1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ABIInfo.h"
14 #include "CGCUDARuntime.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/OSLog.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicsAArch64.h"
40 #include "llvm/IR/IntrinsicsAMDGPU.h"
41 #include "llvm/IR/IntrinsicsARM.h"
42 #include "llvm/IR/IntrinsicsBPF.h"
43 #include "llvm/IR/IntrinsicsHexagon.h"
44 #include "llvm/IR/IntrinsicsNVPTX.h"
45 #include "llvm/IR/IntrinsicsPowerPC.h"
46 #include "llvm/IR/IntrinsicsR600.h"
47 #include "llvm/IR/IntrinsicsRISCV.h"
48 #include "llvm/IR/IntrinsicsS390.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/MatrixBuilder.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ScopedPrinter.h"
56 #include "llvm/Support/X86TargetParser.h"
57 #include <sstream>
58 
59 using namespace clang;
60 using namespace CodeGen;
61 using namespace llvm;
62 
63 static
64 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
65   return std::min(High, std::max(Low, Value));
66 }
67 
68 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
69                              Align AlignmentInBytes) {
70   ConstantInt *Byte;
71   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
72   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
73     // Nothing to initialize.
74     return;
75   case LangOptions::TrivialAutoVarInitKind::Zero:
76     Byte = CGF.Builder.getInt8(0x00);
77     break;
78   case LangOptions::TrivialAutoVarInitKind::Pattern: {
79     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
80     Byte = llvm::dyn_cast<llvm::ConstantInt>(
81         initializationPatternFor(CGF.CGM, Int8));
82     break;
83   }
84   }
85   if (CGF.CGM.stopAutoInit())
86     return;
87   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
88   I->addAnnotationMetadata("auto-init");
89 }
90 
91 /// getBuiltinLibFunction - Given a builtin id for a function like
92 /// "__builtin_fabsf", return a Function* for "fabsf".
93 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
94                                                      unsigned BuiltinID) {
95   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
96 
97   // Get the name, skip over the __builtin_ prefix (if necessary).
98   StringRef Name;
99   GlobalDecl D(FD);
100 
101   // TODO: This list should be expanded or refactored after all GCC-compatible
102   // std libcall builtins are implemented.
103   static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
104       {Builtin::BI__builtin_printf, "__printfieee128"},
105       {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
106       {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
107       {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
108       {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
109       {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
110       {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
111   };
112 
113   // If the builtin has been declared explicitly with an assembler label,
114   // use the mangled name. This differs from the plain label on platforms
115   // that prefix labels.
116   if (FD->hasAttr<AsmLabelAttr>())
117     Name = getMangledName(D);
118   else {
119     // TODO: This mutation should also be applied to other targets other than
120     // PPC, after backend supports IEEE 128-bit style libcalls.
121     if (getTriple().isPPC64() &&
122         &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
123         F128Builtins.find(BuiltinID) != F128Builtins.end())
124       Name = F128Builtins[BuiltinID];
125     else
126       Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
127   }
128 
129   llvm::FunctionType *Ty =
130     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
131 
132   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
133 }
134 
135 /// Emit the conversions required to turn the given value into an
136 /// integer of the given size.
137 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
138                         QualType T, llvm::IntegerType *IntType) {
139   V = CGF.EmitToMemory(V, T);
140 
141   if (V->getType()->isPointerTy())
142     return CGF.Builder.CreatePtrToInt(V, IntType);
143 
144   assert(V->getType() == IntType);
145   return V;
146 }
147 
148 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
149                           QualType T, llvm::Type *ResultType) {
150   V = CGF.EmitFromMemory(V, T);
151 
152   if (ResultType->isPointerTy())
153     return CGF.Builder.CreateIntToPtr(V, ResultType);
154 
155   assert(V->getType() == ResultType);
156   return V;
157 }
158 
159 /// Utility to insert an atomic instruction based on Intrinsic::ID
160 /// and the expression node.
161 static Value *MakeBinaryAtomicValue(
162     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
163     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
164 
165   QualType T = E->getType();
166   assert(E->getArg(0)->getType()->isPointerType());
167   assert(CGF.getContext().hasSameUnqualifiedType(T,
168                                   E->getArg(0)->getType()->getPointeeType()));
169   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
170 
171   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
172   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
173 
174   llvm::IntegerType *IntType =
175     llvm::IntegerType::get(CGF.getLLVMContext(),
176                            CGF.getContext().getTypeSize(T));
177   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
178 
179   llvm::Value *Args[2];
180   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
181   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
182   llvm::Type *ValueType = Args[1]->getType();
183   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
184 
185   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
186       Kind, Args[0], Args[1], Ordering);
187   return EmitFromInt(CGF, Result, T, ValueType);
188 }
189 
190 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
191   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
192   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
193 
194   // Convert the type of the pointer to a pointer to the stored type.
195   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
196   unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
197   Value *BC = CGF.Builder.CreateBitCast(
198       Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
199   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
200   LV.setNontemporal(true);
201   CGF.EmitStoreOfScalar(Val, LV, false);
202   return nullptr;
203 }
204 
205 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
206   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
207 
208   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
209   LV.setNontemporal(true);
210   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
211 }
212 
213 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
214                                llvm::AtomicRMWInst::BinOp Kind,
215                                const CallExpr *E) {
216   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
217 }
218 
219 /// Utility to insert an atomic instruction based Intrinsic::ID and
220 /// the expression node, where the return value is the result of the
221 /// operation.
222 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
223                                    llvm::AtomicRMWInst::BinOp Kind,
224                                    const CallExpr *E,
225                                    Instruction::BinaryOps Op,
226                                    bool Invert = false) {
227   QualType T = E->getType();
228   assert(E->getArg(0)->getType()->isPointerType());
229   assert(CGF.getContext().hasSameUnqualifiedType(T,
230                                   E->getArg(0)->getType()->getPointeeType()));
231   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
232 
233   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
234   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
235 
236   llvm::IntegerType *IntType =
237     llvm::IntegerType::get(CGF.getLLVMContext(),
238                            CGF.getContext().getTypeSize(T));
239   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
240 
241   llvm::Value *Args[2];
242   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
243   llvm::Type *ValueType = Args[1]->getType();
244   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
245   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
246 
247   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
248       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
249   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
250   if (Invert)
251     Result =
252         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
253                                 llvm::ConstantInt::getAllOnesValue(IntType));
254   Result = EmitFromInt(CGF, Result, T, ValueType);
255   return RValue::get(Result);
256 }
257 
258 /// Utility to insert an atomic cmpxchg instruction.
259 ///
260 /// @param CGF The current codegen function.
261 /// @param E   Builtin call expression to convert to cmpxchg.
262 ///            arg0 - address to operate on
263 ///            arg1 - value to compare with
264 ///            arg2 - new value
265 /// @param ReturnBool Specifies whether to return success flag of
266 ///                   cmpxchg result or the old value.
267 ///
268 /// @returns result of cmpxchg, according to ReturnBool
269 ///
270 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
271 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
272 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
273                                      bool ReturnBool) {
274   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
275   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
276   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
277 
278   llvm::IntegerType *IntType = llvm::IntegerType::get(
279       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
280   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
281 
282   Value *Args[3];
283   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
284   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
285   llvm::Type *ValueType = Args[1]->getType();
286   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
287   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
288 
289   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
290       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
291       llvm::AtomicOrdering::SequentiallyConsistent);
292   if (ReturnBool)
293     // Extract boolean success flag and zext it to int.
294     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
295                                   CGF.ConvertType(E->getType()));
296   else
297     // Extract old value and emit it using the same type as compare value.
298     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
299                        ValueType);
300 }
301 
302 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
303 /// _InterlockedCompareExchange* intrinsics which have the following signature:
304 /// T _InterlockedCompareExchange(T volatile *Destination,
305 ///                               T Exchange,
306 ///                               T Comparand);
307 ///
308 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
309 /// cmpxchg *Destination, Comparand, Exchange.
310 /// So we need to swap Comparand and Exchange when invoking
311 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
312 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
313 /// already swapped.
314 
315 static
316 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
317     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
318   assert(E->getArg(0)->getType()->isPointerType());
319   assert(CGF.getContext().hasSameUnqualifiedType(
320       E->getType(), E->getArg(0)->getType()->getPointeeType()));
321   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
322                                                  E->getArg(1)->getType()));
323   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
324                                                  E->getArg(2)->getType()));
325 
326   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
327   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
328   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
329 
330   // For Release ordering, the failure ordering should be Monotonic.
331   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
332                          AtomicOrdering::Monotonic :
333                          SuccessOrdering;
334 
335   // The atomic instruction is marked volatile for consistency with MSVC. This
336   // blocks the few atomics optimizations that LLVM has. If we want to optimize
337   // _Interlocked* operations in the future, we will have to remove the volatile
338   // marker.
339   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
340                    Destination, Comparand, Exchange,
341                    SuccessOrdering, FailureOrdering);
342   Result->setVolatile(true);
343   return CGF.Builder.CreateExtractValue(Result, 0);
344 }
345 
346 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
347 // prototyped like this:
348 //
349 // unsigned char _InterlockedCompareExchange128...(
350 //     __int64 volatile * _Destination,
351 //     __int64 _ExchangeHigh,
352 //     __int64 _ExchangeLow,
353 //     __int64 * _ComparandResult);
354 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
355                                               const CallExpr *E,
356                                               AtomicOrdering SuccessOrdering) {
357   assert(E->getNumArgs() == 4);
358   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
359   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
360   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
361   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
362 
363   assert(Destination->getType()->isPointerTy());
364   assert(!ExchangeHigh->getType()->isPointerTy());
365   assert(!ExchangeLow->getType()->isPointerTy());
366   assert(ComparandPtr->getType()->isPointerTy());
367 
368   // For Release ordering, the failure ordering should be Monotonic.
369   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
370                              ? AtomicOrdering::Monotonic
371                              : SuccessOrdering;
372 
373   // Convert to i128 pointers and values.
374   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
375   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
376   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
377   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
378                           Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
379 
380   // (((i128)hi) << 64) | ((i128)lo)
381   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
382   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
383   ExchangeHigh =
384       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
385   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
386 
387   // Load the comparand for the instruction.
388   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
389 
390   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
391                                               SuccessOrdering, FailureOrdering);
392 
393   // The atomic instruction is marked volatile for consistency with MSVC. This
394   // blocks the few atomics optimizations that LLVM has. If we want to optimize
395   // _Interlocked* operations in the future, we will have to remove the volatile
396   // marker.
397   CXI->setVolatile(true);
398 
399   // Store the result as an outparameter.
400   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
401                           ComparandResult);
402 
403   // Get the success boolean and zero extend it to i8.
404   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
405   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
406 }
407 
408 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
409     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
410   assert(E->getArg(0)->getType()->isPointerType());
411 
412   auto *IntTy = CGF.ConvertType(E->getType());
413   auto *Result = CGF.Builder.CreateAtomicRMW(
414                    AtomicRMWInst::Add,
415                    CGF.EmitScalarExpr(E->getArg(0)),
416                    ConstantInt::get(IntTy, 1),
417                    Ordering);
418   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
419 }
420 
421 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
422     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
423   assert(E->getArg(0)->getType()->isPointerType());
424 
425   auto *IntTy = CGF.ConvertType(E->getType());
426   auto *Result = CGF.Builder.CreateAtomicRMW(
427                    AtomicRMWInst::Sub,
428                    CGF.EmitScalarExpr(E->getArg(0)),
429                    ConstantInt::get(IntTy, 1),
430                    Ordering);
431   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
432 }
433 
434 // Build a plain volatile load.
435 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
436   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
437   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
438   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
439   llvm::Type *ITy =
440       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
441   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
442   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
443   Load->setVolatile(true);
444   return Load;
445 }
446 
447 // Build a plain volatile store.
448 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
449   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
450   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
451   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
452   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
453   llvm::Type *ITy =
454       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
455   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
456   llvm::StoreInst *Store =
457       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
458   Store->setVolatile(true);
459   return Store;
460 }
461 
462 // Emit a simple mangled intrinsic that has 1 argument and a return type
463 // matching the argument type. Depending on mode, this may be a constrained
464 // floating-point intrinsic.
465 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
466                                 const CallExpr *E, unsigned IntrinsicID,
467                                 unsigned ConstrainedIntrinsicID) {
468   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
469 
470   if (CGF.Builder.getIsFPConstrained()) {
471     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
472     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
473     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
474   } else {
475     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
476     return CGF.Builder.CreateCall(F, Src0);
477   }
478 }
479 
480 // Emit an intrinsic that has 2 operands of the same type as its result.
481 // Depending on mode, this may be a constrained floating-point intrinsic.
482 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
483                                 const CallExpr *E, unsigned IntrinsicID,
484                                 unsigned ConstrainedIntrinsicID) {
485   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
486   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
487 
488   if (CGF.Builder.getIsFPConstrained()) {
489     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
490     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
491     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
492   } else {
493     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
494     return CGF.Builder.CreateCall(F, { Src0, Src1 });
495   }
496 }
497 
498 // Emit an intrinsic that has 3 operands of the same type as its result.
499 // Depending on mode, this may be a constrained floating-point intrinsic.
500 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
501                                  const CallExpr *E, unsigned IntrinsicID,
502                                  unsigned ConstrainedIntrinsicID) {
503   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
504   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
505   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
506 
507   if (CGF.Builder.getIsFPConstrained()) {
508     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
509     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
510     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
511   } else {
512     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
513     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
514   }
515 }
516 
517 // Emit an intrinsic where all operands are of the same type as the result.
518 // Depending on mode, this may be a constrained floating-point intrinsic.
519 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
520                                                 unsigned IntrinsicID,
521                                                 unsigned ConstrainedIntrinsicID,
522                                                 llvm::Type *Ty,
523                                                 ArrayRef<Value *> Args) {
524   Function *F;
525   if (CGF.Builder.getIsFPConstrained())
526     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
527   else
528     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
529 
530   if (CGF.Builder.getIsFPConstrained())
531     return CGF.Builder.CreateConstrainedFPCall(F, Args);
532   else
533     return CGF.Builder.CreateCall(F, Args);
534 }
535 
536 // Emit a simple mangled intrinsic that has 1 argument and a return type
537 // matching the argument type.
538 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
539                                unsigned IntrinsicID,
540                                llvm::StringRef Name = "") {
541   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
542 
543   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
544   return CGF.Builder.CreateCall(F, Src0, Name);
545 }
546 
547 // Emit an intrinsic that has 2 operands of the same type as its result.
