1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/PointerIntPair.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 #include <memory>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 #include <vector>
61 
62 using namespace clang;
63 using namespace threadSafety;
64 
65 // Key method definition
66 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67 
68 /// Issue a warning about an invalid lock expression
69 static void warnInvalidLock(ThreadSafetyHandler &Handler,
70                             const Expr *MutexExp, const NamedDecl *D,
71                             const Expr *DeclExp, StringRef Kind) {
72   SourceLocation Loc;
73   if (DeclExp)
74     Loc = DeclExp->getExprLoc();
75 
76   // FIXME: add a note about the attribute location in MutexExp or D
77   if (Loc.isValid())
78     Handler.handleInvalidLockExp(Kind, Loc);
79 }
80 
81 namespace {
82 
83 /// A set of CapabilityExpr objects, which are compiled from thread safety
84 /// attributes on a function.
85 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
86 public:
87   /// Push M onto list, but discard duplicates.
88   void push_back_nodup(const CapabilityExpr &CapE) {
89     iterator It = std::find_if(begin(), end(),
90                                [=](const CapabilityExpr &CapE2) {
91       return CapE.equals(CapE2);
92     });
93     if (It == end())
94       push_back(CapE);
95   }
96 };
97 
98 class FactManager;
99 class FactSet;
100 
101 /// This is a helper class that stores a fact that is known at a
102 /// particular point in program execution.  Currently, a fact is a capability,
103 /// along with additional information, such as where it was acquired, whether
104 /// it is exclusive or shared, etc.
105 ///
106 /// FIXME: this analysis does not currently support re-entrant locking.
107 class FactEntry : public CapabilityExpr {
108 private:
109   /// Exclusive or shared.
110   LockKind LKind;
111 
112   /// Where it was acquired.
113   SourceLocation AcquireLoc;
114 
115   /// True if the lock was asserted.
116   bool Asserted;
117 
118   /// True if the lock was declared.
119   bool Declared;
120 
121 public:
122   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
123             bool Asrt, bool Declrd = false)
124       : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
125         Declared(Declrd) {}
126   virtual ~FactEntry() = default;
127 
128   LockKind kind() const { return LKind;      }
129   SourceLocation loc() const { return AcquireLoc; }
130   bool asserted() const { return Asserted; }
131   bool declared() const { return Declared; }
132 
133   void setDeclared(bool D) { Declared = D; }
134 
135   virtual void
136   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
137                                 SourceLocation JoinLoc, LockErrorKind LEK,
138                                 ThreadSafetyHandler &Handler) const = 0;
139   virtual void handleLock(FactSet &FSet, FactManager &FactMan,
140                           const FactEntry &entry, ThreadSafetyHandler &Handler,
141                           StringRef DiagKind) const = 0;
142   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
143                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
144                             bool FullyRemove, ThreadSafetyHandler &Handler,
145                             StringRef DiagKind) const = 0;
146 
147   // Return true if LKind >= LK, where exclusive > shared
148   bool isAtLeast(LockKind LK) const {
149     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
150   }
151 };
152 
153 using FactID = unsigned short;
154 
155 /// FactManager manages the memory for all facts that are created during
156 /// the analysis of a single routine.
157 class FactManager {
158 private:
159   std::vector<std::unique_ptr<const FactEntry>> Facts;
160 
161 public:
162   FactID newFact(std::unique_ptr<FactEntry> Entry) {
163     Facts.push_back(std::move(Entry));
164     return static_cast<unsigned short>(Facts.size() - 1);
165   }
166 
167   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
168 };
169 
170 /// A FactSet is the set of facts that are known to be true at a
171 /// particular program point.  FactSets must be small, because they are
172 /// frequently copied, and are thus implemented as a set of indices into a
173 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
174 /// locks, so we can get away with doing a linear search for lookup.  Note
175 /// that a hashtable or map is inappropriate in this case, because lookups
176 /// may involve partial pattern matches, rather than exact matches.
177 class FactSet {
178 private:
179   using FactVec = SmallVector<FactID, 4>;
180 
181   FactVec FactIDs;
182 
183 public:
184   using iterator = FactVec::iterator;
185   using const_iterator = FactVec::const_iterator;
186 
187   iterator begin() { return FactIDs.begin(); }
188   const_iterator begin() const { return FactIDs.begin(); }
189 
190   iterator end() { return FactIDs.end(); }
191   const_iterator end() const { return FactIDs.end(); }
192 
193   bool isEmpty() const { return FactIDs.size() == 0; }
194 
195   // Return true if the set contains only negative facts
196   bool isEmpty(FactManager &FactMan) const {
197     for (const auto FID : *this) {
198       if (!FactMan[FID].negative())
199         return false;
200     }
201     return true;
202   }
203 
204   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
205 
206   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
207     FactID F = FM.newFact(std::move(Entry));
208     FactIDs.push_back(F);
209     return F;
210   }
211 
212   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
213     unsigned n = FactIDs.size();
214     if (n == 0)
215       return false;
216 
217     for (unsigned i = 0; i < n-1; ++i) {
218       if (FM[FactIDs[i]].matches(CapE)) {
219         FactIDs[i] = FactIDs[n-1];
220         FactIDs.pop_back();
221         return true;
222       }
223     }
224     if (FM[FactIDs[n-1]].matches(CapE)) {
225       FactIDs.pop_back();
226       return true;
227     }
228     return false;
229   }
230 
231   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
232     return std::find_if(begin(), end(), [&](FactID ID) {
233       return FM[ID].matches(CapE);
234     });
235   }
236 
237   const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
238     auto I = std::find_if(begin(), end(), [&](FactID ID) {
239       return FM[ID].matches(CapE);
240     });
241     return I != end() ? &FM[*I] : nullptr;
242   }
243 
244   const FactEntry *findLockUniv(FactManager &FM,
245                                 const CapabilityExpr &CapE) const {
246     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
247       return FM[ID].matchesUniv(CapE);
248     });
249     return I != end() ? &FM[*I] : nullptr;
250   }
251 
252   const FactEntry *findPartialMatch(FactManager &FM,
253                                     const CapabilityExpr &CapE) const {
254     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
255       return FM[ID].partiallyMatches(CapE);
256     });
257     return I != end() ? &FM[*I] : nullptr;
258   }
259 
260   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
261     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
262       return FM[ID].valueDecl() == Vd;
263     });
264     return I != end();
265   }
266 };
267 
268 class ThreadSafetyAnalyzer;
269 
270 } // namespace
271 
272 namespace clang {
273 namespace threadSafety {
274 
275 class BeforeSet {
276 private:
277   using BeforeVect = SmallVector<const ValueDecl *, 4>;
278 
279   struct BeforeInfo {
280     BeforeVect Vect;
281     int Visited = 0;
282 
283     BeforeInfo() = default;
284     BeforeInfo(BeforeInfo &&) = default;
285   };
286 
287   using BeforeMap =
288       llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
289   using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
290 
291 public:
292   BeforeSet() = default;
293 
294   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
295                               ThreadSafetyAnalyzer& Analyzer);
296 
297   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
298                                    ThreadSafetyAnalyzer &Analyzer);
299 
300   void checkBeforeAfter(const ValueDecl* Vd,
301                         const FactSet& FSet,
302                         ThreadSafetyAnalyzer& Analyzer,
303                         SourceLocation Loc, StringRef CapKind);
304 
305 private:
306   BeforeMap BMap;
307   CycleMap CycMap;
308 };
309 
310 } // namespace threadSafety
311 } // namespace clang
312 
313 namespace {
314 
315 class LocalVariableMap;
316 
317 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
318 
319 /// A side (entry or exit) of a CFG node.
320 enum CFGBlockSide { CBS_Entry, CBS_Exit };
321 
322 /// CFGBlockInfo is a struct which contains all the information that is
323 /// maintained for each block in the CFG.  See LocalVariableMap for more
324 /// information about the contexts.
325 struct CFGBlockInfo {
326   // Lockset held at entry to block
327   FactSet EntrySet;
328 
329   // Lockset held at exit from block
330   FactSet ExitSet;
331 
332   // Context held at entry to block
333   LocalVarContext EntryContext;
334 
335   // Context held at exit from block
336   LocalVarContext ExitContext;
337 
338   // Location of first statement in block
339   SourceLocation EntryLoc;
340 
341   // Location of last statement in block.
342   SourceLocation ExitLoc;
343 
344   // Used to replay contexts later
345   unsigned EntryIndex;
346 
347   // Is this block reachable?
348   bool Reachable = false;
349 
350   const FactSet &getSet(CFGBlockSide Side) const {
351     return Side == CBS_Entry ? EntrySet : ExitSet;
352   }
353 
354   SourceLocation getLocation(CFGBlockSide Side) const {
355     return Side == CBS_Entry ? EntryLoc : ExitLoc;
356   }
357 
358 private:
359   CFGBlockInfo(LocalVarContext EmptyCtx)
360       : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
361 
362 public:
363   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
364 };
365 
366 // A LocalVariableMap maintains a map from local variables to their currently
367 // valid definitions.  It provides SSA-like functionality when traversing the
368 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
369 // unique name (an integer), which acts as the SSA name for that definition.
370 // The total set of names is shared among all CFG basic blocks.
371 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
372 // with their SSA-names.  Instead, we compute a Context for each point in the
373 // code, which maps local variables to the appropriate SSA-name.  This map
374 // changes with each assignment.
375 //
376 // The map is computed in a single pass over the CFG.  Subsequent analyses can
377 // then query the map to find the appropriate Context for a statement, and use
378 // that Context to look up the definitions of variables.
