1 //===--- TargetInfo.cpp - Information about Target machine ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the TargetInfo and TargetInfoImpl interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/TargetInfo.h"
14 #include "clang/Basic/AddressSpaces.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/LangOptions.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/TargetParser.h"
22 #include <cstdlib>
23 using namespace clang;
24 
25 static const LangASMap DefaultAddrSpaceMap = {0};
26 
27 // TargetInfo Constructor.
28 TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) {
29   // Set defaults.  Defaults are set for a 32-bit RISC platform, like PPC or
30   // SPARC.  These should be overridden by concrete targets as needed.
31   BigEndian = !T.isLittleEndian();
32   TLSSupported = true;
33   VLASupported = true;
34   NoAsmVariants = false;
35   HasLegalHalfType = false;
36   HasFloat128 = false;
37   HasIbm128 = false;
38   HasFloat16 = false;
39   HasBFloat16 = false;
40   HasLongDouble = true;
41   HasFPReturn = true;
42   HasStrictFP = false;
43   PointerWidth = PointerAlign = 32;
44   BoolWidth = BoolAlign = 8;
45   IntWidth = IntAlign = 32;
46   LongWidth = LongAlign = 32;
47   LongLongWidth = LongLongAlign = 64;
48 
49   // Fixed point default bit widths
50   ShortAccumWidth = ShortAccumAlign = 16;
51   AccumWidth = AccumAlign = 32;
52   LongAccumWidth = LongAccumAlign = 64;
53   ShortFractWidth = ShortFractAlign = 8;
54   FractWidth = FractAlign = 16;
55   LongFractWidth = LongFractAlign = 32;
56 
57   // Fixed point default integral and fractional bit sizes
58   // We give the _Accum 1 fewer fractional bits than their corresponding _Fract
59   // types by default to have the same number of fractional bits between _Accum
60   // and _Fract types.
61   PaddingOnUnsignedFixedPoint = false;
62   ShortAccumScale = 7;
63   AccumScale = 15;
64   LongAccumScale = 31;
65 
66   SuitableAlign = 64;
67   DefaultAlignForAttributeAligned = 128;
68   MinGlobalAlign = 0;
69   // From the glibc documentation, on GNU systems, malloc guarantees 16-byte
70   // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
71   // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
72   // This alignment guarantee also applies to Windows and Android. On Darwin
73   // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems.
74   if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
75     NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
76   else if (T.isOSDarwin() || T.isOSOpenBSD())
77     NewAlign = 128;
78   else
79     NewAlign = 0; // Infer from basic type alignment.
80   HalfWidth = 16;
81   HalfAlign = 16;
82   FloatWidth = 32;
83   FloatAlign = 32;
84   DoubleWidth = 64;
85   DoubleAlign = 64;
86   LongDoubleWidth = 64;
87   LongDoubleAlign = 64;
88   Float128Align = 128;
89   Ibm128Align = 128;
90   LargeArrayMinWidth = 0;
91   LargeArrayAlign = 0;
92   MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
93   MaxVectorAlign = 0;
94   MaxTLSAlign = 0;
95   SimdDefaultAlign = 0;
96   SizeType = UnsignedLong;
97   PtrDiffType = SignedLong;
98   IntMaxType = SignedLongLong;
99   IntPtrType = SignedLong;
100   WCharType = SignedInt;
101   WIntType = SignedInt;
102   Char16Type = UnsignedShort;
103   Char32Type = UnsignedInt;
104   Int64Type = SignedLongLong;
105   Int16Type = SignedShort;
106   SigAtomicType = SignedInt;
107   ProcessIDType = SignedInt;
108   UseSignedCharForObjCBool = true;
109   UseBitFieldTypeAlignment = true;
110   UseZeroLengthBitfieldAlignment = false;
111   UseLeadingZeroLengthBitfield = true;
112   UseExplicitBitFieldAlignment = true;
113   ZeroLengthBitfieldBoundary = 0;
114   MaxAlignedAttribute = 0;
115   HalfFormat = &llvm::APFloat::IEEEhalf();
116   FloatFormat = &llvm::APFloat::IEEEsingle();
117   DoubleFormat = &llvm::APFloat::IEEEdouble();
118   LongDoubleFormat = &llvm::APFloat::IEEEdouble();
119   Float128Format = &llvm::APFloat::IEEEquad();
120   Ibm128Format = &llvm::APFloat::PPCDoubleDouble();
121   MCountName = "mcount";
122   UserLabelPrefix = "_";
123   RegParmMax = 0;
124   SSERegParmMax = 0;
125   HasAlignMac68kSupport = false;
126   HasBuiltinMSVaList = false;
127   IsRenderScriptTarget = false;
128   HasAArch64SVETypes = false;
129   HasRISCVVTypes = false;
130   AllowAMDGPUUnsafeFPAtomics = false;
131   ARMCDECoprocMask = 0;
132 
133   // Default to no types using fpret.
