1 //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the ASTContext interface.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "CXXABI.h"
15 #include "Interp/Context.h"
16 #include "clang/AST/APValue.h"
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/ASTTypeTraits.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/AttrIterator.h"
22 #include "clang/AST/CharUnits.h"
23 #include "clang/AST/Comment.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclBase.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclContextInternals.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/AST/DeclTemplate.h"
31 #include "clang/AST/DeclarationName.h"
32 #include "clang/AST/DependenceFlags.h"
33 #include "clang/AST/Expr.h"
34 #include "clang/AST/ExprCXX.h"
35 #include "clang/AST/ExprConcepts.h"
36 #include "clang/AST/ExternalASTSource.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/MangleNumberingContext.h"
39 #include "clang/AST/NestedNameSpecifier.h"
40 #include "clang/AST/ParentMapContext.h"
41 #include "clang/AST/RawCommentList.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/Stmt.h"
44 #include "clang/AST/TemplateBase.h"
45 #include "clang/AST/TemplateName.h"
46 #include "clang/AST/Type.h"
47 #include "clang/AST/TypeLoc.h"
48 #include "clang/AST/UnresolvedSet.h"
49 #include "clang/AST/VTableBuilder.h"
50 #include "clang/Basic/AddressSpaces.h"
51 #include "clang/Basic/Builtins.h"
52 #include "clang/Basic/CommentOptions.h"
53 #include "clang/Basic/ExceptionSpecificationType.h"
54 #include "clang/Basic/IdentifierTable.h"
55 #include "clang/Basic/LLVM.h"
56 #include "clang/Basic/LangOptions.h"
57 #include "clang/Basic/Linkage.h"
58 #include "clang/Basic/Module.h"
59 #include "clang/Basic/NoSanitizeList.h"
60 #include "clang/Basic/ObjCRuntime.h"
61 #include "clang/Basic/SourceLocation.h"
62 #include "clang/Basic/SourceManager.h"
63 #include "clang/Basic/Specifiers.h"
64 #include "clang/Basic/TargetCXXABI.h"
65 #include "clang/Basic/TargetInfo.h"
66 #include "clang/Basic/XRayLists.h"
67 #include "llvm/ADT/APFixedPoint.h"
68 #include "llvm/ADT/APInt.h"
69 #include "llvm/ADT/APSInt.h"
70 #include "llvm/ADT/ArrayRef.h"
71 #include "llvm/ADT/DenseMap.h"
72 #include "llvm/ADT/DenseSet.h"
73 #include "llvm/ADT/FoldingSet.h"
74 #include "llvm/ADT/None.h"
75 #include "llvm/ADT/Optional.h"
76 #include "llvm/ADT/PointerUnion.h"
77 #include "llvm/ADT/STLExtras.h"
78 #include "llvm/ADT/SmallPtrSet.h"
79 #include "llvm/ADT/SmallVector.h"
80 #include "llvm/ADT/StringExtras.h"
81 #include "llvm/ADT/StringRef.h"
82 #include "llvm/ADT/Triple.h"
83 #include "llvm/Support/Capacity.h"
84 #include "llvm/Support/Casting.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/MD5.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstddef>
93 #include <cstdint>
94 #include <cstdlib>
95 #include <map>
96 #include <memory>
97 #include <string>
98 #include <tuple>
99 #include <utility>
100 
101 using namespace clang;
102 
103 enum FloatingRank {
104   BFloat16Rank,
105   Float16Rank,
106   HalfRank,
107   FloatRank,
108   DoubleRank,
109   LongDoubleRank,
110   Float128Rank,
111   Ibm128Rank
112 };
113 
114 /// \returns location that is relevant when searching for Doc comments related
115 /// to \p D.
116 static SourceLocation getDeclLocForCommentSearch(const Decl *D,
117                                                  SourceManager &SourceMgr) {
118   assert(D);
119 
120   // User can not attach documentation to implicit declarations.
121   if (D->isImplicit())
122     return {};
123 
124   // User can not attach documentation to implicit instantiations.
125   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
126     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
127       return {};
128   }
129 
130   if (const auto *VD = dyn_cast<VarDecl>(D)) {
131     if (VD->isStaticDataMember() &&
132         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
133       return {};
134   }
135 
136   if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
137     if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
138       return {};
139   }
140 
141   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
142     TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
143     if (TSK == TSK_ImplicitInstantiation ||
144         TSK == TSK_Undeclared)
145       return {};
146   }
147 
148   if (const auto *ED = dyn_cast<EnumDecl>(D)) {
149     if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
150       return {};
151   }
152   if (const auto *TD = dyn_cast<TagDecl>(D)) {
153     // When tag declaration (but not definition!) is part of the
154     // decl-specifier-seq of some other declaration, it doesn't get comment
155     if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
156       return {};
157   }
158   // TODO: handle comments for function parameters properly.
159   if (isa<ParmVarDecl>(D))
160     return {};
161 
162   // TODO: we could look up template parameter documentation in the template
163   // documentation.
164   if (isa<TemplateTypeParmDecl>(D) ||
165       isa<NonTypeTemplateParmDecl>(D) ||
166       isa<TemplateTemplateParmDecl>(D))
167     return {};
168 
169   // Find declaration location.
170   // For Objective-C declarations we generally don't expect to have multiple
171   // declarators, thus use declaration starting location as the "declaration
172   // location".
173   // For all other declarations multiple declarators are used quite frequently,
174   // so we use the location of the identifier as the "declaration location".
175   if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
176       isa<ObjCPropertyDecl>(D) ||
177       isa<RedeclarableTemplateDecl>(D) ||
178       isa<ClassTemplateSpecializationDecl>(D) ||
179       // Allow association with Y across {} in `typedef struct X {} Y`.
180       isa<TypedefDecl>(D))
181     return D->getBeginLoc();
182 
183   const SourceLocation DeclLoc = D->getLocation();
184   if (DeclLoc.isMacroID()) {
185     if (isa<TypedefDecl>(D)) {
186       // If location of the typedef name is in a macro, it is because being
187       // declared via a macro. Try using declaration's starting location as
188       // the "declaration location".
189       return D->getBeginLoc();
190     }
191 
192     if (const auto *TD = dyn_cast<TagDecl>(D)) {
193       // If location of the tag decl is inside a macro, but the spelling of
194       // the tag name comes from a macro argument, it looks like a special
195       // macro like NS_ENUM is being used to define the tag decl.  In that
196       // case, adjust the source location to the expansion loc so that we can
197       // attach the comment to the tag decl.
198       if (SourceMgr.isMacroArgExpansion(DeclLoc) && TD->isCompleteDefinition())
199         return SourceMgr.getExpansionLoc(DeclLoc);
200     }
201   }
202 
203   return DeclLoc;
204 }
205 
206 RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
207     const Decl *D, const SourceLocation RepresentativeLocForDecl,
208     const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
209   // If the declaration doesn't map directly to a location in a file, we
210   // can't find the comment.
211   if (RepresentativeLocForDecl.isInvalid() ||
212       !RepresentativeLocForDecl.isFileID())
213     return nullptr;
214 
215   // If there are no comments anywhere, we won't find anything.
216   if (CommentsInTheFile.empty())
217     return nullptr;
218 
219   // Decompose the location for the declaration and find the beginning of the
220   // file buffer.
221   const std::pair<FileID, unsigned> DeclLocDecomp =
222       SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
223 
224   // Slow path.
225   auto OffsetCommentBehindDecl =
226       CommentsInTheFile.lower_bound(DeclLocDecomp.second);
227 
228   // First check whether we have a trailing comment.
229   if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
230     RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
231     if ((CommentBehindDecl->isDocumentation() ||
232          LangOpts.CommentOpts.ParseAllComments) &&
233         CommentBehindDecl->isTrailingComment() &&
234         (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
235          isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
236 
237       // Check that Doxygen trailing comment comes after the declaration, starts
238       // on the same line and in the same file as the declaration.
239       if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
240           Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
241                                        OffsetCommentBehindDecl->first)) {
242         return CommentBehindDecl;
243       }
244     }
245   }
246 
247   // The comment just after the declaration was not a trailing comment.
248   // Let's look at the previous comment.
249   if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
250     return nullptr;
251 
252   auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
253   RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
254 
255   // Check that we actually have a non-member Doxygen comment.
256   if (!(CommentBeforeDecl->isDocumentation() ||
257         LangOpts.CommentOpts.ParseAllComments) ||
258       CommentBeforeDecl->isTrailingComment())
259     return nullptr;
260 
261   // Decompose the end of the comment.
262   const unsigned CommentEndOffset =
263       Comments.getCommentEndOffset(CommentBeforeDecl);
264 
265   // Get the corresponding buffer.
266   bool Invalid = false;
267   const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
268                                                &Invalid).data();
269   if (Invalid)
270     return nullptr;
271 
272   // Extract text between the comment and declaration.
273   StringRef Text(Buffer + CommentEndOffset,
274                  DeclLocDecomp.second - CommentEndOffset);
275 
276   // There should be no other declarations or preprocessor directives between
277   // comment and declaration.
278   if (Text.find_first_of(";{}#@") != StringRef::npos)
279     return nullptr;
280 
281   return CommentBeforeDecl;
282 }
283 
284 RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
285   const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
286 
287   // If the declaration doesn't map directly to a location in a file, we
288   // can't find the comment.
289   if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
290     return nullptr;
291 
292   if (ExternalSource && !CommentsLoaded) {
293     ExternalSource->ReadComments();
294     CommentsLoaded = true;
295   }
296 
297   if (Comments.empty())
298     return nullptr;
299 
300   const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
301   const auto CommentsInThisFile = Comments.getCommentsInFile(File);
302   if (!CommentsInThisFile || CommentsInThisFile->empty())
303     return nullptr;
304 
305   return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
306 }
307 
308 void ASTContext::addComment(const RawComment &RC) {
309   assert(LangOpts.RetainCommentsFromSystemHeaders ||
310          !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
311   Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
312 }
313 
314 /// If we have a 'templated' declaration for a template, adjust 'D' to
315 /// refer to the actual template.
316 /// If we have an implicit instantiation, adjust 'D' to refer to template.
317 static const Decl &adjustDeclToTemplate(const Decl &D) {
318   if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
319     // Is this function declaration part of a function template?
320     if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
321       return *FTD;
322 
323     // Nothing to do if function is not an implicit instantiation.
324     if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
325       return D;
326 
327     // Function is an implicit instantiation of a function template?
328     if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
329       return *FTD;
330 
331     // Function is instantiated from a member definition of a class template?
332     if (const FunctionDecl *MemberDecl =
333             FD->getInstantiatedFromMemberFunction())
334       return *MemberDecl;
335 
336     return D;
337   }
338   if (const auto *VD = dyn_cast<VarDecl>(&D)) {
339     // Static data member is instantiated from a member definition of a class
340     // template?
341     if (VD->isStaticDataMember())
342       if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
343         return *MemberDecl;
344 
345     return D;
346   }
347   if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
348     // Is this class declaration part of a class template?
349     if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
350       return *CTD;
351 
352     // Class is an implicit instantiation of a class template or partial
353     // specialization?
354     if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
355       if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
356         return D;
357       llvm::PointerUnion<ClassTemplateDecl *,
358                          ClassTemplatePartialSpecializationDecl *>
359           PU = CTSD->getSpecializedTemplateOrPartial();
360       return PU.is<ClassTemplateDecl *>()
361                  ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
362                  : *static_cast<const Decl *>(
363                        PU.get<ClassTemplatePartialSpecializationDecl *>());
364     }
365 
366     // Class is instantiated from a member definition of a class template?
367     if (const MemberSpecializationInfo *Info =
368             CRD->getMemberSpecializationInfo())
369       return *Info->getInstantiatedFrom();
370 
371     return D;
372   }
373   if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
374     // Enum is instantiated from a member definition of a class template?
375     if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
376       return *MemberDecl;
377 
378     return D;
379   }
380   // FIXME: Adjust alias templates?
381   return D;
382 }
383 
384 const RawComment *ASTContext::getRawCommentForAnyRedecl(
385                                                 const Decl *D,
386                                                 const Decl **OriginalDecl) const {
387   if (!D) {
388     if (OriginalDecl)
389       OriginalDecl = nullptr;
390     return nullptr;
391   }
392 
393   D = &adjustDeclToTemplate(*D);
394 
395   // Any comment directly attached to D?
396   {
397     auto DeclComment = DeclRawComments.find(D);
398     if (DeclComment != DeclRawComments.end()) {
399       if (OriginalDecl)
400         *OriginalDecl = D;
401       return DeclComment->second;
402     }
403   }
404 
405   // Any comment attached to any redeclaration of D?
406   const Decl *CanonicalD = D->getCanonicalDecl();
407   if (!CanonicalD)
408     return nullptr;
409 
410   {
411     auto RedeclComment = RedeclChainComments.find(CanonicalD);
412     if (RedeclComment != RedeclChainComments.end()) {
413       if (OriginalDecl)
414         *OriginalDecl = RedeclComment->second;
415       auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
416       assert(CommentAtRedecl != DeclRawComments.end() &&
417              "This decl is supposed to have comment attached.");
418       return CommentAtRedecl->second;
419     }
420   }
421 
422   // Any redeclarations of D that we haven't checked for comments yet?
423   // We can't use DenseMap::iterator directly since it'd get invalid.
424   auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
425     auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
426     if (LookupRes != CommentlessRedeclChains.end())
427       return LookupRes->second;
428     return nullptr;
429   }();
430 
431   for (const auto Redecl : D->redecls()) {
432     assert(Redecl);
433     // Skip all redeclarations that have been checked previously.
434     if (LastCheckedRedecl) {
435       if (LastCheckedRedecl == Redecl) {
436         LastCheckedRedecl = nullptr;
437       }
438       continue;
439     }
440     const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
441     if (RedeclComment) {
442       cacheRawCommentForDecl(*Redecl, *RedeclComment);
443       if (OriginalDecl)
444         *OriginalDecl = Redecl;
445       return RedeclComment;
446     }
447     CommentlessRedeclChains[CanonicalD] = Redecl;
448   }
449 
450   if (OriginalDecl)
451     *OriginalDecl = nullptr;
452   return nullptr;
453 }
454 
455 void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
456                                         const RawComment &Comment) const {
457   assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
458   DeclRawComments.try_emplace(&OriginalD, &Comment);
459   const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
460   RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
461   CommentlessRedeclChains.erase(CanonicalDecl);
462 }
463 
464 static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
465                    SmallVectorImpl<const NamedDecl *> &Redeclared) {
466   const DeclContext *DC = ObjCMethod->getDeclContext();
467   if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
468     const ObjCInterfaceDecl *ID = IMD->getClassInterface();
469     if (!ID)
470       return;
471     // Add redeclared method here.
472     for (const auto *Ext : ID->known_extensions()) {
473       if (ObjCMethodDecl *RedeclaredMethod =
474             Ext->getMethod(ObjCMethod->getSelector(),
475                                   ObjCMethod->isInstanceMethod()))
476         Redeclared.push_back(RedeclaredMethod);
477     }
478   }
479 }
480 
481 void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
482                                                  const Preprocessor *PP) {
483   if (Comments.empty() || Decls.empty())
484     return;
485 
486   FileID File;
487   for (Decl *D : Decls) {
488     SourceLocation Loc = D->getLocation();
489     if (Loc.isValid()) {
490       // See if there are any new comments that are not attached to a decl.
491       // The location doesn't have to be precise - we care only about the file.
492       File = SourceMgr.getDecomposedLoc(Loc).first;
493       break;
494     }
495   }
496 
497   if (File.isInvalid())
498     return;
499 
500   auto CommentsInThisFile = Comments.getCommentsInFile(File);
501   if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502       CommentsInThisFile->rbegin()->second->isAttached())
503     return;
504 
505   // There is at least one comment not attached to a decl.
506   // Maybe it should be attached to one of Decls?
507   //
508   // Note that this way we pick up not only comments that precede the
509   // declaration, but also comments that *follow* the declaration -- thanks to
510   // the lookahead in the lexer: we've consumed the semicolon and looked
511   // ahead through comments.
512 
513   for (const Decl *D : Decls) {
514     assert(D);
515     if (D->isInvalidDecl())
516       continue;
517 
518     D = &adjustDeclToTemplate(*D);
519 
520     const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521 
522     if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523       continue;
524 
525     if (DeclRawComments.count(D) > 0)
526       continue;
527 
528     if (RawComment *const DocComment =
529             getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530       cacheRawCommentForDecl(*D, *DocComment);
531       comments::FullComment *FC = DocComment->parse(*this, PP, D);
532       ParsedComments[D->getCanonicalDecl()] = FC;
533     }
534   }
535 }
536 
537 comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                     const Decl *D) const {
539   auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540   ThisDeclInfo->CommentDecl = D;
541   ThisDeclInfo->IsFilled = false;
542   ThisDeclInfo->fill();
543   ThisDeclInfo->CommentDecl = FC->getDecl();
544   if (!ThisDeclInfo->TemplateParameters)
545     ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546   comments::FullComment *CFC =
547     new (*this) comments::FullComment(FC->getBlocks(),
548                                       ThisDeclInfo);
549   return CFC;
550 }
551 
552 comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553   const RawComment *RC = getRawCommentForDeclNoCache(D);
554   return RC ? RC->parse(*this, nullptr, D) : nullptr;
555 }
556 
557 comments::FullComment *ASTContext::getCommentForDecl(
558                                               const Decl *D,
559                                               const Preprocessor *PP) const {
560   if (!D || D->isInvalidDecl())
561     return nullptr;
562   D = &adjustDeclToTemplate(*D);
563 
564   const Decl *Canonical = D->getCanonicalDecl();
565   llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566       ParsedComments.find(Canonical);
567 
568   if (Pos != ParsedComments.end()) {
569     if (Canonical != D) {
570       comments::FullComment *FC = Pos->second;
571       comments::FullComment *CFC = cloneFullComment(FC, D);
572       return CFC;
573     }
574     return Pos->second;
575   }
576 
577   const Decl *OriginalDecl = nullptr;
578 
579   const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580   if (!RC) {
581     if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582       SmallVector<const NamedDecl*, 8> Overridden;
583       const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584       if (OMD && OMD->isPropertyAccessor())
585         if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586           if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587             return cloneFullComment(FC, D);
588       if (OMD)
589         addRedeclaredMethods(OMD, Overridden);
590       getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591       for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592         if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593           return cloneFullComment(FC, D);
594     }
595     else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596       // Attach any tag type's documentation to its typedef if latter
597       // does not have one of its own.
598       QualType QT = TD->getUnderlyingType();
599       if (const auto *TT = QT->getAs<TagType>())
600         if (const Decl *TD = TT->getDecl())
601           if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602             return cloneFullComment(FC, D);
603     }
604     else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605       while (IC->getSuperClass()) {
606         IC = IC->getSuperClass();
607         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608           return cloneFullComment(FC, D);
609       }
610     }
611     else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612       if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613         if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614           return cloneFullComment(FC, D);
615     }
616     else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617       if (!(RD = RD->getDefinition()))
618         return nullptr;
619       // Check non-virtual bases.
620       for (const auto &I : RD->bases()) {
621         if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622           continue;
623         QualType Ty = I.getType();
624         if (Ty.isNull())
625           continue;
626         if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627           if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628             continue;
629 
630           if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631             return cloneFullComment(FC, D);
632         }
633       }
634       // Check virtual bases.
635       for (const auto &I : RD->vbases()) {
636         if (I.getAccessSpecifier() != AS_public)
637           continue;
638         QualType Ty = I.getType();
639         if (Ty.isNull())
640           continue;
641         if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642           if (!(VirtualBase= VirtualBase->getDefinition()))
643             continue;
644           if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645             return cloneFullComment(FC, D);
646         }
647       }
648     }
649     return nullptr;
650   }
651 
652   // If the RawComment was attached to other redeclaration of this Decl, we
653   // should parse the comment in context of that other Decl.  This is important
654   // because comments can contain references to parameter names which can be
655   // different across redeclarations.
656   if (D != OriginalDecl && OriginalDecl)
657     return getCommentForDecl(OriginalDecl, PP);
658 
659   comments::FullComment *FC = RC->parse(*this, PP, D);
660   ParsedComments[Canonical] = FC;
661   return FC;
662 }
663 
664 void
665 ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                    const ASTContext &C,
667                                                TemplateTemplateParmDecl *Parm) {
668   ID.AddInteger(Parm->getDepth());
669   ID.AddInteger(Parm->getPosition());
670   ID.AddBoolean(Parm->isParameterPack());
671 
672   TemplateParameterList *Params = Parm->getTemplateParameters();
673   ID.AddInteger(Params->size());
674   for (TemplateParameterList::const_iterator P = Params->begin(),
675                                           PEnd = Params->end();
676        P != PEnd; ++P) {
677     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       ID.AddInteger(0);
679       ID.AddBoolean(TTP->isParameterPack());
680       const TypeConstraint *TC = TTP->getTypeConstraint();
681       ID.AddBoolean(TC != nullptr);
682       if (TC)
683         TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                         /*Canonical=*/true);
685       if (TTP->isExpandedParameterPack()) {
686         ID.AddBoolean(true);
687         ID.AddInteger(TTP->getNumExpansionParameters());
688       } else
689         ID.AddBoolean(false);
690       continue;
691     }
692 
693     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694       ID.AddInteger(1);
695       ID.AddBoolean(NTTP->isParameterPack());
696       ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697       if (NTTP->isExpandedParameterPack()) {
698         ID.AddBoolean(true);
699         ID.AddInteger(NTTP->getNumExpansionTypes());
700         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701           QualType T = NTTP->getExpansionType(I);
702           ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703         }
704       } else
705         ID.AddBoolean(false);
706       continue;
707     }
708 
709     auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710     ID.AddInteger(2);
711     Profile(ID, C, TTP);
712   }
713   Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714   ID.AddBoolean(RequiresClause != nullptr);
715   if (RequiresClause)
716     RequiresClause->Profile(ID, C, /*Canonical=*/true);
717 }
718 
719 static Expr *
720 canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                           QualType ConstrainedType) {
722   // This is a bit ugly - we need to form a new immediately-declared
723   // constraint that references the new parameter; this would ideally
724   // require semantic analysis (e.g. template<C T> struct S {}; - the
725   // converted arguments of C<T> could be an argument pack if C is
726   // declared as template<typename... T> concept C = ...).
727   // We don't have semantic analysis here so we dig deep into the
728   // ready-made constraint expr and change the thing manually.
729   ConceptSpecializationExpr *CSE;
730   if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731     CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732   else
733     CSE = cast<ConceptSpecializationExpr>(IDC);
734   ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735   SmallVector<TemplateArgument, 3> NewConverted;
736   NewConverted.reserve(OldConverted.size());
737   if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738     // The case:
739     // template<typename... T> concept C = true;
740     // template<C<int> T> struct S; -> constraint is C<{T, int}>
741     NewConverted.push_back(ConstrainedType);
742     for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
743       NewConverted.push_back(Arg);
744     TemplateArgument NewPack(NewConverted);
745 
746     NewConverted.clear();
747     NewConverted.push_back(NewPack);
748     assert(OldConverted.size() == 1 &&
749            "Template parameter pack should be the last parameter");
750   } else {
751     assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752            "Unexpected first argument kind for immediately-declared "
753            "constraint");
754     NewConverted.push_back(ConstrainedType);
755     for (auto &Arg : OldConverted.drop_front(1))
756       NewConverted.push_back(Arg);
757   }
758   Expr *NewIDC = ConceptSpecializationExpr::Create(
759       C, CSE->getNamedConcept(), NewConverted, nullptr,
760       CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
761 
762   if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
763     NewIDC = new (C) CXXFoldExpr(
764         OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
765         BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
766         SourceLocation(), /*NumExpansions=*/None);
767   return NewIDC;
768 }
769 
770 TemplateTemplateParmDecl *
771 ASTContext::getCanonicalTemplateTemplateParmDecl(
772                                           TemplateTemplateParmDecl *TTP) const {
773   // Check if we already have a canonical template template parameter.
774   llvm::FoldingSetNodeID ID;
775   CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
776   void *InsertPos = nullptr;
777   CanonicalTemplateTemplateParm *Canonical
778     = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
779   if (Canonical)
780     return Canonical->getParam();
781 
782   // Build a canonical template parameter list.
783   TemplateParameterList *Params = TTP->getTemplateParameters();
784   SmallVector<NamedDecl *, 4> CanonParams;
785   CanonParams.reserve(Params->size());
786   for (TemplateParameterList::const_iterator P = Params->begin(),
787                                           PEnd = Params->end();
788        P != PEnd; ++P) {
789     if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
790       TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
791           getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
792           TTP->getDepth(), TTP->getIndex(), nullptr, false,
793           TTP->isParameterPack(), TTP->hasTypeConstraint(),
794           TTP->isExpandedParameterPack() ?
795           llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
796       if (const auto *TC = TTP->getTypeConstraint()) {
797         QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
798         Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
799                 *this, TC->getImmediatelyDeclaredConstraint(),
800                 ParamAsArgument);
801         TemplateArgumentListInfo CanonArgsAsWritten;
802         if (auto *Args = TC->getTemplateArgsAsWritten())
803           for (const auto &ArgLoc : Args->arguments())
804             CanonArgsAsWritten.addArgument(
805                 TemplateArgumentLoc(ArgLoc.getArgument(),
806                                     TemplateArgumentLocInfo()));
807         NewTTP->setTypeConstraint(
808             NestedNameSpecifierLoc(),
809             DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
810                                 SourceLocation()), /*FoundDecl=*/nullptr,
811             // Actually canonicalizing a TemplateArgumentLoc is difficult so we
812             // simply omit the ArgsAsWritten
813             TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
814       }
815       CanonParams.push_back(NewTTP);
816     } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
817       QualType T = getCanonicalType(NTTP->getType());
818       TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
819       NonTypeTemplateParmDecl *Param;
820       if (NTTP->isExpandedParameterPack()) {
821         SmallVector<QualType, 2> ExpandedTypes;
822         SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
823         for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
824           ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
825           ExpandedTInfos.push_back(
826                                 getTrivialTypeSourceInfo(ExpandedTypes.back()));
827         }
828 
829         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
830                                                 SourceLocation(),
831                                                 SourceLocation(),
832                                                 NTTP->getDepth(),
833                                                 NTTP->getPosition(), nullptr,
834                                                 T,
835                                                 TInfo,
836                                                 ExpandedTypes,
837                                                 ExpandedTInfos);
838       } else {
839         Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
840                                                 SourceLocation(),
841                                                 SourceLocation(),
842                                                 NTTP->getDepth(),
843                                                 NTTP->getPosition(), nullptr,
844                                                 T,
845                                                 NTTP->isParameterPack(),
846                                                 TInfo);
847       }
848       if (AutoType *AT = T->getContainedAutoType()) {
849         if (AT->isConstrained()) {
850           Param->setPlaceholderTypeConstraint(
851               canonicalizeImmediatelyDeclaredConstraint(
852                   *this, NTTP->getPlaceholderTypeConstraint(), T));
853         }
854       }
855       CanonParams.push_back(Param);
856 
857     } else
858       CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
859                                            cast<TemplateTemplateParmDecl>(*P)));
860   }
861 
862   Expr *CanonRequiresClause = nullptr;
863   if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
864     CanonRequiresClause = RequiresClause;
865 
866   TemplateTemplateParmDecl *CanonTTP
867     = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
868                                        SourceLocation(), TTP->getDepth(),
869                                        TTP->getPosition(),
870                                        TTP->isParameterPack(),
871                                        nullptr,
872                          TemplateParameterList::Create(*this, SourceLocation(),
873                                                        SourceLocation(),
874                                                        CanonParams,
875                                                        SourceLocation(),
876                                                        CanonRequiresClause));
877 
878   // Get the new insert position for the node we care about.
879   Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
880   assert(!Canonical && "Shouldn't be in the map!");
881   (void)Canonical;
882 
883   // Create the canonical template template parameter entry.
884   Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
885   CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
886   return CanonTTP;
887 }
888 
889 TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
890   auto Kind = getTargetInfo().getCXXABI().getKind();
891   return getLangOpts().CXXABI.getValueOr(Kind);
892 }
893 
894 CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
895   if (!LangOpts.CPlusPlus) return nullptr;
896 
897   switch (getCXXABIKind()) {
898   case TargetCXXABI::AppleARM64:
899   case TargetCXXABI::Fuchsia:
900   case TargetCXXABI::GenericARM: // Same as Itanium at this level
901   case TargetCXXABI::iOS:
902   case TargetCXXABI::WatchOS:
903   case TargetCXXABI::GenericAArch64:
904   case TargetCXXABI::GenericMIPS:
905   case TargetCXXABI::GenericItanium:
906   case TargetCXXABI::WebAssembly:
907   case TargetCXXABI::XL:
908     return CreateItaniumCXXABI(*this);
909   case TargetCXXABI::Microsoft:
910     return CreateMicrosoftCXXABI(*this);
911   }
912   llvm_unreachable("Invalid CXXABI type!");
913 }
914 
915 interp::Context &ASTContext::getInterpContext() {
916   if (!InterpContext) {
917     InterpContext.reset(new interp::Context(*this));
918   }
919   return *InterpContext.get();
920 }
921 
922 ParentMapContext &ASTContext::getParentMapContext() {
923   if (!ParentMapCtx)
924     ParentMapCtx.reset(new ParentMapContext(*this));
925   return *ParentMapCtx.get();
926 }
927 
928 static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
929                                            const LangOptions &LOpts) {
930   if (LOpts.FakeAddressSpaceMap) {
931     // The fake address space map must have a distinct entry for each
932     // language-specific address space.
933     static const unsigned FakeAddrSpaceMap[] = {
934         0,  // Default
935         1,  // opencl_global
936         3,  // opencl_local
937         2,  // opencl_constant
938         0,  // opencl_private
939         4,  // opencl_generic
940         5,  // opencl_global_device
941         6,  // opencl_global_host
942         7,  // cuda_device
943         8,  // cuda_constant
944         9,  // cuda_shared
945         1,  // sycl_global
946         5,  // sycl_global_device
947         6,  // sycl_global_host
948         3,  // sycl_local
949         0,  // sycl_private
950         10, // ptr32_sptr
951         11, // ptr32_uptr
952         12  // ptr64
953     };
954     return &FakeAddrSpaceMap;
955   } else {
956     return &T.getAddressSpaceMap();
957   }
958 }
959 
960 static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
961                                           const LangOptions &LangOpts) {
962   switch (LangOpts.getAddressSpaceMapMangling()) {
963   case LangOptions::ASMM_Target:
964     return TI.useAddressSpaceMapMangling();
965   case LangOptions::ASMM_On:
966     return true;
967   case LangOptions::ASMM_Off:
968     return false;
969   }
970   llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
971 }
972 
973 ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
974                        IdentifierTable &idents, SelectorTable &sels,
975                        Builtin::Context &builtins, TranslationUnitKind TUKind)
976     : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
977       TemplateSpecializationTypes(this_()),
978       DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
979       SubstTemplateTemplateParmPacks(this_()),
980       CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
981       NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
982       XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
983                                         LangOpts.XRayNeverInstrumentFiles,
984                                         LangOpts.XRayAttrListFiles, SM)),
985       ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
986       PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
987       BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
988       Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
989       CompCategories(this_()), LastSDM(nullptr, 0) {
990   addTranslationUnitDecl();
991 }
992 
993 void ASTContext::cleanup() {
994   // Release the DenseMaps associated with DeclContext objects.
995   // FIXME: Is this the ideal solution?
996   ReleaseDeclContextMaps();
997 
998   // Call all of the deallocation functions on all of their targets.
999   for (auto &Pair : Deallocations)
1000     (Pair.first)(Pair.second);
1001   Deallocations.clear();
1002 
1003   // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
1004   // because they can contain DenseMaps.
1005   for (llvm::DenseMap<const ObjCContainerDecl*,
1006        const ASTRecordLayout*>::iterator
1007        I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
1008     // Increment in loop to prevent using deallocated memory.
1009     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1010       R->Destroy(*this);
1011   ObjCLayouts.clear();
1012 
1013   for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
1014        I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
1015     // Increment in loop to prevent using deallocated memory.
1016     if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
1017       R->Destroy(*this);
1018   }
1019   ASTRecordLayouts.clear();
1020 
1021   for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1022                                                     AEnd = DeclAttrs.end();
1023        A != AEnd; ++A)
1024     A->second->~AttrVec();
1025   DeclAttrs.clear();
1026 
1027   for (const auto &Value : ModuleInitializers)
1028     Value.second->~PerModuleInitializers();
1029   ModuleInitializers.clear();
1030 }
1031 
1032 ASTContext::~ASTContext() { cleanup(); }
1033 
1034 void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1035   TraversalScope = TopLevelDecls;
1036   getParentMapContext().clear();
1037 }
1038 
1039 void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1040   Deallocations.push_back({Callback, Data});
1041 }
1042 
1043 void
1044 ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1045   ExternalSource = std::move(Source);
1046 }
1047 
1048 void ASTContext::PrintStats() const {
1049   llvm::errs() << "\n*** AST Context Stats:\n";
1050   llvm::errs() << "  " << Types.size() << " types total.\n";
1051 
1052   unsigned counts[] = {
1053 #define TYPE(Name, Parent) 0,
1054 #define ABSTRACT_TYPE(Name, Parent)
1055 #include "clang/AST/TypeNodes.inc"
1056     0 // Extra
1057   };
1058 
1059   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1060     Type *T = Types[i];
1061     counts[(unsigned)T->getTypeClass()]++;
1062   }
1063 
1064   unsigned Idx = 0;
1065   unsigned TotalBytes = 0;
1066 #define TYPE(Name, Parent)                                              \
1067   if (counts[Idx])                                                      \
1068     llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1069                  << " types, " << sizeof(Name##Type) << " each "        \
1070                  << "(" << counts[Idx] * sizeof(Name##Type)             \
1071                  << " bytes)\n";                                        \
1072   TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1073   ++Idx;
1074 #define ABSTRACT_TYPE(Name, Parent)
1075 #include "clang/AST/TypeNodes.inc"
1076 
1077   llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1078 
1079   // Implicit special member functions.
1080   llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1081                << NumImplicitDefaultConstructors
1082                << " implicit default constructors created\n";
1083   llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1084                << NumImplicitCopyConstructors
1085                << " implicit copy constructors created\n";
1086   if (getLangOpts().CPlusPlus)
1087     llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1088                  << NumImplicitMoveConstructors
1089                  << " implicit move constructors created\n";
1090   llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1091                << NumImplicitCopyAssignmentOperators
1092                << " implicit copy assignment operators created\n";
1093   if (getLangOpts().CPlusPlus)
1094     llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1095                  << NumImplicitMoveAssignmentOperators
1096                  << " implicit move assignment operators created\n";
1097   llvm::errs() << NumImplicitDestructorsDeclared << "/"
1098                << NumImplicitDestructors
1099                << " implicit destructors created\n";
1100 
1101   if (ExternalSource) {
1102     llvm::errs() << "\n";
1103     ExternalSource->PrintStats();
1104   }
1105 
1106   BumpAlloc.PrintStats();
1107 }
1108 
1109 void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1110                                            bool NotifyListeners) {
1111   if (NotifyListeners)
1112     if (auto *Listener = getASTMutationListener())
1113       Listener->RedefinedHiddenDefinition(ND, M);
1114 
1115   MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1116 }
1117 
1118 void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1119   auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1120   if (It == MergedDefModules.end())
1121     return;
1122 
1123   auto &Merged = It->second;
1124   llvm::DenseSet<Module*> Found;
1125   for (Module *&M : Merged)
1126     if (!Found.insert(M).second)
1127       M = nullptr;
1128   llvm::erase_value(Merged, nullptr);
1129 }
1130 
1131 ArrayRef<Module *>
1132 ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1133   auto MergedIt =
1134       MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1135   if (MergedIt == MergedDefModules.end())
1136     return None;
1137   return MergedIt->second;
1138 }
1139 
1140 void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1141   if (LazyInitializers.empty())
1142     return;
1143 
1144   auto *Source = Ctx.getExternalSource();
1145   assert(Source && "lazy initializers but no external source");
1146 
1147   auto LazyInits = std::move(LazyInitializers);
1148   LazyInitializers.clear();
1149 
1150   for (auto ID : LazyInits)
1151     Initializers.push_back(Source->GetExternalDecl(ID));
1152 
1153   assert(LazyInitializers.empty() &&
1154          "GetExternalDecl for lazy module initializer added more inits");
1155 }
1156 
1157 void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1158   // One special case: if we add a module initializer that imports another
1159   // module, and that module's only initializer is an ImportDecl, simplify.
1160   if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1161     auto It = ModuleInitializers.find(ID->getImportedModule());
1162 
1163     // Maybe the ImportDecl does nothing at all. (Common case.)
1164     if (It == ModuleInitializers.end())
1165       return;
1166 
1167     // Maybe the ImportDecl only imports another ImportDecl.
1168     auto &Imported = *It->second;
1169     if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1170       Imported.resolve(*this);
1171       auto *OnlyDecl = Imported.Initializers.front();
1172       if (isa<ImportDecl>(OnlyDecl))
1173         D = OnlyDecl;
1174     }
1175   }
1176 
1177   auto *&Inits = ModuleInitializers[M];
1178   if (!Inits)
1179     Inits = new (*this) PerModuleInitializers;
1180   Inits->Initializers.push_back(D);
1181 }
1182 
1183 void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1184   auto *&Inits = ModuleInitializers[M];
1185   if (!Inits)
1186     Inits = new (*this) PerModuleInitializers;
1187   Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1188                                  IDs.begin(), IDs.end());
1189 }
1190 
1191 ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1192   auto It = ModuleInitializers.find(M);
1193   if (It == ModuleInitializers.end())
1194     return None;
1195 
1196   auto *Inits = It->second;
1197   Inits->resolve(*this);
1198   return Inits->Initializers;
1199 }
1200 
1201 ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1202   if (!ExternCContext)
1203     ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1204 
1205   return ExternCContext;
1206 }
1207 
1208 BuiltinTemplateDecl *
1209 ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1210                                      const IdentifierInfo *II) const {
1211   auto *BuiltinTemplate =
1212       BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1213   BuiltinTemplate->setImplicit();
1214   getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1215 
1216   return BuiltinTemplate;
1217 }
1218 
1219 BuiltinTemplateDecl *
1220 ASTContext::getMakeIntegerSeqDecl() const {
1221   if (!MakeIntegerSeqDecl)
1222     MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1223                                                   getMakeIntegerSeqName());
1224   return MakeIntegerSeqDecl;
1225 }
1226 
1227 BuiltinTemplateDecl *
1228 ASTContext::getTypePackElementDecl() const {
1229   if (!TypePackElementDecl)
1230     TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1231                                                    getTypePackElementName());
1232   return TypePackElementDecl;
1233 }
1234 
1235 RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1236                                             RecordDecl::TagKind TK) const {
1237   SourceLocation Loc;
1238   RecordDecl *NewDecl;
1239   if (getLangOpts().CPlusPlus)
1240     NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1241                                     Loc, &Idents.get(Name));
1242   else
1243     NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1244                                  &Idents.get(Name));
1245   NewDecl->setImplicit();
1246   NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1247       const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1248   return NewDecl;
1249 }
1250 
1251 TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1252                                               StringRef Name) const {
1253   TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1254   TypedefDecl *NewDecl = TypedefDecl::Create(
1255       const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1256       SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1257   NewDecl->setImplicit();
1258   return NewDecl;
1259 }
1260 
1261 TypedefDecl *ASTContext::getInt128Decl() const {
1262   if (!Int128Decl)
1263     Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1264   return Int128Decl;
1265 }
1266 
1267 TypedefDecl *ASTContext::getUInt128Decl() const {
1268   if (!UInt128Decl)
1269     UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1270   return UInt128Decl;
1271 }
1272 
1273 void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1274   auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1275   R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1276   Types.push_back(Ty);
1277 }
1278 
1279 void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1280                                   const TargetInfo *AuxTarget) {
1281   assert((!this->Target || this->Target == &Target) &&
1282          "Incorrect target reinitialization");
1283   assert(VoidTy.isNull() && "Context reinitialized?");
1284 
1285   this->Target = &Target;
1286   this->AuxTarget = AuxTarget;
1287 
1288   ABI.reset(createCXXABI(Target));
1289   AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1290   AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1291 
1292   // C99 6.2.5p19.
1293   InitBuiltinType(VoidTy,              BuiltinType::Void);
1294 
1295   // C99 6.2.5p2.
1296   InitBuiltinType(BoolTy,              BuiltinType::Bool);
1297   // C99 6.2.5p3.
1298   if (LangOpts.CharIsSigned)
1299     InitBuiltinType(CharTy,            BuiltinType::Char_S);
1300   else
1301     InitBuiltinType(CharTy,            BuiltinType::Char_U);
1302   // C99 6.2.5p4.
1303   InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1304   InitBuiltinType(ShortTy,             BuiltinType::Short);
1305   InitBuiltinType(IntTy,               BuiltinType::Int);
1306   InitBuiltinType(LongTy,              BuiltinType::Long);
1307   InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1308 
1309   // C99 6.2.5p6.
1310   InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1311   InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1312   InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1313   InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1314   InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1315 
1316   // C99 6.2.5p10.
1317   InitBuiltinType(FloatTy,             BuiltinType::Float);
1318   InitBuiltinType(DoubleTy,            BuiltinType::Double);
1319   InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1320 
1321   // GNU extension, __float128 for IEEE quadruple precision
1322   InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1323 
1324   // __ibm128 for IBM extended precision
1325   InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1326 
1327   // C11 extension ISO/IEC TS 18661-3
1328   InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1329 
1330   // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1331   InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1332   InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1333   InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1334   InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1335   InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1336   InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1337   InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1338   InitBuiltinType(FractTy,                 BuiltinType::Fract);
1339   InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1340   InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1341   InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1342   InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1343   InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1344   InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1345   InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1346   InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1347   InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1348   InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1349   InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1350   InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1351   InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1352   InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1353   InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1354   InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1355 
1356   // GNU extension, 128-bit integers.
1357   InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1358   InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1359 
1360   // C++ 3.9.1p5
1361   if (TargetInfo::isTypeSigned(Target.getWCharType()))
1362     InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1363   else  // -fshort-wchar makes wchar_t be unsigned.
1364     InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1365   if (LangOpts.CPlusPlus && LangOpts.WChar)
1366     WideCharTy = WCharTy;
1367   else {
1368     // C99 (or C++ using -fno-wchar).
1369     WideCharTy = getFromTargetType(Target.getWCharType());
1370   }
1371 
1372   WIntTy = getFromTargetType(Target.getWIntType());
1373 
1374   // C++20 (proposed)
1375   InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1376 
1377   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1378     InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1379   else // C99
1380     Char16Ty = getFromTargetType(Target.getChar16Type());
1381 
1382   if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1383     InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1384   else // C99
1385     Char32Ty = getFromTargetType(Target.getChar32Type());
1386 
1387   // Placeholder type for type-dependent expressions whose type is
1388   // completely unknown. No code should ever check a type against
1389   // DependentTy and users should never see it; however, it is here to
1390   // help diagnose failures to properly check for type-dependent
1391   // expressions.
1392   InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1393 
1394   // Placeholder type for functions.
1395   InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1396 
1397   // Placeholder type for bound members.
1398   InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1399 
1400   // Placeholder type for pseudo-objects.
1401   InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1402 
1403   // "any" type; useful for debugger-like clients.
1404   InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1405 
1406   // Placeholder type for unbridged ARC casts.
1407   InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1408 
1409   // Placeholder type for builtin functions.
1410   InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1411 
1412   // Placeholder type for OMP array sections.
1413   if (LangOpts.OpenMP) {
1414     InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1415     InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1416     InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1417   }
1418   if (LangOpts.MatrixTypes)
1419     InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1420 
1421   // Builtin types for 'id', 'Class', and 'SEL'.
1422   InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1423   InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1424   InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1425 
1426   if (LangOpts.OpenCL) {
1427 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1428     InitBuiltinType(SingletonId, BuiltinType::Id);
1429 #include "clang/Basic/OpenCLImageTypes.def"
1430 
1431     InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1432     InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1433     InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1434     InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1435     InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1436 
1437 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1438     InitBuiltinType(Id##Ty, BuiltinType::Id);
1439 #include "clang/Basic/OpenCLExtensionTypes.def"
1440   }
1441 
1442   if (Target.hasAArch64SVETypes()) {
1443 #define SVE_TYPE(Name, Id, SingletonId) \
1444     InitBuiltinType(SingletonId, BuiltinType::Id);
1445 #include "clang/Basic/AArch64SVEACLETypes.def"
1446   }
1447 
1448   if (Target.getTriple().isPPC64()) {
1449 #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1450       InitBuiltinType(Id##Ty, BuiltinType::Id);
1451 #include "clang/Basic/PPCTypes.def"
1452 #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1453     InitBuiltinType(Id##Ty, BuiltinType::Id);
1454 #include "clang/Basic/PPCTypes.def"
1455   }
1456 
1457   if (Target.hasRISCVVTypes()) {
1458 #define RVV_TYPE(Name, Id, SingletonId)                                        \
1459   InitBuiltinType(SingletonId, BuiltinType::Id);
1460 #include "clang/Basic/RISCVVTypes.def"
1461   }
1462 
1463   // Builtin type for __objc_yes and __objc_no
1464   ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1465                        SignedCharTy : BoolTy);
1466 
1467   ObjCConstantStringType = QualType();
1468 
1469   ObjCSuperType = QualType();
1470 
1471   // void * type
1472   if (LangOpts.OpenCLGenericAddressSpace) {
1473     auto Q = VoidTy.getQualifiers();
1474     Q.setAddressSpace(LangAS::opencl_generic);
1475     VoidPtrTy = getPointerType(getCanonicalType(
1476         getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1477   } else {
1478     VoidPtrTy = getPointerType(VoidTy);
1479   }
1480 
1481   // nullptr type (C++0x 2.14.7)
1482   InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1483 
1484   // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1485   InitBuiltinType(HalfTy, BuiltinType::Half);
1486 
1487   InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1488 
1489   // Builtin type used to help define __builtin_va_list.
1490   VaListTagDecl = nullptr;
1491 
1492   // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1493   if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1494     MSGuidTagDecl = buildImplicitRecord("_GUID");
1495     getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1496   }
1497 }
1498 
1499 DiagnosticsEngine &ASTContext::getDiagnostics() const {
1500   return SourceMgr.getDiagnostics();
1501 }
1502 
1503 AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1504   AttrVec *&Result = DeclAttrs[D];
1505   if (!Result) {
1506     void *Mem = Allocate(sizeof(AttrVec));
1507     Result = new (Mem) AttrVec;
1508   }
1509 
1510   return *Result;
1511 }
1512 
1513 /// Erase the attributes corresponding to the given declaration.
1514 void ASTContext::eraseDeclAttrs(const Decl *D) {
1515   llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1516   if (Pos != DeclAttrs.end()) {
1517     Pos->second->~AttrVec();
1518     DeclAttrs.erase(Pos);
1519   }
1520 }
1521 
1522 // FIXME: Remove ?
1523 MemberSpecializationInfo *
1524 ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1525   assert(Var->isStaticDataMember() && "Not a static data member");
1526   return getTemplateOrSpecializationInfo(Var)
1527       .dyn_cast<MemberSpecializationInfo *>();
1528 }
1529 
1530 ASTContext::TemplateOrSpecializationInfo
1531 ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1532   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1533       TemplateOrInstantiation.find(Var);
1534   if (Pos == TemplateOrInstantiation.end())
1535     return {};
1536 
1537   return Pos->second;
1538 }
1539 
1540 void
1541 ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1542                                                 TemplateSpecializationKind TSK,
1543                                           SourceLocation PointOfInstantiation) {
1544   assert(Inst->isStaticDataMember() && "Not a static data member");
1545   assert(Tmpl->isStaticDataMember() && "Not a static data member");
1546   setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1547                                             Tmpl, TSK, PointOfInstantiation));
1548 }
1549 
1550 void
1551 ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1552                                             TemplateOrSpecializationInfo TSI) {
1553   assert(!TemplateOrInstantiation[Inst] &&
1554          "Already noted what the variable was instantiated from");
1555   TemplateOrInstantiation[Inst] = TSI;
1556 }
1557 
1558 NamedDecl *
1559 ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1560   auto Pos = InstantiatedFromUsingDecl.find(UUD);
1561   if (Pos == InstantiatedFromUsingDecl.end())
1562     return nullptr;
1563 
1564   return Pos->second;
1565 }
1566 
1567 void
1568 ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1569   assert((isa<UsingDecl>(Pattern) ||
1570           isa<UnresolvedUsingValueDecl>(Pattern) ||
1571           isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1572          "pattern decl is not a using decl");
1573   assert((isa<UsingDecl>(Inst) ||
1574           isa<UnresolvedUsingValueDecl>(Inst) ||
1575           isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1576          "instantiation did not produce a using decl");
1577   assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1578   InstantiatedFromUsingDecl[Inst] = Pattern;
1579 }
1580 
1581 UsingEnumDecl *
1582 ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1583   auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1584   if (Pos == InstantiatedFromUsingEnumDecl.end())
1585     return nullptr;
1586 
1587   return Pos->second;
1588 }
1589 
1590 void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1591                                                   UsingEnumDecl *Pattern) {
1592   assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists");
1593   InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1594 }
1595 
1596 UsingShadowDecl *
1597 ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1598   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1599     = InstantiatedFromUsingShadowDecl.find(Inst);
1600   if (Pos == InstantiatedFromUsingShadowDecl.end())
1601     return nullptr;
1602 
1603   return Pos->second;
1604 }
1605 
1606 void
1607 ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1608                                                UsingShadowDecl *Pattern) {
1609   assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1610   InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1611 }
1612 
1613 FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1614   llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1615     = InstantiatedFromUnnamedFieldDecl.find(Field);
1616   if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1617     return nullptr;
1618 
1619   return Pos->second;
1620 }
1621 
1622 void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1623                                                      FieldDecl *Tmpl) {
1624   assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1625   assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1626   assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1627          "Already noted what unnamed field was instantiated from");
1628 
1629   InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1630 }
1631 
1632 ASTContext::overridden_cxx_method_iterator
1633 ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1634   return overridden_methods(Method).begin();
1635 }
1636 
1637 ASTContext::overridden_cxx_method_iterator
1638 ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1639   return overridden_methods(Method).end();
1640 }
1641 
1642 unsigned
1643 ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1644   auto Range = overridden_methods(Method);
1645   return Range.end() - Range.begin();
1646 }
1647 
1648 ASTContext::overridden_method_range
1649 ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1650   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1651       OverriddenMethods.find(Method->getCanonicalDecl());
1652   if (Pos == OverriddenMethods.end())
1653     return overridden_method_range(nullptr, nullptr);
1654   return overridden_method_range(Pos->second.begin(), Pos->second.end());
1655 }
1656 
1657 void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1658                                      const CXXMethodDecl *Overridden) {
1659   assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1660   OverriddenMethods[Method].push_back(Overridden);
1661 }
1662 
1663 void ASTContext::getOverriddenMethods(
1664                       const NamedDecl *D,
1665                       SmallVectorImpl<const NamedDecl *> &Overridden) const {
1666   assert(D);
1667 
1668   if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1669     Overridden.append(overridden_methods_begin(CXXMethod),
1670                       overridden_methods_end(CXXMethod));
1671     return;
1672   }
1673 
1674   const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1675   if (!Method)
1676     return;
1677 
1678   SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1679   Method->getOverriddenMethods(OverDecls);
1680   Overridden.append(OverDecls.begin(), OverDecls.end());
1681 }
1682 
1683 void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1684   assert(!Import->getNextLocalImport() &&
1685          "Import declaration already in the chain");
1686   assert(!Import->isFromASTFile() && "Non-local import declaration");
1687   if (!FirstLocalImport) {
1688     FirstLocalImport = Import;
1689     LastLocalImport = Import;
1690     return;
1691   }
1692 
1693   LastLocalImport->setNextLocalImport(Import);
1694   LastLocalImport = Import;
1695 }
1696 
1697 //===----------------------------------------------------------------------===//
1698 //                         Type Sizing and Analysis
1699 //===----------------------------------------------------------------------===//
1700 
1701 /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1702 /// scalar floating point type.
