1 //===- ScopeInfo.h - Information about a semantic context -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines FunctionScopeInfo and its subclasses, which contain
10 // information about a single function, block, lambda, or method body.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_SEMA_SCOPEINFO_H
15 #define LLVM_CLANG_SEMA_SCOPEINFO_H
16 
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/Type.h"
20 #include "clang/Basic/CapturedStmt.h"
21 #include "clang/Basic/LLVM.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/SourceLocation.h"
24 #include "clang/Sema/CleanupInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseMapInfo.h"
28 #include "llvm/ADT/MapVector.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/StringSwitch.h"
35 #include "llvm/ADT/TinyPtrVector.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <utility>
41 
42 namespace clang {
43 
44 class BlockDecl;
45 class CapturedDecl;
46 class CXXMethodDecl;
47 class CXXRecordDecl;
48 class ImplicitParamDecl;
49 class NamedDecl;
50 class ObjCIvarRefExpr;
51 class ObjCMessageExpr;
52 class ObjCPropertyDecl;
53 class ObjCPropertyRefExpr;
54 class ParmVarDecl;
55 class RecordDecl;
56 class ReturnStmt;
57 class Scope;
58 class Stmt;
59 class SwitchStmt;
60 class TemplateParameterList;
61 class VarDecl;
62 
63 namespace sema {
64 
65 /// Contains information about the compound statement currently being
66 /// parsed.
67 class CompoundScopeInfo {
68 public:
69   /// Whether this compound stamement contains `for' or `while' loops
70   /// with empty bodies.
71   bool HasEmptyLoopBodies = false;
72 
73   /// Whether this compound statement corresponds to a GNU statement
74   /// expression.
75   bool IsStmtExpr;
76 
77   /// FP options at the beginning of the compound statement, prior to
78   /// any pragma.
79   FPOptions InitialFPFeatures;
80 
81   CompoundScopeInfo(bool IsStmtExpr, FPOptions FPO)
82       : IsStmtExpr(IsStmtExpr), InitialFPFeatures(FPO) {}
83 
84   void setHasEmptyLoopBodies() {
85     HasEmptyLoopBodies = true;
86   }
87 };
88 
89 class PossiblyUnreachableDiag {
90 public:
91   PartialDiagnostic PD;
92   SourceLocation Loc;
93   llvm::TinyPtrVector<const Stmt*> Stmts;
94 
95   PossiblyUnreachableDiag(const PartialDiagnostic &PD, SourceLocation Loc,
96                           ArrayRef<const Stmt *> Stmts)
97       : PD(PD), Loc(Loc), Stmts(Stmts) {}
98 };
99 
100 /// Retains information about a function, method, or block that is
101 /// currently being parsed.
102 class FunctionScopeInfo {
103 protected:
104   enum ScopeKind {
105     SK_Function,
106     SK_Block,
107     SK_Lambda,
108     SK_CapturedRegion
109   };
110 
111 public:
112   /// What kind of scope we are describing.
113   ScopeKind Kind : 3;
114 
115   /// Whether this function contains a VLA, \@try, try, C++
116   /// initializer, or anything else that can't be jumped past.
117   bool HasBranchProtectedScope : 1;
118 
119   /// Whether this function contains any switches or direct gotos.
120   bool HasBranchIntoScope : 1;
121 
122   /// Whether this function contains any indirect gotos.
123   bool HasIndirectGoto : 1;
124 
125   /// Whether this function contains any statement marked with
126   /// \c [[clang::musttail]].
127   bool HasMustTail : 1;
128 
129   /// Whether a statement was dropped because it was invalid.
130   bool HasDroppedStmt : 1;
131 
132   /// True if current scope is for OpenMP declare reduction combiner.
133   bool HasOMPDeclareReductionCombiner : 1;
134 
135   /// Whether there is a fallthrough statement in this function.
136   bool HasFallthroughStmt : 1;
137 
138   /// Whether this function uses constrained floating point intrinsics
139   bool UsesFPIntrin : 1;
140 
141   /// Whether we make reference to a declaration that could be
142   /// unavailable.
143   bool HasPotentialAvailabilityViolations : 1;
144 
145   /// A flag that is set when parsing a method that must call super's
146   /// implementation, such as \c -dealloc, \c -finalize, or any method marked
147   /// with \c __attribute__((objc_requires_super)).
148   bool ObjCShouldCallSuper : 1;
149 
150   /// True when this is a method marked as a designated initializer.
151   bool ObjCIsDesignatedInit : 1;
152 
153   /// This starts true for a method marked as designated initializer and will
154   /// be set to false if there is an invocation to a designated initializer of
155   /// the super class.
156   bool ObjCWarnForNoDesignatedInitChain : 1;
157 
158   /// True when this is an initializer method not marked as a designated
159   /// initializer within a class that has at least one initializer marked as a
160   /// designated initializer.
161   bool ObjCIsSecondaryInit : 1;
162 
163   /// This starts true for a secondary initializer method and will be set to
164   /// false if there is an invocation of an initializer on 'self'.
165   bool ObjCWarnForNoInitDelegation : 1;
166 
167   /// True only when this function has not already built, or attempted
168   /// to build, the initial and final coroutine suspend points
169   bool NeedsCoroutineSuspends : 1;
170 
171   /// An enumeration represeting the kind of the first coroutine statement
172   /// in the function. One of co_return, co_await, or co_yield.
173   unsigned char FirstCoroutineStmtKind : 2;
174 
175   /// Whether we found an immediate-escalating expression.