379 class LocalVariableMap {
380 public:
381   using Context = LocalVarContext;
382 
383   /// A VarDefinition consists of an expression, representing the value of the
384   /// variable, along with the context in which that expression should be
385   /// interpreted.  A reference VarDefinition does not itself contain this
386   /// information, but instead contains a pointer to a previous VarDefinition.
387   struct VarDefinition {
388   public:
389     friend class LocalVariableMap;
390 
391     // The original declaration for this variable.
392     const NamedDecl *Dec;
393 
394     // The expression for this variable, OR
395     const Expr *Exp = nullptr;
396 
397     // Reference to another VarDefinition
398     unsigned Ref = 0;
399 
400     // The map with which Exp should be interpreted.
401     Context Ctx;
402 
403     bool isReference() { return !Exp; }
404 
405   private:
406     // Create ordinary variable definition
407     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
408         : Dec(D), Exp(E), Ctx(C) {}
409 
410     // Create reference to previous definition
411     VarDefinition(const NamedDecl *D, unsigned R, Context C)
412         : Dec(D), Ref(R), Ctx(C) {}
413   };
414 
415 private:
416   Context::Factory ContextFactory;
417   std::vector<VarDefinition> VarDefinitions;
418   std::vector<unsigned> CtxIndices;
419   std::vector<std::pair<const Stmt *, Context>> SavedContexts;
420 
421 public:
422   LocalVariableMap() {
423     // index 0 is a placeholder for undefined variables (aka phi-nodes).
424     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
425   }
426 
427   /// Look up a definition, within the given context.
428   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
429     const unsigned *i = Ctx.lookup(D);
430     if (!i)
431       return nullptr;
432     assert(*i < VarDefinitions.size());
433     return &VarDefinitions[*i];
434   }
435 
436   /// Look up the definition for D within the given context.  Returns
437   /// NULL if the expression is not statically known.  If successful, also
438   /// modifies Ctx to hold the context of the return Expr.
439   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
440     const unsigned *P = Ctx.lookup(D);
441     if (!P)
442       return nullptr;
443 
444     unsigned i = *P;
445     while (i > 0) {
446       if (VarDefinitions[i].Exp) {
447         Ctx = VarDefinitions[i].Ctx;
448         return VarDefinitions[i].Exp;
449       }
450       i = VarDefinitions[i].Ref;
451     }
452     return nullptr;
453   }
454 
455   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
456 
457   /// Return the next context after processing S.  This function is used by
458   /// clients of the class to get the appropriate context when traversing the
459   /// CFG.  It must be called for every assignment or DeclStmt.
460   Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
461     if (SavedContexts[CtxIndex+1].first == S) {
462       CtxIndex++;
463       Context Result = SavedContexts[CtxIndex].second;
464       return Result;
465     }
466     return C;
467   }
468 
469   void dumpVarDefinitionName(unsigned i) {
470     if (i == 0) {
471       llvm::errs() << "Undefined";
472       return;
473     }
474     const NamedDecl *Dec = VarDefinitions[i].Dec;
475     if (!Dec) {
476       llvm::errs() << "<<NULL>>";
477       return;
478     }
479     Dec->printName(llvm::errs());
480     llvm::errs() << "." << i << " " << ((const void*) Dec);
481   }
482 
483   /// Dumps an ASCII representation of the variable map to llvm::errs()
484   void dump() {
485     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
486       const Expr *Exp = VarDefinitions[i].Exp;
487       unsigned Ref = VarDefinitions[i].Ref;
488 
489       dumpVarDefinitionName(i);
490       llvm::errs() << " = ";
491       if (Exp) Exp->dump();
492       else {
493         dumpVarDefinitionName(Ref);
494         llvm::errs() << "\n";
495       }
496     }
497   }
498 
499   /// Dumps an ASCII representation of a Context to llvm::errs()
500   void dumpContext(Context C) {
501     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
502       const NamedDecl *D = I.getKey();
503       D->printName(llvm::errs());
504       const unsigned *i = C.lookup(D);
505       llvm::errs() << " -> ";
506       dumpVarDefinitionName(*i);
507       llvm::errs() << "\n";
508     }
509   }
510 
511   /// Builds the variable map.
512   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513                    std::vector<CFGBlockInfo> &BlockInfo);
514 
515 protected:
516   friend class VarMapBuilder;
517 
518   // Get the current context index
519   unsigned getContextIndex() { return SavedContexts.size()-1; }
520 
521   // Save the current context for later replay
522   void saveContext(const Stmt *S, Context C) {
523     SavedContexts.push_back(std::make_pair(S, C));
524   }
525 
526   // Adds a new definition to the given context, and returns a new context.
527   // This method should be called when declaring a new variable.
528   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529     assert(!Ctx.contains(D));
530     unsigned newID = VarDefinitions.size();
531     Context NewCtx = ContextFactory.add(Ctx, D, newID);
532     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533     return NewCtx;
534   }
535 
536   // Add a new reference to an existing definition.
537   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538     unsigned newID = VarDefinitions.size();
539     Context NewCtx = ContextFactory.add(Ctx, D, newID);
540     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541     return NewCtx;
542   }
543 
544   // Updates a definition only if that definition is already in the map.
545   // This method should be called when assigning to an existing variable.
546   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547     if (Ctx.contains(D)) {
548       unsigned newID = VarDefinitions.size();
549       Context NewCtx = ContextFactory.remove(Ctx, D);
550       NewCtx = ContextFactory.add(NewCtx, D, newID);
551       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552       return NewCtx;
553     }
554     return Ctx;
555   }
556 
557   // Removes a definition from the context, but keeps the variable name
558   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
559   Context clearDefinition(const NamedDecl *D, Context Ctx) {
560     Context NewCtx = Ctx;
561     if (NewCtx.contains(D)) {
562       NewCtx = ContextFactory.remove(NewCtx, D);
563       NewCtx = ContextFactory.add(NewCtx, D, 0);
564     }
565     return NewCtx;
566   }
567 
568   // Remove a definition entirely frmo the context.
569   Context removeDefinition(const NamedDecl *D, Context Ctx) {
570     Context NewCtx = Ctx;
571     if (NewCtx.contains(D)) {
572       NewCtx = ContextFactory.remove(NewCtx, D);
573     }
574     return NewCtx;
575   }
576 
577   Context intersectContexts(Context C1, Context C2);
578   Context createReferenceContext(Context C);
579   void intersectBackEdge(Context C1, Context C2);
580 };
581 
582 } // namespace
583 
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586   return CFGBlockInfo(M.getEmptyContext());
587 }
588 
589 namespace {
590 
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594   LocalVariableMap* VMap;
595   LocalVariableMap::Context Ctx;
596 
597   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598       : VMap(VM), Ctx(C) {}
599 
600   void VisitDeclStmt(const DeclStmt *S);
601   void VisitBinaryOperator(const BinaryOperator *BO);
602 };
603 
604 } // namespace
605 
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608   bool modifiedCtx = false;
609   const DeclGroupRef DGrp = S->getDeclGroup();
610   for (const auto *D : DGrp) {
611     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612       const Expr *E = VD->getInit();
613 
614       // Add local variables with trivial type to the variable map
615       QualType T = VD->getType();
616       if (T.isTrivialType(VD->getASTContext())) {
617         Ctx = VMap->addDefinition(VD, E, Ctx);
618         modifiedCtx = true;
619       }
620     }
621   }
622   if (modifiedCtx)
623     VMap->saveContext(S, Ctx);
624 }
625 
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628   if (!BO->isAssignmentOp())
629     return;
630 
631   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632 
633   // Update the variable map and current context.
634   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635     const ValueDecl *VDec = DRE->getDecl();
636     if (Ctx.lookup(VDec)) {
637       if (BO->getOpcode() == BO_Assign)
638         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639       else
640         // FIXME -- handle compound assignment operators
641         Ctx = VMap->clearDefinition(VDec, Ctx);
642       VMap->saveContext(BO, Ctx);
643     }
644   }
645 }
646 
647 // Computes the intersection of two contexts.  The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652   Context Result = C1;
653   for (const auto &P : C1) {
654     const NamedDecl *Dec = P.first;
655     const unsigned *i2 = C2.lookup(Dec);
656     if (!i2)             // variable doesn't exist on second path
657       Result = removeDefinition(Dec, Result);
658     else if (*i2 != P.second)  // variable exists, but has different definition
659       Result = clearDefinition(Dec, Result);
660   }
661   return Result;
662 }
663 
664 // For every variable in C, create a new variable that refers to the
665 // definition in C.  Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668   Context Result = getEmptyContext();
669   for (const auto &P : C)
670     Result = addReference(P.first, P.second, Result);
671   return Result;
672 }
673 
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions.  C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678   for (const auto &P : C1) {
679     unsigned i1 = P.second;
680     VarDefinition *VDef = &VarDefinitions[i1];
681     assert(VDef->isReference());
682 
683     const unsigned *i2 = C2.lookup(P.first);
684     if (!i2 || (*i2 != i1))
685       VDef->Ref = 0;    // Mark this variable as undefined
686   }
687 }
688 
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself.  At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
695 //
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
698 //
699 //                       { Context                 | VarDefinitions }
700 //   int x = 0;          { x -> x1                 | x1 = 0 }
701 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
702 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
703 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
704 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
705 //
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm.  Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block.  We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
712 //
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass.  Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals.  (These correspond to places where SSA
717 // might have to insert a phi node.)  On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.)  E.g.