134   RealTypeUsesObjCFPRetMask = 0;
135 
136   // Default to not using fp2ret for __Complex long double
137   ComplexLongDoubleUsesFP2Ret = false;
138 
139   // Set the C++ ABI based on the triple.
140   TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
141                     ? TargetCXXABI::Microsoft
142                     : TargetCXXABI::GenericItanium);
143 
144   // Default to an empty address space map.
145   AddrSpaceMap = &DefaultAddrSpaceMap;
146   UseAddrSpaceMapMangling = false;
147 
148   // Default to an unknown platform name.
149   PlatformName = "unknown";
150   PlatformMinVersion = VersionTuple();
151 
152   MaxOpenCLWorkGroupSize = 1024;
153 
154   MaxBitIntWidth.reset();
155 
156   ProgramAddrSpace = 0;
157 }
158 
159 // Out of line virtual dtor for TargetInfo.
160 TargetInfo::~TargetInfo() {}
161 
162 void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) {
163   DataLayoutString = DL.str();
164   UserLabelPrefix = ULP;
165 }
166 
167 bool
168 TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
169   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
170   return false;
171 }
172 
173 bool
174 TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
175   Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
176   return false;
177 }
178 
179 /// getTypeName - Return the user string for the specified integer type enum.
180 /// For example, SignedShort -> "short".
181 const char *TargetInfo::getTypeName(IntType T) {
182   switch (T) {
183   default: llvm_unreachable("not an integer!");
184   case SignedChar:       return "signed char";
185   case UnsignedChar:     return "unsigned char";
186   case SignedShort:      return "short";
187   case UnsignedShort:    return "unsigned short";
188   case SignedInt:        return "int";
189   case UnsignedInt:      return "unsigned int";
190   case SignedLong:       return "long int";
191   case UnsignedLong:     return "long unsigned int";
192   case SignedLongLong:   return "long long int";
193   case UnsignedLongLong: return "long long unsigned int";
194   }
195 }
196 
197 /// getTypeConstantSuffix - Return the constant suffix for the specified
198 /// integer type enum. For example, SignedLong -> "L".
199 const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
200   switch (T) {
201   default: llvm_unreachable("not an integer!");
202   case SignedChar:
203   case SignedShort:
204   case SignedInt:        return "";
205   case SignedLong:       return "L";
206   case SignedLongLong:   return "LL";
207   case UnsignedChar:
208     if (getCharWidth() < getIntWidth())
209       return "";
210     LLVM_FALLTHROUGH;
211   case UnsignedShort:
212     if (getShortWidth() < getIntWidth())
213       return "";
214     LLVM_FALLTHROUGH;
215   case UnsignedInt:      return "U";
216   case UnsignedLong:     return "UL";
217   case UnsignedLongLong: return "ULL";
218   }
219 }
220 
221 /// getTypeFormatModifier - Return the printf format modifier for the
222 /// specified integer type enum. For example, SignedLong -> "l".