176   bool FoundImmediateEscalatingExpression : 1;
177 
178   /// First coroutine statement in the current function.
179   /// (ex co_return, co_await, co_yield)
180   SourceLocation FirstCoroutineStmtLoc;
181 
182   /// First 'return' statement in the current function.
183   SourceLocation FirstReturnLoc;
184 
185   /// First C++ 'try' or ObjC @try statement in the current function.
186   SourceLocation FirstCXXOrObjCTryLoc;
187   enum { TryLocIsCXX, TryLocIsObjC, Unknown } FirstTryType = Unknown;
188 
189   /// First SEH '__try' statement in the current function.
190   SourceLocation FirstSEHTryLoc;
191 
192 private:
193   /// Used to determine if errors occurred in this function or block.
194   DiagnosticErrorTrap ErrorTrap;
195 
196 public:
197   /// A SwitchStmt, along with a flag indicating if its list of case statements
198   /// is incomplete (because we dropped an invalid one while parsing).
199   using SwitchInfo = llvm::PointerIntPair<SwitchStmt*, 1, bool>;
200 
201   /// SwitchStack - This is the current set of active switch statements in the
202   /// block.
203   SmallVector<SwitchInfo, 8> SwitchStack;
204 
205   /// The list of return statements that occur within the function or
206   /// block, if there is any chance of applying the named return value
207   /// optimization, or if we need to infer a return type.
208   SmallVector<ReturnStmt*, 4> Returns;
209 
210   /// The promise object for this coroutine, if any.
211   VarDecl *CoroutinePromise = nullptr;
212 
213   /// A mapping between the coroutine function parameters that were moved
214   /// to the coroutine frame, and their move statements.
215   llvm::SmallMapVector<ParmVarDecl *, Stmt *, 4> CoroutineParameterMoves;
216 
217   /// The initial and final coroutine suspend points.
218   std::pair<Stmt *, Stmt *> CoroutineSuspends;
219 
220   /// The stack of currently active compound stamement scopes in the
221   /// function.
222   SmallVector<CompoundScopeInfo, 4> CompoundScopes;
223 
224   /// The set of blocks that are introduced in this function.
225   llvm::SmallPtrSet<const BlockDecl *, 1> Blocks;
226 
227   /// The set of __block variables that are introduced in this function.
228   llvm::TinyPtrVector<VarDecl *> ByrefBlockVars;
229 
230   /// A list of PartialDiagnostics created but delayed within the
231   /// current function scope.  These diagnostics are vetted for reachability
232   /// prior to being emitted.
233   SmallVector<PossiblyUnreachableDiag, 4> PossiblyUnreachableDiags;
234 
235   /// A list of parameters which have the nonnull attribute and are
236   /// modified in the function.
237   llvm::SmallPtrSet<const ParmVarDecl *, 8> ModifiedNonNullParams;
238 
239   /// The set of GNU address of label extension "&&label".
240   llvm::SmallVector<AddrLabelExpr *, 4> AddrLabels;
241 
242 public:
243   /// Represents a simple identification of a weak object.
244   ///
245   /// Part of the implementation of -Wrepeated-use-of-weak.
246   ///
247   /// This is used to determine if two weak accesses refer to the same object.
248   /// Here are some examples of how various accesses are "profiled":
249   ///
250   /// Access Expression |     "Base" Decl     |          "Property" Decl
251   /// :---------------: | :-----------------: | :------------------------------:
252   /// self.property     | self (VarDecl)      | property (ObjCPropertyDecl)
253   /// self.implicitProp | self (VarDecl)      | -implicitProp (ObjCMethodDecl)
254   /// self->ivar.prop   | ivar (ObjCIvarDecl) | prop (ObjCPropertyDecl)
255   /// cxxObj.obj.prop   | obj (FieldDecl)     | prop (ObjCPropertyDecl)
256   /// [self foo].prop   | 0 (unknown)         | prop (ObjCPropertyDecl)
257   /// self.prop1.prop2  | prop1 (ObjCPropertyDecl)    | prop2 (ObjCPropertyDecl)
258   /// MyClass.prop      | MyClass (ObjCInterfaceDecl) | -prop (ObjCMethodDecl)
259   /// MyClass.foo.prop  | +foo (ObjCMethodDecl)       | -prop (ObjCPropertyDecl)
260   /// weakVar           | 0 (known)           | weakVar (VarDecl)
261   /// self->weakIvar    | self (VarDecl)      | weakIvar (ObjCIvarDecl)
262   ///
263   /// Objects are identified with only two Decls to make it reasonably fast to
264   /// compare them.
265   class WeakObjectProfileTy {
266     /// The base object decl, as described in the class documentation.
267     ///
268     /// The extra flag is "true" if the Base and Property are enough to uniquely
269     /// identify the object in memory.
270     ///
271     /// \sa isExactProfile()
272     using BaseInfoTy = llvm::PointerIntPair<const NamedDecl *, 1, bool>;
273     BaseInfoTy Base;
274 
275     /// The "property" decl, as described in the class documentation.
276     ///
277     /// Note that this may not actually be an ObjCPropertyDecl, e.g. in the
278     /// case of "implicit" properties (regular methods accessed via dot syntax).
279     const NamedDecl *Property = nullptr;
280 
281     /// Used to find the proper base profile for a given base expression.
