	case Q_OR:
4230 		b0 = gen_wlanhostop(eaddr, Q_SRC);
4231 		b1 = gen_wlanhostop(eaddr, Q_DST);
4232 		gen_or(b0, b1);
4233 		return b1;
4234 	}
4235 	abort();
4236 	/* NOTREACHED */
4237 }
4238 
4239 /*
4240  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4241  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4242  * as the RFC states.)
4243  */
4244 static struct block *
4245 gen_ipfchostop(eaddr, dir)
4246 	register const u_char *eaddr;
4247 	register int dir;
4248 {
4249 	register struct block *b0, *b1;
4250 
4251 	switch (dir) {
4252 	case Q_SRC:
4253 		return gen_bcmp(OR_LINK, 10, 6, eaddr);
4254 
4255 	case Q_DST:
4256 		return gen_bcmp(OR_LINK, 2, 6, eaddr);
4257 
4258 	case Q_AND:
4259 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4260 		b1 = gen_ipfchostop(eaddr, Q_DST);
4261 		gen_and(b0, b1);
4262 		return b1;
4263 
4264 	case Q_DEFAULT:
4265 	case Q_OR:
4266 		b0 = gen_ipfchostop(eaddr, Q_SRC);
4267 		b1 = gen_ipfchostop(eaddr, Q_DST);
4268 		gen_or(b0, b1);
4269 		return b1;
4270 
4271 	case Q_ADDR1:
4272 		bpf_error("'addr1' is only supported on 802.11");
4273 		break;
4274 
4275 	case Q_ADDR2:
4276 		bpf_error("'addr2' is only supported on 802.11");
4277 		break;
4278 
4279 	case Q_ADDR3:
4280 		bpf_error("'addr3' is only supported on 802.11");
4281 		break;
4282 
4283 	case Q_ADDR4:
4284 		bpf_error("'addr4' is only supported on 802.11");
4285 		break;
4286 
4287 	case Q_RA:
4288 		bpf_error("'ra' is only supported on 802.11");
4289 		break;
4290 
4291 	case Q_TA:
4292 		bpf_error("'ta' is only supported on 802.11");
4293 		break;
4294 	}
4295 	abort();
4296 	/* NOTREACHED */
4297 }
4298 
4299 /*
4300  * This is quite tricky because there may be pad bytes in front of the
4301  * DECNET header, and then there are two possible data packet formats that
4302  * carry both src and dst addresses, plus 5 packet types in a format that
4303  * carries only the src node, plus 2 types that use a different format and
4304  * also carry just the src node.
4305  *
4306  * Yuck.
4307  *
4308  * Instead of doing those all right, we just look for data packets with
4309  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4310  * will require a lot more hacking.
4311  *
4312  * To add support for filtering on DECNET "areas" (network numbers)
4313  * one would want to add a "mask" argument to this routine.  That would
4314  * make the filter even more inefficient, although one could be clever
4315  * and not generate masking instructions if the mask is 0xFFFF.
4316  */
4317 static struct block *
4318 gen_dnhostop(addr, dir)
4319 	bpf_u_int32 addr;
4320 	int dir;
4321 {
4322 	struct block *b0, *b1, *b2, *tmp;
4323 	u_int offset_lh;	/* offset if long header is received */
4324 	u_int offset_sh;	/* offset if short header is received */
4325 
4326 	switch (dir) {
4327 
4328 	case Q_DST:
4329 		offset_sh = 1;	/* follows flags */
4330 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4331 		break;
4332 
4333 	case Q_SRC:
4334 		offset_sh = 3;	/* follows flags, dstnode */
4335 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4336 		break;
4337 
4338 	case Q_AND:
4339 		/* Inefficient because we do our Calvinball dance twice */
4340 		b0 = gen_dnhostop(addr, Q_SRC);
4341 		b1 = gen_dnhostop(addr, Q_DST);
4342 		gen_and(b0, b1);
4343 		return b1;
4344 
4345 	case Q_OR:
4346 	case Q_DEFAULT:
4347 		/* Inefficient because we do our Calvinball dance twice */
4348 		b0 = gen_dnhostop(addr, Q_SRC);
4349 		b1 = gen_dnhostop(addr, Q_DST);
4350 		gen_or(b0, b1);
4351 		return b1;
4352 
4353 	case Q_ISO:
4354 		bpf_error("ISO host filtering not implemented");
4355 
4356 	default:
4357 		abort();
4358 	}
4359 	b0 = gen_linktype(ETHERTYPE_DN);
4360 	/* Check for pad = 1, long header case */
4361 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4362 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4363 	b1 = gen_cmp(OR_NET, 2 + 1 + offset_lh,
4364 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4365 	gen_and(tmp, b1);
4366 	/* Check for pad = 0, long header case */
4367 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4368 	b2 = gen_cmp(OR_NET, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4369 	gen_and(tmp, b2);
4370 	gen_or(b2, b1);
4371 	/* Check for pad = 1, short header case */
4372 	tmp = gen_mcmp(OR_NET, 2, BPF_H,
4373 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4374 	b2 = gen_cmp(OR_NET, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4375 	gen_and(tmp, b2);
4376 	gen_or(b2, b1);
4377 	/* Check for pad = 0, short header case */
4378 	tmp = gen_mcmp(OR_NET, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4379 	b2 = gen_cmp(OR_NET, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4380 	gen_and(tmp, b2);
4381 	gen_or(b2, b1);
4382 
4383 	/* Combine with test for linktype */
4384 	gen_and(b0, b1);
4385 	return b1;
4386 }
4387 
4388 /*
4389  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4390  * test the bottom-of-stack bit, and then check the version number
4391  * field in the IP header.
4392  */
4393 static struct block *
4394 gen_mpls_linktype(proto)
4395 	int proto;
4396 {
4397 	struct block *b0, *b1;
4398 
4399         switch (proto) {
4400 
4401         case Q_IP:
4402                 /* match the bottom-of-stack bit */
4403                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4404                 /* match the IPv4 version number */
4405                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x40, 0xf0);
4406                 gen_and(b0, b1);
4407                 return b1;
4408 
4409        case Q_IPV6:
4410                 /* match the bottom-of-stack bit */
4411                 b0 = gen_mcmp(OR_NET, -2, BPF_B, 0x01, 0x01);
4412                 /* match the IPv4 version number */
4413                 b1 = gen_mcmp(OR_NET, 0, BPF_B, 0x60, 0xf0);
4414                 gen_and(b0, b1);
4415                 return b1;
4416 
4417        default:
4418                 abort();
4419         }
4420 }
4421 
4422 static struct block *
4423 gen_host(addr, mask, proto, dir, type)
4424 	bpf_u_int32 addr;
4425 	bpf_u_int32 mask;
4426 	int proto;
4427 	int dir;
4428 	int type;
4429 {
4430 	struct block *b0, *b1;
4431 	const char *typestr;
4432 
4433 	if (type == Q_NET)
4434 		typestr = "net";
4435 	else
4436 		typestr = "host";
4437 
4438 	switch (proto) {
4439 
4440 	case Q_DEFAULT:
4441 		b0 = gen_host(addr, mask, Q_IP, dir, type);
4442 		/*
4443 		 * Only check for non-IPv4 addresses if we're not
4444 		 * checking MPLS-encapsulated packets.
4445 		 */
4446 		if (label_stack_depth == 0) {
4447 			b1 = gen_host(addr, mask, Q_ARP, dir, type);
4448 			gen_or(b0, b1);
4449 			b0 = gen_host(addr, mask, Q_RARP, dir, type);
4450 			gen_or(b1, b0);
4451 		}
4452 		return b0;
4453 
4454 	case Q_IP:
4455 		return gen_hostop(addr, mask, dir, ETHERTYPE_IP, 12, 16);
4456 
4457 	case Q_RARP:
4458 		return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4459 
4460 	case Q_ARP:
4461 		return gen_hostop(addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4462 
4463 	case Q_TCP:
4464 		bpf_error("'tcp' modifier applied to %s", typestr);
4465 
4466 	case Q_SCTP:
4467 		bpf_error("'sctp' modifier applied to %s", typestr);
4468 
4469 	case Q_UDP:
4470 		bpf_error("'udp' modifier applied to %s", typestr);
4471 
4472 	case Q_ICMP:
4473 		bpf_error("'icmp' modifier applied to %s", typestr);
4474 
4475 	case Q_IGMP:
4476 		bpf_error("'igmp' modifier applied to %s", typestr);
4477 
4478 	case Q_IGRP:
4479 		bpf_error("'igrp' modifier applied to %s", typestr);
4480 
4481 	case Q_PIM:
4482 		bpf_error("'pim' modifier applied to %s", typestr);
4483 
4484 	case Q_VRRP:
4485 		bpf_error("'vrrp' modifier applied to %s", typestr);
4486 
4487 	case Q_CARP:
4488 		bpf_error("'carp' modifier applied to %s", typestr);
4489 
4490 	case Q_ATALK:
4491 		bpf_error("ATALK host filtering not implemented");
4492 
4493 	case Q_AARP:
4494 		bpf_error("AARP host filtering not implemented");
4495 
4496 	case Q_DECNET:
4497 		return gen_dnhostop(addr, dir);
4498 
4499 	case Q_SCA:
4500 		bpf_error("SCA host filtering not implemented");
4501 
4502 	case Q_LAT:
4503 		bpf_error("LAT host filtering not implemented");
4504 
4505 	case Q_MOPDL:
4506 		bpf_error("MOPDL host filtering not implemented");
4507 
4508 	case Q_MOPRC:
4509 		bpf_error("MOPRC host filtering not implemented");
4510 
4511 #ifdef INET6
4512 	case Q_IPV6:
4513 		bpf_error("'ip6' modifier applied to ip host");
4514 
4515 	case Q_ICMPV6:
4516 		bpf_error("'icmp6' modifier applied to %s", typestr);
4517 #endif /* INET6 */
4518 
4519 	case Q_AH:
4520 		bpf_error("'ah' modifier applied to %s", typestr);
4521 
4522 	case Q_ESP:
4523 		bpf_error("'esp' modifier applied to %s", typestr);
4524 
4525 	case Q_ISO:
4526 		bpf_error("ISO host filtering not implemented");
4527 
4528 	case Q_ESIS:
4529 		bpf_error("'esis' modifier applied to %s", typestr);
4530 
4531 	case Q_ISIS:
4532 		bpf_error("'isis' modifier applied to %s", typestr);
4533 
4534 	case Q_CLNP:
4535 		bpf_error("'clnp' modifier applied to %s", typestr);
4536 
4537 	case Q_STP:
4538 		bpf_error("'stp' modifier applied to %s", typestr);
4539 
4540 	case Q_IPX:
4541 		bpf_error("IPX host filtering not implemented");
4542 
4543 	case Q_NETBEUI:
4544 		bpf_error("'netbeui' modifier applied to %s", typestr);
4545 
4546 	case Q_RADIO:
4547 		bpf_error("'radio' modifier applied to %s", typestr);
4548 
4549 	default:
4550 		abort();
4551 	}
4552 	/* NOTREACHED */
4553 }
4554 
4555 #ifdef INET6
4556 static struct block *
4557 gen_host6(addr, mask, proto, dir, type)
4558 	struct in6_addr *addr;
4559 	struct in6_addr *mask;
4560 	int proto;
4561 	int dir;
4562 	int type;
4563 {
4564 	const char *typestr;
4565 
4566 	if (type == Q_NET)
4567 		typestr = "net";
4568 	else
4569 		typestr = "host";
4570 
4571 	switch (proto) {
4572 
4573 	case Q_DEFAULT:
4574 		return gen_host6(addr, mask, Q_IPV6, dir, type);
4575 
4576 	case Q_IP:
4577 		bpf_error("'ip' modifier applied to ip6 %s", typestr);
4578 
4579 	case Q_RARP:
4580 		bpf_error("'rarp' modifier applied to ip6 %s", typestr);
4581 
4582 	case Q_ARP:
4583 		bpf_error("'arp' modifier applied to ip6 %s", typestr);
4584 
4585 	case Q_SCTP:
4586 		bpf_error("'sctp' modifier applied to %s", typestr);
4587 
4588 	case Q_TCP:
4589 		bpf_error("'tcp' modifier applied to %s", typestr);
4590 
4591 	case Q_UDP:
4592 		bpf_error("'udp' modifier applied to %s", typestr);
4593 
4594 	case Q_ICMP:
4595 		bpf_error("'icmp' modifier applied to %s", typestr);
4596 
4597 	case Q_IGMP:
4598 		bpf_error("'igmp' modifier applied to %s", typestr);
4599 
4600 	case Q_IGRP:
4601 		bpf_error("'igrp' modifier applied to %s", typestr);
4602 
4603 	case Q_PIM:
4604 		bpf_error("'pim' modifier applied to %s", typestr);
4605 
4606 	case Q_VRRP:
4607 		bpf_error("'vrrp' modifier applied to %s", typestr);
4608 
4609 	case Q_CARP:
4610 		bpf_error("'carp' modifier applied to %s", typestr);
4611 
4612 	case Q_ATALK:
4613 		bpf_error("ATALK host filtering not implemented");
4614 
4615 	case Q_AARP:
4616 		bpf_error("AARP host filtering not implemented");
4617 
4618 	case Q_DECNET:
4619 		bpf_error("'decnet' modifier applied to ip6 %s", typestr);
4620 
4621 	case Q_SCA:
4622 		bpf_error("SCA host filtering not implemented");
4623 
4624 	case Q_LAT:
4625 		bpf_error("LAT host filtering not implemented");
4626 
4627 	case Q_MOPDL:
4628 		bpf_error("MOPDL host filtering not implemented");
4629 
4630 	case Q_MOPRC:
4631 		bpf_error("MOPRC host filtering not implemented");
4632 
4633 	case Q_IPV6:
4634 		return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
4635 
4636 	case Q_ICMPV6:
4637 		bpf_error("'icmp6' modifier applied to %s", typestr);
4638 
4639 	case Q_AH:
4640 		bpf_error("'ah' modifier applied to %s", typestr);
4641 
4642 	case Q_ESP:
4643 		bpf_error("'esp' modifier applied to %s", typestr);
4644 
4645 	case Q_ISO:
4646 		bpf_error("ISO host filtering not implemented");
4647 
4648 	case Q_ESIS:
4649 		bpf_error("'esis' modifier applied to %s", typestr);
4650 
4651 	case Q_ISIS:
4652 		bpf_error("'isis' modifier applied to %s", typestr);
4653 
4654 	case Q_CLNP:
4655 		bpf_error("'clnp' modifier applied to %s", typestr);
4656 
4657 	case Q_STP:
4658 		bpf_error("'stp' modifier applied to %s", typestr);
4659 
4660 	case Q_IPX:
4661 		bpf_error("IPX host filtering not implemented");
4662 
4663 	case Q_NETBEUI:
4664 		bpf_error("'netbeui' modifier applied to %s", typestr);
4665 
4666 	case Q_RADIO:
4667 		bpf_error("'radio' modifier applied to %s", typestr);
4668 
4669 	default:
4670 		abort();
4671 	}
4672 	/* NOTREACHED */
4673 }
4674 #endif /*INET6*/
4675 
4676 #ifndef INET6
4677 static struct block *
4678 gen_gateway(eaddr, alist, proto, dir)
4679 	const u_char *eaddr;
4680 	bpf_u_int32 **alist;
4681 	int proto;
4682 	int dir;
4683 {
4684 	struct block *b0, *b1, *tmp;
4685 
4686 	if (dir != 0)
4687 		bpf_error("direction applied to 'gateway'");
4688 
4689 	switch (proto) {
4690 	case Q_DEFAULT:
4691 	case Q_IP:
4692 	case Q_ARP:
4693 	case Q_RARP:
4694 		switch (linktype) {
4695 		case DLT_EN10MB:
4696 		case DLT_NETANALYZER:
4697 		case DLT_NETANALYZER_TRANSPARENT:
4698 			b0 = gen_ehostop(eaddr, Q_OR);
4699 			break;
4700 		case DLT_FDDI:
4701 			b0 = gen_fhostop(eaddr, Q_OR);
4702 			break;
4703 		case DLT_IEEE802:
4704 			b0 = gen_thostop(eaddr, Q_OR);
4705 			break;
4706 		case DLT_IEEE802_11:
4707 		case DLT_PRISM_HEADER:
4708 		case DLT_IEEE802_11_RADIO_AVS:
4709 		case DLT_IEEE802_11_RADIO:
4710 		case DLT_PPI:
4711 			b0 = gen_wlanhostop(eaddr, Q_OR);
4712 			break;
4713 		case DLT_SUNATM:
4714 			if (!is_lane)
4715 				bpf_error(
4716 				    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4717 			/*
4718 			 * Check that the packet doesn't begin with an
4719 			 * LE Control marker.  (We've already generated
4720 			 * a test for LANE.)
4721 			 */
4722 			b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
4723 			    BPF_H, 0xFF00);
4724 			gen_not(b1);
4725 
4726 			/*
4727 			 * Now check the MAC address.
