1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16 
17 #include "clang/AST/ASTContextAllocate.h"
18 #include "clang/AST/ASTFwd.h"
19 #include "clang/AST/CanonicalType.h"
20 #include "clang/AST/CommentCommandTraits.h"
21 #include "clang/AST/ComparisonCategories.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclBase.h"
24 #include "clang/AST/DeclarationName.h"
25 #include "clang/AST/ExternalASTSource.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/RawCommentList.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/AttrKinds.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/PartialDiagnostic.h"
39 #include "clang/Basic/ProfileList.h"
40 #include "clang/Basic/SanitizerBlacklist.h"
41 #include "clang/Basic/SourceLocation.h"
42 #include "clang/Basic/Specifiers.h"
43 #include "clang/Basic/XRayLists.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/IntrusiveRefCntPtr.h"
50 #include "llvm/ADT/MapVector.h"
51 #include "llvm/ADT/None.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/PointerIntPair.h"
54 #include "llvm/ADT/PointerUnion.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/StringMap.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/TinyPtrVector.h"
59 #include "llvm/ADT/Triple.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Support/AlignOf.h"
62 #include "llvm/Support/Allocator.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/TypeSize.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <iterator>
70 #include <memory>
71 #include <string>
72 #include <type_traits>
73 #include <utility>
74 #include <vector>
75 
76 namespace llvm {
77 
78 class APFixedPoint;
79 class FixedPointSemantics;
80 struct fltSemantics;
81 template <typename T, unsigned N> class SmallPtrSet;
82 
83 } // namespace llvm
84 
85 namespace clang {
86 
87 class APValue;
88 class ASTMutationListener;
89 class ASTRecordLayout;
90 class AtomicExpr;
91 class BlockExpr;
92 class BuiltinTemplateDecl;
93 class CharUnits;
94 class ConceptDecl;
95 class CXXABI;
96 class CXXConstructorDecl;
97 class CXXMethodDecl;
98 class CXXRecordDecl;
99 class DiagnosticsEngine;
100 class ParentMapContext;
101 class DynTypedNode;
102 class DynTypedNodeList;
103 class Expr;
104 class GlobalDecl;
105 class MangleContext;
106 class MangleNumberingContext;
107 class MaterializeTemporaryExpr;
108 class MemberSpecializationInfo;
109 class Module;
110 struct MSGuidDeclParts;
111 class ObjCCategoryDecl;
112 class ObjCCategoryImplDecl;
113 class ObjCContainerDecl;
114 class ObjCImplDecl;
115 class ObjCImplementationDecl;
116 class ObjCInterfaceDecl;
117 class ObjCIvarDecl;
118 class ObjCMethodDecl;
119 class ObjCPropertyDecl;
120 class ObjCPropertyImplDecl;
121 class ObjCProtocolDecl;
122 class ObjCTypeParamDecl;
123 class OMPTraitInfo;
124 struct ParsedTargetAttr;
125 class Preprocessor;
126 class Stmt;
127 class StoredDeclsMap;
128 class TargetAttr;
129 class TargetInfo;
130 class TemplateDecl;
131 class TemplateParameterList;
132 class TemplateTemplateParmDecl;
133 class TemplateTypeParmDecl;
134 class UnresolvedSetIterator;
135 class UsingShadowDecl;
136 class VarTemplateDecl;
137 class VTableContextBase;
138 struct BlockVarCopyInit;
139 
140 namespace Builtin {
141 
142 class Context;
143 
144 } // namespace Builtin
145 
146 enum BuiltinTemplateKind : int;
147 enum OpenCLTypeKind : uint8_t;
148 
149 namespace comments {
150 
151 class FullComment;
152 
153 } // namespace comments
154 
155 namespace interp {
156 
157 class Context;
158 
159 } // namespace interp
160 
161 namespace serialization {
162 template <class> class AbstractTypeReader;
163 } // namespace serialization
164 
165 struct TypeInfo {
166   uint64_t Width = 0;
167   unsigned Align = 0;
168   bool AlignIsRequired : 1;
169 
170   TypeInfo() : AlignIsRequired(false) {}
171   TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
172       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
173 };
174 
175 struct TypeInfoChars {
176   CharUnits Width;
177   CharUnits Align;
178   bool AlignIsRequired : 1;
179 
180   TypeInfoChars() : AlignIsRequired(false) {}
181   TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
182       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
183 };
184 
185 /// Holds long-lived AST nodes (such as types and decls) that can be
186 /// referred to throughout the semantic analysis of a file.
187 class ASTContext : public RefCountedBase<ASTContext> {
188   friend class NestedNameSpecifier;
189 
190   mutable SmallVector<Type *, 0> Types;
191   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
192   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
193   mutable llvm::FoldingSet<PointerType> PointerTypes;
194   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
195   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
196   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
197   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
198   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
199   mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
200       ConstantArrayTypes;
201   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
202   mutable std::vector<VariableArrayType*> VariableArrayTypes;
203   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
204   mutable llvm::FoldingSet<DependentSizedExtVectorType>
205     DependentSizedExtVectorTypes;
206   mutable llvm::FoldingSet<DependentAddressSpaceType>
207       DependentAddressSpaceTypes;
208   mutable llvm::FoldingSet<VectorType> VectorTypes;
209   mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
210   mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
211   mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
212   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
213   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
214     FunctionProtoTypes;
215   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
216   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
217   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
218   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
219   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
220     SubstTemplateTypeParmTypes;
221   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
222     SubstTemplateTypeParmPackTypes;
223   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
224     TemplateSpecializationTypes;
225   mutable llvm::FoldingSet<ParenType> ParenTypes;
226   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
227   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
228   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
229                                      ASTContext&>
230     DependentTemplateSpecializationTypes;
231   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
232   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
233   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
234   mutable llvm::FoldingSet<DependentUnaryTransformType>
235     DependentUnaryTransformTypes;
236   mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
237   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
238     DeducedTemplateSpecializationTypes;
239   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
240   llvm::FoldingSet<AttributedType> AttributedTypes;
241   mutable llvm::FoldingSet<PipeType> PipeTypes;
242   mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
243   mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
244 
245   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
246   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
247   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
248     SubstTemplateTemplateParms;
249   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
250                                      ASTContext&>
251     SubstTemplateTemplateParmPacks;
252 
253   /// The set of nested name specifiers.
254   ///
255   /// This set is managed by the NestedNameSpecifier class.
256   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
257   mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
258 
259   /// A cache mapping from RecordDecls to ASTRecordLayouts.
260   ///
261   /// This is lazily created.  This is intentionally not serialized.
262   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
263     ASTRecordLayouts;
264   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
265     ObjCLayouts;
266 
267   /// A cache from types to size and alignment information.
268   using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
269   mutable TypeInfoMap MemoizedTypeInfo;
270 
271   /// A cache from types to unadjusted alignment information. Only ARM and
272   /// AArch64 targets need this information, keeping it separate prevents
273   /// imposing overhead on TypeInfo size.
274   using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
275   mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
276 
277   /// A cache mapping from CXXRecordDecls to key functions.
278   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
279 
280   /// Mapping from ObjCContainers to their ObjCImplementations.
281   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
282 
283   /// Mapping from ObjCMethod to its duplicate declaration in the same
284   /// interface.
285   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
286 
287   /// Mapping from __block VarDecls to BlockVarCopyInit.
288   llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
289 
290   /// Mapping from GUIDs to the corresponding MSGuidDecl.
291   mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
292 
293   /// Mapping from APValues to the corresponding TemplateParamObjects.
294   mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
295 
296   /// A cache mapping a string value to a StringLiteral object with the same
297   /// value.
298   ///
299   /// This is lazily created.  This is intentionally not serialized.
300   mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
301 
302   /// Representation of a "canonical" template template parameter that
303   /// is used in canonical template names.
304   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
305     TemplateTemplateParmDecl *Parm;
306 
307   public:
308     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
309         : Parm(Parm) {}
310 
311     TemplateTemplateParmDecl *getParam() const { return Parm; }
312 
313     void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
314       Profile(ID, C, Parm);
315     }
316 
317     static void Profile(llvm::FoldingSetNodeID &ID,
318                         const ASTContext &C,
319                         TemplateTemplateParmDecl *Parm);
320   };
321   mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
322                                      const ASTContext&>
323     CanonTemplateTemplateParms;
324 
325   TemplateTemplateParmDecl *
326     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
327 
328   /// The typedef for the __int128_t type.
329   mutable TypedefDecl *Int128Decl = nullptr;
330 
331   /// The typedef for the __uint128_t type.
332   mutable TypedefDecl *UInt128Decl = nullptr;
333 
334   /// The typedef for the target specific predefined
335   /// __builtin_va_list type.
336   mutable TypedefDecl *BuiltinVaListDecl = nullptr;
337 
338   /// The typedef for the predefined \c __builtin_ms_va_list type.
339   mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
340 
341   /// The typedef for the predefined \c id type.
342   mutable TypedefDecl *ObjCIdDecl = nullptr;
343 
344   /// The typedef for the predefined \c SEL type.
345   mutable TypedefDecl *ObjCSelDecl = nullptr;
346 
347   /// The typedef for the predefined \c Class type.
348   mutable TypedefDecl *ObjCClassDecl = nullptr;
349 
350   /// The typedef for the predefined \c Protocol class in Objective-C.
351   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
352 
353   /// The typedef for the predefined 'BOOL' type.
354   mutable TypedefDecl *BOOLDecl = nullptr;
355 
356   // Typedefs which may be provided defining the structure of Objective-C
357   // pseudo-builtins
358   QualType ObjCIdRedefinitionType;
359   QualType ObjCClassRedefinitionType;
360   QualType ObjCSelRedefinitionType;
361 
362   /// The identifier 'bool'.
363   mutable IdentifierInfo *BoolName = nullptr;
364 
365   /// The identifier 'NSObject'.
366   mutable IdentifierInfo *NSObjectName = nullptr;
367 
368   /// The identifier 'NSCopying'.
369   IdentifierInfo *NSCopyingName = nullptr;
370 
371   /// The identifier '__make_integer_seq'.
372   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
373 
374   /// The identifier '__type_pack_element'.
375   mutable IdentifierInfo *TypePackElementName = nullptr;
376 
377   QualType ObjCConstantStringType;
378   mutable RecordDecl *CFConstantStringTagDecl = nullptr;
379   mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
380 
381   mutable QualType ObjCSuperType;
382 
383   QualType ObjCNSStringType;
384 
385   /// The typedef declaration for the Objective-C "instancetype" type.
386   TypedefDecl *ObjCInstanceTypeDecl = nullptr;
387 
388   /// The type for the C FILE type.
389   TypeDecl *FILEDecl = nullptr;
390 
391   /// The type for the C jmp_buf type.
392   TypeDecl *jmp_bufDecl = nullptr;
393 
394   /// The type for the C sigjmp_buf type.
395   TypeDecl *sigjmp_bufDecl = nullptr;
396 
397   /// The type for the C ucontext_t type.
398   TypeDecl *ucontext_tDecl = nullptr;
399 
400   /// Type for the Block descriptor for Blocks CodeGen.
401   ///
402   /// Since this is only used for generation of debug info, it is not
403   /// serialized.
404   mutable RecordDecl *BlockDescriptorType = nullptr;
405 
406   /// Type for the Block descriptor for Blocks CodeGen.
407   ///
408   /// Since this is only used for generation of debug info, it is not
409   /// serialized.
410   mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
411 
412   /// Declaration for the CUDA cudaConfigureCall function.
413   FunctionDecl *cudaConfigureCallDecl = nullptr;
414 
415   /// Keeps track of all declaration attributes.
416   ///
417   /// Since so few decls have attrs, we keep them in a hash map instead of
418   /// wasting space in the Decl class.
419   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
420 
421   /// A mapping from non-redeclarable declarations in modules that were
422   /// merged with other declarations to the canonical declaration that they were
423   /// merged into.
424   llvm::DenseMap<Decl*, Decl*> MergedDecls;
425 
426   /// A mapping from a defining declaration to a list of modules (other
427   /// than the owning module of the declaration) that contain merged
428   /// definitions of that entity.
429   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
430 
431   /// Initializers for a module, in order. Each Decl will be either
432   /// something that has a semantic effect on startup (such as a variable with
433   /// a non-constant initializer), or an ImportDecl (which recursively triggers
434   /// initialization of another module).
435   struct PerModuleInitializers {
436     llvm::SmallVector<Decl*, 4> Initializers;
437     llvm::SmallVector<uint32_t, 4> LazyInitializers;
438 
439     void resolve(ASTContext &Ctx);
440   };
441   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
442 
443   ASTContext &this_() { return *this; }
444 
445 public:
446   /// A type synonym for the TemplateOrInstantiation mapping.
447   using TemplateOrSpecializationInfo =
448       llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
449 
450 private:
451   friend class ASTDeclReader;
452   friend class ASTReader;
453   friend class ASTWriter;
454   template <class> friend class serialization::AbstractTypeReader;
455   friend class CXXRecordDecl;
456 
457   /// A mapping to contain the template or declaration that
458   /// a variable declaration describes or was instantiated from,
459   /// respectively.
460   ///
461   /// For non-templates, this value will be NULL. For variable
462   /// declarations that describe a variable template, this will be a
463   /// pointer to a VarTemplateDecl. For static data members
464   /// of class template specializations, this will be the
465   /// MemberSpecializationInfo referring to the member variable that was
466   /// instantiated or specialized. Thus, the mapping will keep track of
467   /// the static data member templates from which static data members of
468   /// class template specializations were instantiated.
469   ///
470   /// Given the following example:
471   ///
472   /// \code
473   /// template<typename T>
474   /// struct X {
475   ///   static T value;
476   /// };
477   ///
478   /// template<typename T>
479   ///   T X<T>::value = T(17);
480   ///
481   /// int *x = &X<int>::value;
482   /// \endcode
483   ///
484   /// This mapping will contain an entry that maps from the VarDecl for
485   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
486   /// class template X) and will be marked TSK_ImplicitInstantiation.