282     static BaseInfoTy getBaseInfo(const Expr *BaseE);
283 
284     inline WeakObjectProfileTy();
285     static inline WeakObjectProfileTy getSentinel();
286 
287   public:
288     WeakObjectProfileTy(const ObjCPropertyRefExpr *RE);
289     WeakObjectProfileTy(const Expr *Base, const ObjCPropertyDecl *Property);
290     WeakObjectProfileTy(const DeclRefExpr *RE);
291     WeakObjectProfileTy(const ObjCIvarRefExpr *RE);
292 
293     const NamedDecl *getBase() const { return Base.getPointer(); }
294     const NamedDecl *getProperty() const { return Property; }
295 
296     /// Returns true if the object base specifies a known object in memory,
297     /// rather than, say, an instance variable or property of another object.
298     ///
299     /// Note that this ignores the effects of aliasing; that is, \c foo.bar is
300     /// considered an exact profile if \c foo is a local variable, even if
301     /// another variable \c foo2 refers to the same object as \c foo.
302     ///
303     /// For increased precision, accesses with base variables that are
304     /// properties or ivars of 'self' (e.g. self.prop1.prop2) are considered to
305     /// be exact, though this is not true for arbitrary variables
306     /// (foo.prop1.prop2).
307     bool isExactProfile() const {
308       return Base.getInt();
309     }
310 
311     bool operator==(const WeakObjectProfileTy &Other) const {
312       return Base == Other.Base && Property == Other.Property;
313     }
314 
315     // For use in DenseMap.
316     // We can't specialize the usual llvm::DenseMapInfo at the end of the file
317     // because by that point the DenseMap in FunctionScopeInfo has already been
318     // instantiated.
319     class DenseMapInfo {
320     public:
321       static inline WeakObjectProfileTy getEmptyKey() {
322         return WeakObjectProfileTy();
323       }
324 
325       static inline WeakObjectProfileTy getTombstoneKey() {
326         return WeakObjectProfileTy::getSentinel();
327       }
328 
329       static unsigned getHashValue(const WeakObjectProfileTy &Val) {
330         using Pair = std::pair<BaseInfoTy, const NamedDecl *>;
331 
332         return llvm::DenseMapInfo<Pair>::getHashValue(Pair(Val.Base,
333                                                            Val.Property));
334       }
335 
336       static bool isEqual(const WeakObjectProfileTy &LHS,
337                           const WeakObjectProfileTy &RHS) {
338         return LHS == RHS;
339       }
340     };
341   };
342 
343   /// Represents a single use of a weak object.
344   ///
345   /// Stores both the expression and whether the access is potentially unsafe
346   /// (i.e. it could potentially be warned about).
347   ///
348   /// Part of the implementation of -Wrepeated-use-of-weak.
349   class WeakUseTy {
350     llvm::PointerIntPair<const Expr *, 1, bool> Rep;
351 
352   public:
353     WeakUseTy(const Expr *Use, bool IsRead) : Rep(Use, IsRead) {}
354 
355     const Expr *getUseExpr() const { return Rep.getPointer(); }
356     bool isUnsafe() const { return Rep.getInt(); }
357     void markSafe() { Rep.setInt(false); }
358 
359     bool operator==(const WeakUseTy &Other) const {
360       return Rep == Other.Rep;
361     }
362   };
363 
364   /// Used to collect uses of a particular weak object in a function body.
365   ///
366   /// Part of the implementation of -Wrepeated-use-of-weak.
367   using WeakUseVector = SmallVector<WeakUseTy, 4>;
368 
369   /// Used to collect all uses of weak objects in a function body.
370   ///
371   /// Part of the implementation of -Wrepeated-use-of-weak.
372   using WeakObjectUseMap =
373       llvm::SmallDenseMap<WeakObjectProfileTy, WeakUseVector, 8,
374                           WeakObjectProfileTy::DenseMapInfo>;
375 
376 private:
377   /// Used to collect all uses of weak objects in this function body.
378   ///
379   /// Part of the implementation of -Wrepeated-use-of-weak.
380   WeakObjectUseMap WeakObjectUses;
381 
382 protected:
383   FunctionScopeInfo(const FunctionScopeInfo&) = default;
384 
385 public:
386   FunctionScopeInfo(DiagnosticsEngine &Diag)
387       : Kind(SK_Function), HasBranchProtectedScope(false),
388         HasBranchIntoScope(false), HasIndirectGoto(false), HasMustTail(false),
389         HasDroppedStmt(false), HasOMPDeclareReductionCombiner(false),
390         HasFallthroughStmt(false), UsesFPIntrin(false),
391         HasPotentialAvailabilityViolations(false), ObjCShouldCallSuper(false),
392         ObjCIsDesignatedInit(false), ObjCWarnForNoDesignatedInitChain(false),
393         ObjCIsSecondaryInit(false), ObjCWarnForNoInitDelegation(false),
394         NeedsCoroutineSuspends(true), FoundImmediateEscalatingExpression(false),
395         ErrorTrap(Diag) {}
396 
397   virtual ~FunctionScopeInfo();
398 
399   /// Determine whether an unrecoverable error has occurred within this
400   /// function. Note that this may return false even if the function body is
401   /// invalid, because the errors may be suppressed if they're caused by prior
402   /// invalid declarations.
403   ///
404   /// FIXME: Migrate the caller of this to use containsErrors() instead once
405   /// it's ready.
406   bool hasUnrecoverableErrorOccurred() const {
407     return ErrorTrap.hasUnrecoverableErrorOccurred();
408   }
409 
410   /// Record that a weak object was accessed.
411   ///
412   /// Part of the implementation of -Wrepeated-use-of-weak.
413   template <typename ExprT>
414   inline void recordUseOfWeak(const ExprT *E, bool IsRead = true);
415 
416   void recordUseOfWeak(const ObjCMessageExpr *Msg,
417                        const ObjCPropertyDecl *Prop);
418 
419   /// Record that a given expression is a "safe" access of a weak object (e.g.