223 
224 const char *TargetInfo::getTypeFormatModifier(IntType T) {
225   switch (T) {
226   default: llvm_unreachable("not an integer!");
227   case SignedChar:
228   case UnsignedChar:     return "hh";
229   case SignedShort:
230   case UnsignedShort:    return "h";
231   case SignedInt:
232   case UnsignedInt:      return "";
233   case SignedLong:
234   case UnsignedLong:     return "l";
235   case SignedLongLong:
236   case UnsignedLongLong: return "ll";
237   }
238 }
239 
240 /// getTypeWidth - Return the width (in bits) of the specified integer type
241 /// enum. For example, SignedInt -> getIntWidth().
242 unsigned TargetInfo::getTypeWidth(IntType T) const {
243   switch (T) {
244   default: llvm_unreachable("not an integer!");
245   case SignedChar:
246   case UnsignedChar:     return getCharWidth();
247   case SignedShort:
248   case UnsignedShort:    return getShortWidth();
249   case SignedInt:
250   case UnsignedInt:      return getIntWidth();
251   case SignedLong:
252   case UnsignedLong:     return getLongWidth();
253   case SignedLongLong:
254   case UnsignedLongLong: return getLongLongWidth();
255   };
256 }
257 
258 TargetInfo::IntType TargetInfo::getIntTypeByWidth(
259     unsigned BitWidth, bool IsSigned) const {
260   if (getCharWidth() == BitWidth)
261     return IsSigned ? SignedChar : UnsignedChar;
262   if (getShortWidth() == BitWidth)
263     return IsSigned ? SignedShort : UnsignedShort;
264   if (getIntWidth() == BitWidth)
265     return IsSigned ? SignedInt : UnsignedInt;
266   if (getLongWidth() == BitWidth)
267     return IsSigned ? SignedLong : UnsignedLong;
268   if (getLongLongWidth() == BitWidth)
269     return IsSigned ? SignedLongLong : UnsignedLongLong;
270   return NoInt;
271 }
272 
273 TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
274                                                        bool IsSigned) const {
275   if (getCharWidth() >= BitWidth)
276     return IsSigned ? SignedChar : UnsignedChar;
277   if (getShortWidth() >= BitWidth)
278     return IsSigned ? SignedShort : UnsignedShort;
279   if (getIntWidth() >= BitWidth)
280     return IsSigned ? SignedInt : UnsignedInt;
281   if (getLongWidth() >= BitWidth)
282     return IsSigned ? SignedLong : UnsignedLong;
283   if (getLongLongWidth() >= BitWidth)
284     return IsSigned ? SignedLongLong : UnsignedLongLong;
285   return NoInt;
286 }
287 
288 FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth,
289                                              FloatModeKind ExplicitType) const {
290   if (getHalfWidth() == BitWidth)
291     return FloatModeKind::Half;
292   if (getFloatWidth() == BitWidth)
293     return FloatModeKind::Float;
294   if (getDoubleWidth() == BitWidth)
295     return FloatModeKind::Double;
296 
297   switch (BitWidth) {
298   case 96:
299     if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
300       return FloatModeKind::LongDouble;
301     break;
302   case 128:
303     // The caller explicitly asked for an IEEE compliant type but we still
304     // have to check if the target supports it.
305     if (ExplicitType == FloatModeKind::Float128)
306       return hasFloat128Type() ? FloatModeKind::Float128
307                                : FloatModeKind::NoFloat;
308     if (ExplicitType == FloatModeKind::Ibm128)
309       return hasIbm128Type() ? FloatModeKind::Ibm128
310                              : FloatModeKind::NoFloat;
311     if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
312         &getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
313       return FloatModeKind::LongDouble;
314     if (hasFloat128Type())
315       return FloatModeKind::Float128;
316     break;
317   }
318 
319   return FloatModeKind::NoFloat;
320 }
321 
322 /// getTypeAlign - Return the alignment (in bits) of the specified integer type
323 /// enum. For example, SignedInt -> getIntAlign().