487   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
488   TemplateOrInstantiation;
489 
490   /// Keeps track of the declaration from which a using declaration was
491   /// created during instantiation.
492   ///
493   /// The source and target declarations are always a UsingDecl, an
494   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
495   ///
496   /// For example:
497   /// \code
498   /// template<typename T>
499   /// struct A {
500   ///   void f();
501   /// };
502   ///
503   /// template<typename T>
504   /// struct B : A<T> {
505   ///   using A<T>::f;
506   /// };
507   ///
508   /// template struct B<int>;
509   /// \endcode
510   ///
511   /// This mapping will contain an entry that maps from the UsingDecl in
512   /// B<int> to the UnresolvedUsingDecl in B<T>.
513   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
514 
515   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
516     InstantiatedFromUsingShadowDecl;
517 
518   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
519 
520   /// Mapping that stores the methods overridden by a given C++
521   /// member function.
522   ///
523   /// Since most C++ member functions aren't virtual and therefore
524   /// don't override anything, we store the overridden functions in
525   /// this map on the side rather than within the CXXMethodDecl structure.
526   using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
527   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
528 
529   /// Mapping from each declaration context to its corresponding
530   /// mangling numbering context (used for constructs like lambdas which
531   /// need to be consistently numbered for the mangler).
532   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
533       MangleNumberingContexts;
534   llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
535       ExtraMangleNumberingContexts;
536 
537   /// Side-table of mangling numbers for declarations which rarely
538   /// need them (like static local vars).
539   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
540   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
541   /// Mapping the associated device lambda mangling number if present.
542   mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
543       DeviceLambdaManglingNumbers;
544 
545   /// Mapping that stores parameterIndex values for ParmVarDecls when
546   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
547   using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
548   ParameterIndexTable ParamIndices;
549 
550   ImportDecl *FirstLocalImport = nullptr;
551   ImportDecl *LastLocalImport = nullptr;
552 
553   TranslationUnitDecl *TUDecl;
554   mutable ExternCContextDecl *ExternCContext = nullptr;
555   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
556   mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
557 
558   /// The associated SourceManager object.
559   SourceManager &SourceMgr;
560 
561   /// The language options used to create the AST associated with
562   ///  this ASTContext object.
563   LangOptions &LangOpts;
564 
565   /// Blacklist object that is used by sanitizers to decide which
566   /// entities should not be instrumented.
567   std::unique_ptr<SanitizerBlacklist> SanitizerBL;
568 
569   /// Function filtering mechanism to determine whether a given function
570   /// should be imbued with the XRay "always" or "never" attributes.
571   std::unique_ptr<XRayFunctionFilter> XRayFilter;
572 
573   /// ProfileList object that is used by the profile instrumentation
574   /// to decide which entities should be instrumented.
575   std::unique_ptr<ProfileList> ProfList;
576 
577   /// The allocator used to create AST objects.
578   ///
579   /// AST objects are never destructed; rather, all memory associated with the
580   /// AST objects will be released when the ASTContext itself is destroyed.
581   mutable llvm::BumpPtrAllocator BumpAlloc;
582 
583   /// Allocator for partial diagnostics.
584   PartialDiagnostic::DiagStorageAllocator DiagAllocator;
585 
586   /// The current C++ ABI.
587   std::unique_ptr<CXXABI> ABI;
588   CXXABI *createCXXABI(const TargetInfo &T);
589 
590   /// The logical -> physical address space map.
591   const LangASMap *AddrSpaceMap = nullptr;
592 
593   /// Address space map mangling must be used with language specific
594   /// address spaces (e.g. OpenCL/CUDA)
595   bool AddrSpaceMapMangling;
596 
597   const TargetInfo *Target = nullptr;
598   const TargetInfo *AuxTarget = nullptr;
599   clang::PrintingPolicy PrintingPolicy;
600   std::unique_ptr<interp::Context> InterpContext;
601   std::unique_ptr<ParentMapContext> ParentMapCtx;
602 
603 public:
604   IdentifierTable &Idents;
605   SelectorTable &Selectors;
606   Builtin::Context &BuiltinInfo;
607   mutable DeclarationNameTable DeclarationNames;
608   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
609   ASTMutationListener *Listener = nullptr;
610 
611   /// Returns the clang bytecode interpreter context.
612   interp::Context &getInterpContext();
613 
614   /// Returns the dynamic AST node parent map context.
615   ParentMapContext &getParentMapContext();
616 
617   // A traversal scope limits the parts of the AST visible to certain analyses.
618   // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
619   // getParents() will only observe reachable parent edges.
620   //
621   // The scope is defined by a set of "top-level" declarations.
622   // Initially, it is the entire TU: {getTranslationUnitDecl()}.
623   // Changing the scope clears the parent cache, which is expensive to rebuild.
624   std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
625   void setTraversalScope(const std::vector<Decl *> &);
626 
627   /// Forwards to get node parents from the ParentMapContext. New callers should
628   /// use ParentMapContext::getParents() directly.
629   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
630 
631   const clang::PrintingPolicy &getPrintingPolicy() const {
632     return PrintingPolicy;
633   }
634 
635   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
636     PrintingPolicy = Policy;
637   }
638 
639   SourceManager& getSourceManager() { return SourceMgr; }
640   const SourceManager& getSourceManager() const { return SourceMgr; }
641 
642   llvm::BumpPtrAllocator &getAllocator() const {
643     return BumpAlloc;
644   }
645 
646   void *Allocate(size_t Size, unsigned Align = 8) const {
647     return BumpAlloc.Allocate(Size, Align);
648   }
649   template <typename T> T *Allocate(size_t Num = 1) const {
650     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
651   }
652   void Deallocate(void *Ptr) const {}
653 
654   /// Return the total amount of physical memory allocated for representing
655   /// AST nodes and type information.
656   size_t getASTAllocatedMemory() const {
657     return BumpAlloc.getTotalMemory();
658   }
659 
660   /// Return the total memory used for various side tables.
661   size_t getSideTableAllocatedMemory() const;
662 
663   PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
664     return DiagAllocator;
665   }
666 
667   const TargetInfo &getTargetInfo() const { return *Target; }
668   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
669 
670   /// getIntTypeForBitwidth -
671   /// sets integer QualTy according to specified details:
672   /// bitwidth, signed/unsigned.
673   /// Returns empty type if there is no appropriate target types.
674   QualType getIntTypeForBitwidth(unsigned DestWidth,
675                                  unsigned Signed) const;
676 
677   /// getRealTypeForBitwidth -
678   /// sets floating point QualTy according to specified bitwidth.
679   /// Returns empty type if there is no appropriate target types.
680   QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
681 
682   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
683 
684   const LangOptions& getLangOpts() const { return LangOpts; }
685 
686   // If this condition is false, typo correction must be performed eagerly
687   // rather than delayed in many places, as it makes use of dependent types.
688   // the condition is false for clang's C-only codepath, as it doesn't support
689   // dependent types yet.
690   bool isDependenceAllowed() const {
691     return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
692   }
693 
694   const SanitizerBlacklist &getSanitizerBlacklist() const {
695     return *SanitizerBL;
696   }
697 
698   const XRayFunctionFilter &getXRayFilter() const {
699     return *XRayFilter;
700   }
701 
702   const ProfileList &getProfileList() const { return *ProfList; }
703 
704   DiagnosticsEngine &getDiagnostics() const;
705 
706   FullSourceLoc getFullLoc(SourceLocation Loc) const {
707     return FullSourceLoc(Loc,SourceMgr);
708   }
709 
710   /// All comments in this translation unit.
711   RawCommentList Comments;
712 
713   /// True if comments are already loaded from ExternalASTSource.
714   mutable bool CommentsLoaded = false;
715 
716   /// Mapping from declaration to directly attached comment.
717   ///
718   /// Raw comments are owned by Comments list.  This mapping is populated
719   /// lazily.
720   mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
721 
722   /// Mapping from canonical declaration to the first redeclaration in chain
723   /// that has a comment attached.
724   ///
725   /// Raw comments are owned by Comments list.  This mapping is populated
726   /// lazily.
727   mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
728 
729   /// Keeps track of redeclaration chains that don't have any comment attached.
730   /// Mapping from canonical declaration to redeclaration chain that has no
731   /// comments attached to any redeclaration. Specifically it's mapping to
732   /// the last redeclaration we've checked.
733   ///
734   /// Shall not contain declarations that have comments attached to any
735   /// redeclaration in their chain.
736   mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
737 
738   /// Mapping from declarations to parsed comments attached to any
739   /// redeclaration.
740   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
741 
742   /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
743   /// and removes the redeclaration chain from the set of commentless chains.
744   ///
745   /// Don't do anything if a comment has already been attached to \p OriginalD
746   /// or its redeclaration chain.
747   void cacheRawCommentForDecl(const Decl &OriginalD,
748                               const RawComment &Comment) const;
749 
750   /// \returns searches \p CommentsInFile for doc comment for \p D.
751   ///
752   /// \p RepresentativeLocForDecl is used as a location for searching doc
753   /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
754   /// same file where \p RepresentativeLocForDecl is.
755   RawComment *getRawCommentForDeclNoCacheImpl(
756       const Decl *D, const SourceLocation RepresentativeLocForDecl,
757       const std::map<unsigned, RawComment *> &CommentsInFile) const;
758 
759   /// Return the documentation comment attached to a given declaration,
760   /// without looking into cache.
761   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
762 
763 public:
764   void addComment(const RawComment &RC);
765 
766   /// Return the documentation comment attached to a given declaration.
767   /// Returns nullptr if no comment is attached.
768   ///
769   /// \param OriginalDecl if not nullptr, is set to declaration AST node that
770   /// had the comment, if the comment we found comes from a redeclaration.
771   const RawComment *
772   getRawCommentForAnyRedecl(const Decl *D,
773                             const Decl **OriginalDecl = nullptr) const;
774 
775   /// Searches existing comments for doc comments that should be attached to \p
776   /// Decls. If any doc comment is found, it is parsed.
777   ///
778   /// Requirement: All \p Decls are in the same file.
779   ///
780   /// If the last comment in the file is already attached we assume
781   /// there are not comments left to be attached to \p Decls.
782   void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
783                                        const Preprocessor *PP);
784 
785   /// Return parsed documentation comment attached to a given declaration.
786   /// Returns nullptr if no comment is attached.
787   ///
788   /// \param PP the Preprocessor used with this TU.  Could be nullptr if
789   /// preprocessor is not available.
790   comments::FullComment *getCommentForDecl(const Decl *D,
791                                            const Preprocessor *PP) const;
792 
793   /// Return parsed documentation comment attached to a given declaration.
794   /// Returns nullptr if no comment is attached. Does not look at any
795   /// redeclarations of the declaration.
796   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
797 
798   comments::FullComment *cloneFullComment(comments::FullComment *FC,
799                                          const Decl *D) const;
800 
801 private:
802   mutable comments::CommandTraits CommentCommandTraits;
803 
804   /// Iterator that visits import declarations.
805   class import_iterator {
806     ImportDecl *Import = nullptr;
807 
808   public:
809     using value_type = ImportDecl *;
810     using reference = ImportDecl *;
811     using pointer = ImportDecl *;
812     using difference_type = int;
813     using iterator_category = std::forward_iterator_tag;
814 
815     import_iterator() = default;
816     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
817 
818     reference operator*() const { return Import; }
819     pointer operator->() const { return Import; }
820 
821     import_iterator &operator++() {
822       Import = ASTContext::getNextLocalImport(Import);
823       return *this;
824     }
825 
826     import_iterator operator++(int) {
827       import_iterator Other(*this);
828       ++(*this);
829       return Other;
830     }
831 
832     friend bool operator==(import_iterator X, import_iterator Y) {
833       return X.Import == Y.Import;
834     }
835 
836     friend bool operator!=(import_iterator X, import_iterator Y) {
837       return X.Import != Y.Import;
838     }
839   };
840 
841 public:
842   comments::CommandTraits &getCommentCommandTraits() const {
843     return CommentCommandTraits;
844   }
845 
846   /// Retrieve the attributes for the given declaration.
847   AttrVec& getDeclAttrs(const Decl *D);
848 
849   /// Erase the attributes corresponding to the given declaration.
850   void eraseDeclAttrs(const Decl *D);
851 
852   /// If this variable is an instantiated static data member of a
853   /// class template specialization, returns the templated static data member
854   /// from which it was instantiated.
855   // FIXME: Remove ?
856   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
857                                                            const VarDecl *Var);
858 
859   TemplateOrSpecializationInfo
860   getTemplateOrSpecializationInfo(const VarDecl *Var);
861 
862   /// Note that the static data member \p Inst is an instantiation of
863   /// the static data member template \p Tmpl of a class template.
864   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
865                                            TemplateSpecializationKind TSK,
866                         SourceLocation PointOfInstantiation = SourceLocation());
867 
868   void setTemplateOrSpecializationInfo(VarDecl *Inst,
869                                        TemplateOrSpecializationInfo TSI);
870 
871   /// If the given using decl \p Inst is an instantiation of a
872   /// (possibly unresolved) using decl from a template instantiation,
873   /// return it.
874   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
875 
876   /// Remember that the using decl \p Inst is an instantiation
877   /// of the using decl \p Pattern of a class template.
878   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
879 
880   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
881                                           UsingShadowDecl *Pattern);
882   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
883 
884   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
885 
886   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
887 
888   // Access to the set of methods overridden by the given C++ method.
889   using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
890   overridden_cxx_method_iterator
891   overridden_methods_begin(const CXXMethodDecl *Method) const;
892 
893   overridden_cxx_method_iterator
894   overridden_methods_end(const CXXMethodDecl *Method) const;
895 
896   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
897 
898   using overridden_method_range =
899       llvm::iterator_range<overridden_cxx_method_iterator>;
900 
901   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
902 
903   /// Note that the given C++ \p Method overrides the given \p
904   /// Overridden method.