720 //
721 //                       { Context           | VarDefinitions }
722 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
723 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
724 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
725 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727                                    const PostOrderCFGView *SortedGraph,
728                                    std::vector<CFGBlockInfo> &BlockInfo) {
729   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730 
731   CtxIndices.resize(CFGraph->getNumBlockIDs());
732 
733   for (const auto *CurrBlock : *SortedGraph) {
734     unsigned CurrBlockID = CurrBlock->getBlockID();
735     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
736 
737     VisitedBlocks.insert(CurrBlock);
738 
739     // Calculate the entry context for the current block
740     bool HasBackEdges = false;
741     bool CtxInit = true;
742     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
743          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
744       // if *PI -> CurrBlock is a back edge, so skip it
745       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
746         HasBackEdges = true;
747         continue;
748       }
749 
750       unsigned PrevBlockID = (*PI)->getBlockID();
751       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
752 
753       if (CtxInit) {
754         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
755         CtxInit = false;
756       }
757       else {
758         CurrBlockInfo->EntryContext =
759           intersectContexts(CurrBlockInfo->EntryContext,
760                             PrevBlockInfo->ExitContext);
761       }
762     }
763 
764     // Duplicate the context if we have back-edges, so we can call
765     // intersectBackEdges later.
766     if (HasBackEdges)
767       CurrBlockInfo->EntryContext =
768         createReferenceContext(CurrBlockInfo->EntryContext);
769 
770     // Create a starting context index for the current block
771     saveContext(nullptr, CurrBlockInfo->EntryContext);
772     CurrBlockInfo->EntryIndex = getContextIndex();
773 
774     // Visit all the statements in the basic block.
775     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
776     for (const auto &BI : *CurrBlock) {
777       switch (BI.getKind()) {
778         case CFGElement::Statement: {
779           CFGStmt CS = BI.castAs<CFGStmt>();
780           VMapBuilder.Visit(CS.getStmt());
781           break;
782         }
783         default:
784           break;
785       }
786     }
787     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
788 
789     // Mark variables on back edges as "unknown" if they've been changed.
790     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
791          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
792       // if CurrBlock -> *SI is *not* a back edge
793       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
794         continue;
795 
796       CFGBlock *FirstLoopBlock = *SI;
797       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
798       Context LoopEnd   = CurrBlockInfo->ExitContext;
799       intersectBackEdge(LoopBegin, LoopEnd);
800     }
801   }
802 
803   // Put an extra entry at the end of the indexed context array
804   unsigned exitID = CFGraph->getExit().getBlockID();
805   saveContext(nullptr, BlockInfo[exitID].ExitContext);
806 }
807 
808 /// Find the appropriate source locations to use when producing diagnostics for
809 /// each block in the CFG.
810 static void findBlockLocations(CFG *CFGraph,
811                                const PostOrderCFGView *SortedGraph,
812                                std::vector<CFGBlockInfo> &BlockInfo) {
813   for (const auto *CurrBlock : *SortedGraph) {
814     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
815 
816     // Find the source location of the last statement in the block, if the
817     // block is not empty.
818     if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
819       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
820     } else {
821       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
822            BE = CurrBlock->rend(); BI != BE; ++BI) {
823         // FIXME: Handle other CFGElement kinds.
824         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
825           CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
826           break;
827         }
828       }
829     }
830 
831     if (CurrBlockInfo->ExitLoc.isValid()) {
832       // This block contains at least one statement. Find the source location
833       // of the first statement in the block.
834       for (const auto &BI : *CurrBlock) {
835         // FIXME: Handle other CFGElement kinds.
836         if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
837           CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
838           break;
839         }
840       }
841     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
842                CurrBlock != &CFGraph->getExit()) {
843       // The block is empty, and has a single predecessor. Use its exit
844       // location.
845       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
846           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
847     }
848   }
849 }
850 
851 namespace {
852 
853 class LockableFactEntry : public FactEntry {
854 private:
855   /// managed by ScopedLockable object
856   bool Managed;
857 
858 public:
859   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
860                     bool Mng = false, bool Asrt = false)
861       : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
862 
863   void
864   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
865                                 SourceLocation JoinLoc, LockErrorKind LEK,
866                                 ThreadSafetyHandler &Handler) const override {
867     if (!Managed && !asserted() && !negative() && !isUniversal()) {
868       Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
869                                         LEK);
870     }
871   }
872 
873   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
874                   ThreadSafetyHandler &Handler,
875                   StringRef DiagKind) const override {
876     Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
877   }
878 
879   void handleUnlock(FactSet &FSet, FactManager &FactMan,
880                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
881                     bool FullyRemove, ThreadSafetyHandler &Handler,
882                     StringRef DiagKind) const override {
883     FSet.removeLock(FactMan, Cp);
884     if (!Cp.negative()) {
885       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
886                                 !Cp, LK_Exclusive, UnlockLoc));
887     }
888   }
889 };
890 
891 class ScopedLockableFactEntry : public FactEntry {
892 private:
893   enum UnderlyingCapabilityKind {
894     UCK_Acquired,          ///< Any kind of acquired capability.
895     UCK_ReleasedShared,    ///< Shared capability that was released.
896     UCK_ReleasedExclusive, ///< Exclusive capability that was released.
897   };
898 
899   using UnderlyingCapability =
900       llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
901 
902   SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
903 
904 public:
905   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
906       : FactEntry(CE, LK_Exclusive, Loc, false) {}
907 
908   void addLock(const CapabilityExpr &M) {
909     UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
910   }
911 
912   void addExclusiveUnlock(const CapabilityExpr &M) {
913     UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
914   }
915 
916   void addSharedUnlock(const CapabilityExpr &M) {
917     UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
918   }
919 
920   void
921   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
922                                 SourceLocation JoinLoc, LockErrorKind LEK,
923                                 ThreadSafetyHandler &Handler) const override {
924     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
925       const auto *Entry = FSet.findLock(
926           FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
927       if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
928           (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
929         // If this scoped lock manages another mutex, and if the underlying
930         // mutex is still/not held, then warn about the underlying mutex.
931         Handler.handleMutexHeldEndOfScope(
932             "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
933             LEK);
934       }
935     }
936   }
937 
938   void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939                   ThreadSafetyHandler &Handler,
940                   StringRef DiagKind) const override {
941     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
942       CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
943 
944       if (UnderlyingMutex.getInt() == UCK_Acquired)
945         lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
946              DiagKind);
947       else
948         unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
949     }
950   }
951 
952   void handleUnlock(FactSet &FSet, FactManager &FactMan,
953                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
954                     bool FullyRemove, ThreadSafetyHandler &Handler,
955                     StringRef DiagKind) const override {
956     assert(!Cp.negative() && "Managing object cannot be negative.");
957     for (const auto &UnderlyingMutex : UnderlyingMutexes) {
958       CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
959 
960       // Remove/lock the underlying mutex if it exists/is still unlocked; warn
961       // on double unlocking/locking if we're not destroying the scoped object.
962       ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
963       if (UnderlyingMutex.getInt() == UCK_Acquired) {
964         unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
965       } else {
966         LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
967                             ? LK_Shared
968                             : LK_Exclusive;
969         lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
970       }
971     }
972     if (FullyRemove)
973       FSet.removeLock(FactMan, Cp);
974   }
975 
976 private:
977   void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
978             LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
979             StringRef DiagKind) const {
980     if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
981       if (Handler)
982         Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
983     } else {
984       FSet.removeLock(FactMan, !Cp);
985       FSet.addLock(FactMan,
986                    std::make_unique<LockableFactEntry>(Cp, kind, loc));
987     }
988   }
989 
990   void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
991               SourceLocation loc, ThreadSafetyHandler *Handler,
992               StringRef DiagKind) const {
993     if (FSet.findLock(FactMan, Cp)) {
994       FSet.removeLock(FactMan, Cp);
995       FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
996                                 !Cp, LK_Exclusive, loc));
997     } else if (Handler) {
998       SourceLocation PrevLoc;
999       if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1000         PrevLoc = Neg->loc();
1001       Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc, PrevLoc);
1002     }
1003   }
1004 };
1005 
1006 /// Class which implements the core thread safety analysis routines.
1007 class ThreadSafetyAnalyzer {
1008   friend class BuildLockset;
1009   friend class threadSafety::BeforeSet;
1010 
1011   llvm::BumpPtrAllocator Bpa;
1012   threadSafety::til::MemRegionRef Arena;
1013   threadSafety::SExprBuilder SxBuilder;
1014 
1015   ThreadSafetyHandler &Handler;
1016   const CXXMethodDecl *CurrentMethod;
1017   LocalVariableMap LocalVarMap;
1018   FactManager FactMan;
1019   std::vector<CFGBlockInfo> BlockInfo;
1020 
1021   BeforeSet *GlobalBeforeSet;
1022 
1023 public:
1024   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1025       : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1026 
1027   bool inCurrentScope(const CapabilityExpr &CapE);
1028 
1029   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1030                StringRef DiagKind, bool ReqAttr = false);
1031   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1032                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
1033                   StringRef DiagKind);
1034 
1035   template <typename AttrType>
1036   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
1038 
1039   template <class AttrType>
1040   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1041                    const NamedDecl *D,
1042                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1043                    Expr *BrE, bool Neg);
1044 
1045   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1046                                      bool &Negate);
1047 
1048   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1049                       const CFGBlock* PredBlock,
1050                       const CFGBlock *CurrBlock);
1051 
1052   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1053                         SourceLocation JoinLoc,
1054                         LockErrorKind LEK1, LockErrorKind LEK2,
1055                         bool Modify=true);
1056 
1057   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1058                         SourceLocation JoinLoc, LockErrorKind LEK1,
1059                         bool Modify=true) {
1060     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1061   }
1062 
1063   void runAnalysis(AnalysisDeclContext &AC);
1064 };
1065 
1066 } // namespace
1067 
1068 /// Process acquired_before and acquired_after attributes on Vd.
1069 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1070     ThreadSafetyAnalyzer& Analyzer) {
1071   // Create a new entry for Vd.