420   /// assigning it to a strong variable.)
421   ///
422   /// Part of the implementation of -Wrepeated-use-of-weak.
423   void markSafeWeakUse(const Expr *E);
424 
425   const WeakObjectUseMap &getWeakObjectUses() const {
426     return WeakObjectUses;
427   }
428 
429   void setHasBranchIntoScope() {
430     HasBranchIntoScope = true;
431   }
432 
433   void setHasBranchProtectedScope() {
434     HasBranchProtectedScope = true;
435   }
436 
437   void setHasIndirectGoto() {
438     HasIndirectGoto = true;
439   }
440 
441   void setHasMustTail() { HasMustTail = true; }
442 
443   void setHasDroppedStmt() {
444     HasDroppedStmt = true;
445   }
446 
447   void setHasOMPDeclareReductionCombiner() {
448     HasOMPDeclareReductionCombiner = true;
449   }
450 
451   void setHasFallthroughStmt() {
452     HasFallthroughStmt = true;
453   }
454 
455   void setUsesFPIntrin() {
456     UsesFPIntrin = true;
457   }
458 
459   void setHasCXXTry(SourceLocation TryLoc) {
460     setHasBranchProtectedScope();
461     FirstCXXOrObjCTryLoc = TryLoc;
462     FirstTryType = TryLocIsCXX;
463   }
464 
465   void setHasObjCTry(SourceLocation TryLoc) {
466     setHasBranchProtectedScope();
467     FirstCXXOrObjCTryLoc = TryLoc;
468     FirstTryType = TryLocIsObjC;
469   }
470 
471   void setHasSEHTry(SourceLocation TryLoc) {
472     setHasBranchProtectedScope();
473     FirstSEHTryLoc = TryLoc;
474   }
475 
476   bool NeedsScopeChecking() const {
477     return !HasDroppedStmt && (HasIndirectGoto || HasMustTail ||
478                                (HasBranchProtectedScope && HasBranchIntoScope));
479   }
480 
481   // Add a block introduced in this function.
482   void addBlock(const BlockDecl *BD) {
483     Blocks.insert(BD);
484   }
485 
486   // Add a __block variable introduced in this function.
487   void addByrefBlockVar(VarDecl *VD) {
488     ByrefBlockVars.push_back(VD);
489   }
490 
491   bool isCoroutine() const { return !FirstCoroutineStmtLoc.isInvalid(); }
492 
493   void setFirstCoroutineStmt(SourceLocation Loc, StringRef Keyword) {
494     assert(FirstCoroutineStmtLoc.isInvalid() &&
495                    "first coroutine statement location already set");
496     FirstCoroutineStmtLoc = Loc;
497     FirstCoroutineStmtKind = llvm::StringSwitch<unsigned char>(Keyword)
498             .Case("co_return", 0)
499             .Case("co_await", 1)
500             .Case("co_yield", 2);
501   }
502 
503   StringRef getFirstCoroutineStmtKeyword() const {
504     assert(FirstCoroutineStmtLoc.isValid()
505                    && "no coroutine statement available");
506     switch (FirstCoroutineStmtKind) {
507     case 0: return "co_return";
508     case 1: return "co_await";
509     case 2: return "co_yield";
510     default:
511       llvm_unreachable("FirstCoroutineStmtKind has an invalid value");
512     };
513   }
514 
515   void setNeedsCoroutineSuspends(bool value = true) {
516     assert((!value || CoroutineSuspends.first == nullptr) &&
517             "we already have valid suspend points");
518     NeedsCoroutineSuspends = value;
519   }
520 
521   bool hasInvalidCoroutineSuspends() const {
522     return !NeedsCoroutineSuspends && CoroutineSuspends.first == nullptr;
523   }
524 
525   void setCoroutineSuspends(Stmt *Initial, Stmt *Final) {
526     assert(Initial && Final && "suspend points cannot be null");
527     assert(CoroutineSuspends.first == nullptr && "suspend points already set");
528     NeedsCoroutineSuspends = false;
529     CoroutineSuspends.first = Initial;
530     CoroutineSuspends.second = Final;
531   }
532 
533   /// Clear out the information in this function scope, making it
534   /// suitable for reuse.
535   void Clear();
536 
537   bool isPlainFunction() const { return Kind == SK_Function; }
538 };
539 
540 class Capture {
541   // There are three categories of capture: capturing 'this', capturing
542   // local variables, and C++1y initialized captures (which can have an
543   // arbitrary initializer, and don't really capture in the traditional
544   // sense at all).
545   //
546   // There are three ways to capture a local variable:
547   //  - capture by copy in the C++11 sense,
548   //  - capture by reference in the C++11 sense, and
549   //  - __block capture.
550   // Lambdas explicitly specify capture by copy or capture by reference.
551   // For blocks, __block capture applies to variables with that annotation,
552   // variables of reference type are captured by reference, and other
553   // variables are captured by copy.
554   enum CaptureKind {
555     Cap_ByCopy, Cap_ByRef, Cap_Block, Cap_VLA
556   };
557 
558   union {
559     /// If Kind == Cap_VLA, the captured type.
560     const VariableArrayType *CapturedVLA;
561 
562     /// Otherwise, the captured variable (if any).
563     ValueDecl *CapturedVar;
564   };
565 
566   /// The source location at which the first capture occurred.
567   SourceLocation Loc;
568 
569   /// The location of the ellipsis that expands a parameter pack.