905   void addOverriddenMethod(const CXXMethodDecl *Method,
906                            const CXXMethodDecl *Overridden);
907 
908   /// Return C++ or ObjC overridden methods for the given \p Method.
909   ///
910   /// An ObjC method is considered to override any method in the class's
911   /// base classes, its protocols, or its categories' protocols, that has
912   /// the same selector and is of the same kind (class or instance).
913   /// A method in an implementation is not considered as overriding the same
914   /// method in the interface or its categories.
915   void getOverriddenMethods(
916                         const NamedDecl *Method,
917                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
918 
919   /// Notify the AST context that a new import declaration has been
920   /// parsed or implicitly created within this translation unit.
921   void addedLocalImportDecl(ImportDecl *Import);
922 
923   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
924     return Import->getNextLocalImport();
925   }
926 
927   using import_range = llvm::iterator_range<import_iterator>;
928 
929   import_range local_imports() const {
930     return import_range(import_iterator(FirstLocalImport), import_iterator());
931   }
932 
933   Decl *getPrimaryMergedDecl(Decl *D) {
934     Decl *Result = MergedDecls.lookup(D);
935     return Result ? Result : D;
936   }
937   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
938     MergedDecls[D] = Primary;
939   }
940 
941   /// Note that the definition \p ND has been merged into module \p M,
942   /// and should be visible whenever \p M is visible.
943   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
944                                  bool NotifyListeners = true);
945 
946   /// Clean up the merged definition list. Call this if you might have
947   /// added duplicates into the list.
948   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
949 
950   /// Get the additional modules in which the definition \p Def has
951   /// been merged.
952   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
953 
954   /// Add a declaration to the list of declarations that are initialized
955   /// for a module. This will typically be a global variable (with internal
956   /// linkage) that runs module initializers, such as the iostream initializer,
957   /// or an ImportDecl nominating another module that has initializers.
958   void addModuleInitializer(Module *M, Decl *Init);
959 
960   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
961 
962   /// Get the initializations to perform when importing a module, if any.
963   ArrayRef<Decl*> getModuleInitializers(Module *M);
964 
965   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
966 
967   ExternCContextDecl *getExternCContextDecl() const;
968   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
969   BuiltinTemplateDecl *getTypePackElementDecl() const;
970 
971   // Builtin Types.
972   CanQualType VoidTy;
973   CanQualType BoolTy;
974   CanQualType CharTy;
975   CanQualType WCharTy;  // [C++ 3.9.1p5].
976   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
977   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
978   CanQualType Char8Ty;  // [C++20 proposal]
979   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
980   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
981   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
982   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
983   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
984   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
985   CanQualType ShortAccumTy, AccumTy,
986       LongAccumTy;  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
987   CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
988   CanQualType ShortFractTy, FractTy, LongFractTy;
989   CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
990   CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
991   CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
992       SatUnsignedLongAccumTy;
993   CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
994   CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
995       SatUnsignedLongFractTy;
996   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
997   CanQualType BFloat16Ty;
998   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
999   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1000   CanQualType Float128ComplexTy;
1001   CanQualType VoidPtrTy, NullPtrTy;
1002   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1003   CanQualType BuiltinFnTy;
1004   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1005   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1006   CanQualType ObjCBuiltinBoolTy;
1007 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1008   CanQualType SingletonId;
1009 #include "clang/Basic/OpenCLImageTypes.def"
1010   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1011   CanQualType OCLQueueTy, OCLReserveIDTy;
1012   CanQualType IncompleteMatrixIdxTy;
1013   CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1014 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1015   CanQualType Id##Ty;
1016 #include "clang/Basic/OpenCLExtensionTypes.def"
1017 #define SVE_TYPE(Name, Id, SingletonId) \
1018   CanQualType SingletonId;
1019 #include "clang/Basic/AArch64SVEACLETypes.def"
1020 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1021   CanQualType Id##Ty;
1022 #include "clang/Basic/PPCTypes.def"
1023 
1024   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1025   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
1026   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1027 
1028   // Decl used to help define __builtin_va_list for some targets.
1029   // The decl is built when constructing 'BuiltinVaListDecl'.
1030   mutable Decl *VaListTagDecl = nullptr;
1031 
1032   // Implicitly-declared type 'struct _GUID'.
1033   mutable TagDecl *MSGuidTagDecl = nullptr;
1034 
1035   /// Keep track of CUDA/HIP static device variables referenced by host code.
1036   llvm::DenseSet<const VarDecl *> CUDAStaticDeviceVarReferencedByHost;
1037 
1038   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1039              SelectorTable &sels, Builtin::Context &builtins);
1040   ASTContext(const ASTContext &) = delete;
1041   ASTContext &operator=(const ASTContext &) = delete;
1042   ~ASTContext();
1043 
1044   /// Attach an external AST source to the AST context.
1045   ///
1046   /// The external AST source provides the ability to load parts of
1047   /// the abstract syntax tree as needed from some external storage,
1048   /// e.g., a precompiled header.
1049   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1050 
1051   /// Retrieve a pointer to the external AST source associated
1052   /// with this AST context, if any.
1053   ExternalASTSource *getExternalSource() const {
1054     return ExternalSource.get();
1055   }
1056 
1057   /// Attach an AST mutation listener to the AST context.
1058   ///
1059   /// The AST mutation listener provides the ability to track modifications to
1060   /// the abstract syntax tree entities committed after they were initially
1061   /// created.
1062   void setASTMutationListener(ASTMutationListener *Listener) {
1063     this->Listener = Listener;
1064   }
1065 
1066   /// Retrieve a pointer to the AST mutation listener associated
1067   /// with this AST context, if any.
1068   ASTMutationListener *getASTMutationListener() const { return Listener; }
1069 
1070   void PrintStats() const;
1071   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1072 
1073   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1074                                                 const IdentifierInfo *II) const;
1075 
1076   /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1077   /// declaration.
1078   RecordDecl *buildImplicitRecord(StringRef Name,
1079                                   RecordDecl::TagKind TK = TTK_Struct) const;
1080 
1081   /// Create a new implicit TU-level typedef declaration.
1082   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1083 
1084   /// Retrieve the declaration for the 128-bit signed integer type.
1085   TypedefDecl *getInt128Decl() const;
1086 
1087   /// Retrieve the declaration for the 128-bit unsigned integer type.
1088   TypedefDecl *getUInt128Decl() const;
1089 
1090   //===--------------------------------------------------------------------===//
1091   //                           Type Constructors
1092   //===--------------------------------------------------------------------===//
1093 
1094 private:
1095   /// Return a type with extended qualifiers.
1096   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1097 
1098   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1099 
1100   QualType getPipeType(QualType T, bool ReadOnly) const;
1101 
1102 public:
1103   /// Return the uniqued reference to the type for an address space
1104   /// qualified type with the specified type and address space.
1105   ///
1106   /// The resulting type has a union of the qualifiers from T and the address
1107   /// space. If T already has an address space specifier, it is silently
1108   /// replaced.
1109   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1110 
1111   /// Remove any existing address space on the type and returns the type
1112   /// with qualifiers intact (or that's the idea anyway)
1113   ///
1114   /// The return type should be T with all prior qualifiers minus the address
1115   /// space.
1116   QualType removeAddrSpaceQualType(QualType T) const;
1117 
1118   /// Apply Objective-C protocol qualifiers to the given type.
1119   /// \param allowOnPointerType specifies if we can apply protocol
1120   /// qualifiers on ObjCObjectPointerType. It can be set to true when
1121   /// constructing the canonical type of a Objective-C type parameter.
1122   QualType applyObjCProtocolQualifiers(QualType type,
1123       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1124       bool allowOnPointerType = false) const;
1125 
1126   /// Return the uniqued reference to the type for an Objective-C
1127   /// gc-qualified type.
1128   ///
1129   /// The resulting type has a union of the qualifiers from T and the gc
1130   /// attribute.
1131   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1132 
1133   /// Remove the existing address space on the type if it is a pointer size
1134   /// address space and return the type with qualifiers intact.
1135   QualType removePtrSizeAddrSpace(QualType T) const;
1136 
1137   /// Return the uniqued reference to the type for a \c restrict
1138   /// qualified type.
1139   ///
1140   /// The resulting type has a union of the qualifiers from \p T and
1141   /// \c restrict.
1142   QualType getRestrictType(QualType T) const {
1143     return T.withFastQualifiers(Qualifiers::Restrict);
1144   }
1145 
1146   /// Return the uniqued reference to the type for a \c volatile
1147   /// qualified type.
1148   ///
1149   /// The resulting type has a union of the qualifiers from \p T and
1150   /// \c volatile.
1151   QualType getVolatileType(QualType T) const {
1152     return T.withFastQualifiers(Qualifiers::Volatile);
1153   }
1154 
1155   /// Return the uniqued reference to the type for a \c const
1156   /// qualified type.
1157   ///
1158   /// The resulting type has a union of the qualifiers from \p T and \c const.
1159   ///
1160   /// It can be reasonably expected that this will always be equivalent to
1161   /// calling T.withConst().
1162   QualType getConstType(QualType T) const { return T.withConst(); }
1163 
1164   /// Change the ExtInfo on a function type.
1165   const FunctionType *adjustFunctionType(const FunctionType *Fn,
1166                                          FunctionType::ExtInfo EInfo);
1167 
1168   /// Adjust the given function result type.
1169   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1170 
1171   /// Change the result type of a function type once it is deduced.
1172   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1173 
1174   /// Get a function type and produce the equivalent function type with the
1175   /// specified exception specification. Type sugar that can be present on a
1176   /// declaration of a function with an exception specification is permitted
1177   /// and preserved. Other type sugar (for instance, typedefs) is not.
1178   QualType getFunctionTypeWithExceptionSpec(
1179       QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1180 
1181   /// Determine whether two function types are the same, ignoring
1182   /// exception specifications in cases where they're part of the type.
1183   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1184 
1185   /// Change the exception specification on a function once it is
1186   /// delay-parsed, instantiated, or computed.
1187   void adjustExceptionSpec(FunctionDecl *FD,
1188                            const FunctionProtoType::ExceptionSpecInfo &ESI,
1189                            bool AsWritten = false);
1190 
1191   /// Get a function type and produce the equivalent function type where
1192   /// pointer size address spaces in the return type and parameter tyeps are
1193   /// replaced with the default address space.
1194   QualType getFunctionTypeWithoutPtrSizes(QualType T);
1195 
1196   /// Determine whether two function types are the same, ignoring pointer sizes
1197   /// in the return type and parameter types.
1198   bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1199 
1200   /// Return the uniqued reference to the type for a complex
1201   /// number with the specified element type.
1202   QualType getComplexType(QualType T) const;
1203   CanQualType getComplexType(CanQualType T) const {
1204     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1205   }
1206 
1207   /// Return the uniqued reference to the type for a pointer to
1208   /// the specified type.
1209   QualType getPointerType(QualType T) const;
1210   CanQualType getPointerType(CanQualType T) const {
1211     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1212   }
1213 
1214   /// Return the uniqued reference to a type adjusted from the original
1215   /// type to a new type.
1216   QualType getAdjustedType(QualType Orig, QualType New) const;
1217   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1218     return CanQualType::CreateUnsafe(
1219         getAdjustedType((QualType)Orig, (QualType)New));
1220   }
1221 
1222   /// Return the uniqued reference to the decayed version of the given
1223   /// type.  Can only be called on array and function types which decay to
1224   /// pointer types.
1225   QualType getDecayedType(QualType T) const;
1226   CanQualType getDecayedType(CanQualType T) const {
1227     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1228   }
1229 
1230   /// Return the uniqued reference to the atomic type for the specified
1231   /// type.
1232   QualType getAtomicType(QualType T) const;
1233 
1234   /// Return the uniqued reference to the type for a block of the
1235   /// specified type.
1236   QualType getBlockPointerType(QualType T) const;
1237 
1238   /// Gets the struct used to keep track of the descriptor for pointer to
1239   /// blocks.
1240   QualType getBlockDescriptorType() const;
1241 
1242   /// Return a read_only pipe type for the specified type.
1243   QualType getReadPipeType(QualType T) const;
1244 
1245   /// Return a write_only pipe type for the specified type.
1246   QualType getWritePipeType(QualType T) const;
1247 
1248   /// Return an extended integer type with the specified signedness and bit
1249   /// count.
1250   QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1251 
1252   /// Return a dependent extended integer type with the specified signedness and
1253   /// bit count.
1254   QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1255 
1256   /// Gets the struct used to keep track of the extended descriptor for
1257   /// pointer to blocks.
1258   QualType getBlockDescriptorExtendedType() const;
1259 
1260   /// Map an AST Type to an OpenCLTypeKind enum value.
1261   OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1262 
1263   /// Get address space for OpenCL type.
1264   LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1265 
1266   void setcudaConfigureCallDecl(FunctionDecl *FD) {
1267     cudaConfigureCallDecl = FD;
1268   }
1269 
1270   FunctionDecl *getcudaConfigureCallDecl() {
1271     return cudaConfigureCallDecl;
1272   }
1273 
1274   /// Returns true iff we need copy/dispose helpers for the given type.
1275   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1276 
1277   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1278   /// is set to false in this case. If HasByrefExtendedLayout returns true,
1279   /// byref variable has extended lifetime.
1280   bool getByrefLifetime(QualType Ty,
1281                         Qualifiers::ObjCLifetime &Lifetime,
1282                         bool &HasByrefExtendedLayout) const;
1283 
1284   /// Return the uniqued reference to the type for an lvalue reference
1285   /// to the specified type.
1286   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1287     const;
1288 
1289   /// Return the uniqued reference to the type for an rvalue reference
1290   /// to the specified type.
1291   QualType getRValueReferenceType(QualType T) const;
1292 
1293   /// Return the uniqued reference to the type for a member pointer to
1294   /// the specified type in the specified class.
1295   ///
1296   /// The class \p Cls is a \c Type because it could be a dependent name.