324 unsigned TargetInfo::getTypeAlign(IntType T) const {
325   switch (T) {
326   default: llvm_unreachable("not an integer!");
327   case SignedChar:
328   case UnsignedChar:     return getCharAlign();
329   case SignedShort:
330   case UnsignedShort:    return getShortAlign();
331   case SignedInt:
332   case UnsignedInt:      return getIntAlign();
333   case SignedLong:
334   case UnsignedLong:     return getLongAlign();
335   case SignedLongLong:
336   case UnsignedLongLong: return getLongLongAlign();
337   };
338 }
339 
340 /// isTypeSigned - Return whether an integer types is signed. Returns true if
341 /// the type is signed; false otherwise.
342 bool TargetInfo::isTypeSigned(IntType T) {
343   switch (T) {
344   default: llvm_unreachable("not an integer!");
345   case SignedChar:
346   case SignedShort:
347   case SignedInt:
348   case SignedLong:
349   case SignedLongLong:
350     return true;
351   case UnsignedChar:
352   case UnsignedShort:
353   case UnsignedInt:
354   case UnsignedLong:
355   case UnsignedLongLong:
356     return false;
357   };
358 }
359 
360 /// adjust - Set forced language options.
361 /// Apply changes to the target information with respect to certain
362 /// language options which change the target configuration and adjust
363 /// the language based on the target options where applicable.
364 void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) {
365   if (Opts.NoBitFieldTypeAlign)
366     UseBitFieldTypeAlignment = false;
367 
368   switch (Opts.WCharSize) {
369   default: llvm_unreachable("invalid wchar_t width");
370   case 0: break;
371   case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
372   case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
373   case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
374   }
375 
376   if (Opts.AlignDouble) {
377     DoubleAlign = LongLongAlign = 64;
378     LongDoubleAlign = 64;
379   }
380 
381   if (Opts.OpenCL) {
382     // OpenCL C requires specific widths for types, irrespective of
383     // what these normally are for the target.
384     // We also define long long and long double here, although the
385     // OpenCL standard only mentions these as "reserved".
386     IntWidth = IntAlign = 32;
387     LongWidth = LongAlign = 64;
388     LongLongWidth = LongLongAlign = 128;
389     HalfWidth = HalfAlign = 16;
390     FloatWidth = FloatAlign = 32;
391 
392     // Embedded 32-bit targets (OpenCL EP) might have double C type
393     // defined as float. Let's not override this as it might lead
394     // to generating illegal code that uses 64bit doubles.
395     if (DoubleWidth != FloatWidth) {
396       DoubleWidth = DoubleAlign = 64;
397       DoubleFormat = &llvm::APFloat::IEEEdouble();
398     }
399     LongDoubleWidth = LongDoubleAlign = 128;
400 
401     unsigned MaxPointerWidth = getMaxPointerWidth();
402     assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
403     bool Is32BitArch = MaxPointerWidth == 32;
404     SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
405     PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
406     IntPtrType = Is32BitArch ? SignedInt : SignedLong;
407 
408     IntMaxType = SignedLongLong;
409     Int64Type = SignedLong;
410 
411     HalfFormat = &llvm::APFloat::IEEEhalf();
412     FloatFormat = &llvm::APFloat::IEEEsingle();
413     LongDoubleFormat = &llvm::APFloat::IEEEquad();
414 
415     // OpenCL C v3.0 s6.7.5 - The generic address space requires support for
416     // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space
417     // feature
418     // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0
419     // or later and __opencl_c_pipes feature
420     // FIXME: These language options are also defined in setLangDefaults()
421     // for OpenCL C 2.0 but with no access to target capabilities. Target
422     // should be immutable once created and thus these language options need
423     // to be defined only once.
