1 //===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the C++ Decl subclasses, other than those for templates
11 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_DECLCXX_H
16 #define LLVM_CLANG_AST_DECLCXX_H
17 
18 #include "clang/AST/ASTUnresolvedSet.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclarationName.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/LambdaCapture.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/Redeclarable.h"
27 #include "clang/AST/Stmt.h"
28 #include "clang/AST/Type.h"
29 #include "clang/AST/TypeLoc.h"
30 #include "clang/AST/UnresolvedSet.h"
31 #include "clang/Basic/LLVM.h"
32 #include "clang/Basic/Lambda.h"
33 #include "clang/Basic/LangOptions.h"
34 #include "clang/Basic/OperatorKinds.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/PointerUnion.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/TinyPtrVector.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/PointerLikeTypeTraits.h"
47 #include "llvm/Support/TrailingObjects.h"
48 #include <cassert>
49 #include <cstddef>
50 #include <iterator>
51 #include <memory>
52 #include <vector>
53 
54 namespace clang {
55 
56 class ASTContext;
57 class ClassTemplateDecl;
58 class ConstructorUsingShadowDecl;
59 class CXXBasePath;
60 class CXXBasePaths;
61 class CXXConstructorDecl;
62 class CXXDestructorDecl;
63 class CXXFinalOverriderMap;
64 class CXXIndirectPrimaryBaseSet;
65 class CXXMethodDecl;
66 class DecompositionDecl;
67 class FriendDecl;
68 class FunctionTemplateDecl;
69 class IdentifierInfo;
70 class MemberSpecializationInfo;
71 class BaseUsingDecl;
72 class TemplateDecl;
73 class TemplateParameterList;
74 class UsingDecl;
75 
76 /// Represents an access specifier followed by colon ':'.
77 ///
78 /// An objects of this class represents sugar for the syntactic occurrence
79 /// of an access specifier followed by a colon in the list of member
80 /// specifiers of a C++ class definition.
81 ///
82 /// Note that they do not represent other uses of access specifiers,
83 /// such as those occurring in a list of base specifiers.
84 /// Also note that this class has nothing to do with so-called
85 /// "access declarations" (C++98 11.3 [class.access.dcl]).
86 class AccessSpecDecl : public Decl {
87   /// The location of the ':'.
88   SourceLocation ColonLoc;
89 
90   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
91                  SourceLocation ASLoc, SourceLocation ColonLoc)
92     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
93     setAccess(AS);
94   }
95 
96   AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {}
97 
98   virtual void anchor();
99 
100 public:
101   /// The location of the access specifier.
102   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
103 
104   /// Sets the location of the access specifier.
105   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
106 
107   /// The location of the colon following the access specifier.
108   SourceLocation getColonLoc() const { return ColonLoc; }
109 
110   /// Sets the location of the colon.
111   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
112 
113   SourceRange getSourceRange() const override LLVM_READONLY {
114     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
115   }
116 
117   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
118                                 DeclContext *DC, SourceLocation ASLoc,
119                                 SourceLocation ColonLoc) {
120     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
121   }
122 
123   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
124 
125   // Implement isa/cast/dyncast/etc.
126   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
127   static bool classofKind(Kind K) { return K == AccessSpec; }
128 };
129 
130 /// Represents a base class of a C++ class.
131 ///
132 /// Each CXXBaseSpecifier represents a single, direct base class (or
133 /// struct) of a C++ class (or struct). It specifies the type of that
134 /// base class, whether it is a virtual or non-virtual base, and what
135 /// level of access (public, protected, private) is used for the
136 /// derivation. For example:
137 ///
138 /// \code
139 ///   class A { };
140 ///   class B { };
141 ///   class C : public virtual A, protected B { };
142 /// \endcode
143 ///
144 /// In this code, C will have two CXXBaseSpecifiers, one for "public
145 /// virtual A" and the other for "protected B".
146 class CXXBaseSpecifier {
147   /// The source code range that covers the full base
148   /// specifier, including the "virtual" (if present) and access
149   /// specifier (if present).
150   SourceRange Range;
151 
152   /// The source location of the ellipsis, if this is a pack
153   /// expansion.
154   SourceLocation EllipsisLoc;
155 
156   /// Whether this is a virtual base class or not.
157   unsigned Virtual : 1;
158 
159   /// Whether this is the base of a class (true) or of a struct (false).
160   ///
161   /// This determines the mapping from the access specifier as written in the
162   /// source code to the access specifier used for semantic analysis.
163   unsigned BaseOfClass : 1;
164 
165   /// Access specifier as written in the source code (may be AS_none).
166   ///
167   /// The actual type of data stored here is an AccessSpecifier, but we use
168   /// "unsigned" here to work around a VC++ bug.
169   unsigned Access : 2;
170 
171   /// Whether the class contains a using declaration
172   /// to inherit the named class's constructors.
173   unsigned InheritConstructors : 1;
174 
175   /// The type of the base class.
176   ///
177   /// This will be a class or struct (or a typedef of such). The source code
178   /// range does not include the \c virtual or the access specifier.
179   TypeSourceInfo *BaseTypeInfo;
180 
181 public:
182   CXXBaseSpecifier() = default;
183   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
184                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
185     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
186       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {}
187 
188   /// Retrieves the source range that contains the entire base specifier.
189   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
190   SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
191   SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
192 
193   /// Get the location at which the base class type was written.
194   SourceLocation getBaseTypeLoc() const LLVM_READONLY {
195     return BaseTypeInfo->getTypeLoc().getBeginLoc();
196   }
197 
198   /// Determines whether the base class is a virtual base class (or not).
199   bool isVirtual() const { return Virtual; }
200 
201   /// Determine whether this base class is a base of a class declared
202   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
203   bool isBaseOfClass() const { return BaseOfClass; }
204 
205   /// Determine whether this base specifier is a pack expansion.
206   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
207 
208   /// Determine whether this base class's constructors get inherited.
209   bool getInheritConstructors() const { return InheritConstructors; }
210 
211   /// Set that this base class's constructors should be inherited.
212   void setInheritConstructors(bool Inherit = true) {
213     InheritConstructors = Inherit;
214   }
215 
216   /// For a pack expansion, determine the location of the ellipsis.
217   SourceLocation getEllipsisLoc() const {
218     return EllipsisLoc;
219   }
220 
221   /// Returns the access specifier for this base specifier.
222   ///
223   /// This is the actual base specifier as used for semantic analysis, so
224   /// the result can never be AS_none. To retrieve the access specifier as
225   /// written in the source code, use getAccessSpecifierAsWritten().
226   AccessSpecifier getAccessSpecifier() const {
227     if ((AccessSpecifier)Access == AS_none)
228       return BaseOfClass? AS_private : AS_public;
229     else
230       return (AccessSpecifier)Access;
231   }
232 
233   /// Retrieves the access specifier as written in the source code
234   /// (which may mean that no access specifier was explicitly written).
235   ///
236   /// Use getAccessSpecifier() to retrieve the access specifier for use in
237   /// semantic analysis.
238   AccessSpecifier getAccessSpecifierAsWritten() const {
239     return (AccessSpecifier)Access;
240   }
241 
242   /// Retrieves the type of the base class.
243   ///
244   /// This type will always be an unqualified class type.
245   QualType getType() const {
246     return BaseTypeInfo->getType().getUnqualifiedType();
247   }
248 
249   /// Retrieves the type and source location of the base class.
250   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
251 };
252 
253 /// Represents a C++ struct/union/class.
254 class CXXRecordDecl : public RecordDecl {
255   friend class ASTDeclReader;
256   friend class ASTDeclWriter;
257   friend class ASTNodeImporter;
258   friend class ASTReader;
259   friend class ASTRecordWriter;
260   friend class ASTWriter;
261   friend class DeclContext;
262   friend class LambdaExpr;
263   friend class ODRDiagsEmitter;
264 
265   friend void FunctionDecl::setPure(bool);
266   friend void TagDecl::startDefinition();
267 
268   /// Values used in DefinitionData fields to represent special members.
269   enum SpecialMemberFlags {
270     SMF_DefaultConstructor = 0x1,
271     SMF_CopyConstructor = 0x2,
272     SMF_MoveConstructor = 0x4,
273     SMF_CopyAssignment = 0x8,
274     SMF_MoveAssignment = 0x10,
275     SMF_Destructor = 0x20,
276     SMF_All = 0x3f
277   };
278 
279 public:
280   enum LambdaDependencyKind {
281     LDK_Unknown = 0,
282     LDK_AlwaysDependent,
283     LDK_NeverDependent,
284   };
285 
286 private:
287   struct DefinitionData {
288     #define FIELD(Name, Width, Merge) \
289     unsigned Name : Width;
290     #include "CXXRecordDeclDefinitionBits.def"
291 
292     /// Whether this class describes a C++ lambda.
293     unsigned IsLambda : 1;
294 
295     /// Whether we are currently parsing base specifiers.
296     unsigned IsParsingBaseSpecifiers : 1;
297 
298     /// True when visible conversion functions are already computed
299     /// and are available.
300     unsigned ComputedVisibleConversions : 1;
301 
302     unsigned HasODRHash : 1;
303 
304     /// A hash of parts of the class to help in ODR checking.
305     unsigned ODRHash = 0;
306 
307     /// The number of base class specifiers in Bases.
308     unsigned NumBases = 0;
309 
310     /// The number of virtual base class specifiers in VBases.
311     unsigned NumVBases = 0;
312 
313     /// Base classes of this class.
314     ///
315     /// FIXME: This is wasted space for a union.
316     LazyCXXBaseSpecifiersPtr Bases;
317 
318     /// direct and indirect virtual base classes of this class.
319     LazyCXXBaseSpecifiersPtr VBases;
320 
321     /// The conversion functions of this C++ class (but not its
322     /// inherited conversion functions).
323     ///
324     /// Each of the entries in this overload set is a CXXConversionDecl.
325     LazyASTUnresolvedSet Conversions;
326 
327     /// The conversion functions of this C++ class and all those
328     /// inherited conversion functions that are visible in this class.
329     ///
330     /// Each of the entries in this overload set is a CXXConversionDecl or a
331     /// FunctionTemplateDecl.
332     LazyASTUnresolvedSet VisibleConversions;
333 
334     /// The declaration which defines this record.
335     CXXRecordDecl *Definition;
336 
337     /// The first friend declaration in this class, or null if there
338     /// aren't any.
339     ///
340     /// This is actually currently stored in reverse order.
341     LazyDeclPtr FirstFriend;
342 
343     DefinitionData(CXXRecordDecl *D);
344 
345     /// Retrieve the set of direct base classes.
346     CXXBaseSpecifier *getBases() const {
347       if (!Bases.isOffset())
348         return Bases.get(nullptr);
349       return getBasesSlowCase();
350     }
351 
352     /// Retrieve the set of virtual base classes.
353     CXXBaseSpecifier *getVBases() const {
354       if (!VBases.isOffset())
355         return VBases.get(nullptr);
356       return getVBasesSlowCase();
357     }
358 
359     ArrayRef<CXXBaseSpecifier> bases() const {
360       return llvm::ArrayRef(getBases(), NumBases);
361     }
362 
363     ArrayRef<CXXBaseSpecifier> vbases() const {
364       return llvm::ArrayRef(getVBases(), NumVBases);
365     }
366 
367   private:
368     CXXBaseSpecifier *getBasesSlowCase() const;
369     CXXBaseSpecifier *getVBasesSlowCase() const;
370   };
371 
372   struct DefinitionData *DefinitionData;
373 
374   /// Describes a C++ closure type (generated by a lambda expression).
375   struct LambdaDefinitionData : public DefinitionData {
376     using Capture = LambdaCapture;
377 
378     /// Whether this lambda is known to be dependent, even if its
379     /// context isn't dependent.
380     ///
381     /// A lambda with a non-dependent context can be dependent if it occurs
382     /// within the default argument of a function template, because the
383     /// lambda will have been created with the enclosing context as its
384     /// declaration context, rather than function. This is an unfortunate
385     /// artifact of having to parse the default arguments before.
386     unsigned DependencyKind : 2;
387 
388     /// Whether this lambda is a generic lambda.
389     unsigned IsGenericLambda : 1;
390 
391     /// The Default Capture.
392     unsigned CaptureDefault : 2;
393 
394     /// The number of captures in this lambda is limited 2^NumCaptures.
395     unsigned NumCaptures : 15;
396 
397     /// The number of explicit captures in this lambda.
398     unsigned NumExplicitCaptures : 12;
399 
400     /// Has known `internal` linkage.
401     unsigned HasKnownInternalLinkage : 1;
402 
403     /// The number used to indicate this lambda expression for name
404     /// mangling in the Itanium C++ ABI.
405     unsigned ManglingNumber : 31;
406 
407     /// The index of this lambda within its context declaration. This is not in
408     /// general the same as the mangling number.
409     unsigned IndexInContext;
410 
411     /// The declaration that provides context for this lambda, if the
412     /// actual DeclContext does not suffice. This is used for lambdas that
413     /// occur within default arguments of function parameters within the class
414     /// or within a data member initializer.
415     LazyDeclPtr ContextDecl;
416 
417     /// The lists of captures, both explicit and implicit, for this
418     /// lambda. One list is provided for each merged copy of the lambda.
419     /// The first list corresponds to the canonical definition.
420     /// The destructor is registered by AddCaptureList when necessary.
421     llvm::TinyPtrVector<Capture*> Captures;
422 
423     /// The type of the call method.
424     TypeSourceInfo *MethodTyInfo;
425 
426     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, unsigned DK,
427                          bool IsGeneric, LambdaCaptureDefault CaptureDefault)
428         : DefinitionData(D), DependencyKind(DK), IsGenericLambda(IsGeneric),
429           CaptureDefault(CaptureDefault), NumCaptures(0),
430           NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0),
431           IndexInContext(0), MethodTyInfo(Info) {
432       IsLambda = true;
433 
434       // C++1z [expr.prim.lambda]p4:
435       //   This class type is not an aggregate type.
436       Aggregate = false;
437       PlainOldData = false;
438     }
439 
440     // Add a list of captures.
441     void AddCaptureList(ASTContext &Ctx, Capture *CaptureList);
442   };
443 
444   struct DefinitionData *dataPtr() const {
445     // Complete the redecl chain (if necessary).
446     getMostRecentDecl();
447     return DefinitionData;
448   }
449 
450   struct DefinitionData &data() const {
451     auto *DD = dataPtr();
452     assert(DD && "queried property of class with no definition");
453     return *DD;
454   }
455 
456   struct LambdaDefinitionData &getLambdaData() const {
457     // No update required: a merged definition cannot change any lambda
458     // properties.
459     auto *DD = DefinitionData;
460     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
461     return static_cast<LambdaDefinitionData&>(*DD);
462   }
463 
464   /// The template or declaration that this declaration
465   /// describes or was instantiated from, respectively.
466   ///
467   /// For non-templates, this value will be null. For record
468   /// declarations that describe a class template, this will be a
469   /// pointer to a ClassTemplateDecl. For member
470   /// classes of class template specializations, this will be the
471   /// MemberSpecializationInfo referring to the member class that was
472   /// instantiated or specialized.
473   llvm::PointerUnion<ClassTemplateDecl *, MemberSpecializationInfo *>
474       TemplateOrInstantiation;
475 
476   /// Called from setBases and addedMember to notify the class that a
477   /// direct or virtual base class or a member of class type has been added.
478   void addedClassSubobject(CXXRecordDecl *Base);
479 
480   /// Notify the class that member has been added.
481   ///
482   /// This routine helps maintain information about the class based on which
483   /// members have been added. It will be invoked by DeclContext::addDecl()
484   /// whenever a member is added to this record.
485   void addedMember(Decl *D);
486 
487   void markedVirtualFunctionPure();
488 
489   /// Get the head of our list of friend declarations, possibly
490   /// deserializing the friends from an external AST source.
491   FriendDecl *getFirstFriend() const;
492 
493   /// Determine whether this class has an empty base class subobject of type X
494   /// or of one of the types that might be at offset 0 within X (per the C++
495   /// "standard layout" rules).
496   bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx,
497                                                const CXXRecordDecl *X);
498 
499 protected:
500   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
501                 SourceLocation StartLoc, SourceLocation IdLoc,
502                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
503 
504 public:
505   /// Iterator that traverses the base classes of a class.
506   using base_class_iterator = CXXBaseSpecifier *;
507 
508   /// Iterator that traverses the base classes of a class.
509   using base_class_const_iterator = const CXXBaseSpecifier *;
510 
511   CXXRecordDecl *getCanonicalDecl() override {
512     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
513   }
514 
515   const CXXRecordDecl *getCanonicalDecl() const {
516     return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
517   }
518 
519   CXXRecordDecl *getPreviousDecl() {
520     return cast_or_null<CXXRecordDecl>(
521             static_cast<RecordDecl *>(this)->getPreviousDecl());
522   }
523 
524   const CXXRecordDecl *getPreviousDecl() const {
525     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
526   }
527 
528   CXXRecordDecl *getMostRecentDecl() {
529     return cast<CXXRecordDecl>(
530             static_cast<RecordDecl *>(this)->getMostRecentDecl());
531   }
532 
533   const CXXRecordDecl *getMostRecentDecl() const {
534     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
535   }
536 
537   CXXRecordDecl *getMostRecentNonInjectedDecl() {
538     CXXRecordDecl *Recent =
539         static_cast<CXXRecordDecl *>(this)->getMostRecentDecl();
540     while (Recent->isInjectedClassName()) {
541       // FIXME: Does injected class name need to be in the redeclarations chain?
542       assert(Recent->getPreviousDecl());
543       Recent = Recent->getPreviousDecl();
544     }
545     return Recent;
546   }
547 
548   const CXXRecordDecl *getMostRecentNonInjectedDecl() const {
549     return const_cast<CXXRecordDecl*>(this)->getMostRecentNonInjectedDecl();
550   }
551 
552   CXXRecordDecl *getDefinition() const {
553     // We only need an update if we don't already know which
554     // declaration is the definition.
555     auto *DD = DefinitionData ? DefinitionData : dataPtr();
556     return DD ? DD->Definition : nullptr;
557   }
558 
559   bool hasDefinition() const { return DefinitionData || dataPtr(); }
560 
561   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
562                                SourceLocation StartLoc, SourceLocation IdLoc,
563                                IdentifierInfo *Id,
564                                CXXRecordDecl *PrevDecl = nullptr,
565                                bool DelayTypeCreation = false);
566   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
567                                      TypeSourceInfo *Info, SourceLocation Loc,
568                                      unsigned DependencyKind, bool IsGeneric,
569                                      LambdaCaptureDefault CaptureDefault);
570   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
571 
572   bool isDynamicClass() const {
573     return data().Polymorphic || data().NumVBases != 0;
574   }
575 
576   /// @returns true if class is dynamic or might be dynamic because the
577   /// definition is incomplete of dependent.
578   bool mayBeDynamicClass() const {
579     return !hasDefinition() || isDynamicClass() || hasAnyDependentBases();
580   }
581 
582   /// @returns true if class is non dynamic or might be non dynamic because the
583   /// definition is incomplete of dependent.
584   bool mayBeNonDynamicClass() const {
585     return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases();
586   }
587 
588   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
589 
590   bool isParsingBaseSpecifiers() const {
591     return data().IsParsingBaseSpecifiers;
592   }
593 
594   unsigned getODRHash() const;
595 
596   /// Sets the base classes of this struct or class.
597   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
598 
599   /// Retrieves the number of base classes of this class.