4728 			 */
4729 			b0 = gen_ehostop(eaddr, Q_OR);
4730 			gen_and(b1, b0);
4731 			break;
4732 		case DLT_IP_OVER_FC:
4733 			b0 = gen_ipfchostop(eaddr, Q_OR);
4734 			break;
4735 		default:
4736 			bpf_error(
4737 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
4738 		}
4739 		b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR, Q_HOST);
4740 		while (*alist) {
4741 			tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR,
4742 			    Q_HOST);
4743 			gen_or(b1, tmp);
4744 			b1 = tmp;
4745 		}
4746 		gen_not(b1);
4747 		gen_and(b0, b1);
4748 		return b1;
4749 	}
4750 	bpf_error("illegal modifier of 'gateway'");
4751 	/* NOTREACHED */
4752 }
4753 #endif
4754 
4755 struct block *
4756 gen_proto_abbrev(proto)
4757 	int proto;
4758 {
4759 	struct block *b0;
4760 	struct block *b1;
4761 
4762 	switch (proto) {
4763 
4764 	case Q_SCTP:
4765 		b1 = gen_proto(IPPROTO_SCTP, Q_IP, Q_DEFAULT);
4766 #ifdef INET6
4767 		b0 = gen_proto(IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
4768 		gen_or(b0, b1);
4769 #endif
4770 		break;
4771 
4772 	case Q_TCP:
4773 		b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
4774 #ifdef INET6
4775 		b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
4776 		gen_or(b0, b1);
4777 #endif
4778 		break;
4779 
4780 	case Q_UDP:
4781 		b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
4782 #ifdef INET6
4783 		b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
4784 		gen_or(b0, b1);
4785 #endif
4786 		break;
4787 
4788 	case Q_ICMP:
4789 		b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
4790 		break;
4791 
4792 #ifndef	IPPROTO_IGMP
4793 #define	IPPROTO_IGMP	2
4794 #endif
4795 
4796 	case Q_IGMP:
4797 		b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
4798 		break;
4799 
4800 #ifndef	IPPROTO_IGRP
4801 #define	IPPROTO_IGRP	9
4802 #endif
4803 	case Q_IGRP:
4804 		b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
4805 		break;
4806 
4807 #ifndef IPPROTO_PIM
4808 #define IPPROTO_PIM	103
4809 #endif
4810 
4811 	case Q_PIM:
4812 		b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
4813 #ifdef INET6
4814 		b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
4815 		gen_or(b0, b1);
4816 #endif
4817 		break;
4818 
4819 #ifndef IPPROTO_VRRP
4820 #define IPPROTO_VRRP	112
4821 #endif
4822 
4823 	case Q_VRRP:
4824 		b1 = gen_proto(IPPROTO_VRRP, Q_IP, Q_DEFAULT);
4825 		break;
4826 
4827 #ifndef IPPROTO_CARP
4828 #define IPPROTO_CARP	112
4829 #endif
4830 
4831 	case Q_CARP:
4832 		b1 = gen_proto(IPPROTO_CARP, Q_IP, Q_DEFAULT);
4833 		break;
4834 
4835 	case Q_IP:
4836 		b1 =  gen_linktype(ETHERTYPE_IP);
4837 		break;
4838 
4839 	case Q_ARP:
4840 		b1 =  gen_linktype(ETHERTYPE_ARP);
4841 		break;
4842 
4843 	case Q_RARP:
4844 		b1 =  gen_linktype(ETHERTYPE_REVARP);
4845 		break;
4846 
4847 	case Q_LINK:
4848 		bpf_error("link layer applied in wrong context");
4849 
4850 	case Q_ATALK:
4851 		b1 =  gen_linktype(ETHERTYPE_ATALK);
4852 		break;
4853 
4854 	case Q_AARP:
4855 		b1 =  gen_linktype(ETHERTYPE_AARP);
4856 		break;
4857 
4858 	case Q_DECNET:
4859 		b1 =  gen_linktype(ETHERTYPE_DN);
4860 		break;
4861 
4862 	case Q_SCA:
4863 		b1 =  gen_linktype(ETHERTYPE_SCA);
4864 		break;
4865 
4866 	case Q_LAT:
4867 		b1 =  gen_linktype(ETHERTYPE_LAT);
4868 		break;
4869 
4870 	case Q_MOPDL:
4871 		b1 =  gen_linktype(ETHERTYPE_MOPDL);
4872 		break;
4873 
4874 	case Q_MOPRC:
4875 		b1 =  gen_linktype(ETHERTYPE_MOPRC);
4876 		break;
4877 
4878 #ifdef INET6
4879 	case Q_IPV6:
4880 		b1 = gen_linktype(ETHERTYPE_IPV6);
4881 		break;
4882 
4883 #ifndef IPPROTO_ICMPV6
4884 #define IPPROTO_ICMPV6	58
4885 #endif
4886 	case Q_ICMPV6:
4887 		b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
4888 		break;
4889 #endif /* INET6 */
4890 
4891 #ifndef IPPROTO_AH
4892 #define IPPROTO_AH	51
4893 #endif
4894 	case Q_AH:
4895 		b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
4896 #ifdef INET6
4897 		b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
4898 		gen_or(b0, b1);
4899 #endif
4900 		break;
4901 
4902 #ifndef IPPROTO_ESP
4903 #define IPPROTO_ESP	50
4904 #endif
4905 	case Q_ESP:
4906 		b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
4907 #ifdef INET6
4908 		b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
4909 		gen_or(b0, b1);
4910 #endif
4911 		break;
4912 
4913 	case Q_ISO:
4914 		b1 = gen_linktype(LLCSAP_ISONS);
4915 		break;
4916 
4917 	case Q_ESIS:
4918 		b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
4919 		break;
4920 
4921 	case Q_ISIS:
4922 		b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
4923 		break;
4924 
4925 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
4926 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4927 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4928 		gen_or(b0, b1);
4929 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4930 		gen_or(b0, b1);
4931 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4932 		gen_or(b0, b1);
4933 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4934 		gen_or(b0, b1);
4935 		break;
4936 
4937 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
4938 		b0 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4939 		b1 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
4940 		gen_or(b0, b1);
4941 		b0 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4942 		gen_or(b0, b1);
4943 		b0 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4944 		gen_or(b0, b1);
4945 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4946 		gen_or(b0, b1);
4947 		break;
4948 
4949 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
4950 		b0 = gen_proto(ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
4951 		b1 = gen_proto(ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
4952 		gen_or(b0, b1);
4953 		b0 = gen_proto(ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
4954 		gen_or(b0, b1);
4955 		break;
4956 
4957 	case Q_ISIS_LSP:
4958 		b0 = gen_proto(ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
4959 		b1 = gen_proto(ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
4960 		gen_or(b0, b1);
4961 		break;
4962 
4963 	case Q_ISIS_SNP:
4964 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4965 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4966 		gen_or(b0, b1);
4967 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4968 		gen_or(b0, b1);
4969 		b0 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4970 		gen_or(b0, b1);
4971 		break;
4972 
4973 	case Q_ISIS_CSNP:
4974 		b0 = gen_proto(ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
4975 		b1 = gen_proto(ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
4976 		gen_or(b0, b1);
4977 		break;
4978 
4979 	case Q_ISIS_PSNP:
4980 		b0 = gen_proto(ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
4981 		b1 = gen_proto(ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
4982 		gen_or(b0, b1);
4983 		break;
4984 
4985 	case Q_CLNP:
4986 		b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
4987 		break;
4988 
4989 	case Q_STP:
4990 		b1 = gen_linktype(LLCSAP_8021D);
4991 		break;
4992 
4993 	case Q_IPX:
4994 		b1 = gen_linktype(LLCSAP_IPX);
4995 		break;
4996 
4997 	case Q_NETBEUI:
4998 		b1 = gen_linktype(LLCSAP_NETBEUI);
4999 		break;
5000 
5001 	case Q_RADIO:
5002 		bpf_error("'radio' is not a valid protocol type");
5003 
5004 	default:
5005 		abort();
5006 	}
5007 	return b1;
5008 }
5009 
5010 static struct block *
5011 gen_ipfrag()
5012 {
5013 	struct slist *s;
5014 	struct block *b;
5015 
5016 	/* not IPv4 frag other than the first frag */
5017 	s = gen_load_a(OR_NET, 6, BPF_H);
5018 	b = new_block(JMP(BPF_JSET));
5019 	b->s.k = 0x1fff;
5020 	b->stmts = s;
5021 	gen_not(b);
5022 
5023 	return b;
5024 }
5025 
5026 /*
5027  * Generate a comparison to a port value in the transport-layer header
5028  * at the specified offset from the beginning of that header.
5029  *
5030  * XXX - this handles a variable-length prefix preceding the link-layer
5031  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5032  * variable-length link-layer headers (such as Token Ring or 802.11
5033  * headers).
5034  */
5035 static struct block *
5036 gen_portatom(off, v)
5037 	int off;
5038 	bpf_int32 v;
5039 {
5040 	return gen_cmp(OR_TRAN_IPV4, off, BPF_H, v);
5041 }
5042 
5043 #ifdef INET6
5044 static struct block *
5045 gen_portatom6(off, v)
5046 	int off;
5047 	bpf_int32 v;
5048 {
5049 	return gen_cmp(OR_TRAN_IPV6, off, BPF_H, v);
5050 }
5051 #endif/*INET6*/
5052 
5053 struct block *
5054 gen_portop(port, proto, dir)
5055 	int port, proto, dir;
5056 {
5057 	struct block *b0, *b1, *tmp;
5058 
5059 	/* ip proto 'proto' and not a fragment other than the first fragment */
5060 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5061 	b0 = gen_ipfrag();
5062 	gen_and(tmp, b0);
5063 
5064 	switch (dir) {
5065 	case Q_SRC:
5066 		b1 = gen_portatom(0, (bpf_int32)port);
5067 		break;
5068 
5069 	case Q_DST:
5070 		b1 = gen_portatom(2, (bpf_int32)port);
5071 		break;
5072 
5073 	case Q_OR:
5074 	case Q_DEFAULT:
5075 		tmp = gen_portatom(0, (bpf_int32)port);
5076 		b1 = gen_portatom(2, (bpf_int32)port);
5077 		gen_or(tmp, b1);
5078 		break;
5079 
5080 	case Q_AND:
5081 		tmp = gen_portatom(0, (bpf_int32)port);
5082 		b1 = gen_portatom(2, (bpf_int32)port);
5083 		gen_and(tmp, b1);
5084 		break;
5085 
5086 	default:
5087 		abort();
5088 	}
5089 	gen_and(b0, b1);
5090 
5091 	return b1;
5092 }
5093 
5094 static struct block *
5095 gen_port(port, ip_proto, dir)
5096 	int port;
5097 	int ip_proto;
5098 	int dir;
5099 {
5100 	struct block *b0, *b1, *tmp;
5101 
5102 	/*
5103 	 * ether proto ip
5104 	 *
5105 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5106 	 * not LLC encapsulation with LLCSAP_IP.
5107 	 *
5108 	 * For IEEE 802 networks - which includes 802.5 token ring
5109 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5110 	 * says that SNAP encapsulation is used, not LLC encapsulation
5111 	 * with LLCSAP_IP.
5112 	 *
5113 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5114 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5115 	 * encapsulation with LLCSAP_IP.
5116 	 *
5117 	 * So we always check for ETHERTYPE_IP.
5118 	 */
5119 	b0 =  gen_linktype(ETHERTYPE_IP);
5120 
5121 	switch (ip_proto) {
5122 	case IPPROTO_UDP:
5123 	case IPPROTO_TCP:
5124 	case IPPROTO_SCTP:
5125 		b1 = gen_portop(port, ip_proto, dir);
5126 		break;
5127 
5128 	case PROTO_UNDEF:
5129 		tmp = gen_portop(port, IPPROTO_TCP, dir);
5130 		b1 = gen_portop(port, IPPROTO_UDP, dir);
5131 		gen_or(tmp, b1);
5132 		tmp = gen_portop(port, IPPROTO_SCTP, dir);
5133 		gen_or(tmp, b1);
5134 		break;
5135 
5136 	default:
5137 		abort();
5138 	}
5139 	gen_and(b0, b1);
5140 	return b1;
5141 }
5142 
5143 #ifdef INET6
5144 struct block *
5145 gen_portop6(port, proto, dir)
5146 	int port, proto, dir;
5147 {
5148 	struct block *b0, *b1, *tmp;
5149 
5150 	/* ip6 proto 'proto' */
5151 	/* XXX - catch the first fragment of a fragmented packet? */
5152 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5153 
5154 	switch (dir) {
5155 	case Q_SRC:
5156 		b1 = gen_portatom6(0, (bpf_int32)port);
5157 		break;
5158 
5159 	case Q_DST:
5160 		b1 = gen_portatom6(2, (bpf_int32)port);
5161 		break;
5162 
5163 	case Q_OR:
5164 	case Q_DEFAULT:
5165 		tmp = gen_portatom6(0, (bpf_int32)port);
5166 		b1 = gen_portatom6(2, (bpf_int32)port);
5167 		gen_or(tmp, b1);
5168 		break;
5169 
5170 	case Q_AND:
5171 		tmp = gen_portatom6(0, (bpf_int32)port);
5172 		b1 = gen_portatom6(2, (bpf_int32)port);
5173 		gen_and(tmp, b1);
5174 		break;
5175 
5176 	default:
5177 		abort();
5178 	}
5179 	gen_and(b0, b1);
5180 
5181 	return b1;
5182 }
5183 
5184 static struct block *
5185 gen_port6(port, ip_proto, dir)
5186 	int port;
5187 	int ip_proto;
5188 	int dir;
5189 {
5190 	struct block *b0, *b1, *tmp;
5191 
5192 	/* link proto ip6 */
5193 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5194 
5195 	switch (ip_proto) {
5196 	case IPPROTO_UDP:
5197 	case IPPROTO_TCP:
5198 	case IPPROTO_SCTP:
5199 		b1 = gen_portop6(port, ip_proto, dir);
5200 		break;
5201 
5202 	case PROTO_UNDEF:
5203 		tmp = gen_portop6(port, IPPROTO_TCP, dir);
5204 		b1 = gen_portop6(port, IPPROTO_UDP, dir);
5205 		gen_or(tmp, b1);
5206 		tmp = gen_portop6(port, IPPROTO_SCTP, dir);
5207 		gen_or(tmp, b1);
5208 		break;
5209 
5210 	default:
5211 		abort();
5212 	}
5213 	gen_and(b0, b1);
5214 	return b1;
5215 }
5216 #endif /* INET6 */
5217 
5218 /* gen_portrange code */
5219 static struct block *
5220 gen_portrangeatom(off, v1, v2)
5221 	int off;
5222 	bpf_int32 v1, v2;
5223 {
5224 	struct block *b1, *b2;
5225 
5226 	if (v1 > v2) {
5227 		/*
5228 		 * Reverse the order of the ports, so v1 is the lower one.
5229 		 */
5230 		bpf_int32 vtemp;
5231 
5232 		vtemp = v1;
5233 		v1 = v2;
5234 		v2 = vtemp;
5235 	}
5236 
5237 	b1 = gen_cmp_ge(OR_TRAN_IPV4, off, BPF_H, v1);
5238 	b2 = gen_cmp_le(OR_TRAN_IPV4, off, BPF_H, v2);
5239 
5240 	gen_and(b1, b2);
5241 
5242 	return b2;
5243 }
5244 
5245 struct block *
5246 gen_portrangeop(port1, port2, proto, dir)
5247 	int port1, port2;
5248 	int proto;
5249 	int dir;
5250 {
5251 	struct block *b0, *b1, *tmp;
5252 
5253 	/* ip proto 'proto' and not a fragment other than the first fragment */
5254 	tmp = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)proto);
5255 	b0 = gen_ipfrag();
5256 	gen_and(tmp, b0);
5257 
5258 	switch (dir) {
5259 	case Q_SRC:
5260 		b1 = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5261 		break;
5262 
5263 	case Q_DST:
5264 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5265 		break;
5266 
5267 	case Q_OR:
5268 	case Q_DEFAULT:
5269 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5270 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5271 		gen_or(tmp, b1);
5272 		break;
5273 
5274 	case Q_AND:
5275 		tmp = gen_portrangeatom(0, (bpf_int32)port1, (bpf_int32)port2);
5276 		b1 = gen_portrangeatom(2, (bpf_int32)port1, (bpf_int32)port2);
5277 		gen_and(tmp, b1);
5278 		break;
5279 
5280 	default:
5281 		abort();
5282 	}
5283 	gen_and(b0, b1);
5284 
5285 	return b1;
5286 }
5287 
5288 static struct block *
5289 gen_portrange(port1, port2, ip_proto, dir)
5290 	int port1, port2;
5291 	int ip_proto;
5292 	int dir;
5293 {
5294 	struct block *b0, *b1, *tmp;
5295 
5296 	/* link proto ip */
5297 	b0 =  gen_linktype(ETHERTYPE_IP);
5298 
5299 	switch (ip_proto) {
5300 	case IPPROTO_UDP:
5301 	case IPPROTO_TCP:
5302 	case IPPROTO_SCTP:
5303 		b1 = gen_portrangeop(port1, port2, ip_proto, dir);
5304 		break;
5305 
5306 	case PROTO_UNDEF:
5307 		tmp = gen_portrangeop(port1, port2, IPPROTO_TCP, dir);
5308 		b1 = gen_portrangeop(port1, port2, IPPROTO_UDP, dir);
5309 		gen_or(tmp, b1);
5310 		tmp = gen_portrangeop(port1, port2, IPPROTO_SCTP, dir);
5311 		gen_or(tmp, b1);
5312 		break;
5313 
5314 	default:
5315 		abort();
5316 	}
5317 	gen_and(b0, b1);
5318 	return b1;
5319 }
5320 
5321 #ifdef INET6
5322 static struct block *
5323 gen_portrangeatom6(off, v1, v2)
5324 	int off;
5325 	bpf_int32 v1, v2;
5326 {
5327 	struct block *b1, *b2;
5328 
5329 	if (v1 > v2) {
5330 		/*
5331 		 * Reverse the order of the ports, so v1 is the lower one.