1297   QualType getMemberPointerType(QualType T, const Type *Cls) const;
1298 
1299   /// Return a non-unique reference to the type for a variable array of
1300   /// the specified element type.
1301   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1302                                 ArrayType::ArraySizeModifier ASM,
1303                                 unsigned IndexTypeQuals,
1304                                 SourceRange Brackets) const;
1305 
1306   /// Return a non-unique reference to the type for a dependently-sized
1307   /// array of the specified element type.
1308   ///
1309   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1310   /// point.
1311   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1312                                       ArrayType::ArraySizeModifier ASM,
1313                                       unsigned IndexTypeQuals,
1314                                       SourceRange Brackets) const;
1315 
1316   /// Return a unique reference to the type for an incomplete array of
1317   /// the specified element type.
1318   QualType getIncompleteArrayType(QualType EltTy,
1319                                   ArrayType::ArraySizeModifier ASM,
1320                                   unsigned IndexTypeQuals) const;
1321 
1322   /// Return the unique reference to the type for a constant array of
1323   /// the specified element type.
1324   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1325                                 const Expr *SizeExpr,
1326                                 ArrayType::ArraySizeModifier ASM,
1327                                 unsigned IndexTypeQuals) const;
1328 
1329   /// Return a type for a constant array for a string literal of the
1330   /// specified element type and length.
1331   QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1332 
1333   /// Returns a vla type where known sizes are replaced with [*].
1334   QualType getVariableArrayDecayedType(QualType Ty) const;
1335 
1336   // Convenience struct to return information about a builtin vector type.
1337   struct BuiltinVectorTypeInfo {
1338     QualType ElementType;
1339     llvm::ElementCount EC;
1340     unsigned NumVectors;
1341     BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1342                           unsigned NumVectors)
1343         : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1344   };
1345 
1346   /// Returns the element type, element count and number of vectors
1347   /// (in case of tuple) for a builtin vector type.
1348   BuiltinVectorTypeInfo
1349   getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1350 
1351   /// Return the unique reference to a scalable vector type of the specified
1352   /// element type and scalable number of elements.
1353   ///
1354   /// \pre \p EltTy must be a built-in type.
1355   QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1356 
1357   /// Return the unique reference to a vector type of the specified
1358   /// element type and size.
1359   ///
1360   /// \pre \p VectorType must be a built-in type.
1361   QualType getVectorType(QualType VectorType, unsigned NumElts,
1362                          VectorType::VectorKind VecKind) const;
1363   /// Return the unique reference to the type for a dependently sized vector of
1364   /// the specified element type.
1365   QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1366                                   SourceLocation AttrLoc,
1367                                   VectorType::VectorKind VecKind) const;
1368 
1369   /// Return the unique reference to an extended vector type
1370   /// of the specified element type and size.
1371   ///
1372   /// \pre \p VectorType must be a built-in type.
1373   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1374 
1375   /// \pre Return a non-unique reference to the type for a dependently-sized
1376   /// vector of the specified element type.
1377   ///
1378   /// FIXME: We will need these to be uniqued, or at least comparable, at some
1379   /// point.
1380   QualType getDependentSizedExtVectorType(QualType VectorType,
1381                                           Expr *SizeExpr,
1382                                           SourceLocation AttrLoc) const;
1383 
1384   /// Return the unique reference to the matrix type of the specified element
1385   /// type and size
1386   ///
1387   /// \pre \p ElementType must be a valid matrix element type (see
1388   /// MatrixType::isValidElementType).
1389   QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1390                                  unsigned NumColumns) const;
1391 
1392   /// Return the unique reference to the matrix type of the specified element
1393   /// type and size
1394   QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1395                                        Expr *ColumnExpr,
1396                                        SourceLocation AttrLoc) const;
1397 
1398   QualType getDependentAddressSpaceType(QualType PointeeType,
1399                                         Expr *AddrSpaceExpr,
1400                                         SourceLocation AttrLoc) const;
1401 
1402   /// Return a K&R style C function type like 'int()'.
1403   QualType getFunctionNoProtoType(QualType ResultTy,
1404                                   const FunctionType::ExtInfo &Info) const;
1405 
1406   QualType getFunctionNoProtoType(QualType ResultTy) const {
1407     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1408   }
1409 
1410   /// Return a normal function type with a typed argument list.
1411   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1412                            const FunctionProtoType::ExtProtoInfo &EPI) const {
1413     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1414   }
1415 
1416   QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1417 
1418 private:
1419   /// Return a normal function type with a typed argument list.
1420   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1421                                    const FunctionProtoType::ExtProtoInfo &EPI,
1422                                    bool OnlyWantCanonical) const;
1423 
1424 public:
1425   /// Return the unique reference to the type for the specified type
1426   /// declaration.
1427   QualType getTypeDeclType(const TypeDecl *Decl,
1428                            const TypeDecl *PrevDecl = nullptr) const {
1429     assert(Decl && "Passed null for Decl param");
1430     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1431 
1432     if (PrevDecl) {
1433       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1434       Decl->TypeForDecl = PrevDecl->TypeForDecl;
1435       return QualType(PrevDecl->TypeForDecl, 0);
1436     }
1437 
1438     return getTypeDeclTypeSlow(Decl);
1439   }
1440 
1441   /// Return the unique reference to the type for the specified
1442   /// typedef-name decl.
1443   QualType getTypedefType(const TypedefNameDecl *Decl,
1444                           QualType Underlying = QualType()) const;
1445 
1446   QualType getRecordType(const RecordDecl *Decl) const;
1447 
1448   QualType getEnumType(const EnumDecl *Decl) const;
1449 
1450   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1451 
1452   QualType getAttributedType(attr::Kind attrKind,
1453                              QualType modifiedType,
1454                              QualType equivalentType);
1455 
1456   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1457                                         QualType Replacement) const;
1458   QualType getSubstTemplateTypeParmPackType(
1459                                           const TemplateTypeParmType *Replaced,
1460                                             const TemplateArgument &ArgPack);
1461 
1462   QualType
1463   getTemplateTypeParmType(unsigned Depth, unsigned Index,
1464                           bool ParameterPack,
1465                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
1466 
1467   QualType getTemplateSpecializationType(TemplateName T,
1468                                          ArrayRef<TemplateArgument> Args,
1469                                          QualType Canon = QualType()) const;
1470 
1471   QualType
1472   getCanonicalTemplateSpecializationType(TemplateName T,
1473                                          ArrayRef<TemplateArgument> Args) const;
1474 
1475   QualType getTemplateSpecializationType(TemplateName T,
1476                                          const TemplateArgumentListInfo &Args,
1477                                          QualType Canon = QualType()) const;
1478 
1479   TypeSourceInfo *
1480   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1481                                     const TemplateArgumentListInfo &Args,
1482                                     QualType Canon = QualType()) const;
1483 
1484   QualType getParenType(QualType NamedType) const;
1485 
1486   QualType getMacroQualifiedType(QualType UnderlyingTy,
1487                                  const IdentifierInfo *MacroII) const;
1488 
1489   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1490                              NestedNameSpecifier *NNS, QualType NamedType,
1491                              TagDecl *OwnedTagDecl = nullptr) const;
1492   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1493                                 NestedNameSpecifier *NNS,
1494                                 const IdentifierInfo *Name,
1495                                 QualType Canon = QualType()) const;
1496 
1497   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1498                                                   NestedNameSpecifier *NNS,
1499                                                   const IdentifierInfo *Name,
1500                                     const TemplateArgumentListInfo &Args) const;
1501   QualType getDependentTemplateSpecializationType(
1502       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1503       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1504 
1505   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1506 
1507   /// Get a template argument list with one argument per template parameter
1508   /// in a template parameter list, such as for the injected class name of
1509   /// a class template.
1510   void getInjectedTemplateArgs(const TemplateParameterList *Params,
1511                                SmallVectorImpl<TemplateArgument> &Args);
1512 
1513   /// Form a pack expansion type with the given pattern.
1514   /// \param NumExpansions The number of expansions for the pack, if known.
1515   /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1516   ///        contain an unexpanded pack. This only makes sense if the pack
1517   ///        expansion is used in a context where the arity is inferred from
1518   ///        elsewhere, such as if the pattern contains a placeholder type or
1519   ///        if this is the canonical type of another pack expansion type.
1520   QualType getPackExpansionType(QualType Pattern,
1521                                 Optional<unsigned> NumExpansions,
1522                                 bool ExpectPackInType = true);
1523 
1524   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1525                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1526 
1527   /// Legacy interface: cannot provide type arguments or __kindof.
1528   QualType getObjCObjectType(QualType Base,
1529                              ObjCProtocolDecl * const *Protocols,
1530                              unsigned NumProtocols) const;
1531 
1532   QualType getObjCObjectType(QualType Base,
1533                              ArrayRef<QualType> typeArgs,
1534                              ArrayRef<ObjCProtocolDecl *> protocols,
1535                              bool isKindOf) const;
1536 
1537   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1538                                 ArrayRef<ObjCProtocolDecl *> protocols) const;
1539   void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1540                                     ObjCTypeParamDecl *New) const;
1541 
1542   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1543 
1544   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1545   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1546   /// of protocols.
1547   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1548                                             ObjCInterfaceDecl *IDecl);
1549 
1550   /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1551   QualType getObjCObjectPointerType(QualType OIT) const;
1552 
1553   /// GCC extension.
1554   QualType getTypeOfExprType(Expr *e) const;
1555   QualType getTypeOfType(QualType t) const;
1556 
1557   /// C++11 decltype.
1558   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1559 
1560   /// Unary type transforms
1561   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1562                                  UnaryTransformType::UTTKind UKind) const;
1563 
1564   /// C++11 deduced auto type.
1565   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1566                        bool IsDependent, bool IsPack = false,
1567                        ConceptDecl *TypeConstraintConcept = nullptr,
1568                        ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1569 
1570   /// C++11 deduction pattern for 'auto' type.
1571   QualType getAutoDeductType() const;
1572 
1573   /// C++11 deduction pattern for 'auto &&' type.
1574   QualType getAutoRRefDeductType() const;
1575 
1576   /// C++17 deduced class template specialization type.
1577   QualType getDeducedTemplateSpecializationType(TemplateName Template,
1578                                                 QualType DeducedType,
1579                                                 bool IsDependent) const;
1580 
1581   /// Return the unique reference to the type for the specified TagDecl
1582   /// (struct/union/class/enum) decl.
1583   QualType getTagDeclType(const TagDecl *Decl) const;
1584 
1585   /// Return the unique type for "size_t" (C99 7.17), defined in
1586   /// <stddef.h>.
1587   ///
1588   /// The sizeof operator requires this (C99 6.5.3.4p4).
1589   CanQualType getSizeType() const;
1590 
1591   /// Return the unique signed counterpart of
1592   /// the integer type corresponding to size_t.
1593   CanQualType getSignedSizeType() const;
1594 
1595   /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1596   /// <stdint.h>.
1597   CanQualType getIntMaxType() const;
1598 
1599   /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1600   /// <stdint.h>.
1601   CanQualType getUIntMaxType() const;
1602 
1603   /// Return the unique wchar_t type available in C++ (and available as
1604   /// __wchar_t as a Microsoft extension).
1605   QualType getWCharType() const { return WCharTy; }
1606 
1607   /// Return the type of wide characters. In C++, this returns the
1608   /// unique wchar_t type. In C99, this returns a type compatible with the type
1609   /// defined in <stddef.h> as defined by the target.
1610   QualType getWideCharType() const { return WideCharTy; }
1611 
1612   /// Return the type of "signed wchar_t".
1613   ///
1614   /// Used when in C++, as a GCC extension.
1615   QualType getSignedWCharType() const;
1616 
1617   /// Return the type of "unsigned wchar_t".
1618   ///
1619   /// Used when in C++, as a GCC extension.
1620   QualType getUnsignedWCharType() const;
1621 
1622   /// In C99, this returns a type compatible with the type
1623   /// defined in <stddef.h> as defined by the target.
1624   QualType getWIntType() const { return WIntTy; }
1625 
1626   /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1627   /// as defined by the target.
1628   QualType getIntPtrType() const;
1629 
1630   /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1631   /// as defined by the target.
1632   QualType getUIntPtrType() const;
1633 
1634   /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1635   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1636   QualType getPointerDiffType() const;
1637 
1638   /// Return the unique unsigned counterpart of "ptrdiff_t"
1639   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1640   /// in the definition of %tu format specifier.
1641   QualType getUnsignedPointerDiffType() const;
1642 
1643   /// Return the unique type for "pid_t" defined in
1644   /// <sys/types.h>. We need this to compute the correct type for vfork().
1645   QualType getProcessIDType() const;
1646 
1647   /// Return the C structure type used to represent constant CFStrings.
1648   QualType getCFConstantStringType() const;
1649 
1650   /// Returns the C struct type for objc_super
1651   QualType getObjCSuperType() const;
1652   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1653 
1654   /// Get the structure type used to representation CFStrings, or NULL
1655   /// if it hasn't yet been built.
1656   QualType getRawCFConstantStringType() const {
1657     if (CFConstantStringTypeDecl)
1658       return getTypedefType(CFConstantStringTypeDecl);
1659     return QualType();
1660   }
1661   void setCFConstantStringType(QualType T);
1662   TypedefDecl *getCFConstantStringDecl() const;
1663   RecordDecl *getCFConstantStringTagDecl() const;
1664 
1665   // This setter/getter represents the ObjC type for an NSConstantString.
1666   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1667   QualType getObjCConstantStringInterface() const {
1668     return ObjCConstantStringType;
1669   }
1670 
1671   QualType getObjCNSStringType() const {
1672     return ObjCNSStringType;
1673   }
1674 
1675   void setObjCNSStringType(QualType T) {
1676     ObjCNSStringType = T;
1677   }
1678 
1679   /// Retrieve the type that \c id has been defined to, which may be
1680   /// different from the built-in \c id if \c id has been typedef'd.