600   unsigned getNumBases() const { return data().NumBases; }
601 
602   using base_class_range = llvm::iterator_range<base_class_iterator>;
603   using base_class_const_range =
604       llvm::iterator_range<base_class_const_iterator>;
605 
606   base_class_range bases() {
607     return base_class_range(bases_begin(), bases_end());
608   }
609   base_class_const_range bases() const {
610     return base_class_const_range(bases_begin(), bases_end());
611   }
612 
613   base_class_iterator bases_begin() { return data().getBases(); }
614   base_class_const_iterator bases_begin() const { return data().getBases(); }
615   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
616   base_class_const_iterator bases_end() const {
617     return bases_begin() + data().NumBases;
618   }
619 
620   /// Retrieves the number of virtual base classes of this class.
621   unsigned getNumVBases() const { return data().NumVBases; }
622 
623   base_class_range vbases() {
624     return base_class_range(vbases_begin(), vbases_end());
625   }
626   base_class_const_range vbases() const {
627     return base_class_const_range(vbases_begin(), vbases_end());
628   }
629 
630   base_class_iterator vbases_begin() { return data().getVBases(); }
631   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
632   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
633   base_class_const_iterator vbases_end() const {
634     return vbases_begin() + data().NumVBases;
635   }
636 
637   /// Determine whether this class has any dependent base classes which
638   /// are not the current instantiation.
639   bool hasAnyDependentBases() const;
640 
641   /// Iterator access to method members.  The method iterator visits
642   /// all method members of the class, including non-instance methods,
643   /// special methods, etc.
644   using method_iterator = specific_decl_iterator<CXXMethodDecl>;
645   using method_range =
646       llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>;
647 
648   method_range methods() const {
649     return method_range(method_begin(), method_end());
650   }
651 
652   /// Method begin iterator.  Iterates in the order the methods
653   /// were declared.
654   method_iterator method_begin() const {
655     return method_iterator(decls_begin());
656   }
657 
658   /// Method past-the-end iterator.
659   method_iterator method_end() const {
660     return method_iterator(decls_end());
661   }
662 
663   /// Iterator access to constructor members.
664   using ctor_iterator = specific_decl_iterator<CXXConstructorDecl>;
665   using ctor_range =
666       llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>;
667 
668   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
669 
670   ctor_iterator ctor_begin() const {
671     return ctor_iterator(decls_begin());
672   }
673 
674   ctor_iterator ctor_end() const {
675     return ctor_iterator(decls_end());
676   }
677 
678   /// An iterator over friend declarations.  All of these are defined
679   /// in DeclFriend.h.
680   class friend_iterator;
681   using friend_range = llvm::iterator_range<friend_iterator>;
682 
683   friend_range friends() const;
684   friend_iterator friend_begin() const;
685   friend_iterator friend_end() const;
686   void pushFriendDecl(FriendDecl *FD);
687 
688   /// Determines whether this record has any friends.
689   bool hasFriends() const {
690     return data().FirstFriend.isValid();
691   }
692 
693   /// \c true if a defaulted copy constructor for this class would be
694   /// deleted.
695   bool defaultedCopyConstructorIsDeleted() const {
696     assert((!needsOverloadResolutionForCopyConstructor() ||
697             (data().DeclaredSpecialMembers & SMF_CopyConstructor)) &&
698            "this property has not yet been computed by Sema");
699     return data().DefaultedCopyConstructorIsDeleted;
700   }
701 
702   /// \c true if a defaulted move constructor for this class would be
703   /// deleted.
704   bool defaultedMoveConstructorIsDeleted() const {
705     assert((!needsOverloadResolutionForMoveConstructor() ||
706             (data().DeclaredSpecialMembers & SMF_MoveConstructor)) &&
707            "this property has not yet been computed by Sema");
708     return data().DefaultedMoveConstructorIsDeleted;
709   }
710 
711   /// \c true if a defaulted destructor for this class would be deleted.
712   bool defaultedDestructorIsDeleted() const {
713     assert((!needsOverloadResolutionForDestructor() ||
714             (data().DeclaredSpecialMembers & SMF_Destructor)) &&
715            "this property has not yet been computed by Sema");
716     return data().DefaultedDestructorIsDeleted;
717   }
718 
719   /// \c true if we know for sure that this class has a single,
720   /// accessible, unambiguous copy constructor that is not deleted.
721   bool hasSimpleCopyConstructor() const {
722     return !hasUserDeclaredCopyConstructor() &&
723            !data().DefaultedCopyConstructorIsDeleted;
724   }
725 
726   /// \c true if we know for sure that this class has a single,
727   /// accessible, unambiguous move constructor that is not deleted.
728   bool hasSimpleMoveConstructor() const {
729     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
730            !data().DefaultedMoveConstructorIsDeleted;
731   }
732 
733   /// \c true if we know for sure that this class has a single,
734   /// accessible, unambiguous copy assignment operator that is not deleted.
735   bool hasSimpleCopyAssignment() const {
736     return !hasUserDeclaredCopyAssignment() &&
737            !data().DefaultedCopyAssignmentIsDeleted;
738   }
739 
740   /// \c true if we know for sure that this class has a single,
741   /// accessible, unambiguous move assignment operator that is not deleted.
742   bool hasSimpleMoveAssignment() const {
743     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
744            !data().DefaultedMoveAssignmentIsDeleted;
745   }
746 
747   /// \c true if we know for sure that this class has an accessible
748   /// destructor that is not deleted.
749   bool hasSimpleDestructor() const {
750     return !hasUserDeclaredDestructor() &&
751            !data().DefaultedDestructorIsDeleted;
752   }
753 
754   /// Determine whether this class has any default constructors.
755   bool hasDefaultConstructor() const {
756     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
757            needsImplicitDefaultConstructor();
758   }
759 
760   /// Determine if we need to declare a default constructor for
761   /// this class.
762   ///
763   /// This value is used for lazy creation of default constructors.
764   bool needsImplicitDefaultConstructor() const {
765     return (!data().UserDeclaredConstructor &&
766             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
767             (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) ||
768            // FIXME: Proposed fix to core wording issue: if a class inherits
769            // a default constructor and doesn't explicitly declare one, one
770            // is declared implicitly.
771            (data().HasInheritedDefaultConstructor &&
772             !(data().DeclaredSpecialMembers & SMF_DefaultConstructor));
773   }
774 
775   /// Determine whether this class has any user-declared constructors.
776   ///
777   /// When true, a default constructor will not be implicitly declared.
778   bool hasUserDeclaredConstructor() const {
779     return data().UserDeclaredConstructor;
780   }
781 
782   /// Whether this class has a user-provided default constructor
783   /// per C++11.
784   bool hasUserProvidedDefaultConstructor() const {
785     return data().UserProvidedDefaultConstructor;
786   }
787 
788   /// Determine whether this class has a user-declared copy constructor.
789   ///
790   /// When false, a copy constructor will be implicitly declared.
791   bool hasUserDeclaredCopyConstructor() const {
792     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
793   }
794 
795   /// Determine whether this class needs an implicit copy
796   /// constructor to be lazily declared.
797   bool needsImplicitCopyConstructor() const {
798     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
799   }
800 
801   /// Determine whether we need to eagerly declare a defaulted copy
802   /// constructor for this class.
803   bool needsOverloadResolutionForCopyConstructor() const {
804     // C++17 [class.copy.ctor]p6:
805     //   If the class definition declares a move constructor or move assignment
806     //   operator, the implicitly declared copy constructor is defined as
807     //   deleted.
808     // In MSVC mode, sometimes a declared move assignment does not delete an
809     // implicit copy constructor, so defer this choice to Sema.
810     if (data().UserDeclaredSpecialMembers &
811         (SMF_MoveConstructor | SMF_MoveAssignment))
812       return true;
813     return data().NeedOverloadResolutionForCopyConstructor;
814   }
815 
816   /// Determine whether an implicit copy constructor for this type
817   /// would have a parameter with a const-qualified reference type.
818   bool implicitCopyConstructorHasConstParam() const {
819     return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase &&
820            (isAbstract() ||
821             data().ImplicitCopyConstructorCanHaveConstParamForVBase);
822   }
823 
824   /// Determine whether this class has a copy constructor with
825   /// a parameter type which is a reference to a const-qualified type.
826   bool hasCopyConstructorWithConstParam() const {
827     return data().HasDeclaredCopyConstructorWithConstParam ||
828            (needsImplicitCopyConstructor() &&
829             implicitCopyConstructorHasConstParam());
830   }
831 
832   /// Whether this class has a user-declared move constructor or
833   /// assignment operator.
834   ///
835   /// When false, a move constructor and assignment operator may be
836   /// implicitly declared.
837   bool hasUserDeclaredMoveOperation() const {
838     return data().UserDeclaredSpecialMembers &
839              (SMF_MoveConstructor | SMF_MoveAssignment);
840   }
841 
842   /// Determine whether this class has had a move constructor
843   /// declared by the user.
844   bool hasUserDeclaredMoveConstructor() const {
845     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
846   }
847 
848   /// Determine whether this class has a move constructor.
849   bool hasMoveConstructor() const {
850     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
851            needsImplicitMoveConstructor();
852   }
853 
854   /// Set that we attempted to declare an implicit copy
855   /// constructor, but overload resolution failed so we deleted it.
856   void setImplicitCopyConstructorIsDeleted() {
857     assert((data().DefaultedCopyConstructorIsDeleted ||
858             needsOverloadResolutionForCopyConstructor()) &&
859            "Copy constructor should not be deleted");
860     data().DefaultedCopyConstructorIsDeleted = true;
861   }
862 
863   /// Set that we attempted to declare an implicit move
864   /// constructor, but overload resolution failed so we deleted it.
865   void setImplicitMoveConstructorIsDeleted() {
866     assert((data().DefaultedMoveConstructorIsDeleted ||
867             needsOverloadResolutionForMoveConstructor()) &&
868            "move constructor should not be deleted");
869     data().DefaultedMoveConstructorIsDeleted = true;
870   }
871 
872   /// Set that we attempted to declare an implicit destructor,
873   /// but overload resolution failed so we deleted it.
874   void setImplicitDestructorIsDeleted() {
875     assert((data().DefaultedDestructorIsDeleted ||
876             needsOverloadResolutionForDestructor()) &&
877            "destructor should not be deleted");
878     data().DefaultedDestructorIsDeleted = true;
879   }
880 
881   /// Determine whether this class should get an implicit move
882   /// constructor or if any existing special member function inhibits this.
883   bool needsImplicitMoveConstructor() const {
884     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
885            !hasUserDeclaredCopyConstructor() &&
886            !hasUserDeclaredCopyAssignment() &&
887            !hasUserDeclaredMoveAssignment() &&
888            !hasUserDeclaredDestructor();
889   }
890 
891   /// Determine whether we need to eagerly declare a defaulted move
892   /// constructor for this class.
893   bool needsOverloadResolutionForMoveConstructor() const {
894     return data().NeedOverloadResolutionForMoveConstructor;
895   }
896 
897   /// Determine whether this class has a user-declared copy assignment
898   /// operator.
899   ///
900   /// When false, a copy assignment operator will be implicitly declared.
901   bool hasUserDeclaredCopyAssignment() const {
902     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
903   }
904 
905   /// Set that we attempted to declare an implicit copy assignment
906   /// operator, but overload resolution failed so we deleted it.
907   void setImplicitCopyAssignmentIsDeleted() {
908     assert((data().DefaultedCopyAssignmentIsDeleted ||
909             needsOverloadResolutionForCopyAssignment()) &&
910            "copy assignment should not be deleted");
911     data().DefaultedCopyAssignmentIsDeleted = true;
912   }
913 
914   /// Determine whether this class needs an implicit copy
915   /// assignment operator to be lazily declared.
916   bool needsImplicitCopyAssignment() const {
917     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
918   }
919 
920   /// Determine whether we need to eagerly declare a defaulted copy
921   /// assignment operator for this class.
922   bool needsOverloadResolutionForCopyAssignment() const {
923     // C++20 [class.copy.assign]p2:
924     //   If the class definition declares a move constructor or move assignment
925     //   operator, the implicitly declared copy assignment operator is defined
926     //   as deleted.
927     // In MSVC mode, sometimes a declared move constructor does not delete an
928     // implicit copy assignment, so defer this choice to Sema.
929     if (data().UserDeclaredSpecialMembers &
930         (SMF_MoveConstructor | SMF_MoveAssignment))
931       return true;
932     return data().NeedOverloadResolutionForCopyAssignment;
933   }
934 
935   /// Determine whether an implicit copy assignment operator for this
936   /// type would have a parameter with a const-qualified reference type.
937   bool implicitCopyAssignmentHasConstParam() const {
938     return data().ImplicitCopyAssignmentHasConstParam;
939   }
940 
941   /// Determine whether this class has a copy assignment operator with
942   /// a parameter type which is a reference to a const-qualified type or is not
943   /// a reference.
944   bool hasCopyAssignmentWithConstParam() const {
945     return data().HasDeclaredCopyAssignmentWithConstParam ||
946            (needsImplicitCopyAssignment() &&
947             implicitCopyAssignmentHasConstParam());
948   }
949 
950   /// Determine whether this class has had a move assignment
951   /// declared by the user.
952   bool hasUserDeclaredMoveAssignment() const {
953     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
954   }
955 
956   /// Determine whether this class has a move assignment operator.
957   bool hasMoveAssignment() const {
958     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
959            needsImplicitMoveAssignment();
960   }
961 
962   /// Set that we attempted to declare an implicit move assignment
963   /// operator, but overload resolution failed so we deleted it.
964   void setImplicitMoveAssignmentIsDeleted() {
965     assert((data().DefaultedMoveAssignmentIsDeleted ||
966             needsOverloadResolutionForMoveAssignment()) &&
967            "move assignment should not be deleted");
968     data().DefaultedMoveAssignmentIsDeleted = true;
969   }
970 
971   /// Determine whether this class should get an implicit move
972   /// assignment operator or if any existing special member function inhibits
973   /// this.
974   bool needsImplicitMoveAssignment() const {
975     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
976            !hasUserDeclaredCopyConstructor() &&
977            !hasUserDeclaredCopyAssignment() &&
978            !hasUserDeclaredMoveConstructor() &&
979            !hasUserDeclaredDestructor() &&
980            (!isLambda() || lambdaIsDefaultConstructibleAndAssignable());
981   }
982 
983   /// Determine whether we need to eagerly declare a move assignment
984   /// operator for this class.
985   bool needsOverloadResolutionForMoveAssignment() const {
986     return data().NeedOverloadResolutionForMoveAssignment;
987   }
988 
989   /// Determine whether this class has a user-declared destructor.
990   ///
991   /// When false, a destructor will be implicitly declared.
992   bool hasUserDeclaredDestructor() const {
993     return data().UserDeclaredSpecialMembers & SMF_Destructor;
994   }
995 
996   /// Determine whether this class needs an implicit destructor to
997   /// be lazily declared.
998   bool needsImplicitDestructor() const {
999     return !(data().DeclaredSpecialMembers & SMF_Destructor);
1000   }
1001 
1002   /// Determine whether we need to eagerly declare a destructor for this
1003   /// class.
1004   bool needsOverloadResolutionForDestructor() const {
1005     return data().NeedOverloadResolutionForDestructor;
1006   }
1007 
1008   /// Determine whether this class describes a lambda function object.
1009   bool isLambda() const {
1010     // An update record can't turn a non-lambda into a lambda.
1011     auto *DD = DefinitionData;
1012     return DD && DD->IsLambda;
1013   }
1014 
1015   /// Determine whether this class describes a generic
1016   /// lambda function object (i.e. function call operator is
1017   /// a template).
1018   bool isGenericLambda() const;
1019 
1020   /// Determine whether this lambda should have an implicit default constructor
1021   /// and copy and move assignment operators.
1022   bool lambdaIsDefaultConstructibleAndAssignable() const;
1023 
1024   /// Retrieve the lambda call operator of the closure type
1025   /// if this is a closure type.
1026   CXXMethodDecl *getLambdaCallOperator() const;
1027 
1028   /// Retrieve the dependent lambda call operator of the closure type
1029   /// if this is a templated closure type.
1030   FunctionTemplateDecl *getDependentLambdaCallOperator() const;
1031 
1032   /// Retrieve the lambda static invoker, the address of which
1033   /// is returned by the conversion operator, and the body of which
1034   /// is forwarded to the lambda call operator. The version that does not
1035   /// take a calling convention uses the 'default' calling convention for free
1036   /// functions if the Lambda's calling convention was not modified via
1037   /// attribute. Otherwise, it will return the calling convention specified for
1038   /// the lambda.
1039   CXXMethodDecl *getLambdaStaticInvoker() const;
1040   CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const;
1041 
1042   /// Retrieve the generic lambda's template parameter list.
1043   /// Returns null if the class does not represent a lambda or a generic
1044   /// lambda.
1045   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
1046 
1047   /// Retrieve the lambda template parameters that were specified explicitly.
1048   ArrayRef<NamedDecl *> getLambdaExplicitTemplateParameters() const;
1049 
1050   LambdaCaptureDefault getLambdaCaptureDefault() const {
1051     assert(isLambda());
1052     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
1053   }
1054 
1055   /// Set the captures for this lambda closure type.
1056   void setCaptures(ASTContext &Context, ArrayRef<LambdaCapture> Captures);
1057 
1058   /// For a closure type, retrieve the mapping from captured
1059   /// variables and \c this to the non-static data members that store the
1060   /// values or references of the captures.
1061   ///
1062   /// \param Captures Will be populated with the mapping from captured
1063   /// variables to the corresponding fields.
1064   ///
1065   /// \param ThisCapture Will be set to the field declaration for the
1066   /// \c this capture.
1067   ///
1068   /// \note No entries will be added for init-captures, as they do not capture
1069   /// variables.
1070   ///
1071   /// \note If multiple versions of the lambda are merged together, they may
1072   /// have different variable declarations corresponding to the same capture.
1073   /// In that case, all of those variable declarations will be added to the
1074   /// Captures list, so it may have more than one variable listed per field.
1075   void
1076   getCaptureFields(llvm::DenseMap<const ValueDecl *, FieldDecl *> &Captures,
1077                    FieldDecl *&ThisCapture) const;
1078 
1079   using capture_const_iterator = const LambdaCapture *;
1080   using capture_const_range = llvm::iterator_range<capture_const_iterator>;
1081 
1082   capture_const_range captures() const {
1083     return capture_const_range(captures_begin(), captures_end());
1084   }
1085 
1086   capture_const_iterator captures_begin() const {
1087     if (!isLambda()) return nullptr;
1088     LambdaDefinitionData &LambdaData = getLambdaData();
1089     return LambdaData.Captures.empty() ? nullptr : LambdaData.Captures.front();
1090   }
1091 
1092   capture_const_iterator captures_end() const {
1093     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
1094                       : nullptr;
1095   }
1096 
1097   unsigned capture_size() const { return getLambdaData().NumCaptures; }
1098 
1099   const LambdaCapture *getCapture(unsigned I) const {
1100     assert(isLambda() && I < capture_size() && "invalid index for capture");
1101     return captures_begin() + I;
1102   }
1103 
1104   using conversion_iterator = UnresolvedSetIterator;
1105 
1106   conversion_iterator conversion_begin() const {
1107     return data().Conversions.get(getASTContext()).begin();
1108   }
1109 
1110   conversion_iterator conversion_end() const {
1111     return data().Conversions.get(getASTContext()).end();
1112   }
1113 
1114   /// Removes a conversion function from this class.  The conversion
1115   /// function must currently be a member of this class.  Furthermore,
1116   /// this class must currently be in the process of being defined.
1117   void removeConversion(const NamedDecl *Old);
1118 
1119   /// Get all conversion functions visible in current class,
1120   /// including conversion function templates.