570   SourceLocation EllipsisLoc;
571 
572   /// The type as it was captured, which is the type of the non-static data
573   /// member that would hold the capture.
574   QualType CaptureType;
575 
576   /// The CaptureKind of this capture.
577   unsigned Kind : 2;
578 
579   /// Whether this is a nested capture (a capture of an enclosing capturing
580   /// scope's capture).
581   unsigned Nested : 1;
582 
583   /// Whether this is a capture of '*this'.
584   unsigned CapturesThis : 1;
585 
586   /// Whether an explicit capture has been odr-used in the body of the
587   /// lambda.
588   unsigned ODRUsed : 1;
589 
590   /// Whether an explicit capture has been non-odr-used in the body of
591   /// the lambda.
592   unsigned NonODRUsed : 1;
593 
594   /// Whether the capture is invalid (a capture was required but the entity is
595   /// non-capturable).
596   unsigned Invalid : 1;
597 
598 public:
599   Capture(ValueDecl *Var, bool Block, bool ByRef, bool IsNested,
600           SourceLocation Loc, SourceLocation EllipsisLoc, QualType CaptureType,
601           bool Invalid)
602       : CapturedVar(Var), Loc(Loc), EllipsisLoc(EllipsisLoc),
603         CaptureType(CaptureType), Kind(Block   ? Cap_Block
604                                        : ByRef ? Cap_ByRef
605                                                : Cap_ByCopy),
606         Nested(IsNested), CapturesThis(false), ODRUsed(false),
607         NonODRUsed(false), Invalid(Invalid) {}
608 
609   enum IsThisCapture { ThisCapture };
610   Capture(IsThisCapture, bool IsNested, SourceLocation Loc,
611           QualType CaptureType, const bool ByCopy, bool Invalid)
612       : Loc(Loc), CaptureType(CaptureType),
613         Kind(ByCopy ? Cap_ByCopy : Cap_ByRef), Nested(IsNested),
614         CapturesThis(true), ODRUsed(false), NonODRUsed(false),
615         Invalid(Invalid) {}
616 
617   enum IsVLACapture { VLACapture };
618   Capture(IsVLACapture, const VariableArrayType *VLA, bool IsNested,
619           SourceLocation Loc, QualType CaptureType)
620       : CapturedVLA(VLA), Loc(Loc), CaptureType(CaptureType), Kind(Cap_VLA),
621         Nested(IsNested), CapturesThis(false), ODRUsed(false),
622         NonODRUsed(false), Invalid(false) {}
623 
624   bool isThisCapture() const { return CapturesThis; }
625   bool isVariableCapture() const {
626     return !isThisCapture() && !isVLATypeCapture();
627   }
628 
629   bool isCopyCapture() const { return Kind == Cap_ByCopy; }
630   bool isReferenceCapture() const { return Kind == Cap_ByRef; }
631   bool isBlockCapture() const { return Kind == Cap_Block; }
632   bool isVLATypeCapture() const { return Kind == Cap_VLA; }
633 
634   bool isNested() const { return Nested; }
635 
636   bool isInvalid() const { return Invalid; }
637 
638   /// Determine whether this capture is an init-capture.
639   bool isInitCapture() const;
640 
641   bool isODRUsed() const { return ODRUsed; }
642   bool isNonODRUsed() const { return NonODRUsed; }
643   void markUsed(bool IsODRUse) {
644     if (IsODRUse)
645       ODRUsed = true;
646     else
647       NonODRUsed = true;
648   }
649 
650   ValueDecl *getVariable() const {
651     assert(isVariableCapture());
652     return CapturedVar;
653   }
654 
655   const VariableArrayType *getCapturedVLAType() const {
656     assert(isVLATypeCapture());
657     return CapturedVLA;
658   }
659 
660   /// Retrieve the location at which this variable was captured.
661   SourceLocation getLocation() const { return Loc; }
662 
663   /// Retrieve the source location of the ellipsis, whose presence
664   /// indicates that the capture is a pack expansion.
665   SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
666 
667   /// Retrieve the capture type for this capture, which is effectively
668   /// the type of the non-static data member in the lambda/block structure
669   /// that would store this capture.
670   QualType getCaptureType() const { return CaptureType; }
671 };
672 
673 class CapturingScopeInfo : public FunctionScopeInfo {
674 protected:
675   CapturingScopeInfo(const CapturingScopeInfo&) = default;
676 
677 public:
678   enum ImplicitCaptureStyle {
679     ImpCap_None, ImpCap_LambdaByval, ImpCap_LambdaByref, ImpCap_Block,
680     ImpCap_CapturedRegion
681   };
682 
683   ImplicitCaptureStyle ImpCaptureStyle;
684 
685   CapturingScopeInfo(DiagnosticsEngine &Diag, ImplicitCaptureStyle Style)
686       : FunctionScopeInfo(Diag), ImpCaptureStyle(Style) {}
687 
688   /// CaptureMap - A map of captured variables to (index+1) into Captures.
689   llvm::DenseMap<ValueDecl *, unsigned> CaptureMap;
690 
691   /// CXXThisCaptureIndex - The (index+1) of the capture of 'this';
692   /// zero if 'this' is not captured.
693   unsigned CXXThisCaptureIndex = 0;
694 
695   /// Captures - The captures.
696   SmallVector<Capture, 4> Captures;
697 
698   /// - Whether the target type of return statements in this context
699   /// is deduced (e.g. a lambda or block with omitted return type).
700   bool HasImplicitReturnType = false;
701 
702   /// ReturnType - The target type of return statements in this context,
703   /// or null if unknown.