1681   QualType getObjCIdRedefinitionType() const {
1682     if (ObjCIdRedefinitionType.isNull())
1683       return getObjCIdType();
1684     return ObjCIdRedefinitionType;
1685   }
1686 
1687   /// Set the user-written type that redefines \c id.
1688   void setObjCIdRedefinitionType(QualType RedefType) {
1689     ObjCIdRedefinitionType = RedefType;
1690   }
1691 
1692   /// Retrieve the type that \c Class has been defined to, which may be
1693   /// different from the built-in \c Class if \c Class has been typedef'd.
1694   QualType getObjCClassRedefinitionType() const {
1695     if (ObjCClassRedefinitionType.isNull())
1696       return getObjCClassType();
1697     return ObjCClassRedefinitionType;
1698   }
1699 
1700   /// Set the user-written type that redefines 'SEL'.
1701   void setObjCClassRedefinitionType(QualType RedefType) {
1702     ObjCClassRedefinitionType = RedefType;
1703   }
1704 
1705   /// Retrieve the type that 'SEL' has been defined to, which may be
1706   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1707   QualType getObjCSelRedefinitionType() const {
1708     if (ObjCSelRedefinitionType.isNull())
1709       return getObjCSelType();
1710     return ObjCSelRedefinitionType;
1711   }
1712 
1713   /// Set the user-written type that redefines 'SEL'.
1714   void setObjCSelRedefinitionType(QualType RedefType) {
1715     ObjCSelRedefinitionType = RedefType;
1716   }
1717 
1718   /// Retrieve the identifier 'NSObject'.
1719   IdentifierInfo *getNSObjectName() const {
1720     if (!NSObjectName) {
1721       NSObjectName = &Idents.get("NSObject");
1722     }
1723 
1724     return NSObjectName;
1725   }
1726 
1727   /// Retrieve the identifier 'NSCopying'.
1728   IdentifierInfo *getNSCopyingName() {
1729     if (!NSCopyingName) {
1730       NSCopyingName = &Idents.get("NSCopying");
1731     }
1732 
1733     return NSCopyingName;
1734   }
1735 
1736   CanQualType getNSUIntegerType() const;
1737 
1738   CanQualType getNSIntegerType() const;
1739 
1740   /// Retrieve the identifier 'bool'.
1741   IdentifierInfo *getBoolName() const {
1742     if (!BoolName)
1743       BoolName = &Idents.get("bool");
1744     return BoolName;
1745   }
1746 
1747   IdentifierInfo *getMakeIntegerSeqName() const {
1748     if (!MakeIntegerSeqName)
1749       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1750     return MakeIntegerSeqName;
1751   }
1752 
1753   IdentifierInfo *getTypePackElementName() const {
1754     if (!TypePackElementName)
1755       TypePackElementName = &Idents.get("__type_pack_element");
1756     return TypePackElementName;
1757   }
1758 
1759   /// Retrieve the Objective-C "instancetype" type, if already known;
1760   /// otherwise, returns a NULL type;
1761   QualType getObjCInstanceType() {
1762     return getTypeDeclType(getObjCInstanceTypeDecl());
1763   }
1764 
1765   /// Retrieve the typedef declaration corresponding to the Objective-C
1766   /// "instancetype" type.
1767   TypedefDecl *getObjCInstanceTypeDecl();
1768 
1769   /// Set the type for the C FILE type.
1770   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1771 
1772   /// Retrieve the C FILE type.
1773   QualType getFILEType() const {
1774     if (FILEDecl)
1775       return getTypeDeclType(FILEDecl);
1776     return QualType();
1777   }
1778 
1779   /// Set the type for the C jmp_buf type.
1780   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1781     this->jmp_bufDecl = jmp_bufDecl;
1782   }
1783 
1784   /// Retrieve the C jmp_buf type.
1785   QualType getjmp_bufType() const {
1786     if (jmp_bufDecl)
1787       return getTypeDeclType(jmp_bufDecl);
1788     return QualType();
1789   }
1790 
1791   /// Set the type for the C sigjmp_buf type.
1792   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1793     this->sigjmp_bufDecl = sigjmp_bufDecl;
1794   }
1795 
1796   /// Retrieve the C sigjmp_buf type.
1797   QualType getsigjmp_bufType() const {
1798     if (sigjmp_bufDecl)
1799       return getTypeDeclType(sigjmp_bufDecl);
1800     return QualType();
1801   }
1802 
1803   /// Set the type for the C ucontext_t type.
1804   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1805     this->ucontext_tDecl = ucontext_tDecl;
1806   }
1807 
1808   /// Retrieve the C ucontext_t type.
1809   QualType getucontext_tType() const {
1810     if (ucontext_tDecl)
1811       return getTypeDeclType(ucontext_tDecl);
1812     return QualType();
1813   }
1814 
1815   /// The result type of logical operations, '<', '>', '!=', etc.
1816   QualType getLogicalOperationType() const {
1817     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1818   }
1819 
1820   /// Emit the Objective-CC type encoding for the given type \p T into
1821   /// \p S.
1822   ///
1823   /// If \p Field is specified then record field names are also encoded.
1824   void getObjCEncodingForType(QualType T, std::string &S,
1825                               const FieldDecl *Field=nullptr,
1826                               QualType *NotEncodedT=nullptr) const;
1827 
1828   /// Emit the Objective-C property type encoding for the given
1829   /// type \p T into \p S.
1830   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1831 
1832   void getLegacyIntegralTypeEncoding(QualType &t) const;
1833 
1834   /// Put the string version of the type qualifiers \p QT into \p S.
1835   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1836                                        std::string &S) const;
1837 
1838   /// Emit the encoded type for the function \p Decl into \p S.
1839   ///
1840   /// This is in the same format as Objective-C method encodings.
1841   ///
1842   /// \returns true if an error occurred (e.g., because one of the parameter
1843   /// types is incomplete), false otherwise.
1844   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1845 
1846   /// Emit the encoded type for the method declaration \p Decl into
1847   /// \p S.
1848   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1849                                            bool Extended = false) const;
1850 
1851   /// Return the encoded type for this block declaration.
1852   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1853 
1854   /// getObjCEncodingForPropertyDecl - Return the encoded type for
1855   /// this method declaration. If non-NULL, Container must be either
1856   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1857   /// only be NULL when getting encodings for protocol properties.
1858   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1859                                              const Decl *Container) const;
1860 
1861   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1862                                       ObjCProtocolDecl *rProto) const;
1863 
1864   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1865                                                   const ObjCPropertyDecl *PD,
1866                                                   const Decl *Container) const;
1867 
1868   /// Return the size of type \p T for Objective-C encoding purpose,
1869   /// in characters.
1870   CharUnits getObjCEncodingTypeSize(QualType T) const;
1871 
1872   /// Retrieve the typedef corresponding to the predefined \c id type
1873   /// in Objective-C.
1874   TypedefDecl *getObjCIdDecl() const;
1875 
1876   /// Represents the Objective-CC \c id type.
1877   ///
1878   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
1879   /// pointer type, a pointer to a struct.
1880   QualType getObjCIdType() const {
1881     return getTypeDeclType(getObjCIdDecl());
1882   }
1883 
1884   /// Retrieve the typedef corresponding to the predefined 'SEL' type
1885   /// in Objective-C.
1886   TypedefDecl *getObjCSelDecl() const;
1887 
1888   /// Retrieve the type that corresponds to the predefined Objective-C
1889   /// 'SEL' type.
1890   QualType getObjCSelType() const {
1891     return getTypeDeclType(getObjCSelDecl());
1892   }
1893 
1894   /// Retrieve the typedef declaration corresponding to the predefined
1895   /// Objective-C 'Class' type.
1896   TypedefDecl *getObjCClassDecl() const;
1897 
1898   /// Represents the Objective-C \c Class type.
1899   ///
1900   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
1901   /// pointer type, a pointer to a struct.
1902   QualType getObjCClassType() const {
1903     return getTypeDeclType(getObjCClassDecl());
1904   }
1905 
1906   /// Retrieve the Objective-C class declaration corresponding to
1907   /// the predefined \c Protocol class.
1908   ObjCInterfaceDecl *getObjCProtocolDecl() const;
1909 
1910   /// Retrieve declaration of 'BOOL' typedef
1911   TypedefDecl *getBOOLDecl() const {
1912     return BOOLDecl;
1913   }
1914 
1915   /// Save declaration of 'BOOL' typedef
1916   void setBOOLDecl(TypedefDecl *TD) {
1917     BOOLDecl = TD;
1918   }
1919 
1920   /// type of 'BOOL' type.
1921   QualType getBOOLType() const {
1922     return getTypeDeclType(getBOOLDecl());
1923   }
1924 
1925   /// Retrieve the type of the Objective-C \c Protocol class.
1926   QualType getObjCProtoType() const {
1927     return getObjCInterfaceType(getObjCProtocolDecl());
1928   }
1929 
1930   /// Retrieve the C type declaration corresponding to the predefined
1931   /// \c __builtin_va_list type.
1932   TypedefDecl *getBuiltinVaListDecl() const;
1933 
1934   /// Retrieve the type of the \c __builtin_va_list type.
1935   QualType getBuiltinVaListType() const {
1936     return getTypeDeclType(getBuiltinVaListDecl());
1937   }
1938 
1939   /// Retrieve the C type declaration corresponding to the predefined
1940   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1941   /// for some targets.
1942   Decl *getVaListTagDecl() const;
1943 
1944   /// Retrieve the C type declaration corresponding to the predefined
1945   /// \c __builtin_ms_va_list type.
1946   TypedefDecl *getBuiltinMSVaListDecl() const;
1947 
1948   /// Retrieve the type of the \c __builtin_ms_va_list type.
1949   QualType getBuiltinMSVaListType() const {
1950     return getTypeDeclType(getBuiltinMSVaListDecl());
1951   }
1952 
1953   /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
1954   TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
1955 
1956   /// Retrieve the implicitly-predeclared 'struct _GUID' type.
1957   QualType getMSGuidType() const {
1958     assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
1959     return getTagDeclType(MSGuidTagDecl);
1960   }
1961 
1962   /// Return whether a declaration to a builtin is allowed to be
1963   /// overloaded/redeclared.
1964   bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1965 
1966   /// Return a type with additional \c const, \c volatile, or
1967   /// \c restrict qualifiers.
1968   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1969     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1970   }
1971 
1972   /// Un-split a SplitQualType.
1973   QualType getQualifiedType(SplitQualType split) const {
1974     return getQualifiedType(split.Ty, split.Quals);
1975   }
1976 
1977   /// Return a type with additional qualifiers.
1978   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1979     if (!Qs.hasNonFastQualifiers())
1980       return T.withFastQualifiers(Qs.getFastQualifiers());
1981     QualifierCollector Qc(Qs);
1982     const Type *Ptr = Qc.strip(T);
1983     return getExtQualType(Ptr, Qc);
1984   }
1985 
1986   /// Return a type with additional qualifiers.
1987   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1988     if (!Qs.hasNonFastQualifiers())
1989       return QualType(T, Qs.getFastQualifiers());
1990     return getExtQualType(T, Qs);
1991   }
1992 
1993   /// Return a type with the given lifetime qualifier.
1994   ///
1995   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
1996   QualType getLifetimeQualifiedType(QualType type,
1997                                     Qualifiers::ObjCLifetime lifetime) {
1998     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
1999     assert(lifetime != Qualifiers::OCL_None);
2000 
2001     Qualifiers qs;
2002     qs.addObjCLifetime(lifetime);
2003     return getQualifiedType(type, qs);
2004   }
2005 
2006   /// getUnqualifiedObjCPointerType - Returns version of
2007   /// Objective-C pointer type with lifetime qualifier removed.
2008   QualType getUnqualifiedObjCPointerType(QualType type) const {
2009     if (!type.getTypePtr()->isObjCObjectPointerType() ||
2010         !type.getQualifiers().hasObjCLifetime())
2011       return type;
2012     Qualifiers Qs = type.getQualifiers();
2013     Qs.removeObjCLifetime();
2014     return getQualifiedType(type.getUnqualifiedType(), Qs);
2015   }
2016 
2017   unsigned char getFixedPointScale(QualType Ty) const;
2018   unsigned char getFixedPointIBits(QualType Ty) const;
2019   llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2020   llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2021   llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2022 
2023   DeclarationNameInfo getNameForTemplate(TemplateName Name,
2024                                          SourceLocation NameLoc) const;
2025 
2026   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2027                                          UnresolvedSetIterator End) const;
2028   TemplateName getAssumedTemplateName(DeclarationName Name) const;
2029 
2030   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2031                                         bool TemplateKeyword,
2032                                         TemplateDecl *Template) const;
2033 
2034   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2035                                         const IdentifierInfo *Name) const;
2036   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2037                                         OverloadedOperatorKind Operator) const;
2038   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2039                                             TemplateName replacement) const;
2040   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2041                                         const TemplateArgument &ArgPack) const;
2042 
2043   enum GetBuiltinTypeError {
2044     /// No error
2045     GE_None,
2046 
2047     /// Missing a type
2048     GE_Missing_type,
2049 
2050     /// Missing a type from <stdio.h>
2051     GE_Missing_stdio,
2052 
2053     /// Missing a type from <setjmp.h>
2054     GE_Missing_setjmp,
2055 
2056     /// Missing a type from <ucontext.h>
2057     GE_Missing_ucontext
2058   };
2059 
2060   QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2061                          ASTContext::GetBuiltinTypeError &Error,
2062                          bool &RequireICE, bool AllowTypeModifiers) const;
2063 
2064   /// Return the type for the specified builtin.
2065   ///
2066   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2067   /// arguments to the builtin that are required to be integer constant
2068   /// expressions.
2069   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2070                           unsigned *IntegerConstantArgs = nullptr) const;
2071 
2072   /// Types and expressions required to build C++2a three-way comparisons
2073   /// using operator<=>, including the values return by builtin <=> operators.