1072   BeforeInfo *Info = nullptr;
1073   {
1074     // Keep InfoPtr in its own scope in case BMap is modified later and the
1075     // reference becomes invalid.
1076     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1077     if (!InfoPtr)
1078       InfoPtr.reset(new BeforeInfo());
1079     Info = InfoPtr.get();
1080   }
1081 
1082   for (const auto *At : Vd->attrs()) {
1083     switch (At->getKind()) {
1084       case attr::AcquiredBefore: {
1085         const auto *A = cast<AcquiredBeforeAttr>(At);
1086 
1087         // Read exprs from the attribute, and add them to BeforeVect.
1088         for (const auto *Arg : A->args()) {
1089           CapabilityExpr Cp =
1090             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1091           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1092             Info->Vect.push_back(Cpvd);
1093             const auto It = BMap.find(Cpvd);
1094             if (It == BMap.end())
1095               insertAttrExprs(Cpvd, Analyzer);
1096           }
1097         }
1098         break;
1099       }
1100       case attr::AcquiredAfter: {
1101         const auto *A = cast<AcquiredAfterAttr>(At);
1102 
1103         // Read exprs from the attribute, and add them to BeforeVect.
1104         for (const auto *Arg : A->args()) {
1105           CapabilityExpr Cp =
1106             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1107           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1108             // Get entry for mutex listed in attribute
1109             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1110             ArgInfo->Vect.push_back(Vd);
1111           }
1112         }
1113         break;
1114       }
1115       default:
1116         break;
1117     }
1118   }
1119 
1120   return Info;
1121 }
1122 
1123 BeforeSet::BeforeInfo *
1124 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1125                                 ThreadSafetyAnalyzer &Analyzer) {
1126   auto It = BMap.find(Vd);
1127   BeforeInfo *Info = nullptr;
1128   if (It == BMap.end())
1129     Info = insertAttrExprs(Vd, Analyzer);
1130   else
1131     Info = It->second.get();
1132   assert(Info && "BMap contained nullptr?");
1133   return Info;
1134 }
1135 
1136 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1137 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1138                                  const FactSet& FSet,
1139                                  ThreadSafetyAnalyzer& Analyzer,
1140                                  SourceLocation Loc, StringRef CapKind) {
1141   SmallVector<BeforeInfo*, 8> InfoVect;
1142 
1143   // Do a depth-first traversal of Vd.
1144   // Return true if there are cycles.
1145   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1146     if (!Vd)
1147       return false;
1148 
1149     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1150 
1151     if (Info->Visited == 1)
1152       return true;
1153 
1154     if (Info->Visited == 2)
1155       return false;
1156 
1157     if (Info->Vect.empty())
1158       return false;
1159 
1160     InfoVect.push_back(Info);
1161     Info->Visited = 1;
1162     for (const auto *Vdb : Info->Vect) {
1163       // Exclude mutexes in our immediate before set.
1164       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1165         StringRef L1 = StartVd->getName();
1166         StringRef L2 = Vdb->getName();
1167         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1168       }
1169       // Transitively search other before sets, and warn on cycles.
1170       if (traverse(Vdb)) {
1171         if (CycMap.find(Vd) == CycMap.end()) {
1172           CycMap.insert(std::make_pair(Vd, true));
1173           StringRef L1 = Vd->getName();
1174           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1175         }
1176       }
1177     }
1178     Info->Visited = 2;
1179     return false;
1180   };
1181 
1182   traverse(StartVd);
1183 
1184   for (auto *Info : InfoVect)
1185     Info->Visited = 0;
1186 }
1187 
1188 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1189 static const ValueDecl *getValueDecl(const Expr *Exp) {
1190   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1191     return getValueDecl(CE->getSubExpr());
1192 
1193   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1194     return DR->getDecl();
1195 
1196   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1197     return ME->getMemberDecl();
1198 
1199   return nullptr;
1200 }
1201 
1202 namespace {
1203 
1204 template <typename Ty>
1205 class has_arg_iterator_range {
1206   using yes = char[1];
1207   using no = char[2];
1208 
1209   template <typename Inner>
1210   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1211 
1212   template <typename>
1213   static no& test(...);
1214 
1215 public:
1216   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1217 };
1218 
1219 } // namespace
1220 
1221 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1222   return A->getName();
1223 }
1224 
1225 static StringRef ClassifyDiagnostic(QualType VDT) {
1226   // We need to look at the declaration of the type of the value to determine
1227   // which it is. The type should either be a record or a typedef, or a pointer
1228   // or reference thereof.
1229   if (const auto *RT = VDT->getAs<RecordType>()) {
1230     if (const auto *RD = RT->getDecl())
1231       if (const auto *CA = RD->getAttr<CapabilityAttr>())
1232         return ClassifyDiagnostic(CA);
1233   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1234     if (const auto *TD = TT->getDecl())
1235       if (const auto *CA = TD->getAttr<CapabilityAttr>())
1236         return ClassifyDiagnostic(CA);
1237   } else if (VDT->isPointerType() || VDT->isReferenceType())
1238     return ClassifyDiagnostic(VDT->getPointeeType());
1239 
1240   return "mutex";
1241 }
1242 
1243 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1244   assert(VD && "No ValueDecl passed");
1245 
1246   // The ValueDecl is the declaration of a mutex or role (hopefully).
1247   return ClassifyDiagnostic(VD->getType());
1248 }
1249 
1250 template <typename AttrTy>
1251 static std::enable_if_t<!has_arg_iterator_range<AttrTy>::value, StringRef>
1252 ClassifyDiagnostic(const AttrTy *A) {
1253   if (const ValueDecl *VD = getValueDecl(A->getArg()))
1254     return ClassifyDiagnostic(VD);
1255   return "mutex";
1256 }
1257 
1258 template <typename AttrTy>
1259 static std::enable_if_t<has_arg_iterator_range<AttrTy>::value, StringRef>
1260 ClassifyDiagnostic(const AttrTy *A) {
1261   for (const auto *Arg : A->args()) {
1262     if (const ValueDecl *VD = getValueDecl(Arg))
1263       return ClassifyDiagnostic(VD);
1264   }
1265   return "mutex";
1266 }
1267 
1268 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1269   const threadSafety::til::SExpr *SExp = CapE.sexpr();
1270   assert(SExp && "Null expressions should be ignored");
1271 
1272   if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1273     const ValueDecl *VD = LP->clangDecl();
1274     // Variables defined in a function are always inaccessible.
1275     if (!VD->isDefinedOutsideFunctionOrMethod())
1276       return false;
1277     // For now we consider static class members to be inaccessible.
1278     if (isa<CXXRecordDecl>(VD->getDeclContext()))
1279       return false;
1280     // Global variables are always in scope.
1281     return true;
1282   }
1283 
1284   // Members are in scope from methods of the same class.
1285   if (const auto *P = dyn_cast<til::Project>(SExp)) {
1286     if (!CurrentMethod)
1287       return false;
1288     const ValueDecl *VD = P->clangDecl();
1289     return VD->getDeclContext() == CurrentMethod->getDeclContext();
1290   }
1291 
1292   return false;
1293 }
1294 
1295 /// Add a new lock to the lockset, warning if the lock is already there.
1296 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1297 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1298                                    std::unique_ptr<FactEntry> Entry,
1299                                    StringRef DiagKind, bool ReqAttr) {
1300   if (Entry->shouldIgnore())
1301     return;
1302 
1303   if (!ReqAttr && !Entry->negative()) {
1304     // look for the negative capability, and remove it from the fact set.
1305     CapabilityExpr NegC = !*Entry;
1306     const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1307     if (Nen) {
1308       FSet.removeLock(FactMan, NegC);
1309     }
1310     else {
1311       if (inCurrentScope(*Entry) && !Entry->asserted())
1312         Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1313                                       NegC.toString(), Entry->loc());
1314     }
1315   }
1316 
1317   // Check before/after constraints
1318   if (Handler.issueBetaWarnings() &&
1319       !Entry->asserted() && !Entry->declared()) {
1320     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1321                                       Entry->loc(), DiagKind);
1322   }
1323 
1324   // FIXME: Don't always warn when we have support for reentrant locks.
1325   if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1326     if (!Entry->asserted())
1327       Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
1328   } else {
1329     FSet.addLock(FactMan, std::move(Entry));
1330   }
1331 }
1332 
1333 /// Remove a lock from the lockset, warning if the lock is not there.
1334 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1335 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1336                                       SourceLocation UnlockLoc,
1337                                       bool FullyRemove, LockKind ReceivedKind,
1338                                       StringRef DiagKind) {
1339   if (Cp.shouldIgnore())
1340     return;
1341 
1342   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1343   if (!LDat) {
1344     SourceLocation PrevLoc;
1345     if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1346       PrevLoc = Neg->loc();
1347     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc, PrevLoc);
1348     return;
1349   }
1350 
1351   // Generic lock removal doesn't care about lock kind mismatches, but
1352   // otherwise diagnose when the lock kinds are mismatched.
1353   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1354     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
1355                                       ReceivedKind, LDat->loc(), UnlockLoc);
1356   }
1357 
1358   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1359                      DiagKind);
1360 }
1361 
1362 /// Extract the list of mutexIDs from the attribute on an expression,
1363 /// and push them onto Mtxs, discarding any duplicates.
1364 template <typename AttrType>
1365 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1366                                        const Expr *Exp, const NamedDecl *D,
1367                                        VarDecl *SelfDecl) {
1368   if (Attr->args_size() == 0) {
1369     // The mutex held is the "this" object.