1703 const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1704   switch (T->castAs<BuiltinType>()->getKind()) {
1705   default:
1706     llvm_unreachable("Not a floating point type!");
1707   case BuiltinType::BFloat16:
1708     return Target->getBFloat16Format();
1709   case BuiltinType::Float16:
1710   case BuiltinType::Half:
1711     return Target->getHalfFormat();
1712   case BuiltinType::Float:      return Target->getFloatFormat();
1713   case BuiltinType::Double:     return Target->getDoubleFormat();
1714   case BuiltinType::Ibm128:
1715     return Target->getIbm128Format();
1716   case BuiltinType::LongDouble:
1717     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1718       return AuxTarget->getLongDoubleFormat();
1719     return Target->getLongDoubleFormat();
1720   case BuiltinType::Float128:
1721     if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1722       return AuxTarget->getFloat128Format();
1723     return Target->getFloat128Format();
1724   }
1725 }
1726 
1727 CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1728   unsigned Align = Target->getCharWidth();
1729 
1730   bool UseAlignAttrOnly = false;
1731   if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1732     Align = AlignFromAttr;
1733 
1734     // __attribute__((aligned)) can increase or decrease alignment
1735     // *except* on a struct or struct member, where it only increases
1736     // alignment unless 'packed' is also specified.
1737     //
1738     // It is an error for alignas to decrease alignment, so we can
1739     // ignore that possibility;  Sema should diagnose it.
1740     if (isa<FieldDecl>(D)) {
1741       UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1742         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1743     } else {
1744       UseAlignAttrOnly = true;
1745     }
1746   }
1747   else if (isa<FieldDecl>(D))
1748       UseAlignAttrOnly =
1749         D->hasAttr<PackedAttr>() ||
1750         cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1751 
1752   // If we're using the align attribute only, just ignore everything
1753   // else about the declaration and its type.
1754   if (UseAlignAttrOnly) {
1755     // do nothing
1756   } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1757     QualType T = VD->getType();
1758     if (const auto *RT = T->getAs<ReferenceType>()) {
1759       if (ForAlignof)
1760         T = RT->getPointeeType();
1761       else
1762         T = getPointerType(RT->getPointeeType());
1763     }
1764     QualType BaseT = getBaseElementType(T);
1765     if (T->isFunctionType())
1766       Align = getTypeInfoImpl(T.getTypePtr()).Align;
1767     else if (!BaseT->isIncompleteType()) {
1768       // Adjust alignments of declarations with array type by the
1769       // large-array alignment on the target.
1770       if (const ArrayType *arrayType = getAsArrayType(T)) {
1771         unsigned MinWidth = Target->getLargeArrayMinWidth();
1772         if (!ForAlignof && MinWidth) {
1773           if (isa<VariableArrayType>(arrayType))
1774             Align = std::max(Align, Target->getLargeArrayAlign());
1775           else if (isa<ConstantArrayType>(arrayType) &&
1776                    MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1777             Align = std::max(Align, Target->getLargeArrayAlign());
1778         }
1779       }
1780       Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1781       if (BaseT.getQualifiers().hasUnaligned())
1782         Align = Target->getCharWidth();
1783       if (const auto *VD = dyn_cast<VarDecl>(D)) {
1784         if (VD->hasGlobalStorage() && !ForAlignof) {
1785           uint64_t TypeSize = getTypeSize(T.getTypePtr());
1786           Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1787         }
1788       }
1789     }
1790 
1791     // Fields can be subject to extra alignment constraints, like if
1792     // the field is packed, the struct is packed, or the struct has a
1793     // a max-field-alignment constraint (#pragma pack).  So calculate
1794     // the actual alignment of the field within the struct, and then
1795     // (as we're expected to) constrain that by the alignment of the type.
1796     if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1797       const RecordDecl *Parent = Field->getParent();
1798       // We can only produce a sensible answer if the record is valid.
1799       if (!Parent->isInvalidDecl()) {
1800         const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1801 
1802         // Start with the record's overall alignment.
1803         unsigned FieldAlign = toBits(Layout.getAlignment());
1804 
1805         // Use the GCD of that and the offset within the record.
1806         uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1807         if (Offset > 0) {
1808           // Alignment is always a power of 2, so the GCD will be a power of 2,
1809           // which means we get to do this crazy thing instead of Euclid's.
1810           uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1811           if (LowBitOfOffset < FieldAlign)
1812             FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1813         }
1814 
1815         Align = std::min(Align, FieldAlign);
1816       }
1817     }
1818   }
1819 
1820   // Some targets have hard limitation on the maximum requestable alignment in
1821   // aligned attribute for static variables.
1822   const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1823   const auto *VD = dyn_cast<VarDecl>(D);
1824   if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1825     Align = std::min(Align, MaxAlignedAttr);
1826 
1827   return toCharUnitsFromBits(Align);
1828 }
1829 
1830 CharUnits ASTContext::getExnObjectAlignment() const {
1831   return toCharUnitsFromBits(Target->getExnObjectAlignment());
1832 }
1833 
1834 // getTypeInfoDataSizeInChars - Return the size of a type, in
1835 // chars. If the type is a record, its data size is returned.  This is
1836 // the size of the memcpy that's performed when assigning this type
1837 // using a trivial copy/move assignment operator.
1838 TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1839   TypeInfoChars Info = getTypeInfoInChars(T);
1840 
1841   // In C++, objects can sometimes be allocated into the tail padding
1842   // of a base-class subobject.  We decide whether that's possible
1843   // during class layout, so here we can just trust the layout results.
1844   if (getLangOpts().CPlusPlus) {
1845     if (const auto *RT = T->getAs<RecordType>()) {
1846       const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1847       Info.Width = layout.getDataSize();
1848     }
1849   }
1850 
1851   return Info;
1852 }
1853 
1854 /// getConstantArrayInfoInChars - Performing the computation in CharUnits
1855 /// instead of in bits prevents overflowing the uint64_t for some large arrays.
1856 TypeInfoChars
1857 static getConstantArrayInfoInChars(const ASTContext &Context,
1858                                    const ConstantArrayType *CAT) {
1859   TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1860   uint64_t Size = CAT->getSize().getZExtValue();
1861   assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
1862               (uint64_t)(-1)/Size) &&
1863          "Overflow in array type char size evaluation");
1864   uint64_t Width = EltInfo.Width.getQuantity() * Size;
1865   unsigned Align = EltInfo.Align.getQuantity();
1866   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1867       Context.getTargetInfo().getPointerWidth(0) == 64)
1868     Width = llvm::alignTo(Width, Align);
1869   return TypeInfoChars(CharUnits::fromQuantity(Width),
1870                        CharUnits::fromQuantity(Align),
1871                        EltInfo.AlignRequirement);
1872 }
1873 
1874 TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1875   if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1876     return getConstantArrayInfoInChars(*this, CAT);
1877   TypeInfo Info = getTypeInfo(T);
1878   return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1879                        toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1880 }
1881 
1882 TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1883   return getTypeInfoInChars(T.getTypePtr());
1884 }
1885 
1886 bool ASTContext::isAlignmentRequired(const Type *T) const {
1887   return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1888 }
1889 
1890 bool ASTContext::isAlignmentRequired(QualType T) const {
1891   return isAlignmentRequired(T.getTypePtr());
1892 }
1893 
1894 unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1895                                          bool NeedsPreferredAlignment) const {
1896   // An alignment on a typedef overrides anything else.
1897   if (const auto *TT = T->getAs<TypedefType>())
1898     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1899       return Align;
1900 
1901   // If we have an (array of) complete type, we're done.
1902   T = getBaseElementType(T);
1903   if (!T->isIncompleteType())
1904     return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1905 
1906   // If we had an array type, its element type might be a typedef
1907   // type with an alignment attribute.
1908   if (const auto *TT = T->getAs<TypedefType>())
1909     if (unsigned Align = TT->getDecl()->getMaxAlignment())
1910       return Align;
1911 
1912   // Otherwise, see if the declaration of the type had an attribute.
1913   if (const auto *TT = T->getAs<TagType>())
1914     return TT->getDecl()->getMaxAlignment();
1915 
1916   return 0;
1917 }
1918 
1919 TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1920   TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1921   if (I != MemoizedTypeInfo.end())
1922     return I->second;
1923 
1924   // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1925   TypeInfo TI = getTypeInfoImpl(T);
1926   MemoizedTypeInfo[T] = TI;
1927   return TI;
1928 }
1929 
1930 /// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1931 /// method does not work on incomplete types.
1932 ///
1933 /// FIXME: Pointers into different addr spaces could have different sizes and
1934 /// alignment requirements: getPointerInfo should take an AddrSpace, this
1935 /// should take a QualType, &c.
1936 TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1937   uint64_t Width = 0;
1938   unsigned Align = 8;
1939   AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1940   unsigned AS = 0;
1941   switch (T->getTypeClass()) {
1942 #define TYPE(Class, Base)
1943 #define ABSTRACT_TYPE(Class, Base)
1944 #define NON_CANONICAL_TYPE(Class, Base)
1945 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1946 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1947   case Type::Class:                                                            \
1948   assert(!T->isDependentType() && "should not see dependent types here");      \
1949   return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1950 #include "clang/AST/TypeNodes.inc"
1951     llvm_unreachable("Should not see dependent types");
1952 
1953   case Type::FunctionNoProto:
1954   case Type::FunctionProto:
1955     // GCC extension: alignof(function) = 32 bits
1956     Width = 0;
1957     Align = 32;
1958     break;
1959 
1960   case Type::IncompleteArray:
1961   case Type::VariableArray:
1962   case Type::ConstantArray: {
1963     // Model non-constant sized arrays as size zero, but track the alignment.
1964     uint64_t Size = 0;
1965     if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1966       Size = CAT->getSize().getZExtValue();
1967 
1968     TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1969     assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1970            "Overflow in array type bit size evaluation");
1971     Width = EltInfo.Width * Size;
1972     Align = EltInfo.Align;
1973     AlignRequirement = EltInfo.AlignRequirement;
1974     if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1975         getTargetInfo().getPointerWidth(0) == 64)
1976       Width = llvm::alignTo(Width, Align);
1977     break;
1978   }
1979 
1980   case Type::ExtVector:
1981   case Type::Vector: {
1982     const auto *VT = cast<VectorType>(T);
1983     TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1984     Width = EltInfo.Width * VT->getNumElements();
1985     Align = Width;
1986     // If the alignment is not a power of 2, round up to the next power of 2.
1987     // This happens for non-power-of-2 length vectors.
1988     if (Align & (Align-1)) {
1989       Align = llvm::NextPowerOf2(Align);
1990       Width = llvm::alignTo(Width, Align);
1991     }
1992     // Adjust the alignment based on the target max.
1993     uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1994     if (TargetVectorAlign && TargetVectorAlign < Align)
1995       Align = TargetVectorAlign;
1996     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
1997       // Adjust the alignment for fixed-length SVE vectors. This is important
1998       // for non-power-of-2 vector lengths.
1999       Align = 128;
2000     else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
2001       // Adjust the alignment for fixed-length SVE predicates.
2002       Align = 16;
2003     break;
2004   }
2005 
2006   case Type::ConstantMatrix: {
2007     const auto *MT = cast<ConstantMatrixType>(T);
2008     TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2009     // The internal layout of a matrix value is implementation defined.
2010     // Initially be ABI compatible with arrays with respect to alignment and
2011     // size.
2012     Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2013     Align = ElementInfo.Align;
2014     break;
2015   }
2016 
2017   case Type::Builtin:
2018     switch (cast<BuiltinType>(T)->getKind()) {
2019     default: llvm_unreachable("Unknown builtin type!");
2020     case BuiltinType::Void:
2021       // GCC extension: alignof(void) = 8 bits.
2022       Width = 0;
2023       Align = 8;
2024       break;
2025     case BuiltinType::Bool:
2026       Width = Target->getBoolWidth();
2027       Align = Target->getBoolAlign();
2028       break;
2029     case BuiltinType::Char_S:
2030     case BuiltinType::Char_U:
2031     case BuiltinType::UChar:
2032     case BuiltinType::SChar:
2033     case BuiltinType::Char8:
2034       Width = Target->getCharWidth();
2035       Align = Target->getCharAlign();
2036       break;
2037     case BuiltinType::WChar_S:
2038     case BuiltinType::WChar_U:
2039       Width = Target->getWCharWidth();
2040       Align = Target->getWCharAlign();
2041       break;
2042     case BuiltinType::Char16:
2043       Width = Target->getChar16Width();
2044       Align = Target->getChar16Align();
2045       break;
2046     case BuiltinType::Char32:
2047       Width = Target->getChar32Width();
2048       Align = Target->getChar32Align();
2049       break;
2050     case BuiltinType::UShort:
2051     case BuiltinType::Short:
2052       Width = Target->getShortWidth();
2053       Align = Target->getShortAlign();
2054       break;
2055     case BuiltinType::UInt:
2056     case BuiltinType::Int:
2057       Width = Target->getIntWidth();
2058       Align = Target->getIntAlign();
2059       break;
2060     case BuiltinType::ULong:
2061     case BuiltinType::Long:
2062       Width = Target->getLongWidth();
2063       Align = Target->getLongAlign();
2064       break;
2065     case BuiltinType::ULongLong:
2066     case BuiltinType::LongLong:
2067       Width = Target->getLongLongWidth();
2068       Align = Target->getLongLongAlign();
2069       break;
2070     case BuiltinType::Int128:
2071     case BuiltinType::UInt128:
2072       Width = 128;
2073       Align = 128; // int128_t is 128-bit aligned on all targets.
2074       break;
2075     case BuiltinType::ShortAccum:
2076     case BuiltinType::UShortAccum:
2077     case BuiltinType::SatShortAccum:
2078     case BuiltinType::SatUShortAccum:
2079       Width = Target->getShortAccumWidth();
2080       Align = Target->getShortAccumAlign();
2081       break;
2082     case BuiltinType::Accum:
2083     case BuiltinType::UAccum:
2084     case BuiltinType::SatAccum:
2085     case BuiltinType::SatUAccum:
2086       Width = Target->getAccumWidth();
2087       Align = Target->getAccumAlign();
2088       break;
2089     case BuiltinType::LongAccum:
2090     case BuiltinType::ULongAccum:
2091     case BuiltinType::SatLongAccum:
2092     case BuiltinType::SatULongAccum:
2093       Width = Target->getLongAccumWidth();
2094       Align = Target->getLongAccumAlign();
2095       break;
2096     case BuiltinType::ShortFract:
2097     case BuiltinType::UShortFract:
2098     case BuiltinType::SatShortFract:
2099     case BuiltinType::SatUShortFract:
2100       Width = Target->getShortFractWidth();
2101       Align = Target->getShortFractAlign();
2102       break;
2103     case BuiltinType::Fract:
2104     case BuiltinType::UFract:
2105     case BuiltinType::SatFract:
2106     case BuiltinType::SatUFract:
2107       Width = Target->getFractWidth();
2108       Align = Target->getFractAlign();
2109       break;
2110     case BuiltinType::LongFract:
2111     case BuiltinType::ULongFract:
2112     case BuiltinType::SatLongFract:
2113     case BuiltinType::SatULongFract:
2114       Width = Target->getLongFractWidth();
2115       Align = Target->getLongFractAlign();
2116       break;
2117     case BuiltinType::BFloat16:
2118       Width = Target->getBFloat16Width();
2119       Align = Target->getBFloat16Align();
2120       break;
2121     case BuiltinType::Float16:
2122     case BuiltinType::Half:
2123       if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2124           !getLangOpts().OpenMPIsDevice) {
2125         Width = Target->getHalfWidth();
2126         Align = Target->getHalfAlign();
2127       } else {
2128         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2129                "Expected OpenMP device compilation.");
2130         Width = AuxTarget->getHalfWidth();
2131         Align = AuxTarget->getHalfAlign();
2132       }
2133       break;
2134     case BuiltinType::Float:
2135       Width = Target->getFloatWidth();
2136       Align = Target->getFloatAlign();
2137       break;
2138     case BuiltinType::Double:
2139       Width = Target->getDoubleWidth();
2140       Align = Target->getDoubleAlign();
2141       break;
2142     case BuiltinType::Ibm128:
2143       Width = Target->getIbm128Width();
2144       Align = Target->getIbm128Align();
2145       break;
2146     case BuiltinType::LongDouble:
2147       if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2148           (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2149            Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2150         Width = AuxTarget->getLongDoubleWidth();
2151         Align = AuxTarget->getLongDoubleAlign();
2152       } else {
2153         Width = Target->getLongDoubleWidth();
2154         Align = Target->getLongDoubleAlign();
2155       }
2156       break;
2157     case BuiltinType::Float128:
2158       if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2159           !getLangOpts().OpenMPIsDevice) {
2160         Width = Target->getFloat128Width();
2161         Align = Target->getFloat128Align();
2162       } else {
2163         assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2164                "Expected OpenMP device compilation.");
2165         Width = AuxTarget->getFloat128Width();
2166         Align = AuxTarget->getFloat128Align();
2167       }
2168       break;
2169     case BuiltinType::NullPtr:
2170       Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2171       Align = Target->getPointerAlign(0); //   == sizeof(void*)
2172       break;
2173     case BuiltinType::ObjCId:
2174     case BuiltinType::ObjCClass:
2175     case BuiltinType::ObjCSel:
2176       Width = Target->getPointerWidth(0);
2177       Align = Target->getPointerAlign(0);
2178       break;
2179     case BuiltinType::OCLSampler:
2180     case BuiltinType::OCLEvent:
2181     case BuiltinType::OCLClkEvent:
2182     case BuiltinType::OCLQueue:
2183     case BuiltinType::OCLReserveID:
2184 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2185     case BuiltinType::Id:
2186 #include "clang/Basic/OpenCLImageTypes.def"
2187 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2188   case BuiltinType::Id:
2189 #include "clang/Basic/OpenCLExtensionTypes.def"
2190       AS = getTargetAddressSpace(
2191           Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2192       Width = Target->getPointerWidth(AS);
2193       Align = Target->getPointerAlign(AS);
2194       break;
2195     // The SVE types are effectively target-specific.  The length of an
2196     // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2197     // of 128 bits.  There is one predicate bit for each vector byte, so the
2198     // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2199     //
2200     // Because the length is only known at runtime, we use a dummy value
2201     // of 0 for the static length.  The alignment values are those defined
2202     // by the Procedure Call Standard for the Arm Architecture.
2203 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
2204                         IsSigned, IsFP, IsBF)                                  \
2205   case BuiltinType::Id:                                                        \
2206     Width = 0;                                                                 \
2207     Align = 128;                                                               \
2208     break;
2209 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
2210   case BuiltinType::Id:                                                        \
2211     Width = 0;                                                                 \
2212     Align = 16;                                                                \
2213     break;
2214 #include "clang/Basic/AArch64SVEACLETypes.def"
2215 #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \
2216   case BuiltinType::Id:                                                        \
2217     Width = Size;                                                              \
2218     Align = Size;                                                              \
2219     break;
2220 #include "clang/Basic/PPCTypes.def"
2221 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \
2222                         IsFP)                                                  \
2223   case BuiltinType::Id:                                                        \
2224     Width = 0;                                                                 \
2225     Align = ElBits;                                                            \
2226     break;
2227 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \
2228   case BuiltinType::Id:                                                        \
2229     Width = 0;                                                                 \
2230     Align = 8;                                                                 \
2231     break;
2232 #include "clang/Basic/RISCVVTypes.def"
2233     }
2234     break;
2235   case Type::ObjCObjectPointer:
2236     Width = Target->getPointerWidth(0);
2237     Align = Target->getPointerAlign(0);
2238     break;
2239   case Type::BlockPointer:
2240     AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2241     Width = Target->getPointerWidth(AS);
2242     Align = Target->getPointerAlign(AS);
2243     break;
2244   case Type::LValueReference:
2245   case Type::RValueReference:
2246     // alignof and sizeof should never enter this code path here, so we go
2247     // the pointer route.
2248     AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2249     Width = Target->getPointerWidth(AS);
2250     Align = Target->getPointerAlign(AS);
2251     break;
2252   case Type::Pointer:
2253     AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2254     Width = Target->getPointerWidth(AS);
2255     Align = Target->getPointerAlign(AS);
2256     break;
2257   case Type::MemberPointer: {
2258     const auto *MPT = cast<MemberPointerType>(T);
2259     CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2260     Width = MPI.Width;
2261     Align = MPI.Align;
2262     break;
2263   }
2264   case Type::Complex: {
2265     // Complex types have the same alignment as their elements, but twice the
2266     // size.
2267     TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2268     Width = EltInfo.Width * 2;
2269     Align = EltInfo.Align;
2270     break;
2271   }
2272   case Type::ObjCObject:
2273     return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2274   case Type::Adjusted:
2275   case Type::Decayed:
2276     return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2277   case Type::ObjCInterface: {
2278     const auto *ObjCI = cast<ObjCInterfaceType>(T);
2279     if (ObjCI->getDecl()->isInvalidDecl()) {
2280       Width = 8;
2281       Align = 8;
2282       break;
2283     }
2284     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2285     Width = toBits(Layout.getSize());
2286     Align = toBits(Layout.getAlignment());
2287     break;
2288   }
2289   case Type::BitInt: {
2290     const auto *EIT = cast<BitIntType>(T);
2291     Align =
2292         std::min(static_cast<unsigned>(std::max(
2293                      getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
2294                  Target->getLongLongAlign());
2295     Width = llvm::alignTo(EIT->getNumBits(), Align);
2296     break;
2297   }
2298   case Type::Record:
2299   case Type::Enum: {
2300     const auto *TT = cast<TagType>(T);
2301 
2302     if (TT->getDecl()->isInvalidDecl()) {
2303       Width = 8;
2304       Align = 8;
2305       break;
2306     }
2307 
2308     if (const auto *ET = dyn_cast<EnumType>(TT)) {
2309       const EnumDecl *ED = ET->getDecl();
2310       TypeInfo Info =
2311           getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2312       if (unsigned AttrAlign = ED->getMaxAlignment()) {
2313         Info.Align = AttrAlign;
2314         Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2315       }
2316       return Info;
2317     }
2318 
2319     const auto *RT = cast<RecordType>(TT);
2320     const RecordDecl *RD = RT->getDecl();
2321     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2322     Width = toBits(Layout.getSize());
2323     Align = toBits(Layout.getAlignment());
2324     AlignRequirement = RD->hasAttr<AlignedAttr>()
2325                            ? AlignRequirementKind::RequiredByRecord
2326                            : AlignRequirementKind::None;
2327     break;
2328   }
2329 
2330   case Type::SubstTemplateTypeParm:
2331     return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2332                        getReplacementType().getTypePtr());
2333 
2334   case Type::Auto:
2335   case Type::DeducedTemplateSpecialization: {
2336     const auto *A = cast<DeducedType>(T);
2337     assert(!A->getDeducedType().isNull() &&
2338            "cannot request the size of an undeduced or dependent auto type");
2339     return getTypeInfo(A->getDeducedType().getTypePtr());
2340   }
2341 
2342   case Type::Paren:
2343     return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2344 
2345   case Type::MacroQualified:
2346     return getTypeInfo(
2347         cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2348 
2349   case Type::ObjCTypeParam:
2350     return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2351 
2352   case Type::Using:
2353     return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2354 
2355   case Type::Typedef: {
2356     const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2357     TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2358     // If the typedef has an aligned attribute on it, it overrides any computed
2359     // alignment we have.  This violates the GCC documentation (which says that
2360     // attribute(aligned) can only round up) but matches its implementation.
2361     if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2362       Align = AttrAlign;
2363       AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2364     } else {
2365       Align = Info.Align;
2366       AlignRequirement = Info.AlignRequirement;
2367     }
2368     Width = Info.Width;
2369     break;
2370   }
2371 
2372   case Type::Elaborated:
2373     return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2374 
2375   case Type::Attributed:
2376     return getTypeInfo(
2377                   cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2378 
2379   case Type::Atomic: {
2380     // Start with the base type information.
2381     TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2382     Width = Info.Width;
2383     Align = Info.Align;
2384 
2385     if (!Width) {
2386       // An otherwise zero-sized type should still generate an
2387       // atomic operation.
2388       Width = Target->getCharWidth();
2389       assert(Align);
2390     } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2391       // If the size of the type doesn't exceed the platform's max
2392       // atomic promotion width, make the size and alignment more
2393       // favorable to atomic operations:
2394 
2395       // Round the size up to a power of 2.
2396       if (!llvm::isPowerOf2_64(Width))
2397         Width = llvm::NextPowerOf2(Width);
2398 
2399       // Set the alignment equal to the size.
2400       Align = static_cast<unsigned>(Width);
2401     }
2402   }
2403   break;
2404 
2405   case Type::Pipe:
2406     Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2407     Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2408     break;
2409   }
2410 
2411   assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2412   return TypeInfo(Width, Align, AlignRequirement);
2413 }
2414 
2415 unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2416   UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2417   if (I != MemoizedUnadjustedAlign.end())
2418     return I->second;
2419 
2420   unsigned UnadjustedAlign;
2421   if (const auto *RT = T->getAs<RecordType>()) {
2422     const RecordDecl *RD = RT->getDecl();
2423     const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2424     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2425   } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2426     const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2427     UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2428   } else {
2429     UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2430   }
2431 
2432   MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2433   return UnadjustedAlign;
2434 }
2435 
2436 unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2437   unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2438   return SimdAlign;
2439 }
2440 
2441 /// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2442 CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2443   return CharUnits::fromQuantity(BitSize / getCharWidth());
2444 }
2445 
2446 /// toBits - Convert a size in characters to a size in characters.
2447 int64_t ASTContext::toBits(CharUnits CharSize) const {
2448   return CharSize.getQuantity() * getCharWidth();
2449 }
2450 
2451 /// getTypeSizeInChars - Return the size of the specified type, in characters.
2452 /// This method does not work on incomplete types.
2453 CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2454   return getTypeInfoInChars(T).Width;
2455 }
2456 CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2457   return getTypeInfoInChars(T).Width;
2458 }
2459 
2460 /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2461 /// characters. This method does not work on incomplete types.
2462 CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2463   return toCharUnitsFromBits(getTypeAlign(T));
2464 }
2465 CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2466   return toCharUnitsFromBits(getTypeAlign(T));
2467 }
2468 
2469 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2470 /// type, in characters, before alignment adustments. This method does
2471 /// not work on incomplete types.
2472 CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2473   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2474 }
2475 CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2476   return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2477 }
2478 
2479 /// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2480 /// type for the current target in bits.  This can be different than the ABI
2481 /// alignment in cases where it is beneficial for performance or backwards
2482 /// compatibility preserving to overalign a data type. (Note: despite the name,
2483 /// the preferred alignment is ABI-impacting, and not an optimization.)
2484 unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2485   TypeInfo TI = getTypeInfo(T);
2486   unsigned ABIAlign = TI.Align;
2487 
2488   T = T->getBaseElementTypeUnsafe();
2489 
2490   // The preferred alignment of member pointers is that of a pointer.
2491   if (T->isMemberPointerType())
2492     return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2493 
2494   if (!Target->allowsLargerPreferedTypeAlignment())
2495     return ABIAlign;
2496 
2497   if (const auto *RT = T->getAs<RecordType>()) {
2498     const RecordDecl *RD = RT->getDecl();
2499 
2500     // When used as part of a typedef, or together with a 'packed' attribute,
2501     // the 'aligned' attribute can be used to decrease alignment. Note that the
2502     // 'packed' case is already taken into consideration when computing the
2503     // alignment, we only need to handle the typedef case here.
2504     if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2505         RD->isInvalidDecl())
2506       return ABIAlign;
2507 
2508     unsigned PreferredAlign = static_cast<unsigned>(
2509         toBits(getASTRecordLayout(RD).PreferredAlignment));
2510     assert(PreferredAlign >= ABIAlign &&
2511            "PreferredAlign should be at least as large as ABIAlign.");
2512     return PreferredAlign;
2513   }
2514 
2515   // Double (and, for targets supporting AIX `power` alignment, long double) and
2516   // long long should be naturally aligned (despite requiring less alignment) if
2517   // possible.
2518   if (const auto *CT = T->getAs<ComplexType>())
2519     T = CT->getElementType().getTypePtr();
2520   if (const auto *ET = T->getAs<EnumType>())
2521     T = ET->getDecl()->getIntegerType().getTypePtr();
2522   if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2523       T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2524       T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2525       (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2526        Target->defaultsToAIXPowerAlignment()))
2527     // Don't increase the alignment if an alignment attribute was specified on a
2528     // typedef declaration.
2529     if (!TI.isAlignRequired())
2530       return std::max(ABIAlign, (unsigned)getTypeSize(T));
2531 
2532   return ABIAlign;
2533 }
2534 
2535 /// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2536 /// for __attribute__((aligned)) on this target, to be used if no alignment
2537 /// value is specified.
2538 unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2539   return getTargetInfo().getDefaultAlignForAttributeAligned();
2540 }
2541 
2542 /// getAlignOfGlobalVar - Return the alignment in bits that should be given
2543 /// to a global variable of the specified type.
2544 unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2545   uint64_t TypeSize = getTypeSize(T.getTypePtr());
2546   return std::max(getPreferredTypeAlign(T),
2547                   getTargetInfo().getMinGlobalAlign(TypeSize));
2548 }
2549 
2550 /// getAlignOfGlobalVarInChars - Return the alignment in characters that
2551 /// should be given to a global variable of the specified type.
2552 CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2553   return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2554 }
2555 
2556 CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2557   CharUnits Offset = CharUnits::Zero();
2558   const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2559   while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2560     Offset += Layout->getBaseClassOffset(Base);
2561     Layout = &getASTRecordLayout(Base);
2562   }
2563   return Offset;
2564 }
2565 
2566 CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2567   const ValueDecl *MPD = MP.getMemberPointerDecl();
2568   CharUnits ThisAdjustment = CharUnits::Zero();
2569   ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2570   bool DerivedMember = MP.isMemberPointerToDerivedMember();
2571   const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2572   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2573     const CXXRecordDecl *Base = RD;
2574     const CXXRecordDecl *Derived = Path[I];
2575     if (DerivedMember)
2576       std::swap(Base, Derived);
2577     ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2578     RD = Path[I];
2579   }
2580   if (DerivedMember)
2581     ThisAdjustment = -ThisAdjustment;
2582   return ThisAdjustment;
2583 }
2584 
2585 /// DeepCollectObjCIvars -
2586 /// This routine first collects all declared, but not synthesized, ivars in
2587 /// super class and then collects all ivars, including those synthesized for
2588 /// current class. This routine is used for implementation of current class
2589 /// when all ivars, declared and synthesized are known.
2590 void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2591                                       bool leafClass,
2592                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2593   if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2594     DeepCollectObjCIvars(SuperClass, false, Ivars);
2595   if (!leafClass) {
2596     for (const auto *I : OI->ivars())
2597       Ivars.push_back(I);
2598   } else {
2599     auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2600     for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2601          Iv= Iv->getNextIvar())
2602       Ivars.push_back(Iv);
2603   }
2604 }
2605 
2606 /// CollectInheritedProtocols - Collect all protocols in current class and
2607 /// those inherited by it.
2608 void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2609                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2610   if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2611     // We can use protocol_iterator here instead of
2612     // all_referenced_protocol_iterator since we are walking all categories.
2613     for (auto *Proto : OI->all_referenced_protocols()) {
2614       CollectInheritedProtocols(Proto, Protocols);
2615     }
2616 
2617     // Categories of this Interface.
2618     for (const auto *Cat : OI->visible_categories())
2619       CollectInheritedProtocols(Cat, Protocols);
2620 
2621     if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2622       while (SD) {
2623         CollectInheritedProtocols(SD, Protocols);
2624         SD = SD->getSuperClass();
2625       }
2626   } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2627     for (auto *Proto : OC->protocols()) {
2628       CollectInheritedProtocols(Proto, Protocols);
2629     }
2630   } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2631     // Insert the protocol.
2632     if (!Protocols.insert(
2633           const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2634       return;
2635 
2636     for (auto *Proto : OP->protocols())
2637       CollectInheritedProtocols(Proto, Protocols);
2638   }
2639 }
2640 
2641 static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2642                                                 const RecordDecl *RD) {
2643   assert(RD->isUnion() && "Must be union type");
2644   CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2645 
2646   for (const auto *Field : RD->fields()) {
2647     if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2648       return false;
2649     CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2650     if (FieldSize != UnionSize)
2651       return false;
2652   }
2653   return !RD->field_empty();
2654 }
2655 
2656 static int64_t getSubobjectOffset(const FieldDecl *Field,
2657                                   const ASTContext &Context,
2658                                   const clang::ASTRecordLayout & /*Layout*/) {
2659   return Context.getFieldOffset(Field);
2660 }
2661 
2662 static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2663                                   const ASTContext &Context,
2664                                   const clang::ASTRecordLayout &Layout) {
2665   return Context.toBits(Layout.getBaseClassOffset(RD));
2666 }
2667 
2668 static llvm::Optional<int64_t>
2669 structHasUniqueObjectRepresentations(const ASTContext &Context,
2670                                      const RecordDecl *RD);
2671 
2672 static llvm::Optional<int64_t>
2673 getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context) {
2674   if (Field->getType()->isRecordType()) {
2675     const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2676     if (!RD->isUnion())
2677       return structHasUniqueObjectRepresentations(Context, RD);
2678   }
2679   if (!Field->getType()->isReferenceType() &&
2680       !Context.hasUniqueObjectRepresentations(Field->getType()))
2681     return llvm::None;
2682 
2683   int64_t FieldSizeInBits =
2684       Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2685   if (Field->isBitField()) {
2686     int64_t BitfieldSize = Field->getBitWidthValue(Context);
2687     if (BitfieldSize > FieldSizeInBits)
2688       return llvm::None;
2689     FieldSizeInBits = BitfieldSize;
2690   }
2691   return FieldSizeInBits;
2692 }
2693 
2694 static llvm::Optional<int64_t>
2695 getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context) {
2696   return structHasUniqueObjectRepresentations(Context, RD);
2697 }
2698 
2699 template <typename RangeT>
2700 static llvm::Optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2701     const RangeT &Subobjects, int64_t CurOffsetInBits,
2702     const ASTContext &Context, const clang::ASTRecordLayout &Layout) {
2703   for (const auto *Subobject : Subobjects) {
2704     llvm::Optional<int64_t> SizeInBits =
2705         getSubobjectSizeInBits(Subobject, Context);
2706     if (!SizeInBits)
2707       return llvm::None;
2708     if (*SizeInBits != 0) {
2709       int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2710       if (Offset != CurOffsetInBits)
2711         return llvm::None;
2712       CurOffsetInBits += *SizeInBits;
2713     }
2714   }
2715   return CurOffsetInBits;
2716 }
2717 
2718 static llvm::Optional<int64_t>
2719 structHasUniqueObjectRepresentations(const ASTContext &Context,
2720                                      const RecordDecl *RD) {
2721   assert(!RD->isUnion() && "Must be struct/class type");
2722   const auto &Layout = Context.getASTRecordLayout(RD);
2723 
2724   int64_t CurOffsetInBits = 0;
2725   if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2726     if (ClassDecl->isDynamicClass())
2727       return llvm::None;
2728 
2729     SmallVector<CXXRecordDecl *, 4> Bases;
2730     for (const auto &Base : ClassDecl->bases()) {
2731       // Empty types can be inherited from, and non-empty types can potentially
2732       // have tail padding, so just make sure there isn't an error.
2733       Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2734     }
2735 
2736     llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2737       return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2738     });
2739 
2740     llvm::Optional<int64_t> OffsetAfterBases =
2741         structSubobjectsHaveUniqueObjectRepresentations(Bases, CurOffsetInBits,
2742                                                         Context, Layout);
2743     if (!OffsetAfterBases)
2744       return llvm::None;
2745     CurOffsetInBits = *OffsetAfterBases;
2746   }
2747 
2748   llvm::Optional<int64_t> OffsetAfterFields =
2749       structSubobjectsHaveUniqueObjectRepresentations(
2750           RD->fields(), CurOffsetInBits, Context, Layout);
2751   if (!OffsetAfterFields)
2752     return llvm::None;
2753   CurOffsetInBits = *OffsetAfterFields;
2754 
2755   return CurOffsetInBits;
2756 }
2757 
2758 bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2759   // C++17 [meta.unary.prop]:
2760   //   The predicate condition for a template specialization
2761   //   has_unique_object_representations<T> shall be
2762   //   satisfied if and only if:
2763   //     (9.1) - T is trivially copyable, and
2764   //     (9.2) - any two objects of type T with the same value have the same
2765   //     object representation, where two objects
2766   //   of array or non-union class type are considered to have the same value
2767   //   if their respective sequences of
2768   //   direct subobjects have the same values, and two objects of union type
2769   //   are considered to have the same
2770   //   value if they have the same active member and the corresponding members
2771   //   have the same value.
2772   //   The set of scalar types for which this condition holds is
2773   //   implementation-defined. [ Note: If a type has padding
2774   //   bits, the condition does not hold; otherwise, the condition holds true
2775   //   for unsigned integral types. -- end note ]
2776   assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2777 
2778   // Arrays are unique only if their element type is unique.
2779   if (Ty->isArrayType())
2780     return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2781 
2782   // (9.1) - T is trivially copyable...
2783   if (!Ty.isTriviallyCopyableType(*this))
2784     return false;
2785 
2786   // All integrals and enums are unique.
2787   if (Ty->isIntegralOrEnumerationType())
2788     return true;
2789 
2790   // All other pointers are unique.
2791   if (Ty->isPointerType())
2792     return true;
2793 
2794   if (Ty->isMemberPointerType()) {
2795     const auto *MPT = Ty->getAs<MemberPointerType>();
2796     return !ABI->getMemberPointerInfo(MPT).HasPadding;
2797   }
2798 
2799   if (Ty->isRecordType()) {
2800     const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2801 
2802     if (Record->isInvalidDecl())
2803       return false;
2804 
2805     if (Record->isUnion())
2806       return unionHasUniqueObjectRepresentations(*this, Record);
2807 
2808     Optional<int64_t> StructSize =
2809         structHasUniqueObjectRepresentations(*this, Record);
2810 
2811     return StructSize &&
2812            StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2813   }
2814 
2815   // FIXME: More cases to handle here (list by rsmith):
2816   // vectors (careful about, eg, vector of 3 foo)
2817   // _Complex int and friends
2818   // _Atomic T
2819   // Obj-C block pointers
2820   // Obj-C object pointers
2821   // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2822   // clk_event_t, queue_t, reserve_id_t)
2823   // There're also Obj-C class types and the Obj-C selector type, but I think it
2824   // makes sense for those to return false here.
2825 
2826   return false;
2827 }
2828 
2829 unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2830   unsigned count = 0;
2831   // Count ivars declared in class extension.
2832   for (const auto *Ext : OI->known_extensions())
2833     count += Ext->ivar_size();
2834 
2835   // Count ivar defined in this class's implementation.  This
2836   // includes synthesized ivars.
2837   if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2838     count += ImplDecl->ivar_size();
2839 
2840   return count;
2841 }
2842 
2843 bool ASTContext::isSentinelNullExpr(const Expr *E) {
2844   if (!E)
2845     return false;
2846 
2847   // nullptr_t is always treated as null.
2848   if (E->getType()->isNullPtrType()) return true;
2849 
2850   if (E->getType()->isAnyPointerType() &&
2851       E->IgnoreParenCasts()->isNullPointerConstant(*this,
2852                                                 Expr::NPC_ValueDependentIsNull))
2853     return true;
2854 
2855   // Unfortunately, __null has type 'int'.
2856   if (isa<GNUNullExpr>(E)) return true;
2857 
2858   return false;
2859 }
2860 
2861 /// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2862 /// exists.
2863 ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2864   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2865     I = ObjCImpls.find(D);
2866   if (I != ObjCImpls.end())
2867     return cast<ObjCImplementationDecl>(I->second);
2868   return nullptr;
2869 }
2870 
2871 /// Get the implementation of ObjCCategoryDecl, or nullptr if none
2872 /// exists.
2873 ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2874   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2875     I = ObjCImpls.find(D);
2876   if (I != ObjCImpls.end())
2877     return cast<ObjCCategoryImplDecl>(I->second);
2878   return nullptr;
2879 }
2880 
2881 /// Set the implementation of ObjCInterfaceDecl.
2882 void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2883                            ObjCImplementationDecl *ImplD) {
2884   assert(IFaceD && ImplD && "Passed null params");
2885   ObjCImpls[IFaceD] = ImplD;
2886 }
2887 
2888 /// Set the implementation of ObjCCategoryDecl.
2889 void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2890                            ObjCCategoryImplDecl *ImplD) {
2891   assert(CatD && ImplD && "Passed null params");
2892   ObjCImpls[CatD] = ImplD;
2893 }
2894 
2895 const ObjCMethodDecl *
2896 ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2897   return ObjCMethodRedecls.lookup(MD);
2898 }
2899 
2900 void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2901                                             const ObjCMethodDecl *Redecl) {
2902   assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2903   ObjCMethodRedecls[MD] = Redecl;
2904 }
2905 
2906 const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2907                                               const NamedDecl *ND) const {
2908   if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2909     return ID;
2910   if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2911     return CD->getClassInterface();
2912   if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2913     return IMD->getClassInterface();
2914 
2915   return nullptr;
2916 }
2917 
2918 /// Get the copy initialization expression of VarDecl, or nullptr if
2919 /// none exists.
2920 BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2921   assert(VD && "Passed null params");
2922   assert(VD->hasAttr<BlocksAttr>() &&
2923          "getBlockVarCopyInits - not __block var");
2924   auto I = BlockVarCopyInits.find(VD);
2925   if (I != BlockVarCopyInits.end())
2926     return I->second;
2927   return {nullptr, false};
2928 }
2929 
2930 /// Set the copy initialization expression of a block var decl.
2931 void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2932                                      bool CanThrow) {
2933   assert(VD && CopyExpr && "Passed null params");
2934   assert(VD->hasAttr<BlocksAttr>() &&
2935          "setBlockVarCopyInits - not __block var");
2936   BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2937 }
2938 
2939 TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2940                                                  unsigned DataSize) const {
2941   if (!DataSize)
2942     DataSize = TypeLoc::getFullDataSizeForType(T);
2943   else
2944     assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2945            "incorrect data size provided to CreateTypeSourceInfo!");
2946 
2947   auto *TInfo =
2948     (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2949   new (TInfo) TypeSourceInfo(T);
2950   return TInfo;
2951 }
2952 
2953 TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2954                                                      SourceLocation L) const {
2955   TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2956   DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2957   return DI;
2958 }
2959 
2960 const ASTRecordLayout &
2961 ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2962   return getObjCLayout(D, nullptr);
2963 }
2964 
2965 const ASTRecordLayout &
2966 ASTContext::getASTObjCImplementationLayout(
2967                                         const ObjCImplementationDecl *D) const {
2968   return getObjCLayout(D->getClassInterface(), D);
2969 }
2970 
2971 //===----------------------------------------------------------------------===//
2972 //                   Type creation/memoization methods
2973 //===----------------------------------------------------------------------===//
2974 
2975 QualType
2976 ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2977   unsigned fastQuals = quals.getFastQualifiers();
2978   quals.removeFastQualifiers();
2979 
2980   // Check if we've already instantiated this type.
2981   llvm::FoldingSetNodeID ID;
2982   ExtQuals::Profile(ID, baseType, quals);
2983   void *insertPos = nullptr;
2984   if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2985     assert(eq->getQualifiers() == quals);
2986     return QualType(eq, fastQuals);
2987   }
2988 
2989   // If the base type is not canonical, make the appropriate canonical type.
2990   QualType canon;
2991   if (!baseType->isCanonicalUnqualified()) {
2992     SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2993     canonSplit.Quals.addConsistentQualifiers(quals);
2994     canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2995 
2996     // Re-find the insert position.
2997     (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2998   }
2999 
3000   auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3001   ExtQualNodes.InsertNode(eq, insertPos);
3002   return QualType(eq, fastQuals);
3003 }
3004 
3005 QualType ASTContext::getAddrSpaceQualType(QualType T,
3006                                           LangAS AddressSpace) const {
3007   QualType CanT = getCanonicalType(T);
3008   if (CanT.getAddressSpace() == AddressSpace)
3009     return T;
3010 
3011   // If we are composing extended qualifiers together, merge together
3012   // into one ExtQuals node.
3013   QualifierCollector Quals;
3014   const Type *TypeNode = Quals.strip(T);
3015 
3016   // If this type already has an address space specified, it cannot get
3017   // another one.
3018   assert(!Quals.hasAddressSpace() &&
3019          "Type cannot be in multiple addr spaces!");
3020   Quals.addAddressSpace(AddressSpace);
3021 
3022   return getExtQualType(TypeNode, Quals);
3023 }
3024 
3025 QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3026   // If the type is not qualified with an address space, just return it
3027   // immediately.
3028   if (!T.hasAddressSpace())
3029     return T;
3030 
3031   // If we are composing extended qualifiers together, merge together
3032   // into one ExtQuals node.
3033   QualifierCollector Quals;
3034   const Type *TypeNode;
3035 
3036   while (T.hasAddressSpace()) {
3037     TypeNode = Quals.strip(T);
3038 
3039     // If the type no longer has an address space after stripping qualifiers,
3040     // jump out.
3041     if (!QualType(TypeNode, 0).hasAddressSpace())
3042       break;
3043 
3044     // There might be sugar in the way. Strip it and try again.
3045     T = T.getSingleStepDesugaredType(*this);
3046   }
3047 
3048   Quals.removeAddressSpace();
3049 
3050   // Removal of the address space can mean there are no longer any
3051   // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3052   // or required.
3053   if (Quals.hasNonFastQualifiers())
3054     return getExtQualType(TypeNode, Quals);
3055   else
3056     return QualType(TypeNode, Quals.getFastQualifiers());
3057 }
3058 
3059 QualType ASTContext::getObjCGCQualType(QualType T,
3060                                        Qualifiers::GC GCAttr) const {
3061   QualType CanT = getCanonicalType(T);
3062   if (CanT.getObjCGCAttr() == GCAttr)
3063     return T;
3064 
3065   if (const auto *ptr = T->getAs<PointerType>()) {
3066     QualType Pointee = ptr->getPointeeType();
3067     if (Pointee->isAnyPointerType()) {
3068       QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3069       return getPointerType(ResultType);
3070     }
3071   }
3072 
3073   // If we are composing extended qualifiers together, merge together
3074   // into one ExtQuals node.
3075   QualifierCollector Quals;
3076   const Type *TypeNode = Quals.strip(T);
3077 
3078   // If this type already has an ObjCGC specified, it cannot get
3079   // another one.
3080   assert(!Quals.hasObjCGCAttr() &&
3081          "Type cannot have multiple ObjCGCs!");
3082   Quals.addObjCGCAttr(GCAttr);
3083 
3084   return getExtQualType(TypeNode, Quals);
3085 }
3086 
3087 QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3088   if (const PointerType *Ptr = T->getAs<PointerType>()) {
3089     QualType Pointee = Ptr->getPointeeType();
3090     if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3091       return getPointerType(removeAddrSpaceQualType(Pointee));
3092     }
3093   }
3094   return T;
3095 }
3096 
3097 const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3098                                                    FunctionType::ExtInfo Info) {
3099   if (T->getExtInfo() == Info)
3100     return T;
3101 
3102   QualType Result;
3103   if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3104     Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3105   } else {
3106     const auto *FPT = cast<FunctionProtoType>(T);
3107     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3108     EPI.ExtInfo = Info;
3109     Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3110   }
3111 
3112   return cast<FunctionType>(Result.getTypePtr());
3113 }
3114 
3115 void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3116                                                  QualType ResultType) {
3117   FD = FD->getMostRecentDecl();
3118   while (true) {
3119     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3120     FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3121     FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3122     if (FunctionDecl *Next = FD->getPreviousDecl())
3123       FD = Next;
3124     else
3125       break;
3126   }
3127   if (ASTMutationListener *L = getASTMutationListener())
3128     L->DeducedReturnType(FD, ResultType);
3129 }
3130 
3131 /// Get a function type and produce the equivalent function type with the
3132 /// specified exception specification. Type sugar that can be present on a
3133 /// declaration of a function with an exception specification is permitted
3134 /// and preserved. Other type sugar (for instance, typedefs) is not.
3135 QualType ASTContext::getFunctionTypeWithExceptionSpec(
3136     QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
3137   // Might have some parens.
3138   if (const auto *PT = dyn_cast<ParenType>(Orig))
3139     return getParenType(
3140         getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3141 
3142   // Might be wrapped in a macro qualified type.
3143   if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3144     return getMacroQualifiedType(
3145         getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3146         MQT->getMacroIdentifier());
3147 
3148   // Might have a calling-convention attribute.
3149   if (const auto *AT = dyn_cast<AttributedType>(Orig))
3150     return getAttributedType(
3151         AT->getAttrKind(),
3152         getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3153         getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3154 
3155   // Anything else must be a function type. Rebuild it with the new exception
3156   // specification.
3157   const auto *Proto = Orig->castAs<FunctionProtoType>();
3158   return getFunctionType(
3159       Proto->getReturnType(), Proto->getParamTypes(),
3160       Proto->getExtProtoInfo().withExceptionSpec(ESI));
3161 }
3162 
3163 bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3164                                                           QualType U) {
3165   return hasSameType(T, U) ||
3166          (getLangOpts().CPlusPlus17 &&
3167           hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3168                       getFunctionTypeWithExceptionSpec(U, EST_None)));
3169 }
3170 
3171 QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3172   if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3173     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3174     SmallVector<QualType, 16> Args(Proto->param_types());
3175     for (unsigned i = 0, n = Args.size(); i != n; ++i)
3176       Args[i] = removePtrSizeAddrSpace(Args[i]);
3177     return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3178   }
3179 
3180   if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3181     QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3182     return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3183   }
3184 
3185   return T;
3186 }
3187 
3188 bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3189   return hasSameType(T, U) ||
3190          hasSameType(getFunctionTypeWithoutPtrSizes(T),
3191                      getFunctionTypeWithoutPtrSizes(U));
3192 }
3193 
3194 void ASTContext::adjustExceptionSpec(
3195     FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3196     bool AsWritten) {
3197   // Update the type.