424     if (Opts.getOpenCLCompatibleVersion() == 300) {
425       const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts();
426       Opts.OpenCLGenericAddressSpace = hasFeatureEnabled(
427           OpenCLFeaturesMap, "__opencl_c_generic_address_space");
428       Opts.OpenCLPipes =
429           hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes");
430       Opts.Blocks =
431           hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_device_enqueue");
432     }
433   }
434 
435   if (Opts.DoubleSize) {
436     if (Opts.DoubleSize == 32) {
437       DoubleWidth = 32;
438       LongDoubleWidth = 32;
439       DoubleFormat = &llvm::APFloat::IEEEsingle();
440       LongDoubleFormat = &llvm::APFloat::IEEEsingle();
441     } else if (Opts.DoubleSize == 64) {
442       DoubleWidth = 64;
443       LongDoubleWidth = 64;
444       DoubleFormat = &llvm::APFloat::IEEEdouble();
445       LongDoubleFormat = &llvm::APFloat::IEEEdouble();
446     }
447   }
448 
449   if (Opts.LongDoubleSize) {
450     if (Opts.LongDoubleSize == DoubleWidth) {
451       LongDoubleWidth = DoubleWidth;
452       LongDoubleAlign = DoubleAlign;
453       LongDoubleFormat = DoubleFormat;
454     } else if (Opts.LongDoubleSize == 128) {
455       LongDoubleWidth = LongDoubleAlign = 128;
456       LongDoubleFormat = &llvm::APFloat::IEEEquad();
457     } else if (Opts.LongDoubleSize == 80) {
458       LongDoubleFormat = &llvm::APFloat::x87DoubleExtended();
459       if (getTriple().isWindowsMSVCEnvironment()) {
460         LongDoubleWidth = 128;
461         LongDoubleAlign = 128;
462       } else { // Linux
463         if (getTriple().getArch() == llvm::Triple::x86) {
464           LongDoubleWidth = 96;
465           LongDoubleAlign = 32;
466         } else {
467           LongDoubleWidth = 128;
468           LongDoubleAlign = 128;
469         }
470       }
471     }
472   }
473 
474   if (Opts.NewAlignOverride)
475     NewAlign = Opts.NewAlignOverride * getCharWidth();
476 
477   // Each unsigned fixed point type has the same number of fractional bits as
478   // its corresponding signed type.
479   PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
480   CheckFixedPointBits();
481 
482   if (Opts.ProtectParens && !checkArithmeticFenceSupported()) {
483     Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens";
484     Opts.ProtectParens = false;
485   }
486 
487   if (Opts.MaxBitIntWidth)
488     MaxBitIntWidth = Opts.MaxBitIntWidth;
489 }
490 
491 bool TargetInfo::initFeatureMap(
492     llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
493     const std::vector<std::string> &FeatureVec) const {
494   for (const auto &F : FeatureVec) {
495     StringRef Name = F;
496     // Apply the feature via the target.
497     bool Enabled = Name[0] == '+';
498     setFeatureEnabled(Features, Name.substr(1), Enabled);
499   }
500   return true;
501 }
502 
503 TargetInfo::CallingConvKind
504 TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
505   if (getCXXABI() != TargetCXXABI::Microsoft &&
506       (ClangABICompat4 || getTriple().isPS4()))
507     return CCK_ClangABI4OrPS4;
508   return CCK_Default;
509 }
510 
511 LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
512   switch (TK) {
513   case OCLTK_Image:
514   case OCLTK_Pipe:
515     return LangAS::opencl_global;
516 
517   case OCLTK_Sampler:
518     return LangAS::opencl_constant;
519 
520   default:
521     return LangAS::Default;
522   }
523 }
524 
525 //===----------------------------------------------------------------------===//
526 
527 
528 static StringRef removeGCCRegisterPrefix(StringRef Name) {
529   if (Name[0] == '%' || Name[0] == '#')
530     Name = Name.substr(1);
531 
532   return Name;
533 }
534 
535 /// isValidClobber - Returns whether the passed in string is
536 /// a valid clobber in an inline asm statement. This is used by
537 /// Sema.