5332 		 */
5333 		bpf_int32 vtemp;
5334 
5335 		vtemp = v1;
5336 		v1 = v2;
5337 		v2 = vtemp;
5338 	}
5339 
5340 	b1 = gen_cmp_ge(OR_TRAN_IPV6, off, BPF_H, v1);
5341 	b2 = gen_cmp_le(OR_TRAN_IPV6, off, BPF_H, v2);
5342 
5343 	gen_and(b1, b2);
5344 
5345 	return b2;
5346 }
5347 
5348 struct block *
5349 gen_portrangeop6(port1, port2, proto, dir)
5350 	int port1, port2;
5351 	int proto;
5352 	int dir;
5353 {
5354 	struct block *b0, *b1, *tmp;
5355 
5356 	/* ip6 proto 'proto' */
5357 	/* XXX - catch the first fragment of a fragmented packet? */
5358 	b0 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)proto);
5359 
5360 	switch (dir) {
5361 	case Q_SRC:
5362 		b1 = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5363 		break;
5364 
5365 	case Q_DST:
5366 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5367 		break;
5368 
5369 	case Q_OR:
5370 	case Q_DEFAULT:
5371 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5372 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5373 		gen_or(tmp, b1);
5374 		break;
5375 
5376 	case Q_AND:
5377 		tmp = gen_portrangeatom6(0, (bpf_int32)port1, (bpf_int32)port2);
5378 		b1 = gen_portrangeatom6(2, (bpf_int32)port1, (bpf_int32)port2);
5379 		gen_and(tmp, b1);
5380 		break;
5381 
5382 	default:
5383 		abort();
5384 	}
5385 	gen_and(b0, b1);
5386 
5387 	return b1;
5388 }
5389 
5390 static struct block *
5391 gen_portrange6(port1, port2, ip_proto, dir)
5392 	int port1, port2;
5393 	int ip_proto;
5394 	int dir;
5395 {
5396 	struct block *b0, *b1, *tmp;
5397 
5398 	/* link proto ip6 */
5399 	b0 =  gen_linktype(ETHERTYPE_IPV6);
5400 
5401 	switch (ip_proto) {
5402 	case IPPROTO_UDP:
5403 	case IPPROTO_TCP:
5404 	case IPPROTO_SCTP:
5405 		b1 = gen_portrangeop6(port1, port2, ip_proto, dir);
5406 		break;
5407 
5408 	case PROTO_UNDEF:
5409 		tmp = gen_portrangeop6(port1, port2, IPPROTO_TCP, dir);
5410 		b1 = gen_portrangeop6(port1, port2, IPPROTO_UDP, dir);
5411 		gen_or(tmp, b1);
5412 		tmp = gen_portrangeop6(port1, port2, IPPROTO_SCTP, dir);
5413 		gen_or(tmp, b1);
5414 		break;
5415 
5416 	default:
5417 		abort();
5418 	}
5419 	gen_and(b0, b1);
5420 	return b1;
5421 }
5422 #endif /* INET6 */
5423 
5424 static int
5425 lookup_proto(name, proto)
5426 	register const char *name;
5427 	register int proto;
5428 {
5429 	register int v;
5430 
5431 	switch (proto) {
5432 
5433 	case Q_DEFAULT:
5434 	case Q_IP:
5435 	case Q_IPV6:
5436 		v = pcap_nametoproto(name);
5437 		if (v == PROTO_UNDEF)
5438 			bpf_error("unknown ip proto '%s'", name);
5439 		break;
5440 
5441 	case Q_LINK:
5442 		/* XXX should look up h/w protocol type based on linktype */
5443 		v = pcap_nametoeproto(name);
5444 		if (v == PROTO_UNDEF) {
5445 			v = pcap_nametollc(name);
5446 			if (v == PROTO_UNDEF)
5447 				bpf_error("unknown ether proto '%s'", name);
5448 		}
5449 		break;
5450 
5451 	case Q_ISO:
5452 		if (strcmp(name, "esis") == 0)
5453 			v = ISO9542_ESIS;
5454 		else if (strcmp(name, "isis") == 0)
5455 			v = ISO10589_ISIS;
5456 		else if (strcmp(name, "clnp") == 0)
5457 			v = ISO8473_CLNP;
5458 		else
5459 			bpf_error("unknown osi proto '%s'", name);
5460 		break;
5461 
5462 	default:
5463 		v = PROTO_UNDEF;
5464 		break;
5465 	}
5466 	return v;
5467 }
5468 
5469 #if 0
5470 struct stmt *
5471 gen_joinsp(s, n)
5472 	struct stmt **s;
5473 	int n;
5474 {
5475 	return NULL;
5476 }
5477 #endif
5478 
5479 static struct block *
5480 gen_protochain(v, proto, dir)
5481 	int v;
5482 	int proto;
5483 	int dir;
5484 {
5485 #ifdef NO_PROTOCHAIN
5486 	return gen_proto(v, proto, dir);
5487 #else
5488 	struct block *b0, *b;
5489 	struct slist *s[100];
5490 	int fix2, fix3, fix4, fix5;
5491 	int ahcheck, again, end;
5492 	int i, max;
5493 	int reg2 = alloc_reg();
5494 
5495 	memset(s, 0, sizeof(s));
5496 	fix2 = fix3 = fix4 = fix5 = 0;
5497 
5498 	switch (proto) {
5499 	case Q_IP:
5500 	case Q_IPV6:
5501 		break;
5502 	case Q_DEFAULT:
5503 		b0 = gen_protochain(v, Q_IP, dir);
5504 		b = gen_protochain(v, Q_IPV6, dir);
5505 		gen_or(b0, b);
5506 		return b;
5507 	default:
5508 		bpf_error("bad protocol applied for 'protochain'");
5509 		/*NOTREACHED*/
5510 	}
5511 
5512 	/*
5513 	 * We don't handle variable-length prefixes before the link-layer
5514 	 * header, or variable-length link-layer headers, here yet.
5515 	 * We might want to add BPF instructions to do the protochain
5516 	 * work, to simplify that and, on platforms that have a BPF
5517 	 * interpreter with the new instructions, let the filtering
5518 	 * be done in the kernel.  (We already require a modified BPF
5519 	 * engine to do the protochain stuff, to support backward
5520 	 * branches, and backward branch support is unlikely to appear
5521 	 * in kernel BPF engines.)
5522 	 */
5523 	switch (linktype) {
5524 
5525 	case DLT_IEEE802_11:
5526 	case DLT_PRISM_HEADER:
5527 	case DLT_IEEE802_11_RADIO_AVS:
5528 	case DLT_IEEE802_11_RADIO:
5529 	case DLT_PPI:
5530 		bpf_error("'protochain' not supported with 802.11");
5531 	}
5532 
5533 	no_optimize = 1; /*this code is not compatible with optimzer yet */
5534 
5535 	/*
5536 	 * s[0] is a dummy entry to protect other BPF insn from damage
5537 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
5538 	 * hard to find interdependency made by jump table fixup.
5539 	 */
5540 	i = 0;
5541 	s[i] = new_stmt(0);	/*dummy*/
5542 	i++;
5543 
5544 	switch (proto) {
5545 	case Q_IP:
5546 		b0 = gen_linktype(ETHERTYPE_IP);
5547 
5548 		/* A = ip->ip_p */
5549 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5550 		s[i]->s.k = off_macpl + off_nl + 9;
5551 		i++;
5552 		/* X = ip->ip_hl << 2 */
5553 		s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
5554 		s[i]->s.k = off_macpl + off_nl;
5555 		i++;
5556 		break;
5557 #ifdef INET6
5558 	case Q_IPV6:
5559 		b0 = gen_linktype(ETHERTYPE_IPV6);
5560 
5561 		/* A = ip6->ip_nxt */
5562 		s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
5563 		s[i]->s.k = off_macpl + off_nl + 6;
5564 		i++;
5565 		/* X = sizeof(struct ip6_hdr) */
5566 		s[i] = new_stmt(BPF_LDX|BPF_IMM);
5567 		s[i]->s.k = 40;
5568 		i++;
5569 		break;
5570 #endif
5571 	default:
5572 		bpf_error("unsupported proto to gen_protochain");
5573 		/*NOTREACHED*/
5574 	}
5575 
5576 	/* again: if (A == v) goto end; else fall through; */
5577 	again = i;
5578 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5579 	s[i]->s.k = v;
5580 	s[i]->s.jt = NULL;		/*later*/
5581 	s[i]->s.jf = NULL;		/*update in next stmt*/
5582 	fix5 = i;
5583 	i++;
5584 
5585 #ifndef IPPROTO_NONE
5586 #define IPPROTO_NONE	59
5587 #endif
5588 	/* if (A == IPPROTO_NONE) goto end */
5589 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5590 	s[i]->s.jt = NULL;	/*later*/
5591 	s[i]->s.jf = NULL;	/*update in next stmt*/
5592 	s[i]->s.k = IPPROTO_NONE;
5593 	s[fix5]->s.jf = s[i];
5594 	fix2 = i;
5595 	i++;
5596 
5597 #ifdef INET6
5598 	if (proto == Q_IPV6) {
5599 		int v6start, v6end, v6advance, j;
5600 
5601 		v6start = i;
5602 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
5603 		s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5604 		s[i]->s.jt = NULL;	/*later*/
5605 		s[i]->s.jf = NULL;	/*update in next stmt*/
5606 		s[i]->s.k = IPPROTO_HOPOPTS;
5607 		s[fix2]->s.jf = s[i];
5608 		i++;
5609 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
5610 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5611 		s[i]->s.jt = NULL;	/*later*/
5612 		s[i]->s.jf = NULL;	/*update in next stmt*/
5613 		s[i]->s.k = IPPROTO_DSTOPTS;
5614 		i++;
5615 		/* if (A == IPPROTO_ROUTING) goto v6advance */
5616 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5617 		s[i]->s.jt = NULL;	/*later*/
5618 		s[i]->s.jf = NULL;	/*update in next stmt*/
5619 		s[i]->s.k = IPPROTO_ROUTING;
5620 		i++;
5621 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
5622 		s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5623 		s[i]->s.jt = NULL;	/*later*/
5624 		s[i]->s.jf = NULL;	/*later*/
5625 		s[i]->s.k = IPPROTO_FRAGMENT;
5626 		fix3 = i;
5627 		v6end = i;
5628 		i++;
5629 
5630 		/* v6advance: */
5631 		v6advance = i;
5632 
5633 		/*
5634 		 * in short,
5635 		 * A = P[X + packet head];
5636 		 * X = X + (P[X + packet head + 1] + 1) * 8;
5637 		 */
5638 		/* A = P[X + packet head] */
5639 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5640 		s[i]->s.k = off_macpl + off_nl;
5641 		i++;
5642 		/* MEM[reg2] = A */
5643 		s[i] = new_stmt(BPF_ST);
5644 		s[i]->s.k = reg2;
5645 		i++;
5646 		/* A = P[X + packet head + 1]; */
5647 		s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5648 		s[i]->s.k = off_macpl + off_nl + 1;
5649 		i++;
5650 		/* A += 1 */
5651 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5652 		s[i]->s.k = 1;
5653 		i++;
5654 		/* A *= 8 */
5655 		s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5656 		s[i]->s.k = 8;
5657 		i++;
5658 		/* A += X */
5659 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_X);
5660 		s[i]->s.k = 0;
5661 		i++;
5662 		/* X = A; */
5663 		s[i] = new_stmt(BPF_MISC|BPF_TAX);
5664 		i++;
5665 		/* A = MEM[reg2] */
5666 		s[i] = new_stmt(BPF_LD|BPF_MEM);
5667 		s[i]->s.k = reg2;
5668 		i++;
5669 
5670 		/* goto again; (must use BPF_JA for backward jump) */
5671 		s[i] = new_stmt(BPF_JMP|BPF_JA);
5672 		s[i]->s.k = again - i - 1;
5673 		s[i - 1]->s.jf = s[i];
5674 		i++;
5675 
5676 		/* fixup */
5677 		for (j = v6start; j <= v6end; j++)
5678 			s[j]->s.jt = s[v6advance];
5679 	} else
5680 #endif
5681 	{
5682 		/* nop */
5683 		s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5684 		s[i]->s.k = 0;
5685 		s[fix2]->s.jf = s[i];
5686 		i++;
5687 	}
5688 
5689 	/* ahcheck: */
5690 	ahcheck = i;
5691 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
5692 	s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
5693 	s[i]->s.jt = NULL;	/*later*/
5694 	s[i]->s.jf = NULL;	/*later*/
5695 	s[i]->s.k = IPPROTO_AH;
5696 	if (fix3)
5697 		s[fix3]->s.jf = s[ahcheck];
5698 	fix4 = i;
5699 	i++;
5700 
5701 	/*
5702 	 * in short,
5703 	 * A = P[X];
5704 	 * X = X + (P[X + 1] + 2) * 4;
5705 	 */
5706 	/* A = X */
5707 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5708 	i++;
5709 	/* A = P[X + packet head]; */
5710 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5711 	s[i]->s.k = off_macpl + off_nl;
5712 	i++;
5713 	/* MEM[reg2] = A */
5714 	s[i] = new_stmt(BPF_ST);
5715 	s[i]->s.k = reg2;
5716 	i++;
5717 	/* A = X */
5718 	s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
5719 	i++;
5720 	/* A += 1 */
5721 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5722 	s[i]->s.k = 1;
5723 	i++;
5724 	/* X = A */
5725 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5726 	i++;
5727 	/* A = P[X + packet head] */
5728 	s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
5729 	s[i]->s.k = off_macpl + off_nl;
5730 	i++;
5731 	/* A += 2 */
5732 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5733 	s[i]->s.k = 2;
5734 	i++;
5735 	/* A *= 4 */
5736 	s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
5737 	s[i]->s.k = 4;
5738 	i++;
5739 	/* X = A; */
5740 	s[i] = new_stmt(BPF_MISC|BPF_TAX);
5741 	i++;
5742 	/* A = MEM[reg2] */
5743 	s[i] = new_stmt(BPF_LD|BPF_MEM);
5744 	s[i]->s.k = reg2;
5745 	i++;
5746 
5747 	/* goto again; (must use BPF_JA for backward jump) */
5748 	s[i] = new_stmt(BPF_JMP|BPF_JA);
5749 	s[i]->s.k = again - i - 1;
5750 	i++;
5751 
5752 	/* end: nop */
5753 	end = i;
5754 	s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
5755 	s[i]->s.k = 0;
5756 	s[fix2]->s.jt = s[end];
5757 	s[fix4]->s.jf = s[end];
5758 	s[fix5]->s.jt = s[end];
5759 	i++;
5760 
5761 	/*
5762 	 * make slist chain
5763 	 */
5764 	max = i;
5765 	for (i = 0; i < max - 1; i++)
5766 		s[i]->next = s[i + 1];
5767 	s[max - 1]->next = NULL;
5768 
5769 	/*
5770 	 * emit final check
5771 	 */
5772 	b = new_block(JMP(BPF_JEQ));
5773 	b->stmts = s[1];	/*remember, s[0] is dummy*/
5774 	b->s.k = v;
5775 
5776 	free_reg(reg2);
5777 
5778 	gen_and(b0, b);
5779 	return b;
5780 #endif
5781 }
5782 
5783 static struct block *
5784 gen_check_802_11_data_frame()
5785 {
5786 	struct slist *s;
5787 	struct block *b0, *b1;
5788 
5789 	/*
5790 	 * A data frame has the 0x08 bit (b3) in the frame control field set
5791 	 * and the 0x04 bit (b2) clear.
5792 	 */
5793 	s = gen_load_a(OR_LINK, 0, BPF_B);
5794 	b0 = new_block(JMP(BPF_JSET));
5795 	b0->s.k = 0x08;
5796 	b0->stmts = s;
5797 
5798 	s = gen_load_a(OR_LINK, 0, BPF_B);
5799 	b1 = new_block(JMP(BPF_JSET));
5800 	b1->s.k = 0x04;
5801 	b1->stmts = s;
5802 	gen_not(b1);
5803 
5804 	gen_and(b1, b0);
5805 
5806 	return b0;
5807 }
5808 
5809 /*
5810  * Generate code that checks whether the packet is a packet for protocol
5811  * <proto> and whether the type field in that protocol's header has
5812  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
5813  * IP packet and checks the protocol number in the IP header against <v>.
5814  *
5815  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
5816  * against Q_IP and Q_IPV6.
5817  */
5818 static struct block *
5819 gen_proto(v, proto, dir)
5820 	int v;
5821 	int proto;
5822 	int dir;
5823 {
5824 	struct block *b0, *b1;
5825 #ifdef INET6
5826 #ifndef CHASE_CHAIN
5827 	struct block *b2;
5828 #endif
5829 #endif
5830 
5831 	if (dir != Q_DEFAULT)
5832 		bpf_error("direction applied to 'proto'");
5833 
5834 	switch (proto) {
5835 	case Q_DEFAULT:
5836 #ifdef INET6
5837 		b0 = gen_proto(v, Q_IP, dir);
5838 		b1 = gen_proto(v, Q_IPV6, dir);
5839 		gen_or(b0, b1);
5840 		return b1;
5841 #else
5842 		/*FALLTHROUGH*/
5843 #endif
5844 	case Q_IP:
5845 		/*
5846 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5847 		 * not LLC encapsulation with LLCSAP_IP.
5848 		 *
5849 		 * For IEEE 802 networks - which includes 802.5 token ring
5850 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5851 		 * says that SNAP encapsulation is used, not LLC encapsulation
5852 		 * with LLCSAP_IP.
5853 		 *
5854 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5855 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
5856 		 * encapsulation with LLCSAP_IP.
5857 		 *
5858 		 * So we always check for ETHERTYPE_IP.
5859 		 */
5860 		b0 = gen_linktype(ETHERTYPE_IP);
5861 #ifndef CHASE_CHAIN
5862 		b1 = gen_cmp(OR_NET, 9, BPF_B, (bpf_int32)v);
5863 #else
5864 		b1 = gen_protochain(v, Q_IP);
5865 #endif
5866 		gen_and(b0, b1);
5867 		return b1;
5868 
5869 	case Q_ISO:
5870 		switch (linktype) {
5871 
5872 		case DLT_FRELAY:
5873 			/*
5874 			 * Frame Relay packets typically have an OSI
5875 			 * NLPID at the beginning; "gen_linktype(LLCSAP_ISONS)"
5876 			 * generates code to check for all the OSI
5877 			 * NLPIDs, so calling it and then adding a check
5878 			 * for the particular NLPID for which we're
5879 			 * looking is bogus, as we can just check for
5880 			 * the NLPID.
5881 			 *
5882 			 * What we check for is the NLPID and a frame
5883 			 * control field value of UI, i.e. 0x03 followed
5884 			 * by the NLPID.
5885 			 *
5886 			 * XXX - assumes a 2-byte Frame Relay header with
5887 			 * DLCI and flags.  What if the address is longer?
5888 			 *
5889 			 * XXX - what about SNAP-encapsulated frames?
5890 			 */
5891 			return gen_cmp(OR_LINK, 2, BPF_H, (0x03<<8) | v);
5892 			/*NOTREACHED*/
5893 			break;
5894 
5895 		case DLT_C_HDLC:
5896 			/*
5897 			 * Cisco uses an Ethertype lookalike - for OSI,
5898 			 * it's 0xfefe.
5899 			 */
5900 			b0 = gen_linktype(LLCSAP_ISONS<<8 | LLCSAP_ISONS);
5901 			/* OSI in C-HDLC is stuffed with a fudge byte */
5902 			b1 = gen_cmp(OR_NET_NOSNAP, 1, BPF_B, (long)v);
5903 			gen_and(b0, b1);
5904 			return b1;
5905 
5906 		default:
5907 			b0 = gen_linktype(LLCSAP_ISONS);
5908 			b1 = gen_cmp(OR_NET_NOSNAP, 0, BPF_B, (long)v);
5909 			gen_and(b0, b1);
5910 			return b1;
5911 		}
5912 
5913 	case Q_ISIS:
5914 		b0 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5915 		/*
5916 		 * 4 is the offset of the PDU type relative to the IS-IS
5917 		 * header.