3198   QualType Updated =
3199       getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3200   FD->setType(Updated);
3201 
3202   if (!AsWritten)
3203     return;
3204 
3205   // Update the type in the type source information too.
3206   if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3207     // If the type and the type-as-written differ, we may need to update
3208     // the type-as-written too.
3209     if (TSInfo->getType() != FD->getType())
3210       Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3211 
3212     // FIXME: When we get proper type location information for exceptions,
3213     // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3214     // up the TypeSourceInfo;
3215     assert(TypeLoc::getFullDataSizeForType(Updated) ==
3216                TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3217            "TypeLoc size mismatch from updating exception specification");
3218     TSInfo->overrideType(Updated);
3219   }
3220 }
3221 
3222 /// getComplexType - Return the uniqued reference to the type for a complex
3223 /// number with the specified element type.
3224 QualType ASTContext::getComplexType(QualType T) const {
3225   // Unique pointers, to guarantee there is only one pointer of a particular
3226   // structure.
3227   llvm::FoldingSetNodeID ID;
3228   ComplexType::Profile(ID, T);
3229 
3230   void *InsertPos = nullptr;
3231   if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3232     return QualType(CT, 0);
3233 
3234   // If the pointee type isn't canonical, this won't be a canonical type either,
3235   // so fill in the canonical type field.
3236   QualType Canonical;
3237   if (!T.isCanonical()) {
3238     Canonical = getComplexType(getCanonicalType(T));
3239 
3240     // Get the new insert position for the node we care about.
3241     ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3242     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3243   }
3244   auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3245   Types.push_back(New);
3246   ComplexTypes.InsertNode(New, InsertPos);
3247   return QualType(New, 0);
3248 }
3249 
3250 /// getPointerType - Return the uniqued reference to the type for a pointer to
3251 /// the specified type.
3252 QualType ASTContext::getPointerType(QualType T) const {
3253   // Unique pointers, to guarantee there is only one pointer of a particular
3254   // structure.
3255   llvm::FoldingSetNodeID ID;
3256   PointerType::Profile(ID, T);
3257 
3258   void *InsertPos = nullptr;
3259   if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3260     return QualType(PT, 0);
3261 
3262   // If the pointee type isn't canonical, this won't be a canonical type either,
3263   // so fill in the canonical type field.
3264   QualType Canonical;
3265   if (!T.isCanonical()) {
3266     Canonical = getPointerType(getCanonicalType(T));
3267 
3268     // Get the new insert position for the node we care about.
3269     PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3270     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3271   }
3272   auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3273   Types.push_back(New);
3274   PointerTypes.InsertNode(New, InsertPos);
3275   return QualType(New, 0);
3276 }
3277 
3278 QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3279   llvm::FoldingSetNodeID ID;
3280   AdjustedType::Profile(ID, Orig, New);
3281   void *InsertPos = nullptr;
3282   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3283   if (AT)
3284     return QualType(AT, 0);
3285 
3286   QualType Canonical = getCanonicalType(New);
3287 
3288   // Get the new insert position for the node we care about.
3289   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3290   assert(!AT && "Shouldn't be in the map!");
3291 
3292   AT = new (*this, TypeAlignment)
3293       AdjustedType(Type::Adjusted, Orig, New, Canonical);
3294   Types.push_back(AT);
3295   AdjustedTypes.InsertNode(AT, InsertPos);
3296   return QualType(AT, 0);
3297 }
3298 
3299 QualType ASTContext::getDecayedType(QualType T) const {
3300   assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3301 
3302   QualType Decayed;
3303 
3304   // C99 6.7.5.3p7:
3305   //   A declaration of a parameter as "array of type" shall be
3306   //   adjusted to "qualified pointer to type", where the type
3307   //   qualifiers (if any) are those specified within the [ and ] of
3308   //   the array type derivation.
3309   if (T->isArrayType())
3310     Decayed = getArrayDecayedType(T);
3311 
3312   // C99 6.7.5.3p8:
3313   //   A declaration of a parameter as "function returning type"
3314   //   shall be adjusted to "pointer to function returning type", as
3315   //   in 6.3.2.1.
3316   if (T->isFunctionType())
3317     Decayed = getPointerType(T);
3318 
3319   llvm::FoldingSetNodeID ID;
3320   AdjustedType::Profile(ID, T, Decayed);
3321   void *InsertPos = nullptr;
3322   AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3323   if (AT)
3324     return QualType(AT, 0);
3325 
3326   QualType Canonical = getCanonicalType(Decayed);
3327 
3328   // Get the new insert position for the node we care about.
3329   AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3330   assert(!AT && "Shouldn't be in the map!");
3331 
3332   AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3333   Types.push_back(AT);
3334   AdjustedTypes.InsertNode(AT, InsertPos);
3335   return QualType(AT, 0);
3336 }
3337 
3338 /// getBlockPointerType - Return the uniqued reference to the type for
3339 /// a pointer to the specified block.
3340 QualType ASTContext::getBlockPointerType(QualType T) const {
3341   assert(T->isFunctionType() && "block of function types only");
3342   // Unique pointers, to guarantee there is only one block of a particular
3343   // structure.
3344   llvm::FoldingSetNodeID ID;
3345   BlockPointerType::Profile(ID, T);
3346 
3347   void *InsertPos = nullptr;
3348   if (BlockPointerType *PT =
3349         BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3350     return QualType(PT, 0);
3351 
3352   // If the block pointee type isn't canonical, this won't be a canonical
3353   // type either so fill in the canonical type field.
3354   QualType Canonical;
3355   if (!T.isCanonical()) {
3356     Canonical = getBlockPointerType(getCanonicalType(T));
3357 
3358     // Get the new insert position for the node we care about.
3359     BlockPointerType *NewIP =
3360       BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3361     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3362   }
3363   auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3364   Types.push_back(New);
3365   BlockPointerTypes.InsertNode(New, InsertPos);
3366   return QualType(New, 0);
3367 }
3368 
3369 /// getLValueReferenceType - Return the uniqued reference to the type for an
3370 /// lvalue reference to the specified type.
3371 QualType
3372 ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3373   assert((!T->isPlaceholderType() ||
3374           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3375          "Unresolved placeholder type");
3376 
3377   // Unique pointers, to guarantee there is only one pointer of a particular
3378   // structure.
3379   llvm::FoldingSetNodeID ID;
3380   ReferenceType::Profile(ID, T, SpelledAsLValue);
3381 
3382   void *InsertPos = nullptr;
3383   if (LValueReferenceType *RT =
3384         LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3385     return QualType(RT, 0);
3386 
3387   const auto *InnerRef = T->getAs<ReferenceType>();
3388 
3389   // If the referencee type isn't canonical, this won't be a canonical type
3390   // either, so fill in the canonical type field.
3391   QualType Canonical;
3392   if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3393     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3394     Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3395 
3396     // Get the new insert position for the node we care about.
3397     LValueReferenceType *NewIP =
3398       LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3399     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3400   }
3401 
3402   auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3403                                                              SpelledAsLValue);
3404   Types.push_back(New);
3405   LValueReferenceTypes.InsertNode(New, InsertPos);
3406 
3407   return QualType(New, 0);
3408 }
3409 
3410 /// getRValueReferenceType - Return the uniqued reference to the type for an
3411 /// rvalue reference to the specified type.
3412 QualType ASTContext::getRValueReferenceType(QualType T) const {
3413   assert((!T->isPlaceholderType() ||
3414           T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
3415          "Unresolved placeholder type");
3416 
3417   // Unique pointers, to guarantee there is only one pointer of a particular
3418   // structure.
3419   llvm::FoldingSetNodeID ID;
3420   ReferenceType::Profile(ID, T, false);
3421 
3422   void *InsertPos = nullptr;
3423   if (RValueReferenceType *RT =
3424         RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3425     return QualType(RT, 0);
3426 
3427   const auto *InnerRef = T->getAs<ReferenceType>();
3428 
3429   // If the referencee type isn't canonical, this won't be a canonical type
3430   // either, so fill in the canonical type field.
3431   QualType Canonical;
3432   if (InnerRef || !T.isCanonical()) {
3433     QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3434     Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3435 
3436     // Get the new insert position for the node we care about.
3437     RValueReferenceType *NewIP =
3438       RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3439     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3440   }
3441 
3442   auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3443   Types.push_back(New);
3444   RValueReferenceTypes.InsertNode(New, InsertPos);
3445   return QualType(New, 0);
3446 }
3447 
3448 /// getMemberPointerType - Return the uniqued reference to the type for a
3449 /// member pointer to the specified type, in the specified class.
3450 QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3451   // Unique pointers, to guarantee there is only one pointer of a particular
3452   // structure.
3453   llvm::FoldingSetNodeID ID;
3454   MemberPointerType::Profile(ID, T, Cls);
3455 
3456   void *InsertPos = nullptr;
3457   if (MemberPointerType *PT =
3458       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3459     return QualType(PT, 0);
3460 
3461   // If the pointee or class type isn't canonical, this won't be a canonical
3462   // type either, so fill in the canonical type field.
3463   QualType Canonical;
3464   if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3465     Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3466 
3467     // Get the new insert position for the node we care about.
3468     MemberPointerType *NewIP =
3469       MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3470     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3471   }
3472   auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3473   Types.push_back(New);
3474   MemberPointerTypes.InsertNode(New, InsertPos);
3475   return QualType(New, 0);
3476 }
3477 
3478 /// getConstantArrayType - Return the unique reference to the type for an
3479 /// array of the specified element type.
3480 QualType ASTContext::getConstantArrayType(QualType EltTy,
3481                                           const llvm::APInt &ArySizeIn,
3482                                           const Expr *SizeExpr,
3483                                           ArrayType::ArraySizeModifier ASM,
3484                                           unsigned IndexTypeQuals) const {
3485   assert((EltTy->isDependentType() ||
3486           EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3487          "Constant array of VLAs is illegal!");
3488 
3489   // We only need the size as part of the type if it's instantiation-dependent.
3490   if (SizeExpr && !SizeExpr->isInstantiationDependent())
3491     SizeExpr = nullptr;
3492 
3493   // Convert the array size into a canonical width matching the pointer size for
3494   // the target.
3495   llvm::APInt ArySize(ArySizeIn);
3496   ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3497 
3498   llvm::FoldingSetNodeID ID;
3499   ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3500                              IndexTypeQuals);
3501 
3502   void *InsertPos = nullptr;
3503   if (ConstantArrayType *ATP =
3504       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3505     return QualType(ATP, 0);
3506 
3507   // If the element type isn't canonical or has qualifiers, or the array bound
3508   // is instantiation-dependent, this won't be a canonical type either, so fill
3509   // in the canonical type field.
3510   QualType Canon;
3511   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3512     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3513     Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3514                                  ASM, IndexTypeQuals);
3515     Canon = getQualifiedType(Canon, canonSplit.Quals);
3516 
3517     // Get the new insert position for the node we care about.
3518     ConstantArrayType *NewIP =
3519       ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3520     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3521   }
3522 
3523   void *Mem = Allocate(
3524       ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3525       TypeAlignment);
3526   auto *New = new (Mem)
3527     ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3528   ConstantArrayTypes.InsertNode(New, InsertPos);
3529   Types.push_back(New);
3530   return QualType(New, 0);
3531 }
3532 
3533 /// getVariableArrayDecayedType - Turns the given type, which may be
3534 /// variably-modified, into the corresponding type with all the known
3535 /// sizes replaced with [*].
3536 QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3537   // Vastly most common case.
3538   if (!type->isVariablyModifiedType()) return type;
3539 
3540   QualType result;
3541 
3542   SplitQualType split = type.getSplitDesugaredType();
3543   const Type *ty = split.Ty;
3544   switch (ty->getTypeClass()) {
3545 #define TYPE(Class, Base)
3546 #define ABSTRACT_TYPE(Class, Base)
3547 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3548 #include "clang/AST/TypeNodes.inc"
3549     llvm_unreachable("didn't desugar past all non-canonical types?");
3550 
3551   // These types should never be variably-modified.
3552   case Type::Builtin:
3553   case Type::Complex:
3554   case Type::Vector:
3555   case Type::DependentVector:
3556   case Type::ExtVector:
3557   case Type::DependentSizedExtVector:
3558   case Type::ConstantMatrix:
3559   case Type::DependentSizedMatrix:
3560   case Type::DependentAddressSpace:
3561   case Type::ObjCObject:
3562   case Type::ObjCInterface:
3563   case Type::ObjCObjectPointer:
3564   case Type::Record:
3565   case Type::Enum:
3566   case Type::UnresolvedUsing:
3567   case Type::TypeOfExpr:
3568   case Type::TypeOf:
3569   case Type::Decltype:
3570   case Type::UnaryTransform:
3571   case Type::DependentName:
3572   case Type::InjectedClassName:
3573   case Type::TemplateSpecialization:
3574   case Type::DependentTemplateSpecialization:
3575   case Type::TemplateTypeParm:
3576   case Type::SubstTemplateTypeParmPack:
3577   case Type::Auto:
3578   case Type::DeducedTemplateSpecialization:
3579   case Type::PackExpansion:
3580   case Type::BitInt:
3581   case Type::DependentBitInt:
3582     llvm_unreachable("type should never be variably-modified");
3583 
3584   // These types can be variably-modified but should never need to
3585   // further decay.
3586   case Type::FunctionNoProto:
3587   case Type::FunctionProto:
3588   case Type::BlockPointer:
3589   case Type::MemberPointer:
3590   case Type::Pipe:
3591     return type;
3592 
3593   // These types can be variably-modified.  All these modifications
3594   // preserve structure except as noted by comments.
3595   // TODO: if we ever care about optimizing VLAs, there are no-op
3596   // optimizations available here.
3597   case Type::Pointer:
3598     result = getPointerType(getVariableArrayDecayedType(
3599                               cast<PointerType>(ty)->getPointeeType()));
3600     break;
3601 
3602   case Type::LValueReference: {
3603     const auto *lv = cast<LValueReferenceType>(ty);
3604     result = getLValueReferenceType(
3605                  getVariableArrayDecayedType(lv->getPointeeType()),
3606                                     lv->isSpelledAsLValue());
3607     break;
3608   }
3609 
3610   case Type::RValueReference: {
3611     const auto *lv = cast<RValueReferenceType>(ty);
3612     result = getRValueReferenceType(
3613                  getVariableArrayDecayedType(lv->getPointeeType()));
3614     break;
3615   }
3616 
3617   case Type::Atomic: {
3618     const auto *at = cast<AtomicType>(ty);
3619     result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3620     break;
3621   }
3622 
3623   case Type::ConstantArray: {
3624     const auto *cat = cast<ConstantArrayType>(ty);
3625     result = getConstantArrayType(
3626                  getVariableArrayDecayedType(cat->getElementType()),
3627                                   cat->getSize(),
3628                                   cat->getSizeExpr(),
3629                                   cat->getSizeModifier(),
3630                                   cat->getIndexTypeCVRQualifiers());
3631     break;
3632   }
3633 
3634   case Type::DependentSizedArray: {
3635     const auto *dat = cast<DependentSizedArrayType>(ty);
3636     result = getDependentSizedArrayType(
3637                  getVariableArrayDecayedType(dat->getElementType()),
3638                                         dat->getSizeExpr(),
3639                                         dat->getSizeModifier(),
3640                                         dat->getIndexTypeCVRQualifiers(),
3641                                         dat->getBracketsRange());
3642     break;
3643   }
3644 
3645   // Turn incomplete types into [*] types.
3646   case Type::IncompleteArray: {
3647     const auto *iat = cast<IncompleteArrayType>(ty);
3648     result = getVariableArrayType(
3649                  getVariableArrayDecayedType(iat->getElementType()),
3650                                   /*size*/ nullptr,
3651                                   ArrayType::Normal,
3652                                   iat->getIndexTypeCVRQualifiers(),
3653                                   SourceRange());
3654     break;
3655   }
3656 
3657   // Turn VLA types into [*] types.
3658   case Type::VariableArray: {
3659     const auto *vat = cast<VariableArrayType>(ty);
3660     result = getVariableArrayType(
3661                  getVariableArrayDecayedType(vat->getElementType()),
3662                                   /*size*/ nullptr,
3663                                   ArrayType::Star,
3664                                   vat->getIndexTypeCVRQualifiers(),
3665                                   vat->getBracketsRange());
3666     break;
3667   }
3668   }
3669 
3670   // Apply the top-level qualifiers from the original.
3671   return getQualifiedType(result, split.Quals);
3672 }
3673 
3674 /// getVariableArrayType - Returns a non-unique reference to the type for a
3675 /// variable array of the specified element type.
3676 QualType ASTContext::getVariableArrayType(QualType EltTy,
3677                                           Expr *NumElts,
3678                                           ArrayType::ArraySizeModifier ASM,
3679                                           unsigned IndexTypeQuals,
3680                                           SourceRange Brackets) const {
3681   // Since we don't unique expressions, it isn't possible to unique VLA's
3682   // that have an expression provided for their size.
3683   QualType Canon;
3684 
3685   // Be sure to pull qualifiers off the element type.
3686   if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3687     SplitQualType canonSplit = getCanonicalType(EltTy).split();
3688     Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3689                                  IndexTypeQuals, Brackets);
3690     Canon = getQualifiedType(Canon, canonSplit.Quals);
3691   }
3692 
3693   auto *New = new (*this, TypeAlignment)
3694     VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3695 
3696   VariableArrayTypes.push_back(New);
3697   Types.push_back(New);
3698   return QualType(New, 0);
3699 }
3700 
3701 /// getDependentSizedArrayType - Returns a non-unique reference to
3702 /// the type for a dependently-sized array of the specified element
3703 /// type.
3704 QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3705                                                 Expr *numElements,
3706                                                 ArrayType::ArraySizeModifier ASM,
3707                                                 unsigned elementTypeQuals,
3708                                                 SourceRange brackets) const {
3709   assert((!numElements || numElements->isTypeDependent() ||
3710           numElements->isValueDependent()) &&
3711          "Size must be type- or value-dependent!");
3712 
3713   // Dependently-sized array types that do not have a specified number
3714   // of elements will have their sizes deduced from a dependent
3715   // initializer.  We do no canonicalization here at all, which is okay
3716   // because they can't be used in most locations.
3717   if (!numElements) {
3718     auto *newType
3719       = new (*this, TypeAlignment)
3720           DependentSizedArrayType(*this, elementType, QualType(),
3721                                   numElements, ASM, elementTypeQuals,
3722                                   brackets);
3723     Types.push_back(newType);
3724     return QualType(newType, 0);
3725   }
3726 
3727   // Otherwise, we actually build a new type every time, but we
3728   // also build a canonical type.
3729 
3730   SplitQualType canonElementType = getCanonicalType(elementType).split();
3731 
3732   void *insertPos = nullptr;
3733   llvm::FoldingSetNodeID ID;
3734   DependentSizedArrayType::Profile(ID, *this,
3735                                    QualType(canonElementType.Ty, 0),
3736                                    ASM, elementTypeQuals, numElements);
3737 
3738   // Look for an existing type with these properties.
3739   DependentSizedArrayType *canonTy =
3740     DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3741 
3742   // If we don't have one, build one.
3743   if (!canonTy) {
3744     canonTy = new (*this, TypeAlignment)
3745       DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3746                               QualType(), numElements, ASM, elementTypeQuals,
3747                               brackets);
3748     DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3749     Types.push_back(canonTy);
3750   }
3751 
3752   // Apply qualifiers from the element type to the array.
3753   QualType canon = getQualifiedType(QualType(canonTy,0),
3754                                     canonElementType.Quals);
3755 
3756   // If we didn't need extra canonicalization for the element type or the size
3757   // expression, then just use that as our result.
3758   if (QualType(canonElementType.Ty, 0) == elementType &&
3759       canonTy->getSizeExpr() == numElements)
3760     return canon;
3761 
3762   // Otherwise, we need to build a type which follows the spelling
3763   // of the element type.
3764   auto *sugaredType
3765     = new (*this, TypeAlignment)
3766         DependentSizedArrayType(*this, elementType, canon, numElements,
3767                                 ASM, elementTypeQuals, brackets);
3768   Types.push_back(sugaredType);
3769   return QualType(sugaredType, 0);
3770 }
3771 
3772 QualType ASTContext::getIncompleteArrayType(QualType elementType,
3773                                             ArrayType::ArraySizeModifier ASM,
3774                                             unsigned elementTypeQuals) const {
3775   llvm::FoldingSetNodeID ID;
3776   IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3777 
3778   void *insertPos = nullptr;
3779   if (IncompleteArrayType *iat =
3780        IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3781     return QualType(iat, 0);
3782 
3783   // If the element type isn't canonical, this won't be a canonical type
3784   // either, so fill in the canonical type field.  We also have to pull
3785   // qualifiers off the element type.
3786   QualType canon;
3787 
3788   if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3789     SplitQualType canonSplit = getCanonicalType(elementType).split();
3790     canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3791                                    ASM, elementTypeQuals);
3792     canon = getQualifiedType(canon, canonSplit.Quals);
3793 
3794     // Get the new insert position for the node we care about.
3795     IncompleteArrayType *existing =
3796       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3797     assert(!existing && "Shouldn't be in the map!"); (void) existing;
3798   }
3799 
3800   auto *newType = new (*this, TypeAlignment)
3801     IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3802 
3803   IncompleteArrayTypes.InsertNode(newType, insertPos);
3804   Types.push_back(newType);
3805   return QualType(newType, 0);
3806 }
3807 
3808 ASTContext::BuiltinVectorTypeInfo
3809 ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3810 #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \
3811   {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3812    NUMVECTORS};
3813 
3814 #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \
3815   {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3816 
3817   switch (Ty->getKind()) {
3818   default:
3819     llvm_unreachable("Unsupported builtin vector type");
3820   case BuiltinType::SveInt8:
3821     return SVE_INT_ELTTY(8, 16, true, 1);
3822   case BuiltinType::SveUint8:
3823     return SVE_INT_ELTTY(8, 16, false, 1);
3824   case BuiltinType::SveInt8x2:
3825     return SVE_INT_ELTTY(8, 16, true, 2);
3826   case BuiltinType::SveUint8x2:
3827     return SVE_INT_ELTTY(8, 16, false, 2);
3828   case BuiltinType::SveInt8x3:
3829     return SVE_INT_ELTTY(8, 16, true, 3);
3830   case BuiltinType::SveUint8x3:
3831     return SVE_INT_ELTTY(8, 16, false, 3);
3832   case BuiltinType::SveInt8x4:
3833     return SVE_INT_ELTTY(8, 16, true, 4);
3834   case BuiltinType::SveUint8x4:
3835     return SVE_INT_ELTTY(8, 16, false, 4);
3836   case BuiltinType::SveInt16:
3837     return SVE_INT_ELTTY(16, 8, true, 1);
3838   case BuiltinType::SveUint16:
3839     return SVE_INT_ELTTY(16, 8, false, 1);
3840   case BuiltinType::SveInt16x2:
3841     return SVE_INT_ELTTY(16, 8, true, 2);
3842   case BuiltinType::SveUint16x2:
3843     return SVE_INT_ELTTY(16, 8, false, 2);
3844   case BuiltinType::SveInt16x3:
3845     return SVE_INT_ELTTY(16, 8, true, 3);
3846   case BuiltinType::SveUint16x3:
3847     return SVE_INT_ELTTY(16, 8, false, 3);
3848   case BuiltinType::SveInt16x4:
3849     return SVE_INT_ELTTY(16, 8, true, 4);
3850   case BuiltinType::SveUint16x4:
3851     return SVE_INT_ELTTY(16, 8, false, 4);
3852   case BuiltinType::SveInt32:
3853     return SVE_INT_ELTTY(32, 4, true, 1);
3854   case BuiltinType::SveUint32:
3855     return SVE_INT_ELTTY(32, 4, false, 1);
3856   case BuiltinType::SveInt32x2:
3857     return SVE_INT_ELTTY(32, 4, true, 2);
3858   case BuiltinType::SveUint32x2:
3859     return SVE_INT_ELTTY(32, 4, false, 2);
3860   case BuiltinType::SveInt32x3:
3861     return SVE_INT_ELTTY(32, 4, true, 3);
3862   case BuiltinType::SveUint32x3:
3863     return SVE_INT_ELTTY(32, 4, false, 3);
3864   case BuiltinType::SveInt32x4:
3865     return SVE_INT_ELTTY(32, 4, true, 4);
3866   case BuiltinType::SveUint32x4:
3867     return SVE_INT_ELTTY(32, 4, false, 4);
3868   case BuiltinType::SveInt64:
3869     return SVE_INT_ELTTY(64, 2, true, 1);
3870   case BuiltinType::SveUint64:
3871     return SVE_INT_ELTTY(64, 2, false, 1);
3872   case BuiltinType::SveInt64x2:
3873     return SVE_INT_ELTTY(64, 2, true, 2);
3874   case BuiltinType::SveUint64x2:
3875     return SVE_INT_ELTTY(64, 2, false, 2);
3876   case BuiltinType::SveInt64x3:
3877     return SVE_INT_ELTTY(64, 2, true, 3);
3878   case BuiltinType::SveUint64x3:
3879     return SVE_INT_ELTTY(64, 2, false, 3);
3880   case BuiltinType::SveInt64x4:
3881     return SVE_INT_ELTTY(64, 2, true, 4);
3882   case BuiltinType::SveUint64x4:
3883     return SVE_INT_ELTTY(64, 2, false, 4);
3884   case BuiltinType::SveBool:
3885     return SVE_ELTTY(BoolTy, 16, 1);
3886   case BuiltinType::SveFloat16:
3887     return SVE_ELTTY(HalfTy, 8, 1);
3888   case BuiltinType::SveFloat16x2:
3889     return SVE_ELTTY(HalfTy, 8, 2);
3890   case BuiltinType::SveFloat16x3:
3891     return SVE_ELTTY(HalfTy, 8, 3);
3892   case BuiltinType::SveFloat16x4:
3893     return SVE_ELTTY(HalfTy, 8, 4);
3894   case BuiltinType::SveFloat32:
3895     return SVE_ELTTY(FloatTy, 4, 1);
3896   case BuiltinType::SveFloat32x2:
3897     return SVE_ELTTY(FloatTy, 4, 2);
3898   case BuiltinType::SveFloat32x3:
3899     return SVE_ELTTY(FloatTy, 4, 3);
3900   case BuiltinType::SveFloat32x4:
3901     return SVE_ELTTY(FloatTy, 4, 4);
3902   case BuiltinType::SveFloat64:
3903     return SVE_ELTTY(DoubleTy, 2, 1);
3904   case BuiltinType::SveFloat64x2:
3905     return SVE_ELTTY(DoubleTy, 2, 2);
3906   case BuiltinType::SveFloat64x3:
3907     return SVE_ELTTY(DoubleTy, 2, 3);
3908   case BuiltinType::SveFloat64x4:
3909     return SVE_ELTTY(DoubleTy, 2, 4);
3910   case BuiltinType::SveBFloat16:
3911     return SVE_ELTTY(BFloat16Ty, 8, 1);
3912   case BuiltinType::SveBFloat16x2:
3913     return SVE_ELTTY(BFloat16Ty, 8, 2);
3914   case BuiltinType::SveBFloat16x3:
3915     return SVE_ELTTY(BFloat16Ty, 8, 3);
3916   case BuiltinType::SveBFloat16x4:
3917     return SVE_ELTTY(BFloat16Ty, 8, 4);
3918 #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \
3919                             IsSigned)                                          \
3920   case BuiltinType::Id:                                                        \
3921     return {getIntTypeForBitwidth(ElBits, IsSigned),                           \
3922             llvm::ElementCount::getScalable(NumEls), NF};
3923 #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \
3924   case BuiltinType::Id:                                                        \
3925     return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \
3926             llvm::ElementCount::getScalable(NumEls), NF};
3927 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3928   case BuiltinType::Id:                                                        \
3929     return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
3930 #include "clang/Basic/RISCVVTypes.def"
3931   }
3932 }
3933 
3934 /// getScalableVectorType - Return the unique reference to a scalable vector
3935 /// type of the specified element type and size. VectorType must be a built-in
3936 /// type.
3937 QualType ASTContext::getScalableVectorType(QualType EltTy,
3938                                            unsigned NumElts) const {
3939   if (Target->hasAArch64SVETypes()) {
3940     uint64_t EltTySize = getTypeSize(EltTy);
3941 #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits,    \
3942                         IsSigned, IsFP, IsBF)                                  \
3943   if (!EltTy->isBooleanType() &&                                               \
3944       ((EltTy->hasIntegerRepresentation() &&                                   \
3945         EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \
3946        (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \
3947         IsFP && !IsBF) ||                                                      \
3948        (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \
3949         IsBF && !IsFP)) &&                                                     \
3950       EltTySize == ElBits && NumElts == NumEls) {                              \
3951     return SingletonId;                                                        \
3952   }
3953 #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls)         \
3954   if (EltTy->isBooleanType() && NumElts == NumEls)                             \
3955     return SingletonId;
3956 #include "clang/Basic/AArch64SVEACLETypes.def"
3957   } else if (Target->hasRISCVVTypes()) {
3958     uint64_t EltTySize = getTypeSize(EltTy);
3959 #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \
3960                         IsFP)                                                  \
3961     if (!EltTy->isBooleanType() &&                                             \
3962         ((EltTy->hasIntegerRepresentation() &&                                 \
3963           EltTy->hasSignedIntegerRepresentation() == IsSigned) ||              \
3964          (EltTy->hasFloatingRepresentation() && IsFP)) &&                      \
3965         EltTySize == ElBits && NumElts == NumEls)                              \
3966       return SingletonId;
3967 #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \
3968     if (EltTy->isBooleanType() && NumElts == NumEls)                           \
3969       return SingletonId;
3970 #include "clang/Basic/RISCVVTypes.def"
3971   }
3972   return QualType();
3973 }
3974 
3975 /// getVectorType - Return the unique reference to a vector type of
3976 /// the specified element type and size. VectorType must be a built-in type.
3977 QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3978                                    VectorType::VectorKind VecKind) const {
3979   assert(vecType->isBuiltinType());
3980 
3981   // Check if we've already instantiated a vector of this type.
3982   llvm::FoldingSetNodeID ID;
3983   VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3984 
3985   void *InsertPos = nullptr;
3986   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3987     return QualType(VTP, 0);
3988 
3989   // If the element type isn't canonical, this won't be a canonical type either,
3990   // so fill in the canonical type field.
3991   QualType Canonical;
3992   if (!vecType.isCanonical()) {
3993     Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3994 
3995     // Get the new insert position for the node we care about.
3996     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3997     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3998   }
3999   auto *New = new (*this, TypeAlignment)
4000     VectorType(vecType, NumElts, Canonical, VecKind);
4001   VectorTypes.InsertNode(New, InsertPos);
4002   Types.push_back(New);
4003   return QualType(New, 0);
4004 }
4005 
4006 QualType
4007 ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4008                                    SourceLocation AttrLoc,
4009                                    VectorType::VectorKind VecKind) const {
4010   llvm::FoldingSetNodeID ID;
4011   DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4012                                VecKind);
4013   void *InsertPos = nullptr;
4014   DependentVectorType *Canon =
4015       DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4016   DependentVectorType *New;
4017 
4018   if (Canon) {
4019     New = new (*this, TypeAlignment) DependentVectorType(
4020         *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4021   } else {
4022     QualType CanonVecTy = getCanonicalType(VecType);
4023     if (CanonVecTy == VecType) {
4024       New = new (*this, TypeAlignment) DependentVectorType(
4025           *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4026 
4027       DependentVectorType *CanonCheck =
4028           DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4029       assert(!CanonCheck &&
4030              "Dependent-sized vector_size canonical type broken");
4031       (void)CanonCheck;
4032       DependentVectorTypes.InsertNode(New, InsertPos);
4033     } else {
4034       QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4035                                                 SourceLocation(), VecKind);
4036       New = new (*this, TypeAlignment) DependentVectorType(
4037           *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4038     }
4039   }
4040 
4041   Types.push_back(New);
4042   return QualType(New, 0);
4043 }
4044 
4045 /// getExtVectorType - Return the unique reference to an extended vector type of
4046 /// the specified element type and size. VectorType must be a built-in type.
4047 QualType
4048 ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
4049   assert(vecType->isBuiltinType() || vecType->isDependentType());
4050 
4051   // Check if we've already instantiated a vector of this type.
4052   llvm::FoldingSetNodeID ID;
4053   VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4054                       VectorType::GenericVector);
4055   void *InsertPos = nullptr;
4056   if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4057     return QualType(VTP, 0);
4058 
4059   // If the element type isn't canonical, this won't be a canonical type either,
4060   // so fill in the canonical type field.
4061   QualType Canonical;
4062   if (!vecType.isCanonical()) {
4063     Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4064 
4065     // Get the new insert position for the node we care about.
4066     VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4067     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4068   }
4069   auto *New = new (*this, TypeAlignment)
4070     ExtVectorType(vecType, NumElts, Canonical);
4071   VectorTypes.InsertNode(New, InsertPos);
4072   Types.push_back(New);
4073   return QualType(New, 0);
4074 }
4075 
4076 QualType
4077 ASTContext::getDependentSizedExtVectorType(QualType vecType,
4078                                            Expr *SizeExpr,
4079                                            SourceLocation AttrLoc) const {
4080   llvm::FoldingSetNodeID ID;
4081   DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4082                                        SizeExpr);
4083 
4084   void *InsertPos = nullptr;
4085   DependentSizedExtVectorType *Canon
4086     = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4087   DependentSizedExtVectorType *New;
4088   if (Canon) {
4089     // We already have a canonical version of this array type; use it as
4090     // the canonical type for a newly-built type.
4091     New = new (*this, TypeAlignment)
4092       DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4093                                   SizeExpr, AttrLoc);
4094   } else {
4095     QualType CanonVecTy = getCanonicalType(vecType);
4096     if (CanonVecTy == vecType) {
4097       New = new (*this, TypeAlignment)
4098         DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4099                                     AttrLoc);
4100 
4101       DependentSizedExtVectorType *CanonCheck
4102         = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4103       assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
4104       (void)CanonCheck;
4105       DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4106     } else {
4107       QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4108                                                            SourceLocation());
4109       New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4110           *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4111     }
4112   }
4113 
4114   Types.push_back(New);
4115   return QualType(New, 0);
4116 }
4117 
4118 QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4119                                            unsigned NumColumns) const {
4120   llvm::FoldingSetNodeID ID;
4121   ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4122                               Type::ConstantMatrix);
4123 
4124   assert(MatrixType::isValidElementType(ElementTy) &&
4125          "need a valid element type");
4126   assert(ConstantMatrixType::isDimensionValid(NumRows) &&
4127          ConstantMatrixType::isDimensionValid(NumColumns) &&
4128          "need valid matrix dimensions");
4129   void *InsertPos = nullptr;
4130   if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4131     return QualType(MTP, 0);
4132 
4133   QualType Canonical;
4134   if (!ElementTy.isCanonical()) {
4135     Canonical =
4136         getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4137 
4138     ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4139     assert(!NewIP && "Matrix type shouldn't already exist in the map");
4140     (void)NewIP;
4141   }
4142 
4143   auto *New = new (*this, TypeAlignment)
4144       ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4145   MatrixTypes.InsertNode(New, InsertPos);
4146   Types.push_back(New);
4147   return QualType(New, 0);
4148 }
4149 
4150 QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4151                                                  Expr *RowExpr,
4152                                                  Expr *ColumnExpr,
4153                                                  SourceLocation AttrLoc) const {
4154   QualType CanonElementTy = getCanonicalType(ElementTy);
4155   llvm::FoldingSetNodeID ID;
4156   DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4157                                     ColumnExpr);
4158 
4159   void *InsertPos = nullptr;
4160   DependentSizedMatrixType *Canon =
4161       DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4162 
4163   if (!Canon) {
4164     Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4165         *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4166 #ifndef NDEBUG
4167     DependentSizedMatrixType *CanonCheck =
4168         DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4169     assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
4170 #endif
4171     DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4172     Types.push_back(Canon);
4173   }
4174 
4175   // Already have a canonical version of the matrix type
4176   //
4177   // If it exactly matches the requested type, use it directly.
4178   if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4179       Canon->getRowExpr() == ColumnExpr)
4180     return QualType(Canon, 0);
4181 
4182   // Use Canon as the canonical type for newly-built type.
4183   DependentSizedMatrixType *New = new (*this, TypeAlignment)
4184       DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4185                                ColumnExpr, AttrLoc);
4186   Types.push_back(New);
4187   return QualType(New, 0);
4188 }
4189 
4190 QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4191                                                   Expr *AddrSpaceExpr,
4192                                                   SourceLocation AttrLoc) const {
4193   assert(AddrSpaceExpr->isInstantiationDependent());
4194 
4195   QualType canonPointeeType = getCanonicalType(PointeeType);
4196 
4197   void *insertPos = nullptr;
4198   llvm::FoldingSetNodeID ID;
4199   DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4200                                      AddrSpaceExpr);
4201 
4202   DependentAddressSpaceType *canonTy =
4203     DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4204 
4205   if (!canonTy) {
4206     canonTy = new (*this, TypeAlignment)
4207       DependentAddressSpaceType(*this, canonPointeeType,
4208                                 QualType(), AddrSpaceExpr, AttrLoc);
4209     DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4210     Types.push_back(canonTy);
4211   }
4212 
4213   if (canonPointeeType == PointeeType &&
4214       canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4215     return QualType(canonTy, 0);
4216 
4217   auto *sugaredType
4218     = new (*this, TypeAlignment)
4219         DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4220                                   AddrSpaceExpr, AttrLoc);
4221   Types.push_back(sugaredType);
4222   return QualType(sugaredType, 0);
4223 }
4224 
4225 /// Determine whether \p T is canonical as the result type of a function.
4226 static bool isCanonicalResultType(QualType T) {
4227   return T.isCanonical() &&
4228          (T.getObjCLifetime() == Qualifiers::OCL_None ||
4229           T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4230 }
4231 
4232 /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4233 QualType
4234 ASTContext::getFunctionNoProtoType(QualType ResultTy,
4235                                    const FunctionType::ExtInfo &Info) const {
4236   // Unique functions, to guarantee there is only one function of a particular
4237   // structure.
4238   llvm::FoldingSetNodeID ID;
4239   FunctionNoProtoType::Profile(ID, ResultTy, Info);
4240 
4241   void *InsertPos = nullptr;
4242   if (FunctionNoProtoType *FT =
4243         FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4244     return QualType(FT, 0);
4245 
4246   QualType Canonical;
4247   if (!isCanonicalResultType(ResultTy)) {
4248     Canonical =
4249       getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4250 
4251     // Get the new insert position for the node we care about.
4252     FunctionNoProtoType *NewIP =
4253       FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4254     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4255   }
4256 
4257   auto *New = new (*this, TypeAlignment)
4258     FunctionNoProtoType(ResultTy, Canonical, Info);
4259   Types.push_back(New);
4260   FunctionNoProtoTypes.InsertNode(New, InsertPos);
4261   return QualType(New, 0);
4262 }
4263 
4264 CanQualType
4265 ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4266   CanQualType CanResultType = getCanonicalType(ResultType);
4267 
4268   // Canonical result types do not have ARC lifetime qualifiers.
4269   if (CanResultType.getQualifiers().hasObjCLifetime()) {
4270     Qualifiers Qs = CanResultType.getQualifiers();
4271     Qs.removeObjCLifetime();
4272     return CanQualType::CreateUnsafe(
4273              getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4274   }
4275 
4276   return CanResultType;
4277 }
4278 
4279 static bool isCanonicalExceptionSpecification(
4280     const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4281   if (ESI.Type == EST_None)
4282     return true;
4283   if (!NoexceptInType)
4284     return false;
4285 
4286   // C++17 onwards: exception specification is part of the type, as a simple
4287   // boolean "can this function type throw".
4288   if (ESI.Type == EST_BasicNoexcept)
4289     return true;
4290 
4291   // A noexcept(expr) specification is (possibly) canonical if expr is
4292   // value-dependent.
4293   if (ESI.Type == EST_DependentNoexcept)
4294     return true;
4295 
4296   // A dynamic exception specification is canonical if it only contains pack
4297   // expansions (so we can't tell whether it's non-throwing) and all its
4298   // contained types are canonical.
4299   if (ESI.Type == EST_Dynamic) {
4300     bool AnyPackExpansions = false;
4301     for (QualType ET : ESI.Exceptions) {
4302       if (!ET.isCanonical())
4303         return false;
4304       if (ET->getAs<PackExpansionType>())
4305         AnyPackExpansions = true;
4306     }
4307     return AnyPackExpansions;
4308   }
4309 
4310   return false;
4311 }
4312 
4313 QualType ASTContext::getFunctionTypeInternal(
4314     QualType ResultTy, ArrayRef<QualType> ArgArray,
4315     const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4316   size_t NumArgs = ArgArray.size();
4317 
4318   // Unique functions, to guarantee there is only one function of a particular
4319   // structure.
4320   llvm::FoldingSetNodeID ID;
4321   FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4322                              *this, true);
4323 
4324   QualType Canonical;
4325   bool Unique = false;
4326 
4327   void *InsertPos = nullptr;
4328   if (FunctionProtoType *FPT =
4329         FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4330     QualType Existing = QualType(FPT, 0);
4331 
4332     // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4333     // it so long as our exception specification doesn't contain a dependent
4334     // noexcept expression, or we're just looking for a canonical type.
4335     // Otherwise, we're going to need to create a type
4336     // sugar node to hold the concrete expression.
4337     if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4338         EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4339       return Existing;
4340 
4341     // We need a new type sugar node for this one, to hold the new noexcept
4342     // expression. We do no canonicalization here, but that's OK since we don't
4343     // expect to see the same noexcept expression much more than once.
4344     Canonical = getCanonicalType(Existing);
4345     Unique = true;
4346   }
4347 
4348   bool NoexceptInType = getLangOpts().CPlusPlus17;
4349   bool IsCanonicalExceptionSpec =
4350       isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4351 
4352   // Determine whether the type being created is already canonical or not.
4353   bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4354                      isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4355   for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4356     if (!ArgArray[i].isCanonicalAsParam())
4357       isCanonical = false;
4358 
4359   if (OnlyWantCanonical)
4360     assert(isCanonical &&
4361            "given non-canonical parameters constructing canonical type");
4362 
4363   // If this type isn't canonical, get the canonical version of it if we don't
4364   // already have it. The exception spec is only partially part of the
4365   // canonical type, and only in C++17 onwards.
4366   if (!isCanonical && Canonical.isNull()) {
4367     SmallVector<QualType, 16> CanonicalArgs;
4368     CanonicalArgs.reserve(NumArgs);
4369     for (unsigned i = 0; i != NumArgs; ++i)
4370       CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4371 
4372     llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4373     FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4374     CanonicalEPI.HasTrailingReturn = false;
4375 
4376     if (IsCanonicalExceptionSpec) {
4377       // Exception spec is already OK.
4378     } else if (NoexceptInType) {
4379       switch (EPI.ExceptionSpec.Type) {
4380       case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4381         // We don't know yet. It shouldn't matter what we pick here; no-one
4382         // should ever look at this.
4383         LLVM_FALLTHROUGH;
4384       case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4385         CanonicalEPI.ExceptionSpec.Type = EST_None;
4386         break;
4387 
4388         // A dynamic exception specification is almost always "not noexcept",
4389         // with the exception that a pack expansion might expand to no types.
4390       case EST_Dynamic: {
4391         bool AnyPacks = false;
4392         for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4393           if (ET->getAs<PackExpansionType>())
4394             AnyPacks = true;
4395           ExceptionTypeStorage.push_back(getCanonicalType(ET));
4396         }
4397         if (!AnyPacks)
4398           CanonicalEPI.ExceptionSpec.Type = EST_None;
4399         else {
4400           CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4401           CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4402         }
4403         break;
4404       }
4405 
4406       case EST_DynamicNone:
4407       case EST_BasicNoexcept:
4408       case EST_NoexceptTrue:
4409       case EST_NoThrow:
4410         CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4411         break;
4412 
4413       case EST_DependentNoexcept:
4414         llvm_unreachable("dependent noexcept is already canonical");
4415       }
4416     } else {
4417       CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4418     }
4419 
4420     // Adjust the canonical function result type.
4421     CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4422     Canonical =
4423         getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4424 
4425     // Get the new insert position for the node we care about.
4426     FunctionProtoType *NewIP =
4427       FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4428     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4429   }
4430 
4431   // Compute the needed size to hold this FunctionProtoType and the
4432   // various trailing objects.
4433   auto ESH = FunctionProtoType::getExceptionSpecSize(
4434       EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4435   size_t Size = FunctionProtoType::totalSizeToAlloc<
4436       QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4437       FunctionType::ExceptionType, Expr *, FunctionDecl *,
4438       FunctionProtoType::ExtParameterInfo, Qualifiers>(
4439       NumArgs, EPI.Variadic,
4440       FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4441       ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4442       EPI.ExtParameterInfos ? NumArgs : 0,
4443       EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4444 
4445   auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4446   FunctionProtoType::ExtProtoInfo newEPI = EPI;
4447   new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4448   Types.push_back(FTP);
4449   if (!Unique)
4450     FunctionProtoTypes.InsertNode(FTP, InsertPos);
4451   return QualType(FTP, 0);
4452 }
4453 
4454 QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4455   llvm::FoldingSetNodeID ID;
4456   PipeType::Profile(ID, T, ReadOnly);
4457 
4458   void *InsertPos = nullptr;
4459   if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4460     return QualType(PT, 0);
4461 
4462   // If the pipe element type isn't canonical, this won't be a canonical type
4463   // either, so fill in the canonical type field.
4464   QualType Canonical;
4465   if (!T.isCanonical()) {
4466     Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4467 
4468     // Get the new insert position for the node we care about.
4469     PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4470     assert(!NewIP && "Shouldn't be in the map!");
4471     (void)NewIP;
4472   }
4473   auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4474   Types.push_back(New);
4475   PipeTypes.InsertNode(New, InsertPos);
4476   return QualType(New, 0);
4477 }
4478 
4479 QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4480   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4481   return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4482                          : Ty;
4483 }
4484 
4485 QualType ASTContext::getReadPipeType(QualType T) const {
4486   return getPipeType(T, true);
4487 }
4488 
4489 QualType ASTContext::getWritePipeType(QualType T) const {
4490   return getPipeType(T, false);
4491 }
4492 
4493 QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4494   llvm::FoldingSetNodeID ID;
4495   BitIntType::Profile(ID, IsUnsigned, NumBits);
4496 
4497   void *InsertPos = nullptr;
4498   if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4499     return QualType(EIT, 0);
4500 
4501   auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4502   BitIntTypes.InsertNode(New, InsertPos);
4503   Types.push_back(New);
4504   return QualType(New, 0);
4505 }
4506 
4507 QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4508                                             Expr *NumBitsExpr) const {
4509   assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
4510   llvm::FoldingSetNodeID ID;
4511   DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4512 
4513   void *InsertPos = nullptr;
4514   if (DependentBitIntType *Existing =
4515           DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4516     return QualType(Existing, 0);
4517 
4518   auto *New = new (*this, TypeAlignment)
4519       DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4520   DependentBitIntTypes.InsertNode(New, InsertPos);
4521 
4522   Types.push_back(New);
4523   return QualType(New, 0);
4524 }
4525 
4526 #ifndef NDEBUG
4527 static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4528   if (!isa<CXXRecordDecl>(D)) return false;
4529   const auto *RD = cast<CXXRecordDecl>(D);
4530   if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4531     return true;
4532   if (RD->getDescribedClassTemplate() &&
4533       !isa<ClassTemplateSpecializationDecl>(RD))
4534     return true;
4535   return false;
4536 }
4537 #endif
4538 
4539 /// getInjectedClassNameType - Return the unique reference to the
4540 /// injected class name type for the specified templated declaration.
4541 QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4542                                               QualType TST) const {
4543   assert(NeedsInjectedClassNameType(Decl));
4544   if (Decl->TypeForDecl) {
4545     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4546   } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4547     assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4548     Decl->TypeForDecl = PrevDecl->TypeForDecl;
4549     assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4550   } else {
4551     Type *newType =
4552       new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4553     Decl->TypeForDecl = newType;
4554     Types.push_back(newType);
4555   }
4556   return QualType(Decl->TypeForDecl, 0);
4557 }
4558 
4559 /// getTypeDeclType - Return the unique reference to the type for the
4560 /// specified type declaration.
4561 QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4562   assert(Decl && "Passed null for Decl param");
4563   assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4564 
4565   if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4566     return getTypedefType(Typedef);
4567 
4568   assert(!isa<TemplateTypeParmDecl>(Decl) &&
4569          "Template type parameter types are always available.");
4570 
4571   if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4572     assert(Record->isFirstDecl() && "struct/union has previous declaration");
4573     assert(!NeedsInjectedClassNameType(Record));
4574     return getRecordType(Record);
4575   } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4576     assert(Enum->isFirstDecl() && "enum has previous declaration");
4577     return getEnumType(Enum);
4578   } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4579     return getUnresolvedUsingType(Using);
4580   } else
4581     llvm_unreachable("TypeDecl without a type?");
4582 
4583   return QualType(Decl->TypeForDecl, 0);
4584 }
4585 
4586 /// getTypedefType - Return the unique reference to the type for the
4587 /// specified typedef name decl.
4588 QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4589                                     QualType Underlying) const {
4590   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4591 
4592   if (Underlying.isNull())
4593     Underlying = Decl->getUnderlyingType();
4594   QualType Canonical = getCanonicalType(Underlying);
4595   auto *newType = new (*this, TypeAlignment)
4596       TypedefType(Type::Typedef, Decl, Underlying, Canonical);
4597   Decl->TypeForDecl = newType;
4598   Types.push_back(newType);
4599   return QualType(newType, 0);
4600 }
4601 
4602 QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4603                                   QualType Underlying) const {
4604   llvm::FoldingSetNodeID ID;
4605   UsingType::Profile(ID, Found);
4606 
4607   void *InsertPos = nullptr;
4608   UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos);
4609   if (T)
4610     return QualType(T, 0);
4611 
4612   assert(!Underlying.hasLocalQualifiers());
4613   assert(Underlying == getTypeDeclType(cast<TypeDecl>(Found->getTargetDecl())));
4614   QualType Canon = Underlying.getCanonicalType();
4615 
4616   UsingType *NewType =
4617       new (*this, TypeAlignment) UsingType(Found, Underlying, Canon);
4618   Types.push_back(NewType);
4619   UsingTypes.InsertNode(NewType, InsertPos);
4620   return QualType(NewType, 0);
4621 }
4622 
4623 QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4624   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4625 
4626   if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4627     if (PrevDecl->TypeForDecl)
4628       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4629 
4630   auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4631   Decl->TypeForDecl = newType;
4632   Types.push_back(newType);
4633   return QualType(newType, 0);
4634 }
4635 
4636 QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4637   if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4638 
4639   if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4640     if (PrevDecl->TypeForDecl)
4641       return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4642 
4643   auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4644   Decl->TypeForDecl = newType;
4645   Types.push_back(newType);
4646   return QualType(newType, 0);
4647 }
4648 
4649 QualType ASTContext::getUnresolvedUsingType(
4650     const UnresolvedUsingTypenameDecl *Decl) const {
4651   if (Decl->TypeForDecl)
4652     return QualType(Decl->TypeForDecl, 0);
4653 
4654   if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4655           Decl->getCanonicalDecl())
4656     if (CanonicalDecl->TypeForDecl)
4657       return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4658 
4659   Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4660   Decl->TypeForDecl = newType;
4661   Types.push_back(newType);
4662   return QualType(newType, 0);
4663 }
4664 
4665 QualType ASTContext::getAttributedType(attr::Kind attrKind,
4666                                        QualType modifiedType,
4667                                        QualType equivalentType) {
4668   llvm::FoldingSetNodeID id;
4669   AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4670 
4671   void *insertPos = nullptr;
4672   AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4673   if (type) return QualType(type, 0);
4674 
4675   QualType canon = getCanonicalType(equivalentType);
4676   type = new (*this, TypeAlignment)
4677       AttributedType(canon, attrKind, modifiedType, equivalentType);
4678 
4679   Types.push_back(type);
4680   AttributedTypes.InsertNode(type, insertPos);
4681 
4682   return QualType(type, 0);
4683 }
4684 
4685 /// Retrieve a substitution-result type.