1121   llvm::iterator_range<conversion_iterator>
1122   getVisibleConversionFunctions() const;
1123 
1124   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
1125   /// which is a class with no user-declared constructors, no private
1126   /// or protected non-static data members, no base classes, and no virtual
1127   /// functions (C++ [dcl.init.aggr]p1).
1128   bool isAggregate() const { return data().Aggregate; }
1129 
1130   /// Whether this class has any in-class initializers
1131   /// for non-static data members (including those in anonymous unions or
1132   /// structs).
1133   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
1134 
1135   /// Whether this class or any of its subobjects has any members of
1136   /// reference type which would make value-initialization ill-formed.
1137   ///
1138   /// Per C++03 [dcl.init]p5:
1139   ///  - if T is a non-union class type without a user-declared constructor,
1140   ///    then every non-static data member and base-class component of T is
1141   ///    value-initialized [...] A program that calls for [...]
1142   ///    value-initialization of an entity of reference type is ill-formed.
1143   bool hasUninitializedReferenceMember() const {
1144     return !isUnion() && !hasUserDeclaredConstructor() &&
1145            data().HasUninitializedReferenceMember;
1146   }
1147 
1148   /// Whether this class is a POD-type (C++ [class]p4)
1149   ///
1150   /// For purposes of this function a class is POD if it is an aggregate
1151   /// that has no non-static non-POD data members, no reference data
1152   /// members, no user-defined copy assignment operator and no
1153   /// user-defined destructor.
1154   ///
1155   /// Note that this is the C++ TR1 definition of POD.
1156   bool isPOD() const { return data().PlainOldData; }
1157 
1158   /// True if this class is C-like, without C++-specific features, e.g.
1159   /// it contains only public fields, no bases, tag kind is not 'class', etc.
1160   bool isCLike() const;
1161 
1162   /// Determine whether this is an empty class in the sense of
1163   /// (C++11 [meta.unary.prop]).
1164   ///
1165   /// The CXXRecordDecl is a class type, but not a union type,
1166   /// with no non-static data members other than bit-fields of length 0,
1167   /// no virtual member functions, no virtual base classes,
1168   /// and no base class B for which is_empty<B>::value is false.
1169   ///
1170   /// \note This does NOT include a check for union-ness.
1171   bool isEmpty() const { return data().Empty; }
1172   /// Marks this record as empty. This is used by DWARFASTParserClang
1173   /// when parsing records with empty fields having [[no_unique_address]]
1174   /// attribute
1175   void markEmpty() { data().Empty = true; }
1176 
1177   void setInitMethod(bool Val) { data().HasInitMethod = Val; }
1178   bool hasInitMethod() const { return data().HasInitMethod; }
1179 
1180   bool hasPrivateFields() const {
1181     return data().HasPrivateFields;
1182   }
1183 
1184   bool hasProtectedFields() const {
1185     return data().HasProtectedFields;
1186   }
1187 
1188   /// Determine whether this class has direct non-static data members.
1189   bool hasDirectFields() const {
1190     auto &D = data();
1191     return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields;
1192   }
1193 
1194   /// Whether this class is polymorphic (C++ [class.virtual]),
1195   /// which means that the class contains or inherits a virtual function.
1196   bool isPolymorphic() const { return data().Polymorphic; }
1197 
1198   /// Determine whether this class has a pure virtual function.
1199   ///
1200   /// The class is abstract per (C++ [class.abstract]p2) if it declares
1201   /// a pure virtual function or inherits a pure virtual function that is
1202   /// not overridden.
1203   bool isAbstract() const { return data().Abstract; }
1204 
1205   /// Determine whether this class is standard-layout per
1206   /// C++ [class]p7.
1207   bool isStandardLayout() const { return data().IsStandardLayout; }
1208 
1209   /// Determine whether this class was standard-layout per
1210   /// C++11 [class]p7, specifically using the C++11 rules without any DRs.
1211   bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; }
1212 
1213   /// Determine whether this class, or any of its class subobjects,
1214   /// contains a mutable field.
1215   bool hasMutableFields() const { return data().HasMutableFields; }
1216 
1217   /// Determine whether this class has any variant members.
1218   bool hasVariantMembers() const { return data().HasVariantMembers; }
1219 
1220   /// Determine whether this class has a trivial default constructor
1221   /// (C++11 [class.ctor]p5).
1222   bool hasTrivialDefaultConstructor() const {
1223     return hasDefaultConstructor() &&
1224            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
1225   }
1226 
1227   /// Determine whether this class has a non-trivial default constructor
1228   /// (C++11 [class.ctor]p5).
1229   bool hasNonTrivialDefaultConstructor() const {
1230     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
1231            (needsImplicitDefaultConstructor() &&
1232             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
1233   }
1234 
1235   /// Determine whether this class has at least one constexpr constructor
1236   /// other than the copy or move constructors.
1237   bool hasConstexprNonCopyMoveConstructor() const {
1238     return data().HasConstexprNonCopyMoveConstructor ||
1239            (needsImplicitDefaultConstructor() &&
1240             defaultedDefaultConstructorIsConstexpr());
1241   }
1242 
1243   /// Determine whether a defaulted default constructor for this class
1244   /// would be constexpr.
1245   bool defaultedDefaultConstructorIsConstexpr() const {
1246     return data().DefaultedDefaultConstructorIsConstexpr &&
1247            (!isUnion() || hasInClassInitializer() || !hasVariantMembers() ||
1248             getLangOpts().CPlusPlus20);
1249   }
1250 
1251   /// Determine whether this class has a constexpr default constructor.
1252   bool hasConstexprDefaultConstructor() const {
1253     return data().HasConstexprDefaultConstructor ||
1254            (needsImplicitDefaultConstructor() &&
1255             defaultedDefaultConstructorIsConstexpr());
1256   }
1257 
1258   /// Determine whether this class has a trivial copy constructor
1259   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1260   bool hasTrivialCopyConstructor() const {
1261     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
1262   }
1263 
1264   bool hasTrivialCopyConstructorForCall() const {
1265     return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor;
1266   }
1267 
1268   /// Determine whether this class has a non-trivial copy constructor
1269   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
1270   bool hasNonTrivialCopyConstructor() const {
1271     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
1272            !hasTrivialCopyConstructor();
1273   }
1274 
1275   bool hasNonTrivialCopyConstructorForCall() const {
1276     return (data().DeclaredNonTrivialSpecialMembersForCall &
1277             SMF_CopyConstructor) ||
1278            !hasTrivialCopyConstructorForCall();
1279   }
1280 
1281   /// Determine whether this class has a trivial move constructor
1282   /// (C++11 [class.copy]p12)
1283   bool hasTrivialMoveConstructor() const {
1284     return hasMoveConstructor() &&
1285            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
1286   }
1287 
1288   bool hasTrivialMoveConstructorForCall() const {
1289     return hasMoveConstructor() &&
1290            (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor);
1291   }
1292 
1293   /// Determine whether this class has a non-trivial move constructor
1294   /// (C++11 [class.copy]p12)
1295   bool hasNonTrivialMoveConstructor() const {
1296     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
1297            (needsImplicitMoveConstructor() &&
1298             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
1299   }
1300 
1301   bool hasNonTrivialMoveConstructorForCall() const {
1302     return (data().DeclaredNonTrivialSpecialMembersForCall &
1303             SMF_MoveConstructor) ||
1304            (needsImplicitMoveConstructor() &&
1305             !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor));
1306   }
1307 
1308   /// Determine whether this class has a trivial copy assignment operator
1309   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
1310   bool hasTrivialCopyAssignment() const {
1311     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
1312   }
1313 
1314   /// Determine whether this class has a non-trivial copy assignment
1315   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
1316   bool hasNonTrivialCopyAssignment() const {
1317     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
1318            !hasTrivialCopyAssignment();
1319   }
1320 
1321   /// Determine whether this class has a trivial move assignment operator
1322   /// (C++11 [class.copy]p25)
1323   bool hasTrivialMoveAssignment() const {
1324     return hasMoveAssignment() &&
1325            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
1326   }
1327 
1328   /// Determine whether this class has a non-trivial move assignment
1329   /// operator (C++11 [class.copy]p25)
1330   bool hasNonTrivialMoveAssignment() const {
1331     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
1332            (needsImplicitMoveAssignment() &&
1333             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
1334   }
1335 
1336   /// Determine whether a defaulted default constructor for this class
1337   /// would be constexpr.
1338   bool defaultedDestructorIsConstexpr() const {
1339     return data().DefaultedDestructorIsConstexpr &&
1340            getLangOpts().CPlusPlus20;
1341   }
1342 
1343   /// Determine whether this class has a constexpr destructor.
1344   bool hasConstexprDestructor() const;
1345 
1346   /// Determine whether this class has a trivial destructor
1347   /// (C++ [class.dtor]p3)
1348   bool hasTrivialDestructor() const {
1349     return data().HasTrivialSpecialMembers & SMF_Destructor;
1350   }
1351 
1352   bool hasTrivialDestructorForCall() const {
1353     return data().HasTrivialSpecialMembersForCall & SMF_Destructor;
1354   }
1355 
1356   /// Determine whether this class has a non-trivial destructor
1357   /// (C++ [class.dtor]p3)
1358   bool hasNonTrivialDestructor() const {
1359     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
1360   }
1361 
1362   bool hasNonTrivialDestructorForCall() const {
1363     return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor);
1364   }
1365 
1366   void setHasTrivialSpecialMemberForCall() {
1367     data().HasTrivialSpecialMembersForCall =
1368         (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor);
1369   }
1370 
1371   /// Determine whether declaring a const variable with this type is ok
1372   /// per core issue 253.
1373   bool allowConstDefaultInit() const {
1374     return !data().HasUninitializedFields ||
1375            !(data().HasDefaultedDefaultConstructor ||
1376              needsImplicitDefaultConstructor());
1377   }
1378 
1379   /// Determine whether this class has a destructor which has no
1380   /// semantic effect.
1381   ///
1382   /// Any such destructor will be trivial, public, defaulted and not deleted,
1383   /// and will call only irrelevant destructors.
1384   bool hasIrrelevantDestructor() const {
1385     return data().HasIrrelevantDestructor;
1386   }
1387 
1388   /// Determine whether this class has a non-literal or/ volatile type
1389   /// non-static data member or base class.
1390   bool hasNonLiteralTypeFieldsOrBases() const {
1391     return data().HasNonLiteralTypeFieldsOrBases;
1392   }
1393 
1394   /// Determine whether this class has a using-declaration that names
1395   /// a user-declared base class constructor.
1396   bool hasInheritedConstructor() const {
1397     return data().HasInheritedConstructor;
1398   }
1399 
1400   /// Determine whether this class has a using-declaration that names
1401   /// a base class assignment operator.
1402   bool hasInheritedAssignment() const {
1403     return data().HasInheritedAssignment;
1404   }
1405 
1406   /// Determine whether this class is considered trivially copyable per
1407   /// (C++11 [class]p6).
1408   bool isTriviallyCopyable() const;
1409 
1410   /// Determine whether this class is considered trivial.
1411   ///
1412   /// C++11 [class]p6:
1413   ///    "A trivial class is a class that has a trivial default constructor and
1414   ///    is trivially copyable."
1415   bool isTrivial() const {
1416     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
1417   }
1418 
1419   /// Determine whether this class is a literal type.
1420   ///
1421   /// C++11 [basic.types]p10:
1422   ///   A class type that has all the following properties:
1423   ///     - it has a trivial destructor
1424   ///     - every constructor call and full-expression in the
1425   ///       brace-or-equal-intializers for non-static data members (if any) is
1426   ///       a constant expression.
1427   ///     - it is an aggregate type or has at least one constexpr constructor
1428   ///       or constructor template that is not a copy or move constructor, and
1429   ///     - all of its non-static data members and base classes are of literal
1430   ///       types
1431   ///
1432   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
1433   /// treating types with trivial default constructors as literal types.
1434   ///
1435   /// Only in C++17 and beyond, are lambdas literal types.
1436   bool isLiteral() const {
1437     const LangOptions &LangOpts = getLangOpts();
1438     return (LangOpts.CPlusPlus20 ? hasConstexprDestructor()
1439                                           : hasTrivialDestructor()) &&
1440            (!isLambda() || LangOpts.CPlusPlus17) &&
1441            !hasNonLiteralTypeFieldsOrBases() &&
1442            (isAggregate() || isLambda() ||
1443             hasConstexprNonCopyMoveConstructor() ||
1444             hasTrivialDefaultConstructor());
1445   }
1446 
1447   /// Determine whether this is a structural type.
1448   bool isStructural() const {
1449     return isLiteral() && data().StructuralIfLiteral;
1450   }
1451 
1452   /// Notify the class that this destructor is now selected.
1453   ///
1454   /// Important properties of the class depend on destructor properties. Since
1455   /// C++20, it is possible to have multiple destructor declarations in a class
1456   /// out of which one will be selected at the end.
1457   /// This is called separately from addedMember because it has to be deferred
1458   /// to the completion of the class.
1459   void addedSelectedDestructor(CXXDestructorDecl *DD);
1460 
1461   /// Notify the class that an eligible SMF has been added.
1462   /// This updates triviality and destructor based properties of the class accordingly.
1463   void addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind);
1464 
1465   /// If this record is an instantiation of a member class,
1466   /// retrieves the member class from which it was instantiated.
1467   ///
1468   /// This routine will return non-null for (non-templated) member
1469   /// classes of class templates. For example, given:
1470   ///
1471   /// \code
1472   /// template<typename T>
1473   /// struct X {
1474   ///   struct A { };
1475   /// };
1476   /// \endcode
1477   ///
1478   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
1479   /// whose parent is the class template specialization X<int>. For
1480   /// this declaration, getInstantiatedFromMemberClass() will return
1481   /// the CXXRecordDecl X<T>::A. When a complete definition of
1482   /// X<int>::A is required, it will be instantiated from the
1483   /// declaration returned by getInstantiatedFromMemberClass().
1484   CXXRecordDecl *getInstantiatedFromMemberClass() const;
1485 
1486   /// If this class is an instantiation of a member class of a
1487   /// class template specialization, retrieves the member specialization
1488   /// information.
1489   MemberSpecializationInfo *getMemberSpecializationInfo() const;
1490 
1491   /// Specify that this record is an instantiation of the
1492   /// member class \p RD.
1493   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
1494                                      TemplateSpecializationKind TSK);
1495 
1496   /// Retrieves the class template that is described by this
1497   /// class declaration.
1498   ///
1499   /// Every class template is represented as a ClassTemplateDecl and a
1500   /// CXXRecordDecl. The former contains template properties (such as
1501   /// the template parameter lists) while the latter contains the
1502   /// actual description of the template's
1503   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
1504   /// CXXRecordDecl that from a ClassTemplateDecl, while
1505   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
1506   /// a CXXRecordDecl.
1507   ClassTemplateDecl *getDescribedClassTemplate() const;
1508 
1509   void setDescribedClassTemplate(ClassTemplateDecl *Template);
1510 
1511   /// Determine whether this particular class is a specialization or
1512   /// instantiation of a class template or member class of a class template,
1513   /// and how it was instantiated or specialized.
1514   TemplateSpecializationKind getTemplateSpecializationKind() const;
1515 
1516   /// Set the kind of specialization or template instantiation this is.
1517   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
1518 
1519   /// Retrieve the record declaration from which this record could be
1520   /// instantiated. Returns null if this class is not a template instantiation.
1521   const CXXRecordDecl *getTemplateInstantiationPattern() const;
1522 
1523   CXXRecordDecl *getTemplateInstantiationPattern() {
1524     return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
1525                                            ->getTemplateInstantiationPattern());
1526   }
1527 
1528   /// Returns the destructor decl for this class.
1529   CXXDestructorDecl *getDestructor() const;
1530 
1531   /// Returns true if the class destructor, or any implicitly invoked
1532   /// destructors are marked noreturn.
1533   bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; }
1534 
1535   /// If the class is a local class [class.local], returns
1536   /// the enclosing function declaration.
1537   const FunctionDecl *isLocalClass() const {
1538     if (const auto *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
1539       return RD->isLocalClass();
1540 
1541     return dyn_cast<FunctionDecl>(getDeclContext());
1542   }
1543 
1544   FunctionDecl *isLocalClass() {
1545     return const_cast<FunctionDecl*>(
1546         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
1547   }
1548 
1549   /// Determine whether this dependent class is a current instantiation,
1550   /// when viewed from within the given context.
1551   bool isCurrentInstantiation(const DeclContext *CurContext) const;
1552 
1553   /// Determine whether this class is derived from the class \p Base.
1554   ///
1555   /// This routine only determines whether this class is derived from \p Base,
1556   /// but does not account for factors that may make a Derived -> Base class
1557   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1558   /// base class subobjects.
1559   ///
1560   /// \param Base the base class we are searching for.
1561   ///
1562   /// \returns true if this class is derived from Base, false otherwise.
1563   bool isDerivedFrom(const CXXRecordDecl *Base) const;
1564 
1565   /// Determine whether this class is derived from the type \p Base.
1566   ///
1567   /// This routine only determines whether this class is derived from \p Base,
1568   /// but does not account for factors that may make a Derived -> Base class
1569   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
1570   /// base class subobjects.
1571   ///
1572   /// \param Base the base class we are searching for.
1573   ///
1574   /// \param Paths will contain the paths taken from the current class to the
1575   /// given \p Base class.
1576   ///
1577   /// \returns true if this class is derived from \p Base, false otherwise.
1578   ///
1579   /// \todo add a separate parameter to configure IsDerivedFrom, rather than
1580   /// tangling input and output in \p Paths
1581   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
1582 
1583   /// Determine whether this class is virtually derived from
1584   /// the class \p Base.
1585   ///
1586   /// This routine only determines whether this class is virtually
1587   /// derived from \p Base, but does not account for factors that may
1588   /// make a Derived -> Base class ill-formed, such as
1589   /// private/protected inheritance or multiple, ambiguous base class
1590   /// subobjects.
1591   ///
1592   /// \param Base the base class we are searching for.
1593   ///
1594   /// \returns true if this class is virtually derived from Base,
1595   /// false otherwise.
1596   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
1597 
1598   /// Determine whether this class is provably not derived from
1599   /// the type \p Base.
1600   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
1601 
1602   /// Function type used by forallBases() as a callback.
1603   ///
1604   /// \param BaseDefinition the definition of the base class
1605   ///
1606   /// \returns true if this base matched the search criteria
1607   using ForallBasesCallback =
1608       llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>;
1609 
1610   /// Determines if the given callback holds for all the direct
1611   /// or indirect base classes of this type.
1612   ///
1613   /// The class itself does not count as a base class.  This routine
1614   /// returns false if the class has non-computable base classes.
1615   ///
1616   /// \param BaseMatches Callback invoked for each (direct or indirect) base
1617   /// class of this type until a call returns false.
1618   bool forallBases(ForallBasesCallback BaseMatches) const;
1619 
1620   /// Function type used by lookupInBases() to determine whether a
1621   /// specific base class subobject matches the lookup criteria.
1622   ///
1623   /// \param Specifier the base-class specifier that describes the inheritance
1624   /// from the base class we are trying to match.
1625   ///
1626   /// \param Path the current path, from the most-derived class down to the
1627   /// base named by the \p Specifier.
1628   ///
1629   /// \returns true if this base matched the search criteria, false otherwise.
1630   using BaseMatchesCallback =
1631       llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
1632                               CXXBasePath &Path)>;
1633 
1634   /// Look for entities within the base classes of this C++ class,
1635   /// transitively searching all base class subobjects.
1636   ///
1637   /// This routine uses the callback function \p BaseMatches to find base
1638   /// classes meeting some search criteria, walking all base class subobjects
1639   /// and populating the given \p Paths structure with the paths through the
1640   /// inheritance hierarchy that resulted in a match. On a successful search,
1641   /// the \p Paths structure can be queried to retrieve the matching paths and
1642   /// to determine if there were any ambiguities.