5918 		 */
5919 		b1 = gen_cmp(OR_NET_NOSNAP, 4, BPF_B, (long)v);
5920 		gen_and(b0, b1);
5921 		return b1;
5922 
5923 	case Q_ARP:
5924 		bpf_error("arp does not encapsulate another protocol");
5925 		/* NOTREACHED */
5926 
5927 	case Q_RARP:
5928 		bpf_error("rarp does not encapsulate another protocol");
5929 		/* NOTREACHED */
5930 
5931 	case Q_ATALK:
5932 		bpf_error("atalk encapsulation is not specifiable");
5933 		/* NOTREACHED */
5934 
5935 	case Q_DECNET:
5936 		bpf_error("decnet encapsulation is not specifiable");
5937 		/* NOTREACHED */
5938 
5939 	case Q_SCA:
5940 		bpf_error("sca does not encapsulate another protocol");
5941 		/* NOTREACHED */
5942 
5943 	case Q_LAT:
5944 		bpf_error("lat does not encapsulate another protocol");
5945 		/* NOTREACHED */
5946 
5947 	case Q_MOPRC:
5948 		bpf_error("moprc does not encapsulate another protocol");
5949 		/* NOTREACHED */
5950 
5951 	case Q_MOPDL:
5952 		bpf_error("mopdl does not encapsulate another protocol");
5953 		/* NOTREACHED */
5954 
5955 	case Q_LINK:
5956 		return gen_linktype(v);
5957 
5958 	case Q_UDP:
5959 		bpf_error("'udp proto' is bogus");
5960 		/* NOTREACHED */
5961 
5962 	case Q_TCP:
5963 		bpf_error("'tcp proto' is bogus");
5964 		/* NOTREACHED */
5965 
5966 	case Q_SCTP:
5967 		bpf_error("'sctp proto' is bogus");
5968 		/* NOTREACHED */
5969 
5970 	case Q_ICMP:
5971 		bpf_error("'icmp proto' is bogus");
5972 		/* NOTREACHED */
5973 
5974 	case Q_IGMP:
5975 		bpf_error("'igmp proto' is bogus");
5976 		/* NOTREACHED */
5977 
5978 	case Q_IGRP:
5979 		bpf_error("'igrp proto' is bogus");
5980 		/* NOTREACHED */
5981 
5982 	case Q_PIM:
5983 		bpf_error("'pim proto' is bogus");
5984 		/* NOTREACHED */
5985 
5986 	case Q_VRRP:
5987 		bpf_error("'vrrp proto' is bogus");
5988 		/* NOTREACHED */
5989 
5990 	case Q_CARP:
5991 		bpf_error("'carp proto' is bogus");
5992 		/* NOTREACHED */
5993 
5994 #ifdef INET6
5995 	case Q_IPV6:
5996 		b0 = gen_linktype(ETHERTYPE_IPV6);
5997 #ifndef CHASE_CHAIN
5998 		/*
5999 		 * Also check for a fragment header before the final
6000 		 * header.
6001 		 */
6002 		b2 = gen_cmp(OR_NET, 6, BPF_B, IPPROTO_FRAGMENT);
6003 		b1 = gen_cmp(OR_NET, 40, BPF_B, (bpf_int32)v);
6004 		gen_and(b2, b1);
6005 		b2 = gen_cmp(OR_NET, 6, BPF_B, (bpf_int32)v);
6006 		gen_or(b2, b1);
6007 #else
6008 		b1 = gen_protochain(v, Q_IPV6);
6009 #endif
6010 		gen_and(b0, b1);
6011 		return b1;
6012 
6013 	case Q_ICMPV6:
6014 		bpf_error("'icmp6 proto' is bogus");
6015 #endif /* INET6 */
6016 
6017 	case Q_AH:
6018 		bpf_error("'ah proto' is bogus");
6019 
6020 	case Q_ESP:
6021 		bpf_error("'ah proto' is bogus");
6022 
6023 	case Q_STP:
6024 		bpf_error("'stp proto' is bogus");
6025 
6026 	case Q_IPX:
6027 		bpf_error("'ipx proto' is bogus");
6028 
6029 	case Q_NETBEUI:
6030 		bpf_error("'netbeui proto' is bogus");
6031 
6032 	case Q_RADIO:
6033 		bpf_error("'radio proto' is bogus");
6034 
6035 	default:
6036 		abort();
6037 		/* NOTREACHED */
6038 	}
6039 	/* NOTREACHED */
6040 }
6041 
6042 struct block *
6043 gen_scode(name, q)
6044 	register const char *name;
6045 	struct qual q;
6046 {
6047 	int proto = q.proto;
6048 	int dir = q.dir;
6049 	int tproto;
6050 	u_char *eaddr;
6051 	bpf_u_int32 mask, addr;
6052 #ifndef INET6
6053 	bpf_u_int32 **alist;
6054 #else
6055 	int tproto6;
6056 	struct sockaddr_in *sin4;
6057 	struct sockaddr_in6 *sin6;
6058 	struct addrinfo *res, *res0;
6059 	struct in6_addr mask128;
6060 #endif /*INET6*/
6061 	struct block *b, *tmp;
6062 	int port, real_proto;
6063 	int port1, port2;
6064 
6065 	switch (q.addr) {
6066 
6067 	case Q_NET:
6068 		addr = pcap_nametonetaddr(name);
6069 		if (addr == 0)
6070 			bpf_error("unknown network '%s'", name);
6071 		/* Left justify network addr and calculate its network mask */
6072 		mask = 0xffffffff;
6073 		while (addr && (addr & 0xff000000) == 0) {
6074 			addr <<= 8;
6075 			mask <<= 8;
6076 		}
6077 		return gen_host(addr, mask, proto, dir, q.addr);
6078 
6079 	case Q_DEFAULT:
6080 	case Q_HOST:
6081 		if (proto == Q_LINK) {
6082 			switch (linktype) {
6083 
6084 			case DLT_EN10MB:
6085 			case DLT_NETANALYZER:
6086 			case DLT_NETANALYZER_TRANSPARENT:
6087 				eaddr = pcap_ether_hostton(name);
6088 				if (eaddr == NULL)
6089 					bpf_error(
6090 					    "unknown ether host '%s'", name);
6091 				b = gen_ehostop(eaddr, dir);
6092 				free(eaddr);
6093 				return b;
6094 
6095 			case DLT_FDDI:
6096 				eaddr = pcap_ether_hostton(name);
6097 				if (eaddr == NULL)
6098 					bpf_error(
6099 					    "unknown FDDI host '%s'", name);
6100 				b = gen_fhostop(eaddr, dir);
6101 				free(eaddr);
6102 				return b;
6103 
6104 			case DLT_IEEE802:
6105 				eaddr = pcap_ether_hostton(name);
6106 				if (eaddr == NULL)
6107 					bpf_error(
6108 					    "unknown token ring host '%s'", name);
6109 				b = gen_thostop(eaddr, dir);
6110 				free(eaddr);
6111 				return b;
6112 
6113 			case DLT_IEEE802_11:
6114 			case DLT_PRISM_HEADER:
6115 			case DLT_IEEE802_11_RADIO_AVS:
6116 			case DLT_IEEE802_11_RADIO:
6117 			case DLT_PPI:
6118 				eaddr = pcap_ether_hostton(name);
6119 				if (eaddr == NULL)
6120 					bpf_error(
6121 					    "unknown 802.11 host '%s'", name);
6122 				b = gen_wlanhostop(eaddr, dir);
6123 				free(eaddr);
6124 				return b;
6125 
6126 			case DLT_IP_OVER_FC:
6127 				eaddr = pcap_ether_hostton(name);
6128 				if (eaddr == NULL)
6129 					bpf_error(
6130 					    "unknown Fibre Channel host '%s'", name);
6131 				b = gen_ipfchostop(eaddr, dir);
6132 				free(eaddr);
6133 				return b;
6134 
6135 			case DLT_SUNATM:
6136 				if (!is_lane)
6137 					break;
6138 
6139 				/*
6140 				 * Check that the packet doesn't begin
6141 				 * with an LE Control marker.  (We've
6142 				 * already generated a test for LANE.)
6143 				 */
6144 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
6145 				    BPF_H, 0xFF00);
6146 				gen_not(tmp);
6147 
6148 				eaddr = pcap_ether_hostton(name);
6149 				if (eaddr == NULL)
6150 					bpf_error(
6151 					    "unknown ether host '%s'", name);
6152 				b = gen_ehostop(eaddr, dir);
6153 				gen_and(tmp, b);
6154 				free(eaddr);
6155 				return b;
6156 			}
6157 
6158 			bpf_error("only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6159 		} else if (proto == Q_DECNET) {
6160 			unsigned short dn_addr = __pcap_nametodnaddr(name);
6161 			/*
6162 			 * I don't think DECNET hosts can be multihomed, so
6163 			 * there is no need to build up a list of addresses
6164 			 */
6165 			return (gen_host(dn_addr, 0, proto, dir, q.addr));
6166 		} else {
6167 #ifndef INET6
6168 			alist = pcap_nametoaddr(name);
6169 			if (alist == NULL || *alist == NULL)
6170 				bpf_error("unknown host '%s'", name);
6171 			tproto = proto;
6172 			if (off_linktype == (u_int)-1 && tproto == Q_DEFAULT)
6173 				tproto = Q_IP;
6174 			b = gen_host(**alist++, 0xffffffff, tproto, dir, q.addr);
6175 			while (*alist) {
6176 				tmp = gen_host(**alist++, 0xffffffff,
6177 					       tproto, dir, q.addr);
6178 				gen_or(b, tmp);
6179 				b = tmp;
6180 			}
6181 			return b;
6182 #else
6183 			memset(&mask128, 0xff, sizeof(mask128));
6184 			res0 = res = pcap_nametoaddrinfo(name);
6185 			if (res == NULL)
6186 				bpf_error("unknown host '%s'", name);
6187 			ai = res;
6188 			b = tmp = NULL;
6189 			tproto = tproto6 = proto;
6190 			if (off_linktype == -1 && tproto == Q_DEFAULT) {
6191 				tproto = Q_IP;
6192 				tproto6 = Q_IPV6;
6193 			}
6194 			for (res = res0; res; res = res->ai_next) {
6195 				switch (res->ai_family) {
6196 				case AF_INET:
6197 					if (tproto == Q_IPV6)
6198 						continue;
6199 
6200 					sin4 = (struct sockaddr_in *)
6201 						res->ai_addr;
6202 					tmp = gen_host(ntohl(sin4->sin_addr.s_addr),
6203 						0xffffffff, tproto, dir, q.addr);
6204 					break;
6205 				case AF_INET6:
6206 					if (tproto6 == Q_IP)
6207 						continue;
6208 
6209 					sin6 = (struct sockaddr_in6 *)
6210 						res->ai_addr;
6211 					tmp = gen_host6(&sin6->sin6_addr,
6212 						&mask128, tproto6, dir, q.addr);
6213 					break;
6214 				default:
6215 					continue;
6216 				}
6217 				if (b)
6218 					gen_or(b, tmp);
6219 				b = tmp;
6220 			}
6221 			ai = NULL;
6222 			freeaddrinfo(res0);
6223 			if (b == NULL) {
6224 				bpf_error("unknown host '%s'%s", name,
6225 				    (proto == Q_DEFAULT)
6226 					? ""
6227 					: " for specified address family");
6228 			}
6229 			return b;
6230 #endif /*INET6*/
6231 		}
6232 
6233 	case Q_PORT:
6234 		if (proto != Q_DEFAULT &&
6235 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6236 			bpf_error("illegal qualifier of 'port'");
6237 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6238 			bpf_error("unknown port '%s'", name);
6239 		if (proto == Q_UDP) {
6240 			if (real_proto == IPPROTO_TCP)
6241 				bpf_error("port '%s' is tcp", name);
6242 			else if (real_proto == IPPROTO_SCTP)
6243 				bpf_error("port '%s' is sctp", name);
6244 			else
6245 				/* override PROTO_UNDEF */
6246 				real_proto = IPPROTO_UDP;
6247 		}
6248 		if (proto == Q_TCP) {
6249 			if (real_proto == IPPROTO_UDP)
6250 				bpf_error("port '%s' is udp", name);
6251 
6252 			else if (real_proto == IPPROTO_SCTP)
6253 				bpf_error("port '%s' is sctp", name);
6254 			else
6255 				/* override PROTO_UNDEF */
6256 				real_proto = IPPROTO_TCP;
6257 		}
6258 		if (proto == Q_SCTP) {
6259 			if (real_proto == IPPROTO_UDP)
6260 				bpf_error("port '%s' is udp", name);
6261 
6262 			else if (real_proto == IPPROTO_TCP)
6263 				bpf_error("port '%s' is tcp", name);
6264 			else
6265 				/* override PROTO_UNDEF */
6266 				real_proto = IPPROTO_SCTP;
6267 		}
6268 		if (port < 0)
6269 			bpf_error("illegal port number %d < 0", port);
6270 		if (port > 65535)
6271 			bpf_error("illegal port number %d > 65535", port);
6272 #ifndef INET6
6273 		return gen_port(port, real_proto, dir);
6274 #else
6275 		b = gen_port(port, real_proto, dir);
6276 		gen_or(gen_port6(port, real_proto, dir), b);
6277 		return b;
6278 #endif /* INET6 */
6279 
6280 	case Q_PORTRANGE:
6281 		if (proto != Q_DEFAULT &&
6282 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6283 			bpf_error("illegal qualifier of 'portrange'");
6284 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6285 			bpf_error("unknown port in range '%s'", name);
6286 		if (proto == Q_UDP) {
6287 			if (real_proto == IPPROTO_TCP)
6288 				bpf_error("port in range '%s' is tcp", name);
6289 			else if (real_proto == IPPROTO_SCTP)
6290 				bpf_error("port in range '%s' is sctp", name);
6291 			else
6292 				/* override PROTO_UNDEF */
6293 				real_proto = IPPROTO_UDP;
6294 		}
6295 		if (proto == Q_TCP) {
6296 			if (real_proto == IPPROTO_UDP)
6297 				bpf_error("port in range '%s' is udp", name);
6298 			else if (real_proto == IPPROTO_SCTP)
6299 				bpf_error("port in range '%s' is sctp", name);
6300 			else
6301 				/* override PROTO_UNDEF */
6302 				real_proto = IPPROTO_TCP;
6303 		}
6304 		if (proto == Q_SCTP) {
6305 			if (real_proto == IPPROTO_UDP)
6306 				bpf_error("port in range '%s' is udp", name);
6307 			else if (real_proto == IPPROTO_TCP)
6308 				bpf_error("port in range '%s' is tcp", name);
6309 			else
6310 				/* override PROTO_UNDEF */
6311 				real_proto = IPPROTO_SCTP;
6312 		}
6313 		if (port1 < 0)
6314 			bpf_error("illegal port number %d < 0", port1);
6315 		if (port1 > 65535)
6316 			bpf_error("illegal port number %d > 65535", port1);
6317 		if (port2 < 0)
6318 			bpf_error("illegal port number %d < 0", port2);
6319 		if (port2 > 65535)
6320 			bpf_error("illegal port number %d > 65535", port2);
6321 
6322 #ifndef INET6
6323 		return gen_portrange(port1, port2, real_proto, dir);
6324 #else
6325 		b = gen_portrange(port1, port2, real_proto, dir);
6326 		gen_or(gen_portrange6(port1, port2, real_proto, dir), b);
6327 		return b;
6328 #endif /* INET6 */
6329 
6330 	case Q_GATEWAY:
6331 #ifndef INET6
6332 		eaddr = pcap_ether_hostton(name);
6333 		if (eaddr == NULL)
6334 			bpf_error("unknown ether host: %s", name);
6335 
6336 		alist = pcap_nametoaddr(name);
6337 		if (alist == NULL || *alist == NULL)
6338 			bpf_error("unknown host '%s'", name);
6339 		b = gen_gateway(eaddr, alist, proto, dir);
6340 		free(eaddr);
6341 		return b;
6342 #else
6343 		bpf_error("'gateway' not supported in this configuration");
6344 #endif /*INET6*/
6345 
6346 	case Q_PROTO:
6347 		real_proto = lookup_proto(name, proto);
6348 		if (real_proto >= 0)
6349 			return gen_proto(real_proto, proto, dir);
6350 		else
6351 			bpf_error("unknown protocol: %s", name);
6352 
6353 	case Q_PROTOCHAIN:
6354 		real_proto = lookup_proto(name, proto);
6355 		if (real_proto >= 0)
6356 			return gen_protochain(real_proto, proto, dir);
6357 		else
6358 			bpf_error("unknown protocol: %s", name);
6359 
6360 	case Q_UNDEF:
6361 		syntax();
6362 		/* NOTREACHED */
6363 	}
6364 	abort();
6365 	/* NOTREACHED */
6366 }
6367 
6368 struct block *
6369 gen_mcode(s1, s2, masklen, q)
6370 	register const char *s1, *s2;
6371 	register int masklen;
6372 	struct qual q;
6373 {
6374 	register int nlen, mlen;
6375 	bpf_u_int32 n, m;
6376 
6377 	nlen = __pcap_atoin(s1, &n);
6378 	/* Promote short ipaddr */
6379 	n <<= 32 - nlen;
6380 
6381 	if (s2 != NULL) {
6382 		mlen = __pcap_atoin(s2, &m);
6383 		/* Promote short ipaddr */
6384 		m <<= 32 - mlen;
6385 		if ((n & ~m) != 0)
6386 			bpf_error("non-network bits set in \"%s mask %s\"",
6387 			    s1, s2);
6388 	} else {
6389 		/* Convert mask len to mask */
6390 		if (masklen > 32)
6391 			bpf_error("mask length must be <= 32");
6392 		if (masklen == 0) {
6393 			/*
6394 			 * X << 32 is not guaranteed by C to be 0; it's
6395 			 * undefined.