4686 QualType
4687 ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4688                                          QualType Replacement) const {
4689   assert(Replacement.isCanonical()
4690          && "replacement types must always be canonical");
4691 
4692   llvm::FoldingSetNodeID ID;
4693   SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4694   void *InsertPos = nullptr;
4695   SubstTemplateTypeParmType *SubstParm
4696     = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4697 
4698   if (!SubstParm) {
4699     SubstParm = new (*this, TypeAlignment)
4700       SubstTemplateTypeParmType(Parm, Replacement);
4701     Types.push_back(SubstParm);
4702     SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4703   }
4704 
4705   return QualType(SubstParm, 0);
4706 }
4707 
4708 /// Retrieve a
4709 QualType ASTContext::getSubstTemplateTypeParmPackType(
4710                                           const TemplateTypeParmType *Parm,
4711                                               const TemplateArgument &ArgPack) {
4712 #ifndef NDEBUG
4713   for (const auto &P : ArgPack.pack_elements()) {
4714     assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4715     assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4716   }
4717 #endif
4718 
4719   llvm::FoldingSetNodeID ID;
4720   SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4721   void *InsertPos = nullptr;
4722   if (SubstTemplateTypeParmPackType *SubstParm
4723         = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4724     return QualType(SubstParm, 0);
4725 
4726   QualType Canon;
4727   if (!Parm->isCanonicalUnqualified()) {
4728     Canon = getCanonicalType(QualType(Parm, 0));
4729     Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4730                                              ArgPack);
4731     SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4732   }
4733 
4734   auto *SubstParm
4735     = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4736                                                                ArgPack);
4737   Types.push_back(SubstParm);
4738   SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4739   return QualType(SubstParm, 0);
4740 }
4741 
4742 /// Retrieve the template type parameter type for a template
4743 /// parameter or parameter pack with the given depth, index, and (optionally)
4744 /// name.
4745 QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4746                                              bool ParameterPack,
4747                                              TemplateTypeParmDecl *TTPDecl) const {
4748   llvm::FoldingSetNodeID ID;
4749   TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4750   void *InsertPos = nullptr;
4751   TemplateTypeParmType *TypeParm
4752     = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4753 
4754   if (TypeParm)
4755     return QualType(TypeParm, 0);
4756 
4757   if (TTPDecl) {
4758     QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4759     TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4760 
4761     TemplateTypeParmType *TypeCheck
4762       = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4763     assert(!TypeCheck && "Template type parameter canonical type broken");
4764     (void)TypeCheck;
4765   } else
4766     TypeParm = new (*this, TypeAlignment)
4767       TemplateTypeParmType(Depth, Index, ParameterPack);
4768 
4769   Types.push_back(TypeParm);
4770   TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4771 
4772   return QualType(TypeParm, 0);
4773 }
4774 
4775 TypeSourceInfo *
4776 ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4777                                               SourceLocation NameLoc,
4778                                         const TemplateArgumentListInfo &Args,
4779                                               QualType Underlying) const {
4780   assert(!Name.getAsDependentTemplateName() &&
4781          "No dependent template names here!");
4782   QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4783 
4784   TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4785   TemplateSpecializationTypeLoc TL =
4786       DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4787   TL.setTemplateKeywordLoc(SourceLocation());
4788   TL.setTemplateNameLoc(NameLoc);
4789   TL.setLAngleLoc(Args.getLAngleLoc());
4790   TL.setRAngleLoc(Args.getRAngleLoc());
4791   for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4792     TL.setArgLocInfo(i, Args[i].getLocInfo());
4793   return DI;
4794 }
4795 
4796 QualType
4797 ASTContext::getTemplateSpecializationType(TemplateName Template,
4798                                           const TemplateArgumentListInfo &Args,
4799                                           QualType Underlying) const {
4800   assert(!Template.getAsDependentTemplateName() &&
4801          "No dependent template names here!");
4802 
4803   SmallVector<TemplateArgument, 4> ArgVec;
4804   ArgVec.reserve(Args.size());
4805   for (const TemplateArgumentLoc &Arg : Args.arguments())
4806     ArgVec.push_back(Arg.getArgument());
4807 
4808   return getTemplateSpecializationType(Template, ArgVec, Underlying);
4809 }
4810 
4811 #ifndef NDEBUG
4812 static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4813   for (const TemplateArgument &Arg : Args)
4814     if (Arg.isPackExpansion())
4815       return true;
4816 
4817   return true;
4818 }
4819 #endif
4820 
4821 QualType
4822 ASTContext::getTemplateSpecializationType(TemplateName Template,
4823                                           ArrayRef<TemplateArgument> Args,
4824                                           QualType Underlying) const {
4825   assert(!Template.getAsDependentTemplateName() &&
4826          "No dependent template names here!");
4827   // Look through qualified template names.
4828   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4829     Template = TemplateName(QTN->getTemplateDecl());
4830 
4831   bool IsTypeAlias =
4832     Template.getAsTemplateDecl() &&
4833     isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4834   QualType CanonType;
4835   if (!Underlying.isNull())
4836     CanonType = getCanonicalType(Underlying);
4837   else {
4838     // We can get here with an alias template when the specialization contains
4839     // a pack expansion that does not match up with a parameter pack.
4840     assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4841            "Caller must compute aliased type");
4842     IsTypeAlias = false;
4843     CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4844   }
4845 
4846   // Allocate the (non-canonical) template specialization type, but don't
4847   // try to unique it: these types typically have location information that
4848   // we don't unique and don't want to lose.
4849   void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4850                        sizeof(TemplateArgument) * Args.size() +
4851                        (IsTypeAlias? sizeof(QualType) : 0),
4852                        TypeAlignment);
4853   auto *Spec
4854     = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4855                                          IsTypeAlias ? Underlying : QualType());
4856 
4857   Types.push_back(Spec);
4858   return QualType(Spec, 0);
4859 }
4860 
4861 static bool
4862 getCanonicalTemplateArguments(const ASTContext &C,
4863                               ArrayRef<TemplateArgument> OrigArgs,
4864                               SmallVectorImpl<TemplateArgument> &CanonArgs) {
4865   bool AnyNonCanonArgs = false;
4866   unsigned NumArgs = OrigArgs.size();
4867   CanonArgs.resize(NumArgs);
4868   for (unsigned I = 0; I != NumArgs; ++I) {
4869     const TemplateArgument &OrigArg = OrigArgs[I];
4870     TemplateArgument &CanonArg = CanonArgs[I];
4871     CanonArg = C.getCanonicalTemplateArgument(OrigArg);
4872     if (!CanonArg.structurallyEquals(OrigArg))
4873       AnyNonCanonArgs = true;
4874   }
4875   return AnyNonCanonArgs;
4876 }
4877 
4878 QualType ASTContext::getCanonicalTemplateSpecializationType(
4879     TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4880   assert(!Template.getAsDependentTemplateName() &&
4881          "No dependent template names here!");
4882 
4883   // Look through qualified template names.
4884   if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4885     Template = TemplateName(QTN->getTemplateDecl());
4886 
4887   // Build the canonical template specialization type.
4888   TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4889   SmallVector<TemplateArgument, 4> CanonArgs;
4890   ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
4891 
4892   // Determine whether this canonical template specialization type already
4893   // exists.
4894   llvm::FoldingSetNodeID ID;
4895   TemplateSpecializationType::Profile(ID, CanonTemplate,
4896                                       CanonArgs, *this);
4897 
4898   void *InsertPos = nullptr;
4899   TemplateSpecializationType *Spec
4900     = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4901 
4902   if (!Spec) {
4903     // Allocate a new canonical template specialization type.
4904     void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4905                           sizeof(TemplateArgument) * CanonArgs.size()),
4906                          TypeAlignment);
4907     Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4908                                                 CanonArgs,
4909                                                 QualType(), QualType());
4910     Types.push_back(Spec);
4911     TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4912   }
4913 
4914   assert(Spec->isDependentType() &&
4915          "Non-dependent template-id type must have a canonical type");
4916   return QualType(Spec, 0);
4917 }
4918 
4919 QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4920                                        NestedNameSpecifier *NNS,
4921                                        QualType NamedType,
4922                                        TagDecl *OwnedTagDecl) const {
4923   llvm::FoldingSetNodeID ID;
4924   ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4925 
4926   void *InsertPos = nullptr;
4927   ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4928   if (T)
4929     return QualType(T, 0);
4930 
4931   QualType Canon = NamedType;
4932   if (!Canon.isCanonical()) {
4933     Canon = getCanonicalType(NamedType);
4934     ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4935     assert(!CheckT && "Elaborated canonical type broken");
4936     (void)CheckT;
4937   }
4938 
4939   void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4940                        TypeAlignment);
4941   T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4942 
4943   Types.push_back(T);
4944   ElaboratedTypes.InsertNode(T, InsertPos);
4945   return QualType(T, 0);
4946 }
4947 
4948 QualType
4949 ASTContext::getParenType(QualType InnerType) const {
4950   llvm::FoldingSetNodeID ID;
4951   ParenType::Profile(ID, InnerType);
4952 
4953   void *InsertPos = nullptr;
4954   ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4955   if (T)
4956     return QualType(T, 0);
4957 
4958   QualType Canon = InnerType;
4959   if (!Canon.isCanonical()) {
4960     Canon = getCanonicalType(InnerType);
4961     ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4962     assert(!CheckT && "Paren canonical type broken");
4963     (void)CheckT;
4964   }
4965 
4966   T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4967   Types.push_back(T);
4968   ParenTypes.InsertNode(T, InsertPos);
4969   return QualType(T, 0);
4970 }
4971 
4972 QualType
4973 ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4974                                   const IdentifierInfo *MacroII) const {
4975   QualType Canon = UnderlyingTy;
4976   if (!Canon.isCanonical())
4977     Canon = getCanonicalType(UnderlyingTy);
4978 
4979   auto *newType = new (*this, TypeAlignment)
4980       MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4981   Types.push_back(newType);
4982   return QualType(newType, 0);
4983 }
4984 
4985 QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4986                                           NestedNameSpecifier *NNS,
4987                                           const IdentifierInfo *Name,
4988                                           QualType Canon) const {
4989   if (Canon.isNull()) {
4990     NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4991     if (CanonNNS != NNS)
4992       Canon = getDependentNameType(Keyword, CanonNNS, Name);
4993   }
4994 
4995   llvm::FoldingSetNodeID ID;
4996   DependentNameType::Profile(ID, Keyword, NNS, Name);
4997 
4998   void *InsertPos = nullptr;
4999   DependentNameType *T
5000     = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5001   if (T)
5002     return QualType(T, 0);
5003 
5004   T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5005   Types.push_back(T);
5006   DependentNameTypes.InsertNode(T, InsertPos);
5007   return QualType(T, 0);
5008 }
5009 
5010 QualType
5011 ASTContext::getDependentTemplateSpecializationType(
5012                                  ElaboratedTypeKeyword Keyword,
5013                                  NestedNameSpecifier *NNS,
5014                                  const IdentifierInfo *Name,
5015                                  const TemplateArgumentListInfo &Args) const {
5016   // TODO: avoid this copy
5017   SmallVector<TemplateArgument, 16> ArgCopy;
5018   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5019     ArgCopy.push_back(Args[I].getArgument());
5020   return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5021 }
5022 
5023 QualType
5024 ASTContext::getDependentTemplateSpecializationType(
5025                                  ElaboratedTypeKeyword Keyword,
5026                                  NestedNameSpecifier *NNS,
5027                                  const IdentifierInfo *Name,
5028                                  ArrayRef<TemplateArgument> Args) const {
5029   assert((!NNS || NNS->isDependent()) &&
5030          "nested-name-specifier must be dependent");
5031 
5032   llvm::FoldingSetNodeID ID;
5033   DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5034                                                Name, Args);
5035 
5036   void *InsertPos = nullptr;
5037   DependentTemplateSpecializationType *T
5038     = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5039   if (T)
5040     return QualType(T, 0);
5041 
5042   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5043 
5044   ElaboratedTypeKeyword CanonKeyword = Keyword;
5045   if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5046 
5047   SmallVector<TemplateArgument, 16> CanonArgs;
5048   bool AnyNonCanonArgs =
5049       ::getCanonicalTemplateArguments(*this, Args, CanonArgs);
5050 
5051   QualType Canon;
5052   if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5053     Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5054                                                    Name,
5055                                                    CanonArgs);
5056 
5057     // Find the insert position again.
5058     DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5059   }
5060 
5061   void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5062                         sizeof(TemplateArgument) * Args.size()),
5063                        TypeAlignment);
5064   T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5065                                                     Name, Args, Canon);
5066   Types.push_back(T);
5067   DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5068   return QualType(T, 0);
5069 }
5070 
5071 TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5072   TemplateArgument Arg;
5073   if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5074     QualType ArgType = getTypeDeclType(TTP);
5075     if (TTP->isParameterPack())
5076       ArgType = getPackExpansionType(ArgType, None);
5077 
5078     Arg = TemplateArgument(ArgType);
5079   } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5080     QualType T =
5081         NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5082     // For class NTTPs, ensure we include the 'const' so the type matches that
5083     // of a real template argument.
5084     // FIXME: It would be more faithful to model this as something like an
5085     // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5086     if (T->isRecordType())
5087       T.addConst();
5088     Expr *E = new (*this) DeclRefExpr(
5089         *this, NTTP, /*enclosing*/ false, T,
5090         Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5091 
5092     if (NTTP->isParameterPack())
5093       E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
5094                                         None);
5095     Arg = TemplateArgument(E);
5096   } else {
5097     auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5098     if (TTP->isParameterPack())
5099       Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
5100     else
5101       Arg = TemplateArgument(TemplateName(TTP));
5102   }
5103 
5104   if (Param->isTemplateParameterPack())
5105     Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5106 
5107   return Arg;
5108 }
5109 
5110 void
5111 ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5112                                     SmallVectorImpl<TemplateArgument> &Args) {
5113   Args.reserve(Args.size() + Params->size());
5114 
5115   for (NamedDecl *Param : *Params)
5116     Args.push_back(getInjectedTemplateArg(Param));
5117 }
5118 
5119 QualType ASTContext::getPackExpansionType(QualType Pattern,
5120                                           Optional<unsigned> NumExpansions,
5121                                           bool ExpectPackInType) {
5122   assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
5123          "Pack expansions must expand one or more parameter packs");
5124 
5125   llvm::FoldingSetNodeID ID;
5126   PackExpansionType::Profile(ID, Pattern, NumExpansions);
5127 
5128   void *InsertPos = nullptr;
5129   PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5130   if (T)
5131     return QualType(T, 0);
5132 
5133   QualType Canon;
5134   if (!Pattern.isCanonical()) {
5135     Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5136                                  /*ExpectPackInType=*/false);
5137 
5138     // Find the insert position again, in case we inserted an element into
5139     // PackExpansionTypes and invalidated our insert position.
5140     PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5141   }
5142 
5143   T = new (*this, TypeAlignment)
5144       PackExpansionType(Pattern, Canon, NumExpansions);
5145   Types.push_back(T);
5146   PackExpansionTypes.InsertNode(T, InsertPos);
5147   return QualType(T, 0);
5148 }
5149 
5150 /// CmpProtocolNames - Comparison predicate for sorting protocols
5151 /// alphabetically.
5152 static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5153                             ObjCProtocolDecl *const *RHS) {
5154   return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5155 }
5156 
5157 static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5158   if (Protocols.empty()) return true;
5159 
5160   if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5161     return false;
5162 
5163   for (unsigned i = 1; i != Protocols.size(); ++i)
5164     if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5165         Protocols[i]->getCanonicalDecl() != Protocols[i])
5166       return false;
5167   return true;
5168 }
5169 
5170 static void
5171 SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5172   // Sort protocols, keyed by name.
5173   llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5174 
5175   // Canonicalize.
5176   for (ObjCProtocolDecl *&P : Protocols)
5177     P = P->getCanonicalDecl();
5178 
5179   // Remove duplicates.
5180   auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5181   Protocols.erase(ProtocolsEnd, Protocols.end());
5182 }
5183 
5184 QualType ASTContext::getObjCObjectType(QualType BaseType,
5185                                        ObjCProtocolDecl * const *Protocols,
5186                                        unsigned NumProtocols) const {
5187   return getObjCObjectType(BaseType, {},
5188                            llvm::makeArrayRef(Protocols, NumProtocols),
5189                            /*isKindOf=*/false);
5190 }
5191 
5192 QualType ASTContext::getObjCObjectType(
5193            QualType baseType,
5194            ArrayRef<QualType> typeArgs,
5195            ArrayRef<ObjCProtocolDecl *> protocols,
5196            bool isKindOf) const {
5197   // If the base type is an interface and there aren't any protocols or
5198   // type arguments to add, then the interface type will do just fine.
5199   if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5200       isa<ObjCInterfaceType>(baseType))
5201     return baseType;
5202 
5203   // Look in the folding set for an existing type.
5204   llvm::FoldingSetNodeID ID;
5205   ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5206   void *InsertPos = nullptr;
5207   if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5208     return QualType(QT, 0);
5209 
5210   // Determine the type arguments to be used for canonicalization,
5211   // which may be explicitly specified here or written on the base
5212   // type.
5213   ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5214   if (effectiveTypeArgs.empty()) {
5215     if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5216       effectiveTypeArgs = baseObject->getTypeArgs();
5217   }
5218 
5219   // Build the canonical type, which has the canonical base type and a
5220   // sorted-and-uniqued list of protocols and the type arguments
5221   // canonicalized.
5222   QualType canonical;
5223   bool typeArgsAreCanonical = llvm::all_of(
5224       effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5225   bool protocolsSorted = areSortedAndUniqued(protocols);
5226   if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5227     // Determine the canonical type arguments.
5228     ArrayRef<QualType> canonTypeArgs;
5229     SmallVector<QualType, 4> canonTypeArgsVec;
5230     if (!typeArgsAreCanonical) {
5231       canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5232       for (auto typeArg : effectiveTypeArgs)
5233         canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5234       canonTypeArgs = canonTypeArgsVec;
5235     } else {
5236       canonTypeArgs = effectiveTypeArgs;
5237     }
5238 
5239     ArrayRef<ObjCProtocolDecl *> canonProtocols;
5240     SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5241     if (!protocolsSorted) {
5242       canonProtocolsVec.append(protocols.begin(), protocols.end());
5243       SortAndUniqueProtocols(canonProtocolsVec);
5244       canonProtocols = canonProtocolsVec;
5245     } else {
5246       canonProtocols = protocols;
5247     }
5248 
5249     canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5250                                   canonProtocols, isKindOf);
5251 
5252     // Regenerate InsertPos.
5253     ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5254   }
5255 
5256   unsigned size = sizeof(ObjCObjectTypeImpl);
5257   size += typeArgs.size() * sizeof(QualType);
5258   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5259   void *mem = Allocate(size, TypeAlignment);
5260   auto *T =
5261     new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5262                                  isKindOf);
5263 
5264   Types.push_back(T);
5265   ObjCObjectTypes.InsertNode(T, InsertPos);
5266   return QualType(T, 0);
5267 }
5268 
5269 /// Apply Objective-C protocol qualifiers to the given type.
5270 /// If this is for the canonical type of a type parameter, we can apply
5271 /// protocol qualifiers on the ObjCObjectPointerType.
5272 QualType
5273 ASTContext::applyObjCProtocolQualifiers(QualType type,
5274                   ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5275                   bool allowOnPointerType) const {
5276   hasError = false;
5277 
5278   if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5279     return getObjCTypeParamType(objT->getDecl(), protocols);
5280   }
5281 
5282   // Apply protocol qualifiers to ObjCObjectPointerType.
5283   if (allowOnPointerType) {
5284     if (const auto *objPtr =
5285             dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5286       const ObjCObjectType *objT = objPtr->getObjectType();
5287       // Merge protocol lists and construct ObjCObjectType.
5288       SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5289       protocolsVec.append(objT->qual_begin(),
5290                           objT->qual_end());
5291       protocolsVec.append(protocols.begin(), protocols.end());
5292       ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5293       type = getObjCObjectType(
5294              objT->getBaseType(),
5295              objT->getTypeArgsAsWritten(),
5296              protocols,
5297              objT->isKindOfTypeAsWritten());
5298       return getObjCObjectPointerType(type);
5299     }
5300   }
5301 
5302   // Apply protocol qualifiers to ObjCObjectType.
5303   if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5304     // FIXME: Check for protocols to which the class type is already
5305     // known to conform.
5306 
5307     return getObjCObjectType(objT->getBaseType(),
5308                              objT->getTypeArgsAsWritten(),
5309                              protocols,
5310                              objT->isKindOfTypeAsWritten());
5311   }
5312 
5313   // If the canonical type is ObjCObjectType, ...
5314   if (type->isObjCObjectType()) {
5315     // Silently overwrite any existing protocol qualifiers.
5316     // TODO: determine whether that's the right thing to do.
5317 
5318     // FIXME: Check for protocols to which the class type is already
5319     // known to conform.
5320     return getObjCObjectType(type, {}, protocols, false);
5321   }
5322 
5323   // id<protocol-list>
5324   if (type->isObjCIdType()) {
5325     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5326     type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5327                                  objPtr->isKindOfType());
5328     return getObjCObjectPointerType(type);
5329   }
5330 
5331   // Class<protocol-list>
5332   if (type->isObjCClassType()) {
5333     const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5334     type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5335                                  objPtr->isKindOfType());
5336     return getObjCObjectPointerType(type);
5337   }
5338 
5339   hasError = true;
5340   return type;
5341 }
5342 
5343 QualType
5344 ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5345                                  ArrayRef<ObjCProtocolDecl *> protocols) const {
5346   // Look in the folding set for an existing type.
5347   llvm::FoldingSetNodeID ID;
5348   ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5349   void *InsertPos = nullptr;
5350   if (ObjCTypeParamType *TypeParam =
5351       ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5352     return QualType(TypeParam, 0);
5353 
5354   // We canonicalize to the underlying type.
5355   QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5356   if (!protocols.empty()) {
5357     // Apply the protocol qualifers.
5358     bool hasError;
5359     Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5360         Canonical, protocols, hasError, true /*allowOnPointerType*/));
5361     assert(!hasError && "Error when apply protocol qualifier to bound type");
5362   }
5363 
5364   unsigned size = sizeof(ObjCTypeParamType);
5365   size += protocols.size() * sizeof(ObjCProtocolDecl *);
5366   void *mem = Allocate(size, TypeAlignment);
5367   auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5368 
5369   Types.push_back(newType);
5370   ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5371   return QualType(newType, 0);
5372 }
5373 
5374 void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5375                                               ObjCTypeParamDecl *New) const {
5376   New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5377   // Update TypeForDecl after updating TypeSourceInfo.
5378   auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5379   SmallVector<ObjCProtocolDecl *, 8> protocols;
5380   protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5381   QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5382   New->setTypeForDecl(UpdatedTy.getTypePtr());
5383 }
5384 
5385 /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5386 /// protocol list adopt all protocols in QT's qualified-id protocol
5387 /// list.
5388 bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5389                                                 ObjCInterfaceDecl *IC) {
5390   if (!QT->isObjCQualifiedIdType())
5391     return false;
5392 
5393   if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5394     // If both the right and left sides have qualifiers.
5395     for (auto *Proto : OPT->quals()) {
5396       if (!IC->ClassImplementsProtocol(Proto, false))
5397         return false;
5398     }
5399     return true;
5400   }
5401   return false;
5402 }
5403 
5404 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5405 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
5406 /// of protocols.
5407 bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5408                                                 ObjCInterfaceDecl *IDecl) {
5409   if (!QT->isObjCQualifiedIdType())
5410     return false;
5411   const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5412   if (!OPT)
5413     return false;
5414   if (!IDecl->hasDefinition())
5415     return false;
5416   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5417   CollectInheritedProtocols(IDecl, InheritedProtocols);
5418   if (InheritedProtocols.empty())
5419     return false;
5420   // Check that if every protocol in list of id<plist> conforms to a protocol
5421   // of IDecl's, then bridge casting is ok.
5422   bool Conforms = false;
5423   for (auto *Proto : OPT->quals()) {
5424     Conforms = false;
5425     for (auto *PI : InheritedProtocols) {
5426       if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5427         Conforms = true;
5428         break;
5429       }
5430     }
5431     if (!Conforms)
5432       break;
5433   }
5434   if (Conforms)
5435     return true;
5436 
5437   for (auto *PI : InheritedProtocols) {
5438     // If both the right and left sides have qualifiers.
5439     bool Adopts = false;
5440     for (auto *Proto : OPT->quals()) {
5441       // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5442       if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5443         break;
5444     }
5445     if (!Adopts)
5446       return false;
5447   }
5448   return true;
5449 }
5450 
5451 /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5452 /// the given object type.
5453 QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5454   llvm::FoldingSetNodeID ID;
5455   ObjCObjectPointerType::Profile(ID, ObjectT);
5456 
5457   void *InsertPos = nullptr;
5458   if (ObjCObjectPointerType *QT =
5459               ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5460     return QualType(QT, 0);
5461 
5462   // Find the canonical object type.
5463   QualType Canonical;
5464   if (!ObjectT.isCanonical()) {
5465     Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5466 
5467     // Regenerate InsertPos.
5468     ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5469   }
5470 
5471   // No match.
5472   void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5473   auto *QType =
5474     new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5475 
5476   Types.push_back(QType);
5477   ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5478   return QualType(QType, 0);
5479 }
5480 
5481 /// getObjCInterfaceType - Return the unique reference to the type for the
5482 /// specified ObjC interface decl. The list of protocols is optional.
5483 QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5484                                           ObjCInterfaceDecl *PrevDecl) const {
5485   if (Decl->TypeForDecl)
5486     return QualType(Decl->TypeForDecl, 0);
5487 
5488   if (PrevDecl) {
5489     assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5490     Decl->TypeForDecl = PrevDecl->TypeForDecl;
5491     return QualType(PrevDecl->TypeForDecl, 0);
5492   }
5493 
5494   // Prefer the definition, if there is one.
5495   if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5496     Decl = Def;
5497 
5498   void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5499   auto *T = new (Mem) ObjCInterfaceType(Decl);
5500   Decl->TypeForDecl = T;
5501   Types.push_back(T);
5502   return QualType(T, 0);
5503 }
5504 
5505 /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5506 /// TypeOfExprType AST's (since expression's are never shared). For example,
5507 /// multiple declarations that refer to "typeof(x)" all contain different
5508 /// DeclRefExpr's. This doesn't effect the type checker, since it operates
5509 /// on canonical type's (which are always unique).
5510 QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5511   TypeOfExprType *toe;
5512   if (tofExpr->isTypeDependent()) {
5513     llvm::FoldingSetNodeID ID;
5514     DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5515 
5516     void *InsertPos = nullptr;
5517     DependentTypeOfExprType *Canon
5518       = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5519     if (Canon) {
5520       // We already have a "canonical" version of an identical, dependent
5521       // typeof(expr) type. Use that as our canonical type.
5522       toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5523                                           QualType((TypeOfExprType*)Canon, 0));
5524     } else {
5525       // Build a new, canonical typeof(expr) type.
5526       Canon
5527         = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5528       DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5529       toe = Canon;
5530     }
5531   } else {
5532     QualType Canonical = getCanonicalType(tofExpr->getType());
5533     toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5534   }
5535   Types.push_back(toe);
5536   return QualType(toe, 0);
5537 }
5538 
5539 /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5540 /// TypeOfType nodes. The only motivation to unique these nodes would be
5541 /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5542 /// an issue. This doesn't affect the type checker, since it operates
5543 /// on canonical types (which are always unique).
5544 QualType ASTContext::getTypeOfType(QualType tofType) const {
5545   QualType Canonical = getCanonicalType(tofType);
5546   auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5547   Types.push_back(tot);
5548   return QualType(tot, 0);
5549 }
5550 
5551 /// getReferenceQualifiedType - Given an expr, will return the type for
5552 /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5553 /// and class member access into account.
5554 QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5555   // C++11 [dcl.type.simple]p4:
5556   //   [...]
5557   QualType T = E->getType();
5558   switch (E->getValueKind()) {
5559   //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5560   //       type of e;
5561   case VK_XValue:
5562     return getRValueReferenceType(T);
5563   //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5564   //       type of e;
5565   case VK_LValue:
5566     return getLValueReferenceType(T);
5567   //  - otherwise, decltype(e) is the type of e.
5568   case VK_PRValue:
5569     return T;
5570   }
5571   llvm_unreachable("Unknown value kind");
5572 }
5573 
5574 /// Unlike many "get<Type>" functions, we don't unique DecltypeType
5575 /// nodes. This would never be helpful, since each such type has its own
5576 /// expression, and would not give a significant memory saving, since there
5577 /// is an Expr tree under each such type.
5578 QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5579   DecltypeType *dt;
5580 
5581   // C++11 [temp.type]p2:
5582   //   If an expression e involves a template parameter, decltype(e) denotes a
5583   //   unique dependent type. Two such decltype-specifiers refer to the same
5584   //   type only if their expressions are equivalent (14.5.6.1).
5585   if (e->isInstantiationDependent()) {
5586     llvm::FoldingSetNodeID ID;
5587     DependentDecltypeType::Profile(ID, *this, e);
5588 
5589     void *InsertPos = nullptr;
5590     DependentDecltypeType *Canon
5591       = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5592     if (!Canon) {
5593       // Build a new, canonical decltype(expr) type.
5594       Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5595       DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5596     }
5597     dt = new (*this, TypeAlignment)
5598         DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5599   } else {
5600     dt = new (*this, TypeAlignment)
5601         DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5602   }
5603   Types.push_back(dt);
5604   return QualType(dt, 0);
5605 }
5606 
5607 /// getUnaryTransformationType - We don't unique these, since the memory
5608 /// savings are minimal and these are rare.
5609 QualType ASTContext::getUnaryTransformType(QualType BaseType,
5610                                            QualType UnderlyingType,
5611                                            UnaryTransformType::UTTKind Kind)
5612     const {
5613   UnaryTransformType *ut = nullptr;
5614 
5615   if (BaseType->isDependentType()) {
5616     // Look in the folding set for an existing type.
5617     llvm::FoldingSetNodeID ID;
5618     DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5619 
5620     void *InsertPos = nullptr;
5621     DependentUnaryTransformType *Canon
5622       = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5623 
5624     if (!Canon) {
5625       // Build a new, canonical __underlying_type(type) type.
5626       Canon = new (*this, TypeAlignment)
5627              DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5628                                          Kind);
5629       DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5630     }
5631     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5632                                                         QualType(), Kind,
5633                                                         QualType(Canon, 0));
5634   } else {
5635     QualType CanonType = getCanonicalType(UnderlyingType);
5636     ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5637                                                         UnderlyingType, Kind,
5638                                                         CanonType);
5639   }
5640   Types.push_back(ut);
5641   return QualType(ut, 0);
5642 }
5643 
5644 QualType ASTContext::getAutoTypeInternal(
5645     QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5646     bool IsPack, ConceptDecl *TypeConstraintConcept,
5647     ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5648   if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5649       !TypeConstraintConcept && !IsDependent)
5650     return getAutoDeductType();
5651 
5652   // Look in the folding set for an existing type.
5653   void *InsertPos = nullptr;
5654   llvm::FoldingSetNodeID ID;
5655   AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5656                     TypeConstraintConcept, TypeConstraintArgs);
5657   if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5658     return QualType(AT, 0);
5659 
5660   QualType Canon;
5661   if (!IsCanon) {
5662     if (DeducedType.isNull()) {
5663       SmallVector<TemplateArgument, 4> CanonArgs;
5664       bool AnyNonCanonArgs =
5665           ::getCanonicalTemplateArguments(*this, TypeConstraintArgs, CanonArgs);
5666       if (AnyNonCanonArgs) {
5667         Canon = getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5668                                     TypeConstraintConcept, CanonArgs, true);
5669         // Find the insert position again.
5670         AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5671       }
5672     } else {
5673       Canon = DeducedType.getCanonicalType();
5674     }
5675   }
5676 
5677   void *Mem = Allocate(sizeof(AutoType) +
5678                            sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5679                        TypeAlignment);
5680   auto *AT = new (Mem) AutoType(
5681       DeducedType, Keyword,
5682       (IsDependent ? TypeDependence::DependentInstantiation
5683                    : TypeDependence::None) |
5684           (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5685       Canon, TypeConstraintConcept, TypeConstraintArgs);
5686   Types.push_back(AT);
5687   AutoTypes.InsertNode(AT, InsertPos);
5688   return QualType(AT, 0);
5689 }
5690 
5691 /// getAutoType - Return the uniqued reference to the 'auto' type which has been
5692 /// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5693 /// canonical deduced-but-dependent 'auto' type.
5694 QualType
5695 ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5696                         bool IsDependent, bool IsPack,
5697                         ConceptDecl *TypeConstraintConcept,
5698                         ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5699   assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5700   assert((!IsDependent || DeducedType.isNull()) &&
5701          "A dependent auto should be undeduced");
5702   return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5703                              TypeConstraintConcept, TypeConstraintArgs);
5704 }
5705 
5706 /// Return the uniqued reference to the deduced template specialization type
5707 /// which has been deduced to the given type, or to the canonical undeduced
5708 /// such type, or the canonical deduced-but-dependent such type.
5709 QualType ASTContext::getDeducedTemplateSpecializationType(
5710     TemplateName Template, QualType DeducedType, bool IsDependent) const {
5711   // Look in the folding set for an existing type.
5712   void *InsertPos = nullptr;
5713   llvm::FoldingSetNodeID ID;
5714   DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5715                                              IsDependent);
5716   if (DeducedTemplateSpecializationType *DTST =
5717           DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5718     return QualType(DTST, 0);
5719 
5720   auto *DTST = new (*this, TypeAlignment)
5721       DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5722   llvm::FoldingSetNodeID TempID;
5723   DTST->Profile(TempID);
5724   assert(ID == TempID && "ID does not match");
5725   Types.push_back(DTST);
5726   DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5727   return QualType(DTST, 0);
5728 }
5729 
5730 /// getAtomicType - Return the uniqued reference to the atomic type for
5731 /// the given value type.
5732 QualType ASTContext::getAtomicType(QualType T) const {
5733   // Unique pointers, to guarantee there is only one pointer of a particular
5734   // structure.
5735   llvm::FoldingSetNodeID ID;
5736   AtomicType::Profile(ID, T);
5737 
5738   void *InsertPos = nullptr;
5739   if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5740     return QualType(AT, 0);
5741 
5742   // If the atomic value type isn't canonical, this won't be a canonical type
5743   // either, so fill in the canonical type field.
5744   QualType Canonical;
5745   if (!T.isCanonical()) {
5746     Canonical = getAtomicType(getCanonicalType(T));
5747 
5748     // Get the new insert position for the node we care about.
5749     AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5750     assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5751   }
5752   auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5753   Types.push_back(New);
5754   AtomicTypes.InsertNode(New, InsertPos);
5755   return QualType(New, 0);
5756 }
5757 
5758 /// getAutoDeductType - Get type pattern for deducing against 'auto'.
5759 QualType ASTContext::getAutoDeductType() const {
5760   if (AutoDeductTy.isNull())
5761     AutoDeductTy = QualType(new (*this, TypeAlignment)
5762                                 AutoType(QualType(), AutoTypeKeyword::Auto,
5763                                          TypeDependence::None, QualType(),
5764                                          /*concept*/ nullptr, /*args*/ {}),
5765                             0);
5766   return AutoDeductTy;
5767 }
5768 
5769 /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5770 QualType ASTContext::getAutoRRefDeductType() const {
5771   if (AutoRRefDeductTy.isNull())
5772     AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5773   assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5774   return AutoRRefDeductTy;
5775 }
5776 
5777 /// getTagDeclType - Return the unique reference to the type for the
5778 /// specified TagDecl (struct/union/class/enum) decl.
5779 QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5780   assert(Decl);
5781   // FIXME: What is the design on getTagDeclType when it requires casting
5782   // away const?  mutable?
5783   return getTypeDeclType(const_cast<TagDecl*>(Decl));
5784 }
5785 
5786 /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5787 /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5788 /// needs to agree with the definition in <stddef.h>.
5789 CanQualType ASTContext::getSizeType() const {
5790   return getFromTargetType(Target->getSizeType());
5791 }
5792 
5793 /// Return the unique signed counterpart of the integer type
5794 /// corresponding to size_t.
5795 CanQualType ASTContext::getSignedSizeType() const {
5796   return getFromTargetType(Target->getSignedSizeType());
5797 }
5798 
5799 /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5800 CanQualType ASTContext::getIntMaxType() const {
5801   return getFromTargetType(Target->getIntMaxType());
5802 }
5803 
5804 /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5805 CanQualType ASTContext::getUIntMaxType() const {
5806   return getFromTargetType(Target->getUIntMaxType());
5807 }
5808 
5809 /// getSignedWCharType - Return the type of "signed wchar_t".
5810 /// Used when in C++, as a GCC extension.
5811 QualType ASTContext::getSignedWCharType() const {
5812   // FIXME: derive from "Target" ?
5813   return WCharTy;
5814 }
5815 
5816 /// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5817 /// Used when in C++, as a GCC extension.
5818 QualType ASTContext::getUnsignedWCharType() const {
5819   // FIXME: derive from "Target" ?
5820   return UnsignedIntTy;
5821 }
5822 
5823 QualType ASTContext::getIntPtrType() const {
5824   return getFromTargetType(Target->getIntPtrType());
5825 }
5826 
5827 QualType ASTContext::getUIntPtrType() const {
5828   return getCorrespondingUnsignedType(getIntPtrType());
5829 }
5830 
5831 /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5832 /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5833 QualType ASTContext::getPointerDiffType() const {
5834   return getFromTargetType(Target->getPtrDiffType(0));
5835 }
5836 
5837 /// Return the unique unsigned counterpart of "ptrdiff_t"
5838 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
5839 /// in the definition of %tu format specifier.
5840 QualType ASTContext::getUnsignedPointerDiffType() const {
5841   return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5842 }
5843 
5844 /// Return the unique type for "pid_t" defined in
5845 /// <sys/types.h>. We need this to compute the correct type for vfork().
5846 QualType ASTContext::getProcessIDType() const {
5847   return getFromTargetType(Target->getProcessIDType());
5848 }
5849 
5850 //===----------------------------------------------------------------------===//
5851 //                              Type Operators
5852 //===----------------------------------------------------------------------===//
5853 
5854 CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5855   // Push qualifiers into arrays, and then discard any remaining
5856   // qualifiers.
5857   T = getCanonicalType(T);
5858   T = getVariableArrayDecayedType(T);
5859   const Type *Ty = T.getTypePtr();
5860   QualType Result;
5861   if (isa<ArrayType>(Ty)) {
5862     Result = getArrayDecayedType(QualType(Ty,0));
5863   } else if (isa<FunctionType>(Ty)) {
5864     Result = getPointerType(QualType(Ty, 0));
5865   } else {
5866     Result = QualType(Ty, 0);
5867   }
5868 
5869   return CanQualType::CreateUnsafe(Result);
5870 }
5871 
5872 QualType ASTContext::getUnqualifiedArrayType(QualType type,
5873                                              Qualifiers &quals) {
5874   SplitQualType splitType = type.getSplitUnqualifiedType();
5875 
5876   // FIXME: getSplitUnqualifiedType() actually walks all the way to
5877   // the unqualified desugared type and then drops it on the floor.
5878   // We then have to strip that sugar back off with
5879   // getUnqualifiedDesugaredType(), which is silly.
5880   const auto *AT =
5881       dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5882 
5883   // If we don't have an array, just use the results in splitType.
5884   if (!AT) {
5885     quals = splitType.Quals;
5886     return QualType(splitType.Ty, 0);
5887   }
5888 
5889   // Otherwise, recurse on the array's element type.
5890   QualType elementType = AT->getElementType();
5891   QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5892 
5893   // If that didn't change the element type, AT has no qualifiers, so we
5894   // can just use the results in splitType.
5895   if (elementType == unqualElementType) {
5896     assert(quals.empty()); // from the recursive call
5897     quals = splitType.Quals;
5898     return QualType(splitType.Ty, 0);
5899   }
5900 
5901   // Otherwise, add in the qualifiers from the outermost type, then
5902   // build the type back up.
5903   quals.addConsistentQualifiers(splitType.Quals);
5904 
5905   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5906     return getConstantArrayType(unqualElementType, CAT->getSize(),
5907                                 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5908   }
5909 
5910   if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5911     return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5912   }
5913 
5914   if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5915     return getVariableArrayType(unqualElementType,
5916                                 VAT->getSizeExpr(),
5917                                 VAT->getSizeModifier(),
5918                                 VAT->getIndexTypeCVRQualifiers(),
5919                                 VAT->getBracketsRange());
5920   }
5921 
5922   const auto *DSAT = cast<DependentSizedArrayType>(AT);
5923   return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5924                                     DSAT->getSizeModifier(), 0,
5925                                     SourceRange());
5926 }
5927 
5928 /// Attempt to unwrap two types that may both be array types with the same bound
5929 /// (or both be array types of unknown bound) for the purpose of comparing the
5930 /// cv-decomposition of two types per C++ [conv.qual].
5931 ///
5932 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5933 ///        C++20 [conv.qual], if permitted by the current language mode.
5934 void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
5935                                          bool AllowPiMismatch) {
5936   while (true) {
5937     auto *AT1 = getAsArrayType(T1);
5938     if (!AT1)
5939       return;
5940 
5941     auto *AT2 = getAsArrayType(T2);
5942     if (!AT2)
5943       return;
5944 
5945     // If we don't have two array types with the same constant bound nor two
5946     // incomplete array types, we've unwrapped everything we can.
5947     // C++20 also permits one type to be a constant array type and the other
5948     // to be an incomplete array type.
5949     // FIXME: Consider also unwrapping array of unknown bound and VLA.
5950     if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5951       auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5952       if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
5953             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
5954              isa<IncompleteArrayType>(AT2))))
5955         return;
5956     } else if (isa<IncompleteArrayType>(AT1)) {
5957       if (!(isa<IncompleteArrayType>(AT2) ||
5958             (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
5959              isa<ConstantArrayType>(AT2))))
5960         return;
5961     } else {
5962       return;
5963     }
5964 
5965     T1 = AT1->getElementType();
5966     T2 = AT2->getElementType();
5967   }
5968 }
5969 
5970 /// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5971 ///
5972 /// If T1 and T2 are both pointer types of the same kind, or both array types
5973 /// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5974 /// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5975 ///
5976 /// This function will typically be called in a loop that successively
5977 /// "unwraps" pointer and pointer-to-member types to compare them at each
5978 /// level.
5979 ///
5980 /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
5981 ///        C++20 [conv.qual], if permitted by the current language mode.
5982 ///
5983 /// \return \c true if a pointer type was unwrapped, \c false if we reached a
5984 /// pair of types that can't be unwrapped further.
5985 bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
5986                                     bool AllowPiMismatch) {
5987   UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
5988 
5989   const auto *T1PtrType = T1->getAs<PointerType>();
5990   const auto *T2PtrType = T2->getAs<PointerType>();
5991   if (T1PtrType && T2PtrType) {
5992     T1 = T1PtrType->getPointeeType();
5993     T2 = T2PtrType->getPointeeType();
5994     return true;
5995   }
5996 
5997   const auto *T1MPType = T1->getAs<MemberPointerType>();
5998   const auto *T2MPType = T2->getAs<MemberPointerType>();
5999   if (T1MPType && T2MPType &&
6000       hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6001                              QualType(T2MPType->getClass(), 0))) {
6002     T1 = T1MPType->getPointeeType();
6003     T2 = T2MPType->getPointeeType();
6004     return true;
6005   }
6006 
6007   if (getLangOpts().ObjC) {
6008     const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6009     const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6010     if (T1OPType && T2OPType) {
6011       T1 = T1OPType->getPointeeType();
6012       T2 = T2OPType->getPointeeType();
6013       return true;
6014     }
6015   }
6016 
6017   // FIXME: Block pointers, too?
6018 
6019   return false;
6020 }
6021 
6022 bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6023   while (true) {
6024     Qualifiers Quals;
6025     T1 = getUnqualifiedArrayType(T1, Quals);
6026     T2 = getUnqualifiedArrayType(T2, Quals);
6027     if (hasSameType(T1, T2))
6028       return true;
6029     if (!UnwrapSimilarTypes(T1, T2))
6030       return false;
6031   }
6032 }
6033 
6034 bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6035   while (true) {
6036     Qualifiers Quals1, Quals2;
6037     T1 = getUnqualifiedArrayType(T1, Quals1);
6038     T2 = getUnqualifiedArrayType(T2, Quals2);
6039 
6040     Quals1.removeCVRQualifiers();
6041     Quals2.removeCVRQualifiers();
6042     if (Quals1 != Quals2)
6043       return false;
6044 
6045     if (hasSameType(T1, T2))
6046       return true;
6047 
6048     if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6049       return false;
6050   }
6051 }
6052 
6053 DeclarationNameInfo
6054 ASTContext::getNameForTemplate(TemplateName Name,
6055                                SourceLocation NameLoc) const {
6056   switch (Name.getKind()) {
6057   case TemplateName::QualifiedTemplate:
6058   case TemplateName::Template:
6059     // DNInfo work in progress: CHECKME: what about DNLoc?
6060     return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6061                                NameLoc);
6062 
6063   case TemplateName::OverloadedTemplate: {
6064     OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6065     // DNInfo work in progress: CHECKME: what about DNLoc?
6066     return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6067   }
6068 
6069   case TemplateName::AssumedTemplate: {
6070     AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6071     return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6072   }
6073 
6074   case TemplateName::DependentTemplate: {
6075     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6076     DeclarationName DName;
6077     if (DTN->isIdentifier()) {
6078       DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6079       return DeclarationNameInfo(DName, NameLoc);
6080     } else {
6081       DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6082       // DNInfo work in progress: FIXME: source locations?
6083       DeclarationNameLoc DNLoc =
6084           DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6085       return DeclarationNameInfo(DName, NameLoc, DNLoc);
6086     }
6087   }
6088 
6089   case TemplateName::SubstTemplateTemplateParm: {
6090     SubstTemplateTemplateParmStorage *subst
6091       = Name.getAsSubstTemplateTemplateParm();
6092     return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6093                                NameLoc);
6094   }
6095 
6096   case TemplateName::SubstTemplateTemplateParmPack: {
6097     SubstTemplateTemplateParmPackStorage *subst
6098       = Name.getAsSubstTemplateTemplateParmPack();
6099     return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6100                                NameLoc);
6101   }
6102   }
6103 
6104   llvm_unreachable("bad template name kind!");
6105 }
6106 
6107 TemplateName
6108 ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6109   switch (Name.getKind()) {
6110   case TemplateName::QualifiedTemplate:
6111   case TemplateName::Template: {
6112     TemplateDecl *Template = Name.getAsTemplateDecl();
6113     if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
6114       Template = getCanonicalTemplateTemplateParmDecl(TTP);
6115 
6116     // The canonical template name is the canonical template declaration.
6117     return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6118   }
6119 
6120   case TemplateName::OverloadedTemplate:
6121   case TemplateName::AssumedTemplate:
6122     llvm_unreachable("cannot canonicalize unresolved template");
6123 
6124   case TemplateName::DependentTemplate: {
6125     DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6126     assert(DTN && "Non-dependent template names must refer to template decls.");
6127     return DTN->CanonicalTemplateName;
6128   }
6129 
6130   case TemplateName::SubstTemplateTemplateParm: {
6131     SubstTemplateTemplateParmStorage *subst
6132       = Name.getAsSubstTemplateTemplateParm();
6133     return getCanonicalTemplateName(subst->getReplacement());
6134   }
6135 
6136   case TemplateName::SubstTemplateTemplateParmPack: {
6137     SubstTemplateTemplateParmPackStorage *subst
6138                                   = Name.getAsSubstTemplateTemplateParmPack();
6139     TemplateTemplateParmDecl *canonParameter
6140       = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
6141     TemplateArgument canonArgPack
6142       = getCanonicalTemplateArgument(subst->getArgumentPack());
6143     return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
6144   }
6145   }
6146 
6147   llvm_unreachable("bad template name!");
6148 }
6149 
6150 bool ASTContext::hasSameTemplateName(const TemplateName &X,
6151                                      const TemplateName &Y) const {
6152   return getCanonicalTemplateName(X).getAsVoidPointer() ==
6153          getCanonicalTemplateName(Y).getAsVoidPointer();
6154 }
6155 
6156 bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6157                                          const NamedDecl *Y) {
6158   if (X->getKind() != Y->getKind())
6159     return false;
6160 
6161   if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6162     auto *TY = cast<TemplateTypeParmDecl>(Y);
6163     if (TX->isParameterPack() != TY->isParameterPack())
6164       return false;
6165     if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6166       return false;
6167     const TypeConstraint *TXTC = TX->getTypeConstraint();
6168     const TypeConstraint *TYTC = TY->getTypeConstraint();
6169     if (!TXTC != !TYTC)
6170       return false;
6171     if (TXTC && TYTC) {
6172       auto *NCX = TXTC->getNamedConcept();
6173       auto *NCY = TYTC->getNamedConcept();
6174       if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6175         return false;
6176       if (TXTC->hasExplicitTemplateArgs() != TYTC->hasExplicitTemplateArgs())
6177         return false;
6178       if (TXTC->hasExplicitTemplateArgs()) {
6179         auto *TXTCArgs = TXTC->getTemplateArgsAsWritten();
6180         auto *TYTCArgs = TYTC->getTemplateArgsAsWritten();
6181         if (TXTCArgs->NumTemplateArgs != TYTCArgs->NumTemplateArgs)
6182           return false;
6183         llvm::FoldingSetNodeID XID, YID;
6184         for (auto &ArgLoc : TXTCArgs->arguments())
6185           ArgLoc.getArgument().Profile(XID, X->getASTContext());
6186         for (auto &ArgLoc : TYTCArgs->arguments())
6187           ArgLoc.getArgument().Profile(YID, Y->getASTContext());
6188         if (XID != YID)
6189           return false;
6190       }
6191     }
6192     return true;
6193   }
6194 
6195   if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6196     auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6197     return TX->isParameterPack() == TY->isParameterPack() &&
6198            TX->getASTContext().hasSameType(TX->getType(), TY->getType());
6199   }
6200 
6201   auto *TX = cast<TemplateTemplateParmDecl>(X);
6202   auto *TY = cast<TemplateTemplateParmDecl>(Y);
6203   return TX->isParameterPack() == TY->isParameterPack() &&
6204          isSameTemplateParameterList(TX->getTemplateParameters(),
6205                                      TY->getTemplateParameters());
6206 }
6207 
6208 bool ASTContext::isSameTemplateParameterList(const TemplateParameterList *X,
6209                                              const TemplateParameterList *Y) {
6210   if (X->size() != Y->size())
6211     return false;
6212 
6213   for (unsigned I = 0, N = X->size(); I != N; ++I)
6214     if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6215       return false;
6216 
6217   const Expr *XRC = X->getRequiresClause();
6218   const Expr *YRC = Y->getRequiresClause();
6219   if (!XRC != !YRC)
6220     return false;
6221   if (XRC) {
6222     llvm::FoldingSetNodeID XRCID, YRCID;
6223     XRC->Profile(XRCID, *this, /*Canonical=*/true);
6224     YRC->Profile(YRCID, *this, /*Canonical=*/true);
6225     if (XRCID != YRCID)
6226       return false;
6227   }
6228 
6229   return true;
6230 }
6231 
6232 static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6233   if (auto *NS = X->getAsNamespace())
6234     return NS;
6235   if (auto *NAS = X->getAsNamespaceAlias())
6236     return NAS->getNamespace();
6237   return nullptr;
6238 }
6239 
6240 static bool isSameQualifier(const NestedNameSpecifier *X,
6241                             const NestedNameSpecifier *Y) {
6242   if (auto *NSX = getNamespace(X)) {
6243     auto *NSY = getNamespace(Y);
6244     if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6245       return false;
6246   } else if (X->getKind() != Y->getKind())
6247     return false;
6248 
6249   // FIXME: For namespaces and types, we're permitted to check that the entity
6250   // is named via the same tokens. We should probably do so.