1370     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1371     if (Cp.isInvalid()) {
1372        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1373        return;
1374     }
1375     //else
1376     if (!Cp.shouldIgnore())
1377       Mtxs.push_back_nodup(Cp);
1378     return;
1379   }
1380 
1381   for (const auto *Arg : Attr->args()) {
1382     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1383     if (Cp.isInvalid()) {
1384        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1385        continue;
1386     }
1387     //else
1388     if (!Cp.shouldIgnore())
1389       Mtxs.push_back_nodup(Cp);
1390   }
1391 }
1392 
1393 /// Extract the list of mutexIDs from a trylock attribute.  If the
1394 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1395 /// any duplicates.
1396 template <class AttrType>
1397 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1398                                        const Expr *Exp, const NamedDecl *D,
1399                                        const CFGBlock *PredBlock,
1400                                        const CFGBlock *CurrBlock,
1401                                        Expr *BrE, bool Neg) {
1402   // Find out which branch has the lock
1403   bool branch = false;
1404   if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1405     branch = BLE->getValue();
1406   else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1407     branch = ILE->getValue().getBoolValue();
1408 
1409   int branchnum = branch ? 0 : 1;
1410   if (Neg)
1411     branchnum = !branchnum;
1412 
1413   // If we've taken the trylock branch, then add the lock
1414   int i = 0;
1415   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1416        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1417     if (*SI == CurrBlock && i == branchnum)
1418       getMutexIDs(Mtxs, Attr, Exp, D);
1419   }
1420 }
1421 
1422 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1423   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1424     TCond = false;
1425     return true;
1426   } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1427     TCond = BLE->getValue();
1428     return true;
1429   } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1430     TCond = ILE->getValue().getBoolValue();
1431     return true;
1432   } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1433     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1434   return false;
1435 }
1436 
1437 // If Cond can be traced back to a function call, return the call expression.
1438 // The negate variable should be called with false, and will be set to true
1439 // if the function call is negated, e.g. if (!mu.tryLock(...))
1440 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1441                                                          LocalVarContext C,
1442                                                          bool &Negate) {
1443   if (!Cond)
1444     return nullptr;
1445 
1446   if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1447     if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1448       return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1449     return CallExp;
1450   }
1451   else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1452     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1453   else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1454     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1455   else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1456     return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1457   else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1458     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1459     return getTrylockCallExpr(E, C, Negate);
1460   }
1461   else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1462     if (UOP->getOpcode() == UO_LNot) {
1463       Negate = !Negate;
1464       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1465     }
1466     return nullptr;
1467   }
1468   else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1469     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1470       if (BOP->getOpcode() == BO_NE)
1471         Negate = !Negate;
1472 
1473       bool TCond = false;
1474       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1475         if (!TCond) Negate = !Negate;
1476         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1477       }
1478       TCond = false;
1479       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1480         if (!TCond) Negate = !Negate;
1481         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1482       }
1483       return nullptr;
1484     }
1485     if (BOP->getOpcode() == BO_LAnd) {
1486       // LHS must have been evaluated in a different block.
1487       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1488     }
1489     if (BOP->getOpcode() == BO_LOr)
1490       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1491     return nullptr;
1492   } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1493     bool TCond, FCond;
1494     if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1495         getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1496       if (TCond && !FCond)
1497         return getTrylockCallExpr(COP->getCond(), C, Negate);
1498       if (!TCond && FCond) {
1499         Negate = !Negate;
1500         return getTrylockCallExpr(COP->getCond(), C, Negate);
1501       }
1502     }
1503   }
1504   return nullptr;
1505 }
1506 
1507 /// Find the lockset that holds on the edge between PredBlock
1508 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1509 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1510 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1511                                           const FactSet &ExitSet,
1512                                           const CFGBlock *PredBlock,
1513                                           const CFGBlock *CurrBlock) {
1514   Result = ExitSet;
1515 
1516   const Stmt *Cond = PredBlock->getTerminatorCondition();
1517   // We don't acquire try-locks on ?: branches, only when its result is used.
1518   if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1519     return;
1520 
1521   bool Negate = false;
1522   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1523   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1524   StringRef CapDiagKind = "mutex";
1525 
1526   const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1527   if (!Exp)
1528     return;
1529 
1530   auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1531   if(!FunDecl || !FunDecl->hasAttrs())
1532     return;
1533 
1534   CapExprSet ExclusiveLocksToAdd;
1535   CapExprSet SharedLocksToAdd;
1536 
1537   // If the condition is a call to a Trylock function, then grab the attributes
1538   for (const auto *Attr : FunDecl->attrs()) {
1539     switch (Attr->getKind()) {
1540       case attr::TryAcquireCapability: {
1541         auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1542         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1543                     Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1544                     Negate);
1545         CapDiagKind = ClassifyDiagnostic(A);
1546         break;
1547       };
1548       case attr::ExclusiveTrylockFunction: {
1549         const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1550         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1551                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1552         CapDiagKind = ClassifyDiagnostic(A);
1553         break;
1554       }
1555       case attr::SharedTrylockFunction: {
1556         const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1557         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1558                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1559         CapDiagKind = ClassifyDiagnostic(A);
1560         break;
1561       }
1562       default:
1563         break;
1564     }
1565   }
1566 
1567   // Add and remove locks.
1568   SourceLocation Loc = Exp->getExprLoc();
1569   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1570     addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1571                                                          LK_Exclusive, Loc),
1572             CapDiagKind);
1573   for (const auto &SharedLockToAdd : SharedLocksToAdd)
1574     addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1575                                                          LK_Shared, Loc),
1576             CapDiagKind);
1577 }
1578 
1579 namespace {
1580 
1581 /// We use this class to visit different types of expressions in
1582 /// CFGBlocks, and build up the lockset.
1583 /// An expression may cause us to add or remove locks from the lockset, or else
1584 /// output error messages related to missing locks.
1585 /// FIXME: In future, we may be able to not inherit from a visitor.
1586 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1587   friend class ThreadSafetyAnalyzer;
1588 
1589   ThreadSafetyAnalyzer *Analyzer;
1590   FactSet FSet;
1591   LocalVariableMap::Context LVarCtx;
1592   unsigned CtxIndex;
1593 
1594   // helper functions
1595   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1596                           Expr *MutexExp, ProtectedOperationKind POK,
1597                           StringRef DiagKind, SourceLocation Loc);
1598   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1599                        StringRef DiagKind);
1600 
1601   void checkAccess(const Expr *Exp, AccessKind AK,
1602                    ProtectedOperationKind POK = POK_VarAccess);
1603   void checkPtAccess(const Expr *Exp, AccessKind AK,
1604                      ProtectedOperationKind POK = POK_VarAccess);
1605 
1606   void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1607   void examineArguments(const FunctionDecl *FD,
1608                         CallExpr::const_arg_iterator ArgBegin,
1609                         CallExpr::const_arg_iterator ArgEnd,
1610                         bool SkipFirstParam = false);
1611 
1612 public:
1613   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1614       : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1615         LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1616 
1617   void VisitUnaryOperator(const UnaryOperator *UO);
1618   void VisitBinaryOperator(const BinaryOperator *BO);
1619   void VisitCastExpr(const CastExpr *CE);
1620   void VisitCallExpr(const CallExpr *Exp);
1621   void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1622   void VisitDeclStmt(const DeclStmt *S);
1623 };
1624 
1625 } // namespace
1626 
1627 /// Warn if the LSet does not contain a lock sufficient to protect access
1628 /// of at least the passed in AccessKind.
1629 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1630                                       AccessKind AK, Expr *MutexExp,
1631                                       ProtectedOperationKind POK,
1632                                       StringRef DiagKind, SourceLocation Loc) {
1633   LockKind LK = getLockKindFromAccessKind(AK);
1634 
1635   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1636   if (Cp.isInvalid()) {
1637     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1638     return;
1639   } else if (Cp.shouldIgnore()) {
1640     return;
1641   }
1642 
1643   if (Cp.negative()) {
1644     // Negative capabilities act like locks excluded
1645     const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1646     if (LDat) {
1647       Analyzer->Handler.handleFunExcludesLock(
1648           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1649       return;
1650     }
1651 
1652     // If this does not refer to a negative capability in the same class,
1653     // then stop here.
1654     if (!Analyzer->inCurrentScope(Cp))
1655       return;
1656 
1657     // Otherwise the negative requirement must be propagated to the caller.
1658     LDat = FSet.findLock(Analyzer->FactMan, Cp);
1659     if (!LDat) {
1660       Analyzer->Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1661     }
1662     return;
1663   }
1664 
1665   const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1666   bool NoError = true;
1667   if (!LDat) {
1668     // No exact match found.  Look for a partial match.
1669     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1670     if (LDat) {
1671       // Warn that there's no precise match.
1672       std::string PartMatchStr = LDat->toString();
1673       StringRef   PartMatchName(PartMatchStr);
1674       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1675                                            LK, Loc, &PartMatchName);
1676     } else {
1677       // Warn that there's no match at all.
1678       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1679                                            LK, Loc);
1680     }
1681     NoError = false;
1682   }
1683   // Make sure the mutex we found is the right kind.
1684   if (NoError && LDat && !LDat->isAtLeast(LK)) {
1685     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1686                                          LK, Loc);
1687   }
1688 }
1689 
1690 /// Warn if the LSet contains the given lock.
1691 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1692                                    Expr *MutexExp, StringRef DiagKind) {
1693   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1694   if (Cp.isInvalid()) {
1695     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1696     return;
1697   } else if (Cp.shouldIgnore()) {
1698     return;
1699   }
1700 
1701   const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1702   if (LDat) {
1703     Analyzer->Handler.handleFunExcludesLock(
1704         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1705   }
1706 }
1707 
1708 /// Checks guarded_by and pt_guarded_by attributes.