548 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
549                                 const CallExpr *E,
550                                 unsigned IntrinsicID) {
551   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
552   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
553 
554   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
555   return CGF.Builder.CreateCall(F, { Src0, Src1 });
556 }
557 
558 // Emit an intrinsic that has 3 operands of the same type as its result.
559 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
560                                  const CallExpr *E,
561                                  unsigned IntrinsicID) {
562   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
563   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
564   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
565 
566   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
567   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
568 }
569 
570 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
571 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
572                                const CallExpr *E,
573                                unsigned IntrinsicID) {
574   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
575   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
576 
577   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
578   return CGF.Builder.CreateCall(F, {Src0, Src1});
579 }
580 
581 // Emit an intrinsic that has overloaded integer result and fp operand.
582 static Value *
583 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
584                                         unsigned IntrinsicID,
585                                         unsigned ConstrainedIntrinsicID) {
586   llvm::Type *ResultType = CGF.ConvertType(E->getType());
587   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
588 
589   if (CGF.Builder.getIsFPConstrained()) {
590     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
591     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
592                                        {ResultType, Src0->getType()});
593     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
594   } else {
595     Function *F =
596         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
597     return CGF.Builder.CreateCall(F, Src0);
598   }
599 }
600 
601 /// EmitFAbs - Emit a call to @llvm.fabs().
602 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
603   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
604   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
605   Call->setDoesNotAccessMemory();
606   return Call;
607 }
608 
609 /// Emit the computation of the sign bit for a floating point value. Returns
610 /// the i1 sign bit value.
611 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
612   LLVMContext &C = CGF.CGM.getLLVMContext();
613 
614   llvm::Type *Ty = V->getType();
615   int Width = Ty->getPrimitiveSizeInBits();
616   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
617   V = CGF.Builder.CreateBitCast(V, IntTy);
618   if (Ty->isPPC_FP128Ty()) {
619     // We want the sign bit of the higher-order double. The bitcast we just
620     // did works as if the double-double was stored to memory and then
621     // read as an i128. The "store" will put the higher-order double in the
622     // lower address in both little- and big-Endian modes, but the "load"
623     // will treat those bits as a different part of the i128: the low bits in
624     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
625     // we need to shift the high bits down to the low before truncating.
626     Width >>= 1;
627     if (CGF.getTarget().isBigEndian()) {
628       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
629       V = CGF.Builder.CreateLShr(V, ShiftCst);
630     }
631     // We are truncating value in order to extract the higher-order
632     // double, which we will be using to extract the sign from.
633     IntTy = llvm::IntegerType::get(C, Width);
634     V = CGF.Builder.CreateTrunc(V, IntTy);
635   }
636   Value *Zero = llvm::Constant::getNullValue(IntTy);
637   return CGF.Builder.CreateICmpSLT(V, Zero);
638 }
639 
640 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
641                               const CallExpr *E, llvm::Constant *calleeValue) {
642   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
643   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
644 }
645 
646 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
647 /// depending on IntrinsicID.
648 ///
649 /// \arg CGF The current codegen function.
650 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
651 /// \arg X The first argument to the llvm.*.with.overflow.*.
652 /// \arg Y The second argument to the llvm.*.with.overflow.*.
653 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
654 /// \returns The result (i.e. sum/product) returned by the intrinsic.
655 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
656                                           const llvm::Intrinsic::ID IntrinsicID,
657                                           llvm::Value *X, llvm::Value *Y,
658                                           llvm::Value *&Carry) {
659   // Make sure we have integers of the same width.
660   assert(X->getType() == Y->getType() &&
661          "Arguments must be the same type. (Did you forget to make sure both "
662          "arguments have the same integer width?)");
663 
664   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
665   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
666   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
667   return CGF.Builder.CreateExtractValue(Tmp, 0);
668 }
669 
670 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
671                                 unsigned IntrinsicID,
672                                 int low, int high) {
673     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
674     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
675     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
676     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
677     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
678     return Call;
679 }
680 
681 namespace {
682   struct WidthAndSignedness {
683     unsigned Width;
684     bool Signed;
685   };
686 }
687 
688 static WidthAndSignedness
689 getIntegerWidthAndSignedness(const clang::ASTContext &context,
690                              const clang::QualType Type) {
691   assert(Type->isIntegerType() && "Given type is not an integer.");
692   unsigned Width = Type->isBooleanType()  ? 1
693                    : Type->isBitIntType() ? context.getIntWidth(Type)
694                                           : context.getTypeInfo(Type).Width;
695   bool Signed = Type->isSignedIntegerType();
696   return {Width, Signed};
697 }
698 
699 // Given one or more integer types, this function produces an integer type that
700 // encompasses them: any value in one of the given types could be expressed in
701 // the encompassing type.
702 static struct WidthAndSignedness
703 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
704   assert(Types.size() > 0 && "Empty list of types.");
705 
706   // If any of the given types is signed, we must return a signed type.
707   bool Signed = false;
708   for (const auto &Type : Types) {
709     Signed |= Type.Signed;
710   }
711 
712   // The encompassing type must have a width greater than or equal to the width
713   // of the specified types.  Additionally, if the encompassing type is signed,
714   // its width must be strictly greater than the width of any unsigned types
715   // given.
716   unsigned Width = 0;
717   for (const auto &Type : Types) {
718     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
719     if (Width < MinWidth) {
720       Width = MinWidth;
721     }
722   }
723 
724   return {Width, Signed};
725 }
726 
727 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
728   llvm::Type *DestType = Int8PtrTy;
729   if (ArgValue->getType() != DestType)
730     ArgValue =
731         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
732 
733   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
734   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
735 }
736 
737 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
738 /// __builtin_object_size(p, @p To) is correct
739 static bool areBOSTypesCompatible(int From, int To) {
740   // Note: Our __builtin_object_size implementation currently treats Type=0 and
741   // Type=2 identically. Encoding this implementation detail here may make
742   // improving __builtin_object_size difficult in the future, so it's omitted.
743   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
744 }
745 
746 static llvm::Value *
747 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
748   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
749 }
750 
751 llvm::Value *
752 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
753                                                  llvm::IntegerType *ResType,
754                                                  llvm::Value *EmittedE,
755                                                  bool IsDynamic) {
756   uint64_t ObjectSize;
757   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
758     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
759   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
760 }
761 
762 /// Returns a Value corresponding to the size of the given expression.
763 /// This Value may be either of the following:
764 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
765 ///     it)
766 ///   - A call to the @llvm.objectsize intrinsic
767 ///
768 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
769 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
770 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
771 llvm::Value *
772 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
773                                        llvm::IntegerType *ResType,
774                                        llvm::Value *EmittedE, bool IsDynamic) {
775   // We need to reference an argument if the pointer is a parameter with the
776   // pass_object_size attribute.
777   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
778     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
779     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
780     if (Param != nullptr && PS != nullptr &&
781         areBOSTypesCompatible(PS->getType(), Type)) {
782       auto Iter = SizeArguments.find(Param);
783       assert(Iter != SizeArguments.end());
784 
785       const ImplicitParamDecl *D = Iter->second;
786       auto DIter = LocalDeclMap.find(D);
787       assert(DIter != LocalDeclMap.end());
788 
789       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
790                               getContext().getSizeType(), E->getBeginLoc());
791     }
792   }
793 
794   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
795   // evaluate E for side-effects. In either case, we shouldn't lower to
796   // @llvm.objectsize.
797   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
798     return getDefaultBuiltinObjectSizeResult(Type, ResType);
799 
800   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
801   assert(Ptr->getType()->isPointerTy() &&
802          "Non-pointer passed to __builtin_object_size?");
803 
804   Function *F =
805       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
806 
807   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
808   Value *Min = Builder.getInt1((Type & 2) != 0);
809   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
810   Value *NullIsUnknown = Builder.getTrue();
811   Value *Dynamic = Builder.getInt1(IsDynamic);
812   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
813 }
814 
815 namespace {
816 /// A struct to generically describe a bit test intrinsic.
817 struct BitTest {
818   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
819   enum InterlockingKind : uint8_t {
820     Unlocked,
821     Sequential,
822     Acquire,
823     Release,
824     NoFence
825   };
826 
827   ActionKind Action;
828   InterlockingKind Interlocking;
829   bool Is64Bit;
830 
831   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
832 };
833 } // namespace
834 
835 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
836   switch (BuiltinID) {
837     // Main portable variants.
838   case Builtin::BI_bittest:
839     return {TestOnly, Unlocked, false};
840   case Builtin::BI_bittestandcomplement:
841     return {Complement, Unlocked, false};
842   case Builtin::BI_bittestandreset:
843     return {Reset, Unlocked, false};
844   case Builtin::BI_bittestandset:
845     return {Set, Unlocked, false};
846   case Builtin::BI_interlockedbittestandreset:
847     return {Reset, Sequential, false};
848   case Builtin::BI_interlockedbittestandset:
849     return {Set, Sequential, false};
850 
851     // X86-specific 64-bit variants.
852   case Builtin::BI_bittest64:
853     return {TestOnly, Unlocked, true};
854   case Builtin::BI_bittestandcomplement64:
855     return {Complement, Unlocked, true};
856   case Builtin::BI_bittestandreset64:
857     return {Reset, Unlocked, true};
858   case Builtin::BI_bittestandset64:
859     return {Set, Unlocked, true};
860   case Builtin::BI_interlockedbittestandreset64:
861     return {Reset, Sequential, true};
862   case Builtin::BI_interlockedbittestandset64:
863     return {Set, Sequential, true};
864 
865     // ARM/AArch64-specific ordering variants.
866   case Builtin::BI_interlockedbittestandset_acq:
867     return {Set, Acquire, false};
868   case Builtin::BI_interlockedbittestandset_rel:
869     return {Set, Release, false};
870   case Builtin::BI_interlockedbittestandset_nf:
871     return {Set, NoFence, false};
872   case Builtin::BI_interlockedbittestandreset_acq:
873     return {Reset, Acquire, false};
874   case Builtin::BI_interlockedbittestandreset_rel:
875     return {Reset, Release, false};
876   case Builtin::BI_interlockedbittestandreset_nf:
877     return {Reset, NoFence, false};
878   }
879   llvm_unreachable("expected only bittest intrinsics");
880 }
881 
882 static char bitActionToX86BTCode(BitTest::ActionKind A) {
883   switch (A) {
884   case BitTest::TestOnly:   return '\0';
885   case BitTest::Complement: return 'c';
886   case BitTest::Reset:      return 'r';
887   case BitTest::Set:        return 's';
888   }
889   llvm_unreachable("invalid action");
890 }
891 
892 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
893                                             BitTest BT,
894                                             const CallExpr *E, Value *BitBase,
895                                             Value *BitPos) {
896   char Action = bitActionToX86BTCode(BT.Action);
897   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
898 
899   // Build the assembly.
900   SmallString<64> Asm;
901   raw_svector_ostream AsmOS(Asm);
902   if (BT.Interlocking != BitTest::Unlocked)
903     AsmOS << "lock ";
904   AsmOS << "bt";
905   if (Action)
906     AsmOS << Action;
907   AsmOS << SizeSuffix << " $2, ($1)";
908 
909   // Build the constraints. FIXME: We should support immediates when possible.
910   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
911   std::string MachineClobbers = CGF.getTarget().getClobbers();
912   if (!MachineClobbers.empty()) {
913     Constraints += ',';
914     Constraints += MachineClobbers;
915   }
916   llvm::IntegerType *IntType = llvm::IntegerType::get(
917       CGF.getLLVMContext(),
918       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
919   llvm::Type *IntPtrType = IntType->getPointerTo();
920   llvm::FunctionType *FTy =
921       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
922 
923   llvm::InlineAsm *IA =
924       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
925   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
926 }
927 
928 static llvm::AtomicOrdering
929 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
930   switch (I) {
931   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
932   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
933   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
934   case BitTest::Release:    return llvm::AtomicOrdering::Release;
935   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
936   }
937   llvm_unreachable("invalid interlocking");
938 }
939 
940 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
941 /// bits and a bit position and read and optionally modify the bit at that
942 /// position. The position index can be arbitrarily large, i.e. it can be larger
943 /// than 31 or 63, so we need an indexed load in the general case.
944 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
945                                          unsigned BuiltinID,
946                                          const CallExpr *E) {
947   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
948   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
949 
950   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
951 
952   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
953   // indexing operation internally. Use them if possible.
954   if (CGF.getTarget().getTriple().isX86())
955     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
956 
957   // Otherwise, use generic code to load one byte and test the bit. Use all but
958   // the bottom three bits as the array index, and the bottom three bits to form
959   // a mask.
960   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
961   Value *ByteIndex = CGF.Builder.CreateAShr(
962       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
963   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
964   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
965                                                  ByteIndex, "bittest.byteaddr"),
966                    CGF.Int8Ty, CharUnits::One());
967   Value *PosLow =
968       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
969                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
970 
971   // The updating instructions will need a mask.
972   Value *Mask = nullptr;
973   if (BT.Action != BitTest::TestOnly) {
974     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
975                                  "bittest.mask");
976   }
977 
978   // Check the action and ordering of the interlocked intrinsics.
979   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
980 
981   Value *OldByte = nullptr;
982   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
983     // Emit a combined atomicrmw load/store operation for the interlocked
984     // intrinsics.
985     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
986     if (BT.Action == BitTest::Reset) {
987       Mask = CGF.Builder.CreateNot(Mask);
988       RMWOp = llvm::AtomicRMWInst::And;
989     }
990     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
991                                           Ordering);
992   } else {
993     // Emit a plain load for the non-interlocked intrinsics.
994     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
995     Value *NewByte = nullptr;
996     switch (BT.Action) {
997     case BitTest::TestOnly:
998       // Don't store anything.
999       break;
1000     case BitTest::Complement:
1001       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1002       break;
1003     case BitTest::Reset:
1004       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1005       break;
1006     case BitTest::Set:
1007       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1008       break;
1009     }
1010     if (NewByte)
1011       CGF.Builder.CreateStore(NewByte, ByteAddr);
1012   }
1013 
1014   // However we loaded the old byte, either by plain load or atomicrmw, shift
1015   // the bit into the low position and mask it to 0 or 1.