538 bool TargetInfo::isValidClobber(StringRef Name) const {
539   return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" ||
540           Name == "unwind");
541 }
542 
543 /// isValidGCCRegisterName - Returns whether the passed in string
544 /// is a valid register name according to GCC. This is used by Sema for
545 /// inline asm statements.
546 bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
547   if (Name.empty())
548     return false;
549 
550   // Get rid of any register prefix.
551   Name = removeGCCRegisterPrefix(Name);
552   if (Name.empty())
553     return false;
554 
555   ArrayRef<const char *> Names = getGCCRegNames();
556 
557   // If we have a number it maps to an entry in the register name array.
558   if (isDigit(Name[0])) {
559     unsigned n;
560     if (!Name.getAsInteger(0, n))
561       return n < Names.size();
562   }
563 
564   // Check register names.
565   if (llvm::is_contained(Names, Name))
566     return true;
567 
568   // Check any additional names that we have.
569   for (const AddlRegName &ARN : getGCCAddlRegNames())
570     for (const char *AN : ARN.Names) {
571       if (!AN)
572         break;
573       // Make sure the register that the additional name is for is within
574       // the bounds of the register names from above.
575       if (AN == Name && ARN.RegNum < Names.size())
576         return true;
577     }
578 
579   // Now check aliases.
580   for (const GCCRegAlias &GRA : getGCCRegAliases())
581     for (const char *A : GRA.Aliases) {
582       if (!A)
583         break;
584       if (A == Name)
585         return true;
586     }
587 
588   return false;
589 }
590 
591 StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
592                                                    bool ReturnCanonical) const {
593   assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
594 
595   // Get rid of any register prefix.
596   Name = removeGCCRegisterPrefix(Name);
597 
598   ArrayRef<const char *> Names = getGCCRegNames();
599 
600   // First, check if we have a number.
601   if (isDigit(Name[0])) {
602     unsigned n;
603     if (!Name.getAsInteger(0, n)) {
604       assert(n < Names.size() && "Out of bounds register number!");
605       return Names[n];
606     }
607   }
608 
609   // Check any additional names that we have.
610   for (const AddlRegName &ARN : getGCCAddlRegNames())
611     for (const char *AN : ARN.Names) {
612       if (!AN)
613         break;
614       // Make sure the register that the additional name is for is within
615       // the bounds of the register names from above.
616       if (AN == Name && ARN.RegNum < Names.size())
617         return ReturnCanonical ? Names[ARN.RegNum] : Name;
618     }
619 
620   // Now check aliases.
621   for (const GCCRegAlias &RA : getGCCRegAliases())
622     for (const char *A : RA.Aliases) {
623       if (!A)
624         break;
625       if (A == Name)
626         return RA.Register;
627     }
628 
629   return Name;
630 }
631 
632 bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
633   const char *Name = Info.getConstraintStr().c_str();
634   // An output constraint must start with '=' or '+'
635   if (*Name != '=' && *Name != '+')
636     return false;
637 
638   if (*Name == '+')
639     Info.setIsReadWrite();
640 
641   Name++;
642   while (*Name) {
643     switch (*Name) {
644     default:
645       if (!validateAsmConstraint(Name, Info)) {
646         // FIXME: We temporarily return false
647         // so we can add more constraints as we hit it.
648         // Eventually, an unknown constraint should just be treated as 'g'.
649         return false;
650       }
651       break;
652     case '&': // early clobber.
653       Info.setEarlyClobber();
654       break;
655     case '%': // commutative.
656       // FIXME: Check that there is a another register after this one.
657       break;
658     case 'r': // general register.
659       Info.setAllowsRegister();
660       break;
661     case 'm': // memory operand.
662     case 'o': // offsetable memory operand.
663     case 'V': // non-offsetable memory operand.
664     case '<': // autodecrement memory operand.
665     case '>': // autoincrement memory operand.
666       Info.setAllowsMemory();
667       break;
668     case 'g': // general register, memory operand or immediate integer.
669     case 'X': // any operand.