704   QualType ReturnType;
705 
706   void addCapture(ValueDecl *Var, bool isBlock, bool isByref, bool isNested,
707                   SourceLocation Loc, SourceLocation EllipsisLoc,
708                   QualType CaptureType, bool Invalid) {
709     Captures.push_back(Capture(Var, isBlock, isByref, isNested, Loc,
710                                EllipsisLoc, CaptureType, Invalid));
711     CaptureMap[Var] = Captures.size();
712   }
713 
714   void addVLATypeCapture(SourceLocation Loc, const VariableArrayType *VLAType,
715                          QualType CaptureType) {
716     Captures.push_back(Capture(Capture::VLACapture, VLAType,
717                                /*FIXME: IsNested*/ false, Loc, CaptureType));
718   }
719 
720   void addThisCapture(bool isNested, SourceLocation Loc, QualType CaptureType,
721                       bool ByCopy);
722 
723   /// Determine whether the C++ 'this' is captured.
724   bool isCXXThisCaptured() const { return CXXThisCaptureIndex != 0; }
725 
726   /// Retrieve the capture of C++ 'this', if it has been captured.
727   Capture &getCXXThisCapture() {
728     assert(isCXXThisCaptured() && "this has not been captured");
729     return Captures[CXXThisCaptureIndex - 1];
730   }
731 
732   /// Determine whether the given variable has been captured.
733   bool isCaptured(ValueDecl *Var) const { return CaptureMap.count(Var); }
734 
735   /// Determine whether the given variable-array type has been captured.
736   bool isVLATypeCaptured(const VariableArrayType *VAT) const;
737 
738   /// Retrieve the capture of the given variable, if it has been
739   /// captured already.
740   Capture &getCapture(ValueDecl *Var) {
741     assert(isCaptured(Var) && "Variable has not been captured");
742     return Captures[CaptureMap[Var] - 1];
743   }
744 
745   const Capture &getCapture(ValueDecl *Var) const {
746     llvm::DenseMap<ValueDecl *, unsigned>::const_iterator Known =
747         CaptureMap.find(Var);
748     assert(Known != CaptureMap.end() && "Variable has not been captured");
749     return Captures[Known->second - 1];
750   }
751 
752   static bool classof(const FunctionScopeInfo *FSI) {
753     return FSI->Kind == SK_Block || FSI->Kind == SK_Lambda
754                                  || FSI->Kind == SK_CapturedRegion;
755   }
756 };
757 
758 /// Retains information about a block that is currently being parsed.
759 class BlockScopeInfo final : public CapturingScopeInfo {
760 public:
761   BlockDecl *TheDecl;
762 
763   /// TheScope - This is the scope for the block itself, which contains
764   /// arguments etc.
765   Scope *TheScope;
766 
767   /// BlockType - The function type of the block, if one was given.
768   /// Its return type may be BuiltinType::Dependent.
769   QualType FunctionType;
770 
771   BlockScopeInfo(DiagnosticsEngine &Diag, Scope *BlockScope, BlockDecl *Block)
772       : CapturingScopeInfo(Diag, ImpCap_Block), TheDecl(Block),
773         TheScope(BlockScope) {
774     Kind = SK_Block;
775   }
776 
777   ~BlockScopeInfo() override;
778 
779   static bool classof(const FunctionScopeInfo *FSI) {
780     return FSI->Kind == SK_Block;
781   }
782 };
783 
784 /// Retains information about a captured region.
785 class CapturedRegionScopeInfo final : public CapturingScopeInfo {
786 public:
787   /// The CapturedDecl for this statement.
788   CapturedDecl *TheCapturedDecl;
789 
790   /// The captured record type.
791   RecordDecl *TheRecordDecl;
792 
793   /// This is the enclosing scope of the captured region.
794   Scope *TheScope;
795 
796   /// The implicit parameter for the captured variables.
797   ImplicitParamDecl *ContextParam;
798 
799   /// The kind of captured region.
800   unsigned short CapRegionKind;
801 
802   unsigned short OpenMPLevel;
803   unsigned short OpenMPCaptureLevel;
804 
805   CapturedRegionScopeInfo(DiagnosticsEngine &Diag, Scope *S, CapturedDecl *CD,
806                           RecordDecl *RD, ImplicitParamDecl *Context,
807                           CapturedRegionKind K, unsigned OpenMPLevel,
808                           unsigned OpenMPCaptureLevel)
809       : CapturingScopeInfo(Diag, ImpCap_CapturedRegion),
810         TheCapturedDecl(CD), TheRecordDecl(RD), TheScope(S),
811         ContextParam(Context), CapRegionKind(K), OpenMPLevel(OpenMPLevel),
812         OpenMPCaptureLevel(OpenMPCaptureLevel) {
813     Kind = SK_CapturedRegion;
814   }
815 
816   ~CapturedRegionScopeInfo() override;
817 
818   /// A descriptive name for the kind of captured region this is.
819   StringRef getRegionName() const {
820     switch (CapRegionKind) {
821     case CR_Default:
822       return "default captured statement";
823     case CR_ObjCAtFinally:
824       return "Objective-C @finally statement";
825     case CR_OpenMP:
826       return "OpenMP region";
827     }
828     llvm_unreachable("Invalid captured region kind!");
829   }
830 
831   static bool classof(const FunctionScopeInfo *FSI) {
832     return FSI->Kind == SK_CapturedRegion;
833   }
834 };
835 
836 class LambdaScopeInfo final :
837     public CapturingScopeInfo, public InventedTemplateParameterInfo {
838 public:
839   /// The class that describes the lambda.