1016   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1017   return CGF.Builder.CreateAnd(
1018       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1019 }
1020 
1021 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1022                                                 unsigned BuiltinID,
1023                                                 const CallExpr *E) {
1024   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1025 
1026   SmallString<64> Asm;
1027   raw_svector_ostream AsmOS(Asm);
1028   llvm::IntegerType *RetType = CGF.Int32Ty;
1029 
1030   switch (BuiltinID) {
1031   case clang::PPC::BI__builtin_ppc_ldarx:
1032     AsmOS << "ldarx ";
1033     RetType = CGF.Int64Ty;
1034     break;
1035   case clang::PPC::BI__builtin_ppc_lwarx:
1036     AsmOS << "lwarx ";
1037     RetType = CGF.Int32Ty;
1038     break;
1039   case clang::PPC::BI__builtin_ppc_lharx:
1040     AsmOS << "lharx ";
1041     RetType = CGF.Int16Ty;
1042     break;
1043   case clang::PPC::BI__builtin_ppc_lbarx:
1044     AsmOS << "lbarx ";
1045     RetType = CGF.Int8Ty;
1046     break;
1047   default:
1048     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1049   }
1050 
1051   AsmOS << "$0, ${1:y}";
1052 
1053   std::string Constraints = "=r,*Z,~{memory}";
1054   std::string MachineClobbers = CGF.getTarget().getClobbers();
1055   if (!MachineClobbers.empty()) {
1056     Constraints += ',';
1057     Constraints += MachineClobbers;
1058   }
1059 
1060   llvm::Type *IntPtrType = RetType->getPointerTo();
1061   llvm::FunctionType *FTy =
1062       llvm::FunctionType::get(RetType, {IntPtrType}, false);
1063 
1064   llvm::InlineAsm *IA =
1065       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1066   llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1067   CI->addParamAttr(
1068       0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1069   return CI;
1070 }
1071 
1072 namespace {
1073 enum class MSVCSetJmpKind {
1074   _setjmpex,
1075   _setjmp3,
1076   _setjmp
1077 };
1078 }
1079 
1080 /// MSVC handles setjmp a bit differently on different platforms. On every
1081 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1082 /// parameters can be passed as variadic arguments, but we always pass none.
1083 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1084                                const CallExpr *E) {
1085   llvm::Value *Arg1 = nullptr;
1086   llvm::Type *Arg1Ty = nullptr;
1087   StringRef Name;
1088   bool IsVarArg = false;
1089   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1090     Name = "_setjmp3";
1091     Arg1Ty = CGF.Int32Ty;
1092     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1093     IsVarArg = true;
1094   } else {
1095     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1096     Arg1Ty = CGF.Int8PtrTy;
1097     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1098       Arg1 = CGF.Builder.CreateCall(
1099           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1100     } else
1101       Arg1 = CGF.Builder.CreateCall(
1102           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1103           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1104   }
1105 
1106   // Mark the call site and declaration with ReturnsTwice.
1107   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1108   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1109       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1110       llvm::Attribute::ReturnsTwice);
1111   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1112       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1113       ReturnsTwiceAttr, /*Local=*/true);
1114 
1115   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1116       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1117   llvm::Value *Args[] = {Buf, Arg1};
1118   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1119   CB->setAttributes(ReturnsTwiceAttr);
1120   return RValue::get(CB);
1121 }
1122 
1123 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1124 // we handle them here.
1125 enum class CodeGenFunction::MSVCIntrin {
1126   _BitScanForward,
1127   _BitScanReverse,
1128   _InterlockedAnd,
1129   _InterlockedDecrement,
1130   _InterlockedExchange,
1131   _InterlockedExchangeAdd,
1132   _InterlockedExchangeSub,
1133   _InterlockedIncrement,
1134   _InterlockedOr,
1135   _InterlockedXor,
1136   _InterlockedExchangeAdd_acq,
1137   _InterlockedExchangeAdd_rel,
1138   _InterlockedExchangeAdd_nf,
1139   _InterlockedExchange_acq,
1140   _InterlockedExchange_rel,
1141   _InterlockedExchange_nf,
1142   _InterlockedCompareExchange_acq,
1143   _InterlockedCompareExchange_rel,
1144   _InterlockedCompareExchange_nf,
1145   _InterlockedCompareExchange128,
1146   _InterlockedCompareExchange128_acq,
1147   _InterlockedCompareExchange128_rel,
1148   _InterlockedCompareExchange128_nf,
1149   _InterlockedOr_acq,
1150   _InterlockedOr_rel,
1151   _InterlockedOr_nf,
1152   _InterlockedXor_acq,
1153   _InterlockedXor_rel,
1154   _InterlockedXor_nf,
1155   _InterlockedAnd_acq,
1156   _InterlockedAnd_rel,
1157   _InterlockedAnd_nf,
1158   _InterlockedIncrement_acq,
1159   _InterlockedIncrement_rel,
1160   _InterlockedIncrement_nf,
1161   _InterlockedDecrement_acq,
1162   _InterlockedDecrement_rel,
1163   _InterlockedDecrement_nf,
1164   __fastfail,
1165 };
1166 
1167 static Optional<CodeGenFunction::MSVCIntrin>
1168 translateArmToMsvcIntrin(unsigned BuiltinID) {
1169   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1170   switch (BuiltinID) {
1171   default:
1172     return None;
1173   case clang::ARM::BI_BitScanForward:
1174   case clang::ARM::BI_BitScanForward64:
1175     return MSVCIntrin::_BitScanForward;
1176   case clang::ARM::BI_BitScanReverse:
1177   case clang::ARM::BI_BitScanReverse64:
1178     return MSVCIntrin::_BitScanReverse;
1179   case clang::ARM::BI_InterlockedAnd64:
1180     return MSVCIntrin::_InterlockedAnd;
1181   case clang::ARM::BI_InterlockedExchange64:
1182     return MSVCIntrin::_InterlockedExchange;
1183   case clang::ARM::BI_InterlockedExchangeAdd64:
1184     return MSVCIntrin::_InterlockedExchangeAdd;
1185   case clang::ARM::BI_InterlockedExchangeSub64:
1186     return MSVCIntrin::_InterlockedExchangeSub;
1187   case clang::ARM::BI_InterlockedOr64:
1188     return MSVCIntrin::_InterlockedOr;
1189   case clang::ARM::BI_InterlockedXor64:
1190     return MSVCIntrin::_InterlockedXor;
1191   case clang::ARM::BI_InterlockedDecrement64:
1192     return MSVCIntrin::_InterlockedDecrement;
1193   case clang::ARM::BI_InterlockedIncrement64:
1194     return MSVCIntrin::_InterlockedIncrement;
1195   case clang::ARM::BI_InterlockedExchangeAdd8_acq:
1196   case clang::ARM::BI_InterlockedExchangeAdd16_acq:
1197   case clang::ARM::BI_InterlockedExchangeAdd_acq:
1198   case clang::ARM::BI_InterlockedExchangeAdd64_acq:
1199     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1200   case clang::ARM::BI_InterlockedExchangeAdd8_rel:
1201   case clang::ARM::BI_InterlockedExchangeAdd16_rel:
1202   case clang::ARM::BI_InterlockedExchangeAdd_rel:
1203   case clang::ARM::BI_InterlockedExchangeAdd64_rel:
1204     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1205   case clang::ARM::BI_InterlockedExchangeAdd8_nf:
1206   case clang::ARM::BI_InterlockedExchangeAdd16_nf:
1207   case clang::ARM::BI_InterlockedExchangeAdd_nf:
1208   case clang::ARM::BI_InterlockedExchangeAdd64_nf:
1209     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1210   case clang::ARM::BI_InterlockedExchange8_acq:
1211   case clang::ARM::BI_InterlockedExchange16_acq:
1212   case clang::ARM::BI_InterlockedExchange_acq:
1213   case clang::ARM::BI_InterlockedExchange64_acq:
1214     return MSVCIntrin::_InterlockedExchange_acq;
1215   case clang::ARM::BI_InterlockedExchange8_rel:
1216   case clang::ARM::BI_InterlockedExchange16_rel:
1217   case clang::ARM::BI_InterlockedExchange_rel:
1218   case clang::ARM::BI_InterlockedExchange64_rel:
1219     return MSVCIntrin::_InterlockedExchange_rel;
1220   case clang::ARM::BI_InterlockedExchange8_nf:
1221   case clang::ARM::BI_InterlockedExchange16_nf:
1222   case clang::ARM::BI_InterlockedExchange_nf:
1223   case clang::ARM::BI_InterlockedExchange64_nf:
1224     return MSVCIntrin::_InterlockedExchange_nf;
1225   case clang::ARM::BI_InterlockedCompareExchange8_acq:
1226   case clang::ARM::BI_InterlockedCompareExchange16_acq:
1227   case clang::ARM::BI_InterlockedCompareExchange_acq:
1228   case clang::ARM::BI_InterlockedCompareExchange64_acq:
1229     return MSVCIntrin::_InterlockedCompareExchange_acq;
1230   case clang::ARM::BI_InterlockedCompareExchange8_rel:
1231   case clang::ARM::BI_InterlockedCompareExchange16_rel:
1232   case clang::ARM::BI_InterlockedCompareExchange_rel:
1233   case clang::ARM::BI_InterlockedCompareExchange64_rel:
1234     return MSVCIntrin::_InterlockedCompareExchange_rel;
1235   case clang::ARM::BI_InterlockedCompareExchange8_nf:
1236   case clang::ARM::BI_InterlockedCompareExchange16_nf:
1237   case clang::ARM::BI_InterlockedCompareExchange_nf:
1238   case clang::ARM::BI_InterlockedCompareExchange64_nf:
1239     return MSVCIntrin::_InterlockedCompareExchange_nf;
1240   case clang::ARM::BI_InterlockedOr8_acq:
1241   case clang::ARM::BI_InterlockedOr16_acq:
1242   case clang::ARM::BI_InterlockedOr_acq:
1243   case clang::ARM::BI_InterlockedOr64_acq:
1244     return MSVCIntrin::_InterlockedOr_acq;
1245   case clang::ARM::BI_InterlockedOr8_rel:
1246   case clang::ARM::BI_InterlockedOr16_rel:
1247   case clang::ARM::BI_InterlockedOr_rel:
1248   case clang::ARM::BI_InterlockedOr64_rel:
1249     return MSVCIntrin::_InterlockedOr_rel;
1250   case clang::ARM::BI_InterlockedOr8_nf:
1251   case clang::ARM::BI_InterlockedOr16_nf:
1252   case clang::ARM::BI_InterlockedOr_nf:
1253   case clang::ARM::BI_InterlockedOr64_nf:
1254     return MSVCIntrin::_InterlockedOr_nf;
1255   case clang::ARM::BI_InterlockedXor8_acq:
1256   case clang::ARM::BI_InterlockedXor16_acq:
1257   case clang::ARM::BI_InterlockedXor_acq:
1258   case clang::ARM::BI_InterlockedXor64_acq:
1259     return MSVCIntrin::_InterlockedXor_acq;
1260   case clang::ARM::BI_InterlockedXor8_rel:
1261   case clang::ARM::BI_InterlockedXor16_rel:
1262   case clang::ARM::BI_InterlockedXor_rel:
1263   case clang::ARM::BI_InterlockedXor64_rel:
1264     return MSVCIntrin::_InterlockedXor_rel;
1265   case clang::ARM::BI_InterlockedXor8_nf:
1266   case clang::ARM::BI_InterlockedXor16_nf:
1267   case clang::ARM::BI_InterlockedXor_nf:
1268   case clang::ARM::BI_InterlockedXor64_nf:
1269     return MSVCIntrin::_InterlockedXor_nf;
1270   case clang::ARM::BI_InterlockedAnd8_acq:
1271   case clang::ARM::BI_InterlockedAnd16_acq:
1272   case clang::ARM::BI_InterlockedAnd_acq:
1273   case clang::ARM::BI_InterlockedAnd64_acq:
1274     return MSVCIntrin::_InterlockedAnd_acq;
1275   case clang::ARM::BI_InterlockedAnd8_rel:
1276   case clang::ARM::BI_InterlockedAnd16_rel:
1277   case clang::ARM::BI_InterlockedAnd_rel:
1278   case clang::ARM::BI_InterlockedAnd64_rel:
1279     return MSVCIntrin::_InterlockedAnd_rel;
1280   case clang::ARM::BI_InterlockedAnd8_nf:
1281   case clang::ARM::BI_InterlockedAnd16_nf:
1282   case clang::ARM::BI_InterlockedAnd_nf:
1283   case clang::ARM::BI_InterlockedAnd64_nf:
1284     return MSVCIntrin::_InterlockedAnd_nf;
1285   case clang::ARM::BI_InterlockedIncrement16_acq:
1286   case clang::ARM::BI_InterlockedIncrement_acq:
1287   case clang::ARM::BI_InterlockedIncrement64_acq:
1288     return MSVCIntrin::_InterlockedIncrement_acq;
1289   case clang::ARM::BI_InterlockedIncrement16_rel:
1290   case clang::ARM::BI_InterlockedIncrement_rel:
1291   case clang::ARM::BI_InterlockedIncrement64_rel:
1292     return MSVCIntrin::_InterlockedIncrement_rel;
1293   case clang::ARM::BI_InterlockedIncrement16_nf:
1294   case clang::ARM::BI_InterlockedIncrement_nf:
1295   case clang::ARM::BI_InterlockedIncrement64_nf:
1296     return MSVCIntrin::_InterlockedIncrement_nf;
1297   case clang::ARM::BI_InterlockedDecrement16_acq:
1298   case clang::ARM::BI_InterlockedDecrement_acq:
1299   case clang::ARM::BI_InterlockedDecrement64_acq:
1300     return MSVCIntrin::_InterlockedDecrement_acq;
1301   case clang::ARM::BI_InterlockedDecrement16_rel:
1302   case clang::ARM::BI_InterlockedDecrement_rel:
1303   case clang::ARM::BI_InterlockedDecrement64_rel:
1304     return MSVCIntrin::_InterlockedDecrement_rel;
1305   case clang::ARM::BI_InterlockedDecrement16_nf:
1306   case clang::ARM::BI_InterlockedDecrement_nf:
1307   case clang::ARM::BI_InterlockedDecrement64_nf:
1308     return MSVCIntrin::_InterlockedDecrement_nf;
1309   }
1310   llvm_unreachable("must return from switch");
1311 }
1312 
1313 static Optional<CodeGenFunction::MSVCIntrin>
1314 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1315   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1316   switch (BuiltinID) {
1317   default:
1318     return None;
1319   case clang::AArch64::BI_BitScanForward:
1320   case clang::AArch64::BI_BitScanForward64:
1321     return MSVCIntrin::_BitScanForward;
1322   case clang::AArch64::BI_BitScanReverse:
1323   case clang::AArch64::BI_BitScanReverse64:
1324     return MSVCIntrin::_BitScanReverse;
1325   case clang::AArch64::BI_InterlockedAnd64:
1326     return MSVCIntrin::_InterlockedAnd;
1327   case clang::AArch64::BI_InterlockedExchange64:
1328     return MSVCIntrin::_InterlockedExchange;
1329   case clang::AArch64::BI_InterlockedExchangeAdd64:
1330     return MSVCIntrin::_InterlockedExchangeAdd;
1331   case clang::AArch64::BI_InterlockedExchangeSub64:
1332     return MSVCIntrin::_InterlockedExchangeSub;
1333   case clang::AArch64::BI_InterlockedOr64:
1334     return MSVCIntrin::_InterlockedOr;
1335   case clang::AArch64::BI_InterlockedXor64:
1336     return MSVCIntrin::_InterlockedXor;
1337   case clang::AArch64::BI_InterlockedDecrement64:
1338     return MSVCIntrin::_InterlockedDecrement;
1339   case clang::AArch64::BI_InterlockedIncrement64:
1340     return MSVCIntrin::_InterlockedIncrement;
1341   case clang::AArch64::BI_InterlockedExchangeAdd8_acq:
1342   case clang::AArch64::BI_InterlockedExchangeAdd16_acq:
1343   case clang::AArch64::BI_InterlockedExchangeAdd_acq:
1344   case clang::AArch64::BI_InterlockedExchangeAdd64_acq:
1345     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1346   case clang::AArch64::BI_InterlockedExchangeAdd8_rel:
1347   case clang::AArch64::BI_InterlockedExchangeAdd16_rel:
1348   case clang::AArch64::BI_InterlockedExchangeAdd_rel:
1349   case clang::AArch64::BI_InterlockedExchangeAdd64_rel:
1350     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1351   case clang::AArch64::BI_InterlockedExchangeAdd8_nf:
1352   case clang::AArch64::BI_InterlockedExchangeAdd16_nf:
1353   case clang::AArch64::BI_InterlockedExchangeAdd_nf:
1354   case clang::AArch64::BI_InterlockedExchangeAdd64_nf:
1355     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1356   case clang::AArch64::BI_InterlockedExchange8_acq:
1357   case clang::AArch64::BI_InterlockedExchange16_acq:
1358   case clang::AArch64::BI_InterlockedExchange_acq:
1359   case clang::AArch64::BI_InterlockedExchange64_acq:
1360     return MSVCIntrin::_InterlockedExchange_acq;
1361   case clang::AArch64::BI_InterlockedExchange8_rel:
1362   case clang::AArch64::BI_InterlockedExchange16_rel:
1363   case clang::AArch64::BI_InterlockedExchange_rel:
1364   case clang::AArch64::BI_InterlockedExchange64_rel:
1365     return MSVCIntrin::_InterlockedExchange_rel;
1366   case clang::AArch64::BI_InterlockedExchange8_nf:
1367   case clang::AArch64::BI_InterlockedExchange16_nf:
1368   case clang::AArch64::BI_InterlockedExchange_nf:
1369   case clang::AArch64::BI_InterlockedExchange64_nf:
1370     return MSVCIntrin::_InterlockedExchange_nf;
1371   case clang::AArch64::BI_InterlockedCompareExchange8_acq:
1372   case clang::AArch64::BI_InterlockedCompareExchange16_acq:
1373   case clang::AArch64::BI_InterlockedCompareExchange_acq:
1374   case clang::AArch64::BI_InterlockedCompareExchange64_acq:
1375     return MSVCIntrin::_InterlockedCompareExchange_acq;
1376   case clang::AArch64::BI_InterlockedCompareExchange8_rel:
1377   case clang::AArch64::BI_InterlockedCompareExchange16_rel:
1378   case clang::AArch64::BI_InterlockedCompareExchange_rel:
1379   case clang::AArch64::BI_InterlockedCompareExchange64_rel:
1380     return MSVCIntrin::_InterlockedCompareExchange_rel;
1381   case clang::AArch64::BI_InterlockedCompareExchange8_nf:
1382   case clang::AArch64::BI_InterlockedCompareExchange16_nf:
1383   case clang::AArch64::BI_InterlockedCompareExchange_nf:
1384   case clang::AArch64::BI_InterlockedCompareExchange64_nf:
1385     return MSVCIntrin::_InterlockedCompareExchange_nf;
1386   case clang::AArch64::BI_InterlockedCompareExchange128:
1387     return MSVCIntrin::_InterlockedCompareExchange128;
1388   case clang::AArch64::BI_InterlockedCompareExchange128_acq:
1389     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1390   case clang::AArch64::BI_InterlockedCompareExchange128_nf:
1391     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1392   case clang::AArch64::BI_InterlockedCompareExchange128_rel:
1393     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1394   case clang::AArch64::BI_InterlockedOr8_acq:
1395   case clang::AArch64::BI_InterlockedOr16_acq:
1396   case clang::AArch64::BI_InterlockedOr_acq:
1397   case clang::AArch64::BI_InterlockedOr64_acq:
1398     return MSVCIntrin::_InterlockedOr_acq;
1399   case clang::AArch64::BI_InterlockedOr8_rel:
1400   case clang::AArch64::BI_InterlockedOr16_rel:
1401   case clang::AArch64::BI_InterlockedOr_rel:
1402   case clang::AArch64::BI_InterlockedOr64_rel:
1403     return MSVCIntrin::_InterlockedOr_rel;
1404   case clang::AArch64::BI_InterlockedOr8_nf:
1405   case clang::AArch64::BI_InterlockedOr16_nf:
1406   case clang::AArch64::BI_InterlockedOr_nf:
1407   case clang::AArch64::BI_InterlockedOr64_nf:
1408     return MSVCIntrin::_InterlockedOr_nf;
1409   case clang::AArch64::BI_InterlockedXor8_acq:
1410   case clang::AArch64::BI_InterlockedXor16_acq:
1411   case clang::AArch64::BI_InterlockedXor_acq:
1412   case clang::AArch64::BI_InterlockedXor64_acq:
1413     return MSVCIntrin::_InterlockedXor_acq;
1414   case clang::AArch64::BI_InterlockedXor8_rel:
1415   case clang::AArch64::BI_InterlockedXor16_rel:
1416   case clang::AArch64::BI_InterlockedXor_rel:
1417   case clang::AArch64::BI_InterlockedXor64_rel:
1418     return MSVCIntrin::_InterlockedXor_rel;
1419   case clang::AArch64::BI_InterlockedXor8_nf:
1420   case clang::AArch64::BI_InterlockedXor16_nf:
1421   case clang::AArch64::BI_InterlockedXor_nf:
1422   case clang::AArch64::BI_InterlockedXor64_nf:
1423     return MSVCIntrin::_InterlockedXor_nf;
1424   case clang::AArch64::BI_InterlockedAnd8_acq:
1425   case clang::AArch64::BI_InterlockedAnd16_acq:
1426   case clang::AArch64::BI_InterlockedAnd_acq:
1427   case clang::AArch64::BI_InterlockedAnd64_acq:
1428     return MSVCIntrin::_InterlockedAnd_acq;
1429   case clang::AArch64::BI_InterlockedAnd8_rel:
1430   case clang::AArch64::BI_InterlockedAnd16_rel:
1431   case clang::AArch64::BI_InterlockedAnd_rel:
1432   case clang::AArch64::BI_InterlockedAnd64_rel:
1433     return MSVCIntrin::_InterlockedAnd_rel;
1434   case clang::AArch64::BI_InterlockedAnd8_nf:
1435   case clang::AArch64::BI_InterlockedAnd16_nf:
1436   case clang::AArch64::BI_InterlockedAnd_nf:
1437   case clang::AArch64::BI_InterlockedAnd64_nf:
1438     return MSVCIntrin::_InterlockedAnd_nf;
1439   case clang::AArch64::BI_InterlockedIncrement16_acq:
1440   case clang::AArch64::BI_InterlockedIncrement_acq:
1441   case clang::AArch64::BI_InterlockedIncrement64_acq:
1442     return MSVCIntrin::_InterlockedIncrement_acq;
1443   case clang::AArch64::BI_InterlockedIncrement16_rel:
1444   case clang::AArch64::BI_InterlockedIncrement_rel:
1445   case clang::AArch64::BI_InterlockedIncrement64_rel:
1446     return MSVCIntrin::_InterlockedIncrement_rel;
1447   case clang::AArch64::BI_InterlockedIncrement16_nf:
1448   case clang::AArch64::BI_InterlockedIncrement_nf:
1449   case clang::AArch64::BI_InterlockedIncrement64_nf:
1450     return MSVCIntrin::_InterlockedIncrement_nf;
1451   case clang::AArch64::BI_InterlockedDecrement16_acq:
1452   case clang::AArch64::BI_InterlockedDecrement_acq:
1453   case clang::AArch64::BI_InterlockedDecrement64_acq:
1454     return MSVCIntrin::_InterlockedDecrement_acq;
1455   case clang::AArch64::BI_InterlockedDecrement16_rel:
1456   case clang::AArch64::BI_InterlockedDecrement_rel:
1457   case clang::AArch64::BI_InterlockedDecrement64_rel:
1458     return MSVCIntrin::_InterlockedDecrement_rel;
1459   case clang::AArch64::BI_InterlockedDecrement16_nf:
1460   case clang::AArch64::BI_InterlockedDecrement_nf:
1461   case clang::AArch64::BI_InterlockedDecrement64_nf:
1462     return MSVCIntrin::_InterlockedDecrement_nf;
1463   }
1464   llvm_unreachable("must return from switch");
1465 }
1466 
1467 static Optional<CodeGenFunction::MSVCIntrin>
1468 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1469   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1470   switch (BuiltinID) {
1471   default:
1472     return None;
1473   case clang::X86::BI_BitScanForward:
1474   case clang::X86::BI_BitScanForward64:
1475     return MSVCIntrin::_BitScanForward;
1476   case clang::X86::BI_BitScanReverse:
1477   case clang::X86::BI_BitScanReverse64:
1478     return MSVCIntrin::_BitScanReverse;
1479   case clang::X86::BI_InterlockedAnd64:
1480     return MSVCIntrin::_InterlockedAnd;
1481   case clang::X86::BI_InterlockedCompareExchange128:
1482     return MSVCIntrin::_InterlockedCompareExchange128;
1483   case clang::X86::BI_InterlockedExchange64:
1484     return MSVCIntrin::_InterlockedExchange;
1485   case clang::X86::BI_InterlockedExchangeAdd64:
1486     return MSVCIntrin::_InterlockedExchangeAdd;
1487   case clang::X86::BI_InterlockedExchangeSub64:
1488     return MSVCIntrin::_InterlockedExchangeSub;
1489   case clang::X86::BI_InterlockedOr64:
1490     return MSVCIntrin::_InterlockedOr;
1491   case clang::X86::BI_InterlockedXor64:
1492     return MSVCIntrin::_InterlockedXor;
1493   case clang::X86::BI_InterlockedDecrement64:
1494     return MSVCIntrin::_InterlockedDecrement;
1495   case clang::X86::BI_InterlockedIncrement64:
1496     return MSVCIntrin::_InterlockedIncrement;
1497   }
1498   llvm_unreachable("must return from switch");
1499 }
1500 
1501 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1502 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1503                                             const CallExpr *E) {
1504   switch (BuiltinID) {
1505   case MSVCIntrin::_BitScanForward:
1506   case MSVCIntrin::_BitScanReverse: {
1507     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1508     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1509 
1510     llvm::Type *ArgType = ArgValue->getType();
1511     llvm::Type *IndexType = IndexAddress.getElementType();
1512     llvm::Type *ResultType = ConvertType(E->getType());
1513 
1514     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1515     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1516     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1517 
1518     BasicBlock *Begin = Builder.GetInsertBlock();
1519     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1520     Builder.SetInsertPoint(End);
1521     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1522 
1523     Builder.SetInsertPoint(Begin);
1524     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1525     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1526     Builder.CreateCondBr(IsZero, End, NotZero);
1527     Result->addIncoming(ResZero, Begin);
1528 
1529     Builder.SetInsertPoint(NotZero);
1530 
1531     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1532       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1533       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1534       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1535       Builder.CreateStore(ZeroCount, IndexAddress, false);
1536     } else {
1537       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1538       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1539 
1540       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1541       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1542       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1543       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1544       Builder.CreateStore(Index, IndexAddress, false);
1545     }
1546     Builder.CreateBr(End);
1547     Result->addIncoming(ResOne, NotZero);
1548 
1549     Builder.SetInsertPoint(End);
1550     return Result;
1551   }
1552   case MSVCIntrin::_InterlockedAnd:
1553     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1554   case MSVCIntrin::_InterlockedExchange:
1555     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1556   case MSVCIntrin::_InterlockedExchangeAdd:
1557     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1558   case MSVCIntrin::_InterlockedExchangeSub:
1559     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1560   case MSVCIntrin::_InterlockedOr:
1561     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1562   case MSVCIntrin::_InterlockedXor:
1563     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1564   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1565     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1566                                  AtomicOrdering::Acquire);
1567   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1568     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1569                                  AtomicOrdering::Release);
1570   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1571     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1572                                  AtomicOrdering::Monotonic);
1573   case MSVCIntrin::_InterlockedExchange_acq:
1574     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1575                                  AtomicOrdering::Acquire);
1576   case MSVCIntrin::_InterlockedExchange_rel:
1577     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1578                                  AtomicOrdering::Release);
1579   case MSVCIntrin::_InterlockedExchange_nf:
1580     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1581                                  AtomicOrdering::Monotonic);
1582   case MSVCIntrin::_InterlockedCompareExchange_acq:
1583     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1584   case MSVCIntrin::_InterlockedCompareExchange_rel:
1585     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1586   case MSVCIntrin::_InterlockedCompareExchange_nf:
1587     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1588   case MSVCIntrin::_InterlockedCompareExchange128:
1589     return EmitAtomicCmpXchg128ForMSIntrin(
1590         *this, E, AtomicOrdering::SequentiallyConsistent);
1591   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1592     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1593   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1594     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1595   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1596     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1597   case MSVCIntrin::_InterlockedOr_acq:
1598     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1599                                  AtomicOrdering::Acquire);
1600   case MSVCIntrin::_InterlockedOr_rel:
1601     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1602                                  AtomicOrdering::Release);
1603   case MSVCIntrin::_InterlockedOr_nf:
1604     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1605                                  AtomicOrdering::Monotonic);
1606   case MSVCIntrin::_InterlockedXor_acq:
1607     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1608                                  AtomicOrdering::Acquire);
1609   case MSVCIntrin::_InterlockedXor_rel:
1610     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1611                                  AtomicOrdering::Release);
1612   case MSVCIntrin::_InterlockedXor_nf:
1613     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1614                                  AtomicOrdering::Monotonic);
1615   case MSVCIntrin::_InterlockedAnd_acq:
1616     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1617                                  AtomicOrdering::Acquire);
1618   case MSVCIntrin::_InterlockedAnd_rel:
1619     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1620                                  AtomicOrdering::Release);
1621   case MSVCIntrin::_InterlockedAnd_nf:
1622     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1623                                  AtomicOrdering::Monotonic);
1624   case MSVCIntrin::_InterlockedIncrement_acq:
1625     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1626   case MSVCIntrin::_InterlockedIncrement_rel:
1627     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1628   case MSVCIntrin::_InterlockedIncrement_nf:
1629     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1630   case MSVCIntrin::_InterlockedDecrement_acq:
1631     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1632   case MSVCIntrin::_InterlockedDecrement_rel:
1633     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1634   case MSVCIntrin::_InterlockedDecrement_nf:
1635     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1636 
1637   case MSVCIntrin::_InterlockedDecrement:
1638     return EmitAtomicDecrementValue(*this, E);
1639   case MSVCIntrin::_InterlockedIncrement:
1640     return EmitAtomicIncrementValue(*this, E);
1641 
1642   case MSVCIntrin::__fastfail: {
1643     // Request immediate process termination from the kernel. The instruction
1644     // sequences to do this are documented on MSDN:
1645     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1646     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1647     StringRef Asm, Constraints;
1648     switch (ISA) {
1649     default:
1650       ErrorUnsupported(E, "__fastfail call for this architecture");
1651       break;
1652     case llvm::Triple::x86:
1653     case llvm::Triple::x86_64:
1654       Asm = "int $$0x29";
1655       Constraints = "{cx}";
1656       break;
1657     case llvm::Triple::thumb:
1658       Asm = "udf #251";
1659       Constraints = "{r0}";
1660       break;
1661     case llvm::Triple::aarch64:
1662       Asm = "brk #0xF003";
1663       Constraints = "{w0}";
1664     }
1665     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1666     llvm::InlineAsm *IA =
1667         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1668     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1669         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1670         llvm::Attribute::NoReturn);
1671     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1672     CI->setAttributes(NoReturnAttr);
1673     return CI;
1674   }
1675   }
1676   llvm_unreachable("Incorrect MSVC intrinsic!");
1677 }
1678 
1679 namespace {
1680 // ARC cleanup for __builtin_os_log_format
1681 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1682   CallObjCArcUse(llvm::Value *object) : object(object) {}
1683   llvm::Value *object;
1684 
1685   void Emit(CodeGenFunction &CGF, Flags flags) override {
1686     CGF.EmitARCIntrinsicUse(object);
1687   }
1688 };
1689 }
1690 
1691 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1692                                                  BuiltinCheckKind Kind) {
1693   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1694           && "Unsupported builtin check kind");
1695 
1696   Value *ArgValue = EmitScalarExpr(E);
1697   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1698     return ArgValue;
1699 
1700   SanitizerScope SanScope(this);
1701   Value *Cond = Builder.CreateICmpNE(
1702       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1703   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1704             SanitizerHandler::InvalidBuiltin,
1705             {EmitCheckSourceLocation(E->getExprLoc()),
1706              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1707             None);
1708   return ArgValue;
1709 }
1710 
1711 /// Get the argument type for arguments to os_log_helper.