6251   switch (X->getKind()) {
6252   case NestedNameSpecifier::Identifier:
6253     if (X->getAsIdentifier() != Y->getAsIdentifier())
6254       return false;
6255     break;
6256   case NestedNameSpecifier::Namespace:
6257   case NestedNameSpecifier::NamespaceAlias:
6258     // We've already checked that we named the same namespace.
6259     break;
6260   case NestedNameSpecifier::TypeSpec:
6261   case NestedNameSpecifier::TypeSpecWithTemplate:
6262     if (X->getAsType()->getCanonicalTypeInternal() !=
6263         Y->getAsType()->getCanonicalTypeInternal())
6264       return false;
6265     break;
6266   case NestedNameSpecifier::Global:
6267   case NestedNameSpecifier::Super:
6268     return true;
6269   }
6270 
6271   // Recurse into earlier portion of NNS, if any.
6272   auto *PX = X->getPrefix();
6273   auto *PY = Y->getPrefix();
6274   if (PX && PY)
6275     return isSameQualifier(PX, PY);
6276   return !PX && !PY;
6277 }
6278 
6279 /// Determine whether the attributes we can overload on are identical for A and
6280 /// B. Will ignore any overloadable attrs represented in the type of A and B.
6281 static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6282                                      const FunctionDecl *B) {
6283   // Note that pass_object_size attributes are represented in the function's
6284   // ExtParameterInfo, so we don't need to check them here.
6285 
6286   llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6287   auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6288   auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6289 
6290   for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6291     Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6292     Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6293 
6294     // Return false if the number of enable_if attributes is different.
6295     if (!Cand1A || !Cand2A)
6296       return false;
6297 
6298     Cand1ID.clear();
6299     Cand2ID.clear();
6300 
6301     (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6302     (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6303 
6304     // Return false if any of the enable_if expressions of A and B are
6305     // different.
6306     if (Cand1ID != Cand2ID)
6307       return false;
6308   }
6309   return true;
6310 }
6311 
6312 bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) {
6313   if (X == Y)
6314     return true;
6315 
6316   if (X->getDeclName() != Y->getDeclName())
6317     return false;
6318 
6319   // Must be in the same context.
6320   //
6321   // Note that we can't use DeclContext::Equals here, because the DeclContexts
6322   // could be two different declarations of the same function. (We will fix the
6323   // semantic DC to refer to the primary definition after merging.)
6324   if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6325                           cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6326     return false;
6327 
6328   // Two typedefs refer to the same entity if they have the same underlying
6329   // type.
6330   if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6331     if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6332       return hasSameType(TypedefX->getUnderlyingType(),
6333                          TypedefY->getUnderlyingType());
6334 
6335   // Must have the same kind.
6336   if (X->getKind() != Y->getKind())
6337     return false;
6338 
6339   // Objective-C classes and protocols with the same name always match.
6340   if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6341     return true;
6342 
6343   if (isa<ClassTemplateSpecializationDecl>(X)) {
6344     // No need to handle these here: we merge them when adding them to the
6345     // template.
6346     return false;
6347   }
6348 
6349   // Compatible tags match.
6350   if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6351     const auto *TagY = cast<TagDecl>(Y);
6352     return (TagX->getTagKind() == TagY->getTagKind()) ||
6353            ((TagX->getTagKind() == TTK_Struct ||
6354              TagX->getTagKind() == TTK_Class ||
6355              TagX->getTagKind() == TTK_Interface) &&
6356             (TagY->getTagKind() == TTK_Struct ||
6357              TagY->getTagKind() == TTK_Class ||
6358              TagY->getTagKind() == TTK_Interface));
6359   }
6360 
6361   // Functions with the same type and linkage match.
6362   // FIXME: This needs to cope with merging of prototyped/non-prototyped
6363   // functions, etc.
6364   if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6365     const auto *FuncY = cast<FunctionDecl>(Y);
6366     if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6367       const auto *CtorY = cast<CXXConstructorDecl>(Y);
6368       if (CtorX->getInheritedConstructor() &&
6369           !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6370                         CtorY->getInheritedConstructor().getConstructor()))
6371         return false;
6372     }
6373 
6374     if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6375       return false;
6376 
6377     // Multiversioned functions with different feature strings are represented
6378     // as separate declarations.
6379     if (FuncX->isMultiVersion()) {
6380       const auto *TAX = FuncX->getAttr<TargetAttr>();
6381       const auto *TAY = FuncY->getAttr<TargetAttr>();
6382       assert(TAX && TAY && "Multiversion Function without target attribute");
6383 
6384       if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6385         return false;
6386     }
6387 
6388     const Expr *XRC = FuncX->getTrailingRequiresClause();
6389     const Expr *YRC = FuncY->getTrailingRequiresClause();
6390     if (!XRC != !YRC)
6391       return false;
6392     if (XRC) {
6393       llvm::FoldingSetNodeID XRCID, YRCID;
6394       XRC->Profile(XRCID, *this, /*Canonical=*/true);
6395       YRC->Profile(YRCID, *this, /*Canonical=*/true);
6396       if (XRCID != YRCID)
6397         return false;
6398     }
6399 
6400     auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6401       // Map to the first declaration that we've already merged into this one.
6402       // The TSI of redeclarations might not match (due to calling conventions
6403       // being inherited onto the type but not the TSI), but the TSI type of
6404       // the first declaration of the function should match across modules.
6405       FD = FD->getCanonicalDecl();
6406       return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6407                                      : FD->getType();
6408     };
6409     QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6410     if (!hasSameType(XT, YT)) {
6411       // We can get functions with different types on the redecl chain in C++17
6412       // if they have differing exception specifications and at least one of
6413       // the excpetion specs is unresolved.
6414       auto *XFPT = XT->getAs<FunctionProtoType>();
6415       auto *YFPT = YT->getAs<FunctionProtoType>();
6416       if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6417           (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6418            isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6419           // FIXME: We could make isSameEntity const after we make
6420           // hasSameFunctionTypeIgnoringExceptionSpec const.
6421           hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6422         return true;
6423       return false;
6424     }
6425 
6426     return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6427            hasSameOverloadableAttrs(FuncX, FuncY);
6428   }
6429 
6430   // Variables with the same type and linkage match.
6431   if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6432     const auto *VarY = cast<VarDecl>(Y);
6433     if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6434       if (hasSameType(VarX->getType(), VarY->getType()))
6435         return true;
6436 
6437       // We can get decls with different types on the redecl chain. Eg.
6438       // template <typename T> struct S { static T Var[]; }; // #1
6439       // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6440       // Only? happens when completing an incomplete array type. In this case
6441       // when comparing #1 and #2 we should go through their element type.
6442       const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6443       const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6444       if (!VarXTy || !VarYTy)
6445         return false;
6446       if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6447         return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6448     }
6449     return false;
6450   }
6451 
6452   // Namespaces with the same name and inlinedness match.
6453   if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6454     const auto *NamespaceY = cast<NamespaceDecl>(Y);
6455     return NamespaceX->isInline() == NamespaceY->isInline();
6456   }
6457 
6458   // Identical template names and kinds match if their template parameter lists
6459   // and patterns match.
6460   if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6461     const auto *TemplateY = cast<TemplateDecl>(Y);
6462     return isSameEntity(TemplateX->getTemplatedDecl(),
6463                         TemplateY->getTemplatedDecl()) &&
6464            isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6465                                        TemplateY->getTemplateParameters());
6466   }
6467 
6468   // Fields with the same name and the same type match.
6469   if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6470     const auto *FDY = cast<FieldDecl>(Y);
6471     // FIXME: Also check the bitwidth is odr-equivalent, if any.
6472     return hasSameType(FDX->getType(), FDY->getType());
6473   }
6474 
6475   // Indirect fields with the same target field match.
6476   if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6477     const auto *IFDY = cast<IndirectFieldDecl>(Y);
6478     return IFDX->getAnonField()->getCanonicalDecl() ==
6479            IFDY->getAnonField()->getCanonicalDecl();
6480   }
6481 
6482   // Enumerators with the same name match.
6483   if (isa<EnumConstantDecl>(X))
6484     // FIXME: Also check the value is odr-equivalent.
6485     return true;
6486 
6487   // Using shadow declarations with the same target match.
6488   if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6489     const auto *USY = cast<UsingShadowDecl>(Y);
6490     return USX->getTargetDecl() == USY->getTargetDecl();
6491   }
6492 
6493   // Using declarations with the same qualifier match. (We already know that
6494   // the name matches.)
6495   if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6496     const auto *UY = cast<UsingDecl>(Y);
6497     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6498            UX->hasTypename() == UY->hasTypename() &&
6499            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6500   }
6501   if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6502     const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6503     return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6504            UX->isAccessDeclaration() == UY->isAccessDeclaration();
6505   }
6506   if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6507     return isSameQualifier(
6508         UX->getQualifier(),
6509         cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6510   }
6511 
6512   // Using-pack declarations are only created by instantiation, and match if
6513   // they're instantiated from matching UnresolvedUsing...Decls.
6514   if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6515     return declaresSameEntity(
6516         UX->getInstantiatedFromUsingDecl(),
6517         cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6518   }
6519 
6520   // Namespace alias definitions with the same target match.
6521   if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6522     const auto *NAY = cast<NamespaceAliasDecl>(Y);
6523     return NAX->getNamespace()->Equals(NAY->getNamespace());
6524   }
6525 
6526   return false;
6527 }
6528 
6529 TemplateArgument
6530 ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6531   switch (Arg.getKind()) {
6532     case TemplateArgument::Null:
6533       return Arg;
6534 
6535     case TemplateArgument::Expression:
6536       return Arg;
6537 
6538     case TemplateArgument::Declaration: {
6539       auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6540       return TemplateArgument(D, Arg.getParamTypeForDecl());
6541     }
6542 
6543     case TemplateArgument::NullPtr:
6544       return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6545                               /*isNullPtr*/true);
6546 
6547     case TemplateArgument::Template:
6548       return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
6549 
6550     case TemplateArgument::TemplateExpansion:
6551       return TemplateArgument(getCanonicalTemplateName(
6552                                          Arg.getAsTemplateOrTemplatePattern()),
6553                               Arg.getNumTemplateExpansions());
6554 
6555     case TemplateArgument::Integral:
6556       return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6557 
6558     case TemplateArgument::Type:
6559       return TemplateArgument(getCanonicalType(Arg.getAsType()));
6560 
6561     case TemplateArgument::Pack: {
6562       if (Arg.pack_size() == 0)
6563         return Arg;
6564 
6565       auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
6566       unsigned Idx = 0;
6567       for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
6568                                         AEnd = Arg.pack_end();
6569            A != AEnd; (void)++A, ++Idx)
6570         CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
6571 
6572       return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
6573     }
6574   }
6575 
6576   // Silence GCC warning
6577   llvm_unreachable("Unhandled template argument kind");
6578 }
6579 
6580 NestedNameSpecifier *
6581 ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6582   if (!NNS)
6583     return nullptr;
6584 
6585   switch (NNS->getKind()) {
6586   case NestedNameSpecifier::Identifier:
6587     // Canonicalize the prefix but keep the identifier the same.
6588     return NestedNameSpecifier::Create(*this,
6589                          getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6590                                        NNS->getAsIdentifier());
6591 
6592   case NestedNameSpecifier::Namespace:
6593     // A namespace is canonical; build a nested-name-specifier with
6594     // this namespace and no prefix.
6595     return NestedNameSpecifier::Create(*this, nullptr,
6596                                  NNS->getAsNamespace()->getOriginalNamespace());
6597 
6598   case NestedNameSpecifier::NamespaceAlias:
6599     // A namespace is canonical; build a nested-name-specifier with
6600     // this namespace and no prefix.
6601     return NestedNameSpecifier::Create(*this, nullptr,
6602                                     NNS->getAsNamespaceAlias()->getNamespace()
6603                                                       ->getOriginalNamespace());
6604 
6605   // The difference between TypeSpec and TypeSpecWithTemplate is that the
6606   // latter will have the 'template' keyword when printed.
6607   case NestedNameSpecifier::TypeSpec:
6608   case NestedNameSpecifier::TypeSpecWithTemplate: {
6609     const Type *T = getCanonicalType(NNS->getAsType());
6610 
6611     // If we have some kind of dependent-named type (e.g., "typename T::type"),
6612     // break it apart into its prefix and identifier, then reconsititute those
6613     // as the canonical nested-name-specifier. This is required to canonicalize
6614     // a dependent nested-name-specifier involving typedefs of dependent-name
6615     // types, e.g.,
6616     //   typedef typename T::type T1;
6617     //   typedef typename T1::type T2;
6618     if (const auto *DNT = T->getAs<DependentNameType>())
6619       return NestedNameSpecifier::Create(
6620           *this, DNT->getQualifier(),
6621           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6622     if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6623       return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6624                                          const_cast<Type *>(T));
6625 
6626     // TODO: Set 'Template' parameter to true for other template types.
6627     return NestedNameSpecifier::Create(*this, nullptr, false,
6628                                        const_cast<Type *>(T));
6629   }
6630 
6631   case NestedNameSpecifier::Global:
6632   case NestedNameSpecifier::Super:
6633     // The global specifier and __super specifer are canonical and unique.
6634     return NNS;
6635   }
6636 
6637   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6638 }
6639 
6640 const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6641   // Handle the non-qualified case efficiently.
6642   if (!T.hasLocalQualifiers()) {
6643     // Handle the common positive case fast.
6644     if (const auto *AT = dyn_cast<ArrayType>(T))
6645       return AT;
6646   }
6647 
6648   // Handle the common negative case fast.
6649   if (!isa<ArrayType>(T.getCanonicalType()))
6650     return nullptr;
6651 
6652   // Apply any qualifiers from the array type to the element type.  This
6653   // implements C99 6.7.3p8: "If the specification of an array type includes
6654   // any type qualifiers, the element type is so qualified, not the array type."
6655 
6656   // If we get here, we either have type qualifiers on the type, or we have
6657   // sugar such as a typedef in the way.  If we have type qualifiers on the type
6658   // we must propagate them down into the element type.
6659 
6660   SplitQualType split = T.getSplitDesugaredType();
6661   Qualifiers qs = split.Quals;
6662 
6663   // If we have a simple case, just return now.
6664   const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6665   if (!ATy || qs.empty())
6666     return ATy;
6667 
6668   // Otherwise, we have an array and we have qualifiers on it.  Push the
6669   // qualifiers into the array element type and return a new array type.
6670   QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6671 
6672   if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6673     return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6674                                                 CAT->getSizeExpr(),
6675                                                 CAT->getSizeModifier(),
6676                                            CAT->getIndexTypeCVRQualifiers()));
6677   if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6678     return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6679                                                   IAT->getSizeModifier(),
6680                                            IAT->getIndexTypeCVRQualifiers()));
6681 
6682   if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6683     return cast<ArrayType>(
6684                      getDependentSizedArrayType(NewEltTy,
6685                                                 DSAT->getSizeExpr(),
6686                                                 DSAT->getSizeModifier(),
6687                                               DSAT->getIndexTypeCVRQualifiers(),
6688                                                 DSAT->getBracketsRange()));
6689 
6690   const auto *VAT = cast<VariableArrayType>(ATy);
6691   return cast<ArrayType>(getVariableArrayType(NewEltTy,
6692                                               VAT->getSizeExpr(),
6693                                               VAT->getSizeModifier(),
6694                                               VAT->getIndexTypeCVRQualifiers(),
6695                                               VAT->getBracketsRange()));
6696 }
6697 
6698 QualType ASTContext::getAdjustedParameterType(QualType T) const {
6699   if (T->isArrayType() || T->isFunctionType())
6700     return getDecayedType(T);
6701   return T;
6702 }
6703 
6704 QualType ASTContext::getSignatureParameterType(QualType T) const {
6705   T = getVariableArrayDecayedType(T);
6706   T = getAdjustedParameterType(T);
6707   return T.getUnqualifiedType();
6708 }
6709 
6710 QualType ASTContext::getExceptionObjectType(QualType T) const {
6711   // C++ [except.throw]p3:
6712   //   A throw-expression initializes a temporary object, called the exception
6713   //   object, the type of which is determined by removing any top-level
6714   //   cv-qualifiers from the static type of the operand of throw and adjusting
6715   //   the type from "array of T" or "function returning T" to "pointer to T"
6716   //   or "pointer to function returning T", [...]
6717   T = getVariableArrayDecayedType(T);
6718   if (T->isArrayType() || T->isFunctionType())
6719     T = getDecayedType(T);
6720   return T.getUnqualifiedType();
6721 }
6722 
6723 /// getArrayDecayedType - Return the properly qualified result of decaying the
6724 /// specified array type to a pointer.  This operation is non-trivial when
6725 /// handling typedefs etc.  The canonical type of "T" must be an array type,
6726 /// this returns a pointer to a properly qualified element of the array.
6727 ///
6728 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6729 QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6730   // Get the element type with 'getAsArrayType' so that we don't lose any
6731   // typedefs in the element type of the array.  This also handles propagation
6732   // of type qualifiers from the array type into the element type if present
6733   // (C99 6.7.3p8).
6734   const ArrayType *PrettyArrayType = getAsArrayType(Ty);
6735   assert(PrettyArrayType && "Not an array type!");
6736 
6737   QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
6738 
6739   // int x[restrict 4] ->  int *restrict
6740   QualType Result = getQualifiedType(PtrTy,
6741                                      PrettyArrayType->getIndexTypeQualifiers());
6742 
6743   // int x[_Nullable] -> int * _Nullable
6744   if (auto Nullability = Ty->getNullability(*this)) {
6745     Result = const_cast<ASTContext *>(this)->getAttributedType(
6746         AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
6747   }
6748   return Result;
6749 }
6750 
6751 QualType ASTContext::getBaseElementType(const ArrayType *array) const {
6752   return getBaseElementType(array->getElementType());
6753 }
6754 
6755 QualType ASTContext::getBaseElementType(QualType type) const {
6756   Qualifiers qs;
6757   while (true) {
6758     SplitQualType split = type.getSplitDesugaredType();
6759     const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
6760     if (!array) break;
6761 
6762     type = array->getElementType();
6763     qs.addConsistentQualifiers(split.Quals);
6764   }
6765 
6766   return getQualifiedType(type, qs);
6767 }
6768 
6769 /// getConstantArrayElementCount - Returns number of constant array elements.
6770 uint64_t
6771 ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
6772   uint64_t ElementCount = 1;
6773   do {
6774     ElementCount *= CA->getSize().getZExtValue();
6775     CA = dyn_cast_or_null<ConstantArrayType>(
6776       CA->getElementType()->getAsArrayTypeUnsafe());
6777   } while (CA);
6778   return ElementCount;
6779 }
6780 
6781 /// getFloatingRank - Return a relative rank for floating point types.
6782 /// This routine will assert if passed a built-in type that isn't a float.
6783 static FloatingRank getFloatingRank(QualType T) {
6784   if (const auto *CT = T->getAs<ComplexType>())
6785     return getFloatingRank(CT->getElementType());
6786 
6787   switch (T->castAs<BuiltinType>()->getKind()) {
6788   default: llvm_unreachable("getFloatingRank(): not a floating type");
6789   case BuiltinType::Float16:    return Float16Rank;
6790   case BuiltinType::Half:       return HalfRank;
6791   case BuiltinType::Float:      return FloatRank;
6792   case BuiltinType::Double:     return DoubleRank;
6793   case BuiltinType::LongDouble: return LongDoubleRank;
6794   case BuiltinType::Float128:   return Float128Rank;
6795   case BuiltinType::BFloat16:   return BFloat16Rank;
6796   case BuiltinType::Ibm128:     return Ibm128Rank;
6797   }
6798 }
6799 
6800 /// getFloatingTypeOfSizeWithinDomain - Returns a real floating
6801 /// point or a complex type (based on typeDomain/typeSize).
6802 /// 'typeDomain' is a real floating point or complex type.
6803 /// 'typeSize' is a real floating point or complex type.
6804 QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
6805                                                        QualType Domain) const {
6806   FloatingRank EltRank = getFloatingRank(Size);
6807   if (Domain->isComplexType()) {
6808     switch (EltRank) {
6809     case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
6810     case Float16Rank:
6811     case HalfRank: llvm_unreachable("Complex half is not supported");
6812     case Ibm128Rank:     return getComplexType(Ibm128Ty);
6813     case FloatRank:      return getComplexType(FloatTy);
6814     case DoubleRank:     return getComplexType(DoubleTy);
6815     case LongDoubleRank: return getComplexType(LongDoubleTy);
6816     case Float128Rank:   return getComplexType(Float128Ty);
6817     }
6818   }
6819 
6820   assert(Domain->isRealFloatingType() && "Unknown domain!");
6821   switch (EltRank) {
6822   case Float16Rank:    return HalfTy;
6823   case BFloat16Rank:   return BFloat16Ty;
6824   case HalfRank:       return HalfTy;
6825   case FloatRank:      return FloatTy;
6826   case DoubleRank:     return DoubleTy;
6827   case LongDoubleRank: return LongDoubleTy;
6828   case Float128Rank:   return Float128Ty;
6829   case Ibm128Rank:
6830     return Ibm128Ty;
6831   }
6832   llvm_unreachable("getFloatingRank(): illegal value for rank");
6833 }
6834 
6835 /// getFloatingTypeOrder - Compare the rank of the two specified floating
6836 /// point types, ignoring the domain of the type (i.e. 'double' ==
6837 /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6838 /// LHS < RHS, return -1.
6839 int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
6840   FloatingRank LHSR = getFloatingRank(LHS);
6841   FloatingRank RHSR = getFloatingRank(RHS);
6842 
6843   if (LHSR == RHSR)
6844     return 0;
6845   if (LHSR > RHSR)
6846     return 1;
6847   return -1;
6848 }
6849 
6850 int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
6851   if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
6852     return 0;
6853   return getFloatingTypeOrder(LHS, RHS);
6854 }
6855 
6856 /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
6857 /// routine will assert if passed a built-in type that isn't an integer or enum,
6858 /// or if it is not canonicalized.
6859 unsigned ASTContext::getIntegerRank(const Type *T) const {
6860   assert(T->isCanonicalUnqualified() && "T should be canonicalized");
6861 
6862   // Results in this 'losing' to any type of the same size, but winning if
6863   // larger.
6864   if (const auto *EIT = dyn_cast<BitIntType>(T))
6865     return 0 + (EIT->getNumBits() << 3);
6866 
6867   switch (cast<BuiltinType>(T)->getKind()) {
6868   default: llvm_unreachable("getIntegerRank(): not a built-in integer");
6869   case BuiltinType::Bool:
6870     return 1 + (getIntWidth(BoolTy) << 3);
6871   case BuiltinType::Char_S:
6872   case BuiltinType::Char_U:
6873   case BuiltinType::SChar:
6874   case BuiltinType::UChar:
6875     return 2 + (getIntWidth(CharTy) << 3);
6876   case BuiltinType::Short:
6877   case BuiltinType::UShort:
6878     return 3 + (getIntWidth(ShortTy) << 3);
6879   case BuiltinType::Int:
6880   case BuiltinType::UInt:
6881     return 4 + (getIntWidth(IntTy) << 3);
6882   case BuiltinType::Long:
6883   case BuiltinType::ULong:
6884     return 5 + (getIntWidth(LongTy) << 3);
6885   case BuiltinType::LongLong:
6886   case BuiltinType::ULongLong:
6887     return 6 + (getIntWidth(LongLongTy) << 3);
6888   case BuiltinType::Int128:
6889   case BuiltinType::UInt128:
6890     return 7 + (getIntWidth(Int128Ty) << 3);
6891   }
6892 }
6893 
6894 /// Whether this is a promotable bitfield reference according
6895 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
6896 ///
6897 /// \returns the type this bit-field will promote to, or NULL if no
6898 /// promotion occurs.
6899 QualType ASTContext::isPromotableBitField(Expr *E) const {
6900   if (E->isTypeDependent() || E->isValueDependent())
6901     return {};
6902 
6903   // C++ [conv.prom]p5:
6904   //    If the bit-field has an enumerated type, it is treated as any other
6905   //    value of that type for promotion purposes.
6906   if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
6907     return {};
6908 
6909   // FIXME: We should not do this unless E->refersToBitField() is true. This
6910   // matters in C where getSourceBitField() will find bit-fields for various
6911   // cases where the source expression is not a bit-field designator.
6912 
6913   FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
6914   if (!Field)
6915     return {};
6916 
6917   QualType FT = Field->getType();
6918 
6919   uint64_t BitWidth = Field->getBitWidthValue(*this);
6920   uint64_t IntSize = getTypeSize(IntTy);
6921   // C++ [conv.prom]p5:
6922   //   A prvalue for an integral bit-field can be converted to a prvalue of type
6923   //   int if int can represent all the values of the bit-field; otherwise, it
6924   //   can be converted to unsigned int if unsigned int can represent all the
6925   //   values of the bit-field. If the bit-field is larger yet, no integral
6926   //   promotion applies to it.
6927   // C11 6.3.1.1/2:
6928   //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
6929   //   If an int can represent all values of the original type (as restricted by
6930   //   the width, for a bit-field), the value is converted to an int; otherwise,
6931   //   it is converted to an unsigned int.
6932   //
6933   // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
6934   //        We perform that promotion here to match GCC and C++.
6935   // FIXME: C does not permit promotion of an enum bit-field whose rank is
6936   //        greater than that of 'int'. We perform that promotion to match GCC.
6937   if (BitWidth < IntSize)
6938     return IntTy;
6939 
6940   if (BitWidth == IntSize)
6941     return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
6942 
6943   // Bit-fields wider than int are not subject to promotions, and therefore act
6944   // like the base type. GCC has some weird bugs in this area that we
6945   // deliberately do not follow (GCC follows a pre-standard resolution to
6946   // C's DR315 which treats bit-width as being part of the type, and this leaks
6947   // into their semantics in some cases).
6948   return {};
6949 }
6950 
6951 /// getPromotedIntegerType - Returns the type that Promotable will
6952 /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6953 /// integer type.
6954 QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6955   assert(!Promotable.isNull());
6956   assert(Promotable->isPromotableIntegerType());
6957   if (const auto *ET = Promotable->getAs<EnumType>())
6958     return ET->getDecl()->getPromotionType();
6959 
6960   if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6961     // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6962     // (3.9.1) can be converted to a prvalue of the first of the following
6963     // types that can represent all the values of its underlying type:
6964     // int, unsigned int, long int, unsigned long int, long long int, or
6965     // unsigned long long int [...]
6966     // FIXME: Is there some better way to compute this?
6967     if (BT->getKind() == BuiltinType::WChar_S ||
6968         BT->getKind() == BuiltinType::WChar_U ||
6969         BT->getKind() == BuiltinType::Char8 ||
6970         BT->getKind() == BuiltinType::Char16 ||
6971         BT->getKind() == BuiltinType::Char32) {
6972       bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6973       uint64_t FromSize = getTypeSize(BT);
6974       QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6975                                   LongLongTy, UnsignedLongLongTy };
6976       for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6977         uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6978         if (FromSize < ToSize ||
6979             (FromSize == ToSize &&
6980              FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6981           return PromoteTypes[Idx];
6982       }
6983       llvm_unreachable("char type should fit into long long");
6984     }
6985   }
6986 
6987   // At this point, we should have a signed or unsigned integer type.
6988   if (Promotable->isSignedIntegerType())
6989     return IntTy;
6990   uint64_t PromotableSize = getIntWidth(Promotable);
6991   uint64_t IntSize = getIntWidth(IntTy);
6992   assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6993   return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6994 }
6995 
6996 /// Recurses in pointer/array types until it finds an objc retainable
6997 /// type and returns its ownership.
6998 Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6999   while (!T.isNull()) {
7000     if (T.getObjCLifetime() != Qualifiers::OCL_None)
7001       return T.getObjCLifetime();
7002     if (T->isArrayType())
7003       T = getBaseElementType(T);
7004     else if (const auto *PT = T->getAs<PointerType>())
7005       T = PT->getPointeeType();
7006     else if (const auto *RT = T->getAs<ReferenceType>())
7007       T = RT->getPointeeType();
7008     else
7009       break;
7010   }
7011 
7012   return Qualifiers::OCL_None;
7013 }
7014 
7015 static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7016   // Incomplete enum types are not treated as integer types.
7017   // FIXME: In C++, enum types are never integer types.
7018   if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7019     return ET->getDecl()->getIntegerType().getTypePtr();
7020   return nullptr;
7021 }
7022 
7023 /// getIntegerTypeOrder - Returns the highest ranked integer type:
7024 /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
7025 /// LHS < RHS, return -1.
7026 int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7027   const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7028   const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7029 
7030   // Unwrap enums to their underlying type.
7031   if (const auto *ET = dyn_cast<EnumType>(LHSC))
7032     LHSC = getIntegerTypeForEnum(ET);
7033   if (const auto *ET = dyn_cast<EnumType>(RHSC))
7034     RHSC = getIntegerTypeForEnum(ET);
7035 
7036   if (LHSC == RHSC) return 0;
7037 
7038   bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7039   bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7040 
7041   unsigned LHSRank = getIntegerRank(LHSC);
7042   unsigned RHSRank = getIntegerRank(RHSC);
7043 
7044   if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
7045     if (LHSRank == RHSRank) return 0;
7046     return LHSRank > RHSRank ? 1 : -1;
7047   }
7048 
7049   // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7050   if (LHSUnsigned) {
7051     // If the unsigned [LHS] type is larger, return it.
7052     if (LHSRank >= RHSRank)
7053       return 1;
7054 
7055     // If the signed type can represent all values of the unsigned type, it
7056     // wins.  Because we are dealing with 2's complement and types that are
7057     // powers of two larger than each other, this is always safe.
7058     return -1;
7059   }
7060 
7061   // If the unsigned [RHS] type is larger, return it.
7062   if (RHSRank >= LHSRank)
7063     return -1;
7064 
7065   // If the signed type can represent all values of the unsigned type, it
7066   // wins.  Because we are dealing with 2's complement and types that are
7067   // powers of two larger than each other, this is always safe.
7068   return 1;
7069 }
7070 
7071 TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7072   if (CFConstantStringTypeDecl)
7073     return CFConstantStringTypeDecl;
7074 
7075   assert(!CFConstantStringTagDecl &&
7076          "tag and typedef should be initialized together");
7077   CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7078   CFConstantStringTagDecl->startDefinition();
7079 
7080   struct {
7081     QualType Type;
7082     const char *Name;
7083   } Fields[5];
7084   unsigned Count = 0;
7085 
7086   /// Objective-C ABI
7087   ///
7088   ///    typedef struct __NSConstantString_tag {
7089   ///      const int *isa;
7090   ///      int flags;
7091   ///      const char *str;
7092   ///      long length;
7093   ///    } __NSConstantString;
7094   ///
7095   /// Swift ABI (4.1, 4.2)
7096   ///
7097   ///    typedef struct __NSConstantString_tag {
7098   ///      uintptr_t _cfisa;
7099   ///      uintptr_t _swift_rc;
7100   ///      _Atomic(uint64_t) _cfinfoa;
7101   ///      const char *_ptr;
7102   ///      uint32_t _length;
7103   ///    } __NSConstantString;
7104   ///
7105   /// Swift ABI (5.0)
7106   ///
7107   ///    typedef struct __NSConstantString_tag {
7108   ///      uintptr_t _cfisa;
7109   ///      uintptr_t _swift_rc;
7110   ///      _Atomic(uint64_t) _cfinfoa;
7111   ///      const char *_ptr;
7112   ///      uintptr_t _length;
7113   ///    } __NSConstantString;
7114 
7115   const auto CFRuntime = getLangOpts().CFRuntime;
7116   if (static_cast<unsigned>(CFRuntime) <
7117       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7118     Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7119     Fields[Count++] = { IntTy, "flags" };
7120     Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7121     Fields[Count++] = { LongTy, "length" };
7122   } else {
7123     Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7124     Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7125     Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7126     Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7127     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7128         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7129       Fields[Count++] = { IntTy, "_ptr" };
7130     else
7131       Fields[Count++] = { getUIntPtrType(), "_ptr" };
7132   }
7133 
7134   // Create fields
7135   for (unsigned i = 0; i < Count; ++i) {
7136     FieldDecl *Field =
7137         FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7138                           SourceLocation(), &Idents.get(Fields[i].Name),
7139                           Fields[i].Type, /*TInfo=*/nullptr,
7140                           /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7141     Field->setAccess(AS_public);
7142     CFConstantStringTagDecl->addDecl(Field);
7143   }
7144 
7145   CFConstantStringTagDecl->completeDefinition();
7146   // This type is designed to be compatible with NSConstantString, but cannot
7147   // use the same name, since NSConstantString is an interface.
7148   auto tagType = getTagDeclType(CFConstantStringTagDecl);
7149   CFConstantStringTypeDecl =
7150       buildImplicitTypedef(tagType, "__NSConstantString");
7151 
7152   return CFConstantStringTypeDecl;
7153 }
7154 
7155 RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7156   if (!CFConstantStringTagDecl)
7157     getCFConstantStringDecl(); // Build the tag and the typedef.
7158   return CFConstantStringTagDecl;
7159 }
7160 
7161 // getCFConstantStringType - Return the type used for constant CFStrings.
7162 QualType ASTContext::getCFConstantStringType() const {
7163   return getTypedefType(getCFConstantStringDecl());
7164 }
7165 
7166 QualType ASTContext::getObjCSuperType() const {
7167   if (ObjCSuperType.isNull()) {
7168     RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7169     getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7170     ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7171   }
7172   return ObjCSuperType;
7173 }
7174 
7175 void ASTContext::setCFConstantStringType(QualType T) {
7176   const auto *TD = T->castAs<TypedefType>();
7177   CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7178   const auto *TagType =
7179       CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7180   CFConstantStringTagDecl = TagType->getDecl();
7181 }
7182 
7183 QualType ASTContext::getBlockDescriptorType() const {
7184   if (BlockDescriptorType)
7185     return getTagDeclType(BlockDescriptorType);
7186 
7187   RecordDecl *RD;
7188   // FIXME: Needs the FlagAppleBlock bit.
7189   RD = buildImplicitRecord("__block_descriptor");
7190   RD->startDefinition();
7191 
7192   QualType FieldTypes[] = {
7193     UnsignedLongTy,
7194     UnsignedLongTy,
7195   };
7196 
7197   static const char *const FieldNames[] = {
7198     "reserved",
7199     "Size"
7200   };
7201 
7202   for (size_t i = 0; i < 2; ++i) {
7203     FieldDecl *Field = FieldDecl::Create(
7204         *this, RD, SourceLocation(), SourceLocation(),
7205         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7206         /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7207     Field->setAccess(AS_public);
7208     RD->addDecl(Field);
7209   }
7210 
7211   RD->completeDefinition();
7212 
7213   BlockDescriptorType = RD;
7214 
7215   return getTagDeclType(BlockDescriptorType);
7216 }
7217 
7218 QualType ASTContext::getBlockDescriptorExtendedType() const {
7219   if (BlockDescriptorExtendedType)
7220     return getTagDeclType(BlockDescriptorExtendedType);
7221 
7222   RecordDecl *RD;
7223   // FIXME: Needs the FlagAppleBlock bit.
7224   RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7225   RD->startDefinition();
7226 
7227   QualType FieldTypes[] = {
7228     UnsignedLongTy,
7229     UnsignedLongTy,
7230     getPointerType(VoidPtrTy),
7231     getPointerType(VoidPtrTy)
7232   };
7233 
7234   static const char *const FieldNames[] = {
7235     "reserved",
7236     "Size",
7237     "CopyFuncPtr",
7238     "DestroyFuncPtr"
7239   };
7240 
7241   for (size_t i = 0; i < 4; ++i) {
7242     FieldDecl *Field = FieldDecl::Create(
7243         *this, RD, SourceLocation(), SourceLocation(),
7244         &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7245         /*BitWidth=*/nullptr,
7246         /*Mutable=*/false, ICIS_NoInit);
7247     Field->setAccess(AS_public);
7248     RD->addDecl(Field);
7249   }
7250 
7251   RD->completeDefinition();
7252 
7253   BlockDescriptorExtendedType = RD;
7254   return getTagDeclType(BlockDescriptorExtendedType);
7255 }
7256 
7257 OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7258   const auto *BT = dyn_cast<BuiltinType>(T);
7259 
7260   if (!BT) {
7261     if (isa<PipeType>(T))
7262       return OCLTK_Pipe;
7263 
7264     return OCLTK_Default;
7265   }
7266 
7267   switch (BT->getKind()) {
7268 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
7269   case BuiltinType::Id:                                                        \
7270     return OCLTK_Image;
7271 #include "clang/Basic/OpenCLImageTypes.def"
7272 
7273   case BuiltinType::OCLClkEvent:
7274     return OCLTK_ClkEvent;
7275 
7276   case BuiltinType::OCLEvent:
7277     return OCLTK_Event;
7278 
7279   case BuiltinType::OCLQueue:
7280     return OCLTK_Queue;
7281 
7282   case BuiltinType::OCLReserveID:
7283     return OCLTK_ReserveID;
7284 
7285   case BuiltinType::OCLSampler:
7286     return OCLTK_Sampler;
7287 
7288   default:
7289     return OCLTK_Default;
7290   }
7291 }
7292 
7293 LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7294   return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7295 }
7296 
7297 /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7298 /// requires copy/dispose. Note that this must match the logic
7299 /// in buildByrefHelpers.
7300 bool ASTContext::BlockRequiresCopying(QualType Ty,
7301                                       const VarDecl *D) {
7302   if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7303     const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7304     if (!copyExpr && record->hasTrivialDestructor()) return false;
7305 
7306     return true;
7307   }
7308 
7309   // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7310   // move or destroy.
7311   if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7312     return true;
7313 
7314   if (!Ty->isObjCRetainableType()) return false;
7315 
7316   Qualifiers qs = Ty.getQualifiers();
7317 
7318   // If we have lifetime, that dominates.
7319   if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7320     switch (lifetime) {
7321       case Qualifiers::OCL_None: llvm_unreachable("impossible");
7322 
7323       // These are just bits as far as the runtime is concerned.
7324       case Qualifiers::OCL_ExplicitNone:
7325       case Qualifiers::OCL_Autoreleasing:
7326         return false;
7327 
7328       // These cases should have been taken care of when checking the type's
7329       // non-triviality.
7330       case Qualifiers::OCL_Weak:
7331       case Qualifiers::OCL_Strong:
7332         llvm_unreachable("impossible");
7333     }
7334     llvm_unreachable("fell out of lifetime switch!");
7335   }
7336   return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7337           Ty->isObjCObjectPointerType());
7338 }
7339 
7340 bool ASTContext::getByrefLifetime(QualType Ty,
7341                               Qualifiers::ObjCLifetime &LifeTime,
7342                               bool &HasByrefExtendedLayout) const {
7343   if (!getLangOpts().ObjC ||
7344       getLangOpts().getGC() != LangOptions::NonGC)
7345     return false;
7346 
7347   HasByrefExtendedLayout = false;
7348   if (Ty->isRecordType()) {
7349     HasByrefExtendedLayout = true;
7350     LifeTime = Qualifiers::OCL_None;
7351   } else if ((LifeTime = Ty.getObjCLifetime())) {
7352     // Honor the ARC qualifiers.
7353   } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7354     // The MRR rule.
7355     LifeTime = Qualifiers::OCL_ExplicitNone;
7356   } else {
7357     LifeTime = Qualifiers::OCL_None;
7358   }
7359   return true;
7360 }
7361 
7362 CanQualType ASTContext::getNSUIntegerType() const {
7363   assert(Target && "Expected target to be initialized");
7364   const llvm::Triple &T = Target->getTriple();
7365   // Windows is LLP64 rather than LP64
7366   if (T.isOSWindows() && T.isArch64Bit())
7367     return UnsignedLongLongTy;
7368   return UnsignedLongTy;
7369 }
7370 
7371 CanQualType ASTContext::getNSIntegerType() const {
7372   assert(Target && "Expected target to be initialized");
7373   const llvm::Triple &T = Target->getTriple();
7374   // Windows is LLP64 rather than LP64
7375   if (T.isOSWindows() && T.isArch64Bit())
7376     return LongLongTy;
7377   return LongTy;
7378 }
7379 
7380 TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7381   if (!ObjCInstanceTypeDecl)
7382     ObjCInstanceTypeDecl =
7383         buildImplicitTypedef(getObjCIdType(), "instancetype");
7384   return ObjCInstanceTypeDecl;
7385 }
7386 
7387 // This returns true if a type has been typedefed to BOOL:
7388 // typedef <type> BOOL;
7389 static bool isTypeTypedefedAsBOOL(QualType T) {
7390   if (const auto *TT = dyn_cast<TypedefType>(T))
7391     if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7392       return II->isStr("BOOL");
7393 
7394   return false;
7395 }
7396 
7397 /// getObjCEncodingTypeSize returns size of type for objective-c encoding
7398 /// purpose.
7399 CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7400   if (!type->isIncompleteArrayType() && type->isIncompleteType())
7401     return CharUnits::Zero();
7402 
7403   CharUnits sz = getTypeSizeInChars(type);
7404 
7405   // Make all integer and enum types at least as large as an int
7406   if (sz.isPositive() && type->isIntegralOrEnumerationType())
7407     sz = std::max(sz, getTypeSizeInChars(IntTy));
7408   // Treat arrays as pointers, since that's how they're passed in.
7409   else if (type->isArrayType())
7410     sz = getTypeSizeInChars(VoidPtrTy);
7411   return sz;
7412 }
7413 
7414 bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7415   return getTargetInfo().getCXXABI().isMicrosoft() &&
7416          VD->isStaticDataMember() &&
7417          VD->getType()->isIntegralOrEnumerationType() &&
7418          !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7419 }
7420 
7421 ASTContext::InlineVariableDefinitionKind
7422 ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7423   if (!VD->isInline())
7424     return InlineVariableDefinitionKind::None;
7425 
7426   // In almost all cases, it's a weak definition.
7427   auto *First = VD->getFirstDecl();
7428   if (First->isInlineSpecified() || !First->isStaticDataMember())
7429     return InlineVariableDefinitionKind::Weak;
7430 
7431   // If there's a file-context declaration in this translation unit, it's a
7432   // non-discardable definition.
7433   for (auto *D : VD->redecls())
7434     if (D->getLexicalDeclContext()->isFileContext() &&
7435         !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7436       return InlineVariableDefinitionKind::Strong;
7437 
7438   // If we've not seen one yet, we don't know.
7439   return InlineVariableDefinitionKind::WeakUnknown;
7440 }
7441 
7442 static std::string charUnitsToString(const CharUnits &CU) {
7443   return llvm::itostr(CU.getQuantity());
7444 }
7445 
7446 /// getObjCEncodingForBlock - Return the encoded type for this block
7447 /// declaration.
7448 std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7449   std::string S;
7450 
7451   const BlockDecl *Decl = Expr->getBlockDecl();
7452   QualType BlockTy =
7453       Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7454   QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7455   // Encode result type.
7456   if (getLangOpts().EncodeExtendedBlockSig)
7457     getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7458                                       true /*Extended*/);
7459   else
7460     getObjCEncodingForType(BlockReturnTy, S);
7461   // Compute size of all parameters.
7462   // Start with computing size of a pointer in number of bytes.
7463   // FIXME: There might(should) be a better way of doing this computation!
7464   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7465   CharUnits ParmOffset = PtrSize;
7466   for (auto PI : Decl->parameters()) {
7467     QualType PType = PI->getType();
7468     CharUnits sz = getObjCEncodingTypeSize(PType);
7469     if (sz.isZero())
7470       continue;
7471     assert(sz.isPositive() && "BlockExpr - Incomplete param type");
7472     ParmOffset += sz;
7473   }
7474   // Size of the argument frame
7475   S += charUnitsToString(ParmOffset);
7476   // Block pointer and offset.
7477   S += "@?0";
7478 
7479   // Argument types.
7480   ParmOffset = PtrSize;
7481   for (auto PVDecl : Decl->parameters()) {
7482     QualType PType = PVDecl->getOriginalType();
7483     if (const auto *AT =
7484             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7485       // Use array's original type only if it has known number of
7486       // elements.
7487       if (!isa<ConstantArrayType>(AT))
7488         PType = PVDecl->getType();
7489     } else if (PType->isFunctionType())
7490       PType = PVDecl->getType();
7491     if (getLangOpts().EncodeExtendedBlockSig)
7492       getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7493                                       S, true /*Extended*/);
7494     else
7495       getObjCEncodingForType(PType, S);
7496     S += charUnitsToString(ParmOffset);
7497     ParmOffset += getObjCEncodingTypeSize(PType);
7498   }
7499 
7500   return S;
7501 }
7502 
7503 std::string
7504 ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7505   std::string S;
7506   // Encode result type.
7507   getObjCEncodingForType(Decl->getReturnType(), S);
7508   CharUnits ParmOffset;
7509   // Compute size of all parameters.
7510   for (auto PI : Decl->parameters()) {
7511     QualType PType = PI->getType();
7512     CharUnits sz = getObjCEncodingTypeSize(PType);
7513     if (sz.isZero())
7514       continue;
7515 
7516     assert(sz.isPositive() &&
7517            "getObjCEncodingForFunctionDecl - Incomplete param type");
7518     ParmOffset += sz;
7519   }
7520   S += charUnitsToString(ParmOffset);
7521   ParmOffset = CharUnits::Zero();
7522 
7523   // Argument types.
7524   for (auto PVDecl : Decl->parameters()) {
7525     QualType PType = PVDecl->getOriginalType();
7526     if (const auto *AT =
7527             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7528       // Use array's original type only if it has known number of
7529       // elements.
7530       if (!isa<ConstantArrayType>(AT))
7531         PType = PVDecl->getType();
7532     } else if (PType->isFunctionType())
7533       PType = PVDecl->getType();
7534     getObjCEncodingForType(PType, S);
7535     S += charUnitsToString(ParmOffset);
7536     ParmOffset += getObjCEncodingTypeSize(PType);
7537   }
7538 
7539   return S;
7540 }
7541 
7542 /// getObjCEncodingForMethodParameter - Return the encoded type for a single
7543 /// method parameter or return type. If Extended, include class names and
7544 /// block object types.
7545 void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7546                                                    QualType T, std::string& S,
7547                                                    bool Extended) const {
7548   // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7549   getObjCEncodingForTypeQualifier(QT, S);
7550   // Encode parameter type.
7551   ObjCEncOptions Options = ObjCEncOptions()
7552                                .setExpandPointedToStructures()
7553                                .setExpandStructures()
7554                                .setIsOutermostType();
7555   if (Extended)
7556     Options.setEncodeBlockParameters().setEncodeClassNames();
7557   getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7558 }
7559 
7560 /// getObjCEncodingForMethodDecl - Return the encoded type for this method
7561 /// declaration.
7562 std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7563                                                      bool Extended) const {
7564   // FIXME: This is not very efficient.
7565   // Encode return type.
7566   std::string S;
7567   getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7568                                     Decl->getReturnType(), S, Extended);
7569   // Compute size of all parameters.
7570   // Start with computing size of a pointer in number of bytes.
7571   // FIXME: There might(should) be a better way of doing this computation!
7572   CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7573   // The first two arguments (self and _cmd) are pointers; account for
7574   // their size.
7575   CharUnits ParmOffset = 2 * PtrSize;
7576   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7577        E = Decl->sel_param_end(); PI != E; ++PI) {
7578     QualType PType = (*PI)->getType();
7579     CharUnits sz = getObjCEncodingTypeSize(PType);
7580     if (sz.isZero())
7581       continue;
7582 
7583     assert(sz.isPositive() &&
7584            "getObjCEncodingForMethodDecl - Incomplete param type");
7585     ParmOffset += sz;
7586   }
7587   S += charUnitsToString(ParmOffset);
7588   S += "@0:";
7589   S += charUnitsToString(PtrSize);
7590 
7591   // Argument types.
7592   ParmOffset = 2 * PtrSize;
7593   for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7594        E = Decl->sel_param_end(); PI != E; ++PI) {
7595     const ParmVarDecl *PVDecl = *PI;
7596     QualType PType = PVDecl->getOriginalType();
7597     if (const auto *AT =
7598             dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7599       // Use array's original type only if it has known number of
7600       // elements.
7601       if (!isa<ConstantArrayType>(AT))
7602         PType = PVDecl->getType();
7603     } else if (PType->isFunctionType())
7604       PType = PVDecl->getType();
7605     getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7606                                       PType, S, Extended);
7607     S += charUnitsToString(ParmOffset);
7608     ParmOffset += getObjCEncodingTypeSize(PType);
7609   }
7610 
7611   return S;
7612 }
7613 
7614 ObjCPropertyImplDecl *
7615 ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7616                                       const ObjCPropertyDecl *PD,
7617                                       const Decl *Container) const {
7618   if (!Container)
7619     return nullptr;
7620   if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7621     for (auto *PID : CID->property_impls())
7622       if (PID->getPropertyDecl() == PD)
7623         return PID;
7624   } else {
7625     const auto *OID = cast<ObjCImplementationDecl>(Container);
7626     for (auto *PID : OID->property_impls())
7627       if (PID->getPropertyDecl() == PD)
7628         return PID;
7629   }
7630   return nullptr;
7631 }
7632 
7633 /// getObjCEncodingForPropertyDecl - Return the encoded type for this
7634 /// property declaration. If non-NULL, Container must be either an
7635 /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7636 /// NULL when getting encodings for protocol properties.