6396 			 */
6397 			m = 0;
6398 		} else
6399 			m = 0xffffffff << (32 - masklen);
6400 		if ((n & ~m) != 0)
6401 			bpf_error("non-network bits set in \"%s/%d\"",
6402 			    s1, masklen);
6403 	}
6404 
6405 	switch (q.addr) {
6406 
6407 	case Q_NET:
6408 		return gen_host(n, m, q.proto, q.dir, q.addr);
6409 
6410 	default:
6411 		bpf_error("Mask syntax for networks only");
6412 		/* NOTREACHED */
6413 	}
6414 	/* NOTREACHED */
6415 	return NULL;
6416 }
6417 
6418 struct block *
6419 gen_ncode(s, v, q)
6420 	register const char *s;
6421 	bpf_u_int32 v;
6422 	struct qual q;
6423 {
6424 	bpf_u_int32 mask;
6425 	int proto = q.proto;
6426 	int dir = q.dir;
6427 	register int vlen;
6428 
6429 	if (s == NULL)
6430 		vlen = 32;
6431 	else if (q.proto == Q_DECNET)
6432 		vlen = __pcap_atodn(s, &v);
6433 	else
6434 		vlen = __pcap_atoin(s, &v);
6435 
6436 	switch (q.addr) {
6437 
6438 	case Q_DEFAULT:
6439 	case Q_HOST:
6440 	case Q_NET:
6441 		if (proto == Q_DECNET)
6442 			return gen_host(v, 0, proto, dir, q.addr);
6443 		else if (proto == Q_LINK) {
6444 			bpf_error("illegal link layer address");
6445 		} else {
6446 			mask = 0xffffffff;
6447 			if (s == NULL && q.addr == Q_NET) {
6448 				/* Promote short net number */
6449 				while (v && (v & 0xff000000) == 0) {
6450 					v <<= 8;
6451 					mask <<= 8;
6452 				}
6453 			} else {
6454 				/* Promote short ipaddr */
6455 				v <<= 32 - vlen;
6456 				mask <<= 32 - vlen;
6457 			}
6458 			return gen_host(v, mask, proto, dir, q.addr);
6459 		}
6460 
6461 	case Q_PORT:
6462 		if (proto == Q_UDP)
6463 			proto = IPPROTO_UDP;
6464 		else if (proto == Q_TCP)
6465 			proto = IPPROTO_TCP;
6466 		else if (proto == Q_SCTP)
6467 			proto = IPPROTO_SCTP;
6468 		else if (proto == Q_DEFAULT)
6469 			proto = PROTO_UNDEF;
6470 		else
6471 			bpf_error("illegal qualifier of 'port'");
6472 
6473 		if (v > 65535)
6474 			bpf_error("illegal port number %u > 65535", v);
6475 
6476 #ifndef INET6
6477 		return gen_port((int)v, proto, dir);
6478 #else
6479 	    {
6480 		struct block *b;
6481 		b = gen_port((int)v, proto, dir);
6482 		gen_or(gen_port6((int)v, proto, dir), b);
6483 		return b;
6484 	    }
6485 #endif /* INET6 */
6486 
6487 	case Q_PORTRANGE:
6488 		if (proto == Q_UDP)
6489 			proto = IPPROTO_UDP;
6490 		else if (proto == Q_TCP)
6491 			proto = IPPROTO_TCP;
6492 		else if (proto == Q_SCTP)
6493 			proto = IPPROTO_SCTP;
6494 		else if (proto == Q_DEFAULT)
6495 			proto = PROTO_UNDEF;
6496 		else
6497 			bpf_error("illegal qualifier of 'portrange'");
6498 
6499 		if (v > 65535)
6500 			bpf_error("illegal port number %u > 65535", v);
6501 
6502 #ifndef INET6
6503 		return gen_portrange((int)v, (int)v, proto, dir);
6504 #else
6505 	    {
6506 		struct block *b;
6507 		b = gen_portrange((int)v, (int)v, proto, dir);
6508 		gen_or(gen_portrange6((int)v, (int)v, proto, dir), b);
6509 		return b;
6510 	    }
6511 #endif /* INET6 */
6512 
6513 	case Q_GATEWAY:
6514 		bpf_error("'gateway' requires a name");
6515 		/* NOTREACHED */
6516 
6517 	case Q_PROTO:
6518 		return gen_proto((int)v, proto, dir);
6519 
6520 	case Q_PROTOCHAIN:
6521 		return gen_protochain((int)v, proto, dir);
6522 
6523 	case Q_UNDEF:
6524 		syntax();
6525 		/* NOTREACHED */
6526 
6527 	default:
6528 		abort();
6529 		/* NOTREACHED */
6530 	}
6531 	/* NOTREACHED */
6532 }
6533 
6534 #ifdef INET6
6535 struct block *
6536 gen_mcode6(s1, s2, masklen, q)
6537 	register const char *s1, *s2;
6538 	register int masklen;
6539 	struct qual q;
6540 {
6541 	struct addrinfo *res;
6542 	struct in6_addr *addr;
6543 	struct in6_addr mask;
6544 	struct block *b;
6545 	u_int32_t *a, *m;
6546 
6547 	if (s2)
6548 		bpf_error("no mask %s supported", s2);
6549 
6550 	res = pcap_nametoaddrinfo(s1);
6551 	if (!res)
6552 		bpf_error("invalid ip6 address %s", s1);
6553 	ai = res;
6554 	if (res->ai_next)
6555 		bpf_error("%s resolved to multiple address", s1);
6556 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
6557 
6558 	if (sizeof(mask) * 8 < masklen)
6559 		bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
6560 	memset(&mask, 0, sizeof(mask));
6561 	memset(&mask, 0xff, masklen / 8);
6562 	if (masklen % 8) {
6563 		mask.s6_addr[masklen / 8] =
6564 			(0xff << (8 - masklen % 8)) & 0xff;
6565 	}
6566 
6567 	a = (u_int32_t *)addr;
6568 	m = (u_int32_t *)&mask;
6569 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
6570 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
6571 		bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
6572 	}
6573 
6574 	switch (q.addr) {
6575 
6576 	case Q_DEFAULT:
6577 	case Q_HOST:
6578 		if (masklen != 128)
6579 			bpf_error("Mask syntax for networks only");
6580 		/* FALLTHROUGH */
6581 
6582 	case Q_NET:
6583 		b = gen_host6(addr, &mask, q.proto, q.dir, q.addr);
6584 		ai = NULL;
6585 		freeaddrinfo(res);
6586 		return b;
6587 
6588 	default:
6589 		bpf_error("invalid qualifier against IPv6 address");
6590 		/* NOTREACHED */
6591 	}
6592 	return NULL;
6593 }
6594 #endif /*INET6*/
6595 
6596 struct block *
6597 gen_ecode(eaddr, q)
6598 	register const u_char *eaddr;
6599 	struct qual q;
6600 {
6601 	struct block *b, *tmp;
6602 
6603 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
6604 		switch (linktype) {
6605 		case DLT_EN10MB:
6606 		case DLT_NETANALYZER:
6607 		case DLT_NETANALYZER_TRANSPARENT:
6608 			return gen_ehostop(eaddr, (int)q.dir);
6609 		case DLT_FDDI:
6610 			return gen_fhostop(eaddr, (int)q.dir);
6611 		case DLT_IEEE802:
6612 			return gen_thostop(eaddr, (int)q.dir);
6613 		case DLT_IEEE802_11:
6614 		case DLT_PRISM_HEADER:
6615 		case DLT_IEEE802_11_RADIO_AVS:
6616 		case DLT_IEEE802_11_RADIO:
6617 		case DLT_PPI:
6618 			return gen_wlanhostop(eaddr, (int)q.dir);
6619 		case DLT_SUNATM:
6620 			if (is_lane) {
6621 				/*
6622 				 * Check that the packet doesn't begin with an
6623 				 * LE Control marker.  (We've already generated
6624 				 * a test for LANE.)
6625 				 */
6626 				tmp = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS, BPF_H,
6627 					0xFF00);
6628 				gen_not(tmp);
6629 
6630 				/*
6631 				 * Now check the MAC address.
6632 				 */
6633 				b = gen_ehostop(eaddr, (int)q.dir);
6634 				gen_and(tmp, b);
6635 				return b;
6636 			}
6637 			break;
6638 		case DLT_IP_OVER_FC:
6639 			return gen_ipfchostop(eaddr, (int)q.dir);
6640 		default:
6641 			bpf_error("ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
6642 			break;
6643 		}
6644 	}
6645 	bpf_error("ethernet address used in non-ether expression");
6646 	/* NOTREACHED */
6647 	return NULL;
6648 }
6649 
6650 void
6651 sappend(s0, s1)
6652 	struct slist *s0, *s1;
6653 {
6654 	/*
6655 	 * This is definitely not the best way to do this, but the
6656 	 * lists will rarely get long.
6657 	 */
6658 	while (s0->next)
6659 		s0 = s0->next;
6660 	s0->next = s1;
6661 }
6662 
6663 static struct slist *
6664 xfer_to_x(a)
6665 	struct arth *a;
6666 {
6667 	struct slist *s;
6668 
6669 	s = new_stmt(BPF_LDX|BPF_MEM);
6670 	s->s.k = a->regno;
6671 	return s;
6672 }
6673 
6674 static struct slist *
6675 xfer_to_a(a)
6676 	struct arth *a;
6677 {
6678 	struct slist *s;
6679 
6680 	s = new_stmt(BPF_LD|BPF_MEM);
6681 	s->s.k = a->regno;
6682 	return s;
6683 }
6684 
6685 /*
6686  * Modify "index" to use the value stored into its register as an
6687  * offset relative to the beginning of the header for the protocol
6688  * "proto", and allocate a register and put an item "size" bytes long
6689  * (1, 2, or 4) at that offset into that register, making it the register
6690  * for "index".
6691  */
6692 struct arth *
6693 gen_load(proto, inst, size)
6694 	int proto;
6695 	struct arth *inst;
6696 	int size;
6697 {
6698 	struct slist *s, *tmp;
6699 	struct block *b;
6700 	int regno = alloc_reg();
6701 
6702 	free_reg(inst->regno);
6703 	switch (size) {
6704 
6705 	default:
6706 		bpf_error("data size must be 1, 2, or 4");
6707 
6708 	case 1:
6709 		size = BPF_B;
6710 		break;
6711 
6712 	case 2:
6713 		size = BPF_H;
6714 		break;
6715 
6716 	case 4:
6717 		size = BPF_W;
6718 		break;
6719 	}
6720 	switch (proto) {
6721 	default:
6722 		bpf_error("unsupported index operation");
6723 
6724 	case Q_RADIO:
6725 		/*
6726 		 * The offset is relative to the beginning of the packet
6727 		 * data, if we have a radio header.  (If we don't, this
6728 		 * is an error.)
6729 		 */
6730 		if (linktype != DLT_IEEE802_11_RADIO_AVS &&
6731 		    linktype != DLT_IEEE802_11_RADIO &&
6732 		    linktype != DLT_PRISM_HEADER)
6733 			bpf_error("radio information not present in capture");
6734 
6735 		/*
6736 		 * Load into the X register the offset computed into the
6737 		 * register specified by "index".
6738 		 */
6739 		s = xfer_to_x(inst);
6740 
6741 		/*
6742 		 * Load the item at that offset.
6743 		 */
6744 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6745 		sappend(s, tmp);
6746 		sappend(inst->s, s);
6747 		break;
6748 
6749 	case Q_LINK:
6750 		/*
6751 		 * The offset is relative to the beginning of
6752 		 * the link-layer header.
6753 		 *
6754 		 * XXX - what about ATM LANE?  Should the index be
6755 		 * relative to the beginning of the AAL5 frame, so
6756 		 * that 0 refers to the beginning of the LE Control
6757 		 * field, or relative to the beginning of the LAN
6758 		 * frame, so that 0 refers, for Ethernet LANE, to
6759 		 * the beginning of the destination address?
6760 		 */
6761 		s = gen_llprefixlen();
6762 
6763 		/*
6764 		 * If "s" is non-null, it has code to arrange that the
6765 		 * X register contains the length of the prefix preceding
6766 		 * the link-layer header.  Add to it the offset computed
6767 		 * into the register specified by "index", and move that
6768 		 * into the X register.  Otherwise, just load into the X
6769 		 * register the offset computed into the register specified
6770 		 * by "index".
6771 		 */
6772 		if (s != NULL) {
6773 			sappend(s, xfer_to_a(inst));
6774 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6775 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6776 		} else
6777 			s = xfer_to_x(inst);
6778 
6779 		/*
6780 		 * Load the item at the sum of the offset we've put in the
6781 		 * X register and the offset of the start of the link
6782 		 * layer header (which is 0 if the radio header is
6783 		 * variable-length; that header length is what we put
6784 		 * into the X register and then added to the index).
6785 		 */
6786 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6787 		tmp->s.k = off_ll;
6788 		sappend(s, tmp);
6789 		sappend(inst->s, s);
6790 		break;
6791 
6792 	case Q_IP:
6793 	case Q_ARP:
6794 	case Q_RARP:
6795 	case Q_ATALK:
6796 	case Q_DECNET:
6797 	case Q_SCA:
6798 	case Q_LAT:
6799 	case Q_MOPRC:
6800 	case Q_MOPDL:
6801 #ifdef INET6
6802 	case Q_IPV6:
6803 #endif
6804 		/*
6805 		 * The offset is relative to the beginning of
6806 		 * the network-layer header.
6807 		 * XXX - are there any cases where we want
6808 		 * off_nl_nosnap?
6809 		 */
6810 		s = gen_off_macpl();
6811 
6812 		/*
6813 		 * If "s" is non-null, it has code to arrange that the
6814 		 * X register contains the offset of the MAC-layer
6815 		 * payload.  Add to it the offset computed into the
6816 		 * register specified by "index", and move that into
6817 		 * the X register.  Otherwise, just load into the X
6818 		 * register the offset computed into the register specified
6819 		 * by "index".
6820 		 */
6821 		if (s != NULL) {
6822 			sappend(s, xfer_to_a(inst));
6823 			sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6824 			sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6825 		} else
6826 			s = xfer_to_x(inst);
6827 
6828 		/*
6829 		 * Load the item at the sum of the offset we've put in the
6830 		 * X register, the offset of the start of the network
6831 		 * layer header from the beginning of the MAC-layer
6832 		 * payload, and the purported offset of the start of the
6833 		 * MAC-layer payload (which might be 0 if there's a
6834 		 * variable-length prefix before the link-layer header
6835 		 * or the link-layer header itself is variable-length;
6836 		 * the variable-length offset of the start of the
6837 		 * MAC-layer payload is what we put into the X register
6838 		 * and then added to the index).
6839 		 */
6840 		tmp = new_stmt(BPF_LD|BPF_IND|size);
6841 		tmp->s.k = off_macpl + off_nl;
6842 		sappend(s, tmp);
6843 		sappend(inst->s, s);
6844 
6845 		/*
6846 		 * Do the computation only if the packet contains
6847 		 * the protocol in question.
6848 		 */
6849 		b = gen_proto_abbrev(proto);
6850 		if (inst->b)
6851 			gen_and(inst->b, b);
6852 		inst->b = b;
6853 		break;
6854 
6855 	case Q_SCTP:
6856 	case Q_TCP:
6857 	case Q_UDP:
6858 	case Q_ICMP:
6859 	case Q_IGMP:
6860 	case Q_IGRP:
6861 	case Q_PIM:
6862 	case Q_VRRP:
6863 	case Q_CARP:
6864 		/*
6865 		 * The offset is relative to the beginning of
6866 		 * the transport-layer header.
6867 		 *
6868 		 * Load the X register with the length of the IPv4 header
6869 		 * (plus the offset of the link-layer header, if it's
6870 		 * a variable-length header), in bytes.
6871 		 *
6872 		 * XXX - are there any cases where we want
6873 		 * off_nl_nosnap?
6874 		 * XXX - we should, if we're built with
6875 		 * IPv6 support, generate code to load either
6876 		 * IPv4, IPv6, or both, as appropriate.
6877 		 */
6878 		s = gen_loadx_iphdrlen();
6879 
6880 		/*
6881 		 * The X register now contains the sum of the length
6882 		 * of any variable-length header preceding the link-layer
6883 		 * header, any variable-length link-layer header, and the
6884 		 * length of the network-layer header.
6885 		 *
6886 		 * Load into the A register the offset relative to
6887 		 * the beginning of the transport layer header,
6888 		 * add the X register to that, move that to the
6889 		 * X register, and load with an offset from the
6890 		 * X register equal to the offset of the network
6891 		 * layer header relative to the beginning of
6892 		 * the MAC-layer payload plus the fixed-length
6893 		 * portion of the offset of the MAC-layer payload
6894 		 * from the beginning of the raw packet data.
6895 		 */
6896 		sappend(s, xfer_to_a(inst));
6897 		sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
6898 		sappend(s, new_stmt(BPF_MISC|BPF_TAX));
6899 		sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
6900 		tmp->s.k = off_macpl + off_nl;
6901 		sappend(inst->s, s);
6902 
6903 		/*
6904 		 * Do the computation only if the packet contains
6905 		 * the protocol in question - which is true only
6906 		 * if this is an IP datagram and is the first or
6907 		 * only fragment of that datagram.