1712 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1713   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1714   return C.getCanonicalType(UnsignedTy);
1715 }
1716 
1717 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1718     const analyze_os_log::OSLogBufferLayout &Layout,
1719     CharUnits BufferAlignment) {
1720   ASTContext &Ctx = getContext();
1721 
1722   llvm::SmallString<64> Name;
1723   {
1724     raw_svector_ostream OS(Name);
1725     OS << "__os_log_helper";
1726     OS << "_" << BufferAlignment.getQuantity();
1727     OS << "_" << int(Layout.getSummaryByte());
1728     OS << "_" << int(Layout.getNumArgsByte());
1729     for (const auto &Item : Layout.Items)
1730       OS << "_" << int(Item.getSizeByte()) << "_"
1731          << int(Item.getDescriptorByte());
1732   }
1733 
1734   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1735     return F;
1736 
1737   llvm::SmallVector<QualType, 4> ArgTys;
1738   FunctionArgList Args;
1739   Args.push_back(ImplicitParamDecl::Create(
1740       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1741       ImplicitParamDecl::Other));
1742   ArgTys.emplace_back(Ctx.VoidPtrTy);
1743 
1744   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1745     char Size = Layout.Items[I].getSizeByte();
1746     if (!Size)
1747       continue;
1748 
1749     QualType ArgTy = getOSLogArgType(Ctx, Size);
1750     Args.push_back(ImplicitParamDecl::Create(
1751         Ctx, nullptr, SourceLocation(),
1752         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1753         ImplicitParamDecl::Other));
1754     ArgTys.emplace_back(ArgTy);
1755   }
1756 
1757   QualType ReturnTy = Ctx.VoidTy;
1758 
1759   // The helper function has linkonce_odr linkage to enable the linker to merge
1760   // identical functions. To ensure the merging always happens, 'noinline' is
1761   // attached to the function when compiling with -Oz.
1762   const CGFunctionInfo &FI =
1763       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1764   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1765   llvm::Function *Fn = llvm::Function::Create(
1766       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1767   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1768   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1769   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1770   Fn->setDoesNotThrow();
1771 
1772   // Attach 'noinline' at -Oz.
1773   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1774     Fn->addFnAttr(llvm::Attribute::NoInline);
1775 
1776   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1777   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1778 
1779   // Create a scope with an artificial location for the body of this function.
1780   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1781 
1782   CharUnits Offset;
1783   Address BufAddr =
1784       Address(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), Int8Ty,
1785               BufferAlignment);
1786   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1787                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1788   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1789                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1790 
1791   unsigned I = 1;
1792   for (const auto &Item : Layout.Items) {
1793     Builder.CreateStore(
1794         Builder.getInt8(Item.getDescriptorByte()),
1795         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1796     Builder.CreateStore(
1797         Builder.getInt8(Item.getSizeByte()),
1798         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1799 
1800     CharUnits Size = Item.size();
1801     if (!Size.getQuantity())
1802       continue;
1803 
1804     Address Arg = GetAddrOfLocalVar(Args[I]);
1805     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1806     Addr =
1807         Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1808     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1809     Offset += Size;
1810     ++I;
1811   }
1812 
1813   FinishFunction();
1814 
1815   return Fn;
1816 }
1817 
1818 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1819   assert(E.getNumArgs() >= 2 &&
1820          "__builtin_os_log_format takes at least 2 arguments");
1821   ASTContext &Ctx = getContext();
1822   analyze_os_log::OSLogBufferLayout Layout;
1823   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1824   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1825   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1826 
1827   // Ignore argument 1, the format string. It is not currently used.
1828   CallArgList Args;
1829   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1830 
1831   for (const auto &Item : Layout.Items) {
1832     int Size = Item.getSizeByte();
1833     if (!Size)
1834       continue;
1835 
1836     llvm::Value *ArgVal;
1837 
1838     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1839       uint64_t Val = 0;
1840       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1841         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1842       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1843     } else if (const Expr *TheExpr = Item.getExpr()) {
1844       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1845 
1846       // If a temporary object that requires destruction after the full
1847       // expression is passed, push a lifetime-extended cleanup to extend its
1848       // lifetime to the end of the enclosing block scope.
1849       auto LifetimeExtendObject = [&](const Expr *E) {
1850         E = E->IgnoreParenCasts();
1851         // Extend lifetimes of objects returned by function calls and message
1852         // sends.
1853 
1854         // FIXME: We should do this in other cases in which temporaries are
1855         //        created including arguments of non-ARC types (e.g., C++
1856         //        temporaries).
1857         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1858           return true;
1859         return false;
1860       };
1861 
1862       if (TheExpr->getType()->isObjCRetainableType() &&
1863           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1864         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1865                "Only scalar can be a ObjC retainable type");
1866         if (!isa<Constant>(ArgVal)) {
1867           CleanupKind Cleanup = getARCCleanupKind();
1868           QualType Ty = TheExpr->getType();
1869           Address Alloca = Address::invalid();
1870           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1871           ArgVal = EmitARCRetain(Ty, ArgVal);
1872           Builder.CreateStore(ArgVal, Addr);
1873           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1874                                       CodeGenFunction::destroyARCStrongPrecise,
1875                                       Cleanup & EHCleanup);
1876 
1877           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1878           // argument has to be alive.
1879           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1880             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1881         }
1882       }
1883     } else {
1884       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1885     }
1886 
1887     unsigned ArgValSize =
1888         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1889     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1890                                                      ArgValSize);
1891     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1892     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1893     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1894     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1895     Args.add(RValue::get(ArgVal), ArgTy);
1896   }
1897 
1898   const CGFunctionInfo &FI =
1899       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1900   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1901       Layout, BufAddr.getAlignment());
1902   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1903   return RValue::get(BufAddr.getPointer());
1904 }
1905 
1906 static bool isSpecialUnsignedMultiplySignedResult(
1907     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1908     WidthAndSignedness ResultInfo) {
1909   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1910          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1911          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1912 }
1913 
1914 static RValue EmitCheckedUnsignedMultiplySignedResult(
1915     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1916     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1917     const clang::Expr *ResultArg, QualType ResultQTy,
1918     WidthAndSignedness ResultInfo) {
1919   assert(isSpecialUnsignedMultiplySignedResult(
1920              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1921          "Cannot specialize this multiply");
1922 
1923   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1924   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1925 
1926   llvm::Value *HasOverflow;
1927   llvm::Value *Result = EmitOverflowIntrinsic(
1928       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1929 
1930   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1931   // however, since the original builtin had a signed result, we need to report
1932   // an overflow when the result is greater than INT_MAX.
1933   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1934   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1935 
1936   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1937   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1938 
1939   bool isVolatile =
1940       ResultArg->getType()->getPointeeType().isVolatileQualified();
1941   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1942   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1943                           isVolatile);
1944   return RValue::get(HasOverflow);
1945 }
1946 
1947 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1948 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1949                                        WidthAndSignedness Op1Info,
1950                                        WidthAndSignedness Op2Info,
1951                                        WidthAndSignedness ResultInfo) {
1952   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1953          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1954          Op1Info.Signed != Op2Info.Signed;
1955 }
1956 
1957 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1958 /// the generic checked-binop irgen.
1959 static RValue
1960 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1961                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1962                              WidthAndSignedness Op2Info,
1963                              const clang::Expr *ResultArg, QualType ResultQTy,
1964                              WidthAndSignedness ResultInfo) {
1965   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1966                                     Op2Info, ResultInfo) &&
1967          "Not a mixed-sign multipliction we can specialize");
1968 
1969   // Emit the signed and unsigned operands.
1970   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1971   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1972   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1973   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1974   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1975   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1976 
1977   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1978   if (SignedOpWidth < UnsignedOpWidth)
1979     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1980   if (UnsignedOpWidth < SignedOpWidth)
1981     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1982 
1983   llvm::Type *OpTy = Signed->getType();
1984   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1985   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1986   llvm::Type *ResTy = ResultPtr.getElementType();
1987   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1988 
1989   // Take the absolute value of the signed operand.
1990   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1991   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1992   llvm::Value *AbsSigned =
1993       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1994 
1995   // Perform a checked unsigned multiplication.
1996   llvm::Value *UnsignedOverflow;
1997   llvm::Value *UnsignedResult =
1998       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1999                             Unsigned, UnsignedOverflow);
2000 
2001   llvm::Value *Overflow, *Result;
2002   if (ResultInfo.Signed) {
2003     // Signed overflow occurs if the result is greater than INT_MAX or lesser
2004     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2005     auto IntMax =
2006         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zext(OpWidth);
2007     llvm::Value *MaxResult =
2008         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2009                               CGF.Builder.CreateZExt(IsNegative, OpTy));
2010     llvm::Value *SignedOverflow =
2011         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2012     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2013 
2014     // Prepare the signed result (possibly by negating it).
2015     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2016     llvm::Value *SignedResult =
2017         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2018     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2019   } else {
2020     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2021     llvm::Value *Underflow = CGF.Builder.CreateAnd(
2022         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2023     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2024     if (ResultInfo.Width < OpWidth) {
2025       auto IntMax =
2026           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2027       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2028           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2029       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2030     }
2031 
2032     // Negate the product if it would be negative in infinite precision.
2033     Result = CGF.Builder.CreateSelect(
2034         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2035 
2036     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2037   }
2038   assert(Overflow && Result && "Missing overflow or result");
2039 
2040   bool isVolatile =
2041       ResultArg->getType()->getPointeeType().isVolatileQualified();
2042   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2043                           isVolatile);
2044   return RValue::get(Overflow);
2045 }
2046 
2047 static bool
2048 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2049                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2050   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2051     Ty = Ctx.getBaseElementType(Arr);
2052 
2053   const auto *Record = Ty->getAsCXXRecordDecl();
2054   if (!Record)
2055     return false;
2056 
2057   // We've already checked this type, or are in the process of checking it.
2058   if (!Seen.insert(Record).second)
2059     return false;
2060 
2061   assert(Record->hasDefinition() &&
2062          "Incomplete types should already be diagnosed");
2063 
2064   if (Record->isDynamicClass())
2065     return true;
2066 
2067   for (FieldDecl *F : Record->fields()) {
2068     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2069       return true;
2070   }
2071   return false;
2072 }
2073 
2074 /// Determine if the specified type requires laundering by checking if it is a
2075 /// dynamic class type or contains a subobject which is a dynamic class type.