7637 /// Property attributes are stored as a comma-delimited C string. The simple
7638 /// attributes readonly and bycopy are encoded as single characters. The
7639 /// parametrized attributes, getter=name, setter=name, and ivar=name, are
7640 /// encoded as single characters, followed by an identifier. Property types
7641 /// are also encoded as a parametrized attribute. The characters used to encode
7642 /// these attributes are defined by the following enumeration:
7643 /// @code
7644 /// enum PropertyAttributes {
7645 /// kPropertyReadOnly = 'R',   // property is read-only.
7646 /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
7647 /// kPropertyByref = '&',  // property is a reference to the value last assigned
7648 /// kPropertyDynamic = 'D',    // property is dynamic
7649 /// kPropertyGetter = 'G',     // followed by getter selector name
7650 /// kPropertySetter = 'S',     // followed by setter selector name
7651 /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
7652 /// kPropertyType = 'T'              // followed by old-style type encoding.
7653 /// kPropertyWeak = 'W'              // 'weak' property
7654 /// kPropertyStrong = 'P'            // property GC'able
7655 /// kPropertyNonAtomic = 'N'         // property non-atomic
7656 /// };
7657 /// @endcode
7658 std::string
7659 ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7660                                            const Decl *Container) const {
7661   // Collect information from the property implementation decl(s).
7662   bool Dynamic = false;
7663   ObjCPropertyImplDecl *SynthesizePID = nullptr;
7664 
7665   if (ObjCPropertyImplDecl *PropertyImpDecl =
7666       getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7667     if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7668       Dynamic = true;
7669     else
7670       SynthesizePID = PropertyImpDecl;
7671   }
7672 
7673   // FIXME: This is not very efficient.
7674   std::string S = "T";
7675 
7676   // Encode result type.
7677   // GCC has some special rules regarding encoding of properties which
7678   // closely resembles encoding of ivars.
7679   getObjCEncodingForPropertyType(PD->getType(), S);
7680 
7681   if (PD->isReadOnly()) {
7682     S += ",R";
7683     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7684       S += ",C";
7685     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7686       S += ",&";
7687     if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7688       S += ",W";
7689   } else {
7690     switch (PD->getSetterKind()) {
7691     case ObjCPropertyDecl::Assign: break;
7692     case ObjCPropertyDecl::Copy:   S += ",C"; break;
7693     case ObjCPropertyDecl::Retain: S += ",&"; break;
7694     case ObjCPropertyDecl::Weak:   S += ",W"; break;
7695     }
7696   }
7697 
7698   // It really isn't clear at all what this means, since properties
7699   // are "dynamic by default".
7700   if (Dynamic)
7701     S += ",D";
7702 
7703   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7704     S += ",N";
7705 
7706   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7707     S += ",G";
7708     S += PD->getGetterName().getAsString();
7709   }
7710 
7711   if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7712     S += ",S";
7713     S += PD->getSetterName().getAsString();
7714   }
7715 
7716   if (SynthesizePID) {
7717     const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7718     S += ",V";
7719     S += OID->getNameAsString();
7720   }
7721 
7722   // FIXME: OBJCGC: weak & strong
7723   return S;
7724 }
7725 
7726 /// getLegacyIntegralTypeEncoding -
7727 /// Another legacy compatibility encoding: 32-bit longs are encoded as
7728 /// 'l' or 'L' , but not always.  For typedefs, we need to use
7729 /// 'i' or 'I' instead if encoding a struct field, or a pointer!
7730 void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7731   if (isa<TypedefType>(PointeeTy.getTypePtr())) {
7732     if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7733       if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7734         PointeeTy = UnsignedIntTy;
7735       else
7736         if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7737           PointeeTy = IntTy;
7738     }
7739   }
7740 }
7741 
7742 void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
7743                                         const FieldDecl *Field,
7744                                         QualType *NotEncodedT) const {
7745   // We follow the behavior of gcc, expanding structures which are
7746   // directly pointed to, and expanding embedded structures. Note that
7747   // these rules are sufficient to prevent recursive encoding of the
7748   // same type.
7749   getObjCEncodingForTypeImpl(T, S,
7750                              ObjCEncOptions()
7751                                  .setExpandPointedToStructures()
7752                                  .setExpandStructures()
7753                                  .setIsOutermostType(),
7754                              Field, NotEncodedT);
7755 }
7756 
7757 void ASTContext::getObjCEncodingForPropertyType(QualType T,
7758                                                 std::string& S) const {
7759   // Encode result type.
7760   // GCC has some special rules regarding encoding of properties which
7761   // closely resembles encoding of ivars.
7762   getObjCEncodingForTypeImpl(T, S,
7763                              ObjCEncOptions()
7764                                  .setExpandPointedToStructures()
7765                                  .setExpandStructures()
7766                                  .setIsOutermostType()
7767                                  .setEncodingProperty(),
7768                              /*Field=*/nullptr);
7769 }
7770 
7771 static char getObjCEncodingForPrimitiveType(const ASTContext *C,
7772                                             const BuiltinType *BT) {
7773     BuiltinType::Kind kind = BT->getKind();
7774     switch (kind) {
7775     case BuiltinType::Void:       return 'v';
7776     case BuiltinType::Bool:       return 'B';
7777     case BuiltinType::Char8:
7778     case BuiltinType::Char_U:
7779     case BuiltinType::UChar:      return 'C';
7780     case BuiltinType::Char16:
7781     case BuiltinType::UShort:     return 'S';
7782     case BuiltinType::Char32:
7783     case BuiltinType::UInt:       return 'I';
7784     case BuiltinType::ULong:
7785         return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
7786     case BuiltinType::UInt128:    return 'T';
7787     case BuiltinType::ULongLong:  return 'Q';
7788     case BuiltinType::Char_S:
7789     case BuiltinType::SChar:      return 'c';
7790     case BuiltinType::Short:      return 's';
7791     case BuiltinType::WChar_S:
7792     case BuiltinType::WChar_U:
7793     case BuiltinType::Int:        return 'i';
7794     case BuiltinType::Long:
7795       return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
7796     case BuiltinType::LongLong:   return 'q';
7797     case BuiltinType::Int128:     return 't';
7798     case BuiltinType::Float:      return 'f';
7799     case BuiltinType::Double:     return 'd';
7800     case BuiltinType::LongDouble: return 'D';
7801     case BuiltinType::NullPtr:    return '*'; // like char*
7802 
7803     case BuiltinType::BFloat16:
7804     case BuiltinType::Float16:
7805     case BuiltinType::Float128:
7806     case BuiltinType::Ibm128:
7807     case BuiltinType::Half:
7808     case BuiltinType::ShortAccum:
7809     case BuiltinType::Accum:
7810     case BuiltinType::LongAccum:
7811     case BuiltinType::UShortAccum:
7812     case BuiltinType::UAccum:
7813     case BuiltinType::ULongAccum:
7814     case BuiltinType::ShortFract:
7815     case BuiltinType::Fract:
7816     case BuiltinType::LongFract:
7817     case BuiltinType::UShortFract:
7818     case BuiltinType::UFract:
7819     case BuiltinType::ULongFract:
7820     case BuiltinType::SatShortAccum:
7821     case BuiltinType::SatAccum:
7822     case BuiltinType::SatLongAccum:
7823     case BuiltinType::SatUShortAccum:
7824     case BuiltinType::SatUAccum:
7825     case BuiltinType::SatULongAccum:
7826     case BuiltinType::SatShortFract:
7827     case BuiltinType::SatFract:
7828     case BuiltinType::SatLongFract:
7829     case BuiltinType::SatUShortFract:
7830     case BuiltinType::SatUFract:
7831     case BuiltinType::SatULongFract:
7832       // FIXME: potentially need @encodes for these!
7833       return ' ';
7834 
7835 #define SVE_TYPE(Name, Id, SingletonId) \
7836     case BuiltinType::Id:
7837 #include "clang/Basic/AArch64SVEACLETypes.def"
7838 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
7839 #include "clang/Basic/RISCVVTypes.def"
7840       {
7841         DiagnosticsEngine &Diags = C->getDiagnostics();
7842         unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
7843                                                 "cannot yet @encode type %0");
7844         Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
7845         return ' ';
7846       }
7847 
7848     case BuiltinType::ObjCId:
7849     case BuiltinType::ObjCClass:
7850     case BuiltinType::ObjCSel:
7851       llvm_unreachable("@encoding ObjC primitive type");
7852 
7853     // OpenCL and placeholder types don't need @encodings.
7854 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7855     case BuiltinType::Id:
7856 #include "clang/Basic/OpenCLImageTypes.def"
7857 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
7858     case BuiltinType::Id:
7859 #include "clang/Basic/OpenCLExtensionTypes.def"
7860     case BuiltinType::OCLEvent:
7861     case BuiltinType::OCLClkEvent:
7862     case BuiltinType::OCLQueue:
7863     case BuiltinType::OCLReserveID:
7864     case BuiltinType::OCLSampler:
7865     case BuiltinType::Dependent:
7866 #define PPC_VECTOR_TYPE(Name, Id, Size) \
7867     case BuiltinType::Id:
7868 #include "clang/Basic/PPCTypes.def"
7869 #define BUILTIN_TYPE(KIND, ID)
7870 #define PLACEHOLDER_TYPE(KIND, ID) \
7871     case BuiltinType::KIND:
7872 #include "clang/AST/BuiltinTypes.def"
7873       llvm_unreachable("invalid builtin type for @encode");
7874     }
7875     llvm_unreachable("invalid BuiltinType::Kind value");
7876 }
7877 
7878 static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
7879   EnumDecl *Enum = ET->getDecl();
7880 
7881   // The encoding of an non-fixed enum type is always 'i', regardless of size.
7882   if (!Enum->isFixed())
7883     return 'i';
7884 
7885   // The encoding of a fixed enum type matches its fixed underlying type.
7886   const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
7887   return getObjCEncodingForPrimitiveType(C, BT);
7888 }
7889 
7890 static void EncodeBitField(const ASTContext *Ctx, std::string& S,
7891                            QualType T, const FieldDecl *FD) {
7892   assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
7893   S += 'b';
7894   // The NeXT runtime encodes bit fields as b followed by the number of bits.
7895   // The GNU runtime requires more information; bitfields are encoded as b,
7896   // then the offset (in bits) of the first element, then the type of the
7897   // bitfield, then the size in bits.  For example, in this structure:
7898   //
7899   // struct
7900   // {
7901   //    int integer;
7902   //    int flags:2;
7903   // };
7904   // On a 32-bit system, the encoding for flags would be b2 for the NeXT
7905   // runtime, but b32i2 for the GNU runtime.  The reason for this extra
7906   // information is not especially sensible, but we're stuck with it for
7907   // compatibility with GCC, although providing it breaks anything that
7908   // actually uses runtime introspection and wants to work on both runtimes...
7909   if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
7910     uint64_t Offset;
7911 
7912     if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
7913       Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
7914                                          IVD);
7915     } else {
7916       const RecordDecl *RD = FD->getParent();
7917       const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
7918       Offset = RL.getFieldOffset(FD->getFieldIndex());
7919     }
7920 
7921     S += llvm::utostr(Offset);
7922 
7923     if (const auto *ET = T->getAs<EnumType>())
7924       S += ObjCEncodingForEnumType(Ctx, ET);
7925     else {
7926       const auto *BT = T->castAs<BuiltinType>();
7927       S += getObjCEncodingForPrimitiveType(Ctx, BT);
7928     }
7929   }
7930   S += llvm::utostr(FD->getBitWidthValue(*Ctx));
7931 }
7932 
7933 // Helper function for determining whether the encoded type string would include
7934 // a template specialization type.
7935 static bool hasTemplateSpecializationInEncodedString(const Type *T,
7936                                                      bool VisitBasesAndFields) {
7937   T = T->getBaseElementTypeUnsafe();
7938 
7939   if (auto *PT = T->getAs<PointerType>())
7940     return hasTemplateSpecializationInEncodedString(
7941         PT->getPointeeType().getTypePtr(), false);
7942 
7943   auto *CXXRD = T->getAsCXXRecordDecl();
7944 
7945   if (!CXXRD)
7946     return false;
7947 
7948   if (isa<ClassTemplateSpecializationDecl>(CXXRD))
7949     return true;
7950 
7951   if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
7952     return false;
7953 
7954   for (auto B : CXXRD->bases())
7955     if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
7956                                                  true))
7957       return true;
7958 
7959   for (auto *FD : CXXRD->fields())
7960     if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
7961                                                  true))
7962       return true;
7963 
7964   return false;
7965 }
7966 
7967 // FIXME: Use SmallString for accumulating string.
7968 void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
7969                                             const ObjCEncOptions Options,
7970                                             const FieldDecl *FD,
7971                                             QualType *NotEncodedT) const {
7972   CanQualType CT = getCanonicalType(T);
7973   switch (CT->getTypeClass()) {
7974   case Type::Builtin:
7975   case Type::Enum:
7976     if (FD && FD->isBitField())
7977       return EncodeBitField(this, S, T, FD);
7978     if (const auto *BT = dyn_cast<BuiltinType>(CT))
7979       S += getObjCEncodingForPrimitiveType(this, BT);
7980     else
7981       S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
7982     return;
7983 
7984   case Type::Complex:
7985     S += 'j';
7986     getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
7987                                ObjCEncOptions(),
7988                                /*Field=*/nullptr);
7989     return;
7990 
7991   case Type::Atomic:
7992     S += 'A';
7993     getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
7994                                ObjCEncOptions(),
7995                                /*Field=*/nullptr);
7996     return;
7997 
7998   // encoding for pointer or reference types.
7999   case Type::Pointer:
8000   case Type::LValueReference:
8001   case Type::RValueReference: {
8002     QualType PointeeTy;
8003     if (isa<PointerType>(CT)) {
8004       const auto *PT = T->castAs<PointerType>();
8005       if (PT->isObjCSelType()) {
8006         S += ':';
8007         return;
8008       }
8009       PointeeTy = PT->getPointeeType();
8010     } else {
8011       PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8012     }
8013 
8014     bool isReadOnly = false;
8015     // For historical/compatibility reasons, the read-only qualifier of the
8016     // pointee gets emitted _before_ the '^'.  The read-only qualifier of
8017     // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8018     // Also, do not emit the 'r' for anything but the outermost type!
8019     if (isa<TypedefType>(T.getTypePtr())) {
8020       if (Options.IsOutermostType() && T.isConstQualified()) {
8021         isReadOnly = true;
8022         S += 'r';
8023       }
8024     } else if (Options.IsOutermostType()) {
8025       QualType P = PointeeTy;
8026       while (auto PT = P->getAs<PointerType>())
8027         P = PT->getPointeeType();
8028       if (P.isConstQualified()) {
8029         isReadOnly = true;
8030         S += 'r';
8031       }
8032     }
8033     if (isReadOnly) {
8034       // Another legacy compatibility encoding. Some ObjC qualifier and type
8035       // combinations need to be rearranged.
8036       // Rewrite "in const" from "nr" to "rn"
8037       if (StringRef(S).endswith("nr"))
8038         S.replace(S.end()-2, S.end(), "rn");
8039     }
8040 
8041     if (PointeeTy->isCharType()) {
8042       // char pointer types should be encoded as '*' unless it is a
8043       // type that has been typedef'd to 'BOOL'.
8044       if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8045         S += '*';
8046         return;
8047       }
8048     } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8049       // GCC binary compat: Need to convert "struct objc_class *" to "#".
8050       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8051         S += '#';
8052         return;
8053       }
8054       // GCC binary compat: Need to convert "struct objc_object *" to "@".
8055       if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8056         S += '@';
8057         return;
8058       }
8059       // If the encoded string for the class includes template names, just emit
8060       // "^v" for pointers to the class.
8061       if (getLangOpts().CPlusPlus &&
8062           (!getLangOpts().EncodeCXXClassTemplateSpec &&
8063            hasTemplateSpecializationInEncodedString(
8064                RTy, Options.ExpandPointedToStructures()))) {
8065         S += "^v";
8066         return;
8067       }
8068       // fall through...
8069     }
8070     S += '^';
8071     getLegacyIntegralTypeEncoding(PointeeTy);
8072 
8073     ObjCEncOptions NewOptions;
8074     if (Options.ExpandPointedToStructures())
8075       NewOptions.setExpandStructures();
8076     getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8077                                /*Field=*/nullptr, NotEncodedT);
8078     return;
8079   }
8080 
8081   case Type::ConstantArray:
8082   case Type::IncompleteArray:
8083   case Type::VariableArray: {
8084     const auto *AT = cast<ArrayType>(CT);
8085 
8086     if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8087       // Incomplete arrays are encoded as a pointer to the array element.
8088       S += '^';
8089 
8090       getObjCEncodingForTypeImpl(
8091           AT->getElementType(), S,
8092           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8093     } else {
8094       S += '[';
8095 
8096       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8097         S += llvm::utostr(CAT->getSize().getZExtValue());
8098       else {
8099         //Variable length arrays are encoded as a regular array with 0 elements.
8100         assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
8101                "Unknown array type!");
8102         S += '0';
8103       }
8104 
8105       getObjCEncodingForTypeImpl(
8106           AT->getElementType(), S,
8107           Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8108           NotEncodedT);
8109       S += ']';
8110     }
8111     return;
8112   }
8113 
8114   case Type::FunctionNoProto:
8115   case Type::FunctionProto:
8116     S += '?';
8117     return;
8118 
8119   case Type::Record: {
8120     RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8121     S += RDecl->isUnion() ? '(' : '{';
8122     // Anonymous structures print as '?'
8123     if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8124       S += II->getName();
8125       if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8126         const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8127         llvm::raw_string_ostream OS(S);
8128         printTemplateArgumentList(OS, TemplateArgs.asArray(),
8129                                   getPrintingPolicy());
8130       }
8131     } else {
8132       S += '?';
8133     }
8134     if (Options.ExpandStructures()) {
8135       S += '=';
8136       if (!RDecl->isUnion()) {
8137         getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8138       } else {
8139         for (const auto *Field : RDecl->fields()) {
8140           if (FD) {
8141             S += '"';
8142             S += Field->getNameAsString();
8143             S += '"';
8144           }
8145 
8146           // Special case bit-fields.
8147           if (Field->isBitField()) {
8148             getObjCEncodingForTypeImpl(Field->getType(), S,
8149                                        ObjCEncOptions().setExpandStructures(),
8150                                        Field);
8151           } else {
8152             QualType qt = Field->getType();
8153             getLegacyIntegralTypeEncoding(qt);
8154             getObjCEncodingForTypeImpl(
8155                 qt, S,
8156                 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8157                 NotEncodedT);
8158           }
8159         }
8160       }
8161     }
8162     S += RDecl->isUnion() ? ')' : '}';
8163     return;
8164   }
8165 
8166   case Type::BlockPointer: {
8167     const auto *BT = T->castAs<BlockPointerType>();
8168     S += "@?"; // Unlike a pointer-to-function, which is "^?".
8169     if (Options.EncodeBlockParameters()) {
8170       const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8171 
8172       S += '<';
8173       // Block return type
8174       getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8175                                  Options.forComponentType(), FD, NotEncodedT);
8176       // Block self
8177       S += "@?";
8178       // Block parameters
8179       if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8180         for (const auto &I : FPT->param_types())
8181           getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8182                                      NotEncodedT);
8183       }
8184       S += '>';
8185     }
8186     return;
8187   }
8188 
8189   case Type::ObjCObject: {
8190     // hack to match legacy encoding of *id and *Class
8191     QualType Ty = getObjCObjectPointerType(CT);
8192     if (Ty->isObjCIdType()) {
8193       S += "{objc_object=}";
8194       return;
8195     }
8196     else if (Ty->isObjCClassType()) {
8197       S += "{objc_class=}";
8198       return;
8199     }
8200     // TODO: Double check to make sure this intentionally falls through.
8201     LLVM_FALLTHROUGH;
8202   }
8203 
8204   case Type::ObjCInterface: {
8205     // Ignore protocol qualifiers when mangling at this level.
8206     // @encode(class_name)
8207     ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8208     S += '{';
8209     S += OI->getObjCRuntimeNameAsString();
8210     if (Options.ExpandStructures()) {
8211       S += '=';
8212       SmallVector<const ObjCIvarDecl*, 32> Ivars;
8213       DeepCollectObjCIvars(OI, true, Ivars);
8214       for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8215         const FieldDecl *Field = Ivars[i];
8216         if (Field->isBitField())
8217           getObjCEncodingForTypeImpl(Field->getType(), S,
8218                                      ObjCEncOptions().setExpandStructures(),
8219                                      Field);
8220         else
8221           getObjCEncodingForTypeImpl(Field->getType(), S,
8222                                      ObjCEncOptions().setExpandStructures(), FD,
8223                                      NotEncodedT);
8224       }
8225     }
8226     S += '}';
8227     return;
8228   }
8229 
8230   case Type::ObjCObjectPointer: {
8231     const auto *OPT = T->castAs<ObjCObjectPointerType>();
8232     if (OPT->isObjCIdType()) {
8233       S += '@';
8234       return;
8235     }
8236 
8237     if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8238       // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8239       // Since this is a binary compatibility issue, need to consult with
8240       // runtime folks. Fortunately, this is a *very* obscure construct.
8241       S += '#';
8242       return;
8243     }
8244 
8245     if (OPT->isObjCQualifiedIdType()) {
8246       getObjCEncodingForTypeImpl(
8247           getObjCIdType(), S,
8248           Options.keepingOnly(ObjCEncOptions()
8249                                   .setExpandPointedToStructures()
8250                                   .setExpandStructures()),
8251           FD);
8252       if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8253         // Note that we do extended encoding of protocol qualifier list
8254         // Only when doing ivar or property encoding.
8255         S += '"';
8256         for (const auto *I : OPT->quals()) {
8257           S += '<';
8258           S += I->getObjCRuntimeNameAsString();
8259           S += '>';
8260         }
8261         S += '"';
8262       }
8263       return;
8264     }
8265 
8266     S += '@';
8267     if (OPT->getInterfaceDecl() &&
8268         (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8269       S += '"';
8270       S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8271       for (const auto *I : OPT->quals()) {
8272         S += '<';
8273         S += I->getObjCRuntimeNameAsString();
8274         S += '>';
8275       }
8276       S += '"';
8277     }
8278     return;
8279   }
8280 
8281   // gcc just blithely ignores member pointers.
8282   // FIXME: we should do better than that.  'M' is available.
8283   case Type::MemberPointer:
8284   // This matches gcc's encoding, even though technically it is insufficient.
8285   //FIXME. We should do a better job than gcc.
8286   case Type::Vector:
8287   case Type::ExtVector:
8288   // Until we have a coherent encoding of these three types, issue warning.
8289     if (NotEncodedT)
8290       *NotEncodedT = T;
8291     return;
8292 
8293   case Type::ConstantMatrix:
8294     if (NotEncodedT)
8295       *NotEncodedT = T;
8296     return;
8297 
8298   case Type::BitInt:
8299     if (NotEncodedT)
8300       *NotEncodedT = T;
8301     return;
8302 
8303   // We could see an undeduced auto type here during error recovery.
8304   // Just ignore it.
8305   case Type::Auto:
8306   case Type::DeducedTemplateSpecialization:
8307     return;
8308 
8309   case Type::Pipe:
8310 #define ABSTRACT_TYPE(KIND, BASE)
8311 #define TYPE(KIND, BASE)
8312 #define DEPENDENT_TYPE(KIND, BASE) \
8313   case Type::KIND:
8314 #define NON_CANONICAL_TYPE(KIND, BASE) \
8315   case Type::KIND:
8316 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8317   case Type::KIND:
8318 #include "clang/AST/TypeNodes.inc"
8319     llvm_unreachable("@encode for dependent type!");
8320   }
8321   llvm_unreachable("bad type kind!");
8322 }
8323 
8324 void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8325                                                  std::string &S,
8326                                                  const FieldDecl *FD,
8327                                                  bool includeVBases,
8328                                                  QualType *NotEncodedT) const {
8329   assert(RDecl && "Expected non-null RecordDecl");
8330   assert(!RDecl->isUnion() && "Should not be called for unions");
8331   if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8332     return;
8333 
8334   const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8335   std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8336   const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8337 
8338   if (CXXRec) {
8339     for (const auto &BI : CXXRec->bases()) {
8340       if (!BI.isVirtual()) {
8341         CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8342         if (base->isEmpty())
8343           continue;
8344         uint64_t offs = toBits(layout.getBaseClassOffset(base));
8345         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8346                                   std::make_pair(offs, base));
8347       }
8348     }
8349   }
8350 
8351   unsigned i = 0;
8352   for (FieldDecl *Field : RDecl->fields()) {
8353     if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8354       continue;
8355     uint64_t offs = layout.getFieldOffset(i);
8356     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8357                               std::make_pair(offs, Field));
8358     ++i;
8359   }
8360 
8361   if (CXXRec && includeVBases) {
8362     for (const auto &BI : CXXRec->vbases()) {
8363       CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8364       if (base->isEmpty())
8365         continue;
8366       uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8367       if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8368           FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8369         FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8370                                   std::make_pair(offs, base));
8371     }
8372   }
8373 
8374   CharUnits size;
8375   if (CXXRec) {
8376     size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8377   } else {
8378     size = layout.getSize();
8379   }
8380 
8381 #ifndef NDEBUG
8382   uint64_t CurOffs = 0;
8383 #endif
8384   std::multimap<uint64_t, NamedDecl *>::iterator
8385     CurLayObj = FieldOrBaseOffsets.begin();
8386 
8387   if (CXXRec && CXXRec->isDynamicClass() &&
8388       (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8389     if (FD) {
8390       S += "\"_vptr$";
8391       std::string recname = CXXRec->getNameAsString();
8392       if (recname.empty()) recname = "?";
8393       S += recname;
8394       S += '"';
8395     }
8396     S += "^^?";
8397 #ifndef NDEBUG
8398     CurOffs += getTypeSize(VoidPtrTy);
8399 #endif
8400   }
8401 
8402   if (!RDecl->hasFlexibleArrayMember()) {
8403     // Mark the end of the structure.
8404     uint64_t offs = toBits(size);
8405     FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8406                               std::make_pair(offs, nullptr));
8407   }
8408 
8409   for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8410 #ifndef NDEBUG
8411     assert(CurOffs <= CurLayObj->first);
8412     if (CurOffs < CurLayObj->first) {
8413       uint64_t padding = CurLayObj->first - CurOffs;
8414       // FIXME: There doesn't seem to be a way to indicate in the encoding that
8415       // packing/alignment of members is different that normal, in which case
8416       // the encoding will be out-of-sync with the real layout.
8417       // If the runtime switches to just consider the size of types without
8418       // taking into account alignment, we could make padding explicit in the
8419       // encoding (e.g. using arrays of chars). The encoding strings would be
8420       // longer then though.
8421       CurOffs += padding;
8422     }
8423 #endif
8424 
8425     NamedDecl *dcl = CurLayObj->second;
8426     if (!dcl)
8427       break; // reached end of structure.
8428 
8429     if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8430       // We expand the bases without their virtual bases since those are going
8431       // in the initial structure. Note that this differs from gcc which
8432       // expands virtual bases each time one is encountered in the hierarchy,
8433       // making the encoding type bigger than it really is.
8434       getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8435                                       NotEncodedT);
8436       assert(!base->isEmpty());
8437 #ifndef NDEBUG
8438       CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8439 #endif
8440     } else {
8441       const auto *field = cast<FieldDecl>(dcl);
8442       if (FD) {
8443         S += '"';
8444         S += field->getNameAsString();
8445         S += '"';
8446       }
8447 
8448       if (field->isBitField()) {
8449         EncodeBitField(this, S, field->getType(), field);
8450 #ifndef NDEBUG
8451         CurOffs += field->getBitWidthValue(*this);
8452 #endif
8453       } else {
8454         QualType qt = field->getType();
8455         getLegacyIntegralTypeEncoding(qt);
8456         getObjCEncodingForTypeImpl(
8457             qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8458             FD, NotEncodedT);
8459 #ifndef NDEBUG
8460         CurOffs += getTypeSize(field->getType());
8461 #endif
8462       }
8463     }
8464   }
8465 }
8466 
8467 void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8468                                                  std::string& S) const {
8469   if (QT & Decl::OBJC_TQ_In)
8470     S += 'n';
8471   if (QT & Decl::OBJC_TQ_Inout)
8472     S += 'N';
8473   if (QT & Decl::OBJC_TQ_Out)
8474     S += 'o';
8475   if (QT & Decl::OBJC_TQ_Bycopy)
8476     S += 'O';
8477   if (QT & Decl::OBJC_TQ_Byref)
8478     S += 'R';
8479   if (QT & Decl::OBJC_TQ_Oneway)
8480     S += 'V';
8481 }
8482 
8483 TypedefDecl *ASTContext::getObjCIdDecl() const {
8484   if (!ObjCIdDecl) {
8485     QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8486     T = getObjCObjectPointerType(T);
8487     ObjCIdDecl = buildImplicitTypedef(T, "id");
8488   }
8489   return ObjCIdDecl;
8490 }
8491 
8492 TypedefDecl *ASTContext::getObjCSelDecl() const {
8493   if (!ObjCSelDecl) {
8494     QualType T = getPointerType(ObjCBuiltinSelTy);
8495     ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8496   }
8497   return ObjCSelDecl;
8498 }
8499 
8500 TypedefDecl *ASTContext::getObjCClassDecl() const {
8501   if (!ObjCClassDecl) {
8502     QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8503     T = getObjCObjectPointerType(T);
8504     ObjCClassDecl = buildImplicitTypedef(T, "Class");
8505   }
8506   return ObjCClassDecl;
8507 }
8508 
8509 ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8510   if (!ObjCProtocolClassDecl) {
8511     ObjCProtocolClassDecl
8512       = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8513                                   SourceLocation(),
8514                                   &Idents.get("Protocol"),
8515                                   /*typeParamList=*/nullptr,
8516                                   /*PrevDecl=*/nullptr,
8517                                   SourceLocation(), true);
8518   }
8519 
8520   return ObjCProtocolClassDecl;
8521 }
8522 
8523 //===----------------------------------------------------------------------===//
8524 // __builtin_va_list Construction Functions
8525 //===----------------------------------------------------------------------===//
8526 
8527 static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8528                                                  StringRef Name) {
8529   // typedef char* __builtin[_ms]_va_list;
8530   QualType T = Context->getPointerType(Context->CharTy);
8531   return Context->buildImplicitTypedef(T, Name);
8532 }
8533 
8534 static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8535   return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8536 }
8537 
8538 static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8539   return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8540 }
8541 
8542 static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8543   // typedef void* __builtin_va_list;
8544   QualType T = Context->getPointerType(Context->VoidTy);
8545   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8546 }
8547 
8548 static TypedefDecl *
8549 CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8550   // struct __va_list
8551   RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8552   if (Context->getLangOpts().CPlusPlus) {
8553     // namespace std { struct __va_list {
8554     auto *NS = NamespaceDecl::Create(
8555         const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8556         /*Inline*/ false, SourceLocation(), SourceLocation(),
8557         &Context->Idents.get("std"),
8558         /*PrevDecl*/ nullptr);
8559     NS->setImplicit();
8560     VaListTagDecl->setDeclContext(NS);
8561   }
8562 
8563   VaListTagDecl->startDefinition();
8564 
8565   const size_t NumFields = 5;
8566   QualType FieldTypes[NumFields];
8567   const char *FieldNames[NumFields];
8568 
8569   // void *__stack;
8570   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8571   FieldNames[0] = "__stack";
8572 
8573   // void *__gr_top;
8574   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8575   FieldNames[1] = "__gr_top";
8576 
8577   // void *__vr_top;
8578   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8579   FieldNames[2] = "__vr_top";
8580 
8581   // int __gr_offs;
8582   FieldTypes[3] = Context->IntTy;
8583   FieldNames[3] = "__gr_offs";
8584 
8585   // int __vr_offs;
8586   FieldTypes[4] = Context->IntTy;
8587   FieldNames[4] = "__vr_offs";
8588 
8589   // Create fields
8590   for (unsigned i = 0; i < NumFields; ++i) {
8591     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8592                                          VaListTagDecl,
8593                                          SourceLocation(),
8594                                          SourceLocation(),
8595                                          &Context->Idents.get(FieldNames[i]),
8596                                          FieldTypes[i], /*TInfo=*/nullptr,
8597                                          /*BitWidth=*/nullptr,
8598                                          /*Mutable=*/false,
8599                                          ICIS_NoInit);
8600     Field->setAccess(AS_public);
8601     VaListTagDecl->addDecl(Field);
8602   }
8603   VaListTagDecl->completeDefinition();
8604   Context->VaListTagDecl = VaListTagDecl;
8605   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8606 
8607   // } __builtin_va_list;
8608   return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8609 }
8610 
8611 static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8612   // typedef struct __va_list_tag {
8613   RecordDecl *VaListTagDecl;
8614 
8615   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8616   VaListTagDecl->startDefinition();
8617 
8618   const size_t NumFields = 5;
8619   QualType FieldTypes[NumFields];
8620   const char *FieldNames[NumFields];
8621 
8622   //   unsigned char gpr;
8623   FieldTypes[0] = Context->UnsignedCharTy;
8624   FieldNames[0] = "gpr";
8625 
8626   //   unsigned char fpr;
8627   FieldTypes[1] = Context->UnsignedCharTy;
8628   FieldNames[1] = "fpr";
8629 
8630   //   unsigned short reserved;
8631   FieldTypes[2] = Context->UnsignedShortTy;
8632   FieldNames[2] = "reserved";
8633 
8634   //   void* overflow_arg_area;
8635   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8636   FieldNames[3] = "overflow_arg_area";
8637 
8638   //   void* reg_save_area;
8639   FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8640   FieldNames[4] = "reg_save_area";
8641 
8642   // Create fields
8643   for (unsigned i = 0; i < NumFields; ++i) {
8644     FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8645                                          SourceLocation(),
8646                                          SourceLocation(),
8647                                          &Context->Idents.get(FieldNames[i]),
8648                                          FieldTypes[i], /*TInfo=*/nullptr,
8649                                          /*BitWidth=*/nullptr,
8650                                          /*Mutable=*/false,
8651                                          ICIS_NoInit);
8652     Field->setAccess(AS_public);
8653     VaListTagDecl->addDecl(Field);
8654   }
8655   VaListTagDecl->completeDefinition();
8656   Context->VaListTagDecl = VaListTagDecl;
8657   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8658 
8659   // } __va_list_tag;
8660   TypedefDecl *VaListTagTypedefDecl =
8661       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8662 
8663   QualType VaListTagTypedefType =
8664     Context->getTypedefType(VaListTagTypedefDecl);
8665 
8666   // typedef __va_list_tag __builtin_va_list[1];
8667   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8668   QualType VaListTagArrayType
8669     = Context->getConstantArrayType(VaListTagTypedefType,
8670                                     Size, nullptr, ArrayType::Normal, 0);
8671   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8672 }
8673 
8674 static TypedefDecl *
8675 CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8676   // struct __va_list_tag {
8677   RecordDecl *VaListTagDecl;
8678   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8679   VaListTagDecl->startDefinition();
8680 
8681   const size_t NumFields = 4;
8682   QualType FieldTypes[NumFields];
8683   const char *FieldNames[NumFields];
8684 
8685   //   unsigned gp_offset;
8686   FieldTypes[0] = Context->UnsignedIntTy;
8687   FieldNames[0] = "gp_offset";
8688 
8689   //   unsigned fp_offset;
8690   FieldTypes[1] = Context->UnsignedIntTy;
8691   FieldNames[1] = "fp_offset";
8692 
8693   //   void* overflow_arg_area;
8694   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8695   FieldNames[2] = "overflow_arg_area";
8696 
8697   //   void* reg_save_area;
8698   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8699   FieldNames[3] = "reg_save_area";
8700 
8701   // Create fields
8702   for (unsigned i = 0; i < NumFields; ++i) {
8703     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8704                                          VaListTagDecl,
8705                                          SourceLocation(),
8706                                          SourceLocation(),
8707                                          &Context->Idents.get(FieldNames[i]),
8708                                          FieldTypes[i], /*TInfo=*/nullptr,
8709                                          /*BitWidth=*/nullptr,
8710                                          /*Mutable=*/false,
8711                                          ICIS_NoInit);
8712     Field->setAccess(AS_public);
8713     VaListTagDecl->addDecl(Field);
8714   }
8715   VaListTagDecl->completeDefinition();
8716   Context->VaListTagDecl = VaListTagDecl;
8717   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8718 
8719   // };
8720 
8721   // typedef struct __va_list_tag __builtin_va_list[1];
8722   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8723   QualType VaListTagArrayType = Context->getConstantArrayType(
8724       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8725   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8726 }
8727 
8728 static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8729   // typedef int __builtin_va_list[4];
8730   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8731   QualType IntArrayType = Context->getConstantArrayType(
8732       Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8733   return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8734 }
8735 
8736 static TypedefDecl *
8737 CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8738   // struct __va_list
8739   RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
8740   if (Context->getLangOpts().CPlusPlus) {
8741     // namespace std { struct __va_list {
8742     NamespaceDecl *NS;
8743     NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
8744                                Context->getTranslationUnitDecl(),
8745                                /*Inline*/false, SourceLocation(),
8746                                SourceLocation(), &Context->Idents.get("std"),
8747                                /*PrevDecl*/ nullptr);
8748     NS->setImplicit();
8749     VaListDecl->setDeclContext(NS);
8750   }
8751 
8752   VaListDecl->startDefinition();
8753 
8754   // void * __ap;
8755   FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8756                                        VaListDecl,
8757                                        SourceLocation(),
8758                                        SourceLocation(),
8759                                        &Context->Idents.get("__ap"),
8760                                        Context->getPointerType(Context->VoidTy),
8761                                        /*TInfo=*/nullptr,
8762                                        /*BitWidth=*/nullptr,
8763                                        /*Mutable=*/false,
8764                                        ICIS_NoInit);
8765   Field->setAccess(AS_public);
8766   VaListDecl->addDecl(Field);
8767 
8768   // };
8769   VaListDecl->completeDefinition();
8770   Context->VaListTagDecl = VaListDecl;
8771 
8772   // typedef struct __va_list __builtin_va_list;
8773   QualType T = Context->getRecordType(VaListDecl);
8774   return Context->buildImplicitTypedef(T, "__builtin_va_list");
8775 }
8776 
8777 static TypedefDecl *
8778 CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
8779   // struct __va_list_tag {
8780   RecordDecl *VaListTagDecl;
8781   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8782   VaListTagDecl->startDefinition();
8783 
8784   const size_t NumFields = 4;
8785   QualType FieldTypes[NumFields];
8786   const char *FieldNames[NumFields];
8787 
8788   //   long __gpr;
8789   FieldTypes[0] = Context->LongTy;
8790   FieldNames[0] = "__gpr";
8791 
8792   //   long __fpr;
8793   FieldTypes[1] = Context->LongTy;
8794   FieldNames[1] = "__fpr";
8795 
8796   //   void *__overflow_arg_area;
8797   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8798   FieldNames[2] = "__overflow_arg_area";
8799 
8800   //   void *__reg_save_area;
8801   FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8802   FieldNames[3] = "__reg_save_area";
8803 
8804   // Create fields
8805   for (unsigned i = 0; i < NumFields; ++i) {
8806     FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8807                                          VaListTagDecl,
8808                                          SourceLocation(),
8809                                          SourceLocation(),
8810                                          &Context->Idents.get(FieldNames[i]),
8811                                          FieldTypes[i], /*TInfo=*/nullptr,
8812                                          /*BitWidth=*/nullptr,
8813                                          /*Mutable=*/false,
8814                                          ICIS_NoInit);
8815     Field->setAccess(AS_public);
8816     VaListTagDecl->addDecl(Field);
8817   }
8818   VaListTagDecl->completeDefinition();
8819   Context->VaListTagDecl = VaListTagDecl;
8820   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8821 
8822   // };
8823 
8824   // typedef __va_list_tag __builtin_va_list[1];
8825   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8826   QualType VaListTagArrayType = Context->getConstantArrayType(
8827       VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8828 
8829   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8830 }
8831 
8832 static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
8833   // typedef struct __va_list_tag {
8834   RecordDecl *VaListTagDecl;
8835   VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8836   VaListTagDecl->startDefinition();
8837 
8838   const size_t NumFields = 3;
8839   QualType FieldTypes[NumFields];
8840   const char *FieldNames[NumFields];
8841 
8842   //   void *CurrentSavedRegisterArea;
8843   FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8844   FieldNames[0] = "__current_saved_reg_area_pointer";
8845 
8846   //   void *SavedRegAreaEnd;
8847   FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8848   FieldNames[1] = "__saved_reg_area_end_pointer";
8849 
8850   //   void *OverflowArea;
8851   FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8852   FieldNames[2] = "__overflow_area_pointer";
8853 
8854   // Create fields
8855   for (unsigned i = 0; i < NumFields; ++i) {
8856     FieldDecl *Field = FieldDecl::Create(
8857         const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
8858         SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
8859         /*TInfo=*/nullptr,
8860         /*BitWidth=*/nullptr,
8861         /*Mutable=*/false, ICIS_NoInit);
8862     Field->setAccess(AS_public);
8863     VaListTagDecl->addDecl(Field);
8864   }
8865   VaListTagDecl->completeDefinition();
8866   Context->VaListTagDecl = VaListTagDecl;
8867   QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8868 
8869   // } __va_list_tag;
8870   TypedefDecl *VaListTagTypedefDecl =
8871       Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8872 
8873   QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
8874 
8875   // typedef __va_list_tag __builtin_va_list[1];
8876   llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8877   QualType VaListTagArrayType = Context->getConstantArrayType(
8878       VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
8879 
8880   return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8881 }
8882 
8883 static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
8884                                      TargetInfo::BuiltinVaListKind Kind) {
8885   switch (Kind) {
8886   case TargetInfo::CharPtrBuiltinVaList:
8887     return CreateCharPtrBuiltinVaListDecl(Context);
8888   case TargetInfo::VoidPtrBuiltinVaList:
8889     return CreateVoidPtrBuiltinVaListDecl(Context);
8890   case TargetInfo::AArch64ABIBuiltinVaList:
8891     return CreateAArch64ABIBuiltinVaListDecl(Context);
8892   case TargetInfo::PowerABIBuiltinVaList:
8893     return CreatePowerABIBuiltinVaListDecl(Context);
8894   case TargetInfo::X86_64ABIBuiltinVaList:
8895     return CreateX86_64ABIBuiltinVaListDecl(Context);
8896   case TargetInfo::PNaClABIBuiltinVaList:
8897     return CreatePNaClABIBuiltinVaListDecl(Context);
8898   case TargetInfo::AAPCSABIBuiltinVaList:
8899     return CreateAAPCSABIBuiltinVaListDecl(Context);
8900   case TargetInfo::SystemZBuiltinVaList:
8901     return CreateSystemZBuiltinVaListDecl(Context);
8902   case TargetInfo::HexagonBuiltinVaList:
8903     return CreateHexagonBuiltinVaListDecl(Context);
8904   }
8905 
8906   llvm_unreachable("Unhandled __builtin_va_list type kind");
8907 }
8908 
8909 TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
8910   if (!BuiltinVaListDecl) {
8911     BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
8912     assert(BuiltinVaListDecl->isImplicit());
8913   }
8914 
8915   return BuiltinVaListDecl;
8916 }
8917 
8918 Decl *ASTContext::getVaListTagDecl() const {
8919   // Force the creation of VaListTagDecl by building the __builtin_va_list
8920   // declaration.
8921   if (!VaListTagDecl)
8922     (void)getBuiltinVaListDecl();
8923 
8924   return VaListTagDecl;
8925 }
8926 
8927 TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
8928   if (!BuiltinMSVaListDecl)
8929     BuiltinMSVaListDecl = CreateMSVaListDecl(this);
8930 
8931   return BuiltinMSVaListDecl;
8932 }
8933 
8934 bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
8935   return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
8936 }
8937 
8938 void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
8939   assert(ObjCConstantStringType.isNull() &&
8940          "'NSConstantString' type already set!");
8941 
8942   ObjCConstantStringType = getObjCInterfaceType(Decl);
8943 }
8944 
8945 /// Retrieve the template name that corresponds to a non-empty
8946 /// lookup.
8947 TemplateName
8948 ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
8949                                       UnresolvedSetIterator End) const {
8950   unsigned size = End - Begin;
8951   assert(size > 1 && "set is not overloaded!");
8952 
8953   void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
8954                           size * sizeof(FunctionTemplateDecl*));
8955   auto *OT = new (memory) OverloadedTemplateStorage(size);
8956 
8957   NamedDecl **Storage = OT->getStorage();
8958   for (UnresolvedSetIterator I = Begin; I != End; ++I) {
8959     NamedDecl *D = *I;
8960     assert(isa<FunctionTemplateDecl>(D) ||
8961            isa<UnresolvedUsingValueDecl>(D) ||
8962            (isa<UsingShadowDecl>(D) &&
8963             isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
8964     *Storage++ = D;
8965   }
8966 
8967   return TemplateName(OT);
8968 }
8969 
8970 /// Retrieve a template name representing an unqualified-id that has been
8971 /// assumed to name a template for ADL purposes.
8972 TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
8973   auto *OT = new (*this) AssumedTemplateStorage(Name);
8974   return TemplateName(OT);
8975 }
8976 
8977 /// Retrieve the template name that represents a qualified
8978 /// template name such as \c std::vector.
8979 TemplateName
8980 ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
8981                                      bool TemplateKeyword,
8982                                      TemplateDecl *Template) const {
8983   assert(NNS && "Missing nested-name-specifier in qualified template name");
8984 
8985   // FIXME: Canonicalization?
8986   llvm::FoldingSetNodeID ID;
8987   QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
8988 
8989   void *InsertPos = nullptr;
8990   QualifiedTemplateName *QTN =
8991     QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
8992   if (!QTN) {
8993     QTN = new (*this, alignof(QualifiedTemplateName))
8994         QualifiedTemplateName(NNS, TemplateKeyword, Template);
8995     QualifiedTemplateNames.InsertNode(QTN, InsertPos);
8996   }
8997 
8998   return TemplateName(QTN);
8999 }
9000 
9001 /// Retrieve the template name that represents a dependent
9002 /// template name such as \c MetaFun::template apply.
9003 TemplateName
9004 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9005                                      const IdentifierInfo *Name) const {
9006   assert((!NNS || NNS->isDependent()) &&
9007          "Nested name specifier must be dependent");
9008 
9009   llvm::FoldingSetNodeID ID;
9010   DependentTemplateName::Profile(ID, NNS, Name);
9011 
9012   void *InsertPos = nullptr;
9013   DependentTemplateName *QTN =
9014     DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9015 
9016   if (QTN)
9017     return TemplateName(QTN);
9018 
9019   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9020   if (CanonNNS == NNS) {
9021     QTN = new (*this, alignof(DependentTemplateName))
9022         DependentTemplateName(NNS, Name);
9023   } else {
9024     TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9025     QTN = new (*this, alignof(DependentTemplateName))
9026         DependentTemplateName(NNS, Name, Canon);
9027     DependentTemplateName *CheckQTN =
9028       DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9029     assert(!CheckQTN && "Dependent type name canonicalization broken");
9030     (void)CheckQTN;
9031   }
9032 
9033   DependentTemplateNames.InsertNode(QTN, InsertPos);
9034   return TemplateName(QTN);
9035 }
9036 
9037 /// Retrieve the template name that represents a dependent
9038 /// template name such as \c MetaFun::template operator+.
9039 TemplateName
9040 ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9041                                      OverloadedOperatorKind Operator) const {
9042   assert((!NNS || NNS->isDependent()) &&
9043          "Nested name specifier must be dependent");
9044 
9045   llvm::FoldingSetNodeID ID;
9046   DependentTemplateName::Profile(ID, NNS, Operator);
9047 
9048   void *InsertPos = nullptr;
9049   DependentTemplateName *QTN
9050     = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9051 
9052   if (QTN)
9053     return TemplateName(QTN);
9054 
9055   NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9056   if (CanonNNS == NNS) {
9057     QTN = new (*this, alignof(DependentTemplateName))
9058         DependentTemplateName(NNS, Operator);
9059   } else {
9060     TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9061     QTN = new (*this, alignof(DependentTemplateName))
9062         DependentTemplateName(NNS, Operator, Canon);
9063 
9064     DependentTemplateName *CheckQTN
9065       = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9066     assert(!CheckQTN && "Dependent template name canonicalization broken");
9067     (void)CheckQTN;
9068   }
9069 
9070   DependentTemplateNames.InsertNode(QTN, InsertPos);
9071   return TemplateName(QTN);
9072 }
9073 
9074 TemplateName
9075 ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
9076                                          TemplateName replacement) const {
9077   llvm::FoldingSetNodeID ID;
9078   SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
9079 
9080   void *insertPos = nullptr;
9081   SubstTemplateTemplateParmStorage *subst
9082     = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9083 
9084   if (!subst) {
9085     subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
9086     SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9087   }
9088 
9089   return TemplateName(subst);
9090 }
9091 
9092 TemplateName
9093 ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
9094                                        const TemplateArgument &ArgPack) const {
9095   auto &Self = const_cast<ASTContext &>(*this);
9096   llvm::FoldingSetNodeID ID;
9097   SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
9098 
9099   void *InsertPos = nullptr;
9100   SubstTemplateTemplateParmPackStorage *Subst
9101     = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9102 
9103   if (!Subst) {
9104     Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
9105                                                            ArgPack.pack_size(),
9106                                                          ArgPack.pack_begin());
9107     SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9108   }
9109 
9110   return TemplateName(Subst);
9111 }
9112 
9113 /// getFromTargetType - Given one of the integer types provided by
9114 /// TargetInfo, produce the corresponding type. The unsigned @p Type
9115 /// is actually a value of type @c TargetInfo::IntType.
9116 CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9117   switch (Type) {
9118   case TargetInfo::NoInt: return {};
9119   case TargetInfo::SignedChar: return SignedCharTy;
9120   case TargetInfo::UnsignedChar: return UnsignedCharTy;
9121   case TargetInfo::SignedShort: return ShortTy;
9122   case TargetInfo::UnsignedShort: return UnsignedShortTy;
9123   case TargetInfo::SignedInt: return IntTy;
9124   case TargetInfo::UnsignedInt: return UnsignedIntTy;
9125   case TargetInfo::SignedLong: return LongTy;
9126   case TargetInfo::UnsignedLong: return UnsignedLongTy;
9127   case TargetInfo::SignedLongLong: return LongLongTy;
9128   case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9129   }
9130 
9131   llvm_unreachable("Unhandled TargetInfo::IntType value");
9132 }
9133 
9134 //===----------------------------------------------------------------------===//
9135 //                        Type Predicates.
9136 //===----------------------------------------------------------------------===//
9137 
9138 /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9139 /// garbage collection attribute.
9140 ///
9141 Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9142   if (getLangOpts().getGC() == LangOptions::NonGC)
9143     return Qualifiers::GCNone;
9144 
9145   assert(getLangOpts().ObjC);
9146   Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9147 
9148   // Default behaviour under objective-C's gc is for ObjC pointers
9149   // (or pointers to them) be treated as though they were declared
9150   // as __strong.