840   CXXRecordDecl *Lambda = nullptr;
841 
842   /// The lambda's compiler-generated \c operator().
843   CXXMethodDecl *CallOperator = nullptr;
844 
845   /// Indicate that we parsed the parameter list
846   /// at which point the mutability of the lambda
847   /// is known.
848   bool AfterParameterList = true;
849 
850   /// Source range covering the lambda introducer [...].
851   SourceRange IntroducerRange;
852 
853   /// Source location of the '&' or '=' specifying the default capture
854   /// type, if any.
855   SourceLocation CaptureDefaultLoc;
856 
857   /// The number of captures in the \c Captures list that are
858   /// explicit captures.
859   unsigned NumExplicitCaptures = 0;
860 
861   /// Whether this is a mutable lambda. Until the mutable keyword is parsed,
862   /// we assume the lambda is mutable.
863   bool Mutable = true;
864 
865   /// Whether the (empty) parameter list is explicit.
866   bool ExplicitParams = false;
867 
868   /// Whether any of the capture expressions requires cleanups.
869   CleanupInfo Cleanup;
870 
871   /// Whether the lambda contains an unexpanded parameter pack.
872   bool ContainsUnexpandedParameterPack = false;
873 
874   /// Packs introduced by this lambda, if any.
875   SmallVector<NamedDecl*, 4> LocalPacks;
876 
877   /// Source range covering the explicit template parameter list (if it exists).
878   SourceRange ExplicitTemplateParamsRange;
879 
880   /// The requires-clause immediately following the explicit template parameter
881   /// list, if any. (Note that there may be another requires-clause included as
882   /// part of the lambda-declarator.)
883   ExprResult RequiresClause;
884 
885   /// If this is a generic lambda, and the template parameter
886   /// list has been created (from the TemplateParams) then store
887   /// a reference to it (cache it to avoid reconstructing it).
888   TemplateParameterList *GLTemplateParameterList = nullptr;
889 
890   /// Contains all variable-referring-expressions (i.e. DeclRefExprs
891   ///  or MemberExprs) that refer to local variables in a generic lambda
892   ///  or a lambda in a potentially-evaluated-if-used context.
893   ///
894   ///  Potentially capturable variables of a nested lambda that might need
895   ///   to be captured by the lambda are housed here.
896   ///  This is specifically useful for generic lambdas or
897   ///  lambdas within a potentially evaluated-if-used context.
898   ///  If an enclosing variable is named in an expression of a lambda nested
899   ///  within a generic lambda, we don't always know whether the variable
900   ///  will truly be odr-used (i.e. need to be captured) by that nested lambda,
901   ///  until its instantiation. But we still need to capture it in the
902   ///  enclosing lambda if all intervening lambdas can capture the variable.
903   llvm::SmallVector<Expr*, 4> PotentiallyCapturingExprs;
904 
905   /// Contains all variable-referring-expressions that refer
906   ///  to local variables that are usable as constant expressions and
907   ///  do not involve an odr-use (they may still need to be captured
908   ///  if the enclosing full-expression is instantiation dependent).
909   llvm::SmallSet<Expr *, 8> NonODRUsedCapturingExprs;
910 
911   /// A map of explicit capture indices to their introducer source ranges.
912   llvm::DenseMap<unsigned, SourceRange> ExplicitCaptureRanges;
913 
914   /// Contains all of the variables defined in this lambda that shadow variables
915   /// that were defined in parent contexts. Used to avoid warnings when the
916   /// shadowed variables are uncaptured by this lambda.
917   struct ShadowedOuterDecl {
918     const VarDecl *VD;
919     const VarDecl *ShadowedDecl;
920   };
921   llvm::SmallVector<ShadowedOuterDecl, 4> ShadowingDecls;
922 
923   SourceLocation PotentialThisCaptureLocation;
924 
925   LambdaScopeInfo(DiagnosticsEngine &Diag)
926       : CapturingScopeInfo(Diag, ImpCap_None) {
927     Kind = SK_Lambda;
928   }
929 
930   /// Note when all explicit captures have been added.
931   void finishedExplicitCaptures() {
932     NumExplicitCaptures = Captures.size();
933   }
934 
935   static bool classof(const FunctionScopeInfo *FSI) {
936     return FSI->Kind == SK_Lambda;
937   }
938 
939   /// Is this scope known to be for a generic lambda? (This will be false until
940   /// we parse a template parameter list or the first 'auto'-typed parameter).
941   bool isGenericLambda() const {
942     return !TemplateParams.empty() || GLTemplateParameterList;
943   }
944 
945   /// Add a variable that might potentially be captured by the
946   /// lambda and therefore the enclosing lambdas.
947   ///
948   /// This is also used by enclosing lambda's to speculatively capture
949   /// variables that nested lambda's - depending on their enclosing
950   /// specialization - might need to capture.
951   /// Consider:
952   /// void f(int, int); <-- don't capture
953   /// void f(const int&, double); <-- capture
954   /// void foo() {
955   ///   const int x = 10;
956   ///   auto L = [=](auto a) { // capture 'x'
957   ///      return [=](auto b) {
958   ///        f(x, a);  // we may or may not need to capture 'x'
959   ///      };
960   ///   };
961   /// }
962   void addPotentialCapture(Expr *VarExpr) {
963     assert(isa<DeclRefExpr>(VarExpr) || isa<MemberExpr>(VarExpr) ||
964            isa<FunctionParmPackExpr>(VarExpr));
965     PotentiallyCapturingExprs.push_back(VarExpr);
966   }
967 
968   void addPotentialThisCapture(SourceLocation Loc) {
969     PotentialThisCaptureLocation = Loc;
970   }
971 
972   bool hasPotentialThisCapture() const {
973     return PotentialThisCaptureLocation.isValid();
974   }
975 
976   /// Mark a variable's reference in a lambda as non-odr using.