1709 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1710 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1711 /// Similarly, we check if the access is to an expression that dereferences
1712 /// a pointer marked with pt_guarded_by.
1713 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1714                                ProtectedOperationKind POK) {
1715   Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1716 
1717   SourceLocation Loc = Exp->getExprLoc();
1718 
1719   // Local variables of reference type cannot be re-assigned;
1720   // map them to their initializer.
1721   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1722     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1723     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1724       if (const auto *E = VD->getInit()) {
1725         // Guard against self-initialization. e.g., int &i = i;
1726         if (E == Exp)
1727           break;
1728         Exp = E;
1729         continue;
1730       }
1731     }
1732     break;
1733   }
1734 
1735   if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1736     // For dereferences
1737     if (UO->getOpcode() == UO_Deref)
1738       checkPtAccess(UO->getSubExpr(), AK, POK);
1739     return;
1740   }
1741 
1742   if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1743     checkPtAccess(AE->getLHS(), AK, POK);
1744     return;
1745   }
1746 
1747   if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1748     if (ME->isArrow())
1749       checkPtAccess(ME->getBase(), AK, POK);
1750     else
1751       checkAccess(ME->getBase(), AK, POK);
1752   }
1753 
1754   const ValueDecl *D = getValueDecl(Exp);
1755   if (!D || !D->hasAttrs())
1756     return;
1757 
1758   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1759     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1760   }
1761 
1762   for (const auto *I : D->specific_attrs<GuardedByAttr>())
1763     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1764                        ClassifyDiagnostic(I), Loc);
1765 }
1766 
1767 /// Checks pt_guarded_by and pt_guarded_var attributes.
1768 /// POK is the same  operationKind that was passed to checkAccess.
1769 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1770                                  ProtectedOperationKind POK) {
1771   while (true) {
1772     if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1773       Exp = PE->getSubExpr();
1774       continue;
1775     }
1776     if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1777       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1778         // If it's an actual array, and not a pointer, then it's elements
1779         // are protected by GUARDED_BY, not PT_GUARDED_BY;
1780         checkAccess(CE->getSubExpr(), AK, POK);
1781         return;
1782       }
1783       Exp = CE->getSubExpr();
1784       continue;
1785     }
1786     break;
1787   }
1788 
1789   // Pass by reference warnings are under a different flag.
1790   ProtectedOperationKind PtPOK = POK_VarDereference;
1791   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1792 
1793   const ValueDecl *D = getValueDecl(Exp);
1794   if (!D || !D->hasAttrs())
1795     return;
1796 
1797   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1798     Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1799                                         Exp->getExprLoc());
1800 
1801   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1802     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1803                        ClassifyDiagnostic(I), Exp->getExprLoc());
1804 }
1805 
1806 /// Process a function call, method call, constructor call,
1807 /// or destructor call.  This involves looking at the attributes on the
1808 /// corresponding function/method/constructor/destructor, issuing warnings,
1809 /// and updating the locksets accordingly.
1810 ///
1811 /// FIXME: For classes annotated with one of the guarded annotations, we need
1812 /// to treat const method calls as reads and non-const method calls as writes,
1813 /// and check that the appropriate locks are held. Non-const method calls with
1814 /// the same signature as const method calls can be also treated as reads.
1815 ///
1816 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1817                               VarDecl *VD) {
1818   SourceLocation Loc = Exp->getExprLoc();
1819   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1820   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1821   CapExprSet ScopedReqsAndExcludes;
1822   StringRef CapDiagKind = "mutex";
1823 
1824   // Figure out if we're constructing an object of scoped lockable class
1825   bool isScopedVar = false;
1826   if (VD) {
1827     if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1828       const CXXRecordDecl* PD = CD->getParent();
1829       if (PD && PD->hasAttr<ScopedLockableAttr>())
1830         isScopedVar = true;
1831     }
1832   }
1833 
1834   for(const Attr *At : D->attrs()) {
1835     switch (At->getKind()) {
1836       // When we encounter a lock function, we need to add the lock to our
1837       // lockset.
1838       case attr::AcquireCapability: {
1839         const auto *A = cast<AcquireCapabilityAttr>(At);
1840         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1841                                             : ExclusiveLocksToAdd,
1842                               A, Exp, D, VD);
1843 
1844         CapDiagKind = ClassifyDiagnostic(A);
1845         break;
1846       }
1847 
1848       // An assert will add a lock to the lockset, but will not generate
1849       // a warning if it is already there, and will not generate a warning
1850       // if it is not removed.
1851       case attr::AssertExclusiveLock: {
1852         const auto *A = cast<AssertExclusiveLockAttr>(At);
1853 
1854         CapExprSet AssertLocks;
1855         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1856         for (const auto &AssertLock : AssertLocks)
1857           Analyzer->addLock(FSet,
1858                             std::make_unique<LockableFactEntry>(
1859                                 AssertLock, LK_Exclusive, Loc, false, true),
1860                             ClassifyDiagnostic(A));
1861         break;
1862       }
1863       case attr::AssertSharedLock: {
1864         const auto *A = cast<AssertSharedLockAttr>(At);
1865 
1866         CapExprSet AssertLocks;
1867         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1868         for (const auto &AssertLock : AssertLocks)
1869           Analyzer->addLock(FSet,
1870                             std::make_unique<LockableFactEntry>(
1871                                 AssertLock, LK_Shared, Loc, false, true),
1872                             ClassifyDiagnostic(A));
1873         break;
1874       }
1875 
1876       case attr::AssertCapability: {
1877         const auto *A = cast<AssertCapabilityAttr>(At);
1878         CapExprSet AssertLocks;
1879         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1880         for (const auto &AssertLock : AssertLocks)
1881           Analyzer->addLock(FSet,
1882                             std::make_unique<LockableFactEntry>(
1883                                 AssertLock,
1884                                 A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1885                                 false, true),
1886                             ClassifyDiagnostic(A));
1887         break;
1888       }
1889 
1890       // When we encounter an unlock function, we need to remove unlocked
1891       // mutexes from the lockset, and flag a warning if they are not there.
1892       case attr::ReleaseCapability: {
1893         const auto *A = cast<ReleaseCapabilityAttr>(At);
1894         if (A->isGeneric())
1895           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1896         else if (A->isShared())
1897           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1898         else
1899           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1900 
1901         CapDiagKind = ClassifyDiagnostic(A);
1902         break;
1903       }
1904 
1905       case attr::RequiresCapability: {
1906         const auto *A = cast<RequiresCapabilityAttr>(At);
1907         for (auto *Arg : A->args()) {
1908           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1909                              POK_FunctionCall, ClassifyDiagnostic(A),
1910                              Exp->getExprLoc());
1911           // use for adopting a lock
1912           if (isScopedVar)
1913             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1914         }
1915         break;
1916       }
1917 
1918       case attr::LocksExcluded: {
1919         const auto *A = cast<LocksExcludedAttr>(At);
1920         for (auto *Arg : A->args()) {
1921           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1922           // use for deferring a lock
1923           if (isScopedVar)
1924             Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD);
1925         }
1926         break;
1927       }
1928 
1929       // Ignore attributes unrelated to thread-safety
1930       default:
1931         break;
1932     }
1933   }
1934 
1935   // Remove locks first to allow lock upgrading/downgrading.
1936   // FIXME -- should only fully remove if the attribute refers to 'this'.
1937   bool Dtor = isa<CXXDestructorDecl>(D);
1938   for (const auto &M : ExclusiveLocksToRemove)
1939     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1940   for (const auto &M : SharedLocksToRemove)
1941     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1942   for (const auto &M : GenericLocksToRemove)
1943     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1944 
1945   // Add locks.
1946   for (const auto &M : ExclusiveLocksToAdd)
1947     Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1948                                 M, LK_Exclusive, Loc, isScopedVar),
1949                       CapDiagKind);
1950   for (const auto &M : SharedLocksToAdd)
1951     Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1952                                 M, LK_Shared, Loc, isScopedVar),
1953                       CapDiagKind);
1954 
1955   if (isScopedVar) {
1956     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1957     SourceLocation MLoc = VD->getLocation();
1958     DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
1959                     VD->getLocation());
1960     // FIXME: does this store a pointer to DRE?
1961     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1962 
1963     auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
1964     for (const auto &M : ExclusiveLocksToAdd)
1965       ScopedEntry->addLock(M);
1966     for (const auto &M : SharedLocksToAdd)
1967       ScopedEntry->addLock(M);
1968     for (const auto &M : ScopedReqsAndExcludes)
1969       ScopedEntry->addLock(M);
1970     for (const auto &M : ExclusiveLocksToRemove)
1971       ScopedEntry->addExclusiveUnlock(M);
1972     for (const auto &M : SharedLocksToRemove)
1973       ScopedEntry->addSharedUnlock(M);
1974     Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
1975   }
1976 }
1977 
1978 /// For unary operations which read and write a variable, we need to
1979 /// check whether we hold any required mutexes. Reads are checked in
1980 /// VisitCastExpr.
1981 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1982   switch (UO->getOpcode()) {
1983     case UO_PostDec:
1984     case UO_PostInc:
1985     case UO_PreDec:
1986     case UO_PreInc:
1987       checkAccess(UO->getSubExpr(), AK_Written);
1988       break;
1989     default:
1990       break;
1991   }
1992 }
1993 
1994 /// For binary operations which assign to a variable (writes), we need to check
1995 /// whether we hold any required mutexes.
1996 /// FIXME: Deal with non-primitive types.
1997 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1998   if (!BO->isAssignmentOp())
1999     return;
2000 
2001   // adjust the context
2002   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
2003 
2004   checkAccess(BO->getLHS(), AK_Written);
2005 }
2006 
2007 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
2008 /// need to ensure we hold any required mutexes.