1643   ///
1644   /// \param BaseMatches callback function used to determine whether a given
1645   /// base matches the user-defined search criteria.
1646   ///
1647   /// \param Paths used to record the paths from this class to its base class
1648   /// subobjects that match the search criteria.
1649   ///
1650   /// \param LookupInDependent can be set to true to extend the search to
1651   /// dependent base classes.
1652   ///
1653   /// \returns true if there exists any path from this class to a base class
1654   /// subobject that matches the search criteria.
1655   bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths,
1656                      bool LookupInDependent = false) const;
1657 
1658   /// Base-class lookup callback that determines whether the given
1659   /// base class specifier refers to a specific class declaration.
1660   ///
1661   /// This callback can be used with \c lookupInBases() to determine whether
1662   /// a given derived class has is a base class subobject of a particular type.
1663   /// The base record pointer should refer to the canonical CXXRecordDecl of the
1664   /// base class that we are searching for.
1665   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
1666                             CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
1667 
1668   /// Base-class lookup callback that determines whether the
1669   /// given base class specifier refers to a specific class
1670   /// declaration and describes virtual derivation.
1671   ///
1672   /// This callback can be used with \c lookupInBases() to determine
1673   /// whether a given derived class has is a virtual base class
1674   /// subobject of a particular type.  The base record pointer should
1675   /// refer to the canonical CXXRecordDecl of the base class that we
1676   /// are searching for.
1677   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
1678                                    CXXBasePath &Path,
1679                                    const CXXRecordDecl *BaseRecord);
1680 
1681   /// Retrieve the final overriders for each virtual member
1682   /// function in the class hierarchy where this class is the
1683   /// most-derived class in the class hierarchy.
1684   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
1685 
1686   /// Get the indirect primary bases for this class.
1687   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
1688 
1689   /// Determine whether this class has a member with the given name, possibly
1690   /// in a non-dependent base class.
1691   ///
1692   /// No check for ambiguity is performed, so this should never be used when
1693   /// implementing language semantics, but it may be appropriate for warnings,
1694   /// static analysis, or similar.
1695   bool hasMemberName(DeclarationName N) const;
1696 
1697   /// Performs an imprecise lookup of a dependent name in this class.
1698   ///
1699   /// This function does not follow strict semantic rules and should be used
1700   /// only when lookup rules can be relaxed, e.g. indexing.
1701   std::vector<const NamedDecl *>
1702   lookupDependentName(DeclarationName Name,
1703                       llvm::function_ref<bool(const NamedDecl *ND)> Filter);
1704 
1705   /// Renders and displays an inheritance diagram
1706   /// for this C++ class and all of its base classes (transitively) using
1707   /// GraphViz.
1708   void viewInheritance(ASTContext& Context) const;
1709 
1710   /// Calculates the access of a decl that is reached
1711   /// along a path.
1712   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
1713                                      AccessSpecifier DeclAccess) {
1714     assert(DeclAccess != AS_none);
1715     if (DeclAccess == AS_private) return AS_none;
1716     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
1717   }
1718 
1719   /// Indicates that the declaration of a defaulted or deleted special
1720   /// member function is now complete.
1721   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
1722 
1723   void setTrivialForCallFlags(CXXMethodDecl *MD);
1724 
1725   /// Indicates that the definition of this class is now complete.
1726   void completeDefinition() override;
1727 
1728   /// Indicates that the definition of this class is now complete,
1729   /// and provides a final overrider map to help determine
1730   ///
1731   /// \param FinalOverriders The final overrider map for this class, which can
1732   /// be provided as an optimization for abstract-class checking. If NULL,
1733   /// final overriders will be computed if they are needed to complete the
1734   /// definition.
1735   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
1736 
1737   /// Determine whether this class may end up being abstract, even though
1738   /// it is not yet known to be abstract.
1739   ///
1740   /// \returns true if this class is not known to be abstract but has any
1741   /// base classes that are abstract. In this case, \c completeDefinition()
1742   /// will need to compute final overriders to determine whether the class is
1743   /// actually abstract.
1744   bool mayBeAbstract() const;
1745 
1746   /// Determine whether it's impossible for a class to be derived from this
1747   /// class. This is best-effort, and may conservatively return false.
1748   bool isEffectivelyFinal() const;
1749 
1750   /// If this is the closure type of a lambda expression, retrieve the
1751   /// number to be used for name mangling in the Itanium C++ ABI.
1752   ///
1753   /// Zero indicates that this closure type has internal linkage, so the
1754   /// mangling number does not matter, while a non-zero value indicates which
1755   /// lambda expression this is in this particular context.
1756   unsigned getLambdaManglingNumber() const {
1757     assert(isLambda() && "Not a lambda closure type!");
1758     return getLambdaData().ManglingNumber;
1759   }
1760 
1761   /// The lambda is known to has internal linkage no matter whether it has name
1762   /// mangling number.
1763   bool hasKnownLambdaInternalLinkage() const {
1764     assert(isLambda() && "Not a lambda closure type!");
1765     return getLambdaData().HasKnownInternalLinkage;
1766   }
1767 
1768   /// Retrieve the declaration that provides additional context for a
1769   /// lambda, when the normal declaration context is not specific enough.
1770   ///
1771   /// Certain contexts (default arguments of in-class function parameters and
1772   /// the initializers of data members) have separate name mangling rules for
1773   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
1774   /// the declaration in which the lambda occurs, e.g., the function parameter
1775   /// or the non-static data member. Otherwise, it returns NULL to imply that
1776   /// the declaration context suffices.
1777   Decl *getLambdaContextDecl() const;
1778 
1779   /// Retrieve the index of this lambda within the context declaration returned
1780   /// by getLambdaContextDecl().
1781   unsigned getLambdaIndexInContext() const {
1782     assert(isLambda() && "Not a lambda closure type!");
1783     return getLambdaData().IndexInContext;
1784   }
1785 
1786   /// Information about how a lambda is numbered within its context.
1787   struct LambdaNumbering {
1788     Decl *ContextDecl = nullptr;
1789     unsigned IndexInContext = 0;
1790     unsigned ManglingNumber = 0;
1791     unsigned DeviceManglingNumber = 0;
1792     bool HasKnownInternalLinkage = false;
1793   };
1794 
1795   /// Set the mangling numbers and context declaration for a lambda class.
1796   void setLambdaNumbering(LambdaNumbering Numbering);
1797 
1798   // Get the mangling numbers and context declaration for a lambda class.
1799   LambdaNumbering getLambdaNumbering() const {
1800     return {getLambdaContextDecl(), getLambdaIndexInContext(),
1801             getLambdaManglingNumber(), getDeviceLambdaManglingNumber(),
1802             hasKnownLambdaInternalLinkage()};
1803   }
1804 
1805   /// Retrieve the device side mangling number.
1806   unsigned getDeviceLambdaManglingNumber() const;
1807 
1808   /// Returns the inheritance model used for this record.
1809   MSInheritanceModel getMSInheritanceModel() const;
1810 
1811   /// Calculate what the inheritance model would be for this class.
1812   MSInheritanceModel calculateInheritanceModel() const;
1813 
1814   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
1815   /// member pointer if we can guarantee that zero is not a valid field offset,
1816   /// or if the member pointer has multiple fields.  Polymorphic classes have a
1817   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
1818   /// fields, we can use zero even if it is a valid field offset because
1819   /// null-ness testing will check the other fields.
1820   bool nullFieldOffsetIsZero() const;
1821 
1822   /// Controls when vtordisps will be emitted if this record is used as a
1823   /// virtual base.
1824   MSVtorDispMode getMSVtorDispMode() const;
1825 
1826   /// Determine whether this lambda expression was known to be dependent
1827   /// at the time it was created, even if its context does not appear to be
1828   /// dependent.
1829   ///
1830   /// This flag is a workaround for an issue with parsing, where default
1831   /// arguments are parsed before their enclosing function declarations have
1832   /// been created. This means that any lambda expressions within those
1833   /// default arguments will have as their DeclContext the context enclosing
1834   /// the function declaration, which may be non-dependent even when the
1835   /// function declaration itself is dependent. This flag indicates when we
1836   /// know that the lambda is dependent despite that.
1837   bool isDependentLambda() const {
1838     return isLambda() && getLambdaData().DependencyKind == LDK_AlwaysDependent;
1839   }
1840 
1841   bool isNeverDependentLambda() const {
1842     return isLambda() && getLambdaData().DependencyKind == LDK_NeverDependent;
1843   }
1844 
1845   unsigned getLambdaDependencyKind() const {
1846     if (!isLambda())
1847       return LDK_Unknown;
1848     return getLambdaData().DependencyKind;
1849   }
1850 
1851   TypeSourceInfo *getLambdaTypeInfo() const {
1852     return getLambdaData().MethodTyInfo;
1853   }
1854 
1855   void setLambdaTypeInfo(TypeSourceInfo *TS) {
1856     assert(DefinitionData && DefinitionData->IsLambda &&
1857            "setting lambda property of non-lambda class");
1858     auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1859     DL.MethodTyInfo = TS;
1860   }
1861 
1862   void setLambdaIsGeneric(bool IsGeneric) {
1863     assert(DefinitionData && DefinitionData->IsLambda &&
1864            "setting lambda property of non-lambda class");
1865     auto &DL = static_cast<LambdaDefinitionData &>(*DefinitionData);
1866     DL.IsGenericLambda = IsGeneric;
1867   }
1868 
1869   // Determine whether this type is an Interface Like type for
1870   // __interface inheritance purposes.
1871   bool isInterfaceLike() const;
1872 
1873   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1874   static bool classofKind(Kind K) {
1875     return K >= firstCXXRecord && K <= lastCXXRecord;
1876   }
1877   void markAbstract() { data().Abstract = true; }
1878 };
1879 
1880 /// Store information needed for an explicit specifier.
1881 /// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl.
1882 class ExplicitSpecifier {
1883   llvm::PointerIntPair<Expr *, 2, ExplicitSpecKind> ExplicitSpec{
1884       nullptr, ExplicitSpecKind::ResolvedFalse};
1885 
1886 public:
1887   ExplicitSpecifier() = default;
1888   ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind)
1889       : ExplicitSpec(Expression, Kind) {}
1890   ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); }
1891   const Expr *getExpr() const { return ExplicitSpec.getPointer(); }
1892   Expr *getExpr() { return ExplicitSpec.getPointer(); }
1893 
1894   /// Determine if the declaration had an explicit specifier of any kind.
1895   bool isSpecified() const {
1896     return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse ||
1897            ExplicitSpec.getPointer();
1898   }
1899 
1900   /// Check for equivalence of explicit specifiers.
1901   /// \return true if the explicit specifier are equivalent, false otherwise.
1902   bool isEquivalent(const ExplicitSpecifier Other) const;
1903   /// Determine whether this specifier is known to correspond to an explicit
1904   /// declaration. Returns false if the specifier is absent or has an
1905   /// expression that is value-dependent or evaluates to false.
1906   bool isExplicit() const {
1907     return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue;
1908   }
1909   /// Determine if the explicit specifier is invalid.
1910   /// This state occurs after a substitution failures.
1911   bool isInvalid() const {
1912     return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved &&
1913            !ExplicitSpec.getPointer();
1914   }
1915   void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); }
1916   void setExpr(Expr *E) { ExplicitSpec.setPointer(E); }
1917   // Retrieve the explicit specifier in the given declaration, if any.
1918   static ExplicitSpecifier getFromDecl(FunctionDecl *Function);
1919   static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) {
1920     return getFromDecl(const_cast<FunctionDecl *>(Function));
1921   }
1922   static ExplicitSpecifier Invalid() {
1923     return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved);
1924   }
1925 };
1926 
1927 /// Represents a C++ deduction guide declaration.
1928 ///
1929 /// \code
1930 /// template<typename T> struct A { A(); A(T); };
1931 /// A() -> A<int>;
1932 /// \endcode
1933 ///
1934 /// In this example, there will be an explicit deduction guide from the
1935 /// second line, and implicit deduction guide templates synthesized from
1936 /// the constructors of \c A.
1937 class CXXDeductionGuideDecl : public FunctionDecl {
1938   void anchor() override;
1939 
1940 private:
1941   CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1942                         ExplicitSpecifier ES,
1943                         const DeclarationNameInfo &NameInfo, QualType T,
1944                         TypeSourceInfo *TInfo, SourceLocation EndLocation,
1945                         CXXConstructorDecl *Ctor, DeductionCandidate Kind)
1946       : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo,
1947                      SC_None, false, false, ConstexprSpecKind::Unspecified),
1948         Ctor(Ctor), ExplicitSpec(ES) {
1949     if (EndLocation.isValid())
1950       setRangeEnd(EndLocation);
1951     setDeductionCandidateKind(Kind);
1952   }
1953 
1954   CXXConstructorDecl *Ctor;
1955   ExplicitSpecifier ExplicitSpec;
1956   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
1957 
1958 public:
1959   friend class ASTDeclReader;
1960   friend class ASTDeclWriter;
1961 
1962   static CXXDeductionGuideDecl *
1963   Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1964          ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
1965          TypeSourceInfo *TInfo, SourceLocation EndLocation,
1966          CXXConstructorDecl *Ctor = nullptr,
1967          DeductionCandidate Kind = DeductionCandidate::Normal);
1968 
1969   static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1970 
1971   ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; }
1972   const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; }
1973 
1974   /// Return true if the declaration is already resolved to be explicit.
1975   bool isExplicit() const { return ExplicitSpec.isExplicit(); }
1976 
1977   /// Get the template for which this guide performs deduction.
1978   TemplateDecl *getDeducedTemplate() const {
1979     return getDeclName().getCXXDeductionGuideTemplate();
1980   }
1981 
1982   /// Get the constructor from which this deduction guide was generated, if
1983   /// this is an implicit deduction guide.
1984   CXXConstructorDecl *getCorrespondingConstructor() const { return Ctor; }
1985 
1986   void setDeductionCandidateKind(DeductionCandidate K) {
1987     FunctionDeclBits.DeductionCandidateKind = static_cast<unsigned char>(K);
1988   }
1989 
1990   DeductionCandidate getDeductionCandidateKind() const {
1991     return static_cast<DeductionCandidate>(
1992         FunctionDeclBits.DeductionCandidateKind);
1993   }
1994 
1995   // Implement isa/cast/dyncast/etc.
1996   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1997   static bool classofKind(Kind K) { return K == CXXDeductionGuide; }
1998 };
1999 
2000 /// \brief Represents the body of a requires-expression.
2001 ///
2002 /// This decl exists merely to serve as the DeclContext for the local
2003 /// parameters of the requires expression as well as other declarations inside
2004 /// it.
2005 ///
2006 /// \code
2007 /// template<typename T> requires requires (T t) { {t++} -> regular; }
2008 /// \endcode
2009 ///
2010 /// In this example, a RequiresExpr object will be generated for the expression,
2011 /// and a RequiresExprBodyDecl will be created to hold the parameter t and the
2012 /// template argument list imposed by the compound requirement.
2013 class RequiresExprBodyDecl : public Decl, public DeclContext {
2014   RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc)
2015       : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {}
2016 
2017 public:
2018   friend class ASTDeclReader;
2019   friend class ASTDeclWriter;
2020 
2021   static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC,
2022                                       SourceLocation StartLoc);
2023 
2024   static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2025 
2026   // Implement isa/cast/dyncast/etc.
2027   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2028   static bool classofKind(Kind K) { return K == RequiresExprBody; }
2029 };
2030 
2031 /// Represents a static or instance method of a struct/union/class.
2032 ///
2033 /// In the terminology of the C++ Standard, these are the (static and
2034 /// non-static) member functions, whether virtual or not.
2035 class CXXMethodDecl : public FunctionDecl {
2036   void anchor() override;
2037 
2038 protected:
2039   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
2040                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
2041                 QualType T, TypeSourceInfo *TInfo, StorageClass SC,
2042                 bool UsesFPIntrin, bool isInline,
2043                 ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2044                 Expr *TrailingRequiresClause = nullptr)
2045       : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
2046                      isInline, ConstexprKind, TrailingRequiresClause) {
2047     if (EndLocation.isValid())
2048       setRangeEnd(EndLocation);
2049   }
2050 
2051 public:
2052   static CXXMethodDecl *
2053   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2054          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2055          StorageClass SC, bool UsesFPIntrin, bool isInline,
2056          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2057          Expr *TrailingRequiresClause = nullptr);
2058 
2059   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2060 
2061   bool isStatic() const;
2062   bool isInstance() const { return !isStatic(); }
2063 
2064   /// Returns true if the given operator is implicitly static in a record
2065   /// context.
2066   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
2067     // [class.free]p1:
2068     // Any allocation function for a class T is a static member
2069     // (even if not explicitly declared static).
2070     // [class.free]p6 Any deallocation function for a class X is a static member
2071     // (even if not explicitly declared static).
2072     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
2073            OOK == OO_Array_Delete;
2074   }
2075 
2076   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
2077   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
2078 
2079   bool isVirtual() const {
2080     CXXMethodDecl *CD = const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2081 
2082     // Member function is virtual if it is marked explicitly so, or if it is
2083     // declared in __interface -- then it is automatically pure virtual.
2084     if (CD->isVirtualAsWritten() || CD->isPure())
2085       return true;
2086 
2087     return CD->size_overridden_methods() != 0;
2088   }
2089 
2090   /// If it's possible to devirtualize a call to this method, return the called
2091   /// function. Otherwise, return null.
2092 
2093   /// \param Base The object on which this virtual function is called.
2094   /// \param IsAppleKext True if we are compiling for Apple kext.
2095   CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext);
2096 
2097   const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base,
2098                                               bool IsAppleKext) const {
2099     return const_cast<CXXMethodDecl *>(this)->getDevirtualizedMethod(
2100         Base, IsAppleKext);
2101   }
2102 
2103   /// Determine whether this is a usual deallocation function (C++
2104   /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or
2105   /// delete[] operator with a particular signature. Populates \p PreventedBy
2106   /// with the declarations of the functions of the same kind if they were the
2107   /// reason for this function returning false. This is used by
2108   /// Sema::isUsualDeallocationFunction to reconsider the answer based on the
2109   /// context.
2110   bool isUsualDeallocationFunction(
2111       SmallVectorImpl<const FunctionDecl *> &PreventedBy) const;
2112 
2113   /// Determine whether this is a copy-assignment operator, regardless
2114   /// of whether it was declared implicitly or explicitly.
2115   bool isCopyAssignmentOperator() const;
2116 
2117   /// Determine whether this is a move assignment operator.
2118   bool isMoveAssignmentOperator() const;
2119 
2120   CXXMethodDecl *getCanonicalDecl() override {
2121     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
2122   }
2123   const CXXMethodDecl *getCanonicalDecl() const {
2124     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
2125   }
2126 
2127   CXXMethodDecl *getMostRecentDecl() {
2128     return cast<CXXMethodDecl>(
2129             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
2130   }
2131   const CXXMethodDecl *getMostRecentDecl() const {
2132     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
2133   }
2134 
2135   void addOverriddenMethod(const CXXMethodDecl *MD);
2136 
2137   using method_iterator = const CXXMethodDecl *const *;
2138 
2139   method_iterator begin_overridden_methods() const;
2140   method_iterator end_overridden_methods() const;
2141   unsigned size_overridden_methods() const;
2142 
2143   using overridden_method_range = llvm::iterator_range<
2144       llvm::TinyPtrVector<const CXXMethodDecl *>::const_iterator>;
2145 
2146   overridden_method_range overridden_methods() const;
2147 
2148   /// Return the parent of this method declaration, which
2149   /// is the class in which this method is defined.