977   ///
978   /// For generic lambdas, if a variable is named in a potentially evaluated
979   /// expression, where the enclosing full expression is dependent then we
980   /// must capture the variable (given a default capture).
981   /// This is accomplished by recording all references to variables
982   /// (DeclRefExprs or MemberExprs) within said nested lambda in its array of
983   /// PotentialCaptures. All such variables have to be captured by that lambda,
984   /// except for as described below.
985   /// If that variable is usable as a constant expression and is named in a
986   /// manner that does not involve its odr-use (e.g. undergoes
987   /// lvalue-to-rvalue conversion, or discarded) record that it is so. Upon the
988   /// act of analyzing the enclosing full expression (ActOnFinishFullExpr)
989   /// if we can determine that the full expression is not instantiation-
990   /// dependent, then we can entirely avoid its capture.
991   ///
992   ///   const int n = 0;
993   ///   [&] (auto x) {
994   ///     (void)+n + x;
995   ///   };
996   /// Interestingly, this strategy would involve a capture of n, even though
997   /// it's obviously not odr-used here, because the full-expression is
998   /// instantiation-dependent.  It could be useful to avoid capturing such
999   /// variables, even when they are referred to in an instantiation-dependent
1000   /// expression, if we can unambiguously determine that they shall never be
1001   /// odr-used.  This would involve removal of the variable-referring-expression
1002   /// from the array of PotentialCaptures during the lvalue-to-rvalue
1003   /// conversions.  But per the working draft N3797, (post-chicago 2013) we must
1004   /// capture such variables.
1005   /// Before anyone is tempted to implement a strategy for not-capturing 'n',
1006   /// consider the insightful warning in:
1007   ///    /cfe-commits/Week-of-Mon-20131104/092596.html
1008   /// "The problem is that the set of captures for a lambda is part of the ABI
1009   ///  (since lambda layout can be made visible through inline functions and the
1010   ///  like), and there are no guarantees as to which cases we'll manage to build
1011   ///  an lvalue-to-rvalue conversion in, when parsing a template -- some
1012   ///  seemingly harmless change elsewhere in Sema could cause us to start or stop
1013   ///  building such a node. So we need a rule that anyone can implement and get
1014   ///  exactly the same result".
1015   void markVariableExprAsNonODRUsed(Expr *CapturingVarExpr) {
1016     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1017            isa<MemberExpr>(CapturingVarExpr) ||
1018            isa<FunctionParmPackExpr>(CapturingVarExpr));
1019     NonODRUsedCapturingExprs.insert(CapturingVarExpr);
1020   }
1021   bool isVariableExprMarkedAsNonODRUsed(Expr *CapturingVarExpr) const {
1022     assert(isa<DeclRefExpr>(CapturingVarExpr) ||
1023            isa<MemberExpr>(CapturingVarExpr) ||
1024            isa<FunctionParmPackExpr>(CapturingVarExpr));
1025     return NonODRUsedCapturingExprs.count(CapturingVarExpr);
1026   }
1027   void removePotentialCapture(Expr *E) {
1028     llvm::erase_value(PotentiallyCapturingExprs, E);
1029   }
1030   void clearPotentialCaptures() {
1031     PotentiallyCapturingExprs.clear();
1032     PotentialThisCaptureLocation = SourceLocation();
1033   }
1034   unsigned getNumPotentialVariableCaptures() const {
1035     return PotentiallyCapturingExprs.size();
1036   }
1037 
1038   bool hasPotentialCaptures() const {
1039     return getNumPotentialVariableCaptures() ||
1040                                   PotentialThisCaptureLocation.isValid();
1041   }
1042 
1043   void visitPotentialCaptures(
1044       llvm::function_ref<void(ValueDecl *, Expr *)> Callback) const;
1045 };
1046 
1047 FunctionScopeInfo::WeakObjectProfileTy::WeakObjectProfileTy()
1048     : Base(nullptr, false) {}
1049 
1050 FunctionScopeInfo::WeakObjectProfileTy
1051 FunctionScopeInfo::WeakObjectProfileTy::getSentinel() {
1052   FunctionScopeInfo::WeakObjectProfileTy Result;
1053   Result.Base.setInt(true);
1054   return Result;
1055 }
1056 
1057 template <typename ExprT>
1058 void FunctionScopeInfo::recordUseOfWeak(const ExprT *E, bool IsRead) {
1059   assert(E);
1060   WeakUseVector &Uses = WeakObjectUses[WeakObjectProfileTy(E)];
1061   Uses.push_back(WeakUseTy(E, IsRead));
1062 }
1063 
1064 inline void CapturingScopeInfo::addThisCapture(bool isNested,
1065                                                SourceLocation Loc,
1066                                                QualType CaptureType,
1067                                                bool ByCopy) {
1068   Captures.push_back(Capture(Capture::ThisCapture, isNested, Loc, CaptureType,
1069                              ByCopy, /*Invalid*/ false));
1070   CXXThisCaptureIndex = Captures.size();
1071 }
1072 
1073 } // namespace sema
1074 
1075 } // namespace clang
1076 
1077 #endif // LLVM_CLANG_SEMA_SCOPEINFO_H
1078