9151   if (GCAttrs == Qualifiers::GCNone) {
9152     if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9153       return Qualifiers::Strong;
9154     else if (Ty->isPointerType())
9155       return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9156   } else {
9157     // It's not valid to set GC attributes on anything that isn't a
9158     // pointer.
9159 #ifndef NDEBUG
9160     QualType CT = Ty->getCanonicalTypeInternal();
9161     while (const auto *AT = dyn_cast<ArrayType>(CT))
9162       CT = AT->getElementType();
9163     assert(CT->isAnyPointerType() || CT->isBlockPointerType());
9164 #endif
9165   }
9166   return GCAttrs;
9167 }
9168 
9169 //===----------------------------------------------------------------------===//
9170 //                        Type Compatibility Testing
9171 //===----------------------------------------------------------------------===//
9172 
9173 /// areCompatVectorTypes - Return true if the two specified vector types are
9174 /// compatible.
9175 static bool areCompatVectorTypes(const VectorType *LHS,
9176                                  const VectorType *RHS) {
9177   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9178   return LHS->getElementType() == RHS->getElementType() &&
9179          LHS->getNumElements() == RHS->getNumElements();
9180 }
9181 
9182 /// areCompatMatrixTypes - Return true if the two specified matrix types are
9183 /// compatible.
9184 static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9185                                  const ConstantMatrixType *RHS) {
9186   assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
9187   return LHS->getElementType() == RHS->getElementType() &&
9188          LHS->getNumRows() == RHS->getNumRows() &&
9189          LHS->getNumColumns() == RHS->getNumColumns();
9190 }
9191 
9192 bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9193                                           QualType SecondVec) {
9194   assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
9195   assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
9196 
9197   if (hasSameUnqualifiedType(FirstVec, SecondVec))
9198     return true;
9199 
9200   // Treat Neon vector types and most AltiVec vector types as if they are the
9201   // equivalent GCC vector types.
9202   const auto *First = FirstVec->castAs<VectorType>();
9203   const auto *Second = SecondVec->castAs<VectorType>();
9204   if (First->getNumElements() == Second->getNumElements() &&
9205       hasSameType(First->getElementType(), Second->getElementType()) &&
9206       First->getVectorKind() != VectorType::AltiVecPixel &&
9207       First->getVectorKind() != VectorType::AltiVecBool &&
9208       Second->getVectorKind() != VectorType::AltiVecPixel &&
9209       Second->getVectorKind() != VectorType::AltiVecBool &&
9210       First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9211       First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9212       Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9213       Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
9214     return true;
9215 
9216   return false;
9217 }
9218 
9219 /// getSVETypeSize - Return SVE vector or predicate register size.
9220 static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9221   assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type");
9222   return Ty->getKind() == BuiltinType::SveBool
9223              ? (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth()
9224              : Context.getLangOpts().VScaleMin * 128;
9225 }
9226 
9227 bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9228                                        QualType SecondType) {
9229   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9230           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9231          "Expected SVE builtin type and vector type!");
9232 
9233   auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9234     if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9235       if (const auto *VT = SecondType->getAs<VectorType>()) {
9236         // Predicates have the same representation as uint8 so we also have to
9237         // check the kind to make these types incompatible.
9238         if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9239           return BT->getKind() == BuiltinType::SveBool;
9240         else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9241           return VT->getElementType().getCanonicalType() ==
9242                  FirstType->getSveEltType(*this);
9243         else if (VT->getVectorKind() == VectorType::GenericVector)
9244           return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9245                  hasSameType(VT->getElementType(),
9246                              getBuiltinVectorTypeInfo(BT).ElementType);
9247       }
9248     }
9249     return false;
9250   };
9251 
9252   return IsValidCast(FirstType, SecondType) ||
9253          IsValidCast(SecondType, FirstType);
9254 }
9255 
9256 bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9257                                           QualType SecondType) {
9258   assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
9259           (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
9260          "Expected SVE builtin type and vector type!");
9261 
9262   auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9263     const auto *BT = FirstType->getAs<BuiltinType>();
9264     if (!BT)
9265       return false;
9266 
9267     const auto *VecTy = SecondType->getAs<VectorType>();
9268     if (VecTy &&
9269         (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9270          VecTy->getVectorKind() == VectorType::GenericVector)) {
9271       const LangOptions::LaxVectorConversionKind LVCKind =
9272           getLangOpts().getLaxVectorConversions();
9273 
9274       // Can not convert between sve predicates and sve vectors because of
9275       // different size.
9276       if (BT->getKind() == BuiltinType::SveBool &&
9277           VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9278         return false;
9279 
9280       // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9281       // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9282       // converts to VLAT and VLAT implicitly converts to GNUT."
9283       // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9284       // predicates.
9285       if (VecTy->getVectorKind() == VectorType::GenericVector &&
9286           getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9287         return false;
9288 
9289       // If -flax-vector-conversions=all is specified, the types are
9290       // certainly compatible.
9291       if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9292         return true;
9293 
9294       // If -flax-vector-conversions=integer is specified, the types are
9295       // compatible if the elements are integer types.
9296       if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9297         return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9298                FirstType->getSveEltType(*this)->isIntegerType();
9299     }
9300 
9301     return false;
9302   };
9303 
9304   return IsLaxCompatible(FirstType, SecondType) ||
9305          IsLaxCompatible(SecondType, FirstType);
9306 }
9307 
9308 bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9309   while (true) {
9310     // __strong id
9311     if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9312       if (Attr->getAttrKind() == attr::ObjCOwnership)
9313         return true;
9314 
9315       Ty = Attr->getModifiedType();
9316 
9317     // X *__strong (...)
9318     } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9319       Ty = Paren->getInnerType();
9320 
9321     // We do not want to look through typedefs, typeof(expr),
9322     // typeof(type), or any other way that the type is somehow
9323     // abstracted.
9324     } else {
9325       return false;
9326     }
9327   }
9328 }
9329 
9330 //===----------------------------------------------------------------------===//
9331 // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9332 //===----------------------------------------------------------------------===//
9333 
9334 /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9335 /// inheritance hierarchy of 'rProto'.
9336 bool
9337 ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9338                                            ObjCProtocolDecl *rProto) const {
9339   if (declaresSameEntity(lProto, rProto))
9340     return true;
9341   for (auto *PI : rProto->protocols())
9342     if (ProtocolCompatibleWithProtocol(lProto, PI))
9343       return true;
9344   return false;
9345 }
9346 
9347 /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
9348 /// Class<pr1, ...>.
9349 bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9350     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9351   for (auto *lhsProto : lhs->quals()) {
9352     bool match = false;
9353     for (auto *rhsProto : rhs->quals()) {
9354       if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9355         match = true;
9356         break;
9357       }
9358     }
9359     if (!match)
9360       return false;
9361   }
9362   return true;
9363 }
9364 
9365 /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9366 /// ObjCQualifiedIDType.
9367 bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9368     const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9369     bool compare) {
9370   // Allow id<P..> and an 'id' in all cases.
9371   if (lhs->isObjCIdType() || rhs->isObjCIdType())
9372     return true;
9373 
9374   // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9375   if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9376       rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9377     return false;
9378 
9379   if (lhs->isObjCQualifiedIdType()) {
9380     if (rhs->qual_empty()) {
9381       // If the RHS is a unqualified interface pointer "NSString*",
9382       // make sure we check the class hierarchy.
9383       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9384         for (auto *I : lhs->quals()) {
9385           // when comparing an id<P> on lhs with a static type on rhs,
9386           // see if static class implements all of id's protocols, directly or
9387           // through its super class and categories.
9388           if (!rhsID->ClassImplementsProtocol(I, true))
9389             return false;
9390         }
9391       }
9392       // If there are no qualifiers and no interface, we have an 'id'.
9393       return true;
9394     }
9395     // Both the right and left sides have qualifiers.
9396     for (auto *lhsProto : lhs->quals()) {
9397       bool match = false;
9398 
9399       // when comparing an id<P> on lhs with a static type on rhs,
9400       // see if static class implements all of id's protocols, directly or
9401       // through its super class and categories.
9402       for (auto *rhsProto : rhs->quals()) {
9403         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9404             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9405           match = true;
9406           break;
9407         }
9408       }
9409       // If the RHS is a qualified interface pointer "NSString<P>*",
9410       // make sure we check the class hierarchy.
9411       if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9412         for (auto *I : lhs->quals()) {
9413           // when comparing an id<P> on lhs with a static type on rhs,
9414           // see if static class implements all of id's protocols, directly or
9415           // through its super class and categories.
9416           if (rhsID->ClassImplementsProtocol(I, true)) {
9417             match = true;
9418             break;
9419           }
9420         }
9421       }
9422       if (!match)
9423         return false;
9424     }
9425 
9426     return true;
9427   }
9428 
9429   assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
9430 
9431   if (lhs->getInterfaceType()) {
9432     // If both the right and left sides have qualifiers.
9433     for (auto *lhsProto : lhs->quals()) {
9434       bool match = false;
9435 
9436       // when comparing an id<P> on rhs with a static type on lhs,
9437       // see if static class implements all of id's protocols, directly or
9438       // through its super class and categories.
9439       // First, lhs protocols in the qualifier list must be found, direct
9440       // or indirect in rhs's qualifier list or it is a mismatch.
9441       for (auto *rhsProto : rhs->quals()) {
9442         if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9443             (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9444           match = true;
9445           break;
9446         }
9447       }
9448       if (!match)
9449         return false;
9450     }
9451 
9452     // Static class's protocols, or its super class or category protocols
9453     // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9454     if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9455       llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9456       CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9457       // This is rather dubious but matches gcc's behavior. If lhs has
9458       // no type qualifier and its class has no static protocol(s)
9459       // assume that it is mismatch.
9460       if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9461         return false;
9462       for (auto *lhsProto : LHSInheritedProtocols) {
9463         bool match = false;
9464         for (auto *rhsProto : rhs->quals()) {
9465           if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9466               (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9467             match = true;
9468             break;
9469           }
9470         }
9471         if (!match)
9472           return false;
9473       }
9474     }
9475     return true;
9476   }
9477   return false;
9478 }
9479 
9480 /// canAssignObjCInterfaces - Return true if the two interface types are
9481 /// compatible for assignment from RHS to LHS.  This handles validation of any
9482 /// protocol qualifiers on the LHS or RHS.
9483 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9484                                          const ObjCObjectPointerType *RHSOPT) {
9485   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9486   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9487 
9488   // If either type represents the built-in 'id' type, return true.
9489   if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9490     return true;
9491 
9492   // Function object that propagates a successful result or handles
9493   // __kindof types.
9494   auto finish = [&](bool succeeded) -> bool {
9495     if (succeeded)
9496       return true;
9497 
9498     if (!RHS->isKindOfType())
9499       return false;
9500 
9501     // Strip off __kindof and protocol qualifiers, then check whether
9502     // we can assign the other way.
9503     return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9504                                    LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9505   };
9506 
9507   // Casts from or to id<P> are allowed when the other side has compatible
9508   // protocols.
9509   if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9510     return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9511   }
9512 
9513   // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9514   if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9515     return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9516   }
9517 
9518   // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9519   if (LHS->isObjCClass() && RHS->isObjCClass()) {
9520     return true;
9521   }
9522 
9523   // If we have 2 user-defined types, fall into that path.
9524   if (LHS->getInterface() && RHS->getInterface()) {
9525     return finish(canAssignObjCInterfaces(LHS, RHS));
9526   }
9527 
9528   return false;
9529 }
9530 
9531 /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9532 /// for providing type-safety for objective-c pointers used to pass/return
9533 /// arguments in block literals. When passed as arguments, passing 'A*' where
9534 /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9535 /// not OK. For the return type, the opposite is not OK.
9536 bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9537                                          const ObjCObjectPointerType *LHSOPT,
9538                                          const ObjCObjectPointerType *RHSOPT,
9539                                          bool BlockReturnType) {
9540 
9541   // Function object that propagates a successful result or handles
9542   // __kindof types.
9543   auto finish = [&](bool succeeded) -> bool {
9544     if (succeeded)
9545       return true;
9546 
9547     const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9548     if (!Expected->isKindOfType())
9549       return false;
9550 
9551     // Strip off __kindof and protocol qualifiers, then check whether
9552     // we can assign the other way.
9553     return canAssignObjCInterfacesInBlockPointer(
9554              RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9555              LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9556              BlockReturnType);
9557   };
9558 
9559   if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9560     return true;
9561 
9562   if (LHSOPT->isObjCBuiltinType()) {
9563     return finish(RHSOPT->isObjCBuiltinType() ||
9564                   RHSOPT->isObjCQualifiedIdType());
9565   }
9566 
9567   if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9568     if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9569       // Use for block parameters previous type checking for compatibility.
9570       return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9571                     // Or corrected type checking as in non-compat mode.
9572                     (!BlockReturnType &&
9573                      ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9574     else
9575       return finish(ObjCQualifiedIdTypesAreCompatible(
9576           (BlockReturnType ? LHSOPT : RHSOPT),
9577           (BlockReturnType ? RHSOPT : LHSOPT), false));
9578   }
9579 
9580   const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9581   const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9582   if (LHS && RHS)  { // We have 2 user-defined types.
9583     if (LHS != RHS) {
9584       if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9585         return finish(BlockReturnType);
9586       if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9587         return finish(!BlockReturnType);
9588     }
9589     else
9590       return true;
9591   }
9592   return false;
9593 }
9594 
9595 /// Comparison routine for Objective-C protocols to be used with
9596 /// llvm::array_pod_sort.
9597 static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9598                                       ObjCProtocolDecl * const *rhs) {
9599   return (*lhs)->getName().compare((*rhs)->getName());
9600 }
9601 
9602 /// getIntersectionOfProtocols - This routine finds the intersection of set
9603 /// of protocols inherited from two distinct objective-c pointer objects with
9604 /// the given common base.
9605 /// It is used to build composite qualifier list of the composite type of
9606 /// the conditional expression involving two objective-c pointer objects.
9607 static
9608 void getIntersectionOfProtocols(ASTContext &Context,
9609                                 const ObjCInterfaceDecl *CommonBase,
9610                                 const ObjCObjectPointerType *LHSOPT,
9611                                 const ObjCObjectPointerType *RHSOPT,
9612       SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9613 
9614   const ObjCObjectType* LHS = LHSOPT->getObjectType();
9615   const ObjCObjectType* RHS = RHSOPT->getObjectType();
9616   assert(LHS->getInterface() && "LHS must have an interface base");
9617   assert(RHS->getInterface() && "RHS must have an interface base");
9618 
9619   // Add all of the protocols for the LHS.
9620   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9621 
9622   // Start with the protocol qualifiers.
9623   for (auto proto : LHS->quals()) {
9624     Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9625   }
9626 
9627   // Also add the protocols associated with the LHS interface.
9628   Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9629 
9630   // Add all of the protocols for the RHS.
9631   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9632 
9633   // Start with the protocol qualifiers.
9634   for (auto proto : RHS->quals()) {
9635     Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9636   }
9637 
9638   // Also add the protocols associated with the RHS interface.
9639   Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9640 
9641   // Compute the intersection of the collected protocol sets.
9642   for (auto proto : LHSProtocolSet) {
9643     if (RHSProtocolSet.count(proto))
9644       IntersectionSet.push_back(proto);
9645   }
9646 
9647   // Compute the set of protocols that is implied by either the common type or
9648   // the protocols within the intersection.
9649   llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
9650   Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
9651 
9652   // Remove any implied protocols from the list of inherited protocols.
9653   if (!ImpliedProtocols.empty()) {
9654     llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
9655       return ImpliedProtocols.contains(proto);
9656     });
9657   }
9658 
9659   // Sort the remaining protocols by name.
9660   llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
9661                        compareObjCProtocolsByName);
9662 }
9663 
9664 /// Determine whether the first type is a subtype of the second.
9665 static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
9666                                      QualType rhs) {
9667   // Common case: two object pointers.
9668   const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
9669   const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
9670   if (lhsOPT && rhsOPT)
9671     return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
9672 
9673   // Two block pointers.
9674   const auto *lhsBlock = lhs->getAs<BlockPointerType>();
9675   const auto *rhsBlock = rhs->getAs<BlockPointerType>();
9676   if (lhsBlock && rhsBlock)
9677     return ctx.typesAreBlockPointerCompatible(lhs, rhs);
9678 
9679   // If either is an unqualified 'id' and the other is a block, it's
9680   // acceptable.
9681   if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
9682       (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
9683     return true;
9684 
9685   return false;
9686 }
9687 
9688 // Check that the given Objective-C type argument lists are equivalent.
9689 static bool sameObjCTypeArgs(ASTContext &ctx,
9690                              const ObjCInterfaceDecl *iface,
9691                              ArrayRef<QualType> lhsArgs,
9692                              ArrayRef<QualType> rhsArgs,
9693                              bool stripKindOf) {
9694   if (lhsArgs.size() != rhsArgs.size())
9695     return false;
9696 
9697   ObjCTypeParamList *typeParams = iface->getTypeParamList();
9698   for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
9699     if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
9700       continue;
9701 
9702     switch (typeParams->begin()[i]->getVariance()) {
9703     case ObjCTypeParamVariance::Invariant:
9704       if (!stripKindOf ||
9705           !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
9706                            rhsArgs[i].stripObjCKindOfType(ctx))) {
9707         return false;
9708       }
9709       break;
9710 
9711     case ObjCTypeParamVariance::Covariant:
9712       if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
9713         return false;
9714       break;
9715 
9716     case ObjCTypeParamVariance::Contravariant:
9717       if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
9718         return false;
9719       break;
9720     }
9721   }
9722 
9723   return true;
9724 }
9725 
9726 QualType ASTContext::areCommonBaseCompatible(
9727            const ObjCObjectPointerType *Lptr,
9728            const ObjCObjectPointerType *Rptr) {
9729   const ObjCObjectType *LHS = Lptr->getObjectType();
9730   const ObjCObjectType *RHS = Rptr->getObjectType();
9731   const ObjCInterfaceDecl* LDecl = LHS->getInterface();
9732   const ObjCInterfaceDecl* RDecl = RHS->getInterface();
9733 
9734   if (!LDecl || !RDecl)
9735     return {};
9736 
9737   // When either LHS or RHS is a kindof type, we should return a kindof type.
9738   // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
9739   // kindof(A).
9740   bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
9741 
9742   // Follow the left-hand side up the class hierarchy until we either hit a
9743   // root or find the RHS. Record the ancestors in case we don't find it.
9744   llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
9745     LHSAncestors;
9746   while (true) {
9747     // Record this ancestor. We'll need this if the common type isn't in the
9748     // path from the LHS to the root.
9749     LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
9750 
9751     if (declaresSameEntity(LHS->getInterface(), RDecl)) {
9752       // Get the type arguments.
9753       ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
9754       bool anyChanges = false;
9755       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9756         // Both have type arguments, compare them.
9757         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9758                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9759                               /*stripKindOf=*/true))
9760           return {};
9761       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9762         // If only one has type arguments, the result will not have type
9763         // arguments.
9764         LHSTypeArgs = {};
9765         anyChanges = true;
9766       }
9767 
9768       // Compute the intersection of protocols.
9769       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9770       getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
9771                                  Protocols);
9772       if (!Protocols.empty())
9773         anyChanges = true;
9774 
9775       // If anything in the LHS will have changed, build a new result type.
9776       // If we need to return a kindof type but LHS is not a kindof type, we
9777       // build a new result type.
9778       if (anyChanges || LHS->isKindOfType() != anyKindOf) {
9779         QualType Result = getObjCInterfaceType(LHS->getInterface());
9780         Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
9781                                    anyKindOf || LHS->isKindOfType());
9782         return getObjCObjectPointerType(Result);
9783       }
9784 
9785       return getObjCObjectPointerType(QualType(LHS, 0));
9786     }
9787 
9788     // Find the superclass.
9789     QualType LHSSuperType = LHS->getSuperClassType();
9790     if (LHSSuperType.isNull())
9791       break;
9792 
9793     LHS = LHSSuperType->castAs<ObjCObjectType>();
9794   }
9795 
9796   // We didn't find anything by following the LHS to its root; now check
9797   // the RHS against the cached set of ancestors.
9798   while (true) {
9799     auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
9800     if (KnownLHS != LHSAncestors.end()) {
9801       LHS = KnownLHS->second;
9802 
9803       // Get the type arguments.
9804       ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
9805       bool anyChanges = false;
9806       if (LHS->isSpecialized() && RHS->isSpecialized()) {
9807         // Both have type arguments, compare them.
9808         if (!sameObjCTypeArgs(*this, LHS->getInterface(),
9809                               LHS->getTypeArgs(), RHS->getTypeArgs(),
9810                               /*stripKindOf=*/true))
9811           return {};
9812       } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
9813         // If only one has type arguments, the result will not have type
9814         // arguments.
9815         RHSTypeArgs = {};
9816         anyChanges = true;
9817       }
9818 
9819       // Compute the intersection of protocols.
9820       SmallVector<ObjCProtocolDecl *, 8> Protocols;
9821       getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
9822                                  Protocols);
9823       if (!Protocols.empty())
9824         anyChanges = true;
9825 
9826       // If we need to return a kindof type but RHS is not a kindof type, we
9827       // build a new result type.
9828       if (anyChanges || RHS->isKindOfType() != anyKindOf) {
9829         QualType Result = getObjCInterfaceType(RHS->getInterface());
9830         Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
9831                                    anyKindOf || RHS->isKindOfType());
9832         return getObjCObjectPointerType(Result);
9833       }
9834 
9835       return getObjCObjectPointerType(QualType(RHS, 0));
9836     }
9837 
9838     // Find the superclass of the RHS.
9839     QualType RHSSuperType = RHS->getSuperClassType();
9840     if (RHSSuperType.isNull())
9841       break;
9842 
9843     RHS = RHSSuperType->castAs<ObjCObjectType>();
9844   }
9845 
9846   return {};
9847 }
9848 
9849 bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
9850                                          const ObjCObjectType *RHS) {
9851   assert(LHS->getInterface() && "LHS is not an interface type");
9852   assert(RHS->getInterface() && "RHS is not an interface type");
9853 
9854   // Verify that the base decls are compatible: the RHS must be a subclass of
9855   // the LHS.
9856   ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
9857   bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
9858   if (!IsSuperClass)
9859     return false;
9860 
9861   // If the LHS has protocol qualifiers, determine whether all of them are
9862   // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
9863   // LHS).
9864   if (LHS->getNumProtocols() > 0) {
9865     // OK if conversion of LHS to SuperClass results in narrowing of types
9866     // ; i.e., SuperClass may implement at least one of the protocols
9867     // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
9868     // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
9869     llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
9870     CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
9871     // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
9872     // qualifiers.
9873     for (auto *RHSPI : RHS->quals())
9874       CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
9875     // If there is no protocols associated with RHS, it is not a match.
9876     if (SuperClassInheritedProtocols.empty())
9877       return false;
9878 
9879     for (const auto *LHSProto : LHS->quals()) {
9880       bool SuperImplementsProtocol = false;
9881       for (auto *SuperClassProto : SuperClassInheritedProtocols)
9882         if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
9883           SuperImplementsProtocol = true;
9884           break;
9885         }
9886       if (!SuperImplementsProtocol)
9887         return false;
9888     }
9889   }
9890 
9891   // If the LHS is specialized, we may need to check type arguments.
9892   if (LHS->isSpecialized()) {
9893     // Follow the superclass chain until we've matched the LHS class in the
9894     // hierarchy. This substitutes type arguments through.
9895     const ObjCObjectType *RHSSuper = RHS;
9896     while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
9897       RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
9898 
9899     // If the RHS is specializd, compare type arguments.
9900     if (RHSSuper->isSpecialized() &&
9901         !sameObjCTypeArgs(*this, LHS->getInterface(),
9902                           LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
9903                           /*stripKindOf=*/true)) {
9904       return false;
9905     }
9906   }
9907 
9908   return true;
9909 }
9910 
9911 bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
9912   // get the "pointed to" types
9913   const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
9914   const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
9915 
9916   if (!LHSOPT || !RHSOPT)
9917     return false;
9918 
9919   return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
9920          canAssignObjCInterfaces(RHSOPT, LHSOPT);
9921 }
9922 
9923 bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
9924   return canAssignObjCInterfaces(
9925       getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
9926       getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
9927 }
9928 
9929 /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
9930 /// both shall have the identically qualified version of a compatible type.
9931 /// C99 6.2.7p1: Two types have compatible types if their types are the
9932 /// same. See 6.7.[2,3,5] for additional rules.
9933 bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
9934                                     bool CompareUnqualified) {
9935   if (getLangOpts().CPlusPlus)
9936     return hasSameType(LHS, RHS);
9937 
9938   return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
9939 }
9940 
9941 bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
9942   return typesAreCompatible(LHS, RHS);
9943 }
9944 
9945 bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
9946   return !mergeTypes(LHS, RHS, true).isNull();
9947 }
9948 
9949 /// mergeTransparentUnionType - if T is a transparent union type and a member
9950 /// of T is compatible with SubType, return the merged type, else return
9951 /// QualType()
9952 QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
9953                                                bool OfBlockPointer,
9954                                                bool Unqualified) {
9955   if (const RecordType *UT = T->getAsUnionType()) {
9956     RecordDecl *UD = UT->getDecl();
9957     if (UD->hasAttr<TransparentUnionAttr>()) {
9958       for (const auto *I : UD->fields()) {
9959         QualType ET = I->getType().getUnqualifiedType();
9960         QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
9961         if (!MT.isNull())
9962           return MT;
9963       }
9964     }
9965   }
9966 
9967   return {};
9968 }
9969 
9970 /// mergeFunctionParameterTypes - merge two types which appear as function
9971 /// parameter types
9972 QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
9973                                                  bool OfBlockPointer,
9974                                                  bool Unqualified) {
9975   // GNU extension: two types are compatible if they appear as a function
9976   // argument, one of the types is a transparent union type and the other
9977   // type is compatible with a union member
9978   QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
9979                                               Unqualified);
9980   if (!lmerge.isNull())
9981     return lmerge;
9982 
9983   QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
9984                                               Unqualified);
9985   if (!rmerge.isNull())
9986     return rmerge;
9987 
9988   return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
9989 }
9990 
9991 QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
9992                                         bool OfBlockPointer, bool Unqualified,
9993                                         bool AllowCXX) {
9994   const auto *lbase = lhs->castAs<FunctionType>();
9995   const auto *rbase = rhs->castAs<FunctionType>();
9996   const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
9997   const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
9998   bool allLTypes = true;
9999   bool allRTypes = true;
10000 
10001   // Check return type
10002   QualType retType;
10003   if (OfBlockPointer) {
10004     QualType RHS = rbase->getReturnType();
10005     QualType LHS = lbase->getReturnType();
10006     bool UnqualifiedResult = Unqualified;
10007     if (!UnqualifiedResult)
10008       UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10009     retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10010   }
10011   else
10012     retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10013                          Unqualified);
10014   if (retType.isNull())
10015     return {};
10016 
10017   if (Unqualified)
10018     retType = retType.getUnqualifiedType();
10019 
10020   CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10021   CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10022   if (Unqualified) {
10023     LRetType = LRetType.getUnqualifiedType();
10024     RRetType = RRetType.getUnqualifiedType();
10025   }
10026 
10027   if (getCanonicalType(retType) != LRetType)
10028     allLTypes = false;
10029   if (getCanonicalType(retType) != RRetType)
10030     allRTypes = false;
10031 
10032   // FIXME: double check this
10033   // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10034   //                           rbase->getRegParmAttr() != 0 &&
10035   //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10036   FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10037   FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10038 
10039   // Compatible functions must have compatible calling conventions
10040   if (lbaseInfo.getCC() != rbaseInfo.getCC())
10041     return {};
10042 
10043   // Regparm is part of the calling convention.
10044   if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10045     return {};
10046   if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10047     return {};
10048 
10049   if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10050     return {};
10051   if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10052     return {};
10053   if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10054     return {};
10055 
10056   // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
10057   bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10058 
10059   if (lbaseInfo.getNoReturn() != NoReturn)
10060     allLTypes = false;
10061   if (rbaseInfo.getNoReturn() != NoReturn)
10062     allRTypes = false;
10063 
10064   FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10065 
10066   if (lproto && rproto) { // two C99 style function prototypes
10067     assert((AllowCXX ||
10068             (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
10069            "C++ shouldn't be here");
10070     // Compatible functions must have the same number of parameters
10071     if (lproto->getNumParams() != rproto->getNumParams())
10072       return {};
10073 
10074     // Variadic and non-variadic functions aren't compatible
10075     if (lproto->isVariadic() != rproto->isVariadic())
10076       return {};
10077 
10078     if (lproto->getMethodQuals() != rproto->getMethodQuals())
10079       return {};
10080 
10081     SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10082     bool canUseLeft, canUseRight;
10083     if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10084                                newParamInfos))
10085       return {};
10086 
10087     if (!canUseLeft)
10088       allLTypes = false;
10089     if (!canUseRight)
10090       allRTypes = false;
10091 
10092     // Check parameter type compatibility
10093     SmallVector<QualType, 10> types;
10094     for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10095       QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10096       QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10097       QualType paramType = mergeFunctionParameterTypes(
10098           lParamType, rParamType, OfBlockPointer, Unqualified);
10099       if (paramType.isNull())
10100         return {};
10101 
10102       if (Unqualified)
10103         paramType = paramType.getUnqualifiedType();
10104 
10105       types.push_back(paramType);
10106       if (Unqualified) {
10107         lParamType = lParamType.getUnqualifiedType();
10108         rParamType = rParamType.getUnqualifiedType();
10109       }
10110 
10111       if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10112         allLTypes = false;
10113       if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10114         allRTypes = false;
10115     }
10116 
10117     if (allLTypes) return lhs;
10118     if (allRTypes) return rhs;
10119 
10120     FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10121     EPI.ExtInfo = einfo;
10122     EPI.ExtParameterInfos =
10123         newParamInfos.empty() ? nullptr : newParamInfos.data();
10124     return getFunctionType(retType, types, EPI);
10125   }
10126 
10127   if (lproto) allRTypes = false;
10128   if (rproto) allLTypes = false;
10129 
10130   const FunctionProtoType *proto = lproto ? lproto : rproto;
10131   if (proto) {
10132     assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
10133     if (proto->isVariadic())
10134       return {};
10135     // Check that the types are compatible with the types that
10136     // would result from default argument promotions (C99 6.7.5.3p15).
10137     // The only types actually affected are promotable integer
10138     // types and floats, which would be passed as a different
10139     // type depending on whether the prototype is visible.
10140     for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10141       QualType paramTy = proto->getParamType(i);
10142 
10143       // Look at the converted type of enum types, since that is the type used
10144       // to pass enum values.
10145       if (const auto *Enum = paramTy->getAs<EnumType>()) {
10146         paramTy = Enum->getDecl()->getIntegerType();
10147         if (paramTy.isNull())
10148           return {};
10149       }
10150 
10151       if (paramTy->isPromotableIntegerType() ||
10152           getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10153         return {};
10154     }
10155 
10156     if (allLTypes) return lhs;
10157     if (allRTypes) return rhs;
10158 
10159     FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10160     EPI.ExtInfo = einfo;
10161     return getFunctionType(retType, proto->getParamTypes(), EPI);
10162   }
10163 
10164   if (allLTypes) return lhs;
10165   if (allRTypes) return rhs;
10166   return getFunctionNoProtoType(retType, einfo);
10167 }
10168 
10169 /// Given that we have an enum type and a non-enum type, try to merge them.
10170 static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10171                                      QualType other, bool isBlockReturnType) {
10172   // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10173   // a signed integer type, or an unsigned integer type.
10174   // Compatibility is based on the underlying type, not the promotion
10175   // type.
10176   QualType underlyingType = ET->getDecl()->getIntegerType();
10177   if (underlyingType.isNull())
10178     return {};
10179   if (Context.hasSameType(underlyingType, other))
10180     return other;
10181 
10182   // In block return types, we're more permissive and accept any
10183   // integral type of the same size.
10184   if (isBlockReturnType && other->isIntegerType() &&
10185       Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10186     return other;
10187 
10188   return {};
10189 }
10190 
10191 QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
10192                                 bool OfBlockPointer,
10193                                 bool Unqualified, bool BlockReturnType) {
10194   // For C++ we will not reach this code with reference types (see below),
10195   // for OpenMP variant call overloading we might.
10196   //
10197   // C++ [expr]: If an expression initially has the type "reference to T", the
10198   // type is adjusted to "T" prior to any further analysis, the expression
10199   // designates the object or function denoted by the reference, and the
10200   // expression is an lvalue unless the reference is an rvalue reference and
10201   // the expression is a function call (possibly inside parentheses).
10202   auto *LHSRefTy = LHS->getAs<ReferenceType>();
10203   auto *RHSRefTy = RHS->getAs<ReferenceType>();
10204   if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10205       LHS->getTypeClass() == RHS->getTypeClass())
10206     return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10207                       OfBlockPointer, Unqualified, BlockReturnType);
10208   if (LHSRefTy || RHSRefTy)
10209     return {};
10210 
10211   if (Unqualified) {
10212     LHS = LHS.getUnqualifiedType();
10213     RHS = RHS.getUnqualifiedType();
10214   }
10215 
10216   QualType LHSCan = getCanonicalType(LHS),
10217            RHSCan = getCanonicalType(RHS);
10218 
10219   // If two types are identical, they are compatible.
10220   if (LHSCan == RHSCan)
10221     return LHS;
10222 
10223   // If the qualifiers are different, the types aren't compatible... mostly.
10224   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10225   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10226   if (LQuals != RQuals) {
10227     // If any of these qualifiers are different, we have a type
10228     // mismatch.
10229     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10230         LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10231         LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10232         LQuals.hasUnaligned() != RQuals.hasUnaligned())
10233       return {};
10234 
10235     // Exactly one GC qualifier difference is allowed: __strong is
10236     // okay if the other type has no GC qualifier but is an Objective
10237     // C object pointer (i.e. implicitly strong by default).  We fix
10238     // this by pretending that the unqualified type was actually
10239     // qualified __strong.
10240     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10241     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10242     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10243 
10244     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10245       return {};
10246 
10247     if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10248       return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10249     }
10250     if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10251       return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10252     }
10253     return {};
10254   }
10255 
10256   // Okay, qualifiers are equal.
10257 
10258   Type::TypeClass LHSClass = LHSCan->getTypeClass();
10259   Type::TypeClass RHSClass = RHSCan->getTypeClass();
10260 
10261   // We want to consider the two function types to be the same for these
10262   // comparisons, just force one to the other.
10263   if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10264   if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10265 
10266   // Same as above for arrays
10267   if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10268     LHSClass = Type::ConstantArray;
10269   if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10270     RHSClass = Type::ConstantArray;
10271 
10272   // ObjCInterfaces are just specialized ObjCObjects.
10273   if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10274   if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10275 
10276   // Canonicalize ExtVector -> Vector.
10277   if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10278   if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10279 
10280   // If the canonical type classes don't match.
10281   if (LHSClass != RHSClass) {
10282     // Note that we only have special rules for turning block enum
10283     // returns into block int returns, not vice-versa.
10284     if (const auto *ETy = LHS->getAs<EnumType>()) {
10285       return mergeEnumWithInteger(*this, ETy, RHS, false);
10286     }
10287     if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10288       return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10289     }
10290     // allow block pointer type to match an 'id' type.
10291     if (OfBlockPointer && !BlockReturnType) {
10292        if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10293          return LHS;
10294       if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10295         return RHS;
10296     }
10297 
10298     return {};
10299   }
10300 
10301   // The canonical type classes match.
10302   switch (LHSClass) {
10303 #define TYPE(Class, Base)
10304 #define ABSTRACT_TYPE(Class, Base)
10305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10306 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10307 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
10308 #include "clang/AST/TypeNodes.inc"
10309     llvm_unreachable("Non-canonical and dependent types shouldn't get here");
10310 
10311   case Type::Auto:
10312   case Type::DeducedTemplateSpecialization:
10313   case Type::LValueReference:
10314   case Type::RValueReference:
10315   case Type::MemberPointer:
10316     llvm_unreachable("C++ should never be in mergeTypes");
10317 
10318   case Type::ObjCInterface:
10319   case Type::IncompleteArray:
10320   case Type::VariableArray:
10321   case Type::FunctionProto:
10322   case Type::ExtVector:
10323     llvm_unreachable("Types are eliminated above");
10324 
10325   case Type::Pointer:
10326   {
10327     // Merge two pointer types, while trying to preserve typedef info
10328     QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10329     QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10330     if (Unqualified) {
10331       LHSPointee = LHSPointee.getUnqualifiedType();
10332       RHSPointee = RHSPointee.getUnqualifiedType();
10333     }
10334     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10335                                      Unqualified);
10336     if (ResultType.isNull())
10337       return {};
10338     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10339       return LHS;
10340     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10341       return RHS;
10342     return getPointerType(ResultType);
10343   }
10344   case Type::BlockPointer:
10345   {
10346     // Merge two block pointer types, while trying to preserve typedef info
10347     QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10348     QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10349     if (Unqualified) {
10350       LHSPointee = LHSPointee.getUnqualifiedType();
10351       RHSPointee = RHSPointee.getUnqualifiedType();
10352     }
10353     if (getLangOpts().OpenCL) {
10354       Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10355       Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10356       // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10357       // 6.12.5) thus the following check is asymmetric.
10358       if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10359         return {};
10360       LHSPteeQual.removeAddressSpace();
10361       RHSPteeQual.removeAddressSpace();
10362       LHSPointee =
10363           QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10364       RHSPointee =
10365           QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10366     }
10367     QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10368                                      Unqualified);
10369     if (ResultType.isNull())
10370       return {};
10371     if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10372       return LHS;
10373     if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10374       return RHS;
10375     return getBlockPointerType(ResultType);
10376   }
10377   case Type::Atomic:
10378   {
10379     // Merge two pointer types, while trying to preserve typedef info
10380     QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10381     QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10382     if (Unqualified) {
10383       LHSValue = LHSValue.getUnqualifiedType();
10384       RHSValue = RHSValue.getUnqualifiedType();
10385     }
10386     QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10387                                      Unqualified);
10388     if (ResultType.isNull())
10389       return {};
10390     if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10391       return LHS;
10392     if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10393       return RHS;
10394     return getAtomicType(ResultType);
10395   }
10396   case Type::ConstantArray:
10397   {
10398     const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10399     const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10400     if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10401       return {};
10402 
10403     QualType LHSElem = getAsArrayType(LHS)->getElementType();
10404     QualType RHSElem = getAsArrayType(RHS)->getElementType();
10405     if (Unqualified) {
10406       LHSElem = LHSElem.getUnqualifiedType();
10407       RHSElem = RHSElem.getUnqualifiedType();
10408     }
10409 
10410     QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10411     if (ResultType.isNull())
10412       return {};
10413 
10414     const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10415     const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10416 
10417     // If either side is a variable array, and both are complete, check whether
10418     // the current dimension is definite.
10419     if (LVAT || RVAT) {
10420       auto SizeFetch = [this](const VariableArrayType* VAT,
10421           const ConstantArrayType* CAT)
10422           -> std::pair<bool,llvm::APInt> {
10423         if (VAT) {
10424           Optional<llvm::APSInt> TheInt;
10425           Expr *E = VAT->getSizeExpr();
10426           if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10427             return std::make_pair(true, *TheInt);
10428           return std::make_pair(false, llvm::APSInt());
10429         }
10430         if (CAT)
10431           return std::make_pair(true, CAT->getSize());
10432         return std::make_pair(false, llvm::APInt());
10433       };
10434 
10435       bool HaveLSize, HaveRSize;
10436       llvm::APInt LSize, RSize;
10437       std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10438       std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10439       if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10440         return {}; // Definite, but unequal, array dimension
10441     }
10442 
10443     if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10444       return LHS;
10445     if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10446       return RHS;
10447     if (LCAT)
10448       return getConstantArrayType(ResultType, LCAT->getSize(),
10449                                   LCAT->getSizeExpr(),
10450                                   ArrayType::ArraySizeModifier(), 0);
10451     if (RCAT)
10452       return getConstantArrayType(ResultType, RCAT->getSize(),
10453                                   RCAT->getSizeExpr(),
10454                                   ArrayType::ArraySizeModifier(), 0);
10455     if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10456       return LHS;
10457     if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10458       return RHS;
10459     if (LVAT) {
10460       // FIXME: This isn't correct! But tricky to implement because
10461       // the array's size has to be the size of LHS, but the type
10462       // has to be different.
10463       return LHS;
10464     }
10465     if (RVAT) {
10466       // FIXME: This isn't correct! But tricky to implement because
10467       // the array's size has to be the size of RHS, but the type
10468       // has to be different.
10469       return RHS;
10470     }
10471     if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10472     if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10473     return getIncompleteArrayType(ResultType,
10474                                   ArrayType::ArraySizeModifier(), 0);
10475   }
10476   case Type::FunctionNoProto:
10477     return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
10478   case Type::Record:
10479   case Type::Enum:
10480     return {};
10481   case Type::Builtin:
10482     // Only exactly equal builtin types are compatible, which is tested above.
10483     return {};
10484   case Type::Complex:
10485     // Distinct complex types are incompatible.
10486     return {};
10487   case Type::Vector:
10488     // FIXME: The merged type should be an ExtVector!
10489     if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10490                              RHSCan->castAs<VectorType>()))
10491       return LHS;
10492     return {};
10493   case Type::ConstantMatrix:
10494     if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10495                              RHSCan->castAs<ConstantMatrixType>()))
10496       return LHS;
10497     return {};
10498   case Type::ObjCObject: {
10499     // Check if the types are assignment compatible.
10500     // FIXME: This should be type compatibility, e.g. whether
10501     // "LHS x; RHS x;" at global scope is legal.
10502     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10503                                 RHS->castAs<ObjCObjectType>()))
10504       return LHS;
10505     return {};
10506   }
10507   case Type::ObjCObjectPointer:
10508     if (OfBlockPointer) {
10509       if (canAssignObjCInterfacesInBlockPointer(
10510               LHS->castAs<ObjCObjectPointerType>(),
10511               RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10512         return LHS;
10513       return {};
10514     }
10515     if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10516                                 RHS->castAs<ObjCObjectPointerType>()))
10517       return LHS;
10518     return {};
10519   case Type::Pipe:
10520     assert(LHS != RHS &&
10521            "Equivalent pipe types should have already been handled!");
10522     return {};
10523   case Type::BitInt: {
10524     // Merge two bit-precise int types, while trying to preserve typedef info.
10525     bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10526     bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10527     unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10528     unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10529 
10530     // Like unsigned/int, shouldn't have a type if they don't match.
10531     if (LHSUnsigned != RHSUnsigned)
10532       return {};
10533 
10534     if (LHSBits != RHSBits)
10535       return {};
10536     return LHS;
10537   }
10538   }
10539 
10540   llvm_unreachable("Invalid Type::Class!");
10541 }
10542 
10543 bool ASTContext::mergeExtParameterInfo(
10544     const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10545     bool &CanUseFirst, bool &CanUseSecond,
10546     SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10547   assert(NewParamInfos.empty() && "param info list not empty");
10548   CanUseFirst = CanUseSecond = true;
10549   bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10550   bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10551 
10552   // Fast path: if the first type doesn't have ext parameter infos,
10553   // we match if and only if the second type also doesn't have them.
10554   if (!FirstHasInfo && !SecondHasInfo)
10555     return true;
10556 
10557   bool NeedParamInfo = false;
10558   size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10559                           : SecondFnType->getExtParameterInfos().size();
10560 
10561   for (size_t I = 0; I < E; ++I) {
10562     FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10563     if (FirstHasInfo)
10564       FirstParam = FirstFnType->getExtParameterInfo(I);
10565     if (SecondHasInfo)
10566       SecondParam = SecondFnType->getExtParameterInfo(I);
10567 
10568     // Cannot merge unless everything except the noescape flag matches.
10569     if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10570       return false;
10571 
10572     bool FirstNoEscape = FirstParam.isNoEscape();
10573     bool SecondNoEscape = SecondParam.isNoEscape();
10574     bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10575     NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10576     if (NewParamInfos.back().getOpaqueValue())
10577       NeedParamInfo = true;
10578     if (FirstNoEscape != IsNoEscape)
10579       CanUseFirst = false;
10580     if (SecondNoEscape != IsNoEscape)
10581       CanUseSecond = false;
10582   }
10583 
10584   if (!NeedParamInfo)
10585     NewParamInfos.clear();
10586 
10587   return true;
10588 }
10589 
10590 void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10591   ObjCLayouts[CD] = nullptr;
10592 }
10593 
10594 /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10595 /// 'RHS' attributes and returns the merged version; including for function
10596 /// return types.
10597 QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10598   QualType LHSCan = getCanonicalType(LHS),
10599   RHSCan = getCanonicalType(RHS);
10600   // If two types are identical, they are compatible.
10601   if (LHSCan == RHSCan)
10602     return LHS;
10603   if (RHSCan->isFunctionType()) {
10604     if (!LHSCan->isFunctionType())
10605       return {};
10606     QualType OldReturnType =
10607         cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10608     QualType NewReturnType =
10609         cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10610     QualType ResReturnType =
10611       mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10612     if (ResReturnType.isNull())
10613       return {};
10614     if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10615       // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10616       // In either case, use OldReturnType to build the new function type.
10617       const auto *F = LHS->castAs<FunctionType>();
10618       if (const auto *FPT = cast<FunctionProtoType>(F)) {
10619         FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10620         EPI.ExtInfo = getFunctionExtInfo(LHS);
10621         QualType ResultType =
10622             getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
10623         return ResultType;
10624       }
10625     }
10626     return {};
10627   }
10628 
10629   // If the qualifiers are different, the types can still be merged.
10630   Qualifiers LQuals = LHSCan.getLocalQualifiers();
10631   Qualifiers RQuals = RHSCan.getLocalQualifiers();
10632   if (LQuals != RQuals) {
10633     // If any of these qualifiers are different, we have a type mismatch.
10634     if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10635         LQuals.getAddressSpace() != RQuals.getAddressSpace())
10636       return {};
10637 
10638     // Exactly one GC qualifier difference is allowed: __strong is
10639     // okay if the other type has no GC qualifier but is an Objective
10640     // C object pointer (i.e. implicitly strong by default).  We fix
10641     // this by pretending that the unqualified type was actually
10642     // qualified __strong.
10643     Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10644     Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10645     assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
10646 
10647     if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10648       return {};
10649 
10650     if (GC_L == Qualifiers::Strong)
10651       return LHS;
10652     if (GC_R == Qualifiers::Strong)
10653       return RHS;
10654     return {};
10655   }
10656 
10657   if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
10658     QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10659     QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
10660     QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
10661     if (ResQT == LHSBaseQT)
10662       return LHS;
10663     if (ResQT == RHSBaseQT)
10664       return RHS;
10665   }
10666   return {};
10667 }
10668 
10669 //===----------------------------------------------------------------------===//
10670 //                         Integer Predicates
10671 //===----------------------------------------------------------------------===//
10672 
10673 unsigned ASTContext::getIntWidth(QualType T) const {
10674   if (const auto *ET = T->getAs<EnumType>())
10675     T = ET->getDecl()->getIntegerType();
10676   if (T->isBooleanType())
10677     return 1;
10678   if (const auto *EIT = T->getAs<BitIntType>())
10679     return EIT->getNumBits();
10680   // For builtin types, just use the standard type sizing method
10681   return (unsigned)getTypeSize(T);
10682 }
10683 
10684 QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
10685   assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
10686          "Unexpected type");
10687 
10688   // Turn <4 x signed int> -> <4 x unsigned int>
10689   if (const auto *VTy = T->getAs<VectorType>())
10690     return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
10691                          VTy->getNumElements(), VTy->getVectorKind());
10692 
10693   // For _BitInt, return an unsigned _BitInt with same width.
10694   if (const auto *EITy = T->getAs<BitIntType>())
10695     return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
10696 
10697   // For enums, get the underlying integer type of the enum, and let the general
10698   // integer type signchanging code handle it.
10699   if (const auto *ETy = T->getAs<EnumType>())
10700     T = ETy->getDecl()->getIntegerType();
10701 
10702   switch (T->castAs<BuiltinType>()->getKind()) {
10703   case BuiltinType::Char_S:
10704   case BuiltinType::SChar:
10705     return UnsignedCharTy;
10706   case BuiltinType::Short:
10707     return UnsignedShortTy;
10708   case BuiltinType::Int:
10709     return UnsignedIntTy;
10710   case BuiltinType::Long:
10711     return UnsignedLongTy;
10712   case BuiltinType::LongLong:
10713     return UnsignedLongLongTy;
10714   case BuiltinType::Int128:
10715     return UnsignedInt128Ty;
10716   // wchar_t is special. It is either signed or not, but when it's signed,
10717   // there's no matching "unsigned wchar_t". Therefore we return the unsigned
10718   // version of it's underlying type instead.
10719   case BuiltinType::WChar_S:
10720     return getUnsignedWCharType();
10721 
10722   case BuiltinType::ShortAccum:
10723     return UnsignedShortAccumTy;
10724   case BuiltinType::Accum:
10725     return UnsignedAccumTy;
10726   case BuiltinType::LongAccum:
10727     return UnsignedLongAccumTy;
10728   case BuiltinType::SatShortAccum:
10729     return SatUnsignedShortAccumTy;
10730   case BuiltinType::SatAccum:
10731     return SatUnsignedAccumTy;
10732   case BuiltinType::SatLongAccum:
10733     return SatUnsignedLongAccumTy;
10734   case BuiltinType::ShortFract:
10735     return UnsignedShortFractTy;
10736   case BuiltinType::Fract:
10737     return UnsignedFractTy;
10738   case BuiltinType::LongFract:
10739     return UnsignedLongFractTy;
10740   case BuiltinType::SatShortFract:
10741     return SatUnsignedShortFractTy;
10742   case BuiltinType::SatFract:
10743     return SatUnsignedFractTy;
10744   case BuiltinType::SatLongFract:
10745     return SatUnsignedLongFractTy;
10746   default:
10747     llvm_unreachable("Unexpected signed integer or fixed point type");
10748   }
10749 }
10750 
10751 QualType ASTContext::getCorrespondingSignedType(QualType T) const {
10752   assert((T->hasUnsignedIntegerRepresentation() ||
10753           T->isUnsignedFixedPointType()) &&
10754          "Unexpected type");
10755 
10756   // Turn <4 x unsigned int> -> <4 x signed int>
10757   if (const auto *VTy = T->getAs<VectorType>())
10758     return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
10759                          VTy->getNumElements(), VTy->getVectorKind());
10760 
10761   // For _BitInt, return a signed _BitInt with same width.
10762   if (const auto *EITy = T->getAs<BitIntType>())
10763     return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
10764 
10765   // For enums, get the underlying integer type of the enum, and let the general
10766   // integer type signchanging code handle it.