6908 		 */
6909 		gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
6910 		if (inst->b)
6911 			gen_and(inst->b, b);
6912 #ifdef INET6
6913 		gen_and(gen_proto_abbrev(Q_IP), b);
6914 #endif
6915 		inst->b = b;
6916 		break;
6917 #ifdef INET6
6918 	case Q_ICMPV6:
6919 		bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
6920 		/*NOTREACHED*/
6921 #endif
6922 	}
6923 	inst->regno = regno;
6924 	s = new_stmt(BPF_ST);
6925 	s->s.k = regno;
6926 	sappend(inst->s, s);
6927 
6928 	return inst;
6929 }
6930 
6931 struct block *
6932 gen_relation(code, a0, a1, reversed)
6933 	int code;
6934 	struct arth *a0, *a1;
6935 	int reversed;
6936 {
6937 	struct slist *s0, *s1, *s2;
6938 	struct block *b, *tmp;
6939 
6940 	s0 = xfer_to_x(a1);
6941 	s1 = xfer_to_a(a0);
6942 	if (code == BPF_JEQ) {
6943 		s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
6944 		b = new_block(JMP(code));
6945 		sappend(s1, s2);
6946 	}
6947 	else
6948 		b = new_block(BPF_JMP|code|BPF_X);
6949 	if (reversed)
6950 		gen_not(b);
6951 
6952 	sappend(s0, s1);
6953 	sappend(a1->s, s0);
6954 	sappend(a0->s, a1->s);
6955 
6956 	b->stmts = a0->s;
6957 
6958 	free_reg(a0->regno);
6959 	free_reg(a1->regno);
6960 
6961 	/* 'and' together protocol checks */
6962 	if (a0->b) {
6963 		if (a1->b) {
6964 			gen_and(a0->b, tmp = a1->b);
6965 		}
6966 		else
6967 			tmp = a0->b;
6968 	} else
6969 		tmp = a1->b;
6970 
6971 	if (tmp)
6972 		gen_and(tmp, b);
6973 
6974 	return b;
6975 }
6976 
6977 struct arth *
6978 gen_loadlen()
6979 {
6980 	int regno = alloc_reg();
6981 	struct arth *a = (struct arth *)newchunk(sizeof(*a));
6982 	struct slist *s;
6983 
6984 	s = new_stmt(BPF_LD|BPF_LEN);
6985 	s->next = new_stmt(BPF_ST);
6986 	s->next->s.k = regno;
6987 	a->s = s;
6988 	a->regno = regno;
6989 
6990 	return a;
6991 }
6992 
6993 struct arth *
6994 gen_loadi(val)
6995 	int val;
6996 {
6997 	struct arth *a;
6998 	struct slist *s;
6999 	int reg;
7000 
7001 	a = (struct arth *)newchunk(sizeof(*a));
7002 
7003 	reg = alloc_reg();
7004 
7005 	s = new_stmt(BPF_LD|BPF_IMM);
7006 	s->s.k = val;
7007 	s->next = new_stmt(BPF_ST);
7008 	s->next->s.k = reg;
7009 	a->s = s;
7010 	a->regno = reg;
7011 
7012 	return a;
7013 }
7014 
7015 struct arth *
7016 gen_neg(a)
7017 	struct arth *a;
7018 {
7019 	struct slist *s;
7020 
7021 	s = xfer_to_a(a);
7022 	sappend(a->s, s);
7023 	s = new_stmt(BPF_ALU|BPF_NEG);
7024 	s->s.k = 0;
7025 	sappend(a->s, s);
7026 	s = new_stmt(BPF_ST);
7027 	s->s.k = a->regno;
7028 	sappend(a->s, s);
7029 
7030 	return a;
7031 }
7032 
7033 struct arth *
7034 gen_arth(code, a0, a1)
7035 	int code;
7036 	struct arth *a0, *a1;
7037 {
7038 	struct slist *s0, *s1, *s2;
7039 
7040 	s0 = xfer_to_x(a1);
7041 	s1 = xfer_to_a(a0);
7042 	s2 = new_stmt(BPF_ALU|BPF_X|code);
7043 
7044 	sappend(s1, s2);
7045 	sappend(s0, s1);
7046 	sappend(a1->s, s0);
7047 	sappend(a0->s, a1->s);
7048 
7049 	free_reg(a0->regno);
7050 	free_reg(a1->regno);
7051 
7052 	s0 = new_stmt(BPF_ST);
7053 	a0->regno = s0->s.k = alloc_reg();
7054 	sappend(a0->s, s0);
7055 
7056 	return a0;
7057 }
7058 
7059 /*
7060  * Here we handle simple allocation of the scratch registers.
7061  * If too many registers are alloc'd, the allocator punts.
7062  */
7063 static int regused[BPF_MEMWORDS];
7064 static int curreg;
7065 
7066 /*
7067  * Initialize the table of used registers and the current register.
7068  */
7069 static void
7070 init_regs()
7071 {
7072 	curreg = 0;
7073 	memset(regused, 0, sizeof regused);
7074 }
7075 
7076 /*
7077  * Return the next free register.
7078  */
7079 static int
7080 alloc_reg()
7081 {
7082 	int n = BPF_MEMWORDS;
7083 
7084 	while (--n >= 0) {
7085 		if (regused[curreg])
7086 			curreg = (curreg + 1) % BPF_MEMWORDS;
7087 		else {
7088 			regused[curreg] = 1;
7089 			return curreg;
7090 		}
7091 	}
7092 	bpf_error("too many registers needed to evaluate expression");
7093 	/* NOTREACHED */
7094 	return 0;
7095 }
7096 
7097 /*
7098  * Return a register to the table so it can
7099  * be used later.
7100  */
7101 static void
7102 free_reg(n)
7103 	int n;
7104 {
7105 	regused[n] = 0;
7106 }
7107 
7108 static struct block *
7109 gen_len(jmp, n)
7110 	int jmp, n;
7111 {
7112 	struct slist *s;
7113 	struct block *b;
7114 
7115 	s = new_stmt(BPF_LD|BPF_LEN);
7116 	b = new_block(JMP(jmp));
7117 	b->stmts = s;
7118 	b->s.k = n;
7119 
7120 	return b;
7121 }
7122 
7123 struct block *
7124 gen_greater(n)
7125 	int n;
7126 {
7127 	return gen_len(BPF_JGE, n);
7128 }
7129 
7130 /*
7131  * Actually, this is less than or equal.
7132  */
7133 struct block *
7134 gen_less(n)
7135 	int n;
7136 {
7137 	struct block *b;
7138 
7139 	b = gen_len(BPF_JGT, n);
7140 	gen_not(b);
7141 
7142 	return b;
7143 }
7144 
7145 /*
7146  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7147  * the beginning of the link-layer header.
7148  * XXX - that means you can't test values in the radiotap header, but
7149  * as that header is difficult if not impossible to parse generally
7150  * without a loop, that might not be a severe problem.  A new keyword
7151  * "radio" could be added for that, although what you'd really want
7152  * would be a way of testing particular radio header values, which
7153  * would generate code appropriate to the radio header in question.
7154  */
7155 struct block *
7156 gen_byteop(op, idx, val)
7157 	int op, idx, val;
7158 {
7159 	struct block *b;
7160 	struct slist *s;
7161 
7162 	switch (op) {
7163 	default:
7164 		abort();
7165 
7166 	case '=':
7167 		return gen_cmp(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7168 
7169 	case '<':
7170 		b = gen_cmp_lt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7171 		return b;
7172 
7173 	case '>':
7174 		b = gen_cmp_gt(OR_LINK, (u_int)idx, BPF_B, (bpf_int32)val);
7175 		return b;
7176 
7177 	case '|':
7178 		s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
7179 		break;
7180 
7181 	case '&':
7182 		s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
7183 		break;
7184 	}
7185 	s->s.k = val;
7186 	b = new_block(JMP(BPF_JEQ));
7187 	b->stmts = s;
7188 	gen_not(b);
7189 
7190 	return b;
7191 }
7192 
7193 static u_char abroadcast[] = { 0x0 };
7194 
7195 struct block *
7196 gen_broadcast(proto)
7197 	int proto;
7198 {
7199 	bpf_u_int32 hostmask;
7200 	struct block *b0, *b1, *b2;
7201 	static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7202 
7203 	switch (proto) {
7204 
7205 	case Q_DEFAULT:
7206 	case Q_LINK:
7207 		switch (linktype) {
7208 		case DLT_ARCNET:
7209 		case DLT_ARCNET_LINUX:
7210 			return gen_ahostop(abroadcast, Q_DST);
7211 		case DLT_EN10MB:
7212 		case DLT_NETANALYZER:
7213 		case DLT_NETANALYZER_TRANSPARENT:
7214 			return gen_ehostop(ebroadcast, Q_DST);
7215 		case DLT_FDDI:
7216 			return gen_fhostop(ebroadcast, Q_DST);
7217 		case DLT_IEEE802:
7218 			return gen_thostop(ebroadcast, Q_DST);
7219 		case DLT_IEEE802_11:
7220 		case DLT_PRISM_HEADER:
7221 		case DLT_IEEE802_11_RADIO_AVS:
7222 		case DLT_IEEE802_11_RADIO:
7223 		case DLT_PPI:
7224 			return gen_wlanhostop(ebroadcast, Q_DST);
7225 		case DLT_IP_OVER_FC:
7226 			return gen_ipfchostop(ebroadcast, Q_DST);
7227 		case DLT_SUNATM:
7228 			if (is_lane) {
7229 				/*
7230 				 * Check that the packet doesn't begin with an
7231 				 * LE Control marker.  (We've already generated
7232 				 * a test for LANE.)
7233 				 */
7234 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7235 				    BPF_H, 0xFF00);
7236 				gen_not(b1);
7237 
7238 				/*
7239 				 * Now check the MAC address.
7240 				 */
7241 				b0 = gen_ehostop(ebroadcast, Q_DST);
7242 				gen_and(b1, b0);
7243 				return b0;
7244 			}
7245 			break;
7246 		default:
7247 			bpf_error("not a broadcast link");
7248 		}
7249 		break;
7250 
7251 	case Q_IP:
7252 		/*
7253 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7254 		 * as an indication that we don't know the netmask, and fail
7255 		 * in that case.
7256 		 */
7257 		if (netmask == PCAP_NETMASK_UNKNOWN)
7258 			bpf_error("netmask not known, so 'ip broadcast' not supported");
7259 		b0 = gen_linktype(ETHERTYPE_IP);
7260 		hostmask = ~netmask;
7261 		b1 = gen_mcmp(OR_NET, 16, BPF_W, (bpf_int32)0, hostmask);
7262 		b2 = gen_mcmp(OR_NET, 16, BPF_W,
7263 			      (bpf_int32)(~0 & hostmask), hostmask);
7264 		gen_or(b1, b2);
7265 		gen_and(b0, b2);
7266 		return b2;
7267 	}
7268 	bpf_error("only link-layer/IP broadcast filters supported");
7269 	/* NOTREACHED */
7270 	return NULL;
7271 }
7272 
7273 /*
7274  * Generate code to test the low-order bit of a MAC address (that's
7275  * the bottom bit of the *first* byte).
7276  */
7277 static struct block *
7278 gen_mac_multicast(offset)
7279 	int offset;
7280 {
7281 	register struct block *b0;
7282 	register struct slist *s;
7283 
7284 	/* link[offset] & 1 != 0 */
7285 	s = gen_load_a(OR_LINK, offset, BPF_B);
7286 	b0 = new_block(JMP(BPF_JSET));
7287 	b0->s.k = 1;
7288 	b0->stmts = s;
7289 	return b0;
7290 }
7291 
7292 struct block *
7293 gen_multicast(proto)
7294 	int proto;
7295 {
7296 	register struct block *b0, *b1, *b2;
7297 	register struct slist *s;
7298 
7299 	switch (proto) {
7300 
7301 	case Q_DEFAULT:
7302 	case Q_LINK:
7303 		switch (linktype) {
7304 		case DLT_ARCNET:
7305 		case DLT_ARCNET_LINUX:
7306 			/* all ARCnet multicasts use the same address */
7307 			return gen_ahostop(abroadcast, Q_DST);
7308 		case DLT_EN10MB:
7309 		case DLT_NETANALYZER:
7310 		case DLT_NETANALYZER_TRANSPARENT:
7311 			/* ether[0] & 1 != 0 */
7312 			return gen_mac_multicast(0);
7313 		case DLT_FDDI:
7314 			/*
7315 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
7316 			 *
7317 			 * XXX - was that referring to bit-order issues?
7318 			 */
7319 			/* fddi[1] & 1 != 0 */
7320 			return gen_mac_multicast(1);
7321 		case DLT_IEEE802:
7322 			/* tr[2] & 1 != 0 */
7323 			return gen_mac_multicast(2);
7324 		case DLT_IEEE802_11:
7325 		case DLT_PRISM_HEADER:
7326 		case DLT_IEEE802_11_RADIO_AVS:
7327 		case DLT_IEEE802_11_RADIO:
7328 		case DLT_PPI:
7329 			/*
7330 			 * Oh, yuk.
7331 			 *
7332 			 *	For control frames, there is no DA.
7333 			 *
7334 			 *	For management frames, DA is at an
7335 			 *	offset of 4 from the beginning of
7336 			 *	the packet.
7337 			 *
7338 			 *	For data frames, DA is at an offset
7339 			 *	of 4 from the beginning of the packet
7340 			 *	if To DS is clear and at an offset of
7341 			 *	16 from the beginning of the packet
7342 			 *	if To DS is set.
7343 			 */
7344 
7345 			/*
7346 			 * Generate the tests to be done for data frames.
7347 			 *
7348 			 * First, check for To DS set, i.e. "link[1] & 0x01".
7349 			 */
7350 			s = gen_load_a(OR_LINK, 1, BPF_B);
7351 			b1 = new_block(JMP(BPF_JSET));
7352 			b1->s.k = 0x01;	/* To DS */
7353 			b1->stmts = s;
7354 
7355 			/*
7356 			 * If To DS is set, the DA is at 16.
7357 			 */
7358 			b0 = gen_mac_multicast(16);
7359 			gen_and(b1, b0);
7360 
7361 			/*
7362 			 * Now, check for To DS not set, i.e. check
7363 			 * "!(link[1] & 0x01)".
7364 			 */
7365 			s = gen_load_a(OR_LINK, 1, BPF_B);
7366 			b2 = new_block(JMP(BPF_JSET));
7367 			b2->s.k = 0x01;	/* To DS */
7368 			b2->stmts = s;
7369 			gen_not(b2);
7370 
7371 			/*
7372 			 * If To DS is not set, the DA is at 4.
7373 			 */
7374 			b1 = gen_mac_multicast(4);
7375 			gen_and(b2, b1);
7376 
7377 			/*
7378 			 * Now OR together the last two checks.  That gives
7379 			 * the complete set of checks for data frames.
7380 			 */
7381 			gen_or(b1, b0);
7382 
7383 			/*
7384 			 * Now check for a data frame.
7385 			 * I.e, check "link[0] & 0x08".
7386 			 */
7387 			s = gen_load_a(OR_LINK, 0, BPF_B);
7388 			b1 = new_block(JMP(BPF_JSET));
7389 			b1->s.k = 0x08;
7390 			b1->stmts = s;
7391 
7392 			/*
7393 			 * AND that with the checks done for data frames.
7394 			 */
7395 			gen_and(b1, b0);
7396 
7397 			/*
7398 			 * If the high-order bit of the type value is 0, this
7399 			 * is a management frame.
7400 			 * I.e, check "!(link[0] & 0x08)".
7401 			 */
7402 			s = gen_load_a(OR_LINK, 0, BPF_B);
7403 			b2 = new_block(JMP(BPF_JSET));
7404 			b2->s.k = 0x08;
7405 			b2->stmts = s;
7406 			gen_not(b2);
7407 
7408 			/*
7409 			 * For management frames, the DA is at 4.
7410 			 */
7411 			b1 = gen_mac_multicast(4);
7412 			gen_and(b2, b1);
7413 
7414 			/*
7415 			 * OR that with the checks done for data frames.
7416 			 * That gives the checks done for management and
7417 			 * data frames.
7418 			 */
7419 			gen_or(b1, b0);
7420 
7421 			/*
7422 			 * If the low-order bit of the type value is 1,
7423 			 * this is either a control frame or a frame
7424 			 * with a reserved type, and thus not a
7425 			 * frame with an SA.
7426 			 *
7427 			 * I.e., check "!(link[0] & 0x04)".
7428 			 */
7429 			s = gen_load_a(OR_LINK, 0, BPF_B);
7430 			b1 = new_block(JMP(BPF_JSET));
7431 			b1->s.k = 0x04;
7432 			b1->stmts = s;
7433 			gen_not(b1);
7434 
7435 			/*
7436 			 * AND that with the checks for data and management
7437 			 * frames.
7438 			 */
7439 			gen_and(b1, b0);
7440 			return b0;
7441 		case DLT_IP_OVER_FC:
7442 			b0 = gen_mac_multicast(2);
7443 			return b0;
7444 		case DLT_SUNATM:
7445 			if (is_lane) {
7446 				/*
7447 				 * Check that the packet doesn't begin with an
7448 				 * LE Control marker.  (We've already generated
7449 				 * a test for LANE.)
7450 				 */
7451 				b1 = gen_cmp(OR_LINK, SUNATM_PKT_BEGIN_POS,
7452 				    BPF_H, 0xFF00);
7453 				gen_not(b1);
7454 
7455 				/* ether[off_mac] & 1 != 0 */
7456 				b0 = gen_mac_multicast(off_mac);
7457 				gen_and(b1, b0);
7458 				return b0;
7459 			}
7460 			break;
7461 		default:
7462 			break;
7463 		}
7464 		/* Link not known to support multicasts */
7465 		break;
7466 
7467 	case Q_IP:
7468 		b0 = gen_linktype(ETHERTYPE_IP);
7469 		b1 = gen_cmp_ge(OR_NET, 16, BPF_B, (bpf_int32)224);
7470 		gen_and(b0, b1);
7471 		return b1;
7472 
7473 #ifdef INET6
7474 	case Q_IPV6:
7475 		b0 = gen_linktype(ETHERTYPE_IPV6);
7476 		b1 = gen_cmp(OR_NET, 24, BPF_B, (bpf_int32)255);
7477 		gen_and(b0, b1);
7478 		return b1;
7479 #endif /* INET6 */
7480 	}
7481 	bpf_error("link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
7482 	/* NOTREACHED */
7483 	return NULL;
7484 }
7485 
7486 /*
7487  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
7488  * Outbound traffic is sent by this machine, while inbound traffic is
7489  * sent by a remote machine (and may include packets destined for a
7490  * unicast or multicast link-layer address we are not subscribing to).
7491  * These are the same definitions implemented by pcap_setdirection().
7492  * Capturing only unicast traffic destined for this host is probably
7493  * better accomplished using a higher-layer filter.
7494  */
7495 struct block *
7496 gen_inbound(dir)
7497 	int dir;
7498 {
7499 	register struct block *b0;
7500 
7501 	/*
7502 	 * Only some data link types support inbound/outbound qualifiers.