2074   ComparisonCategories CompCategories;
2075 
2076 private:
2077   CanQualType getFromTargetType(unsigned Type) const;
2078   TypeInfo getTypeInfoImpl(const Type *T) const;
2079 
2080   //===--------------------------------------------------------------------===//
2081   //                         Type Predicates.
2082   //===--------------------------------------------------------------------===//
2083 
2084 public:
2085   /// Return one of the GCNone, Weak or Strong Objective-C garbage
2086   /// collection attributes.
2087   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2088 
2089   /// Return true if the given vector types are of the same unqualified
2090   /// type or if they are equivalent to the same GCC vector type.
2091   ///
2092   /// \note This ignores whether they are target-specific (AltiVec or Neon)
2093   /// types.
2094   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2095 
2096   /// Return true if the given types are an SVE builtin and a VectorType that
2097   /// is a fixed-length representation of the SVE builtin for a specific
2098   /// vector-length.
2099   bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2100 
2101   /// Return true if the given vector types are lax-compatible SVE vector types,
2102   /// false otherwise.
2103   bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2104 
2105   /// Return true if the type has been explicitly qualified with ObjC ownership.
2106   /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2107   /// some cases the compiler treats these differently.
2108   bool hasDirectOwnershipQualifier(QualType Ty) const;
2109 
2110   /// Return true if this is an \c NSObject object with its \c NSObject
2111   /// attribute set.
2112   static bool isObjCNSObjectType(QualType Ty) {
2113     return Ty->isObjCNSObjectType();
2114   }
2115 
2116   //===--------------------------------------------------------------------===//
2117   //                         Type Sizing and Analysis
2118   //===--------------------------------------------------------------------===//
2119 
2120   /// Return the APFloat 'semantics' for the specified scalar floating
2121   /// point type.
2122   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2123 
2124   /// Get the size and alignment of the specified complete type in bits.
2125   TypeInfo getTypeInfo(const Type *T) const;
2126   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2127 
2128   /// Get default simd alignment of the specified complete type in bits.
2129   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2130 
2131   /// Return the size of the specified (complete) type \p T, in bits.
2132   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2133   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2134 
2135   /// Return the size of the character type, in bits.
2136   uint64_t getCharWidth() const {
2137     return getTypeSize(CharTy);
2138   }
2139 
2140   /// Convert a size in bits to a size in characters.
2141   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2142 
2143   /// Convert a size in characters to a size in bits.
2144   int64_t toBits(CharUnits CharSize) const;
2145 
2146   /// Return the size of the specified (complete) type \p T, in
2147   /// characters.
2148   CharUnits getTypeSizeInChars(QualType T) const;
2149   CharUnits getTypeSizeInChars(const Type *T) const;
2150 
2151   Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2152     if (Ty->isIncompleteType() || Ty->isDependentType())
2153       return None;
2154     return getTypeSizeInChars(Ty);
2155   }
2156 
2157   Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2158     return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2159   }
2160 
2161   /// Return the ABI-specified alignment of a (complete) type \p T, in
2162   /// bits.
2163   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2164   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2165 
2166   /// Return the ABI-specified natural alignment of a (complete) type \p T,
2167   /// before alignment adjustments, in bits.
2168   ///
2169   /// This alignment is curently used only by ARM and AArch64 when passing
2170   /// arguments of a composite type.
2171   unsigned getTypeUnadjustedAlign(QualType T) const {
2172     return getTypeUnadjustedAlign(T.getTypePtr());
2173   }
2174   unsigned getTypeUnadjustedAlign(const Type *T) const;
2175 
2176   /// Return the alignment of a type, in bits, or 0 if
2177   /// the type is incomplete and we cannot determine the alignment (for
2178   /// example, from alignment attributes). The returned alignment is the
2179   /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2180   /// ABI alignment.
2181   unsigned getTypeAlignIfKnown(QualType T,
2182                                bool NeedsPreferredAlignment = false) const;
2183 
2184   /// Return the ABI-specified alignment of a (complete) type \p T, in
2185   /// characters.
2186   CharUnits getTypeAlignInChars(QualType T) const;
2187   CharUnits getTypeAlignInChars(const Type *T) const;
2188 
2189   /// Return the PreferredAlignment of a (complete) type \p T, in
2190   /// characters.
2191   CharUnits getPreferredTypeAlignInChars(QualType T) const {
2192     return toCharUnitsFromBits(getPreferredTypeAlign(T));
2193   }
2194 
2195   /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2196   /// in characters, before alignment adjustments. This method does not work on
2197   /// incomplete types.
2198   CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2199   CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2200 
2201   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2202   // type is a record, its data size is returned.
2203   TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2204 
2205   TypeInfoChars getTypeInfoInChars(const Type *T) const;
2206   TypeInfoChars getTypeInfoInChars(QualType T) const;
2207 
2208   /// Determine if the alignment the type has was required using an
2209   /// alignment attribute.
2210   bool isAlignmentRequired(const Type *T) const;
2211   bool isAlignmentRequired(QualType T) const;
2212 
2213   /// Return the "preferred" alignment of the specified type \p T for
2214   /// the current target, in bits.
2215   ///
2216   /// This can be different than the ABI alignment in cases where it is
2217   /// beneficial for performance or backwards compatibility preserving to
2218   /// overalign a data type. (Note: despite the name, the preferred alignment
2219   /// is ABI-impacting, and not an optimization.)
2220   unsigned getPreferredTypeAlign(QualType T) const {
2221     return getPreferredTypeAlign(T.getTypePtr());
2222   }
2223   unsigned getPreferredTypeAlign(const Type *T) const;
2224 
2225   /// Return the default alignment for __attribute__((aligned)) on
2226   /// this target, to be used if no alignment value is specified.
2227   unsigned getTargetDefaultAlignForAttributeAligned() const;
2228 
2229   /// Return the alignment in bits that should be given to a
2230   /// global variable with type \p T.
2231   unsigned getAlignOfGlobalVar(QualType T) const;
2232 
2233   /// Return the alignment in characters that should be given to a
2234   /// global variable with type \p T.
2235   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2236 
2237   /// Return a conservative estimate of the alignment of the specified
2238   /// decl \p D.
2239   ///
2240   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2241   /// alignment.
2242   ///
2243   /// If \p ForAlignof, references are treated like their underlying type
2244   /// and  large arrays don't get any special treatment. If not \p ForAlignof
2245   /// it computes the value expected by CodeGen: references are treated like
2246   /// pointers and large arrays get extra alignment.
2247   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2248 
2249   /// Return the alignment (in bytes) of the thrown exception object. This is
2250   /// only meaningful for targets that allocate C++ exceptions in a system
2251   /// runtime, such as those using the Itanium C++ ABI.
2252   CharUnits getExnObjectAlignment() const;
2253 
2254   /// Get or compute information about the layout of the specified
2255   /// record (struct/union/class) \p D, which indicates its size and field
2256   /// position information.
2257   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2258 
2259   /// Get or compute information about the layout of the specified
2260   /// Objective-C interface.
2261   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2262     const;
2263 
2264   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2265                         bool Simple = false) const;
2266 
2267   /// Get or compute information about the layout of the specified
2268   /// Objective-C implementation.
2269   ///
2270   /// This may differ from the interface if synthesized ivars are present.
2271   const ASTRecordLayout &
2272   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2273 
2274   /// Get our current best idea for the key function of the
2275   /// given record decl, or nullptr if there isn't one.
2276   ///
2277   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2278   ///   ...the first non-pure virtual function that is not inline at the
2279   ///   point of class definition.
2280   ///
2281   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
2282   /// virtual functions that are defined 'inline', which means that
2283   /// the result of this computation can change.
2284   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2285 
2286   /// Observe that the given method cannot be a key function.
2287   /// Checks the key-function cache for the method's class and clears it
2288   /// if matches the given declaration.
2289   ///
2290   /// This is used in ABIs where out-of-line definitions marked
2291   /// inline are not considered to be key functions.
2292   ///
2293   /// \param method should be the declaration from the class definition
2294   void setNonKeyFunction(const CXXMethodDecl *method);
2295 
2296   /// Loading virtual member pointers using the virtual inheritance model
2297   /// always results in an adjustment using the vbtable even if the index is
2298   /// zero.
2299   ///
2300   /// This is usually OK because the first slot in the vbtable points
2301   /// backwards to the top of the MDC.  However, the MDC might be reusing a
2302   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
2303   /// points to the start of the nv-base which introduced the vbptr and *not*
2304   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
2305   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2306 
2307   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2308   uint64_t getFieldOffset(const ValueDecl *FD) const;
2309 
2310   /// Get the offset of an ObjCIvarDecl in bits.
2311   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2312                                 const ObjCImplementationDecl *ID,
2313                                 const ObjCIvarDecl *Ivar) const;
2314 
2315   /// Find the 'this' offset for the member path in a pointer-to-member
2316   /// APValue.
2317   CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2318 
2319   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2320 
2321   VTableContextBase *getVTableContext();
2322 
2323   /// If \p T is null pointer, assume the target in ASTContext.
2324   MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2325 
2326   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2327                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2328 
2329   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2330   void CollectInheritedProtocols(const Decl *CDecl,
2331                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2332 
2333   /// Return true if the specified type has unique object representations
2334   /// according to (C++17 [meta.unary.prop]p9)
2335   bool hasUniqueObjectRepresentations(QualType Ty) const;
2336 
2337   //===--------------------------------------------------------------------===//
2338   //                            Type Operators
2339   //===--------------------------------------------------------------------===//
2340 
2341   /// Return the canonical (structural) type corresponding to the
2342   /// specified potentially non-canonical type \p T.
2343   ///
2344   /// The non-canonical version of a type may have many "decorated" versions of
2345   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
2346   /// returned type is guaranteed to be free of any of these, allowing two
2347   /// canonical types to be compared for exact equality with a simple pointer
2348   /// comparison.
2349   CanQualType getCanonicalType(QualType T) const {
2350     return CanQualType::CreateUnsafe(T.getCanonicalType());
2351   }
2352 
2353   const Type *getCanonicalType(const Type *T) const {
2354     return T->getCanonicalTypeInternal().getTypePtr();
2355   }
2356 
2357   /// Return the canonical parameter type corresponding to the specific
2358   /// potentially non-canonical one.
2359   ///
2360   /// Qualifiers are stripped off, functions are turned into function
2361   /// pointers, and arrays decay one level into pointers.
2362   CanQualType getCanonicalParamType(QualType T) const;
2363 
2364   /// Determine whether the given types \p T1 and \p T2 are equivalent.
2365   bool hasSameType(QualType T1, QualType T2) const {
2366     return getCanonicalType(T1) == getCanonicalType(T2);
2367   }
2368   bool hasSameType(const Type *T1, const Type *T2) const {
2369     return getCanonicalType(T1) == getCanonicalType(T2);
2370   }
2371 
2372   /// Return this type as a completely-unqualified array type,
2373   /// capturing the qualifiers in \p Quals.
2374   ///
2375   /// This will remove the minimal amount of sugaring from the types, similar
2376   /// to the behavior of QualType::getUnqualifiedType().
2377   ///
2378   /// \param T is the qualified type, which may be an ArrayType
2379   ///
2380   /// \param Quals will receive the full set of qualifiers that were
2381   /// applied to the array.
2382   ///
2383   /// \returns if this is an array type, the completely unqualified array type
2384   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2385   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2386 
2387   /// Determine whether the given types are equivalent after
2388   /// cvr-qualifiers have been removed.
2389   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2390     return getCanonicalType(T1).getTypePtr() ==
2391            getCanonicalType(T2).getTypePtr();
2392   }
2393 
2394   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2395                                        bool IsParam) const {
2396     auto SubTnullability = SubT->getNullability(*this);
2397     auto SuperTnullability = SuperT->getNullability(*this);
2398     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2399       // Neither has nullability; return true
2400       if (!SubTnullability)
2401         return true;
2402       // Both have nullability qualifier.
2403       if (*SubTnullability == *SuperTnullability ||
2404           *SubTnullability == NullabilityKind::Unspecified ||
2405           *SuperTnullability == NullabilityKind::Unspecified)
2406         return true;
2407 
2408       if (IsParam) {
2409         // Ok for the superclass method parameter to be "nonnull" and the subclass
2410         // method parameter to be "nullable"
2411         return (*SuperTnullability == NullabilityKind::NonNull &&
2412                 *SubTnullability == NullabilityKind::Nullable);
2413       }
2414       // For the return type, it's okay for the superclass method to specify
2415       // "nullable" and the subclass method specify "nonnull"
2416       return (*SuperTnullability == NullabilityKind::Nullable &&
2417               *SubTnullability == NullabilityKind::NonNull);
2418     }
2419     return true;
2420   }
2421 
2422   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2423                            const ObjCMethodDecl *MethodImp);
2424 
2425   bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2426   bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2427 
2428   /// Determine if two types are similar, according to the C++ rules. That is,
2429   /// determine if they are the same other than qualifiers on the initial
2430   /// sequence of pointer / pointer-to-member / array (and in Clang, object
2431   /// pointer) types and their element types.
2432   ///
2433   /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2434   /// those qualifiers are also ignored in the 'similarity' check.
2435   bool hasSimilarType(QualType T1, QualType T2);
2436 
2437   /// Determine if two types are similar, ignoring only CVR qualifiers.
2438   bool hasCvrSimilarType(QualType T1, QualType T2);
2439 
2440   /// Retrieves the "canonical" nested name specifier for a
2441   /// given nested name specifier.
2442   ///
2443   /// The canonical nested name specifier is a nested name specifier
2444   /// that uniquely identifies a type or namespace within the type
2445   /// system. For example, given:
2446   ///
2447   /// \code
2448   /// namespace N {
2449   ///   struct S {
2450   ///     template<typename T> struct X { typename T* type; };
2451   ///   };
2452   /// }
2453   ///
2454   /// template<typename T> struct Y {
2455   ///   typename N::S::X<T>::type member;
2456   /// };
2457   /// \endcode
2458   ///
2459   /// Here, the nested-name-specifier for N::S::X<T>:: will be
2460   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2461   /// by declarations in the type system and the canonical type for
2462   /// the template type parameter 'T' is template-param-0-0.