10767   if (const auto *ETy = T->getAs<EnumType>())
10768     T = ETy->getDecl()->getIntegerType();
10769 
10770   switch (T->castAs<BuiltinType>()->getKind()) {
10771   case BuiltinType::Char_U:
10772   case BuiltinType::UChar:
10773     return SignedCharTy;
10774   case BuiltinType::UShort:
10775     return ShortTy;
10776   case BuiltinType::UInt:
10777     return IntTy;
10778   case BuiltinType::ULong:
10779     return LongTy;
10780   case BuiltinType::ULongLong:
10781     return LongLongTy;
10782   case BuiltinType::UInt128:
10783     return Int128Ty;
10784   // wchar_t is special. It is either unsigned or not, but when it's unsigned,
10785   // there's no matching "signed wchar_t". Therefore we return the signed
10786   // version of it's underlying type instead.
10787   case BuiltinType::WChar_U:
10788     return getSignedWCharType();
10789 
10790   case BuiltinType::UShortAccum:
10791     return ShortAccumTy;
10792   case BuiltinType::UAccum:
10793     return AccumTy;
10794   case BuiltinType::ULongAccum:
10795     return LongAccumTy;
10796   case BuiltinType::SatUShortAccum:
10797     return SatShortAccumTy;
10798   case BuiltinType::SatUAccum:
10799     return SatAccumTy;
10800   case BuiltinType::SatULongAccum:
10801     return SatLongAccumTy;
10802   case BuiltinType::UShortFract:
10803     return ShortFractTy;
10804   case BuiltinType::UFract:
10805     return FractTy;
10806   case BuiltinType::ULongFract:
10807     return LongFractTy;
10808   case BuiltinType::SatUShortFract:
10809     return SatShortFractTy;
10810   case BuiltinType::SatUFract:
10811     return SatFractTy;
10812   case BuiltinType::SatULongFract:
10813     return SatLongFractTy;
10814   default:
10815     llvm_unreachable("Unexpected unsigned integer or fixed point type");
10816   }
10817 }
10818 
10819 ASTMutationListener::~ASTMutationListener() = default;
10820 
10821 void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
10822                                             QualType ReturnType) {}
10823 
10824 //===----------------------------------------------------------------------===//
10825 //                          Builtin Type Computation
10826 //===----------------------------------------------------------------------===//
10827 
10828 /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
10829 /// pointer over the consumed characters.  This returns the resultant type.  If
10830 /// AllowTypeModifiers is false then modifier like * are not parsed, just basic
10831 /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
10832 /// a vector of "i*".
10833 ///
10834 /// RequiresICE is filled in on return to indicate whether the value is required
10835 /// to be an Integer Constant Expression.
10836 static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
10837                                   ASTContext::GetBuiltinTypeError &Error,
10838                                   bool &RequiresICE,
10839                                   bool AllowTypeModifiers) {
10840   // Modifiers.
10841   int HowLong = 0;
10842   bool Signed = false, Unsigned = false;
10843   RequiresICE = false;
10844 
10845   // Read the prefixed modifiers first.
10846   bool Done = false;
10847   #ifndef NDEBUG
10848   bool IsSpecial = false;
10849   #endif
10850   while (!Done) {
10851     switch (*Str++) {
10852     default: Done = true; --Str; break;
10853     case 'I':
10854       RequiresICE = true;
10855       break;
10856     case 'S':
10857       assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
10858       assert(!Signed && "Can't use 'S' modifier multiple times!");
10859       Signed = true;
10860       break;
10861     case 'U':
10862       assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
10863       assert(!Unsigned && "Can't use 'U' modifier multiple times!");
10864       Unsigned = true;
10865       break;
10866     case 'L':
10867       assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
10868       assert(HowLong <= 2 && "Can't have LLLL modifier");
10869       ++HowLong;
10870       break;
10871     case 'N':
10872       // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
10873       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10874       assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
10875       #ifndef NDEBUG
10876       IsSpecial = true;
10877       #endif
10878       if (Context.getTargetInfo().getLongWidth() == 32)
10879         ++HowLong;
10880       break;
10881     case 'W':
10882       // This modifier represents int64 type.
10883       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10884       assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
10885       #ifndef NDEBUG
10886       IsSpecial = true;
10887       #endif
10888       switch (Context.getTargetInfo().getInt64Type()) {
10889       default:
10890         llvm_unreachable("Unexpected integer type");
10891       case TargetInfo::SignedLong:
10892         HowLong = 1;
10893         break;
10894       case TargetInfo::SignedLongLong:
10895         HowLong = 2;
10896         break;
10897       }
10898       break;
10899     case 'Z':
10900       // This modifier represents int32 type.
10901       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10902       assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
10903       #ifndef NDEBUG
10904       IsSpecial = true;
10905       #endif
10906       switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
10907       default:
10908         llvm_unreachable("Unexpected integer type");
10909       case TargetInfo::SignedInt:
10910         HowLong = 0;
10911         break;
10912       case TargetInfo::SignedLong:
10913         HowLong = 1;
10914         break;
10915       case TargetInfo::SignedLongLong:
10916         HowLong = 2;
10917         break;
10918       }
10919       break;
10920     case 'O':
10921       assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
10922       assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
10923       #ifndef NDEBUG
10924       IsSpecial = true;
10925       #endif
10926       if (Context.getLangOpts().OpenCL)
10927         HowLong = 1;
10928       else
10929         HowLong = 2;
10930       break;
10931     }
10932   }
10933 
10934   QualType Type;
10935 
10936   // Read the base type.
10937   switch (*Str++) {
10938   default: llvm_unreachable("Unknown builtin type letter!");
10939   case 'x':
10940     assert(HowLong == 0 && !Signed && !Unsigned &&
10941            "Bad modifiers used with 'x'!");
10942     Type = Context.Float16Ty;
10943     break;
10944   case 'y':
10945     assert(HowLong == 0 && !Signed && !Unsigned &&
10946            "Bad modifiers used with 'y'!");
10947     Type = Context.BFloat16Ty;
10948     break;
10949   case 'v':
10950     assert(HowLong == 0 && !Signed && !Unsigned &&
10951            "Bad modifiers used with 'v'!");
10952     Type = Context.VoidTy;
10953     break;
10954   case 'h':
10955     assert(HowLong == 0 && !Signed && !Unsigned &&
10956            "Bad modifiers used with 'h'!");
10957     Type = Context.HalfTy;
10958     break;
10959   case 'f':
10960     assert(HowLong == 0 && !Signed && !Unsigned &&
10961            "Bad modifiers used with 'f'!");
10962     Type = Context.FloatTy;
10963     break;
10964   case 'd':
10965     assert(HowLong < 3 && !Signed && !Unsigned &&
10966            "Bad modifiers used with 'd'!");
10967     if (HowLong == 1)
10968       Type = Context.LongDoubleTy;
10969     else if (HowLong == 2)
10970       Type = Context.Float128Ty;
10971     else
10972       Type = Context.DoubleTy;
10973     break;
10974   case 's':
10975     assert(HowLong == 0 && "Bad modifiers used with 's'!");
10976     if (Unsigned)
10977       Type = Context.UnsignedShortTy;
10978     else
10979       Type = Context.ShortTy;
10980     break;
10981   case 'i':
10982     if (HowLong == 3)
10983       Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
10984     else if (HowLong == 2)
10985       Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
10986     else if (HowLong == 1)
10987       Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
10988     else
10989       Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
10990     break;
10991   case 'c':
10992     assert(HowLong == 0 && "Bad modifiers used with 'c'!");
10993     if (Signed)
10994       Type = Context.SignedCharTy;
10995     else if (Unsigned)
10996       Type = Context.UnsignedCharTy;
10997     else
10998       Type = Context.CharTy;
10999     break;
11000   case 'b': // boolean
11001     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
11002     Type = Context.BoolTy;
11003     break;
11004   case 'z':  // size_t.
11005     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
11006     Type = Context.getSizeType();
11007     break;
11008   case 'w':  // wchar_t.
11009     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
11010     Type = Context.getWideCharType();
11011     break;
11012   case 'F':
11013     Type = Context.getCFConstantStringType();
11014     break;
11015   case 'G':
11016     Type = Context.getObjCIdType();
11017     break;
11018   case 'H':
11019     Type = Context.getObjCSelType();
11020     break;
11021   case 'M':
11022     Type = Context.getObjCSuperType();
11023     break;
11024   case 'a':
11025     Type = Context.getBuiltinVaListType();
11026     assert(!Type.isNull() && "builtin va list type not initialized!");
11027     break;
11028   case 'A':
11029     // This is a "reference" to a va_list; however, what exactly
11030     // this means depends on how va_list is defined. There are two
11031     // different kinds of va_list: ones passed by value, and ones
11032     // passed by reference.  An example of a by-value va_list is
11033     // x86, where va_list is a char*. An example of by-ref va_list
11034     // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11035     // we want this argument to be a char*&; for x86-64, we want
11036     // it to be a __va_list_tag*.
11037     Type = Context.getBuiltinVaListType();
11038     assert(!Type.isNull() && "builtin va list type not initialized!");
11039     if (Type->isArrayType())
11040       Type = Context.getArrayDecayedType(Type);
11041     else
11042       Type = Context.getLValueReferenceType(Type);
11043     break;
11044   case 'q': {
11045     char *End;
11046     unsigned NumElements = strtoul(Str, &End, 10);
11047     assert(End != Str && "Missing vector size");
11048     Str = End;
11049 
11050     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11051                                              RequiresICE, false);
11052     assert(!RequiresICE && "Can't require vector ICE");
11053 
11054     Type = Context.getScalableVectorType(ElementType, NumElements);
11055     break;
11056   }
11057   case 'V': {
11058     char *End;
11059     unsigned NumElements = strtoul(Str, &End, 10);
11060     assert(End != Str && "Missing vector size");
11061     Str = End;
11062 
11063     QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11064                                              RequiresICE, false);
11065     assert(!RequiresICE && "Can't require vector ICE");
11066 
11067     // TODO: No way to make AltiVec vectors in builtins yet.
11068     Type = Context.getVectorType(ElementType, NumElements,
11069                                  VectorType::GenericVector);
11070     break;
11071   }
11072   case 'E': {
11073     char *End;
11074 
11075     unsigned NumElements = strtoul(Str, &End, 10);
11076     assert(End != Str && "Missing vector size");
11077 
11078     Str = End;
11079 
11080     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11081                                              false);
11082     Type = Context.getExtVectorType(ElementType, NumElements);
11083     break;
11084   }
11085   case 'X': {
11086     QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11087                                              false);
11088     assert(!RequiresICE && "Can't require complex ICE");
11089     Type = Context.getComplexType(ElementType);
11090     break;
11091   }
11092   case 'Y':
11093     Type = Context.getPointerDiffType();
11094     break;
11095   case 'P':
11096     Type = Context.getFILEType();
11097     if (Type.isNull()) {
11098       Error = ASTContext::GE_Missing_stdio;
11099       return {};
11100     }
11101     break;
11102   case 'J':
11103     if (Signed)
11104       Type = Context.getsigjmp_bufType();
11105     else
11106       Type = Context.getjmp_bufType();
11107 
11108     if (Type.isNull()) {
11109       Error = ASTContext::GE_Missing_setjmp;
11110       return {};
11111     }
11112     break;
11113   case 'K':
11114     assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
11115     Type = Context.getucontext_tType();
11116 
11117     if (Type.isNull()) {
11118       Error = ASTContext::GE_Missing_ucontext;
11119       return {};
11120     }
11121     break;
11122   case 'p':
11123     Type = Context.getProcessIDType();
11124     break;
11125   }
11126 
11127   // If there are modifiers and if we're allowed to parse them, go for it.
11128   Done = !AllowTypeModifiers;
11129   while (!Done) {
11130     switch (char c = *Str++) {
11131     default: Done = true; --Str; break;
11132     case '*':
11133     case '&': {
11134       // Both pointers and references can have their pointee types
11135       // qualified with an address space.
11136       char *End;
11137       unsigned AddrSpace = strtoul(Str, &End, 10);
11138       if (End != Str) {
11139         // Note AddrSpace == 0 is not the same as an unspecified address space.
11140         Type = Context.getAddrSpaceQualType(
11141           Type,
11142           Context.getLangASForBuiltinAddressSpace(AddrSpace));
11143         Str = End;
11144       }
11145       if (c == '*')
11146         Type = Context.getPointerType(Type);
11147       else
11148         Type = Context.getLValueReferenceType(Type);
11149       break;
11150     }
11151     // FIXME: There's no way to have a built-in with an rvalue ref arg.
11152     case 'C':
11153       Type = Type.withConst();
11154       break;
11155     case 'D':
11156       Type = Context.getVolatileType(Type);
11157       break;
11158     case 'R':
11159       Type = Type.withRestrict();
11160       break;
11161     }
11162   }
11163 
11164   assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
11165          "Integer constant 'I' type must be an integer");
11166 
11167   return Type;
11168 }
11169 
11170 // On some targets such as PowerPC, some of the builtins are defined with custom
11171 // type descriptors for target-dependent types. These descriptors are decoded in
11172 // other functions, but it may be useful to be able to fall back to default
11173 // descriptor decoding to define builtins mixing target-dependent and target-
11174 // independent types. This function allows decoding one type descriptor with
11175 // default decoding.
11176 QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11177                                    GetBuiltinTypeError &Error, bool &RequireICE,
11178                                    bool AllowTypeModifiers) const {
11179   return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11180 }
11181 
11182 /// GetBuiltinType - Return the type for the specified builtin.
11183 QualType ASTContext::GetBuiltinType(unsigned Id,
11184                                     GetBuiltinTypeError &Error,
11185                                     unsigned *IntegerConstantArgs) const {
11186   const char *TypeStr = BuiltinInfo.getTypeString(Id);
11187   if (TypeStr[0] == '\0') {
11188     Error = GE_Missing_type;
11189     return {};
11190   }
11191 
11192   SmallVector<QualType, 8> ArgTypes;
11193 
11194   bool RequiresICE = false;
11195   Error = GE_None;
11196   QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11197                                        RequiresICE, true);
11198   if (Error != GE_None)
11199     return {};
11200 
11201   assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
11202 
11203   while (TypeStr[0] && TypeStr[0] != '.') {
11204     QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11205     if (Error != GE_None)
11206       return {};
11207 
11208     // If this argument is required to be an IntegerConstantExpression and the
11209     // caller cares, fill in the bitmask we return.
11210     if (RequiresICE && IntegerConstantArgs)
11211       *IntegerConstantArgs |= 1 << ArgTypes.size();
11212 
11213     // Do array -> pointer decay.  The builtin should use the decayed type.
11214     if (Ty->isArrayType())
11215       Ty = getArrayDecayedType(Ty);
11216 
11217     ArgTypes.push_back(Ty);
11218   }
11219 
11220   if (Id == Builtin::BI__GetExceptionInfo)
11221     return {};
11222 
11223   assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
11224          "'.' should only occur at end of builtin type list!");
11225 
11226   bool Variadic = (TypeStr[0] == '.');
11227 
11228   FunctionType::ExtInfo EI(getDefaultCallingConvention(
11229       Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11230   if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11231 
11232 
11233   // We really shouldn't be making a no-proto type here.
11234   if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
11235     return getFunctionNoProtoType(ResType, EI);
11236 
11237   FunctionProtoType::ExtProtoInfo EPI;
11238   EPI.ExtInfo = EI;
11239   EPI.Variadic = Variadic;
11240   if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11241     EPI.ExceptionSpec.Type =
11242         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11243 
11244   return getFunctionType(ResType, ArgTypes, EPI);
11245 }
11246 
11247 static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11248                                              const FunctionDecl *FD) {
11249   if (!FD->isExternallyVisible())
11250     return GVA_Internal;
11251 
11252   // Non-user-provided functions get emitted as weak definitions with every
11253   // use, no matter whether they've been explicitly instantiated etc.
11254   if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
11255     if (!MD->isUserProvided())
11256       return GVA_DiscardableODR;
11257 
11258   GVALinkage External;
11259   switch (FD->getTemplateSpecializationKind()) {
11260   case TSK_Undeclared:
11261   case TSK_ExplicitSpecialization:
11262     External = GVA_StrongExternal;
11263     break;
11264 
11265   case TSK_ExplicitInstantiationDefinition:
11266     return GVA_StrongODR;
11267 
11268   // C++11 [temp.explicit]p10:
11269   //   [ Note: The intent is that an inline function that is the subject of
11270   //   an explicit instantiation declaration will still be implicitly
11271   //   instantiated when used so that the body can be considered for
11272   //   inlining, but that no out-of-line copy of the inline function would be
11273   //   generated in the translation unit. -- end note ]
11274   case TSK_ExplicitInstantiationDeclaration:
11275     return GVA_AvailableExternally;
11276 
11277   case TSK_ImplicitInstantiation:
11278     External = GVA_DiscardableODR;
11279     break;
11280   }
11281 
11282   if (!FD->isInlined())
11283     return External;
11284 
11285   if ((!Context.getLangOpts().CPlusPlus &&
11286        !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11287        !FD->hasAttr<DLLExportAttr>()) ||
11288       FD->hasAttr<GNUInlineAttr>()) {
11289     // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11290 
11291     // GNU or C99 inline semantics. Determine whether this symbol should be
11292     // externally visible.
11293     if (FD->isInlineDefinitionExternallyVisible())
11294       return External;
11295 
11296     // C99 inline semantics, where the symbol is not externally visible.
11297     return GVA_AvailableExternally;
11298   }
11299 
11300   // Functions specified with extern and inline in -fms-compatibility mode
11301   // forcibly get emitted.  While the body of the function cannot be later
11302   // replaced, the function definition cannot be discarded.
11303   if (FD->isMSExternInline())
11304     return GVA_StrongODR;
11305 
11306   return GVA_DiscardableODR;
11307 }
11308 
11309 static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11310                                                 const Decl *D, GVALinkage L) {
11311   // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11312   // dllexport/dllimport on inline functions.
11313   if (D->hasAttr<DLLImportAttr>()) {
11314     if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11315       return GVA_AvailableExternally;
11316   } else if (D->hasAttr<DLLExportAttr>()) {
11317     if (L == GVA_DiscardableODR)
11318       return GVA_StrongODR;
11319   } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11320     // Device-side functions with __global__ attribute must always be
11321     // visible externally so they can be launched from host.
11322     if (D->hasAttr<CUDAGlobalAttr>() &&
11323         (L == GVA_DiscardableODR || L == GVA_Internal))
11324       return GVA_StrongODR;
11325     // Single source offloading languages like CUDA/HIP need to be able to
11326     // access static device variables from host code of the same compilation
11327     // unit. This is done by externalizing the static variable with a shared
11328     // name between the host and device compilation which is the same for the
11329     // same compilation unit whereas different among different compilation
11330     // units.
11331     if (Context.shouldExternalizeStaticVar(D))
11332       return GVA_StrongExternal;
11333   }
11334   return L;
11335 }
11336 
11337 /// Adjust the GVALinkage for a declaration based on what an external AST source
11338 /// knows about whether there can be other definitions of this declaration.
11339 static GVALinkage
11340 adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11341                                           GVALinkage L) {
11342   ExternalASTSource *Source = Ctx.getExternalSource();
11343   if (!Source)
11344     return L;
11345 
11346   switch (Source->hasExternalDefinitions(D)) {
11347   case ExternalASTSource::EK_Never:
11348     // Other translation units rely on us to provide the definition.
11349     if (L == GVA_DiscardableODR)
11350       return GVA_StrongODR;
11351     break;
11352 
11353   case ExternalASTSource::EK_Always:
11354     return GVA_AvailableExternally;
11355 
11356   case ExternalASTSource::EK_ReplyHazy:
11357     break;
11358   }
11359   return L;
11360 }
11361 
11362 GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11363   return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11364            adjustGVALinkageForAttributes(*this, FD,
11365              basicGVALinkageForFunction(*this, FD)));
11366 }
11367 
11368 static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11369                                              const VarDecl *VD) {
11370   if (!VD->isExternallyVisible())
11371     return GVA_Internal;
11372 
11373   if (VD->isStaticLocal()) {
11374     const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11375     while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11376       LexicalContext = LexicalContext->getLexicalParent();
11377 
11378     // ObjC Blocks can create local variables that don't have a FunctionDecl
11379     // LexicalContext.
11380     if (!LexicalContext)
11381       return GVA_DiscardableODR;
11382 
11383     // Otherwise, let the static local variable inherit its linkage from the
11384     // nearest enclosing function.
11385     auto StaticLocalLinkage =
11386         Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11387 
11388     // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11389     // be emitted in any object with references to the symbol for the object it
11390     // contains, whether inline or out-of-line."
11391     // Similar behavior is observed with MSVC. An alternative ABI could use
11392     // StrongODR/AvailableExternally to match the function, but none are
11393     // known/supported currently.
11394     if (StaticLocalLinkage == GVA_StrongODR ||
11395         StaticLocalLinkage == GVA_AvailableExternally)
11396       return GVA_DiscardableODR;
11397     return StaticLocalLinkage;
11398   }
11399 
11400   // MSVC treats in-class initialized static data members as definitions.
11401   // By giving them non-strong linkage, out-of-line definitions won't
11402   // cause link errors.
11403   if (Context.isMSStaticDataMemberInlineDefinition(VD))
11404     return GVA_DiscardableODR;
11405 
11406   // Most non-template variables have strong linkage; inline variables are
11407   // linkonce_odr or (occasionally, for compatibility) weak_odr.
11408   GVALinkage StrongLinkage;
11409   switch (Context.getInlineVariableDefinitionKind(VD)) {
11410   case ASTContext::InlineVariableDefinitionKind::None:
11411     StrongLinkage = GVA_StrongExternal;
11412     break;
11413   case ASTContext::InlineVariableDefinitionKind::Weak:
11414   case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11415     StrongLinkage = GVA_DiscardableODR;
11416     break;
11417   case ASTContext::InlineVariableDefinitionKind::Strong:
11418     StrongLinkage = GVA_StrongODR;
11419     break;
11420   }
11421 
11422   switch (VD->getTemplateSpecializationKind()) {
11423   case TSK_Undeclared:
11424     return StrongLinkage;
11425 
11426   case TSK_ExplicitSpecialization:
11427     return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11428                    VD->isStaticDataMember()
11429                ? GVA_StrongODR
11430                : StrongLinkage;
11431 
11432   case TSK_ExplicitInstantiationDefinition:
11433     return GVA_StrongODR;
11434 
11435   case TSK_ExplicitInstantiationDeclaration:
11436     return GVA_AvailableExternally;
11437 
11438   case TSK_ImplicitInstantiation:
11439     return GVA_DiscardableODR;
11440   }
11441 
11442   llvm_unreachable("Invalid Linkage!");
11443 }
11444 
11445 GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
11446   return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11447            adjustGVALinkageForAttributes(*this, VD,
11448              basicGVALinkageForVariable(*this, VD)));
11449 }
11450 
11451 bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11452   if (const auto *VD = dyn_cast<VarDecl>(D)) {
11453     if (!VD->isFileVarDecl())
11454       return false;
11455     // Global named register variables (GNU extension) are never emitted.
11456     if (VD->getStorageClass() == SC_Register)
11457       return false;
11458     if (VD->getDescribedVarTemplate() ||
11459         isa<VarTemplatePartialSpecializationDecl>(VD))
11460       return false;
11461   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11462     // We never need to emit an uninstantiated function template.
11463     if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11464       return false;
11465   } else if (isa<PragmaCommentDecl>(D))
11466     return true;
11467   else if (isa<PragmaDetectMismatchDecl>(D))
11468     return true;
11469   else if (isa<OMPRequiresDecl>(D))
11470     return true;
11471   else if (isa<OMPThreadPrivateDecl>(D))
11472     return !D->getDeclContext()->isDependentContext();
11473   else if (isa<OMPAllocateDecl>(D))
11474     return !D->getDeclContext()->isDependentContext();
11475   else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11476     return !D->getDeclContext()->isDependentContext();
11477   else if (isa<ImportDecl>(D))
11478     return true;
11479   else
11480     return false;
11481 
11482   // If this is a member of a class template, we do not need to emit it.
11483   if (D->getDeclContext()->isDependentContext())
11484     return false;
11485 
11486   // Weak references don't produce any output by themselves.
11487   if (D->hasAttr<WeakRefAttr>())
11488     return false;
11489 
11490   // Aliases and used decls are required.
11491   if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11492     return true;
11493 
11494   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11495     // Forward declarations aren't required.
11496     if (!FD->doesThisDeclarationHaveABody())
11497       return FD->doesDeclarationForceExternallyVisibleDefinition();
11498 
11499     // Constructors and destructors are required.
11500     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11501       return true;
11502 
11503     // The key function for a class is required.  This rule only comes
11504     // into play when inline functions can be key functions, though.
11505     if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11506       if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11507         const CXXRecordDecl *RD = MD->getParent();
11508         if (MD->isOutOfLine() && RD->isDynamicClass()) {
11509           const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11510           if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11511             return true;
11512         }
11513       }
11514     }
11515 
11516     GVALinkage Linkage = GetGVALinkageForFunction(FD);
11517 
11518     // static, static inline, always_inline, and extern inline functions can
11519     // always be deferred.  Normal inline functions can be deferred in C99/C++.
11520     // Implicit template instantiations can also be deferred in C++.
11521     return !isDiscardableGVALinkage(Linkage);
11522   }
11523 
11524   const auto *VD = cast<VarDecl>(D);
11525   assert(VD->isFileVarDecl() && "Expected file scoped var");
11526 
11527   // If the decl is marked as `declare target to`, it should be emitted for the
11528   // host and for the device.
11529   if (LangOpts.OpenMP &&
11530       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11531     return true;
11532 
11533   if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11534       !isMSStaticDataMemberInlineDefinition(VD))
11535     return false;
11536 
11537   // Variables that can be needed in other TUs are required.
11538   auto Linkage = GetGVALinkageForVariable(VD);
11539   if (!isDiscardableGVALinkage(Linkage))
11540     return true;
11541 
11542   // We never need to emit a variable that is available in another TU.
11543   if (Linkage == GVA_AvailableExternally)
11544     return false;
11545 
11546   // Variables that have destruction with side-effects are required.
11547   if (VD->needsDestruction(*this))
11548     return true;
11549 
11550   // Variables that have initialization with side-effects are required.
11551   if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11552       // We can get a value-dependent initializer during error recovery.
11553       (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11554     return true;
11555 
11556   // Likewise, variables with tuple-like bindings are required if their
11557   // bindings have side-effects.
11558   if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11559     for (const auto *BD : DD->bindings())
11560       if (const auto *BindingVD = BD->getHoldingVar())
11561         if (DeclMustBeEmitted(BindingVD))
11562           return true;
11563 
11564   return false;
11565 }
11566 
11567 void ASTContext::forEachMultiversionedFunctionVersion(
11568     const FunctionDecl *FD,
11569     llvm::function_ref<void(FunctionDecl *)> Pred) const {
11570   assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
11571   llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11572   FD = FD->getMostRecentDecl();
11573   // FIXME: The order of traversal here matters and depends on the order of
11574   // lookup results, which happens to be (mostly) oldest-to-newest, but we
11575   // shouldn't rely on that.
11576   for (auto *CurDecl :
11577        FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11578     FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11579     if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11580         std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
11581       SeenDecls.insert(CurFD);
11582       Pred(CurFD);
11583     }
11584   }
11585 }
11586 
11587 CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11588                                                     bool IsCXXMethod,
11589                                                     bool IsBuiltin) const {
11590   // Pass through to the C++ ABI object
11591   if (IsCXXMethod)
11592     return ABI->getDefaultMethodCallConv(IsVariadic);
11593 
11594   // Builtins ignore user-specified default calling convention and remain the
11595   // Target's default calling convention.
11596   if (!IsBuiltin) {
11597     switch (LangOpts.getDefaultCallingConv()) {
11598     case LangOptions::DCC_None:
11599       break;
11600     case LangOptions::DCC_CDecl:
11601       return CC_C;
11602     case LangOptions::DCC_FastCall:
11603       if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
11604         return CC_X86FastCall;
11605       break;
11606     case LangOptions::DCC_StdCall:
11607       if (!IsVariadic)
11608         return CC_X86StdCall;
11609       break;
11610     case LangOptions::DCC_VectorCall:
11611       // __vectorcall cannot be applied to variadic functions.
11612       if (!IsVariadic)
11613         return CC_X86VectorCall;
11614       break;
11615     case LangOptions::DCC_RegCall:
11616       // __regcall cannot be applied to variadic functions.
11617       if (!IsVariadic)
11618         return CC_X86RegCall;
11619       break;
11620     }
11621   }
11622   return Target->getDefaultCallingConv();
11623 }
11624 
11625 bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
11626   // Pass through to the C++ ABI object
11627   return ABI->isNearlyEmpty(RD);
11628 }
11629 
11630 VTableContextBase *ASTContext::getVTableContext() {
11631   if (!VTContext.get()) {
11632     auto ABI = Target->getCXXABI();
11633     if (ABI.isMicrosoft())
11634       VTContext.reset(new MicrosoftVTableContext(*this));
11635     else {
11636       auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
11637                                  ? ItaniumVTableContext::Relative
11638                                  : ItaniumVTableContext::Pointer;
11639       VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
11640     }
11641   }
11642   return VTContext.get();
11643 }
11644 
11645 MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
11646   if (!T)
11647     T = Target;
11648   switch (T->getCXXABI().getKind()) {
11649   case TargetCXXABI::AppleARM64:
11650   case TargetCXXABI::Fuchsia:
11651   case TargetCXXABI::GenericAArch64:
11652   case TargetCXXABI::GenericItanium:
11653   case TargetCXXABI::GenericARM:
11654   case TargetCXXABI::GenericMIPS:
11655   case TargetCXXABI::iOS:
11656   case TargetCXXABI::WebAssembly:
11657   case TargetCXXABI::WatchOS:
11658   case TargetCXXABI::XL:
11659     return ItaniumMangleContext::create(*this, getDiagnostics());
11660   case TargetCXXABI::Microsoft:
11661     return MicrosoftMangleContext::create(*this, getDiagnostics());
11662   }
11663   llvm_unreachable("Unsupported ABI");
11664 }
11665 
11666 MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
11667   assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&
11668          "Device mangle context does not support Microsoft mangling.");
11669   switch (T.getCXXABI().getKind()) {
11670   case TargetCXXABI::AppleARM64:
11671   case TargetCXXABI::Fuchsia:
11672   case TargetCXXABI::GenericAArch64:
11673   case TargetCXXABI::GenericItanium:
11674   case TargetCXXABI::GenericARM:
11675   case TargetCXXABI::GenericMIPS:
11676   case TargetCXXABI::iOS:
11677   case TargetCXXABI::WebAssembly:
11678   case TargetCXXABI::WatchOS:
11679   case TargetCXXABI::XL:
11680     return ItaniumMangleContext::create(
11681         *this, getDiagnostics(),
11682         [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> {
11683           if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
11684             return RD->getDeviceLambdaManglingNumber();
11685           return llvm::None;
11686         });
11687   case TargetCXXABI::Microsoft:
11688     return MicrosoftMangleContext::create(*this, getDiagnostics());
11689   }
11690   llvm_unreachable("Unsupported ABI");
11691 }
11692 
11693 CXXABI::~CXXABI() = default;
11694 
11695 size_t ASTContext::getSideTableAllocatedMemory() const {
11696   return ASTRecordLayouts.getMemorySize() +
11697          llvm::capacity_in_bytes(ObjCLayouts) +
11698          llvm::capacity_in_bytes(KeyFunctions) +
11699          llvm::capacity_in_bytes(ObjCImpls) +
11700          llvm::capacity_in_bytes(BlockVarCopyInits) +
11701          llvm::capacity_in_bytes(DeclAttrs) +
11702          llvm::capacity_in_bytes(TemplateOrInstantiation) +
11703          llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
11704          llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
11705          llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
11706          llvm::capacity_in_bytes(OverriddenMethods) +
11707          llvm::capacity_in_bytes(Types) +
11708          llvm::capacity_in_bytes(VariableArrayTypes);
11709 }
11710 
11711 /// getIntTypeForBitwidth -
11712 /// sets integer QualTy according to specified details:
11713 /// bitwidth, signed/unsigned.
11714 /// Returns empty type if there is no appropriate target types.
11715 QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
11716                                            unsigned Signed) const {
11717   TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
11718   CanQualType QualTy = getFromTargetType(Ty);
11719   if (!QualTy && DestWidth == 128)
11720     return Signed ? Int128Ty : UnsignedInt128Ty;
11721   return QualTy;
11722 }
11723 
11724 /// getRealTypeForBitwidth -
11725 /// sets floating point QualTy according to specified bitwidth.
11726 /// Returns empty type if there is no appropriate target types.
11727 QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
11728                                             FloatModeKind ExplicitType) const {
11729   FloatModeKind Ty =
11730       getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
11731   switch (Ty) {
11732   case FloatModeKind::Float:
11733     return FloatTy;
11734   case FloatModeKind::Double:
11735     return DoubleTy;
11736   case FloatModeKind::LongDouble:
11737     return LongDoubleTy;
11738   case FloatModeKind::Float128:
11739     return Float128Ty;
11740   case FloatModeKind::Ibm128:
11741     return Ibm128Ty;
11742   case FloatModeKind::NoFloat:
11743     return {};
11744   }
11745 
11746   llvm_unreachable("Unhandled TargetInfo::RealType value");
11747 }
11748 
11749 void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
11750   if (Number > 1)
11751     MangleNumbers[ND] = Number;
11752 }
11753 
11754 unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
11755   auto I = MangleNumbers.find(ND);
11756   return I != MangleNumbers.end() ? I->second : 1;
11757 }
11758 
11759 void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
11760   if (Number > 1)
11761     StaticLocalNumbers[VD] = Number;
11762 }
11763 
11764 unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
11765   auto I = StaticLocalNumbers.find(VD);
11766   return I != StaticLocalNumbers.end() ? I->second : 1;
11767 }
11768 
11769 MangleNumberingContext &
11770 ASTContext::getManglingNumberContext(const DeclContext *DC) {
11771   assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
11772   std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
11773   if (!MCtx)
11774     MCtx = createMangleNumberingContext();
11775   return *MCtx;
11776 }
11777 
11778 MangleNumberingContext &
11779 ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
11780   assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
11781   std::unique_ptr<MangleNumberingContext> &MCtx =
11782       ExtraMangleNumberingContexts[D];
11783   if (!MCtx)
11784     MCtx = createMangleNumberingContext();
11785   return *MCtx;
11786 }
11787 
11788 std::unique_ptr<MangleNumberingContext>
11789 ASTContext::createMangleNumberingContext() const {
11790   return ABI->createMangleNumberingContext();
11791 }
11792 
11793 const CXXConstructorDecl *
11794 ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
11795   return ABI->getCopyConstructorForExceptionObject(
11796       cast<CXXRecordDecl>(RD->getFirstDecl()));
11797 }
11798 
11799 void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
11800                                                       CXXConstructorDecl *CD) {
11801   return ABI->addCopyConstructorForExceptionObject(
11802       cast<CXXRecordDecl>(RD->getFirstDecl()),
11803       cast<CXXConstructorDecl>(CD->getFirstDecl()));
11804 }
11805 
11806 void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
11807                                                  TypedefNameDecl *DD) {
11808   return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
11809 }
11810 
11811 TypedefNameDecl *
11812 ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
11813   return ABI->getTypedefNameForUnnamedTagDecl(TD);
11814 }
11815 
11816 void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
11817                                                 DeclaratorDecl *DD) {
11818   return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
11819 }
11820 
11821 DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
11822   return ABI->getDeclaratorForUnnamedTagDecl(TD);
11823 }
11824 
11825 void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
11826   ParamIndices[D] = index;
11827 }
11828 
11829 unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
11830   ParameterIndexTable::const_iterator I = ParamIndices.find(D);
11831   assert(I != ParamIndices.end() &&
11832          "ParmIndices lacks entry set by ParmVarDecl");
11833   return I->second;
11834 }
11835 
11836 QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
11837                                                unsigned Length) const {
11838   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
11839   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
11840     EltTy = EltTy.withConst();
11841 
11842   EltTy = adjustStringLiteralBaseType(EltTy);
11843 
11844   // Get an array type for the string, according to C99 6.4.5. This includes
11845   // the null terminator character.
11846   return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
11847                               ArrayType::Normal, /*IndexTypeQuals*/ 0);
11848 }
11849 
11850 StringLiteral *
11851 ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
11852   StringLiteral *&Result = StringLiteralCache[Key];
11853   if (!Result)
11854     Result = StringLiteral::Create(
11855         *this, Key, StringLiteral::Ascii,
11856         /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
11857         SourceLocation());
11858   return Result;
11859 }
11860 
11861 MSGuidDecl *
11862 ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
11863   assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
11864 
11865   llvm::FoldingSetNodeID ID;
11866   MSGuidDecl::Profile(ID, Parts);
11867 
11868   void *InsertPos;
11869   if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
11870     return Existing;
11871 
11872   QualType GUIDType = getMSGuidType().withConst();
11873   MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
11874   MSGuidDecls.InsertNode(New, InsertPos);
11875   return New;
11876 }
11877 
11878 TemplateParamObjectDecl *
11879 ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
11880   assert(T->isRecordType() && "template param object of unexpected type");
11881 
11882   // C++ [temp.param]p8:
11883   //   [...] a static storage duration object of type 'const T' [...]
11884   T.addConst();
11885 
11886   llvm::FoldingSetNodeID ID;
11887   TemplateParamObjectDecl::Profile(ID, T, V);
11888 
11889   void *InsertPos;
11890   if (TemplateParamObjectDecl *Existing =
11891           TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
11892     return Existing;
11893 
11894   TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
11895   TemplateParamObjectDecls.InsertNode(New, InsertPos);
11896   return New;
11897 }
11898 
11899 bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
11900   const llvm::Triple &T = getTargetInfo().getTriple();
11901   if (!T.isOSDarwin())
11902     return false;
11903 
11904   if (!(T.isiOS() && T.isOSVersionLT(7)) &&
11905       !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
11906     return false;
11907 
11908   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
11909   CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
11910   uint64_t Size = sizeChars.getQuantity();
11911   CharUnits alignChars = getTypeAlignInChars(AtomicTy);
11912   unsigned Align = alignChars.getQuantity();
11913   unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
11914   return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
11915 }
11916 
11917 bool
11918 ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
11919                                 const ObjCMethodDecl *MethodImpl) {
11920   // No point trying to match an unavailable/deprecated mothod.
11921   if (MethodDecl->hasAttr<UnavailableAttr>()
11922       || MethodDecl->hasAttr<DeprecatedAttr>())
11923     return false;
11924   if (MethodDecl->getObjCDeclQualifier() !=
11925       MethodImpl->getObjCDeclQualifier())
11926     return false;
11927   if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
11928     return false;
11929 
11930   if (MethodDecl->param_size() != MethodImpl->param_size())
11931     return false;
11932 
11933   for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
11934        IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
11935        EF = MethodDecl->param_end();
11936        IM != EM && IF != EF; ++IM, ++IF) {
11937     const ParmVarDecl *DeclVar = (*IF);
11938     const ParmVarDecl *ImplVar = (*IM);
11939     if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
11940       return false;
11941     if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
11942       return false;
11943   }
11944 
11945   return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
11946 }
11947 
11948 uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
11949   LangAS AS;
11950   if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
11951     AS = LangAS::Default;
11952   else
11953     AS = QT->getPointeeType().getAddressSpace();
11954 
11955   return getTargetInfo().getNullPointerValue(AS);
11956 }
11957 
11958 unsigned ASTContext::getTargetAddressSpace(QualType T) const {
11959   return T->isFunctionType() ? getTargetInfo().getProgramAddressSpace()
11960                              : getTargetAddressSpace(T.getQualifiers());
11961 }
11962 
11963 unsigned ASTContext::getTargetAddressSpace(Qualifiers Q) const {
11964   return getTargetAddressSpace(Q.getAddressSpace());
11965 }
11966 
11967 unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
11968   if (isTargetAddressSpace(AS))
11969     return toTargetAddressSpace(AS);
11970   else
11971     return (*AddrSpaceMap)[(unsigned)AS];
11972 }
11973 
11974 QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
11975   assert(Ty->isFixedPointType());
11976 
11977   if (Ty->isSaturatedFixedPointType()) return Ty;
11978 
11979   switch (Ty->castAs<BuiltinType>()->getKind()) {
11980     default:
11981       llvm_unreachable("Not a fixed point type!");
11982     case BuiltinType::ShortAccum:
11983       return SatShortAccumTy;
11984     case BuiltinType::Accum:
11985       return SatAccumTy;
11986     case BuiltinType::LongAccum:
11987       return SatLongAccumTy;
11988     case BuiltinType::UShortAccum:
11989       return SatUnsignedShortAccumTy;
11990     case BuiltinType::UAccum:
11991       return SatUnsignedAccumTy;
11992     case BuiltinType::ULongAccum:
11993       return SatUnsignedLongAccumTy;
11994     case BuiltinType::ShortFract:
11995       return SatShortFractTy;
11996     case BuiltinType::Fract:
11997       return SatFractTy;
11998     case BuiltinType::LongFract:
11999       return SatLongFractTy;
12000     case BuiltinType::UShortFract:
12001       return SatUnsignedShortFractTy;
12002     case BuiltinType::UFract:
12003       return SatUnsignedFractTy;
12004     case BuiltinType::ULongFract:
12005       return SatUnsignedLongFractTy;
12006   }
12007 }
12008 
12009 LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
12010   if (LangOpts.OpenCL)
12011     return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
12012 
12013   if (LangOpts.CUDA)
12014     return getTargetInfo().getCUDABuiltinAddressSpace(AS);
12015 
12016   return getLangASFromTargetAS(AS);
12017 }
12018 
12019 // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
12020 // doesn't include ASTContext.h
12021 template
12022 clang::LazyGenerationalUpdatePtr<
12023     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
12024 clang::LazyGenerationalUpdatePtr<
12025     const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
12026         const clang::ASTContext &Ctx, Decl *Value);
12027 
12028 unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
12029   assert(Ty->isFixedPointType());
12030 
12031   const TargetInfo &Target = getTargetInfo();
12032   switch (Ty->castAs<BuiltinType>()->getKind()) {
12033     default:
12034       llvm_unreachable("Not a fixed point type!");
12035     case BuiltinType::ShortAccum:
12036     case BuiltinType::SatShortAccum:
12037       return Target.getShortAccumScale();
12038     case BuiltinType::Accum:
12039     case BuiltinType::SatAccum:
12040       return Target.getAccumScale();
12041     case BuiltinType::LongAccum:
12042     case BuiltinType::SatLongAccum:
12043       return Target.getLongAccumScale();
12044     case BuiltinType::UShortAccum:
12045     case BuiltinType::SatUShortAccum:
12046       return Target.getUnsignedShortAccumScale();
12047     case BuiltinType::UAccum:
12048     case BuiltinType::SatUAccum:
12049       return Target.getUnsignedAccumScale();
12050     case BuiltinType::ULongAccum:
12051     case BuiltinType::SatULongAccum:
12052       return Target.getUnsignedLongAccumScale();
12053     case BuiltinType::ShortFract:
12054     case BuiltinType::SatShortFract:
12055       return Target.getShortFractScale();
12056     case BuiltinType::Fract:
12057     case BuiltinType::SatFract:
12058       return Target.getFractScale();
12059     case BuiltinType::LongFract:
12060     case BuiltinType::SatLongFract:
12061       return Target.getLongFractScale();
12062     case BuiltinType::UShortFract:
12063     case BuiltinType::SatUShortFract:
12064       return Target.getUnsignedShortFractScale();
12065     case BuiltinType::UFract:
12066     case BuiltinType::SatUFract:
12067       return Target.getUnsignedFractScale();
12068     case BuiltinType::ULongFract:
12069     case BuiltinType::SatULongFract:
12070       return Target.getUnsignedLongFractScale();
12071   }
12072 }
12073 
12074 unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
12075   assert(Ty->isFixedPointType());
12076 
12077   const TargetInfo &Target = getTargetInfo();
12078   switch (Ty->castAs<BuiltinType>()->getKind()) {
12079     default:
12080       llvm_unreachable("Not a fixed point type!");
12081     case BuiltinType::ShortAccum:
12082     case BuiltinType::SatShortAccum:
12083       return Target.getShortAccumIBits();
12084     case BuiltinType::Accum:
12085     case BuiltinType::SatAccum:
12086       return Target.getAccumIBits();
12087     case BuiltinType::LongAccum:
12088     case BuiltinType::SatLongAccum:
12089       return Target.getLongAccumIBits();
12090     case BuiltinType::UShortAccum:
12091     case BuiltinType::SatUShortAccum:
12092       return Target.getUnsignedShortAccumIBits();
12093     case BuiltinType::UAccum:
12094     case BuiltinType::SatUAccum:
12095       return Target.getUnsignedAccumIBits();
12096     case BuiltinType::ULongAccum:
12097     case BuiltinType::SatULongAccum:
12098       return Target.getUnsignedLongAccumIBits();
12099     case BuiltinType::ShortFract:
12100     case BuiltinType::SatShortFract:
12101     case BuiltinType::Fract:
12102     case BuiltinType::SatFract:
12103     case BuiltinType::LongFract:
12104     case BuiltinType::SatLongFract:
12105     case BuiltinType::UShortFract:
12106     case BuiltinType::SatUShortFract:
12107     case BuiltinType::UFract:
12108     case BuiltinType::SatUFract:
12109     case BuiltinType::ULongFract:
12110     case BuiltinType::SatULongFract:
12111       return 0;
12112   }
12113 }
12114 
12115 llvm::FixedPointSemantics
12116 ASTContext::getFixedPointSemantics(QualType Ty) const {
12117   assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
12118          "Can only get the fixed point semantics for a "
12119          "fixed point or integer type.");
12120   if (Ty->isIntegerType())
12121     return llvm::FixedPointSemantics::GetIntegerSemantics(
12122         getIntWidth(Ty), Ty->isSignedIntegerType());
12123 
12124   bool isSigned = Ty->isSignedFixedPointType();
12125   return llvm::FixedPointSemantics(
12126       static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
12127       Ty->isSaturatedFixedPointType(),
12128       !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
12129 }
12130 
12131 llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
12132   assert(Ty->isFixedPointType());
12133   return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
12134 }
12135 
12136 llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
12137   assert(Ty->isFixedPointType());
12138   return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
12139 }
12140 
12141 QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
12142   assert(Ty->isUnsignedFixedPointType() &&
12143          "Expected unsigned fixed point type");
12144 
12145   switch (Ty->castAs<BuiltinType>()->getKind()) {
12146   case BuiltinType::UShortAccum:
12147     return ShortAccumTy;
12148   case BuiltinType::UAccum:
12149     return AccumTy;
12150   case BuiltinType::ULongAccum:
12151     return LongAccumTy;
12152   case BuiltinType::SatUShortAccum:
12153     return SatShortAccumTy;
12154   case BuiltinType::SatUAccum:
12155     return SatAccumTy;
12156   case BuiltinType::SatULongAccum:
12157     return SatLongAccumTy;
12158   case BuiltinType::UShortFract:
12159     return ShortFractTy;
12160   case BuiltinType::UFract:
12161     return FractTy;
12162   case BuiltinType::ULongFract:
12163     return LongFractTy;
12164   case BuiltinType::SatUShortFract:
12165     return SatShortFractTy;
12166   case BuiltinType::SatUFract:
12167     return SatFractTy;
12168   case BuiltinType::SatULongFract:
12169     return SatLongFractTy;
12170   default:
12171     llvm_unreachable("Unexpected unsigned fixed point type");
12172   }
12173 }
12174 
12175 ParsedTargetAttr
12176 ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
12177   assert(TD != nullptr);
12178   ParsedTargetAttr ParsedAttr = TD->parse();
12179 
12180   llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
12181     return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
12182   });
12183   return ParsedAttr;
12184 }
12185 
12186 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12187                                        const FunctionDecl *FD) const {
12188   if (FD)
12189     getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
12190   else
12191     Target->initFeatureMap(FeatureMap, getDiagnostics(),
12192                            Target->getTargetOpts().CPU,
12193                            Target->getTargetOpts().Features);
12194 }
12195 
12196 // Fills in the supplied string map with the set of target features for the
12197 // passed in function.
12198 void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
12199                                        GlobalDecl GD) const {
12200   StringRef TargetCPU = Target->getTargetOpts().CPU;
12201   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
12202   if (const auto *TD = FD->getAttr<TargetAttr>()) {
12203     ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
12204 
12205     // Make a copy of the features as passed on the command line into the
12206     // beginning of the additional features from the function to override.
12207     ParsedAttr.Features.insert(
12208         ParsedAttr.Features.begin(),
12209         Target->getTargetOpts().FeaturesAsWritten.begin(),
12210         Target->getTargetOpts().FeaturesAsWritten.end());
12211 
12212     if (ParsedAttr.Architecture != "" &&
12213         Target->isValidCPUName(ParsedAttr.Architecture))
12214       TargetCPU = ParsedAttr.Architecture;
12215 
12216     // Now populate the feature map, first with the TargetCPU which is either
12217     // the default or a new one from the target attribute string. Then we'll use
12218     // the passed in features (FeaturesAsWritten) along with the new ones from
12219     // the attribute.
12220     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
12221                            ParsedAttr.Features);
12222   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
12223     llvm::SmallVector<StringRef, 32> FeaturesTmp;
12224     Target->getCPUSpecificCPUDispatchFeatures(
12225         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
12226     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
12227     Features.insert(Features.begin(),
12228                     Target->getTargetOpts().FeaturesAsWritten.begin(),
12229                     Target->getTargetOpts().FeaturesAsWritten.end());
12230     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12231   } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
12232     std::vector<std::string> Features;
12233     StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
12234     if (VersionStr.startswith("arch="))
12235       TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
12236     else if (VersionStr != "default")
12237       Features.push_back((StringRef{"+"} + VersionStr).str());
12238 
12239     Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
12240   } else {
12241     FeatureMap = Target->getTargetOpts().FeatureMap;
12242   }
12243 }
12244 
12245 OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
12246   OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
12247   return *OMPTraitInfoVector.back();
12248 }
12249 
12250 const StreamingDiagnostic &clang::
12251 operator<<(const StreamingDiagnostic &DB,
12252            const ASTContext::SectionInfo &Section) {
12253   if (Section.Decl)
12254     return DB << Section.Decl;
12255   return DB << "a prior #pragma section";
12256 }
12257 
12258 bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
12259   bool IsStaticVar =
12260       isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
12261   bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
12262                               !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
12263                              (D->hasAttr<CUDAConstantAttr>() &&
12264                               !D->getAttr<CUDAConstantAttr>()->isImplicit());
12265   // CUDA/HIP: static managed variables need to be externalized since it is
12266   // a declaration in IR, therefore cannot have internal linkage. Kernels in
12267   // anonymous name space needs to be externalized to avoid duplicate symbols.
12268   return (IsStaticVar &&
12269           (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
12270          (D->hasAttr<CUDAGlobalAttr>() &&
12271           basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
12272               GVA_Internal);
12273 }
12274 
12275 bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
12276   return mayExternalizeStaticVar(D) &&
12277          (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
12278           CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
12279 }
12280 
12281 StringRef ASTContext::getCUIDHash() const {
12282   if (!CUIDHash.empty())
12283     return CUIDHash;
12284   if (LangOpts.CUID.empty())
12285     return StringRef();
12286   CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
12287   return CUIDHash;
12288 }
12289