7503 	 */
7504 	switch (linktype) {
7505 	case DLT_SLIP:
7506 		b0 = gen_relation(BPF_JEQ,
7507 			  gen_load(Q_LINK, gen_loadi(0), 1),
7508 			  gen_loadi(0),
7509 			  dir);
7510 		break;
7511 
7512 	case DLT_IPNET:
7513 		if (dir) {
7514 			/* match outgoing packets */
7515 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_OUTBOUND);
7516 		} else {
7517 			/* match incoming packets */
7518 			b0 = gen_cmp(OR_LINK, 2, BPF_H, IPNET_INBOUND);
7519 		}
7520 		break;
7521 
7522 	case DLT_LINUX_SLL:
7523 		/* match outgoing packets */
7524 		b0 = gen_cmp(OR_LINK, 0, BPF_H, LINUX_SLL_OUTGOING);
7525 		if (!dir) {
7526 			/* to filter on inbound traffic, invert the match */
7527 			gen_not(b0);
7528 		}
7529 		break;
7530 
7531 #ifdef HAVE_NET_PFVAR_H
7532 	case DLT_PFLOG:
7533 		b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, dir), BPF_B,
7534 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
7535 		break;
7536 #endif
7537 
7538 	case DLT_PPP_PPPD:
7539 		if (dir) {
7540 			/* match outgoing packets */
7541 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_OUT);
7542 		} else {
7543 			/* match incoming packets */
7544 			b0 = gen_cmp(OR_LINK, 0, BPF_B, PPP_PPPD_IN);
7545 		}
7546 		break;
7547 
7548         case DLT_JUNIPER_MFR:
7549         case DLT_JUNIPER_MLFR:
7550         case DLT_JUNIPER_MLPPP:
7551 	case DLT_JUNIPER_ATM1:
7552 	case DLT_JUNIPER_ATM2:
7553 	case DLT_JUNIPER_PPPOE:
7554 	case DLT_JUNIPER_PPPOE_ATM:
7555         case DLT_JUNIPER_GGSN:
7556         case DLT_JUNIPER_ES:
7557         case DLT_JUNIPER_MONITOR:
7558         case DLT_JUNIPER_SERVICES:
7559         case DLT_JUNIPER_ETHER:
7560         case DLT_JUNIPER_PPP:
7561         case DLT_JUNIPER_FRELAY:
7562         case DLT_JUNIPER_CHDLC:
7563         case DLT_JUNIPER_VP:
7564         case DLT_JUNIPER_ST:
7565         case DLT_JUNIPER_ISM:
7566         case DLT_JUNIPER_VS:
7567         case DLT_JUNIPER_SRX_E2E:
7568         case DLT_JUNIPER_FIBRECHANNEL:
7569 	case DLT_JUNIPER_ATM_CEMIC:
7570 
7571 		/* juniper flags (including direction) are stored
7572 		 * the byte after the 3-byte magic number */
7573 		if (dir) {
7574 			/* match outgoing packets */
7575 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 0, 0x01);
7576 		} else {
7577 			/* match incoming packets */
7578 			b0 = gen_mcmp(OR_LINK, 3, BPF_B, 1, 0x01);
7579 		}
7580 		break;
7581 
7582 	default:
7583 		/*
7584 		 * If we have packet meta-data indicating a direction,
7585 		 * check it, otherwise give up as this link-layer type
7586 		 * has nothing in the packet data.
7587 		 */
7588 #if defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
7589 		/*
7590 		 * We infer that this is Linux with PF_PACKET support.
7591 		 * If this is a *live* capture, we can look at
7592 		 * special meta-data in the filter expression;
7593 		 * if it's a savefile, we can't.
7594 		 */
7595 		if (bpf_pcap->sf.rfile != NULL) {
7596 			/* We have a FILE *, so this is a savefile */
7597 			bpf_error("inbound/outbound not supported on linktype %d when reading savefiles",
7598 			    linktype);
7599 			b0 = NULL;
7600 			/* NOTREACHED */
7601 		}
7602 		/* match outgoing packets */
7603 		b0 = gen_cmp(OR_LINK, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
7604 		             PACKET_OUTGOING);
7605 		if (!dir) {
7606 			/* to filter on inbound traffic, invert the match */
7607 			gen_not(b0);
7608 		}
7609 #else /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7610 		bpf_error("inbound/outbound not supported on linktype %d",
7611 		    linktype);
7612 		b0 = NULL;
7613 		/* NOTREACHED */
7614 #endif /* defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
7615 	}
7616 	return (b0);
7617 }
7618 
7619 #ifdef HAVE_NET_PFVAR_H
7620 /* PF firewall log matched interface */
7621 struct block *
7622 gen_pf_ifname(const char *ifname)
7623 {
7624 	struct block *b0;
7625 	u_int len, off;
7626 
7627 	if (linktype != DLT_PFLOG) {
7628 		bpf_error("ifname supported only on PF linktype");
7629 		/* NOTREACHED */
7630 	}
7631 	len = sizeof(((struct pfloghdr *)0)->ifname);
7632 	off = offsetof(struct pfloghdr, ifname);
7633 	if (strlen(ifname) >= len) {
7634 		bpf_error("ifname interface names can only be %d characters",
7635 		    len-1);
7636 		/* NOTREACHED */
7637 	}
7638 	b0 = gen_bcmp(OR_LINK, off, strlen(ifname), (const u_char *)ifname);
7639 	return (b0);
7640 }
7641 
7642 /* PF firewall log ruleset name */
7643 struct block *
7644 gen_pf_ruleset(char *ruleset)
7645 {
7646 	struct block *b0;
7647 
7648 	if (linktype != DLT_PFLOG) {
7649 		bpf_error("ruleset supported only on PF linktype");
7650 		/* NOTREACHED */
7651 	}
7652 
7653 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
7654 		bpf_error("ruleset names can only be %ld characters",
7655 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
7656 		/* NOTREACHED */
7657 	}
7658 
7659 	b0 = gen_bcmp(OR_LINK, offsetof(struct pfloghdr, ruleset),
7660 	    strlen(ruleset), (const u_char *)ruleset);
7661 	return (b0);
7662 }
7663 
7664 /* PF firewall log rule number */
7665 struct block *
7666 gen_pf_rnr(int rnr)
7667 {
7668 	struct block *b0;
7669 
7670 	if (linktype != DLT_PFLOG) {
7671 		bpf_error("rnr supported only on PF linktype");
7672 		/* NOTREACHED */
7673 	}
7674 
7675 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, rulenr), BPF_W,
7676 		 (bpf_int32)rnr);
7677 	return (b0);
7678 }
7679 
7680 /* PF firewall log sub-rule number */
7681 struct block *
7682 gen_pf_srnr(int srnr)
7683 {
7684 	struct block *b0;
7685 
7686 	if (linktype != DLT_PFLOG) {
7687 		bpf_error("srnr supported only on PF linktype");
7688 		/* NOTREACHED */
7689 	}
7690 
7691 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, subrulenr), BPF_W,
7692 	    (bpf_int32)srnr);
7693 	return (b0);
7694 }
7695 
7696 /* PF firewall log reason code */
7697 struct block *
7698 gen_pf_reason(int reason)
7699 {
7700 	struct block *b0;
7701 
7702 	if (linktype != DLT_PFLOG) {
7703 		bpf_error("reason supported only on PF linktype");
7704 		/* NOTREACHED */
7705 	}
7706 
7707 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, reason), BPF_B,
7708 	    (bpf_int32)reason);
7709 	return (b0);
7710 }
7711 
7712 /* PF firewall log action */
7713 struct block *
7714 gen_pf_action(int action)
7715 {
7716 	struct block *b0;
7717 
7718 	if (linktype != DLT_PFLOG) {
7719 		bpf_error("action supported only on PF linktype");
7720 		/* NOTREACHED */
7721 	}
7722 
7723 	b0 = gen_cmp(OR_LINK, offsetof(struct pfloghdr, action), BPF_B,
7724 	    (bpf_int32)action);
7725 	return (b0);
7726 }
7727 #else /* !HAVE_NET_PFVAR_H */
7728 struct block *
7729 gen_pf_ifname(const char *ifname)
7730 {
7731 	bpf_error("libpcap was compiled without pf support");
7732 	/* NOTREACHED */
7733 	return (NULL);
7734 }
7735 
7736 struct block *
7737 gen_pf_ruleset(char *ruleset)
7738 {
7739 	bpf_error("libpcap was compiled on a machine without pf support");
7740 	/* NOTREACHED */
7741 	return (NULL);
7742 }
7743 
7744 struct block *
7745 gen_pf_rnr(int rnr)
7746 {
7747 	bpf_error("libpcap was compiled on a machine without pf support");
7748 	/* NOTREACHED */
7749 	return (NULL);
7750 }
7751 
7752 struct block *
7753 gen_pf_srnr(int srnr)
7754 {
7755 	bpf_error("libpcap was compiled on a machine without pf support");
7756 	/* NOTREACHED */
7757 	return (NULL);
7758 }
7759 
7760 struct block *
7761 gen_pf_reason(int reason)
7762 {
7763 	bpf_error("libpcap was compiled on a machine without pf support");
7764 	/* NOTREACHED */
7765 	return (NULL);
7766 }
7767 
7768 struct block *
7769 gen_pf_action(int action)
7770 {
7771 	bpf_error("libpcap was compiled on a machine without pf support");
7772 	/* NOTREACHED */
7773 	return (NULL);
7774 }
7775 #endif /* HAVE_NET_PFVAR_H */
7776 
7777 /* IEEE 802.11 wireless header */
7778 struct block *
7779 gen_p80211_type(int type, int mask)
7780 {
7781 	struct block *b0;
7782 
7783 	switch (linktype) {
7784 
7785 	case DLT_IEEE802_11:
7786 	case DLT_PRISM_HEADER:
7787 	case DLT_IEEE802_11_RADIO_AVS:
7788 	case DLT_IEEE802_11_RADIO:
7789 		b0 = gen_mcmp(OR_LINK, 0, BPF_B, (bpf_int32)type,
7790 		    (bpf_int32)mask);
7791 		break;
7792 
7793 	default:
7794 		bpf_error("802.11 link-layer types supported only on 802.11");
7795 		/* NOTREACHED */
7796 	}
7797 
7798 	return (b0);
7799 }
7800 
7801 struct block *
7802 gen_p80211_fcdir(int fcdir)
7803 {
7804 	struct block *b0;
7805 
7806 	switch (linktype) {
7807 
7808 	case DLT_IEEE802_11:
7809 	case DLT_PRISM_HEADER:
7810 	case DLT_IEEE802_11_RADIO_AVS:
7811 	case DLT_IEEE802_11_RADIO:
7812 		break;
7813 
7814 	default:
7815 		bpf_error("frame direction supported only with 802.11 headers");
7816 		/* NOTREACHED */
7817 	}
7818 
7819 	b0 = gen_mcmp(OR_LINK, 1, BPF_B, (bpf_int32)fcdir,
7820 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
7821 
7822 	return (b0);
7823 }
7824 
7825 struct block *
7826 gen_acode(eaddr, q)
7827 	register const u_char *eaddr;
7828 	struct qual q;
7829 {
7830 	switch (linktype) {
7831 
7832 	case DLT_ARCNET:
7833 	case DLT_ARCNET_LINUX:
7834 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
7835 		    q.proto == Q_LINK)
7836 			return (gen_ahostop(eaddr, (int)q.dir));
7837 		else {
7838 			bpf_error("ARCnet address used in non-arc expression");
7839 			/* NOTREACHED */
7840 		}
7841 		break;
7842 
7843 	default:
7844 		bpf_error("aid supported only on ARCnet");
7845 		/* NOTREACHED */
7846 	}
7847 	bpf_error("ARCnet address used in non-arc expression");
7848 	/* NOTREACHED */
7849 	return NULL;
7850 }
7851 
7852 static struct block *
7853 gen_ahostop(eaddr, dir)
7854 	register const u_char *eaddr;
7855 	register int dir;
7856 {
7857 	register struct block *b0, *b1;
7858 
7859 	switch (dir) {
7860 	/* src comes first, different from Ethernet */
7861 	case Q_SRC:
7862 		return gen_bcmp(OR_LINK, 0, 1, eaddr);
7863 
7864 	case Q_DST:
7865 		return gen_bcmp(OR_LINK, 1, 1, eaddr);
7866 
7867 	case Q_AND:
7868 		b0 = gen_ahostop(eaddr, Q_SRC);
7869 		b1 = gen_ahostop(eaddr, Q_DST);
7870 		gen_and(b0, b1);
7871 		return b1;
7872 
7873 	case Q_DEFAULT:
7874 	case Q_OR:
7875 		b0 = gen_ahostop(eaddr, Q_SRC);
7876 		b1 = gen_ahostop(eaddr, Q_DST);
7877 		gen_or(b0, b1);
7878 		return b1;
7879 
7880 	case Q_ADDR1:
7881 		bpf_error("'addr1' is only supported on 802.11");
7882 		break;
7883 
7884 	case Q_ADDR2:
7885 		bpf_error("'addr2' is only supported on 802.11");
7886 		break;
7887 
7888 	case Q_ADDR3:
7889 		bpf_error("'addr3' is only supported on 802.11");
7890 		break;
7891 
7892 	case Q_ADDR4:
7893 		bpf_error("'addr4' is only supported on 802.11");
7894 		break;
7895 
7896 	case Q_RA:
7897 		bpf_error("'ra' is only supported on 802.11");
7898 		break;
7899 
7900 	case Q_TA:
7901 		bpf_error("'ta' is only supported on 802.11");
7902 		break;
7903 	}
7904 	abort();
7905 	/* NOTREACHED */
7906 }
7907 
7908 /*
7909  * support IEEE 802.1Q VLAN trunk over ethernet
7910  */
7911 struct block *
7912 gen_vlan(vlan_num)
7913 	int vlan_num;
7914 {
7915 	struct	block	*b0, *b1;
7916 
7917 	/* can't check for VLAN-encapsulated packets inside MPLS */
7918 	if (label_stack_depth > 0)
7919 		bpf_error("no VLAN match after MPLS");
7920 
7921 	/*
7922 	 * Check for a VLAN packet, and then change the offsets to point
7923 	 * to the type and data fields within the VLAN packet.  Just
7924 	 * increment the offsets, so that we can support a hierarchy, e.g.
7925 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
7926 	 * VLAN 100.
7927 	 *
7928 	 * XXX - this is a bit of a kludge.  If we were to split the
7929 	 * compiler into a parser that parses an expression and
7930 	 * generates an expression tree, and a code generator that
7931 	 * takes an expression tree (which could come from our
7932 	 * parser or from some other parser) and generates BPF code,
7933 	 * we could perhaps make the offsets parameters of routines
7934 	 * and, in the handler for an "AND" node, pass to subnodes
7935 	 * other than the VLAN node the adjusted offsets.
7936 	 *
7937 	 * This would mean that "vlan" would, instead of changing the
7938 	 * behavior of *all* tests after it, change only the behavior
7939 	 * of tests ANDed with it.  That would change the documented
7940 	 * semantics of "vlan", which might break some expressions.
7941 	 * However, it would mean that "(vlan and ip) or ip" would check
7942 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
7943 	 * checking only for VLAN-encapsulated IP, so that could still
7944 	 * be considered worth doing; it wouldn't break expressions
7945 	 * that are of the form "vlan and ..." or "vlan N and ...",
7946 	 * which I suspect are the most common expressions involving
7947 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
7948 	 * would really want, now, as all the "or ..." tests would
7949 	 * be done assuming a VLAN, even though the "or" could be viewed
7950 	 * as meaning "or, if this isn't a VLAN packet...".
7951 	 */
7952 	orig_nl = off_nl;
7953 
7954 	switch (linktype) {
7955 
7956 	case DLT_EN10MB:
7957 	case DLT_NETANALYZER:
7958 	case DLT_NETANALYZER_TRANSPARENT:
7959 		/* check for VLAN, including QinQ */
7960 		b0 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7961 		    (bpf_int32)ETHERTYPE_8021Q);
7962 		b1 = gen_cmp(OR_LINK, off_linktype, BPF_H,
7963 		    (bpf_int32)ETHERTYPE_8021QINQ);
7964 		gen_or(b0,b1);
7965 		b0 = b1;
7966 
7967 		/* If a specific VLAN is requested, check VLAN id */
7968 		if (vlan_num >= 0) {
7969 			b1 = gen_mcmp(OR_MACPL, 0, BPF_H,
7970 			    (bpf_int32)vlan_num, 0x0fff);
7971 			gen_and(b0, b1);
7972 			b0 = b1;
7973 		}
7974 
7975 		off_macpl += 4;
7976 		off_linktype += 4;
7977 #if 0
7978 		off_nl_nosnap += 4;
7979 		off_nl += 4;
7980 #endif
7981 		break;
7982 
7983 	default:
7984 		bpf_error("no VLAN support for data link type %d",
7985 		      linktype);
7986 		/*NOTREACHED*/
7987 	}
7988 
7989 	return (b0);
7990 }
7991 
7992 /*
7993  * support for MPLS
7994  */
7995 struct block *
7996 gen_mpls(label_num)
7997 	int label_num;
7998 {
7999 	struct	block	*b0,*b1;
8000 
8001 	/*
8002 	 * Change the offsets to point to the type and data fields within
8003 	 * the MPLS packet.  Just increment the offsets, so that we
8004 	 * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
8005 	 * capture packets with an outer label of 100000 and an inner
8006 	 * label of 1024.
8007 	 *
8008 	 * XXX - this is a bit of a kludge.  See comments in gen_vlan().
8009 	 */
8010         orig_nl = off_nl;
8011 
8012         if (label_stack_depth > 0) {
8013             /* just match the bottom-of-stack bit clear */
8014             b0 = gen_mcmp(OR_MACPL, orig_nl-2, BPF_B, 0, 0x01);
8015         } else {
8016             /*
8017              * Indicate that we're checking MPLS-encapsulated headers,
8018              * to make sure higher level code generators don't try to
8019              * match against IP-related protocols such as Q_ARP, Q_RARP
8020              * etc.
8021              */
8022             switch (linktype) {
8023 
8024             case DLT_C_HDLC: /* fall through */
8025             case DLT_EN10MB:
8026             case DLT_NETANALYZER:
8027             case DLT_NETANALYZER_TRANSPARENT:
8028                     b0 = gen_linktype(ETHERTYPE_MPLS);
8029                     break;
8030 
8031             case DLT_PPP:
8032                     b0 = gen_linktype(PPP_MPLS_UCAST);
8033                     break;
8034 
8035                     /* FIXME add other DLT_s ...
8036                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
8037                      * leave it for now */
8038 
8039             default:
8040                     bpf_error("no MPLS support for data link type %d",
8041                           linktype);
8042                     b0 = NULL;
8043                     /*NOTREACHED*/
8044                     break;
8045             }
8046         }
8047 
8048 	/* If a specific MPLS label is requested, check it */
8049 	if (label_num >= 0) {
8050 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
8051 		b1 = gen_mcmp(OR_MACPL, orig_nl, BPF_W, (bpf_int32)label_num,
8052 		    0xfffff000); /* only compare the first 20 bits */
8053 		gen_and(b0, b1);
8054 		b0 = b1;
8055 	}
8056 
8057         off_nl_nosnap += 4;
8058         off_nl += 4;
8059         label_stack_depth++;
8060 	return (b0);
8061 }
8062 
8063 /*
8064  * Support PPPOE discovery and session.