2076 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2077   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2078     return false;
2079   llvm::SmallPtrSet<const Decl *, 16> Seen;
2080   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2081 }
2082 
2083 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2084   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2085   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2086 
2087   // The builtin's shift arg may have a different type than the source arg and
2088   // result, but the LLVM intrinsic uses the same type for all values.
2089   llvm::Type *Ty = Src->getType();
2090   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2091 
2092   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2093   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2094   Function *F = CGM.getIntrinsic(IID, Ty);
2095   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2096 }
2097 
2098 // Map math builtins for long-double to f128 version.
2099 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2100   switch (BuiltinID) {
2101 #define MUTATE_LDBL(func) \
2102   case Builtin::BI__builtin_##func##l: \
2103     return Builtin::BI__builtin_##func##f128;
2104   MUTATE_LDBL(sqrt)
2105   MUTATE_LDBL(cbrt)
2106   MUTATE_LDBL(fabs)
2107   MUTATE_LDBL(log)
2108   MUTATE_LDBL(log2)
2109   MUTATE_LDBL(log10)
2110   MUTATE_LDBL(log1p)
2111   MUTATE_LDBL(logb)
2112   MUTATE_LDBL(exp)
2113   MUTATE_LDBL(exp2)
2114   MUTATE_LDBL(expm1)
2115   MUTATE_LDBL(fdim)
2116   MUTATE_LDBL(hypot)
2117   MUTATE_LDBL(ilogb)
2118   MUTATE_LDBL(pow)
2119   MUTATE_LDBL(fmin)
2120   MUTATE_LDBL(fmax)
2121   MUTATE_LDBL(ceil)
2122   MUTATE_LDBL(trunc)
2123   MUTATE_LDBL(rint)
2124   MUTATE_LDBL(nearbyint)
2125   MUTATE_LDBL(round)
2126   MUTATE_LDBL(floor)
2127   MUTATE_LDBL(lround)
2128   MUTATE_LDBL(llround)
2129   MUTATE_LDBL(lrint)
2130   MUTATE_LDBL(llrint)
2131   MUTATE_LDBL(fmod)
2132   MUTATE_LDBL(modf)
2133   MUTATE_LDBL(nan)
2134   MUTATE_LDBL(nans)
2135   MUTATE_LDBL(inf)
2136   MUTATE_LDBL(fma)
2137   MUTATE_LDBL(sin)
2138   MUTATE_LDBL(cos)
2139   MUTATE_LDBL(tan)
2140   MUTATE_LDBL(sinh)
2141   MUTATE_LDBL(cosh)
2142   MUTATE_LDBL(tanh)
2143   MUTATE_LDBL(asin)
2144   MUTATE_LDBL(acos)
2145   MUTATE_LDBL(atan)
2146   MUTATE_LDBL(asinh)
2147   MUTATE_LDBL(acosh)
2148   MUTATE_LDBL(atanh)
2149   MUTATE_LDBL(atan2)
2150   MUTATE_LDBL(erf)
2151   MUTATE_LDBL(erfc)
2152   MUTATE_LDBL(ldexp)
2153   MUTATE_LDBL(frexp)
2154   MUTATE_LDBL(huge_val)
2155   MUTATE_LDBL(copysign)
2156   MUTATE_LDBL(nextafter)
2157   MUTATE_LDBL(nexttoward)
2158   MUTATE_LDBL(remainder)
2159   MUTATE_LDBL(remquo)
2160   MUTATE_LDBL(scalbln)
2161   MUTATE_LDBL(scalbn)
2162   MUTATE_LDBL(tgamma)
2163   MUTATE_LDBL(lgamma)
2164 #undef MUTATE_LDBL
2165   default:
2166     return BuiltinID;
2167   }
2168 }
2169 
2170 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2171                                         const CallExpr *E,
2172                                         ReturnValueSlot ReturnValue) {
2173   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2174   // See if we can constant fold this builtin.  If so, don't emit it at all.
2175   // TODO: Extend this handling to all builtin calls that we can constant-fold.
2176   Expr::EvalResult Result;
2177   if (E->isPRValue() && E->EvaluateAsRValue(Result, CGM.getContext()) &&
2178       !Result.hasSideEffects()) {
2179     if (Result.Val.isInt())
2180       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2181                                                 Result.Val.getInt()));
2182     if (Result.Val.isFloat())
2183       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2184                                                Result.Val.getFloat()));
2185   }
2186 
2187   // If current long-double semantics is IEEE 128-bit, replace math builtins
2188   // of long-double with f128 equivalent.
2189   // TODO: This mutation should also be applied to other targets other than PPC,
2190   // after backend supports IEEE 128-bit style libcalls.
2191   if (getTarget().getTriple().isPPC64() &&
2192       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2193     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2194 
2195   // If the builtin has been declared explicitly with an assembler label,
2196   // disable the specialized emitting below. Ideally we should communicate the
2197   // rename in IR, or at least avoid generating the intrinsic calls that are
2198   // likely to get lowered to the renamed library functions.
2199   const unsigned BuiltinIDIfNoAsmLabel =
2200       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2201 
2202   // There are LLVM math intrinsics/instructions corresponding to math library
2203   // functions except the LLVM op will never set errno while the math library
2204   // might. Also, math builtins have the same semantics as their math library
2205   // twins. Thus, we can transform math library and builtin calls to their
2206   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2207   if (FD->hasAttr<ConstAttr>()) {
2208     switch (BuiltinIDIfNoAsmLabel) {
2209     case Builtin::BIceil:
2210     case Builtin::BIceilf:
2211     case Builtin::BIceill:
2212     case Builtin::BI__builtin_ceil:
2213     case Builtin::BI__builtin_ceilf:
2214     case Builtin::BI__builtin_ceilf16:
2215     case Builtin::BI__builtin_ceill:
2216     case Builtin::BI__builtin_ceilf128:
2217       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2218                                    Intrinsic::ceil,
2219                                    Intrinsic::experimental_constrained_ceil));
2220 
2221     case Builtin::BIcopysign:
2222     case Builtin::BIcopysignf:
2223     case Builtin::BIcopysignl:
2224     case Builtin::BI__builtin_copysign:
2225     case Builtin::BI__builtin_copysignf:
2226     case Builtin::BI__builtin_copysignf16:
2227     case Builtin::BI__builtin_copysignl:
2228     case Builtin::BI__builtin_copysignf128:
2229       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2230 
2231     case Builtin::BIcos:
2232     case Builtin::BIcosf:
2233     case Builtin::BIcosl:
2234     case Builtin::BI__builtin_cos:
2235     case Builtin::BI__builtin_cosf:
2236     case Builtin::BI__builtin_cosf16:
2237     case Builtin::BI__builtin_cosl:
2238     case Builtin::BI__builtin_cosf128:
2239       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2240                                    Intrinsic::cos,
2241                                    Intrinsic::experimental_constrained_cos));
2242 
2243     case Builtin::BIexp:
2244     case Builtin::BIexpf:
2245     case Builtin::BIexpl:
2246     case Builtin::BI__builtin_exp:
2247     case Builtin::BI__builtin_expf:
2248     case Builtin::BI__builtin_expf16:
2249     case Builtin::BI__builtin_expl:
2250     case Builtin::BI__builtin_expf128:
2251       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2252                                    Intrinsic::exp,
2253                                    Intrinsic::experimental_constrained_exp));
2254 
2255     case Builtin::BIexp2:
2256     case Builtin::BIexp2f:
2257     case Builtin::BIexp2l:
2258     case Builtin::BI__builtin_exp2:
2259     case Builtin::BI__builtin_exp2f:
2260     case Builtin::BI__builtin_exp2f16:
2261     case Builtin::BI__builtin_exp2l:
2262     case Builtin::BI__builtin_exp2f128:
2263       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2264                                    Intrinsic::exp2,
2265                                    Intrinsic::experimental_constrained_exp2));
2266 
2267     case Builtin::BIfabs:
2268     case Builtin::BIfabsf:
2269     case Builtin::BIfabsl:
2270     case Builtin::BI__builtin_fabs:
2271     case Builtin::BI__builtin_fabsf:
2272     case Builtin::BI__builtin_fabsf16:
2273     case Builtin::BI__builtin_fabsl:
2274     case Builtin::BI__builtin_fabsf128:
2275       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2276 
2277     case Builtin::BIfloor:
2278     case Builtin::BIfloorf:
2279     case Builtin::BIfloorl:
2280     case Builtin::BI__builtin_floor:
2281     case Builtin::BI__builtin_floorf:
2282     case Builtin::BI__builtin_floorf16:
2283     case Builtin::BI__builtin_floorl:
2284     case Builtin::BI__builtin_floorf128:
2285       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2286                                    Intrinsic::floor,
2287                                    Intrinsic::experimental_constrained_floor));
2288 
2289     case Builtin::BIfma:
2290     case Builtin::BIfmaf:
2291     case Builtin::BIfmal:
2292     case Builtin::BI__builtin_fma:
2293     case Builtin::BI__builtin_fmaf:
2294     case Builtin::BI__builtin_fmaf16:
2295     case Builtin::BI__builtin_fmal:
2296     case Builtin::BI__builtin_fmaf128:
2297       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2298                                    Intrinsic::fma,
2299                                    Intrinsic::experimental_constrained_fma));
2300 
2301     case Builtin::BIfmax:
2302     case Builtin::BIfmaxf:
2303     case Builtin::BIfmaxl:
2304     case Builtin::BI__builtin_fmax:
2305     case Builtin::BI__builtin_fmaxf:
2306     case Builtin::BI__builtin_fmaxf16:
2307     case Builtin::BI__builtin_fmaxl:
2308     case Builtin::BI__builtin_fmaxf128:
2309       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2310                                    Intrinsic::maxnum,
2311                                    Intrinsic::experimental_constrained_maxnum));
2312 
2313     case Builtin::BIfmin:
2314     case Builtin::BIfminf:
2315     case Builtin::BIfminl:
2316     case Builtin::BI__builtin_fmin:
2317     case Builtin::BI__builtin_fminf:
2318     case Builtin::BI__builtin_fminf16:
2319     case Builtin::BI__builtin_fminl:
2320     case Builtin::BI__builtin_fminf128:
2321       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2322                                    Intrinsic::minnum,
2323                                    Intrinsic::experimental_constrained_minnum));
2324 
2325     // fmod() is a special-case. It maps to the frem instruction rather than an
2326     // LLVM intrinsic.