670       Info.setAllowsRegister();
671       Info.setAllowsMemory();
672       break;
673     case ',': // multiple alternative constraint.  Pass it.
674       // Handle additional optional '=' or '+' modifiers.
675       if (Name[1] == '=' || Name[1] == '+')
676         Name++;
677       break;
678     case '#': // Ignore as constraint.
679       while (Name[1] && Name[1] != ',')
680         Name++;
681       break;
682     case '?': // Disparage slightly code.
683     case '!': // Disparage severely.
684     case '*': // Ignore for choosing register preferences.
685     case 'i': // Ignore i,n,E,F as output constraints (match from the other
686               // chars)
687     case 'n':
688     case 'E':
689     case 'F':
690       break;  // Pass them.
691     }
692 
693     Name++;
694   }
695 
696   // Early clobber with a read-write constraint which doesn't permit registers
697   // is invalid.
698   if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
699     return false;
700 
701   // If a constraint allows neither memory nor register operands it contains
702   // only modifiers. Reject it.
703   return Info.allowsMemory() || Info.allowsRegister();
704 }
705 
706 bool TargetInfo::resolveSymbolicName(const char *&Name,
707                                      ArrayRef<ConstraintInfo> OutputConstraints,
708                                      unsigned &Index) const {
709   assert(*Name == '[' && "Symbolic name did not start with '['");
710   Name++;
711   const char *Start = Name;
712   while (*Name && *Name != ']')
713     Name++;
714 
715   if (!*Name) {
716     // Missing ']'
717     return false;
718   }
719 
720   std::string SymbolicName(Start, Name - Start);
721 
722   for (Index = 0; Index != OutputConstraints.size(); ++Index)
723     if (SymbolicName == OutputConstraints[Index].getName())
724       return true;
725 
726   return false;
727 }
728 
729 bool TargetInfo::validateInputConstraint(
730                               MutableArrayRef<ConstraintInfo> OutputConstraints,
731                               ConstraintInfo &Info) const {
732   const char *Name = Info.ConstraintStr.c_str();
733 
734   if (!*Name)
735     return false;
736 
737   while (*Name) {
738     switch (*Name) {
739     default:
740       // Check if we have a matching constraint
741       if (*Name >= '0' && *Name <= '9') {
742         const char *DigitStart = Name;
743         while (Name[1] >= '0' && Name[1] <= '9')
744           Name++;
745         const char *DigitEnd = Name;
746         unsigned i;
747         if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
748                 .getAsInteger(10, i))
749           return false;
750 
751         // Check if matching constraint is out of bounds.
752         if (i >= OutputConstraints.size()) return false;
753 
754         // A number must refer to an output only operand.
755         if (OutputConstraints[i].isReadWrite())
756           return false;
757 
758         // If the constraint is already tied, it must be tied to the
759         // same operand referenced to by the number.
760         if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
761           return false;
762 
763         // The constraint should have the same info as the respective
764         // output constraint.
765         Info.setTiedOperand(i, OutputConstraints[i]);
766       } else if (!validateAsmConstraint(Name, Info)) {
767         // FIXME: This error return is in place temporarily so we can
768         // add more constraints as we hit it.  Eventually, an unknown
769         // constraint should just be treated as 'g'.
770         return false;
771       }
772       break;
773     case '[': {
774       unsigned Index = 0;
775       if (!resolveSymbolicName(Name, OutputConstraints, Index))
776         return false;
777 
778       // If the constraint is already tied, it must be tied to the
779       // same operand referenced to by the number.
780       if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
781         return false;
782 
783       // A number must refer to an output only operand.
784       if (OutputConstraints[Index].isReadWrite())
785         return false;
786 
787       Info.setTiedOperand(Index, OutputConstraints[Index]);
788       break;
789     }
790     case '%': // commutative
791       // FIXME: Fail if % is used with the last operand.
792       break;
793     case 'i': // immediate integer.
794       break;
795     case 'n': // immediate integer with a known value.
796       Info.setRequiresImmediate();
797       break;
798     case 'I':  // Various constant constraints with target-specific meanings.