8065  */
8066 struct block *
8067 gen_pppoed()
8068 {
8069 	/* check for PPPoE discovery */
8070 	return gen_linktype((bpf_int32)ETHERTYPE_PPPOED);
8071 }
8072 
8073 struct block *
8074 gen_pppoes()
8075 {
8076 	struct block *b0;
8077 
8078 	/*
8079 	 * Test against the PPPoE session link-layer type.
8080 	 */
8081 	b0 = gen_linktype((bpf_int32)ETHERTYPE_PPPOES);
8082 
8083 	/*
8084 	 * Change the offsets to point to the type and data fields within
8085 	 * the PPP packet, and note that this is PPPoE rather than
8086 	 * raw PPP.
8087 	 *
8088 	 * XXX - this is a bit of a kludge.  If we were to split the
8089 	 * compiler into a parser that parses an expression and
8090 	 * generates an expression tree, and a code generator that
8091 	 * takes an expression tree (which could come from our
8092 	 * parser or from some other parser) and generates BPF code,
8093 	 * we could perhaps make the offsets parameters of routines
8094 	 * and, in the handler for an "AND" node, pass to subnodes
8095 	 * other than the PPPoE node the adjusted offsets.
8096 	 *
8097 	 * This would mean that "pppoes" would, instead of changing the
8098 	 * behavior of *all* tests after it, change only the behavior
8099 	 * of tests ANDed with it.  That would change the documented
8100 	 * semantics of "pppoes", which might break some expressions.
8101 	 * However, it would mean that "(pppoes and ip) or ip" would check
8102 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8103 	 * checking only for VLAN-encapsulated IP, so that could still
8104 	 * be considered worth doing; it wouldn't break expressions
8105 	 * that are of the form "pppoes and ..." which I suspect are the
8106 	 * most common expressions involving "pppoes".  "pppoes or ..."
8107 	 * doesn't necessarily do what the user would really want, now,
8108 	 * as all the "or ..." tests would be done assuming PPPoE, even
8109 	 * though the "or" could be viewed as meaning "or, if this isn't
8110 	 * a PPPoE packet...".
8111 	 */
8112 	orig_linktype = off_linktype;	/* save original values */
8113 	orig_nl = off_nl;
8114 	is_pppoes = 1;
8115 
8116 	/*
8117 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
8118 	 * PPPoE header, followed by a PPP packet.
8119 	 *
8120 	 * There is no HDLC encapsulation for the PPP packet (it's
8121 	 * encapsulated in PPPoES instead), so the link-layer type
8122 	 * starts at the first byte of the PPP packet.  For PPPoE,
8123 	 * that offset is relative to the beginning of the total
8124 	 * link-layer payload, including any 802.2 LLC header, so
8125 	 * it's 6 bytes past off_nl.
8126 	 */
8127 	off_linktype = off_nl + 6;
8128 
8129 	/*
8130 	 * The network-layer offsets are relative to the beginning
8131 	 * of the MAC-layer payload; that's past the 6-byte
8132 	 * PPPoE header and the 2-byte PPP header.
8133 	 */
8134 	off_nl = 6+2;
8135 	off_nl_nosnap = 6+2;
8136 
8137 	return b0;
8138 }
8139 
8140 struct block *
8141 gen_atmfield_code(atmfield, jvalue, jtype, reverse)
8142 	int atmfield;
8143 	bpf_int32 jvalue;
8144 	bpf_u_int32 jtype;
8145 	int reverse;
8146 {
8147 	struct block *b0;
8148 
8149 	switch (atmfield) {
8150 
8151 	case A_VPI:
8152 		if (!is_atm)
8153 			bpf_error("'vpi' supported only on raw ATM");
8154 		if (off_vpi == (u_int)-1)
8155 			abort();
8156 		b0 = gen_ncmp(OR_LINK, off_vpi, BPF_B, 0xffffffff, jtype,
8157 		    reverse, jvalue);
8158 		break;
8159 
8160 	case A_VCI:
8161 		if (!is_atm)
8162 			bpf_error("'vci' supported only on raw ATM");
8163 		if (off_vci == (u_int)-1)
8164 			abort();
8165 		b0 = gen_ncmp(OR_LINK, off_vci, BPF_H, 0xffffffff, jtype,
8166 		    reverse, jvalue);
8167 		break;
8168 
8169 	case A_PROTOTYPE:
8170 		if (off_proto == (u_int)-1)
8171 			abort();	/* XXX - this isn't on FreeBSD */
8172 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0x0f, jtype,
8173 		    reverse, jvalue);
8174 		break;
8175 
8176 	case A_MSGTYPE:
8177 		if (off_payload == (u_int)-1)
8178 			abort();
8179 		b0 = gen_ncmp(OR_LINK, off_payload + MSG_TYPE_POS, BPF_B,
8180 		    0xffffffff, jtype, reverse, jvalue);
8181 		break;
8182 
8183 	case A_CALLREFTYPE:
8184 		if (!is_atm)
8185 			bpf_error("'callref' supported only on raw ATM");
8186 		if (off_proto == (u_int)-1)
8187 			abort();
8188 		b0 = gen_ncmp(OR_LINK, off_proto, BPF_B, 0xffffffff,
8189 		    jtype, reverse, jvalue);
8190 		break;
8191 
8192 	default:
8193 		abort();
8194 	}
8195 	return b0;
8196 }
8197 
8198 struct block *
8199 gen_atmtype_abbrev(type)
8200 	int type;
8201 {
8202 	struct block *b0, *b1;
8203 
8204 	switch (type) {
8205 
8206 	case A_METAC:
8207 		/* Get all packets in Meta signalling Circuit */
8208 		if (!is_atm)
8209 			bpf_error("'metac' supported only on raw ATM");
8210 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8211 		b1 = gen_atmfield_code(A_VCI, 1, BPF_JEQ, 0);
8212 		gen_and(b0, b1);
8213 		break;
8214 
8215 	case A_BCC:
8216 		/* Get all packets in Broadcast Circuit*/
8217 		if (!is_atm)
8218 			bpf_error("'bcc' supported only on raw ATM");
8219 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8220 		b1 = gen_atmfield_code(A_VCI, 2, BPF_JEQ, 0);
8221 		gen_and(b0, b1);
8222 		break;
8223 
8224 	case A_OAMF4SC:
8225 		/* Get all cells in Segment OAM F4 circuit*/
8226 		if (!is_atm)
8227 			bpf_error("'oam4sc' supported only on raw ATM");
8228 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8229 		b1 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8230 		gen_and(b0, b1);
8231 		break;
8232 
8233 	case A_OAMF4EC:
8234 		/* Get all cells in End-to-End OAM F4 Circuit*/
8235 		if (!is_atm)
8236 			bpf_error("'oam4ec' supported only on raw ATM");
8237 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8238 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8239 		gen_and(b0, b1);
8240 		break;
8241 
8242 	case A_SC:
8243 		/*  Get all packets in connection Signalling Circuit */
8244 		if (!is_atm)
8245 			bpf_error("'sc' supported only on raw ATM");
8246 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8247 		b1 = gen_atmfield_code(A_VCI, 5, BPF_JEQ, 0);
8248 		gen_and(b0, b1);
8249 		break;
8250 
8251 	case A_ILMIC:
8252 		/* Get all packets in ILMI Circuit */
8253 		if (!is_atm)
8254 			bpf_error("'ilmic' supported only on raw ATM");
8255 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8256 		b1 = gen_atmfield_code(A_VCI, 16, BPF_JEQ, 0);
8257 		gen_and(b0, b1);
8258 		break;
8259 
8260 	case A_LANE:
8261 		/* Get all LANE packets */
8262 		if (!is_atm)
8263 			bpf_error("'lane' supported only on raw ATM");
8264 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
8265 
8266 		/*
8267 		 * Arrange that all subsequent tests assume LANE
8268 		 * rather than LLC-encapsulated packets, and set
8269 		 * the offsets appropriately for LANE-encapsulated
8270 		 * Ethernet.
8271 		 *
8272 		 * "off_mac" is the offset of the Ethernet header,
8273 		 * which is 2 bytes past the ATM pseudo-header
8274 		 * (skipping the pseudo-header and 2-byte LE Client
8275 		 * field).  The other offsets are Ethernet offsets
8276 		 * relative to "off_mac".
8277 		 */
8278 		is_lane = 1;
8279 		off_mac = off_payload + 2;	/* MAC header */
8280 		off_linktype = off_mac + 12;
8281 		off_macpl = off_mac + 14;	/* Ethernet */
8282 		off_nl = 0;			/* Ethernet II */
8283 		off_nl_nosnap = 3;		/* 802.3+802.2 */
8284 		break;
8285 
8286 	case A_LLC:
8287 		/* Get all LLC-encapsulated packets */
8288 		if (!is_atm)
8289 			bpf_error("'llc' supported only on raw ATM");
8290 		b1 = gen_atmfield_code(A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
8291 		is_lane = 0;
8292 		break;
8293 
8294 	default:
8295 		abort();
8296 	}
8297 	return b1;
8298 }
8299 
8300 /*
8301  * Filtering for MTP2 messages based on li value
8302  * FISU, length is null
8303  * LSSU, length is 1 or 2
8304  * MSU, length is 3 or more
8305  */
8306 struct block *
8307 gen_mtp2type_abbrev(type)
8308 	int type;
8309 {
8310 	struct block *b0, *b1;
8311 
8312 	switch (type) {
8313 
8314 	case M_FISU:
8315 		if ( (linktype != DLT_MTP2) &&
8316 		     (linktype != DLT_ERF) &&
8317 		     (linktype != DLT_MTP2_WITH_PHDR) )
8318 			bpf_error("'fisu' supported only on MTP2");
8319 		/* gen_ncmp(offrel, offset, size, mask, jtype, reverse, value) */
8320 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
8321 		break;
8322 
8323 	case M_LSSU:
8324 		if ( (linktype != DLT_MTP2) &&
8325 		     (linktype != DLT_ERF) &&
8326 		     (linktype != DLT_MTP2_WITH_PHDR) )
8327 			bpf_error("'lssu' supported only on MTP2");
8328 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
8329 		b1 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
8330 		gen_and(b1, b0);
8331 		break;
8332 
8333 	case M_MSU:
8334 		if ( (linktype != DLT_MTP2) &&
8335 		     (linktype != DLT_ERF) &&
8336 		     (linktype != DLT_MTP2_WITH_PHDR) )
8337 			bpf_error("'msu' supported only on MTP2");
8338 		b0 = gen_ncmp(OR_PACKET, off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
8339 		break;
8340 
8341 	default:
8342 		abort();
8343 	}
8344 	return b0;
8345 }
8346 
8347 struct block *
8348 gen_mtp3field_code(mtp3field, jvalue, jtype, reverse)
8349 	int mtp3field;
8350 	bpf_u_int32 jvalue;
8351 	bpf_u_int32 jtype;
8352 	int reverse;
8353 {
8354 	struct block *b0;
8355 	bpf_u_int32 val1 , val2 , val3;
8356 
8357 	switch (mtp3field) {
8358 
8359 	case M_SIO:
8360 		if (off_sio == (u_int)-1)
8361 			bpf_error("'sio' supported only on SS7");
8362 		/* sio coded on 1 byte so max value 255 */
8363 		if(jvalue > 255)
8364 		        bpf_error("sio value %u too big; max value = 255",
8365 		            jvalue);
8366 		b0 = gen_ncmp(OR_PACKET, off_sio, BPF_B, 0xffffffff,
8367 		    (u_int)jtype, reverse, (u_int)jvalue);
8368 		break;
8369 
8370         case M_OPC:
8371 	        if (off_opc == (u_int)-1)
8372 			bpf_error("'opc' supported only on SS7");
8373 		/* opc coded on 14 bits so max value 16383 */
8374 		if (jvalue > 16383)
8375 		        bpf_error("opc value %u too big; max value = 16383",
8376 		            jvalue);
8377 		/* the following instructions are made to convert jvalue
8378 		 * to the form used to write opc in an ss7 message*/
8379 		val1 = jvalue & 0x00003c00;
8380 		val1 = val1 >>10;
8381 		val2 = jvalue & 0x000003fc;
8382 		val2 = val2 <<6;
8383 		val3 = jvalue & 0x00000003;
8384 		val3 = val3 <<22;
8385 		jvalue = val1 + val2 + val3;
8386 		b0 = gen_ncmp(OR_PACKET, off_opc, BPF_W, 0x00c0ff0f,
8387 		    (u_int)jtype, reverse, (u_int)jvalue);
8388 		break;
8389 
8390 	case M_DPC:
8391 	        if (off_dpc == (u_int)-1)
8392 			bpf_error("'dpc' supported only on SS7");
8393 		/* dpc coded on 14 bits so max value 16383 */
8394 		if (jvalue > 16383)
8395 		        bpf_error("dpc value %u too big; max value = 16383",
8396 		            jvalue);
8397 		/* the following instructions are made to convert jvalue
8398 		 * to the forme used to write dpc in an ss7 message*/
8399 		val1 = jvalue & 0x000000ff;
8400 		val1 = val1 << 24;
8401 		val2 = jvalue & 0x00003f00;
8402 		val2 = val2 << 8;
8403 		jvalue = val1 + val2;
8404 		b0 = gen_ncmp(OR_PACKET, off_dpc, BPF_W, 0xff3f0000,
8405 		    (u_int)jtype, reverse, (u_int)jvalue);
8406 		break;
8407 
8408 	case M_SLS:
8409 	        if (off_sls == (u_int)-1)
8410 			bpf_error("'sls' supported only on SS7");
8411 		/* sls coded on 4 bits so max value 15 */
8412 		if (jvalue > 15)
8413 		         bpf_error("sls value %u too big; max value = 15",
8414 		             jvalue);
8415 		/* the following instruction is made to convert jvalue
8416 		 * to the forme used to write sls in an ss7 message*/
8417 		jvalue = jvalue << 4;
8418 		b0 = gen_ncmp(OR_PACKET, off_sls, BPF_B, 0xf0,
8419 		    (u_int)jtype,reverse, (u_int)jvalue);
8420 		break;
8421 
8422 	default:
8423 		abort();
8424 	}
8425 	return b0;
8426 }
8427 
8428 static struct block *
8429 gen_msg_abbrev(type)
8430 	int type;
8431 {
8432 	struct block *b1;
8433 
8434 	/*
8435 	 * Q.2931 signalling protocol messages for handling virtual circuits
8436 	 * establishment and teardown
8437 	 */
8438 	switch (type) {
8439 
8440 	case A_SETUP:
8441 		b1 = gen_atmfield_code(A_MSGTYPE, SETUP, BPF_JEQ, 0);
8442 		break;
8443 
8444 	case A_CALLPROCEED:
8445 		b1 = gen_atmfield_code(A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
8446 		break;
8447 
8448 	case A_CONNECT:
8449 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT, BPF_JEQ, 0);
8450 		break;
8451 
8452 	case A_CONNECTACK:
8453 		b1 = gen_atmfield_code(A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
8454 		break;
8455 
8456 	case A_RELEASE:
8457 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE, BPF_JEQ, 0);
8458 		break;
8459 
8460 	case A_RELEASE_DONE:
8461 		b1 = gen_atmfield_code(A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
8462 		break;
8463 
8464 	default:
8465 		abort();
8466 	}
8467 	return b1;
8468 }
8469 
8470 struct block *
8471 gen_atmmulti_abbrev(type)
8472 	int type;
8473 {
8474 	struct block *b0, *b1;
8475 
8476 	switch (type) {
8477 
8478 	case A_OAM:
8479 		if (!is_atm)
8480 			bpf_error("'oam' supported only on raw ATM");
8481 		b1 = gen_atmmulti_abbrev(A_OAMF4);
8482 		break;
8483 
8484 	case A_OAMF4:
8485 		if (!is_atm)
8486 			bpf_error("'oamf4' supported only on raw ATM");
8487 		/* OAM F4 type */
8488 		b0 = gen_atmfield_code(A_VCI, 3, BPF_JEQ, 0);
8489 		b1 = gen_atmfield_code(A_VCI, 4, BPF_JEQ, 0);
8490 		gen_or(b0, b1);
8491 		b0 = gen_atmfield_code(A_VPI, 0, BPF_JEQ, 0);
8492 		gen_and(b0, b1);
8493 		break;
8494 
8495 	case A_CONNECTMSG:
8496 		/*
8497 		 * Get Q.2931 signalling messages for switched
8498 		 * virtual connection
8499 		 */
8500 		if (!is_atm)
8501 			bpf_error("'connectmsg' supported only on raw ATM");
8502 		b0 = gen_msg_abbrev(A_SETUP);
8503 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8504 		gen_or(b0, b1);
8505 		b0 = gen_msg_abbrev(A_CONNECT);
8506 		gen_or(b0, b1);
8507 		b0 = gen_msg_abbrev(A_CONNECTACK);
8508 		gen_or(b0, b1);
8509 		b0 = gen_msg_abbrev(A_RELEASE);
8510 		gen_or(b0, b1);
8511 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8512 		gen_or(b0, b1);
8513 		b0 = gen_atmtype_abbrev(A_SC);
8514 		gen_and(b0, b1);
8515 		break;
8516 
8517 	case A_METACONNECT:
8518 		if (!is_atm)
8519 			bpf_error("'metaconnect' supported only on raw ATM");
8520 		b0 = gen_msg_abbrev(A_SETUP);
8521 		b1 = gen_msg_abbrev(A_CALLPROCEED);
8522 		gen_or(b0, b1);
8523 		b0 = gen_msg_abbrev(A_CONNECT);
8524 		gen_or(b0, b1);
8525 		b0 = gen_msg_abbrev(A_RELEASE);
8526 		gen_or(b0, b1);
8527 		b0 = gen_msg_abbrev(A_RELEASE_DONE);
8528 		gen_or(b0, b1);
8529 		b0 = gen_atmtype_abbrev(A_METAC);
8530 		gen_and(b0, b1);
8531 		break;
8532 
8533 	default:
8534 		abort();
8535 	}
8536 	return b1;
8537 }
8538