2327     case Builtin::BIfmod:
2328     case Builtin::BIfmodf:
2329     case Builtin::BIfmodl:
2330     case Builtin::BI__builtin_fmod:
2331     case Builtin::BI__builtin_fmodf:
2332     case Builtin::BI__builtin_fmodf16:
2333     case Builtin::BI__builtin_fmodl:
2334     case Builtin::BI__builtin_fmodf128: {
2335       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2336       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2337       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2338       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2339     }
2340 
2341     case Builtin::BIlog:
2342     case Builtin::BIlogf:
2343     case Builtin::BIlogl:
2344     case Builtin::BI__builtin_log:
2345     case Builtin::BI__builtin_logf:
2346     case Builtin::BI__builtin_logf16:
2347     case Builtin::BI__builtin_logl:
2348     case Builtin::BI__builtin_logf128:
2349       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2350                                    Intrinsic::log,
2351                                    Intrinsic::experimental_constrained_log));
2352 
2353     case Builtin::BIlog10:
2354     case Builtin::BIlog10f:
2355     case Builtin::BIlog10l:
2356     case Builtin::BI__builtin_log10:
2357     case Builtin::BI__builtin_log10f:
2358     case Builtin::BI__builtin_log10f16:
2359     case Builtin::BI__builtin_log10l:
2360     case Builtin::BI__builtin_log10f128:
2361       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2362                                    Intrinsic::log10,
2363                                    Intrinsic::experimental_constrained_log10));
2364 
2365     case Builtin::BIlog2:
2366     case Builtin::BIlog2f:
2367     case Builtin::BIlog2l:
2368     case Builtin::BI__builtin_log2:
2369     case Builtin::BI__builtin_log2f:
2370     case Builtin::BI__builtin_log2f16:
2371     case Builtin::BI__builtin_log2l:
2372     case Builtin::BI__builtin_log2f128:
2373       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2374                                    Intrinsic::log2,
2375                                    Intrinsic::experimental_constrained_log2));
2376 
2377     case Builtin::BInearbyint:
2378     case Builtin::BInearbyintf:
2379     case Builtin::BInearbyintl:
2380     case Builtin::BI__builtin_nearbyint:
2381     case Builtin::BI__builtin_nearbyintf:
2382     case Builtin::BI__builtin_nearbyintl:
2383     case Builtin::BI__builtin_nearbyintf128:
2384       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2385                                 Intrinsic::nearbyint,
2386                                 Intrinsic::experimental_constrained_nearbyint));
2387 
2388     case Builtin::BIpow:
2389     case Builtin::BIpowf:
2390     case Builtin::BIpowl:
2391     case Builtin::BI__builtin_pow:
2392     case Builtin::BI__builtin_powf:
2393     case Builtin::BI__builtin_powf16:
2394     case Builtin::BI__builtin_powl:
2395     case Builtin::BI__builtin_powf128:
2396       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2397                                    Intrinsic::pow,
2398                                    Intrinsic::experimental_constrained_pow));
2399 
2400     case Builtin::BIrint:
2401     case Builtin::BIrintf:
2402     case Builtin::BIrintl:
2403     case Builtin::BI__builtin_rint:
2404     case Builtin::BI__builtin_rintf:
2405     case Builtin::BI__builtin_rintf16:
2406     case Builtin::BI__builtin_rintl:
2407     case Builtin::BI__builtin_rintf128:
2408       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2409                                    Intrinsic::rint,
2410                                    Intrinsic::experimental_constrained_rint));
2411 
2412     case Builtin::BIround:
2413     case Builtin::BIroundf:
2414     case Builtin::BIroundl:
2415     case Builtin::BI__builtin_round:
2416     case Builtin::BI__builtin_roundf:
2417     case Builtin::BI__builtin_roundf16:
2418     case Builtin::BI__builtin_roundl:
2419     case Builtin::BI__builtin_roundf128:
2420       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2421                                    Intrinsic::round,
2422                                    Intrinsic::experimental_constrained_round));
2423 
2424     case Builtin::BIsin:
2425     case Builtin::BIsinf:
2426     case Builtin::BIsinl:
2427     case Builtin::BI__builtin_sin:
2428     case Builtin::BI__builtin_sinf:
2429     case Builtin::BI__builtin_sinf16:
2430     case Builtin::BI__builtin_sinl:
2431     case Builtin::BI__builtin_sinf128:
2432       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2433                                    Intrinsic::sin,
2434                                    Intrinsic::experimental_constrained_sin));
2435 
2436     case Builtin::BIsqrt:
2437     case Builtin::BIsqrtf:
2438     case Builtin::BIsqrtl:
2439     case Builtin::BI__builtin_sqrt:
2440     case Builtin::BI__builtin_sqrtf:
2441     case Builtin::BI__builtin_sqrtf16:
2442     case Builtin::BI__builtin_sqrtl:
2443     case Builtin::BI__builtin_sqrtf128:
2444       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2445                                    Intrinsic::sqrt,
2446                                    Intrinsic::experimental_constrained_sqrt));
2447 
2448     case Builtin::BItrunc:
2449     case Builtin::BItruncf:
2450     case Builtin::BItruncl:
2451     case Builtin::BI__builtin_trunc:
2452     case Builtin::BI__builtin_truncf:
2453     case Builtin::BI__builtin_truncf16:
2454     case Builtin::BI__builtin_truncl:
2455     case Builtin::BI__builtin_truncf128:
2456       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2457                                    Intrinsic::trunc,
2458                                    Intrinsic::experimental_constrained_trunc));
2459 
2460     case Builtin::BIlround:
2461     case Builtin::BIlroundf:
2462     case Builtin::BIlroundl:
2463     case Builtin::BI__builtin_lround:
2464     case Builtin::BI__builtin_lroundf:
2465     case Builtin::BI__builtin_lroundl:
2466     case Builtin::BI__builtin_lroundf128:
2467       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2468           *this, E, Intrinsic::lround,
2469           Intrinsic::experimental_constrained_lround));
2470 
2471     case Builtin::BIllround:
2472     case Builtin::BIllroundf:
2473     case Builtin::BIllroundl:
2474     case Builtin::BI__builtin_llround:
2475     case Builtin::BI__builtin_llroundf:
2476     case Builtin::BI__builtin_llroundl:
2477     case Builtin::BI__builtin_llroundf128:
2478       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2479           *this, E, Intrinsic::llround,
2480           Intrinsic::experimental_constrained_llround));
2481 
2482     case Builtin::BIlrint:
2483     case Builtin::BIlrintf:
2484     case Builtin::BIlrintl:
2485     case Builtin::BI__builtin_lrint:
2486     case Builtin::BI__builtin_lrintf:
2487     case Builtin::BI__builtin_lrintl:
2488     case Builtin::BI__builtin_lrintf128:
2489       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2490           *this, E, Intrinsic::lrint,
2491           Intrinsic::experimental_constrained_lrint));
2492 
2493     case Builtin::BIllrint:
2494     case Builtin::BIllrintf:
2495     case Builtin::BIllrintl:
2496     case Builtin::BI__builtin_llrint:
2497     case Builtin::BI__builtin_llrintf:
2498     case Builtin::BI__builtin_llrintl:
2499     case Builtin::BI__builtin_llrintf128:
2500       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2501           *this, E, Intrinsic::llrint,
2502           Intrinsic::experimental_constrained_llrint));
2503 
2504     default:
2505       break;
2506     }
2507   }
2508 
2509   switch (BuiltinIDIfNoAsmLabel) {
2510   default: break;
2511   case Builtin::BI__builtin___CFStringMakeConstantString:
2512   case Builtin::BI__builtin___NSStringMakeConstantString:
2513     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2514   case Builtin::BI__builtin_stdarg_start:
2515   case Builtin::BI__builtin_va_start:
2516   case Builtin::BI__va_start:
2517   case Builtin::BI__builtin_va_end:
2518     return RValue::get(
2519         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2520                            ? EmitScalarExpr(E->getArg(0))
2521                            : EmitVAListRef(E->getArg(0)).getPointer(),
2522                        BuiltinID != Builtin::BI__builtin_va_end));
2523   case Builtin::BI__builtin_va_copy: {
2524     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2525     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2526 
2527     llvm::Type *Type = Int8PtrTy;
2528 
2529     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2530     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2531     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2532                                           {DstPtr, SrcPtr}));
2533   }
2534   case Builtin::BI__builtin_abs:
2535   case Builtin::BI__builtin_labs:
2536   case Builtin::BI__builtin_llabs: {
2537     // X < 0 ? -X : X
2538     // The negation has 'nsw' because abs of INT_MIN is undefined.
2539     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2540     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2541     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2542     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2543     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2544     return RValue::get(Result);
2545   }
2546   case Builtin::BI__builtin_complex: {
2547     Value *Real = EmitScalarExpr(E->getArg(0));
2548     Value *Imag = EmitScalarExpr(E->getArg(1));
2549     return RValue::getComplex({Real, Imag});
2550   }
2551   case Builtin::BI__builtin_conj:
2552   case Builtin::BI__builtin_conjf:
2553   case Builtin::BI__builtin_conjl:
2554   case Builtin::BIconj:
2555   case Builtin::BIconjf:
2556   case Builtin::BIconjl: {
2557     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2558     Value *Real = ComplexVal.first;
2559     Value *Imag = ComplexVal.second;
2560     Imag = Builder.CreateFNeg(Imag, "neg");
2561     return RValue::getComplex(std::make_pair(Real, Imag));
2562   }
2563   case Builtin::BI__builtin_creal:
2564   case Builtin::BI__builtin_crealf:
2565   case Builtin::BI__builtin_creall:
2566   case Builtin::BIcreal:
2567   case Builtin::BIcrealf:
2568   case Builtin::BIcreall: {
2569     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2570     return RValue::get(ComplexVal.first);
2571   }
2572 
2573   case Builtin::BI__builtin_preserve_access_index: {
2574     // Only enabled preserved access index region when debuginfo
2575     // is available as debuginfo is needed to preserve user-level
2576     // access pattern.
2577     if (!getDebugInfo()) {
2578       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2579       return RValue::get(EmitScalarExpr(E->getArg(0)));
2580     }
2581 
2582     // Nested builtin_preserve_access_index() not supported
2583     if (IsInPreservedAIRegion) {
2584       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2585       return RValue::get(EmitScalarExpr(E->getArg(0)));
2586     }
2587 
2588     IsInPreservedAIRegion = true;
2589     Value *Res = EmitScalarExpr(E->getArg(0));
2590     IsInPreservedAIRegion = false;
2591     return RValue::get(Res);
2592   }
2593 
2594   case Builtin::BI__builtin_cimag:
2595   case Builtin::BI__builtin_cimagf:
2596   case Builtin::BI__builtin_cimagl:
2597   case Builtin::BIcimag:
2598   case Builtin::BIcimagf:
2599   case Builtin::BIcimagl: {
2600     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2601     return RValue::get(ComplexVal.second);
2602   }
2603 
2604   case Builtin::BI__builtin_clrsb:
2605   case Builtin::BI__builtin_clrsbl:
2606   case Builtin::BI__builtin_clrsbll: {
2607     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2608     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2609 
2610     llvm::Type *ArgType = ArgValue->getType();
2611     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2612 
2613     llvm::Type *ResultType = ConvertType(E->getType());
2614     Value *Zero = llvm::Constant::getNullValue(ArgType);
2615     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2616     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2617     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2618     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2619     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2620     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2621                                    "cast");
2622     return RValue::get(Result);
2623   }
2624   case Builtin::BI__builtin_ctzs:
2625   case Builtin::BI__builtin_ctz:
2626   case Builtin::BI__builtin_ctzl:
2627   case Builtin::BI__builtin_ctzll: {
2628     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2629 
2630     llvm::Type *ArgType = ArgValue->getType();
2631     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2632 
2633     llvm::Type *ResultType = ConvertType(E->getType());
2634     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2635     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2636     if (Result->getType() != ResultType)
2637       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2638                                      "cast");
2639     return RValue::get(Result);
2640   }
2641   case Builtin::BI__builtin_clzs:
2642   case Builtin::BI__builtin_clz:
2643   case Builtin::BI__builtin_clzl:
2644   case Builtin::BI__builtin_clzll: {
2645     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2646 
2647     llvm::Type *ArgType = ArgValue->getType();
2648     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2649 
2650     llvm::Type *ResultType = ConvertType(E->getType());
2651     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2652     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2653     if (Result->getType() != ResultType)
2654       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2655                                      "cast");
2656     return RValue::get(Result);
2657   }
2658   case Builtin::BI__builtin_ffs:
2659   case Builtin::BI__builtin_ffsl:
2660   case Builtin::BI__builtin_ffsll: {
2661     // ffs(x) -> x ? cttz(x) + 1 : 0
2662     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2663 
2664     llvm::Type *ArgType = ArgValue->getType();
2665     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2666 
2667     llvm::Type *ResultType = ConvertType(E->getType());
2668     Value *Tmp =
2669         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2670                           llvm::ConstantInt::get(ArgType, 1));
2671     Value *Zero = llvm::Constant::getNullValue(ArgType);
2672     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2673     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2674     if (Result->getType() != ResultType)
2675       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2676                                      "cast");
2677     return RValue::get(Result);
2678   }
2679   case Builtin::BI__builtin_parity:
2680   case Builtin::BI__builtin_parityl:
2681   case Builtin::BI__builtin_parityll: {
2682     // parity(x) -> ctpop(x) & 1
2683     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2684 
2685     llvm::Type *ArgType = ArgValue->getType();
2686     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2687 
2688     llvm::Type *ResultType = ConvertType(E->getType());
2689     Value *Tmp = Builder.CreateCall(F, ArgValue);
2690     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2691     if (Result->getType() != ResultType)
2692       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2693                                      "cast");
2694     return RValue::get(Result);
2695   }
2696   case Builtin::BI__lzcnt16:
2697   case Builtin::BI__lzcnt:
2698   case Builtin::BI__lzcnt64: {
2699     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2700 
2701     llvm::Type *ArgType = ArgValue->getType();
2702     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2703 
2704     llvm::Type *ResultType = ConvertType(E->getType());
2705     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2706     if (Result->getType() != ResultType)
2707       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2708                                      "cast");
2709     return RValue::get(Result);
2710   }
2711   case Builtin::BI__popcnt16:
2712   case Builtin::BI__popcnt:
2713   case Builtin::BI__popcnt64:
2714   case Builtin::BI__builtin_popcount:
2715   case Builtin::BI__builtin_popcountl:
2716   case Builtin::BI__builtin_popcountll: {
2717     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2718 
2719     llvm::Type *ArgType = ArgValue->getType();
2720     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2721 
2722     llvm::Type *ResultType = ConvertType(E->getType());
2723     Value *Result = Builder.CreateCall(F, ArgValue);
2724     if (Result->getType() != ResultType)
2725       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2726                                      "cast");
2727     return RValue::get(Result);
2728   }
2729   case Builtin::BI__builtin_unpredictable: {
2730     // Always return the argument of __builtin_unpredictable. LLVM does not
2731     // handle this builtin. Metadata for this builtin should be added directly
2732     // to instructions such as branches or switches that use it.
2733     return RValue::get(EmitScalarExpr(E->getArg(0)));
2734   }
2735   case Builtin::BI__builtin_expect: {
2736     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2737     llvm::Type *ArgType = ArgValue->getType();
2738 
2739     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2740     // Don't generate llvm.expect on -O0 as the backend won't use it for
2741     // anything.
2742     // Note, we still IRGen ExpectedValue because it could have side-effects.
2743     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2744       return RValue::get(ArgValue);
2745 
2746     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2747     Value *Result =
2748         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2749     return RValue::get(Result);
2750   }
2751   case Builtin::BI__builtin_expect_with_probability: {
2752     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2753     llvm::Type *ArgType = ArgValue->getType();
2754 
2755     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2756     llvm::APFloat Probability(0.0);
2757     const Expr *ProbArg = E->getArg(2);
2758     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2759     assert(EvalSucceed && "probability should be able to evaluate as float");
2760     (void)EvalSucceed;
2761     bool LoseInfo = false;
2762     Probability.convert(llvm::APFloat::IEEEdouble(),
2763                         llvm::RoundingMode::Dynamic, &LoseInfo);
2764     llvm::Type *Ty = ConvertType(ProbArg->getType());
2765     Constant *Confidence = ConstantFP::get(Ty, Probability);
2766     // Don't generate llvm.expect.with.probability on -O0 as the backend
2767     // won't use it for anything.
2768     // Note, we still IRGen ExpectedValue because it could have side-effects.
2769     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2770       return RValue::get(ArgValue);
2771 
2772     Function *FnExpect =
2773         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2774     Value *Result = Builder.CreateCall(
2775         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2776     return RValue::get(Result);
2777   }
2778   case Builtin::BI__builtin_assume_aligned: {
2779     const Expr *Ptr = E->getArg(0);
2780     Value *PtrValue = EmitScalarExpr(Ptr);
2781     Value *OffsetValue =
2782       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2783 
2784     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2785     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2786     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2787       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2788                                      llvm::Value::MaximumAlignment);
2789 
2790     emitAlignmentAssumption(PtrValue, Ptr,
2791                             /*The expr loc is sufficient.*/ SourceLocation(),
2792                             AlignmentCI, OffsetValue);
2793     return RValue::get(PtrValue);
2794   }
2795   case Builtin::BI__assume:
2796   case Builtin::BI__builtin_assume: {
2797     if (E->getArg(0)->HasSideEffects(getContext()))
2798       return RValue::get(nullptr);
2799 
2800     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2801     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2802     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2803   }
2804   case Builtin::BI__arithmetic_fence: {
2805     // Create the builtin call if FastMath is selected, and the target
2806     // supports the builtin, otherwise just return the argument.