2009 /// FIXME: Deal with non-primitive types.
2010 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
2011   if (CE->getCastKind() != CK_LValueToRValue)
2012     return;
2013   checkAccess(CE->getSubExpr(), AK_Read);
2014 }
2015 
2016 void BuildLockset::examineArguments(const FunctionDecl *FD,
2017                                     CallExpr::const_arg_iterator ArgBegin,
2018                                     CallExpr::const_arg_iterator ArgEnd,
2019                                     bool SkipFirstParam) {
2020   // Currently we can't do anything if we don't know the function declaration.
2021   if (!FD)
2022     return;
2023 
2024   // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
2025   // only turns off checking within the body of a function, but we also
2026   // use it to turn off checking in arguments to the function.  This
2027   // could result in some false negatives, but the alternative is to
2028   // create yet another attribute.
2029   if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2030     return;
2031 
2032   const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2033   auto Param = Params.begin();
2034   if (SkipFirstParam)
2035     ++Param;
2036 
2037   // There can be default arguments, so we stop when one iterator is at end().
2038   for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2039        ++Param, ++Arg) {
2040     QualType Qt = (*Param)->getType();
2041     if (Qt->isReferenceType())
2042       checkAccess(*Arg, AK_Read, POK_PassByRef);
2043   }
2044 }
2045 
2046 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2047   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2048     const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2049     // ME can be null when calling a method pointer
2050     const CXXMethodDecl *MD = CE->getMethodDecl();
2051 
2052     if (ME && MD) {
2053       if (ME->isArrow()) {
2054         if (MD->isConst())
2055           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2056         else // FIXME -- should be AK_Written
2057           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2058       } else {
2059         if (MD->isConst())
2060           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2061         else     // FIXME -- should be AK_Written
2062           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2063       }
2064     }
2065 
2066     examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2067   } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2068     auto OEop = OE->getOperator();
2069     switch (OEop) {
2070       case OO_Equal: {
2071         const Expr *Target = OE->getArg(0);
2072         const Expr *Source = OE->getArg(1);
2073         checkAccess(Target, AK_Written);
2074         checkAccess(Source, AK_Read);
2075         break;
2076       }
2077       case OO_Star:
2078       case OO_Arrow:
2079       case OO_Subscript:
2080         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2081           // Grrr.  operator* can be multiplication...
2082           checkPtAccess(OE->getArg(0), AK_Read);
2083         }
2084         LLVM_FALLTHROUGH;
2085       default: {
2086         // TODO: get rid of this, and rely on pass-by-ref instead.
2087         const Expr *Obj = OE->getArg(0);
2088         checkAccess(Obj, AK_Read);
2089         // Check the remaining arguments. For method operators, the first
2090         // argument is the implicit self argument, and doesn't appear in the
2091         // FunctionDecl, but for non-methods it does.
2092         const FunctionDecl *FD = OE->getDirectCallee();
2093         examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2094                          /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2095         break;
2096       }
2097     }
2098   } else {
2099     examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2100   }
2101 
2102   auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2103   if(!D || !D->hasAttrs())
2104     return;
2105   handleCall(Exp, D);
2106 }
2107 
2108 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2109   const CXXConstructorDecl *D = Exp->getConstructor();
2110   if (D && D->isCopyConstructor()) {
2111     const Expr* Source = Exp->getArg(0);
2112     checkAccess(Source, AK_Read);
2113   } else {
2114     examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2115   }
2116 }
2117 
2118 static CXXConstructorDecl *
2119 findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2120   // Prefer a move constructor over a copy constructor. If there's more than
2121   // one copy constructor or more than one move constructor, we arbitrarily
2122   // pick the first declared such constructor rather than trying to guess which
2123   // one is more appropriate.
2124   CXXConstructorDecl *CopyCtor = nullptr;
2125   for (auto *Ctor : RD->ctors()) {
2126     if (Ctor->isDeleted())
2127       continue;
2128     if (Ctor->isMoveConstructor())
2129       return Ctor;
2130     if (!CopyCtor && Ctor->isCopyConstructor())
2131       CopyCtor = Ctor;
2132   }
2133   return CopyCtor;
2134 }
2135 
2136 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2137                                SourceLocation Loc) {
2138   ASTContext &Ctx = CD->getASTContext();
2139   return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2140                                   CD, true, Args, false, false, false, false,
2141                                   CXXConstructExpr::CK_Complete,
2142                                   SourceRange(Loc, Loc));
2143 }
2144 
2145 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2146   // adjust the context
2147   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2148 
2149   for (auto *D : S->getDeclGroup()) {
2150     if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2151       Expr *E = VD->getInit();
2152       if (!E)
2153         continue;
2154       E = E->IgnoreParens();
2155 
2156       // handle constructors that involve temporaries
2157       if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2158         E = EWC->getSubExpr()->IgnoreParens();
2159       if (auto *CE = dyn_cast<CastExpr>(E))
2160         if (CE->getCastKind() == CK_NoOp ||
2161             CE->getCastKind() == CK_ConstructorConversion ||
2162             CE->getCastKind() == CK_UserDefinedConversion)
2163           E = CE->getSubExpr()->IgnoreParens();
2164       if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2165         E = BTE->getSubExpr()->IgnoreParens();
2166 
2167       if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2168         const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2169         if (!CtorD || !CtorD->hasAttrs())
2170           continue;
2171         handleCall(E, CtorD, VD);
2172       } else if (isa<CallExpr>(E) && E->isRValue()) {
2173         // If the object is initialized by a function call that returns a
2174         // scoped lockable by value, use the attributes on the copy or move
2175         // constructor to figure out what effect that should have on the
2176         // lockset.
2177         // FIXME: Is this really the best way to handle this situation?
2178         auto *RD = E->getType()->getAsCXXRecordDecl();
2179         if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2180           continue;
2181         CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2182         if (!CtorD || !CtorD->hasAttrs())
2183           continue;
2184         handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
2185       }
2186     }
2187   }
2188 }
2189 
2190 /// Compute the intersection of two locksets and issue warnings for any
2191 /// locks in the symmetric difference.
2192 ///
2193 /// This function is used at a merge point in the CFG when comparing the lockset
2194 /// of each branch being merged. For example, given the following sequence:
2195 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2196 /// are the same. In the event of a difference, we use the intersection of these
2197 /// two locksets at the start of D.
2198 ///
2199 /// \param FSet1 The first lockset.
2200 /// \param FSet2 The second lockset.
2201 /// \param JoinLoc The location of the join point for error reporting
2202 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2203 /// \param LEK2 The error message to report if a mutex is missing from Lset2
2204 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2205                                             const FactSet &FSet2,
2206                                             SourceLocation JoinLoc,
2207                                             LockErrorKind LEK1,
2208                                             LockErrorKind LEK2,
2209                                             bool Modify) {
2210   FactSet FSet1Orig = FSet1;
2211 
2212   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2213   for (const auto &Fact : FSet2) {
2214     const FactEntry *LDat1 = nullptr;
2215     const FactEntry *LDat2 = &FactMan[Fact];
2216     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
2217     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
2218 
2219     if (LDat1) {
2220       if (LDat1->kind() != LDat2->kind()) {
2221         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
2222                                          LDat2->loc(), LDat1->loc());
2223         if (Modify && LDat1->kind() != LK_Exclusive) {
2224           // Take the exclusive lock, which is the one in FSet2.
2225           *Iter1 = Fact;
2226         }
2227       }
2228       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
2229         // The non-asserted lock in FSet2 is the one we want to track.
2230         *Iter1 = Fact;
2231       }
2232     } else {
2233       LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2234                                            Handler);
2235     }
2236   }
2237 
2238   // Find locks in FSet1 that are not in FSet2, and remove them.
2239   for (const auto &Fact : FSet1Orig) {
2240     const FactEntry *LDat1 = &FactMan[Fact];
2241     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2242 
2243     if (!LDat2) {
2244       LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2245                                            Handler);
2246       if (Modify)
2247         FSet1.removeLock(FactMan, *LDat1);
2248     }
2249   }
2250 }
2251 
2252 // Return true if block B never continues to its successors.
2253 static bool neverReturns(const CFGBlock *B) {
2254   if (B->hasNoReturnElement())
2255     return true;
2256   if (B->empty())
2257     return false;
2258 
2259   CFGElement Last = B->back();
2260   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2261     if (isa<CXXThrowExpr>(S->getStmt()))
2262       return true;
2263   }
2264   return false;
2265 }
2266 
2267 /// Check a function's CFG for thread-safety violations.
2268 ///
2269 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2270 /// at the end of each block, and issue warnings for thread safety violations.
2271 /// Each block in the CFG is traversed exactly once.
2272 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2273   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2274   // For now, we just use the walker to set things up.
2275   threadSafety::CFGWalker walker;
2276   if (!walker.init(AC))
2277     return;
2278 
2279   // AC.dumpCFG(true);
2280   // threadSafety::printSCFG(walker);
2281 
2282   CFG *CFGraph = walker.getGraph();
2283   const NamedDecl *D = walker.getDecl();
2284   const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2285   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2286 
2287   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2288     return;
2289 
2290   // FIXME: Do something a bit more intelligent inside constructor and
2291   // destructor code.  Constructors and destructors must assume unique access
2292   // to 'this', so checks on member variable access is disabled, but we should
2293   // still enable checks on other objects.
2294   if (isa<CXXConstructorDecl>(D))
2295     return;  // Don't check inside constructors.
2296   if (isa<CXXDestructorDecl>(D))
2297     return;  // Don't check inside destructors.