2150   const CXXRecordDecl *getParent() const {
2151     return cast<CXXRecordDecl>(FunctionDecl::getParent());
2152   }
2153 
2154   /// Return the parent of this method declaration, which
2155   /// is the class in which this method is defined.
2156   CXXRecordDecl *getParent() {
2157     return const_cast<CXXRecordDecl *>(
2158              cast<CXXRecordDecl>(FunctionDecl::getParent()));
2159   }
2160 
2161   /// Return the type of the \c this pointer.
2162   ///
2163   /// Should only be called for instance (i.e., non-static) methods. Note
2164   /// that for the call operator of a lambda closure type, this returns the
2165   /// desugared 'this' type (a pointer to the closure type), not the captured
2166   /// 'this' type.
2167   QualType getThisType() const;
2168 
2169   /// Return the type of the object pointed by \c this.
2170   ///
2171   /// See getThisType() for usage restriction.
2172   QualType getThisObjectType() const;
2173 
2174   static QualType getThisType(const FunctionProtoType *FPT,
2175                               const CXXRecordDecl *Decl);
2176 
2177   static QualType getThisObjectType(const FunctionProtoType *FPT,
2178                                     const CXXRecordDecl *Decl);
2179 
2180   Qualifiers getMethodQualifiers() const {
2181     return getType()->castAs<FunctionProtoType>()->getMethodQuals();
2182   }
2183 
2184   /// Retrieve the ref-qualifier associated with this method.
2185   ///
2186   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
2187   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
2188   /// @code
2189   /// struct X {
2190   ///   void f() &;
2191   ///   void g() &&;
2192   ///   void h();
2193   /// };
2194   /// @endcode
2195   RefQualifierKind getRefQualifier() const {
2196     return getType()->castAs<FunctionProtoType>()->getRefQualifier();
2197   }
2198 
2199   bool hasInlineBody() const;
2200 
2201   /// Determine whether this is a lambda closure type's static member
2202   /// function that is used for the result of the lambda's conversion to
2203   /// function pointer (for a lambda with no captures).
2204   ///
2205   /// The function itself, if used, will have a placeholder body that will be
2206   /// supplied by IR generation to either forward to the function call operator
2207   /// or clone the function call operator.
2208   bool isLambdaStaticInvoker() const;
2209 
2210   /// Find the method in \p RD that corresponds to this one.
2211   ///
2212   /// Find if \p RD or one of the classes it inherits from override this method.
2213   /// If so, return it. \p RD is assumed to be a subclass of the class defining
2214   /// this method (or be the class itself), unless \p MayBeBase is set to true.
2215   CXXMethodDecl *
2216   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2217                                 bool MayBeBase = false);
2218 
2219   const CXXMethodDecl *
2220   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
2221                                 bool MayBeBase = false) const {
2222     return const_cast<CXXMethodDecl *>(this)
2223               ->getCorrespondingMethodInClass(RD, MayBeBase);
2224   }
2225 
2226   /// Find if \p RD declares a function that overrides this function, and if so,
2227   /// return it. Does not search base classes.
2228   CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2229                                                        bool MayBeBase = false);
2230   const CXXMethodDecl *
2231   getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
2232                                         bool MayBeBase = false) const {
2233     return const_cast<CXXMethodDecl *>(this)
2234         ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase);
2235   }
2236 
2237   // Implement isa/cast/dyncast/etc.
2238   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2239   static bool classofKind(Kind K) {
2240     return K >= firstCXXMethod && K <= lastCXXMethod;
2241   }
2242 };
2243 
2244 /// Represents a C++ base or member initializer.
2245 ///
2246 /// This is part of a constructor initializer that
2247 /// initializes one non-static member variable or one base class. For
2248 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
2249 /// initializers:
2250 ///
2251 /// \code
2252 /// class A { };
2253 /// class B : public A {
2254 ///   float f;
2255 /// public:
2256 ///   B(A& a) : A(a), f(3.14159) { }
2257 /// };
2258 /// \endcode
2259 class CXXCtorInitializer final {
2260   /// Either the base class name/delegating constructor type (stored as
2261   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
2262   /// (IndirectFieldDecl*) being initialized.
2263   llvm::PointerUnion<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
2264       Initializee;
2265 
2266   /// The argument used to initialize the base or member, which may
2267   /// end up constructing an object (when multiple arguments are involved).
2268   Stmt *Init;
2269 
2270   /// The source location for the field name or, for a base initializer
2271   /// pack expansion, the location of the ellipsis.
2272   ///
2273   /// In the case of a delegating
2274   /// constructor, it will still include the type's source location as the
2275   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
2276   SourceLocation MemberOrEllipsisLocation;
2277 
2278   /// Location of the left paren of the ctor-initializer.
2279   SourceLocation LParenLoc;
2280 
2281   /// Location of the right paren of the ctor-initializer.
2282   SourceLocation RParenLoc;
2283 
2284   /// If the initializee is a type, whether that type makes this
2285   /// a delegating initialization.
2286   unsigned IsDelegating : 1;
2287 
2288   /// If the initializer is a base initializer, this keeps track
2289   /// of whether the base is virtual or not.
2290   unsigned IsVirtual : 1;
2291 
2292   /// Whether or not the initializer is explicitly written
2293   /// in the sources.
2294   unsigned IsWritten : 1;
2295 
2296   /// If IsWritten is true, then this number keeps track of the textual order
2297   /// of this initializer in the original sources, counting from 0.
2298   unsigned SourceOrder : 13;
2299 
2300 public:
2301   /// Creates a new base-class initializer.
2302   explicit
2303   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
2304                      SourceLocation L, Expr *Init, SourceLocation R,
2305                      SourceLocation EllipsisLoc);
2306 
2307   /// Creates a new member initializer.
2308   explicit
2309   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
2310                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2311                      SourceLocation R);
2312 
2313   /// Creates a new anonymous field initializer.
2314   explicit
2315   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
2316                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
2317                      SourceLocation R);
2318 
2319   /// Creates a new delegating initializer.
2320   explicit
2321   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
2322                      SourceLocation L, Expr *Init, SourceLocation R);
2323 
2324   /// \return Unique reproducible object identifier.
2325   int64_t getID(const ASTContext &Context) const;
2326 
2327   /// Determine whether this initializer is initializing a base class.
2328   bool isBaseInitializer() const {
2329     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
2330   }
2331 
2332   /// Determine whether this initializer is initializing a non-static
2333   /// data member.
2334   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
2335 
2336   bool isAnyMemberInitializer() const {
2337     return isMemberInitializer() || isIndirectMemberInitializer();
2338   }
2339 
2340   bool isIndirectMemberInitializer() const {
2341     return Initializee.is<IndirectFieldDecl*>();
2342   }
2343 
2344   /// Determine whether this initializer is an implicit initializer
2345   /// generated for a field with an initializer defined on the member
2346   /// declaration.
2347   ///
2348   /// In-class member initializers (also known as "non-static data member
2349   /// initializations", NSDMIs) were introduced in C++11.
2350   bool isInClassMemberInitializer() const {
2351     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
2352   }
2353 
2354   /// Determine whether this initializer is creating a delegating
2355   /// constructor.
2356   bool isDelegatingInitializer() const {
2357     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
2358   }
2359 
2360   /// Determine whether this initializer is a pack expansion.
2361   bool isPackExpansion() const {
2362     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
2363   }
2364 
2365   // For a pack expansion, returns the location of the ellipsis.
2366   SourceLocation getEllipsisLoc() const {
2367     if (!isPackExpansion())
2368       return {};
2369     return MemberOrEllipsisLocation;
2370   }
2371 
2372   /// If this is a base class initializer, returns the type of the
2373   /// base class with location information. Otherwise, returns an NULL
2374   /// type location.
2375   TypeLoc getBaseClassLoc() const;
2376 
2377   /// If this is a base class initializer, returns the type of the base class.
2378   /// Otherwise, returns null.
2379   const Type *getBaseClass() const;
2380 
2381   /// Returns whether the base is virtual or not.
2382   bool isBaseVirtual() const {
2383     assert(isBaseInitializer() && "Must call this on base initializer!");
2384 
2385     return IsVirtual;
2386   }
2387 
2388   /// Returns the declarator information for a base class or delegating
2389   /// initializer.
2390   TypeSourceInfo *getTypeSourceInfo() const {
2391     return Initializee.dyn_cast<TypeSourceInfo *>();
2392   }
2393 
2394   /// If this is a member initializer, returns the declaration of the
2395   /// non-static data member being initialized. Otherwise, returns null.
2396   FieldDecl *getMember() const {
2397     if (isMemberInitializer())
2398       return Initializee.get<FieldDecl*>();
2399     return nullptr;
2400   }
2401 
2402   FieldDecl *getAnyMember() const {
2403     if (isMemberInitializer())
2404       return Initializee.get<FieldDecl*>();
2405     if (isIndirectMemberInitializer())
2406       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
2407     return nullptr;
2408   }
2409 
2410   IndirectFieldDecl *getIndirectMember() const {
2411     if (isIndirectMemberInitializer())
2412       return Initializee.get<IndirectFieldDecl*>();
2413     return nullptr;
2414   }
2415 
2416   SourceLocation getMemberLocation() const {
2417     return MemberOrEllipsisLocation;
2418   }
2419 
2420   /// Determine the source location of the initializer.
2421   SourceLocation getSourceLocation() const;
2422 
2423   /// Determine the source range covering the entire initializer.
2424   SourceRange getSourceRange() const LLVM_READONLY;
2425 
2426   /// Determine whether this initializer is explicitly written
2427   /// in the source code.
2428   bool isWritten() const { return IsWritten; }
2429 
2430   /// Return the source position of the initializer, counting from 0.
2431   /// If the initializer was implicit, -1 is returned.
2432   int getSourceOrder() const {
2433     return IsWritten ? static_cast<int>(SourceOrder) : -1;
2434   }
2435 
2436   /// Set the source order of this initializer.
2437   ///
2438   /// This can only be called once for each initializer; it cannot be called
2439   /// on an initializer having a positive number of (implicit) array indices.
2440   ///
2441   /// This assumes that the initializer was written in the source code, and
2442   /// ensures that isWritten() returns true.
2443   void setSourceOrder(int Pos) {
2444     assert(!IsWritten &&
2445            "setSourceOrder() used on implicit initializer");
2446     assert(SourceOrder == 0 &&
2447            "calling twice setSourceOrder() on the same initializer");
2448     assert(Pos >= 0 &&
2449            "setSourceOrder() used to make an initializer implicit");
2450     IsWritten = true;
2451     SourceOrder = static_cast<unsigned>(Pos);
2452   }
2453 
2454   SourceLocation getLParenLoc() const { return LParenLoc; }
2455   SourceLocation getRParenLoc() const { return RParenLoc; }
2456 
2457   /// Get the initializer.
2458   Expr *getInit() const { return static_cast<Expr *>(Init); }
2459 };
2460 
2461 /// Description of a constructor that was inherited from a base class.
2462 class InheritedConstructor {
2463   ConstructorUsingShadowDecl *Shadow = nullptr;
2464   CXXConstructorDecl *BaseCtor = nullptr;
2465 
2466 public:
2467   InheritedConstructor() = default;
2468   InheritedConstructor(ConstructorUsingShadowDecl *Shadow,
2469                        CXXConstructorDecl *BaseCtor)
2470       : Shadow(Shadow), BaseCtor(BaseCtor) {}
2471 
2472   explicit operator bool() const { return Shadow; }
2473 
2474   ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; }
2475   CXXConstructorDecl *getConstructor() const { return BaseCtor; }
2476 };
2477 
2478 /// Represents a C++ constructor within a class.
2479 ///
2480 /// For example:
2481 ///
2482 /// \code
2483 /// class X {
2484 /// public:
2485 ///   explicit X(int); // represented by a CXXConstructorDecl.
2486 /// };
2487 /// \endcode
2488 class CXXConstructorDecl final
2489     : public CXXMethodDecl,
2490       private llvm::TrailingObjects<CXXConstructorDecl, InheritedConstructor,
2491                                     ExplicitSpecifier> {
2492   // This class stores some data in DeclContext::CXXConstructorDeclBits
2493   // to save some space. Use the provided accessors to access it.
2494 
2495   /// \name Support for base and member initializers.
2496   /// \{
2497   /// The arguments used to initialize the base or member.
2498   LazyCXXCtorInitializersPtr CtorInitializers;
2499 
2500   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2501                      const DeclarationNameInfo &NameInfo, QualType T,
2502                      TypeSourceInfo *TInfo, ExplicitSpecifier ES,
2503                      bool UsesFPIntrin, bool isInline,
2504                      bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2505                      InheritedConstructor Inherited,
2506                      Expr *TrailingRequiresClause);
2507 
2508   void anchor() override;
2509 
2510   size_t numTrailingObjects(OverloadToken<InheritedConstructor>) const {
2511     return CXXConstructorDeclBits.IsInheritingConstructor;
2512   }
2513   size_t numTrailingObjects(OverloadToken<ExplicitSpecifier>) const {
2514     return CXXConstructorDeclBits.HasTrailingExplicitSpecifier;
2515   }
2516 
2517   ExplicitSpecifier getExplicitSpecifierInternal() const {
2518     if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier)
2519       return *getTrailingObjects<ExplicitSpecifier>();
2520     return ExplicitSpecifier(
2521         nullptr, CXXConstructorDeclBits.IsSimpleExplicit
2522                      ? ExplicitSpecKind::ResolvedTrue
2523                      : ExplicitSpecKind::ResolvedFalse);
2524   }
2525 
2526   enum TrailingAllocKind {
2527     TAKInheritsConstructor = 1,
2528     TAKHasTailExplicit = 1 << 1,
2529   };
2530 
2531   uint64_t getTrailingAllocKind() const {
2532     return numTrailingObjects(OverloadToken<InheritedConstructor>()) |
2533            (numTrailingObjects(OverloadToken<ExplicitSpecifier>()) << 1);
2534   }
2535 
2536 public:
2537   friend class ASTDeclReader;
2538   friend class ASTDeclWriter;
2539   friend TrailingObjects;
2540 
2541   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID,
2542                                                 uint64_t AllocKind);
2543   static CXXConstructorDecl *
2544   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2545          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2546          ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline,
2547          bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2548          InheritedConstructor Inherited = InheritedConstructor(),
2549          Expr *TrailingRequiresClause = nullptr);
2550 
2551   void setExplicitSpecifier(ExplicitSpecifier ES) {
2552     assert((!ES.getExpr() ||
2553             CXXConstructorDeclBits.HasTrailingExplicitSpecifier) &&
2554            "cannot set this explicit specifier. no trail-allocated space for "
2555            "explicit");
2556     if (ES.getExpr())
2557       *getCanonicalDecl()->getTrailingObjects<ExplicitSpecifier>() = ES;
2558     else
2559       CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit();
2560   }
2561 
2562   ExplicitSpecifier getExplicitSpecifier() {
2563     return getCanonicalDecl()->getExplicitSpecifierInternal();
2564   }
2565   const ExplicitSpecifier getExplicitSpecifier() const {
2566     return getCanonicalDecl()->getExplicitSpecifierInternal();
2567   }
2568 
2569   /// Return true if the declaration is already resolved to be explicit.
2570   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2571 
2572   /// Iterates through the member/base initializer list.
2573   using init_iterator = CXXCtorInitializer **;
2574 
2575   /// Iterates through the member/base initializer list.
2576   using init_const_iterator = CXXCtorInitializer *const *;
2577 
2578   using init_range = llvm::iterator_range<init_iterator>;
2579   using init_const_range = llvm::iterator_range<init_const_iterator>;
2580 
2581   init_range inits() { return init_range(init_begin(), init_end()); }
2582   init_const_range inits() const {
2583     return init_const_range(init_begin(), init_end());
2584   }
2585 
2586   /// Retrieve an iterator to the first initializer.
2587   init_iterator init_begin() {
2588     const auto *ConstThis = this;
2589     return const_cast<init_iterator>(ConstThis->init_begin());
2590   }
2591 
2592   /// Retrieve an iterator to the first initializer.
2593   init_const_iterator init_begin() const;
2594 
2595   /// Retrieve an iterator past the last initializer.
2596   init_iterator       init_end()       {
2597     return init_begin() + getNumCtorInitializers();
2598   }
2599 
2600   /// Retrieve an iterator past the last initializer.
2601   init_const_iterator init_end() const {
2602     return init_begin() + getNumCtorInitializers();
2603   }
2604 
2605   using init_reverse_iterator = std::reverse_iterator<init_iterator>;
2606   using init_const_reverse_iterator =
2607       std::reverse_iterator<init_const_iterator>;
2608 
2609   init_reverse_iterator init_rbegin() {
2610     return init_reverse_iterator(init_end());
2611   }
2612   init_const_reverse_iterator init_rbegin() const {
2613     return init_const_reverse_iterator(init_end());
2614   }
2615 
2616   init_reverse_iterator init_rend() {
2617     return init_reverse_iterator(init_begin());
2618   }
2619   init_const_reverse_iterator init_rend() const {
2620     return init_const_reverse_iterator(init_begin());
2621   }
2622 
2623   /// Determine the number of arguments used to initialize the member
2624   /// or base.
2625   unsigned getNumCtorInitializers() const {
2626       return CXXConstructorDeclBits.NumCtorInitializers;
2627   }
2628 
2629   void setNumCtorInitializers(unsigned numCtorInitializers) {
2630     CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers;
2631     // This assert added because NumCtorInitializers is stored
2632     // in CXXConstructorDeclBits as a bitfield and its width has
2633     // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields.
2634     assert(CXXConstructorDeclBits.NumCtorInitializers ==
2635            numCtorInitializers && "NumCtorInitializers overflow!");
2636   }
2637 
2638   void setCtorInitializers(CXXCtorInitializer **Initializers) {
2639     CtorInitializers = Initializers;
2640   }
2641 
2642   /// Determine whether this constructor is a delegating constructor.
2643   bool isDelegatingConstructor() const {
2644     return (getNumCtorInitializers() == 1) &&
2645            init_begin()[0]->isDelegatingInitializer();
2646   }
2647 
2648   /// When this constructor delegates to another, retrieve the target.
2649   CXXConstructorDecl *getTargetConstructor() const;
2650 
2651   /// Whether this constructor is a default
2652   /// constructor (C++ [class.ctor]p5), which can be used to
2653   /// default-initialize a class of this type.
2654   bool isDefaultConstructor() const;
2655 
2656   /// Whether this constructor is a copy constructor (C++ [class.copy]p2,
2657   /// which can be used to copy the class.
2658   ///
2659   /// \p TypeQuals will be set to the qualifiers on the
2660   /// argument type. For example, \p TypeQuals would be set to \c
2661   /// Qualifiers::Const for the following copy constructor:
2662   ///
2663   /// \code
2664   /// class X {
2665   /// public:
2666   ///   X(const X&);
2667   /// };
2668   /// \endcode
2669   bool isCopyConstructor(unsigned &TypeQuals) const;
2670 
2671   /// Whether this constructor is a copy
2672   /// constructor (C++ [class.copy]p2, which can be used to copy the
2673   /// class.
2674   bool isCopyConstructor() const {
2675     unsigned TypeQuals = 0;
2676     return isCopyConstructor(TypeQuals);
2677   }
2678 
2679   /// Determine whether this constructor is a move constructor
2680   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2681   ///
2682   /// \param TypeQuals If this constructor is a move constructor, will be set
2683   /// to the type qualifiers on the referent of the first parameter's type.
2684   bool isMoveConstructor(unsigned &TypeQuals) const;
2685 
2686   /// Determine whether this constructor is a move constructor
2687   /// (C++11 [class.copy]p3), which can be used to move values of the class.