2463   NestedNameSpecifier *
2464   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2465 
2466   /// Retrieves the default calling convention for the current target.
2467   CallingConv getDefaultCallingConvention(bool IsVariadic,
2468                                           bool IsCXXMethod,
2469                                           bool IsBuiltin = false) const;
2470 
2471   /// Retrieves the "canonical" template name that refers to a
2472   /// given template.
2473   ///
2474   /// The canonical template name is the simplest expression that can
2475   /// be used to refer to a given template. For most templates, this
2476   /// expression is just the template declaration itself. For example,
2477   /// the template std::vector can be referred to via a variety of
2478   /// names---std::vector, \::std::vector, vector (if vector is in
2479   /// scope), etc.---but all of these names map down to the same
2480   /// TemplateDecl, which is used to form the canonical template name.
2481   ///
2482   /// Dependent template names are more interesting. Here, the
2483   /// template name could be something like T::template apply or
2484   /// std::allocator<T>::template rebind, where the nested name
2485   /// specifier itself is dependent. In this case, the canonical
2486   /// template name uses the shortest form of the dependent
2487   /// nested-name-specifier, which itself contains all canonical
2488   /// types, values, and templates.
2489   TemplateName getCanonicalTemplateName(TemplateName Name) const;
2490 
2491   /// Determine whether the given template names refer to the same
2492   /// template.
2493   bool hasSameTemplateName(TemplateName X, TemplateName Y);
2494 
2495   /// Retrieve the "canonical" template argument.
2496   ///
2497   /// The canonical template argument is the simplest template argument
2498   /// (which may be a type, value, expression, or declaration) that
2499   /// expresses the value of the argument.
2500   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2501     const;
2502 
2503   /// Type Query functions.  If the type is an instance of the specified class,
2504   /// return the Type pointer for the underlying maximally pretty type.  This
2505   /// is a member of ASTContext because this may need to do some amount of
2506   /// canonicalization, e.g. to move type qualifiers into the element type.
2507   const ArrayType *getAsArrayType(QualType T) const;
2508   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2509     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2510   }
2511   const VariableArrayType *getAsVariableArrayType(QualType T) const {
2512     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2513   }
2514   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2515     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2516   }
2517   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2518     const {
2519     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2520   }
2521 
2522   /// Return the innermost element type of an array type.
2523   ///
2524   /// For example, will return "int" for int[m][n]
2525   QualType getBaseElementType(const ArrayType *VAT) const;
2526 
2527   /// Return the innermost element type of a type (which needn't
2528   /// actually be an array type).
2529   QualType getBaseElementType(QualType QT) const;
2530 
2531   /// Return number of constant array elements.
2532   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2533 
2534   /// Perform adjustment on the parameter type of a function.
2535   ///
2536   /// This routine adjusts the given parameter type @p T to the actual
2537   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2538   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2539   QualType getAdjustedParameterType(QualType T) const;
2540 
2541   /// Retrieve the parameter type as adjusted for use in the signature
2542   /// of a function, decaying array and function types and removing top-level
2543   /// cv-qualifiers.
2544   QualType getSignatureParameterType(QualType T) const;
2545 
2546   QualType getExceptionObjectType(QualType T) const;
2547 
2548   /// Return the properly qualified result of decaying the specified
2549   /// array type to a pointer.
2550   ///
2551   /// This operation is non-trivial when handling typedefs etc.  The canonical
2552   /// type of \p T must be an array type, this returns a pointer to a properly
2553   /// qualified element of the array.
2554   ///
2555   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2556   QualType getArrayDecayedType(QualType T) const;
2557 
2558   /// Return the type that \p PromotableType will promote to: C99
2559   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2560   QualType getPromotedIntegerType(QualType PromotableType) const;
2561 
2562   /// Recurses in pointer/array types until it finds an Objective-C
2563   /// retainable type and returns its ownership.
2564   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2565 
2566   /// Whether this is a promotable bitfield reference according
2567   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2568   ///
2569   /// \returns the type this bit-field will promote to, or NULL if no
2570   /// promotion occurs.
2571   QualType isPromotableBitField(Expr *E) const;
2572 
2573   /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2574   ///
2575   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2576   /// \p LHS < \p RHS, return -1.
2577   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2578 
2579   /// Compare the rank of the two specified floating point types,
2580   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2581   ///
2582   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
2583   /// \p LHS < \p RHS, return -1.
2584   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2585 
2586   /// Compare the rank of two floating point types as above, but compare equal
2587   /// if both types have the same floating-point semantics on the target (i.e.
2588   /// long double and double on AArch64 will return 0).
2589   int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2590 
2591   /// Return a real floating point or a complex type (based on
2592   /// \p typeDomain/\p typeSize).
2593   ///
2594   /// \param typeDomain a real floating point or complex type.
2595   /// \param typeSize a real floating point or complex type.
2596   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2597                                              QualType typeDomain) const;
2598 
2599   unsigned getTargetAddressSpace(QualType T) const {
2600     return getTargetAddressSpace(T.getQualifiers());
2601   }
2602 
2603   unsigned getTargetAddressSpace(Qualifiers Q) const {
2604     return getTargetAddressSpace(Q.getAddressSpace());
2605   }
2606 
2607   unsigned getTargetAddressSpace(LangAS AS) const;
2608 
2609   LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2610 
2611   /// Get target-dependent integer value for null pointer which is used for
2612   /// constant folding.
2613   uint64_t getTargetNullPointerValue(QualType QT) const;
2614 
2615   bool addressSpaceMapManglingFor(LangAS AS) const {
2616     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2617   }
2618 
2619 private:
2620   // Helper for integer ordering
2621   unsigned getIntegerRank(const Type *T) const;
2622 
2623 public:
2624   //===--------------------------------------------------------------------===//
2625   //                    Type Compatibility Predicates
2626   //===--------------------------------------------------------------------===//
2627 
2628   /// Compatibility predicates used to check assignment expressions.
2629   bool typesAreCompatible(QualType T1, QualType T2,
2630                           bool CompareUnqualified = false); // C99 6.2.7p1
2631 
2632   bool propertyTypesAreCompatible(QualType, QualType);
2633   bool typesAreBlockPointerCompatible(QualType, QualType);
2634 
2635   bool isObjCIdType(QualType T) const {
2636     return T == getObjCIdType();
2637   }
2638 
2639   bool isObjCClassType(QualType T) const {
2640     return T == getObjCClassType();
2641   }
2642 
2643   bool isObjCSelType(QualType T) const {
2644     return T == getObjCSelType();
2645   }
2646 
2647   bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2648                                          const ObjCObjectPointerType *RHS,
2649                                          bool ForCompare);
2650 
2651   bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2652                                             const ObjCObjectPointerType *RHS);
2653 
2654   // Check the safety of assignment from LHS to RHS
2655   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2656                                const ObjCObjectPointerType *RHSOPT);
2657   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2658                                const ObjCObjectType *RHS);
2659   bool canAssignObjCInterfacesInBlockPointer(
2660                                           const ObjCObjectPointerType *LHSOPT,
2661                                           const ObjCObjectPointerType *RHSOPT,
2662                                           bool BlockReturnType);
2663   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2664   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2665                                    const ObjCObjectPointerType *RHSOPT);
2666   bool canBindObjCObjectType(QualType To, QualType From);
2667 
2668   // Functions for calculating composite types
2669   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2670                       bool Unqualified = false, bool BlockReturnType = false);
2671   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2672                               bool Unqualified = false, bool AllowCXX = false);
2673   QualType mergeFunctionParameterTypes(QualType, QualType,
2674                                        bool OfBlockPointer = false,
2675                                        bool Unqualified = false);
2676   QualType mergeTransparentUnionType(QualType, QualType,
2677                                      bool OfBlockPointer=false,
2678                                      bool Unqualified = false);
2679 
2680   QualType mergeObjCGCQualifiers(QualType, QualType);
2681 
2682   /// This function merges the ExtParameterInfo lists of two functions. It
2683   /// returns true if the lists are compatible. The merged list is returned in
2684   /// NewParamInfos.
2685   ///
2686   /// \param FirstFnType The type of the first function.
2687   ///
2688   /// \param SecondFnType The type of the second function.
2689   ///
2690   /// \param CanUseFirst This flag is set to true if the first function's
2691   /// ExtParameterInfo list can be used as the composite list of
2692   /// ExtParameterInfo.
2693   ///
2694   /// \param CanUseSecond This flag is set to true if the second function's
2695   /// ExtParameterInfo list can be used as the composite list of
2696   /// ExtParameterInfo.
2697   ///
2698   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2699   /// empty if none of the flags are set.
2700   ///
2701   bool mergeExtParameterInfo(
2702       const FunctionProtoType *FirstFnType,
2703       const FunctionProtoType *SecondFnType,
2704       bool &CanUseFirst, bool &CanUseSecond,
2705       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2706 
2707   void ResetObjCLayout(const ObjCContainerDecl *CD);
2708 
2709   //===--------------------------------------------------------------------===//
2710   //                    Integer Predicates
2711   //===--------------------------------------------------------------------===//
2712 
2713   // The width of an integer, as defined in C99 6.2.6.2. This is the number
2714   // of bits in an integer type excluding any padding bits.
2715   unsigned getIntWidth(QualType T) const;
2716 
2717   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2718   // unsigned integer type.  This method takes a signed type, and returns the
2719   // corresponding unsigned integer type.
2720   // With the introduction of fixed point types in ISO N1169, this method also
2721   // accepts fixed point types and returns the corresponding unsigned type for
2722   // a given fixed point type.
2723   QualType getCorrespondingUnsignedType(QualType T) const;
2724 
2725   // Per ISO N1169, this method accepts fixed point types and returns the
2726   // corresponding saturated type for a given fixed point type.
2727   QualType getCorrespondingSaturatedType(QualType Ty) const;
2728 
2729   // This method accepts fixed point types and returns the corresponding signed
2730   // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2731   // fixed point types because there are unsigned integer types like bool and
2732   // char8_t that don't have signed equivalents.
2733   QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2734 
2735   //===--------------------------------------------------------------------===//
2736   //                    Integer Values
2737   //===--------------------------------------------------------------------===//
2738 
2739   /// Make an APSInt of the appropriate width and signedness for the
2740   /// given \p Value and integer \p Type.
2741   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2742     // If Type is a signed integer type larger than 64 bits, we need to be sure
2743     // to sign extend Res appropriately.
2744     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2745     Res = Value;
2746     unsigned Width = getIntWidth(Type);
2747     if (Width != Res.getBitWidth())
2748       return Res.extOrTrunc(Width);
2749     return Res;
2750   }
2751 
2752   bool isSentinelNullExpr(const Expr *E);
2753 
2754   /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2755   /// none exists.
2756   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2757 
2758   /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2759   /// none exists.
2760   ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2761 
2762   /// Return true if there is at least one \@implementation in the TU.
2763   bool AnyObjCImplementation() {
2764     return !ObjCImpls.empty();
2765   }
2766 
2767   /// Set the implementation of ObjCInterfaceDecl.
2768   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2769                              ObjCImplementationDecl *ImplD);
2770 
2771   /// Set the implementation of ObjCCategoryDecl.
2772   void setObjCImplementation(ObjCCategoryDecl *CatD,
2773                              ObjCCategoryImplDecl *ImplD);
2774 
2775   /// Get the duplicate declaration of a ObjCMethod in the same
2776   /// interface, or null if none exists.
2777   const ObjCMethodDecl *
2778   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2779 
2780   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2781                                   const ObjCMethodDecl *Redecl);
2782 
2783   /// Returns the Objective-C interface that \p ND belongs to if it is
2784   /// an Objective-C method/property/ivar etc. that is part of an interface,
2785   /// otherwise returns null.
2786   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2787 
2788   /// Set the copy initialization expression of a block var decl. \p CanThrow
2789   /// indicates whether the copy expression can throw or not.
2790   void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2791 
2792   /// Get the copy initialization expression of the VarDecl \p VD, or
2793   /// nullptr if none exists.
2794   BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2795 
2796   /// Allocate an uninitialized TypeSourceInfo.
2797   ///
2798   /// The caller should initialize the memory held by TypeSourceInfo using
2799   /// the TypeLoc wrappers.
2800   ///
2801   /// \param T the type that will be the basis for type source info. This type
2802   /// should refer to how the declarator was written in source code, not to
2803   /// what type semantic analysis resolved the declarator to.
2804   ///
2805   /// \param Size the size of the type info to create, or 0 if the size
2806   /// should be calculated based on the type.
2807   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2808 
2809   /// Allocate a TypeSourceInfo where all locations have been
2810   /// initialized to a given location, which defaults to the empty
2811   /// location.
2812   TypeSourceInfo *
2813   getTrivialTypeSourceInfo(QualType T,
2814                            SourceLocation Loc = SourceLocation()) const;
2815 
2816   /// Add a deallocation callback that will be invoked when the
2817   /// ASTContext is destroyed.
2818   ///
2819   /// \param Callback A callback function that will be invoked on destruction.
2820   ///
2821   /// \param Data Pointer data that will be provided to the callback function
2822   /// when it is called.
2823   void AddDeallocation(void (*Callback)(void *), void *Data) const;
2824 
2825   /// If T isn't trivially destructible, calls AddDeallocation to register it
2826   /// for destruction.
2827   template <typename T> void addDestruction(T *Ptr) const {
2828     if (!std::is_trivially_destructible<T>::value) {
2829       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2830       AddDeallocation(DestroyPtr, Ptr);
2831     }
2832   }
2833 
2834   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2835   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2836 
2837   /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2838   /// lazily, only when used; this is only relevant for function or file scoped
2839   /// var definitions.
2840   ///
2841   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2842   /// it is not used.