2298 
2299   Handler.enterFunction(CurrentFunction);
2300 
2301   BlockInfo.resize(CFGraph->getNumBlockIDs(),
2302     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2303 
2304   // We need to explore the CFG via a "topological" ordering.
2305   // That way, we will be guaranteed to have information about required
2306   // predecessor locksets when exploring a new block.
2307   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2308   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2309 
2310   // Mark entry block as reachable
2311   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2312 
2313   // Compute SSA names for local variables
2314   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2315 
2316   // Fill in source locations for all CFGBlocks.
2317   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2318 
2319   CapExprSet ExclusiveLocksAcquired;
2320   CapExprSet SharedLocksAcquired;
2321   CapExprSet LocksReleased;
2322 
2323   // Add locks from exclusive_locks_required and shared_locks_required
2324   // to initial lockset. Also turn off checking for lock and unlock functions.
2325   // FIXME: is there a more intelligent way to check lock/unlock functions?
2326   if (!SortedGraph->empty() && D->hasAttrs()) {
2327     const CFGBlock *FirstBlock = *SortedGraph->begin();
2328     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2329 
2330     CapExprSet ExclusiveLocksToAdd;
2331     CapExprSet SharedLocksToAdd;
2332     StringRef CapDiagKind = "mutex";
2333 
2334     SourceLocation Loc = D->getLocation();
2335     for (const auto *Attr : D->attrs()) {
2336       Loc = Attr->getLocation();
2337       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2338         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2339                     nullptr, D);
2340         CapDiagKind = ClassifyDiagnostic(A);
2341       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2342         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2343         // We must ignore such methods.
2344         if (A->args_size() == 0)
2345           return;
2346         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2347                     nullptr, D);
2348         getMutexIDs(LocksReleased, A, nullptr, D);
2349         CapDiagKind = ClassifyDiagnostic(A);
2350       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2351         if (A->args_size() == 0)
2352           return;
2353         getMutexIDs(A->isShared() ? SharedLocksAcquired
2354                                   : ExclusiveLocksAcquired,
2355                     A, nullptr, D);
2356         CapDiagKind = ClassifyDiagnostic(A);
2357       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2358         // Don't try to check trylock functions for now.
2359         return;
2360       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2361         // Don't try to check trylock functions for now.
2362         return;
2363       } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2364         // Don't try to check trylock functions for now.
2365         return;
2366       }
2367     }
2368 
2369     // FIXME -- Loc can be wrong here.
2370     for (const auto &Mu : ExclusiveLocksToAdd) {
2371       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
2372       Entry->setDeclared(true);
2373       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2374     }
2375     for (const auto &Mu : SharedLocksToAdd) {
2376       auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
2377       Entry->setDeclared(true);
2378       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2379     }
2380   }
2381 
2382   for (const auto *CurrBlock : *SortedGraph) {
2383     unsigned CurrBlockID = CurrBlock->getBlockID();
2384     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2385 
2386     // Use the default initial lockset in case there are no predecessors.
2387     VisitedBlocks.insert(CurrBlock);
2388 
2389     // Iterate through the predecessor blocks and warn if the lockset for all
2390     // predecessors is not the same. We take the entry lockset of the current
2391     // block to be the intersection of all previous locksets.
2392     // FIXME: By keeping the intersection, we may output more errors in future
2393     // for a lock which is not in the intersection, but was in the union. We
2394     // may want to also keep the union in future. As an example, let's say
2395     // the intersection contains Mutex L, and the union contains L and M.
2396     // Later we unlock M. At this point, we would output an error because we
2397     // never locked M; although the real error is probably that we forgot to
2398     // lock M on all code paths. Conversely, let's say that later we lock M.
2399     // In this case, we should compare against the intersection instead of the
2400     // union because the real error is probably that we forgot to unlock M on
2401     // all code paths.
2402     bool LocksetInitialized = false;
2403     SmallVector<CFGBlock *, 8> SpecialBlocks;
2404     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2405          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2406       // if *PI -> CurrBlock is a back edge
2407       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2408         continue;
2409 
2410       unsigned PrevBlockID = (*PI)->getBlockID();
2411       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2412 
2413       // Ignore edges from blocks that can't return.
2414       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2415         continue;
2416 
2417       // Okay, we can reach this block from the entry.
2418       CurrBlockInfo->Reachable = true;
2419 
2420       // If the previous block ended in a 'continue' or 'break' statement, then
2421       // a difference in locksets is probably due to a bug in that block, rather
2422       // than in some other predecessor. In that case, keep the other
2423       // predecessor's lockset.
2424       if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
2425         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2426           SpecialBlocks.push_back(*PI);
2427           continue;
2428         }
2429       }
2430 
2431       FactSet PrevLockset;
2432       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2433 
2434       if (!LocksetInitialized) {
2435         CurrBlockInfo->EntrySet = PrevLockset;
2436         LocksetInitialized = true;
2437       } else {
2438         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2439                          CurrBlockInfo->EntryLoc,
2440                          LEK_LockedSomePredecessors);
2441       }
2442     }
2443 
2444     // Skip rest of block if it's not reachable.
2445     if (!CurrBlockInfo->Reachable)
2446       continue;
2447 
2448     // Process continue and break blocks. Assume that the lockset for the
2449     // resulting block is unaffected by any discrepancies in them.
2450     for (const auto *PrevBlock : SpecialBlocks) {
2451       unsigned PrevBlockID = PrevBlock->getBlockID();
2452       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2453 
2454       if (!LocksetInitialized) {
2455         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2456         LocksetInitialized = true;
2457       } else {
2458         // Determine whether this edge is a loop terminator for diagnostic
2459         // purposes. FIXME: A 'break' statement might be a loop terminator, but
2460         // it might also be part of a switch. Also, a subsequent destructor
2461         // might add to the lockset, in which case the real issue might be a
2462         // double lock on the other path.
2463         const Stmt *Terminator = PrevBlock->getTerminatorStmt();
2464         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2465 
2466         FactSet PrevLockset;
2467         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2468                        PrevBlock, CurrBlock);
2469 
2470         // Do not update EntrySet.
2471         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2472                          PrevBlockInfo->ExitLoc,
2473                          IsLoop ? LEK_LockedSomeLoopIterations
2474                                 : LEK_LockedSomePredecessors,
2475                          false);
2476       }
2477     }
2478 
2479     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2480 
2481     // Visit all the statements in the basic block.
2482     for (const auto &BI : *CurrBlock) {
2483       switch (BI.getKind()) {
2484         case CFGElement::Statement: {
2485           CFGStmt CS = BI.castAs<CFGStmt>();
2486           LocksetBuilder.Visit(CS.getStmt());
2487           break;
2488         }
2489         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2490         case CFGElement::AutomaticObjectDtor: {
2491           CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2492           const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2493           if (!DD->hasAttrs())
2494             break;
2495 
2496           // Create a dummy expression,
2497           auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2498           DeclRefExpr DRE(VD->getASTContext(), VD, false,
2499                           VD->getType().getNonReferenceType(), VK_LValue,
2500                           AD.getTriggerStmt()->getEndLoc());
2501           LocksetBuilder.handleCall(&DRE, DD);
2502           break;
2503         }
2504         default:
2505           break;
2506       }
2507     }
2508     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2509 
2510     // For every back edge from CurrBlock (the end of the loop) to another block
2511     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2512     // the one held at the beginning of FirstLoopBlock. We can look up the
2513     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2514     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2515          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2516       // if CurrBlock -> *SI is *not* a back edge
2517       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2518         continue;
2519 
2520       CFGBlock *FirstLoopBlock = *SI;
2521       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2522       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2523       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2524                        PreLoop->EntryLoc,
2525                        LEK_LockedSomeLoopIterations,
2526                        false);
2527     }
2528   }
2529 
2530   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2531   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2532 
2533   // Skip the final check if the exit block is unreachable.
2534   if (!Final->Reachable)
2535     return;
2536 
2537   // By default, we expect all locks held on entry to be held on exit.
2538   FactSet ExpectedExitSet = Initial->EntrySet;
2539 
2540   // Adjust the expected exit set by adding or removing locks, as declared
2541   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2542   // issue the appropriate warning.
2543   // FIXME: the location here is not quite right.
2544   for (const auto &Lock : ExclusiveLocksAcquired)
2545     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2546                                          Lock, LK_Exclusive, D->getLocation()));
2547   for (const auto &Lock : SharedLocksAcquired)
2548     ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2549                                          Lock, LK_Shared, D->getLocation()));
2550   for (const auto &Lock : LocksReleased)
2551     ExpectedExitSet.removeLock(FactMan, Lock);
2552 
2553   // FIXME: Should we call this function for all blocks which exit the function?
2554   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2555                    Final->ExitLoc,
2556                    LEK_LockedAtEndOfFunction,
2557                    LEK_NotLockedAtEndOfFunction,
2558                    false);
2559 
2560   Handler.leaveFunction(CurrentFunction);
2561 }
2562 
2563 /// Check a function's CFG for thread-safety violations.
2564 ///
2565 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2566 /// at the end of each block, and issue warnings for thread safety violations.
2567 /// Each block in the CFG is traversed exactly once.
2568 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2569                                            ThreadSafetyHandler &Handler,
2570                                            BeforeSet **BSet) {
2571   if (!*BSet)
2572     *BSet = new BeforeSet;
2573   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2574   Analyzer.runAnalysis(AC);
2575 }
2576 
2577 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2578 
2579 /// Helper function that returns a LockKind required for the given level
2580 /// of access.
2581 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2582   switch (AK) {
2583     case AK_Read :
2584       return LK_Shared;
2585     case AK_Written :
2586       return LK_Exclusive;
2587   }
2588   llvm_unreachable("Unknown AccessKind");
2589 }
2590