2688   bool isMoveConstructor() const {
2689     unsigned TypeQuals = 0;
2690     return isMoveConstructor(TypeQuals);
2691   }
2692 
2693   /// Determine whether this is a copy or move constructor.
2694   ///
2695   /// \param TypeQuals Will be set to the type qualifiers on the reference
2696   /// parameter, if in fact this is a copy or move constructor.
2697   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
2698 
2699   /// Determine whether this a copy or move constructor.
2700   bool isCopyOrMoveConstructor() const {
2701     unsigned Quals;
2702     return isCopyOrMoveConstructor(Quals);
2703   }
2704 
2705   /// Whether this constructor is a
2706   /// converting constructor (C++ [class.conv.ctor]), which can be
2707   /// used for user-defined conversions.
2708   bool isConvertingConstructor(bool AllowExplicit) const;
2709 
2710   /// Determine whether this is a member template specialization that
2711   /// would copy the object to itself. Such constructors are never used to copy
2712   /// an object.
2713   bool isSpecializationCopyingObject() const;
2714 
2715   /// Determine whether this is an implicit constructor synthesized to
2716   /// model a call to a constructor inherited from a base class.
2717   bool isInheritingConstructor() const {
2718     return CXXConstructorDeclBits.IsInheritingConstructor;
2719   }
2720 
2721   /// State that this is an implicit constructor synthesized to
2722   /// model a call to a constructor inherited from a base class.
2723   void setInheritingConstructor(bool isIC = true) {
2724     CXXConstructorDeclBits.IsInheritingConstructor = isIC;
2725   }
2726 
2727   /// Get the constructor that this inheriting constructor is based on.
2728   InheritedConstructor getInheritedConstructor() const {
2729     return isInheritingConstructor() ?
2730       *getTrailingObjects<InheritedConstructor>() : InheritedConstructor();
2731   }
2732 
2733   CXXConstructorDecl *getCanonicalDecl() override {
2734     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
2735   }
2736   const CXXConstructorDecl *getCanonicalDecl() const {
2737     return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
2738   }
2739 
2740   // Implement isa/cast/dyncast/etc.
2741   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2742   static bool classofKind(Kind K) { return K == CXXConstructor; }
2743 };
2744 
2745 /// Represents a C++ destructor within a class.
2746 ///
2747 /// For example:
2748 ///
2749 /// \code
2750 /// class X {
2751 /// public:
2752 ///   ~X(); // represented by a CXXDestructorDecl.
2753 /// };
2754 /// \endcode
2755 class CXXDestructorDecl : public CXXMethodDecl {
2756   friend class ASTDeclReader;
2757   friend class ASTDeclWriter;
2758 
2759   // FIXME: Don't allocate storage for these except in the first declaration
2760   // of a virtual destructor.
2761   FunctionDecl *OperatorDelete = nullptr;
2762   Expr *OperatorDeleteThisArg = nullptr;
2763 
2764   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2765                     const DeclarationNameInfo &NameInfo, QualType T,
2766                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2767                     bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
2768                     Expr *TrailingRequiresClause = nullptr)
2769       : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
2770                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2771                       SourceLocation(), TrailingRequiresClause) {
2772     setImplicit(isImplicitlyDeclared);
2773   }
2774 
2775   void anchor() override;
2776 
2777 public:
2778   static CXXDestructorDecl *
2779   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2780          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2781          bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared,
2782          ConstexprSpecKind ConstexprKind,
2783          Expr *TrailingRequiresClause = nullptr);
2784   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
2785 
2786   void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg);
2787 
2788   const FunctionDecl *getOperatorDelete() const {
2789     return getCanonicalDecl()->OperatorDelete;
2790   }
2791 
2792   Expr *getOperatorDeleteThisArg() const {
2793     return getCanonicalDecl()->OperatorDeleteThisArg;
2794   }
2795 
2796   CXXDestructorDecl *getCanonicalDecl() override {
2797     return cast<CXXDestructorDecl>(FunctionDecl::getCanonicalDecl());
2798   }
2799   const CXXDestructorDecl *getCanonicalDecl() const {
2800     return const_cast<CXXDestructorDecl*>(this)->getCanonicalDecl();
2801   }
2802 
2803   // Implement isa/cast/dyncast/etc.
2804   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2805   static bool classofKind(Kind K) { return K == CXXDestructor; }
2806 };
2807 
2808 /// Represents a C++ conversion function within a class.
2809 ///
2810 /// For example:
2811 ///
2812 /// \code
2813 /// class X {
2814 /// public:
2815 ///   operator bool();
2816 /// };
2817 /// \endcode
2818 class CXXConversionDecl : public CXXMethodDecl {
2819   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2820                     const DeclarationNameInfo &NameInfo, QualType T,
2821                     TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline,
2822                     ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
2823                     SourceLocation EndLocation,
2824                     Expr *TrailingRequiresClause = nullptr)
2825       : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
2826                       SC_None, UsesFPIntrin, isInline, ConstexprKind,
2827                       EndLocation, TrailingRequiresClause),
2828         ExplicitSpec(ES) {}
2829   void anchor() override;
2830 
2831   ExplicitSpecifier ExplicitSpec;
2832 
2833 public:
2834   friend class ASTDeclReader;
2835   friend class ASTDeclWriter;
2836 
2837   static CXXConversionDecl *
2838   Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2839          const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2840          bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES,
2841          ConstexprSpecKind ConstexprKind, SourceLocation EndLocation,
2842          Expr *TrailingRequiresClause = nullptr);
2843   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2844 
2845   ExplicitSpecifier getExplicitSpecifier() {
2846     return getCanonicalDecl()->ExplicitSpec;
2847   }
2848 
2849   const ExplicitSpecifier getExplicitSpecifier() const {
2850     return getCanonicalDecl()->ExplicitSpec;
2851   }
2852 
2853   /// Return true if the declaration is already resolved to be explicit.
2854   bool isExplicit() const { return getExplicitSpecifier().isExplicit(); }
2855   void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; }
2856 
2857   /// Returns the type that this conversion function is converting to.
2858   QualType getConversionType() const {
2859     return getType()->castAs<FunctionType>()->getReturnType();
2860   }
2861 
2862   /// Determine whether this conversion function is a conversion from
2863   /// a lambda closure type to a block pointer.
2864   bool isLambdaToBlockPointerConversion() const;
2865 
2866   CXXConversionDecl *getCanonicalDecl() override {
2867     return cast<CXXConversionDecl>(FunctionDecl::getCanonicalDecl());
2868   }
2869   const CXXConversionDecl *getCanonicalDecl() const {
2870     return const_cast<CXXConversionDecl*>(this)->getCanonicalDecl();
2871   }
2872 
2873   // Implement isa/cast/dyncast/etc.
2874   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2875   static bool classofKind(Kind K) { return K == CXXConversion; }
2876 };
2877 
2878 /// Represents a linkage specification.
2879 ///
2880 /// For example:
2881 /// \code
2882 ///   extern "C" void foo();
2883 /// \endcode
2884 class LinkageSpecDecl : public Decl, public DeclContext {
2885   virtual void anchor();
2886   // This class stores some data in DeclContext::LinkageSpecDeclBits to save
2887   // some space. Use the provided accessors to access it.
2888 public:
2889   /// Represents the language in a linkage specification.
2890   ///
2891   /// The values are part of the serialization ABI for
2892   /// ASTs and cannot be changed without altering that ABI.
2893   enum LanguageIDs { lang_c = 1, lang_cxx = 2 };
2894 
2895 private:
2896   /// The source location for the extern keyword.
2897   SourceLocation ExternLoc;
2898 
2899   /// The source location for the right brace (if valid).
2900   SourceLocation RBraceLoc;
2901 
2902   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2903                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces);
2904 
2905 public:
2906   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
2907                                  SourceLocation ExternLoc,
2908                                  SourceLocation LangLoc, LanguageIDs Lang,
2909                                  bool HasBraces);
2910   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2911 
2912   /// Return the language specified by this linkage specification.
2913   LanguageIDs getLanguage() const {
2914     return static_cast<LanguageIDs>(LinkageSpecDeclBits.Language);
2915   }
2916 
2917   /// Set the language specified by this linkage specification.
2918   void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; }
2919 
2920   /// Determines whether this linkage specification had braces in
2921   /// its syntactic form.
2922   bool hasBraces() const {
2923     assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces);
2924     return LinkageSpecDeclBits.HasBraces;
2925   }
2926 
2927   SourceLocation getExternLoc() const { return ExternLoc; }
2928   SourceLocation getRBraceLoc() const { return RBraceLoc; }
2929   void setExternLoc(SourceLocation L) { ExternLoc = L; }
2930   void setRBraceLoc(SourceLocation L) {
2931     RBraceLoc = L;
2932     LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid();
2933   }
2934 
2935   SourceLocation getEndLoc() const LLVM_READONLY {
2936     if (hasBraces())
2937       return getRBraceLoc();
2938     // No braces: get the end location of the (only) declaration in context
2939     // (if present).
2940     return decls_empty() ? getLocation() : decls_begin()->getEndLoc();
2941   }
2942 
2943   SourceRange getSourceRange() const override LLVM_READONLY {
2944     return SourceRange(ExternLoc, getEndLoc());
2945   }
2946 
2947   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2948   static bool classofKind(Kind K) { return K == LinkageSpec; }
2949 
2950   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
2951     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
2952   }
2953 
2954   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
2955     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
2956   }
2957 };
2958 
2959 /// Represents C++ using-directive.
2960 ///
2961 /// For example:
2962 /// \code
2963 ///    using namespace std;
2964 /// \endcode
2965 ///
2966 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
2967 /// artificial names for all using-directives in order to store
2968 /// them in DeclContext effectively.
2969 class UsingDirectiveDecl : public NamedDecl {
2970   /// The location of the \c using keyword.
2971   SourceLocation UsingLoc;
2972 
2973   /// The location of the \c namespace keyword.
2974   SourceLocation NamespaceLoc;
2975 
2976   /// The nested-name-specifier that precedes the namespace.
2977   NestedNameSpecifierLoc QualifierLoc;
2978 
2979   /// The namespace nominated by this using-directive.
2980   NamedDecl *NominatedNamespace;
2981 
2982   /// Enclosing context containing both using-directive and nominated
2983   /// namespace.
2984   DeclContext *CommonAncestor;
2985 
2986   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
2987                      SourceLocation NamespcLoc,
2988                      NestedNameSpecifierLoc QualifierLoc,
2989                      SourceLocation IdentLoc,
2990                      NamedDecl *Nominated,
2991                      DeclContext *CommonAncestor)
2992       : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
2993         NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
2994         NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {}
2995 
2996   /// Returns special DeclarationName used by using-directives.
2997   ///
2998   /// This is only used by DeclContext for storing UsingDirectiveDecls in
2999   /// its lookup structure.
3000   static DeclarationName getName() {
3001     return DeclarationName::getUsingDirectiveName();
3002   }
3003 
3004   void anchor() override;
3005 
3006 public:
3007   friend class ASTDeclReader;
3008 
3009   // Friend for getUsingDirectiveName.
3010   friend class DeclContext;
3011 
3012   /// Retrieve the nested-name-specifier that qualifies the
3013   /// name of the namespace, with source-location information.
3014   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3015 
3016   /// Retrieve the nested-name-specifier that qualifies the
3017   /// name of the namespace.
3018   NestedNameSpecifier *getQualifier() const {
3019     return QualifierLoc.getNestedNameSpecifier();
3020   }
3021 
3022   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
3023   const NamedDecl *getNominatedNamespaceAsWritten() const {
3024     return NominatedNamespace;
3025   }
3026 
3027   /// Returns the namespace nominated by this using-directive.
3028   NamespaceDecl *getNominatedNamespace();
3029 
3030   const NamespaceDecl *getNominatedNamespace() const {
3031     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
3032   }
3033 
3034   /// Returns the common ancestor context of this using-directive and
3035   /// its nominated namespace.
3036   DeclContext *getCommonAncestor() { return CommonAncestor; }
3037   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
3038 
3039   /// Return the location of the \c using keyword.
3040   SourceLocation getUsingLoc() const { return UsingLoc; }
3041 
3042   // FIXME: Could omit 'Key' in name.
3043   /// Returns the location of the \c namespace keyword.
3044   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
3045 
3046   /// Returns the location of this using declaration's identifier.
3047   SourceLocation getIdentLocation() const { return getLocation(); }
3048 
3049   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
3050                                     SourceLocation UsingLoc,
3051                                     SourceLocation NamespaceLoc,
3052                                     NestedNameSpecifierLoc QualifierLoc,
3053                                     SourceLocation IdentLoc,
3054                                     NamedDecl *Nominated,
3055                                     DeclContext *CommonAncestor);
3056   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3057 
3058   SourceRange getSourceRange() const override LLVM_READONLY {
3059     return SourceRange(UsingLoc, getLocation());
3060   }
3061 
3062   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3063   static bool classofKind(Kind K) { return K == UsingDirective; }
3064 };
3065 
3066 /// Represents a C++ namespace alias.
3067 ///
3068 /// For example:
3069 ///
3070 /// \code
3071 /// namespace Foo = Bar;
3072 /// \endcode
3073 class NamespaceAliasDecl : public NamedDecl,
3074                            public Redeclarable<NamespaceAliasDecl> {
3075   friend class ASTDeclReader;
3076 
3077   /// The location of the \c namespace keyword.
3078   SourceLocation NamespaceLoc;
3079 
3080   /// The location of the namespace's identifier.
3081   ///
3082   /// This is accessed by TargetNameLoc.
3083   SourceLocation IdentLoc;
3084 
3085   /// The nested-name-specifier that precedes the namespace.
3086   NestedNameSpecifierLoc QualifierLoc;
3087 
3088   /// The Decl that this alias points to, either a NamespaceDecl or
3089   /// a NamespaceAliasDecl.
3090   NamedDecl *Namespace;
3091 
3092   NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
3093                      SourceLocation NamespaceLoc, SourceLocation AliasLoc,
3094                      IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
3095                      SourceLocation IdentLoc, NamedDecl *Namespace)
3096       : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
3097         NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
3098         QualifierLoc(QualifierLoc), Namespace(Namespace) {}
3099 
3100   void anchor() override;
3101 
3102   using redeclarable_base = Redeclarable<NamespaceAliasDecl>;
3103 
3104   NamespaceAliasDecl *getNextRedeclarationImpl() override;
3105   NamespaceAliasDecl *getPreviousDeclImpl() override;
3106   NamespaceAliasDecl *getMostRecentDeclImpl() override;
3107 
3108 public:
3109   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
3110                                     SourceLocation NamespaceLoc,
3111                                     SourceLocation AliasLoc,
3112                                     IdentifierInfo *Alias,
3113                                     NestedNameSpecifierLoc QualifierLoc,
3114                                     SourceLocation IdentLoc,
3115                                     NamedDecl *Namespace);
3116 
3117   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3118 
3119   using redecl_range = redeclarable_base::redecl_range;
3120   using redecl_iterator = redeclarable_base::redecl_iterator;
3121 
3122   using redeclarable_base::redecls_begin;
3123   using redeclarable_base::redecls_end;
3124   using redeclarable_base::redecls;
3125   using redeclarable_base::getPreviousDecl;
3126   using redeclarable_base::getMostRecentDecl;
3127 
3128   NamespaceAliasDecl *getCanonicalDecl() override {
3129     return getFirstDecl();
3130   }
3131   const NamespaceAliasDecl *getCanonicalDecl() const {
3132     return getFirstDecl();
3133   }
3134 
3135   /// Retrieve the nested-name-specifier that qualifies the
3136   /// name of the namespace, with source-location information.
3137   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3138 
3139   /// Retrieve the nested-name-specifier that qualifies the
3140   /// name of the namespace.
3141   NestedNameSpecifier *getQualifier() const {
3142     return QualifierLoc.getNestedNameSpecifier();
3143   }
3144 
3145   /// Retrieve the namespace declaration aliased by this directive.
3146   NamespaceDecl *getNamespace() {
3147     if (auto *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
3148       return AD->getNamespace();
3149 
3150     return cast<NamespaceDecl>(Namespace);
3151   }
3152 
3153   const NamespaceDecl *getNamespace() const {
3154     return const_cast<NamespaceAliasDecl *>(this)->getNamespace();
3155   }
3156 
3157   /// Returns the location of the alias name, i.e. 'foo' in
3158   /// "namespace foo = ns::bar;".
3159   SourceLocation getAliasLoc() const { return getLocation(); }
3160 
3161   /// Returns the location of the \c namespace keyword.
3162   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
3163 
3164   /// Returns the location of the identifier in the named namespace.
3165   SourceLocation getTargetNameLoc() const { return IdentLoc; }
3166 
3167   /// Retrieve the namespace that this alias refers to, which
3168   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
3169   NamedDecl *getAliasedNamespace() const { return Namespace; }
3170 
3171   SourceRange getSourceRange() const override LLVM_READONLY {
3172     return SourceRange(NamespaceLoc, IdentLoc);
3173   }
3174 
3175   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3176   static bool classofKind(Kind K) { return K == NamespaceAlias; }
3177 };
3178 
3179 /// Implicit declaration of a temporary that was materialized by
3180 /// a MaterializeTemporaryExpr and lifetime-extended by a declaration
3181 class LifetimeExtendedTemporaryDecl final
3182     : public Decl,
3183       public Mergeable<LifetimeExtendedTemporaryDecl> {
3184   friend class MaterializeTemporaryExpr;
3185   friend class ASTDeclReader;
3186 
3187   Stmt *ExprWithTemporary = nullptr;
3188 
3189   /// The declaration which lifetime-extended this reference, if any.
3190   /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl.
3191   ValueDecl *ExtendingDecl = nullptr;
3192   unsigned ManglingNumber;
3193 
3194   mutable APValue *Value = nullptr;
3195 
3196   virtual void anchor();
3197 
3198   LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling)
3199       : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(),
3200              EDecl->getLocation()),
3201         ExprWithTemporary(Temp), ExtendingDecl(EDecl),
3202         ManglingNumber(Mangling) {}
3203 
3204   LifetimeExtendedTemporaryDecl(EmptyShell)
3205       : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {}
3206 
3207 public:
3208   static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec,
3209                                                unsigned Mangling) {
3210     return new (EDec->getASTContext(), EDec->getDeclContext())
3211         LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling);
3212   }
3213   static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C,
3214                                                            unsigned ID) {
3215     return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{});
3216   }
3217 
3218   ValueDecl *getExtendingDecl() { return ExtendingDecl; }
3219   const ValueDecl *getExtendingDecl() const { return ExtendingDecl; }
3220 
3221   /// Retrieve the storage duration for the materialized temporary.
3222   StorageDuration getStorageDuration() const;
3223 
3224   /// Retrieve the expression to which the temporary materialization conversion
3225   /// was applied. This isn't necessarily the initializer of the temporary due
3226   /// to the C++98 delayed materialization rules, but
3227   /// skipRValueSubobjectAdjustments can be used to find said initializer within
3228   /// the subexpression.
3229   Expr *getTemporaryExpr() { return cast<Expr>(ExprWithTemporary); }
3230   const Expr *getTemporaryExpr() const { return cast<Expr>(ExprWithTemporary); }
3231 
3232   unsigned getManglingNumber() const { return ManglingNumber; }
3233 
3234   /// Get the storage for the constant value of a materialized temporary
3235   /// of static storage duration.