2843   bool DeclMustBeEmitted(const Decl *D);
2844 
2845   /// Visits all versions of a multiversioned function with the passed
2846   /// predicate.
2847   void forEachMultiversionedFunctionVersion(
2848       const FunctionDecl *FD,
2849       llvm::function_ref<void(FunctionDecl *)> Pred) const;
2850 
2851   const CXXConstructorDecl *
2852   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2853 
2854   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2855                                             CXXConstructorDecl *CD);
2856 
2857   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2858 
2859   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2860 
2861   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2862 
2863   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2864 
2865   void setManglingNumber(const NamedDecl *ND, unsigned Number);
2866   unsigned getManglingNumber(const NamedDecl *ND) const;
2867 
2868   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2869   unsigned getStaticLocalNumber(const VarDecl *VD) const;
2870 
2871   /// Retrieve the context for computing mangling numbers in the given
2872   /// DeclContext.
2873   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2874   enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2875   MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2876                                                    const Decl *D);
2877 
2878   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2879 
2880   /// Used by ParmVarDecl to store on the side the
2881   /// index of the parameter when it exceeds the size of the normal bitfield.
2882   void setParameterIndex(const ParmVarDecl *D, unsigned index);
2883 
2884   /// Used by ParmVarDecl to retrieve on the side the
2885   /// index of the parameter when it exceeds the size of the normal bitfield.
2886   unsigned getParameterIndex(const ParmVarDecl *D) const;
2887 
2888   /// Return a string representing the human readable name for the specified
2889   /// function declaration or file name. Used by SourceLocExpr and
2890   /// PredefinedExpr to cache evaluated results.
2891   StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2892 
2893   /// Return a declaration for the global GUID object representing the given
2894   /// GUID value.
2895   MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2896 
2897   /// Return the template parameter object of the given type with the given
2898   /// value.
2899   TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2900                                                       const APValue &V) const;
2901 
2902   /// Parses the target attributes passed in, and returns only the ones that are
2903   /// valid feature names.
2904   ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2905 
2906   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2907                              const FunctionDecl *) const;
2908   void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2909                              GlobalDecl GD) const;
2910 
2911   //===--------------------------------------------------------------------===//
2912   //                    Statistics
2913   //===--------------------------------------------------------------------===//
2914 
2915   /// The number of implicitly-declared default constructors.
2916   unsigned NumImplicitDefaultConstructors = 0;
2917 
2918   /// The number of implicitly-declared default constructors for
2919   /// which declarations were built.
2920   unsigned NumImplicitDefaultConstructorsDeclared = 0;
2921 
2922   /// The number of implicitly-declared copy constructors.
2923   unsigned NumImplicitCopyConstructors = 0;
2924 
2925   /// The number of implicitly-declared copy constructors for
2926   /// which declarations were built.
2927   unsigned NumImplicitCopyConstructorsDeclared = 0;
2928 
2929   /// The number of implicitly-declared move constructors.
2930   unsigned NumImplicitMoveConstructors = 0;
2931 
2932   /// The number of implicitly-declared move constructors for
2933   /// which declarations were built.
2934   unsigned NumImplicitMoveConstructorsDeclared = 0;
2935 
2936   /// The number of implicitly-declared copy assignment operators.
2937   unsigned NumImplicitCopyAssignmentOperators = 0;
2938 
2939   /// The number of implicitly-declared copy assignment operators for
2940   /// which declarations were built.
2941   unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2942 
2943   /// The number of implicitly-declared move assignment operators.
2944   unsigned NumImplicitMoveAssignmentOperators = 0;
2945 
2946   /// The number of implicitly-declared move assignment operators for
2947   /// which declarations were built.
2948   unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2949 
2950   /// The number of implicitly-declared destructors.
2951   unsigned NumImplicitDestructors = 0;
2952 
2953   /// The number of implicitly-declared destructors for which
2954   /// declarations were built.
2955   unsigned NumImplicitDestructorsDeclared = 0;
2956 
2957 public:
2958   /// Initialize built-in types.
2959   ///
2960   /// This routine may only be invoked once for a given ASTContext object.
2961   /// It is normally invoked after ASTContext construction.
2962   ///
2963   /// \param Target The target
2964   void InitBuiltinTypes(const TargetInfo &Target,
2965                         const TargetInfo *AuxTarget = nullptr);
2966 
2967 private:
2968   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2969 
2970   class ObjCEncOptions {
2971     unsigned Bits;
2972 
2973     ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
2974 
2975   public:
2976     ObjCEncOptions() : Bits(0) {}
2977     ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
2978 
2979 #define OPT_LIST(V)                                                            \
2980   V(ExpandPointedToStructures, 0)                                              \
2981   V(ExpandStructures, 1)                                                       \
2982   V(IsOutermostType, 2)                                                        \
2983   V(EncodingProperty, 3)                                                       \
2984   V(IsStructField, 4)                                                          \
2985   V(EncodeBlockParameters, 5)                                                  \
2986   V(EncodeClassNames, 6)                                                       \
2987 
2988 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
2989 OPT_LIST(V)
2990 #undef V
2991 
2992 #define V(N,I) bool N() const { return Bits & 1 << I; }
2993 OPT_LIST(V)
2994 #undef V
2995 
2996 #undef OPT_LIST
2997 
2998     LLVM_NODISCARD ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
2999       return Bits & Mask.Bits;
3000     }
3001 
3002     LLVM_NODISCARD ObjCEncOptions forComponentType() const {
3003       ObjCEncOptions Mask = ObjCEncOptions()
3004                                 .setIsOutermostType()
3005                                 .setIsStructField();
3006       return Bits & ~Mask.Bits;
3007     }
3008   };
3009 
3010   // Return the Objective-C type encoding for a given type.
3011   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3012                                   ObjCEncOptions Options,
3013                                   const FieldDecl *Field,
3014                                   QualType *NotEncodedT = nullptr) const;
3015 
3016   // Adds the encoding of the structure's members.
3017   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3018                                        const FieldDecl *Field,
3019                                        bool includeVBases = true,
3020                                        QualType *NotEncodedT=nullptr) const;
3021 
3022 public:
3023   // Adds the encoding of a method parameter or return type.
3024   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3025                                          QualType T, std::string& S,
3026                                          bool Extended) const;
3027 
3028   /// Returns true if this is an inline-initialized static data member
3029   /// which is treated as a definition for MSVC compatibility.
3030   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3031 
3032   enum class InlineVariableDefinitionKind {
3033     /// Not an inline variable.
3034     None,
3035 
3036     /// Weak definition of inline variable.
3037     Weak,
3038 
3039     /// Weak for now, might become strong later in this TU.
3040     WeakUnknown,
3041 
3042     /// Strong definition.
3043     Strong
3044   };
3045 
3046   /// Determine whether a definition of this inline variable should
3047   /// be treated as a weak or strong definition. For compatibility with
3048   /// C++14 and before, for a constexpr static data member, if there is an
3049   /// out-of-line declaration of the member, we may promote it from weak to
3050   /// strong.
3051   InlineVariableDefinitionKind
3052   getInlineVariableDefinitionKind(const VarDecl *VD) const;
3053 
3054 private:
3055   friend class DeclarationNameTable;
3056   friend class DeclContext;
3057 
3058   const ASTRecordLayout &
3059   getObjCLayout(const ObjCInterfaceDecl *D,
3060                 const ObjCImplementationDecl *Impl) const;
3061 
3062   /// A set of deallocations that should be performed when the
3063   /// ASTContext is destroyed.
3064   // FIXME: We really should have a better mechanism in the ASTContext to
3065   // manage running destructors for types which do variable sized allocation
3066   // within the AST. In some places we thread the AST bump pointer allocator
3067   // into the datastructures which avoids this mess during deallocation but is
3068   // wasteful of memory, and here we require a lot of error prone book keeping
3069   // in order to track and run destructors while we're tearing things down.
3070   using DeallocationFunctionsAndArguments =
3071       llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3072   mutable DeallocationFunctionsAndArguments Deallocations;
3073 
3074   // FIXME: This currently contains the set of StoredDeclMaps used
3075   // by DeclContext objects.  This probably should not be in ASTContext,
3076   // but we include it here so that ASTContext can quickly deallocate them.
3077   llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3078 
3079   std::vector<Decl *> TraversalScope;
3080 
3081   std::unique_ptr<VTableContextBase> VTContext;
3082 
3083   void ReleaseDeclContextMaps();
3084 
3085 public:
3086   enum PragmaSectionFlag : unsigned {
3087     PSF_None = 0,
3088     PSF_Read = 0x1,
3089     PSF_Write = 0x2,
3090     PSF_Execute = 0x4,
3091     PSF_Implicit = 0x8,
3092     PSF_ZeroInit = 0x10,
3093     PSF_Invalid = 0x80000000U,
3094   };
3095 
3096   struct SectionInfo {
3097     NamedDecl *Decl;
3098     SourceLocation PragmaSectionLocation;
3099     int SectionFlags;
3100 
3101     SectionInfo() = default;
3102     SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3103                 int SectionFlags)
3104         : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3105           SectionFlags(SectionFlags) {}
3106   };
3107 
3108   llvm::StringMap<SectionInfo> SectionInfos;
3109 
3110   /// Return a new OMPTraitInfo object owned by this context.
3111   OMPTraitInfo &getNewOMPTraitInfo();
3112 
3113   /// Whether a C++ static variable may be externalized.
3114   bool mayExternalizeStaticVar(const Decl *D) const;
3115 
3116   /// Whether a C++ static variable should be externalized.
3117   bool shouldExternalizeStaticVar(const Decl *D) const;
3118 
3119 private:
3120   /// All OMPTraitInfo objects live in this collection, one per
3121   /// `pragma omp [begin] declare variant` directive.
3122   SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3123 };
3124 
3125 /// Insertion operator for diagnostics.
3126 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3127                                       const ASTContext::SectionInfo &Section);
3128 
3129 /// Utility function for constructing a nullary selector.
3130 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3131   IdentifierInfo* II = &Ctx.Idents.get(name);
3132   return Ctx.Selectors.getSelector(0, &II);
3133 }
3134 
3135 /// Utility function for constructing an unary selector.
3136 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3137   IdentifierInfo* II = &Ctx.Idents.get(name);
3138   return Ctx.Selectors.getSelector(1, &II);
3139 }
3140 
3141 } // namespace clang
3142 
3143 // operator new and delete aren't allowed inside namespaces.
3144 
3145 /// Placement new for using the ASTContext's allocator.
3146 ///
3147 /// This placement form of operator new uses the ASTContext's allocator for
3148 /// obtaining memory.
3149 ///
3150 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3151 /// Any changes here need to also be made there.
3152 ///
3153 /// We intentionally avoid using a nothrow specification here so that the calls
3154 /// to this operator will not perform a null check on the result -- the
3155 /// underlying allocator never returns null pointers.
3156 ///
3157 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3158 /// @code
3159 /// // Default alignment (8)
3160 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3161 /// // Specific alignment
3162 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3163 /// @endcode
3164 /// Memory allocated through this placement new operator does not need to be
3165 /// explicitly freed, as ASTContext will free all of this memory when it gets
3166 /// destroyed. Please note that you cannot use delete on the pointer.
3167 ///
3168 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3169 /// @param C The ASTContext that provides the allocator.
3170 /// @param Alignment The alignment of the allocated memory (if the underlying
3171 ///                  allocator supports it).
3172 /// @return The allocated memory. Could be nullptr.
3173 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3174                           size_t Alignment /* = 8 */) {
3175   return C.Allocate(Bytes, Alignment);
3176 }
3177 
3178 /// Placement delete companion to the new above.
3179 ///
3180 /// This operator is just a companion to the new above. There is no way of
3181 /// invoking it directly; see the new operator for more details. This operator
3182 /// is called implicitly by the compiler if a placement new expression using
3183 /// the ASTContext throws in the object constructor.
3184 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3185   C.Deallocate(Ptr);
3186 }
3187 
3188 /// This placement form of operator new[] uses the ASTContext's allocator for
3189 /// obtaining memory.
3190 ///
3191 /// We intentionally avoid using a nothrow specification here so that the calls
3192 /// to this operator will not perform a null check on the result -- the
3193 /// underlying allocator never returns null pointers.
3194 ///
3195 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3196 /// @code
3197 /// // Default alignment (8)
3198 /// char *data = new (Context) char[10];
3199 /// // Specific alignment
3200 /// char *data = new (Context, 4) char[10];
3201 /// @endcode
3202 /// Memory allocated through this placement new[] operator does not need to be
3203 /// explicitly freed, as ASTContext will free all of this memory when it gets
3204 /// destroyed. Please note that you cannot use delete on the pointer.
3205 ///
3206 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3207 /// @param C The ASTContext that provides the allocator.
3208 /// @param Alignment The alignment of the allocated memory (if the underlying
3209 ///                  allocator supports it).
3210 /// @return The allocated memory. Could be nullptr.
3211 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3212                             size_t Alignment /* = 8 */) {
3213   return C.Allocate(Bytes, Alignment);
3214 }
3215 
3216 /// Placement delete[] companion to the new[] above.
3217 ///
3218 /// This operator is just a companion to the new[] above. There is no way of
3219 /// invoking it directly; see the new[] operator for more details. This operator
3220 /// is called implicitly by the compiler if a placement new[] expression using
3221 /// the ASTContext throws in the object constructor.
3222 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3223   C.Deallocate(Ptr);
3224 }
3225 
3226 /// Create the representation of a LazyGenerationalUpdatePtr.
3227 template <typename Owner, typename T,
3228           void (clang::ExternalASTSource::*Update)(Owner)>
3229 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3230     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3231         const clang::ASTContext &Ctx, T Value) {
3232   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3233   // include ASTContext.h. We explicitly instantiate it for all relevant types
3234   // in ASTContext.cpp.
3235   if (auto *Source = Ctx.getExternalSource())
3236     return new (Ctx) LazyData(Source, Value);
3237   return Value;
3238 }
3239 
3240 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3241