799     case 'J':
800     case 'K':
801     case 'L':
802     case 'M':
803     case 'N':
804     case 'O':
805     case 'P':
806       if (!validateAsmConstraint(Name, Info))
807         return false;
808       break;
809     case 'r': // general register.
810       Info.setAllowsRegister();
811       break;
812     case 'm': // memory operand.
813     case 'o': // offsettable memory operand.
814     case 'V': // non-offsettable memory operand.
815     case '<': // autodecrement memory operand.
816     case '>': // autoincrement memory operand.
817       Info.setAllowsMemory();
818       break;
819     case 'g': // general register, memory operand or immediate integer.
820     case 'X': // any operand.
821       Info.setAllowsRegister();
822       Info.setAllowsMemory();
823       break;
824     case 'E': // immediate floating point.
825     case 'F': // immediate floating point.
826     case 'p': // address operand.
827       break;
828     case ',': // multiple alternative constraint.  Ignore comma.
829       break;
830     case '#': // Ignore as constraint.
831       while (Name[1] && Name[1] != ',')
832         Name++;
833       break;
834     case '?': // Disparage slightly code.
835     case '!': // Disparage severely.
836     case '*': // Ignore for choosing register preferences.
837       break;  // Pass them.
838     }
839 
840     Name++;
841   }
842 
843   return true;
844 }
845 
846 void TargetInfo::CheckFixedPointBits() const {
847   // Check that the number of fractional and integral bits (and maybe sign) can
848   // fit into the bits given for a fixed point type.
849   assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
850   assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
851   assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
852   assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
853          ShortAccumWidth);
854   assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
855   assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
856          LongAccumWidth);
857 
858   assert(getShortFractScale() + 1 <= ShortFractWidth);
859   assert(getFractScale() + 1 <= FractWidth);
860   assert(getLongFractScale() + 1 <= LongFractWidth);
861   assert(getUnsignedShortFractScale() <= ShortFractWidth);
862   assert(getUnsignedFractScale() <= FractWidth);
863   assert(getUnsignedLongFractScale() <= LongFractWidth);
864 
865   // Each unsigned fract type has either the same number of fractional bits
866   // as, or one more fractional bit than, its corresponding signed fract type.
867   assert(getShortFractScale() == getUnsignedShortFractScale() ||
868          getShortFractScale() == getUnsignedShortFractScale() - 1);
869   assert(getFractScale() == getUnsignedFractScale() ||
870          getFractScale() == getUnsignedFractScale() - 1);
871   assert(getLongFractScale() == getUnsignedLongFractScale() ||
872          getLongFractScale() == getUnsignedLongFractScale() - 1);
873 
874   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
875   // fractional bits is nondecreasing for each of the following sets of
876   // fixed-point types:
877   // - signed fract types
878   // - unsigned fract types
879   // - signed accum types
880   // - unsigned accum types.
881   assert(getLongFractScale() >= getFractScale() &&
882          getFractScale() >= getShortFractScale());
883   assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
884          getUnsignedFractScale() >= getUnsignedShortFractScale());
885   assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
886   assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
887          getUnsignedAccumScale() >= getUnsignedShortAccumScale());
888 
889   // When arranged in order of increasing rank (see 6.3.1.3a), the number of
890   // integral bits is nondecreasing for each of the following sets of
891   // fixed-point types:
892   // - signed accum types
893   // - unsigned accum types
894   assert(getLongAccumIBits() >= getAccumIBits() &&
895          getAccumIBits() >= getShortAccumIBits());
896   assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
897          getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
898 
899   // Each signed accum type has at least as many integral bits as its
900   // corresponding unsigned accum type.
901   assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
902   assert(getAccumIBits() >= getUnsignedAccumIBits());
903   assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
904 }
905 
906 void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
907   auto *Target = static_cast<TransferrableTargetInfo*>(this);
908   auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
909   *Target = *Src;
910 }
911