3236   APValue *getOrCreateValue(bool MayCreate) const;
3237 
3238   APValue *getValue() const { return Value; }
3239 
3240   // Iterators
3241   Stmt::child_range childrenExpr() {
3242     return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3243   }
3244 
3245   Stmt::const_child_range childrenExpr() const {
3246     return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1);
3247   }
3248 
3249   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3250   static bool classofKind(Kind K) {
3251     return K == Decl::LifetimeExtendedTemporary;
3252   }
3253 };
3254 
3255 /// Represents a shadow declaration implicitly introduced into a scope by a
3256 /// (resolved) using-declaration or using-enum-declaration to achieve
3257 /// the desired lookup semantics.
3258 ///
3259 /// For example:
3260 /// \code
3261 /// namespace A {
3262 ///   void foo();
3263 ///   void foo(int);
3264 ///   struct foo {};
3265 ///   enum bar { bar1, bar2 };
3266 /// }
3267 /// namespace B {
3268 ///   // add a UsingDecl and three UsingShadowDecls (named foo) to B.
3269 ///   using A::foo;
3270 ///   // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B.
3271 ///   using enum A::bar;
3272 /// }
3273 /// \endcode
3274 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
3275   friend class BaseUsingDecl;
3276 
3277   /// The referenced declaration.
3278   NamedDecl *Underlying = nullptr;
3279 
3280   /// The using declaration which introduced this decl or the next using
3281   /// shadow declaration contained in the aforementioned using declaration.
3282   NamedDecl *UsingOrNextShadow = nullptr;
3283 
3284   void anchor() override;
3285 
3286   using redeclarable_base = Redeclarable<UsingShadowDecl>;
3287 
3288   UsingShadowDecl *getNextRedeclarationImpl() override {
3289     return getNextRedeclaration();
3290   }
3291 
3292   UsingShadowDecl *getPreviousDeclImpl() override {
3293     return getPreviousDecl();
3294   }
3295 
3296   UsingShadowDecl *getMostRecentDeclImpl() override {
3297     return getMostRecentDecl();
3298   }
3299 
3300 protected:
3301   UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc,
3302                   DeclarationName Name, BaseUsingDecl *Introducer,
3303                   NamedDecl *Target);
3304   UsingShadowDecl(Kind K, ASTContext &C, EmptyShell);
3305 
3306 public:
3307   friend class ASTDeclReader;
3308   friend class ASTDeclWriter;
3309 
3310   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3311                                  SourceLocation Loc, DeclarationName Name,
3312                                  BaseUsingDecl *Introducer, NamedDecl *Target) {
3313     return new (C, DC)
3314         UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target);
3315   }
3316 
3317   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3318 
3319   using redecl_range = redeclarable_base::redecl_range;
3320   using redecl_iterator = redeclarable_base::redecl_iterator;
3321 
3322   using redeclarable_base::redecls_begin;
3323   using redeclarable_base::redecls_end;
3324   using redeclarable_base::redecls;
3325   using redeclarable_base::getPreviousDecl;
3326   using redeclarable_base::getMostRecentDecl;
3327   using redeclarable_base::isFirstDecl;
3328 
3329   UsingShadowDecl *getCanonicalDecl() override {
3330     return getFirstDecl();
3331   }
3332   const UsingShadowDecl *getCanonicalDecl() const {
3333     return getFirstDecl();
3334   }
3335 
3336   /// Gets the underlying declaration which has been brought into the
3337   /// local scope.
3338   NamedDecl *getTargetDecl() const { return Underlying; }
3339 
3340   /// Sets the underlying declaration which has been brought into the
3341   /// local scope.
3342   void setTargetDecl(NamedDecl *ND) {
3343     assert(ND && "Target decl is null!");
3344     Underlying = ND;
3345     // A UsingShadowDecl is never a friend or local extern declaration, even
3346     // if it is a shadow declaration for one.
3347     IdentifierNamespace =
3348         ND->getIdentifierNamespace() &
3349         ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern);
3350   }
3351 
3352   /// Gets the (written or instantiated) using declaration that introduced this
3353   /// declaration.
3354   BaseUsingDecl *getIntroducer() const;
3355 
3356   /// The next using shadow declaration contained in the shadow decl
3357   /// chain of the using declaration which introduced this decl.
3358   UsingShadowDecl *getNextUsingShadowDecl() const {
3359     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
3360   }
3361 
3362   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3363   static bool classofKind(Kind K) {
3364     return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow;
3365   }
3366 };
3367 
3368 /// Represents a C++ declaration that introduces decls from somewhere else. It
3369 /// provides a set of the shadow decls so introduced.
3370 
3371 class BaseUsingDecl : public NamedDecl {
3372   /// The first shadow declaration of the shadow decl chain associated
3373   /// with this using declaration.
3374   ///
3375   /// The bool member of the pair is a bool flag a derived type may use
3376   /// (UsingDecl makes use of it).
3377   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
3378 
3379 protected:
3380   BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
3381       : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, false) {}
3382 
3383 private:
3384   void anchor() override;
3385 
3386 protected:
3387   /// A bool flag for use by a derived type
3388   bool getShadowFlag() const { return FirstUsingShadow.getInt(); }
3389 
3390   /// A bool flag a derived type may set
3391   void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); }
3392 
3393 public:
3394   friend class ASTDeclReader;
3395   friend class ASTDeclWriter;
3396 
3397   /// Iterates through the using shadow declarations associated with
3398   /// this using declaration.
3399   class shadow_iterator {
3400     /// The current using shadow declaration.
3401     UsingShadowDecl *Current = nullptr;
3402 
3403   public:
3404     using value_type = UsingShadowDecl *;
3405     using reference = UsingShadowDecl *;
3406     using pointer = UsingShadowDecl *;
3407     using iterator_category = std::forward_iterator_tag;
3408     using difference_type = std::ptrdiff_t;
3409 
3410     shadow_iterator() = default;
3411     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {}
3412 
3413     reference operator*() const { return Current; }
3414     pointer operator->() const { return Current; }
3415 
3416     shadow_iterator &operator++() {
3417       Current = Current->getNextUsingShadowDecl();
3418       return *this;
3419     }
3420 
3421     shadow_iterator operator++(int) {
3422       shadow_iterator tmp(*this);
3423       ++(*this);
3424       return tmp;
3425     }
3426 
3427     friend bool operator==(shadow_iterator x, shadow_iterator y) {
3428       return x.Current == y.Current;
3429     }
3430     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
3431       return x.Current != y.Current;
3432     }
3433   };
3434 
3435   using shadow_range = llvm::iterator_range<shadow_iterator>;
3436 
3437   shadow_range shadows() const {
3438     return shadow_range(shadow_begin(), shadow_end());
3439   }
3440 
3441   shadow_iterator shadow_begin() const {
3442     return shadow_iterator(FirstUsingShadow.getPointer());
3443   }
3444 
3445   shadow_iterator shadow_end() const { return shadow_iterator(); }
3446 
3447   /// Return the number of shadowed declarations associated with this
3448   /// using declaration.
3449   unsigned shadow_size() const {
3450     return std::distance(shadow_begin(), shadow_end());
3451   }
3452 
3453   void addShadowDecl(UsingShadowDecl *S);
3454   void removeShadowDecl(UsingShadowDecl *S);
3455 
3456   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3457   static bool classofKind(Kind K) { return K == Using || K == UsingEnum; }
3458 };
3459 
3460 /// Represents a C++ using-declaration.
3461 ///
3462 /// For example:
3463 /// \code
3464 ///    using someNameSpace::someIdentifier;
3465 /// \endcode
3466 class UsingDecl : public BaseUsingDecl, public Mergeable<UsingDecl> {
3467   /// The source location of the 'using' keyword itself.
3468   SourceLocation UsingLocation;
3469 
3470   /// The nested-name-specifier that precedes the name.
3471   NestedNameSpecifierLoc QualifierLoc;
3472 
3473   /// Provides source/type location info for the declaration name
3474   /// embedded in the ValueDecl base class.
3475   DeclarationNameLoc DNLoc;
3476 
3477   UsingDecl(DeclContext *DC, SourceLocation UL,
3478             NestedNameSpecifierLoc QualifierLoc,
3479             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
3480       : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
3481         UsingLocation(UL), QualifierLoc(QualifierLoc),
3482         DNLoc(NameInfo.getInfo()) {
3483     setShadowFlag(HasTypenameKeyword);
3484   }
3485 
3486   void anchor() override;
3487 
3488 public:
3489   friend class ASTDeclReader;
3490   friend class ASTDeclWriter;
3491 
3492   /// Return the source location of the 'using' keyword.
3493   SourceLocation getUsingLoc() const { return UsingLocation; }
3494 
3495   /// Set the source location of the 'using' keyword.
3496   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3497 
3498   /// Retrieve the nested-name-specifier that qualifies the name,
3499   /// with source-location information.
3500   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3501 
3502   /// Retrieve the nested-name-specifier that qualifies the name.
3503   NestedNameSpecifier *getQualifier() const {
3504     return QualifierLoc.getNestedNameSpecifier();
3505   }
3506 
3507   DeclarationNameInfo getNameInfo() const {
3508     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3509   }
3510 
3511   /// Return true if it is a C++03 access declaration (no 'using').
3512   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3513 
3514   /// Return true if the using declaration has 'typename'.
3515   bool hasTypename() const { return getShadowFlag(); }
3516 
3517   /// Sets whether the using declaration has 'typename'.
3518   void setTypename(bool TN) { setShadowFlag(TN); }
3519 
3520   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
3521                            SourceLocation UsingL,
3522                            NestedNameSpecifierLoc QualifierLoc,
3523                            const DeclarationNameInfo &NameInfo,
3524                            bool HasTypenameKeyword);
3525 
3526   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3527 
3528   SourceRange getSourceRange() const override LLVM_READONLY;
3529 
3530   /// Retrieves the canonical declaration of this declaration.
3531   UsingDecl *getCanonicalDecl() override {
3532     return cast<UsingDecl>(getFirstDecl());
3533   }
3534   const UsingDecl *getCanonicalDecl() const {
3535     return cast<UsingDecl>(getFirstDecl());
3536   }
3537 
3538   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3539   static bool classofKind(Kind K) { return K == Using; }
3540 };
3541 
3542 /// Represents a shadow constructor declaration introduced into a
3543 /// class by a C++11 using-declaration that names a constructor.
3544 ///
3545 /// For example:
3546 /// \code
3547 /// struct Base { Base(int); };
3548 /// struct Derived {
3549 ///    using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl
3550 /// };
3551 /// \endcode
3552 class ConstructorUsingShadowDecl final : public UsingShadowDecl {
3553   /// If this constructor using declaration inherted the constructor
3554   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3555   /// in the named direct base class from which the declaration was inherited.
3556   ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr;
3557 
3558   /// If this constructor using declaration inherted the constructor
3559   /// from an indirect base class, this is the ConstructorUsingShadowDecl
3560   /// that will be used to construct the unique direct or virtual base class
3561   /// that receives the constructor arguments.
3562   ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr;
3563 
3564   /// \c true if the constructor ultimately named by this using shadow
3565   /// declaration is within a virtual base class subobject of the class that
3566   /// contains this declaration.
3567   unsigned IsVirtual : 1;
3568 
3569   ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
3570                              UsingDecl *Using, NamedDecl *Target,
3571                              bool TargetInVirtualBase)
3572       : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc,
3573                         Using->getDeclName(), Using,
3574                         Target->getUnderlyingDecl()),
3575         NominatedBaseClassShadowDecl(
3576             dyn_cast<ConstructorUsingShadowDecl>(Target)),
3577         ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl),
3578         IsVirtual(TargetInVirtualBase) {
3579     // If we found a constructor that chains to a constructor for a virtual
3580     // base, we should directly call that virtual base constructor instead.
3581     // FIXME: This logic belongs in Sema.
3582     if (NominatedBaseClassShadowDecl &&
3583         NominatedBaseClassShadowDecl->constructsVirtualBase()) {
3584       ConstructedBaseClassShadowDecl =
3585           NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl;
3586       IsVirtual = true;
3587     }
3588   }
3589 
3590   ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty)
3591       : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {}
3592 
3593   void anchor() override;
3594 
3595 public:
3596   friend class ASTDeclReader;
3597   friend class ASTDeclWriter;
3598 
3599   static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
3600                                             SourceLocation Loc,
3601                                             UsingDecl *Using, NamedDecl *Target,
3602                                             bool IsVirtual);
3603   static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C,
3604                                                         unsigned ID);
3605 
3606   /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that
3607   /// introduced this.
3608   UsingDecl *getIntroducer() const {
3609     return cast<UsingDecl>(UsingShadowDecl::getIntroducer());
3610   }
3611 
3612   /// Returns the parent of this using shadow declaration, which
3613   /// is the class in which this is declared.
3614   //@{
3615   const CXXRecordDecl *getParent() const {
3616     return cast<CXXRecordDecl>(getDeclContext());
3617   }
3618   CXXRecordDecl *getParent() {
3619     return cast<CXXRecordDecl>(getDeclContext());
3620   }
3621   //@}
3622 
3623   /// Get the inheriting constructor declaration for the direct base
3624   /// class from which this using shadow declaration was inherited, if there is
3625   /// one. This can be different for each redeclaration of the same shadow decl.
3626   ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const {
3627     return NominatedBaseClassShadowDecl;
3628   }
3629 
3630   /// Get the inheriting constructor declaration for the base class
3631   /// for which we don't have an explicit initializer, if there is one.
3632   ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const {
3633     return ConstructedBaseClassShadowDecl;
3634   }
3635 
3636   /// Get the base class that was named in the using declaration. This
3637   /// can be different for each redeclaration of this same shadow decl.
3638   CXXRecordDecl *getNominatedBaseClass() const;
3639 
3640   /// Get the base class whose constructor or constructor shadow
3641   /// declaration is passed the constructor arguments.
3642   CXXRecordDecl *getConstructedBaseClass() const {
3643     return cast<CXXRecordDecl>((ConstructedBaseClassShadowDecl
3644                                     ? ConstructedBaseClassShadowDecl
3645                                     : getTargetDecl())
3646                                    ->getDeclContext());
3647   }
3648 
3649   /// Returns \c true if the constructed base class is a virtual base
3650   /// class subobject of this declaration's class.
3651   bool constructsVirtualBase() const {
3652     return IsVirtual;
3653   }
3654 
3655   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3656   static bool classofKind(Kind K) { return K == ConstructorUsingShadow; }
3657 };
3658 
3659 /// Represents a C++ using-enum-declaration.
3660 ///
3661 /// For example:
3662 /// \code
3663 ///    using enum SomeEnumTag ;
3664 /// \endcode
3665 
3666 class UsingEnumDecl : public BaseUsingDecl, public Mergeable<UsingEnumDecl> {
3667   /// The source location of the 'using' keyword itself.
3668   SourceLocation UsingLocation;
3669   /// The source location of the 'enum' keyword.
3670   SourceLocation EnumLocation;
3671   /// 'qual::SomeEnum' as an EnumType, possibly with Elaborated/Typedef sugar.
3672   TypeSourceInfo *EnumType;
3673 
3674   UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL,
3675                 SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType)
3676       : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL),
3677         EnumType(EnumType){}
3678 
3679   void anchor() override;
3680 
3681 public:
3682   friend class ASTDeclReader;
3683   friend class ASTDeclWriter;
3684 
3685   /// The source location of the 'using' keyword.
3686   SourceLocation getUsingLoc() const { return UsingLocation; }
3687   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3688 
3689   /// The source location of the 'enum' keyword.
3690   SourceLocation getEnumLoc() const { return EnumLocation; }
3691   void setEnumLoc(SourceLocation L) { EnumLocation = L; }
3692   NestedNameSpecifier *getQualifier() const {
3693     return getQualifierLoc().getNestedNameSpecifier();
3694   }
3695   NestedNameSpecifierLoc getQualifierLoc() const {
3696     if (auto ETL = EnumType->getTypeLoc().getAs<ElaboratedTypeLoc>())
3697       return ETL.getQualifierLoc();
3698     return NestedNameSpecifierLoc();
3699   }
3700   // Returns the "qualifier::Name" part as a TypeLoc.
3701   TypeLoc getEnumTypeLoc() const {
3702     return EnumType->getTypeLoc();
3703   }
3704   TypeSourceInfo *getEnumType() const {
3705     return EnumType;
3706   }
3707   void setEnumType(TypeSourceInfo *TSI) { EnumType = TSI; }
3708 
3709 public:
3710   EnumDecl *getEnumDecl() const { return cast<EnumDecl>(EnumType->getType()->getAsTagDecl()); }
3711 
3712   static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC,
3713                                SourceLocation UsingL, SourceLocation EnumL,
3714                                SourceLocation NameL, TypeSourceInfo *EnumType);
3715 
3716   static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID);
3717 
3718   SourceRange getSourceRange() const override LLVM_READONLY;
3719 
3720   /// Retrieves the canonical declaration of this declaration.
3721   UsingEnumDecl *getCanonicalDecl() override {
3722     return cast<UsingEnumDecl>(getFirstDecl());
3723   }
3724   const UsingEnumDecl *getCanonicalDecl() const {
3725     return cast<UsingEnumDecl>(getFirstDecl());
3726   }
3727 
3728   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3729   static bool classofKind(Kind K) { return K == UsingEnum; }
3730 };
3731 
3732 /// Represents a pack of using declarations that a single
3733 /// using-declarator pack-expanded into.
3734 ///
3735 /// \code
3736 /// template<typename ...T> struct X : T... {
3737 ///   using T::operator()...;
3738 ///   using T::operator T...;
3739 /// };
3740 /// \endcode
3741 ///
3742 /// In the second case above, the UsingPackDecl will have the name
3743 /// 'operator T' (which contains an unexpanded pack), but the individual
3744 /// UsingDecls and UsingShadowDecls will have more reasonable names.
3745 class UsingPackDecl final
3746     : public NamedDecl, public Mergeable<UsingPackDecl>,
3747       private llvm::TrailingObjects<UsingPackDecl, NamedDecl *> {
3748   /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from
3749   /// which this waas instantiated.
3750   NamedDecl *InstantiatedFrom;
3751 
3752   /// The number of using-declarations created by this pack expansion.
3753   unsigned NumExpansions;
3754 
3755   UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom,
3756                 ArrayRef<NamedDecl *> UsingDecls)
3757       : NamedDecl(UsingPack, DC,
3758                   InstantiatedFrom ? InstantiatedFrom->getLocation()
3759                                    : SourceLocation(),
3760                   InstantiatedFrom ? InstantiatedFrom->getDeclName()
3761                                    : DeclarationName()),
3762         InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) {
3763     std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(),
3764                             getTrailingObjects<NamedDecl *>());
3765   }
3766 
3767   void anchor() override;
3768 
3769 public:
3770   friend class ASTDeclReader;
3771   friend class ASTDeclWriter;
3772   friend TrailingObjects;
3773 
3774   /// Get the using declaration from which this was instantiated. This will
3775   /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl
3776   /// that is a pack expansion.
3777   NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; }
3778 
3779   /// Get the set of using declarations that this pack expanded into. Note that
3780   /// some of these may still be unresolved.
3781   ArrayRef<NamedDecl *> expansions() const {
3782     return llvm::ArrayRef(getTrailingObjects<NamedDecl *>(), NumExpansions);
3783   }
3784 
3785   static UsingPackDecl *Create(ASTContext &C, DeclContext *DC,
3786                                NamedDecl *InstantiatedFrom,
3787                                ArrayRef<NamedDecl *> UsingDecls);
3788 
3789   static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID,
3790                                            unsigned NumExpansions);
3791 
3792   SourceRange getSourceRange() const override LLVM_READONLY {
3793     return InstantiatedFrom->getSourceRange();
3794   }
3795 
3796   UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); }
3797   const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); }
3798 
3799   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3800   static bool classofKind(Kind K) { return K == UsingPack; }
3801 };
3802 
3803 /// Represents a dependent using declaration which was not marked with
3804 /// \c typename.
3805 ///
3806 /// Unlike non-dependent using declarations, these *only* bring through
3807 /// non-types; otherwise they would break two-phase lookup.
3808 ///
3809 /// \code
3810 /// template \<class T> class A : public Base<T> {
3811 ///   using Base<T>::foo;
3812 /// };
3813 /// \endcode
3814 class UnresolvedUsingValueDecl : public ValueDecl,
3815                                  public Mergeable<UnresolvedUsingValueDecl> {
3816   /// The source location of the 'using' keyword
3817   SourceLocation UsingLocation;
3818 
3819   /// If this is a pack expansion, the location of the '...'.
3820   SourceLocation EllipsisLoc;
3821 
3822   /// The nested-name-specifier that precedes the name.
3823   NestedNameSpecifierLoc QualifierLoc;
3824 
3825   /// Provides source/type location info for the declaration name
3826   /// embedded in the ValueDecl base class.
3827   DeclarationNameLoc DNLoc;
3828 
3829   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
3830                            SourceLocation UsingLoc,
3831                            NestedNameSpecifierLoc QualifierLoc,
3832                            const DeclarationNameInfo &NameInfo,
3833                            SourceLocation EllipsisLoc)
3834       : ValueDecl(UnresolvedUsingValue, DC,
3835                   NameInfo.getLoc(), NameInfo.getName(), Ty),
3836         UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc),
3837         QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {}
3838 
3839   void anchor() override;
3840 
3841 public:
3842   friend class ASTDeclReader;
3843   friend class ASTDeclWriter;
3844 
3845   /// Returns the source location of the 'using' keyword.
3846   SourceLocation getUsingLoc() const { return UsingLocation; }
3847 
3848   /// Set the source location of the 'using' keyword.
3849   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
3850 
3851   /// Return true if it is a C++03 access declaration (no 'using').
3852   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
3853 
3854   /// Retrieve the nested-name-specifier that qualifies the name,
3855   /// with source-location information.
3856   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3857 
3858   /// Retrieve the nested-name-specifier that qualifies the name.
3859   NestedNameSpecifier *getQualifier() const {
3860     return QualifierLoc.getNestedNameSpecifier();
3861   }
3862 
3863   DeclarationNameInfo getNameInfo() const {
3864     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
3865   }
3866 
3867   /// Determine whether this is a pack expansion.
3868   bool isPackExpansion() const {
3869     return EllipsisLoc.isValid();
3870   }
3871 
3872   /// Get the location of the ellipsis if this is a pack expansion.
3873   SourceLocation getEllipsisLoc() const {
3874     return EllipsisLoc;
3875   }
3876 
3877   static UnresolvedUsingValueDecl *
3878     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3879            NestedNameSpecifierLoc QualifierLoc,
3880            const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc);
3881 
3882   static UnresolvedUsingValueDecl *
3883   CreateDeserialized(ASTContext &C, unsigned ID);
3884 
3885   SourceRange getSourceRange() const override LLVM_READONLY;
3886 
3887   /// Retrieves the canonical declaration of this declaration.
3888   UnresolvedUsingValueDecl *getCanonicalDecl() override {
3889     return getFirstDecl();
3890   }
3891   const UnresolvedUsingValueDecl *getCanonicalDecl() const {
3892     return getFirstDecl();
3893   }
3894 
3895   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3896   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
3897 };
3898 
3899 /// Represents a dependent using declaration which was marked with
3900 /// \c typename.
3901 ///
3902 /// \code
3903 /// template \<class T> class A : public Base<T> {
3904 ///   using typename Base<T>::foo;
3905 /// };
3906 /// \endcode
3907 ///
3908 /// The type associated with an unresolved using typename decl is
3909 /// currently always a typename type.
3910 class UnresolvedUsingTypenameDecl
3911     : public TypeDecl,
3912       public Mergeable<UnresolvedUsingTypenameDecl> {
3913   friend class ASTDeclReader;
3914 
3915   /// The source location of the 'typename' keyword
3916   SourceLocation TypenameLocation;
3917 
3918   /// If this is a pack expansion, the location of the '...'.
3919   SourceLocation EllipsisLoc;
3920 
3921   /// The nested-name-specifier that precedes the name.
3922   NestedNameSpecifierLoc QualifierLoc;
3923 
3924   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
3925                               SourceLocation TypenameLoc,
3926                               NestedNameSpecifierLoc QualifierLoc,
3927                               SourceLocation TargetNameLoc,
3928                               IdentifierInfo *TargetName,
3929                               SourceLocation EllipsisLoc)
3930     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
3931                UsingLoc),
3932       TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc),
3933       QualifierLoc(QualifierLoc) {}
3934 
3935   void anchor() override;
3936 
3937 public:
3938   /// Returns the source location of the 'using' keyword.
3939   SourceLocation getUsingLoc() const { return getBeginLoc(); }
3940 
3941   /// Returns the source location of the 'typename' keyword.
3942   SourceLocation getTypenameLoc() const { return TypenameLocation; }
3943 
3944   /// Retrieve the nested-name-specifier that qualifies the name,
3945   /// with source-location information.
3946   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3947 
3948   /// Retrieve the nested-name-specifier that qualifies the name.
3949   NestedNameSpecifier *getQualifier() const {
3950     return QualifierLoc.getNestedNameSpecifier();
3951   }
3952 
3953   DeclarationNameInfo getNameInfo() const {
3954     return DeclarationNameInfo(getDeclName(), getLocation());
3955   }
3956 
3957   /// Determine whether this is a pack expansion.
3958   bool isPackExpansion() const {
3959     return EllipsisLoc.isValid();
3960   }
3961 
3962   /// Get the location of the ellipsis if this is a pack expansion.
3963   SourceLocation getEllipsisLoc() const {
3964     return EllipsisLoc;
3965   }
3966 
3967   static UnresolvedUsingTypenameDecl *
3968     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
3969            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
3970            SourceLocation TargetNameLoc, DeclarationName TargetName,
3971            SourceLocation EllipsisLoc);
3972 
3973   static UnresolvedUsingTypenameDecl *
3974   CreateDeserialized(ASTContext &C, unsigned ID);
3975 
3976   /// Retrieves the canonical declaration of this declaration.
3977   UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
3978     return getFirstDecl();
3979   }
3980   const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
3981     return getFirstDecl();
3982   }
3983 
3984   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
3985   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
3986 };
3987 
3988 /// This node is generated when a using-declaration that was annotated with
3989 /// __attribute__((using_if_exists)) failed to resolve to a known declaration.
3990 /// In that case, Sema builds a UsingShadowDecl whose target is an instance of
3991 /// this declaration, adding it to the current scope. Referring to this
3992 /// declaration in any way is an error.
3993 class UnresolvedUsingIfExistsDecl final : public NamedDecl {
3994   UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc,
3995                               DeclarationName Name);
3996 
3997   void anchor() override;
3998 
3999 public:
4000   static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC,
4001                                              SourceLocation Loc,
4002                                              DeclarationName Name);
4003   static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx,
4004                                                          unsigned ID);
4005 
4006   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4007   static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; }
4008 };
4009 
4010 /// Represents a C++11 static_assert declaration.
4011 class StaticAssertDecl : public Decl {
4012   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
4013   Expr *Message;
4014   SourceLocation RParenLoc;
4015 
4016   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
4017                    Expr *AssertExpr, Expr *Message, SourceLocation RParenLoc,
4018                    bool Failed)
4019       : Decl(StaticAssert, DC, StaticAssertLoc),
4020         AssertExprAndFailed(AssertExpr, Failed), Message(Message),
4021         RParenLoc(RParenLoc) {}
4022 
4023   virtual void anchor();
4024 
4025 public:
4026   friend class ASTDeclReader;
4027 
4028   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
4029                                   SourceLocation StaticAssertLoc,
4030                                   Expr *AssertExpr, Expr *Message,
4031                                   SourceLocation RParenLoc, bool Failed);
4032   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4033 
4034   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
4035   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
4036 
4037   Expr *getMessage() { return Message; }
4038   const Expr *getMessage() const { return Message; }
4039 
4040   bool isFailed() const { return AssertExprAndFailed.getInt(); }
4041 
4042   SourceLocation getRParenLoc() const { return RParenLoc; }
4043 
4044   SourceRange getSourceRange() const override LLVM_READONLY {
4045     return SourceRange(getLocation(), getRParenLoc());
4046   }
4047 
4048   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4049   static bool classofKind(Kind K) { return K == StaticAssert; }
4050 };
4051 
4052 /// A binding in a decomposition declaration. For instance, given:
4053 ///
4054 ///   int n[3];
4055 ///   auto &[a, b, c] = n;
4056 ///
4057 /// a, b, and c are BindingDecls, whose bindings are the expressions
4058 /// x[0], x[1], and x[2] respectively, where x is the implicit
4059 /// DecompositionDecl of type 'int (&)[3]'.
4060 class BindingDecl : public ValueDecl {
4061   /// The declaration that this binding binds to part of.
4062   ValueDecl *Decomp;
4063   /// The binding represented by this declaration. References to this
4064   /// declaration are effectively equivalent to this expression (except
4065   /// that it is only evaluated once at the point of declaration of the
4066   /// binding).
4067   Expr *Binding = nullptr;
4068 
4069   BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id)
4070       : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {}
4071 
4072   void anchor() override;
4073 
4074 public:
4075   friend class ASTDeclReader;
4076 
4077   static BindingDecl *Create(ASTContext &C, DeclContext *DC,
4078                              SourceLocation IdLoc, IdentifierInfo *Id);
4079   static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4080 
4081   /// Get the expression to which this declaration is bound. This may be null
4082   /// in two different cases: while parsing the initializer for the
4083   /// decomposition declaration, and when the initializer is type-dependent.
4084   Expr *getBinding() const { return Binding; }
4085 
4086   /// Get the decomposition declaration that this binding represents a
4087   /// decomposition of.
4088   ValueDecl *getDecomposedDecl() const { return Decomp; }
4089 
4090   /// Get the variable (if any) that holds the value of evaluating the binding.
4091   /// Only present for user-defined bindings for tuple-like types.
4092   VarDecl *getHoldingVar() const;
4093 
4094   /// Set the binding for this BindingDecl, along with its declared type (which
4095   /// should be a possibly-cv-qualified form of the type of the binding, or a
4096   /// reference to such a type).
4097   void setBinding(QualType DeclaredType, Expr *Binding) {
4098     setType(DeclaredType);
4099     this->Binding = Binding;
4100   }
4101 
4102   /// Set the decomposed variable for this BindingDecl.
4103   void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; }
4104 
4105   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4106   static bool classofKind(Kind K) { return K == Decl::Binding; }
4107 };
4108 
4109 /// A decomposition declaration. For instance, given:
4110 ///
4111 ///   int n[3];
4112 ///   auto &[a, b, c] = n;
4113 ///
4114 /// the second line declares a DecompositionDecl of type 'int (&)[3]', and
4115 /// three BindingDecls (named a, b, and c). An instance of this class is always
4116 /// unnamed, but behaves in almost all other respects like a VarDecl.
4117 class DecompositionDecl final
4118     : public VarDecl,
4119       private llvm::TrailingObjects<DecompositionDecl, BindingDecl *> {
4120   /// The number of BindingDecl*s following this object.
4121   unsigned NumBindings;
4122 
4123   DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4124                     SourceLocation LSquareLoc, QualType T,
4125                     TypeSourceInfo *TInfo, StorageClass SC,
4126                     ArrayRef<BindingDecl *> Bindings)
4127       : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo,
4128                 SC),
4129         NumBindings(Bindings.size()) {
4130     std::uninitialized_copy(Bindings.begin(), Bindings.end(),
4131                             getTrailingObjects<BindingDecl *>());
4132     for (auto *B : Bindings)
4133       B->setDecomposedDecl(this);
4134   }
4135 
4136   void anchor() override;
4137 
4138 public:
4139   friend class ASTDeclReader;
4140   friend TrailingObjects;
4141 
4142   static DecompositionDecl *Create(ASTContext &C, DeclContext *DC,
4143                                    SourceLocation StartLoc,
4144                                    SourceLocation LSquareLoc,
4145                                    QualType T, TypeSourceInfo *TInfo,
4146                                    StorageClass S,
4147                                    ArrayRef<BindingDecl *> Bindings);
4148   static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID,
4149                                                unsigned NumBindings);
4150 
4151   ArrayRef<BindingDecl *> bindings() const {
4152     return llvm::ArrayRef(getTrailingObjects<BindingDecl *>(), NumBindings);
4153   }
4154 
4155   void printName(raw_ostream &OS, const PrintingPolicy &Policy) const override;
4156 
4157   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4158   static bool classofKind(Kind K) { return K == Decomposition; }
4159 };
4160 
4161 /// An instance of this class represents the declaration of a property
4162 /// member.  This is a Microsoft extension to C++, first introduced in
4163 /// Visual Studio .NET 2003 as a parallel to similar features in C#
4164 /// and Managed C++.
4165 ///
4166 /// A property must always be a non-static class member.
4167 ///
4168 /// A property member superficially resembles a non-static data
4169 /// member, except preceded by a property attribute:
4170 ///   __declspec(property(get=GetX, put=PutX)) int x;
4171 /// Either (but not both) of the 'get' and 'put' names may be omitted.
4172 ///
4173 /// A reference to a property is always an lvalue.  If the lvalue
4174 /// undergoes lvalue-to-rvalue conversion, then a getter name is
4175 /// required, and that member is called with no arguments.
4176 /// If the lvalue is assigned into, then a setter name is required,
4177 /// and that member is called with one argument, the value assigned.
4178 /// Both operations are potentially overloaded.  Compound assignments
4179 /// are permitted, as are the increment and decrement operators.
4180 ///
4181 /// The getter and putter methods are permitted to be overloaded,
4182 /// although their return and parameter types are subject to certain
4183 /// restrictions according to the type of the property.
4184 ///
4185 /// A property declared using an incomplete array type may
4186 /// additionally be subscripted, adding extra parameters to the getter
4187 /// and putter methods.
4188 class MSPropertyDecl : public DeclaratorDecl {
4189   IdentifierInfo *GetterId, *SetterId;
4190 
4191   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
4192                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
4193                  IdentifierInfo *Getter, IdentifierInfo *Setter)
4194       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
4195         GetterId(Getter), SetterId(Setter) {}
4196 
4197   void anchor() override;
4198 public:
4199   friend class ASTDeclReader;
4200 
4201   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
4202                                 SourceLocation L, DeclarationName N, QualType T,
4203                                 TypeSourceInfo *TInfo, SourceLocation StartL,
4204                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
4205   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4206 
4207   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
4208 
4209   bool hasGetter() const { return GetterId != nullptr; }
4210   IdentifierInfo* getGetterId() const { return GetterId; }
4211   bool hasSetter() const { return SetterId != nullptr; }
4212   IdentifierInfo* getSetterId() const { return SetterId; }
4213 };
4214 
4215 /// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary
4216 /// dependencies on DeclCXX.h.
4217 struct MSGuidDeclParts {
4218   /// {01234567-...
4219   uint32_t Part1;
4220   /// ...-89ab-...
4221   uint16_t Part2;
4222   /// ...-cdef-...
4223   uint16_t Part3;
4224   /// ...-0123-456789abcdef}
4225   uint8_t Part4And5[8];
4226 
4227   uint64_t getPart4And5AsUint64() const {
4228     uint64_t Val;
4229     memcpy(&Val, &Part4And5, sizeof(Part4And5));
4230     return Val;
4231   }
4232 };
4233 
4234 /// A global _GUID constant. These are implicitly created by UuidAttrs.
4235 ///
4236 ///   struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{};
4237 ///
4238 /// X is a CXXRecordDecl that contains a UuidAttr that references the (unique)
4239 /// MSGuidDecl for the specified UUID.
4240 class MSGuidDecl : public ValueDecl,
4241                    public Mergeable<MSGuidDecl>,
4242                    public llvm::FoldingSetNode {
4243 public:
4244   using Parts = MSGuidDeclParts;
4245 
4246 private:
4247   /// The decomposed form of the UUID.
4248   Parts PartVal;
4249 
4250   /// The resolved value of the UUID as an APValue. Computed on demand and
4251   /// cached.
4252   mutable APValue APVal;
4253 
4254   void anchor() override;
4255 
4256   MSGuidDecl(DeclContext *DC, QualType T, Parts P);
4257 
4258   static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P);
4259   static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID);
4260 
4261   // Only ASTContext::getMSGuidDecl and deserialization create these.
4262   friend class ASTContext;
4263   friend class ASTReader;
4264   friend class ASTDeclReader;
4265 
4266 public:
4267   /// Print this UUID in a human-readable format.
4268   void printName(llvm::raw_ostream &OS,
4269                  const PrintingPolicy &Policy) const override;
4270 
4271   /// Get the decomposed parts of this declaration.
4272   Parts getParts() const { return PartVal; }
4273 
4274   /// Get the value of this MSGuidDecl as an APValue. This may fail and return
4275   /// an absent APValue if the type of the declaration is not of the expected
4276   /// shape.
4277   APValue &getAsAPValue() const;
4278 
4279   static void Profile(llvm::FoldingSetNodeID &ID, Parts P) {
4280     ID.AddInteger(P.Part1);
4281     ID.AddInteger(P.Part2);
4282     ID.AddInteger(P.Part3);
4283     ID.AddInteger(P.getPart4And5AsUint64());
4284   }
4285   void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); }
4286 
4287   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4288   static bool classofKind(Kind K) { return K == Decl::MSGuid; }
4289 };
4290 
4291 /// An artificial decl, representing a global anonymous constant value which is
4292 /// uniquified by value within a translation unit.
4293 ///
4294 /// These is currently only used to back the LValue returned by
4295 /// __builtin_source_location, but could potentially be used for other similar
4296 /// situations in the future.
4297 class UnnamedGlobalConstantDecl : public ValueDecl,
4298                                   public Mergeable<UnnamedGlobalConstantDecl>,
4299                                   public llvm::FoldingSetNode {
4300 
4301   // The constant value of this global.
4302   APValue Value;
4303 
4304   void anchor() override;
4305 
4306   UnnamedGlobalConstantDecl(const ASTContext &C, DeclContext *DC, QualType T,
4307                             const APValue &Val);
4308 
4309   static UnnamedGlobalConstantDecl *Create(const ASTContext &C, QualType T,
4310                                            const APValue &APVal);
4311   static UnnamedGlobalConstantDecl *CreateDeserialized(ASTContext &C,
4312                                                        unsigned ID);
4313 
4314   // Only ASTContext::getUnnamedGlobalConstantDecl and deserialization create
4315   // these.
4316   friend class ASTContext;
4317   friend class ASTReader;
4318   friend class ASTDeclReader;
4319 
4320 public:
4321   /// Print this in a human-readable format.
4322   void printName(llvm::raw_ostream &OS,
4323                  const PrintingPolicy &Policy) const override;
4324 
4325   const APValue &getValue() const { return Value; }
4326 
4327   static void Profile(llvm::FoldingSetNodeID &ID, QualType Ty,
4328                       const APValue &APVal) {
4329     Ty.Profile(ID);
4330     APVal.Profile(ID);
4331   }
4332   void Profile(llvm::FoldingSetNodeID &ID) {
4333     Profile(ID, getType(), getValue());
4334   }
4335 
4336   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
4337   static bool classofKind(Kind K) { return K == Decl::UnnamedGlobalConstant; }
4338 };
4339 
4340 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
4341 /// into a diagnostic with <<.
4342 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
4343                                       AccessSpecifier AS);
4344 
4345 } // namespace clang
4346 
4347 #endif // LLVM_CLANG_AST_DECLCXX_H
4348