2807     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2808     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2809     bool isArithmeticFenceEnabled =
2810         FMF.allowReassoc() &&
2811         getContext().getTargetInfo().checkArithmeticFenceSupported();
2812     QualType ArgType = E->getArg(0)->getType();
2813     if (ArgType->isComplexType()) {
2814       if (isArithmeticFenceEnabled) {
2815         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2816         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2817         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2818                                                     ConvertType(ElementType));
2819         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2820                                                     ConvertType(ElementType));
2821         return RValue::getComplex(std::make_pair(Real, Imag));
2822       }
2823       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2824       Value *Real = ComplexVal.first;
2825       Value *Imag = ComplexVal.second;
2826       return RValue::getComplex(std::make_pair(Real, Imag));
2827     }
2828     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2829     if (isArithmeticFenceEnabled)
2830       return RValue::get(
2831           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2832     return RValue::get(ArgValue);
2833   }
2834   case Builtin::BI__builtin_bswap16:
2835   case Builtin::BI__builtin_bswap32:
2836   case Builtin::BI__builtin_bswap64:
2837   case Builtin::BI_byteswap_ushort:
2838   case Builtin::BI_byteswap_ulong:
2839   case Builtin::BI_byteswap_uint64: {
2840     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2841   }
2842   case Builtin::BI__builtin_bitreverse8:
2843   case Builtin::BI__builtin_bitreverse16:
2844   case Builtin::BI__builtin_bitreverse32:
2845   case Builtin::BI__builtin_bitreverse64: {
2846     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2847   }
2848   case Builtin::BI__builtin_rotateleft8:
2849   case Builtin::BI__builtin_rotateleft16:
2850   case Builtin::BI__builtin_rotateleft32:
2851   case Builtin::BI__builtin_rotateleft64:
2852   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2853   case Builtin::BI_rotl16:
2854   case Builtin::BI_rotl:
2855   case Builtin::BI_lrotl:
2856   case Builtin::BI_rotl64:
2857     return emitRotate(E, false);
2858 
2859   case Builtin::BI__builtin_rotateright8:
2860   case Builtin::BI__builtin_rotateright16:
2861   case Builtin::BI__builtin_rotateright32:
2862   case Builtin::BI__builtin_rotateright64:
2863   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2864   case Builtin::BI_rotr16:
2865   case Builtin::BI_rotr:
2866   case Builtin::BI_lrotr:
2867   case Builtin::BI_rotr64:
2868     return emitRotate(E, true);
2869 
2870   case Builtin::BI__builtin_constant_p: {
2871     llvm::Type *ResultType = ConvertType(E->getType());
2872 
2873     const Expr *Arg = E->getArg(0);
2874     QualType ArgType = Arg->getType();
2875     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2876     // and likely a mistake.
2877     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2878         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2879       // Per the GCC documentation, only numeric constants are recognized after
2880       // inlining.
2881       return RValue::get(ConstantInt::get(ResultType, 0));
2882 
2883     if (Arg->HasSideEffects(getContext()))
2884       // The argument is unevaluated, so be conservative if it might have
2885       // side-effects.
2886       return RValue::get(ConstantInt::get(ResultType, 0));
2887 
2888     Value *ArgValue = EmitScalarExpr(Arg);
2889     if (ArgType->isObjCObjectPointerType()) {
2890       // Convert Objective-C objects to id because we cannot distinguish between
2891       // LLVM types for Obj-C classes as they are opaque.
2892       ArgType = CGM.getContext().getObjCIdType();
2893       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2894     }
2895     Function *F =
2896         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2897     Value *Result = Builder.CreateCall(F, ArgValue);
2898     if (Result->getType() != ResultType)
2899       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2900     return RValue::get(Result);
2901   }
2902   case Builtin::BI__builtin_dynamic_object_size:
2903   case Builtin::BI__builtin_object_size: {
2904     unsigned Type =
2905         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2906     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2907 
2908     // We pass this builtin onto the optimizer so that it can figure out the
2909     // object size in more complex cases.
2910     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2911     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2912                                              /*EmittedE=*/nullptr, IsDynamic));
2913   }
2914   case Builtin::BI__builtin_prefetch: {
2915     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2916     // FIXME: Technically these constants should of type 'int', yes?
2917     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2918       llvm::ConstantInt::get(Int32Ty, 0);
2919     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2920       llvm::ConstantInt::get(Int32Ty, 3);
2921     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2922     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2923     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2924   }
2925   case Builtin::BI__builtin_readcyclecounter: {
2926     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2927     return RValue::get(Builder.CreateCall(F));
2928   }
2929   case Builtin::BI__builtin___clear_cache: {
2930     Value *Begin = EmitScalarExpr(E->getArg(0));
2931     Value *End = EmitScalarExpr(E->getArg(1));
2932     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2933     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2934   }
2935   case Builtin::BI__builtin_trap:
2936     return RValue::get(EmitTrapCall(Intrinsic::trap));
2937   case Builtin::BI__debugbreak:
2938     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2939   case Builtin::BI__builtin_unreachable: {
2940     EmitUnreachable(E->getExprLoc());
2941 
2942     // We do need to preserve an insertion point.
2943     EmitBlock(createBasicBlock("unreachable.cont"));
2944 
2945     return RValue::get(nullptr);
2946   }
2947 
2948   case Builtin::BI__builtin_powi:
2949   case Builtin::BI__builtin_powif:
2950   case Builtin::BI__builtin_powil: {
2951     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
2952     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
2953 
2954     if (Builder.getIsFPConstrained()) {
2955       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2956       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
2957                                      Src0->getType());
2958       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
2959     }
2960 
2961     Function *F = CGM.getIntrinsic(Intrinsic::powi,
2962                                    { Src0->getType(), Src1->getType() });
2963     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
2964   }
2965   case Builtin::BI__builtin_isgreater:
2966   case Builtin::BI__builtin_isgreaterequal:
2967   case Builtin::BI__builtin_isless:
2968   case Builtin::BI__builtin_islessequal:
2969   case Builtin::BI__builtin_islessgreater:
2970   case Builtin::BI__builtin_isunordered: {
2971     // Ordered comparisons: we know the arguments to these are matching scalar
2972     // floating point values.
2973     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2974     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2975     Value *LHS = EmitScalarExpr(E->getArg(0));
2976     Value *RHS = EmitScalarExpr(E->getArg(1));
2977 
2978     switch (BuiltinID) {
2979     default: llvm_unreachable("Unknown ordered comparison");
2980     case Builtin::BI__builtin_isgreater:
2981       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2982       break;
2983     case Builtin::BI__builtin_isgreaterequal:
2984       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2985       break;
2986     case Builtin::BI__builtin_isless:
2987       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2988       break;
2989     case Builtin::BI__builtin_islessequal:
2990       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2991       break;
2992     case Builtin::BI__builtin_islessgreater:
2993       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2994       break;
2995     case Builtin::BI__builtin_isunordered:
2996       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2997       break;
2998     }
2999     // ZExt bool to int type.
3000     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3001   }
3002   case Builtin::BI__builtin_isnan: {
3003     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3004     Value *V = EmitScalarExpr(E->getArg(0));
3005     llvm::Type *Ty = V->getType();
3006     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3007     if (!Builder.getIsFPConstrained() ||
3008         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3009         !Ty->isIEEE()) {
3010       V = Builder.CreateFCmpUNO(V, V, "cmp");
3011       return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3012     }
3013 
3014     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3015       return RValue::get(Result);
3016 
3017     // NaN has all exp bits set and a non zero significand. Therefore:
3018     // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3019     unsigned bitsize = Ty->getScalarSizeInBits();
3020     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3021     Value *IntV = Builder.CreateBitCast(V, IntTy);
3022     APInt AndMask = APInt::getSignedMaxValue(bitsize);
3023     Value *AbsV =
3024         Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3025     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3026     Value *Sub =
3027         Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3028     // V = sign bit (Sub) <=> V = (Sub < 0)
3029     V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3030     if (bitsize > 32)
3031       V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3032     return RValue::get(V);
3033   }
3034 
3035   case Builtin::BI__builtin_elementwise_abs: {
3036     Value *Result;
3037     QualType QT = E->getArg(0)->getType();
3038 
3039     if (auto *VecTy = QT->getAs<VectorType>())
3040       QT = VecTy->getElementType();
3041     if (QT->isIntegerType())
3042       Result = Builder.CreateBinaryIntrinsic(
3043           llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3044           Builder.getFalse(), nullptr, "elt.abs");
3045     else
3046       Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3047 
3048     return RValue::get(Result);
3049   }
3050 
3051   case Builtin::BI__builtin_elementwise_ceil:
3052     return RValue::get(
3053         emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3054   case Builtin::BI__builtin_elementwise_floor:
3055     return RValue::get(
3056         emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3057   case Builtin::BI__builtin_elementwise_roundeven:
3058     return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3059                                         "elt.roundeven"));
3060   case Builtin::BI__builtin_elementwise_trunc:
3061     return RValue::get(
3062         emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3063 
3064   case Builtin::BI__builtin_elementwise_add_sat:
3065   case Builtin::BI__builtin_elementwise_sub_sat: {
3066     Value *Op0 = EmitScalarExpr(E->getArg(0));
3067     Value *Op1 = EmitScalarExpr(E->getArg(1));
3068     Value *Result;
3069     assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected");
3070     QualType Ty = E->getArg(0)->getType();
3071     if (auto *VecTy = Ty->getAs<VectorType>())
3072       Ty = VecTy->getElementType();
3073     bool IsSigned = Ty->isSignedIntegerType();
3074     unsigned Opc;
3075     if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3076       Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3077     else
3078       Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3079     Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3080     return RValue::get(Result);
3081   }
3082 
3083   case Builtin::BI__builtin_elementwise_max: {
3084     Value *Op0 = EmitScalarExpr(E->getArg(0));
3085     Value *Op1 = EmitScalarExpr(E->getArg(1));
3086     Value *Result;
3087     if (Op0->getType()->isIntOrIntVectorTy()) {
3088       QualType Ty = E->getArg(0)->getType();
3089       if (auto *VecTy = Ty->getAs<VectorType>())
3090         Ty = VecTy->getElementType();
3091       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3092                                                  ? llvm::Intrinsic::smax
3093                                                  : llvm::Intrinsic::umax,
3094                                              Op0, Op1, nullptr, "elt.max");
3095     } else
3096       Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3097     return RValue::get(Result);
3098   }
3099   case Builtin::BI__builtin_elementwise_min: {
3100     Value *Op0 = EmitScalarExpr(E->getArg(0));
3101     Value *Op1 = EmitScalarExpr(E->getArg(1));
3102     Value *Result;
3103     if (Op0->getType()->isIntOrIntVectorTy()) {
3104       QualType Ty = E->getArg(0)->getType();
3105       if (auto *VecTy = Ty->getAs<VectorType>())
3106         Ty = VecTy->getElementType();
3107       Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3108                                                  ? llvm::Intrinsic::smin
3109                                                  : llvm::Intrinsic::umin,
3110                                              Op0, Op1, nullptr, "elt.min");
3111     } else
3112       Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3113     return RValue::get(Result);
3114   }
3115 
3116   case Builtin::BI__builtin_reduce_max: {
3117     auto GetIntrinsicID = [](QualType QT) {
3118       if (auto *VecTy = QT->getAs<VectorType>())
3119         QT = VecTy->getElementType();
3120       if (QT->isSignedIntegerType())
3121         return llvm::Intrinsic::vector_reduce_smax;
3122       if (QT->isUnsignedIntegerType())
3123         return llvm::Intrinsic::vector_reduce_umax;
3124       assert(QT->isFloatingType() && "must have a float here");
3125       return llvm::Intrinsic::vector_reduce_fmax;
3126     };
3127     return RValue::get(emitUnaryBuiltin(
3128         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3129   }
3130 
3131   case Builtin::BI__builtin_reduce_min: {
3132     auto GetIntrinsicID = [](QualType QT) {
3133       if (auto *VecTy = QT->getAs<VectorType>())
3134         QT = VecTy->getElementType();
3135       if (QT->isSignedIntegerType())
3136         return llvm::Intrinsic::vector_reduce_smin;
3137       if (QT->isUnsignedIntegerType())
3138         return llvm::Intrinsic::vector_reduce_umin;
3139       assert(QT->isFloatingType() && "must have a float here");
3140       return llvm::Intrinsic::vector_reduce_fmin;
3141     };
3142 
3143     return RValue::get(emitUnaryBuiltin(
3144         *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3145   }
3146 
3147   case Builtin::BI__builtin_reduce_add:
3148     return RValue::get(emitUnaryBuiltin(
3149         *this, E, llvm::Intrinsic::vector_reduce_add, "rdx.add"));
3150   case Builtin::BI__builtin_reduce_mul:
3151     return RValue::get(emitUnaryBuiltin(
3152         *this, E, llvm::Intrinsic::vector_reduce_mul, "rdx.mul"));
3153   case Builtin::BI__builtin_reduce_xor:
3154     return RValue::get(emitUnaryBuiltin(
3155         *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3156   case Builtin::BI__builtin_reduce_or:
3157     return RValue::get(emitUnaryBuiltin(
3158         *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3159   case Builtin::BI__builtin_reduce_and:
3160     return RValue::get(emitUnaryBuiltin(
3161         *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3162 
3163   case Builtin::BI__builtin_matrix_transpose: {
3164     auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3165     Value *MatValue = EmitScalarExpr(E->getArg(0));
3166     MatrixBuilder MB(Builder);
3167     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3168                                              MatrixTy->getNumColumns());
3169     return RValue::get(Result);
3170   }
3171 
3172   case Builtin::BI__builtin_matrix_column_major_load: {
3173     MatrixBuilder MB(Builder);
3174     // Emit everything that isn't dependent on the first parameter type
3175     Value *Stride = EmitScalarExpr(E->getArg(3));
3176     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3177     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3178     assert(PtrTy && "arg0 must be of pointer type");
3179     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3180 
3181     Address Src = EmitPointerWithAlignment(E->getArg(0));
3182     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3183                         E->getArg(0)->getExprLoc(), FD, 0);
3184     Value *Result = MB.CreateColumnMajorLoad(
3185         Src.getElementType(), Src.getPointer(),
3186         Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3187         ResultTy->getNumRows(), ResultTy->getNumColumns(),
3188         "matrix");
3189     return RValue::get(Result);
3190   }
3191 
3192   case Builtin::BI__builtin_matrix_column_major_store: {
3193     MatrixBuilder MB(Builder);
3194     Value *Matrix = EmitScalarExpr(E->getArg(0));
3195     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3196     Value *Stride = EmitScalarExpr(E->getArg(2));
3197 
3198     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3199     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3200     assert(PtrTy && "arg1 must be of pointer type");
3201     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3202 
3203     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3204                         E->getArg(1)->getExprLoc(), FD, 0);
3205     Value *Result = MB.CreateColumnMajorStore(
3206         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3207         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3208     return RValue::get(Result);
3209   }
3210 
3211   case Builtin::BIfinite:
3212   case Builtin::BI__finite:
3213   case Builtin::BIfinitef:
3214   case Builtin::BI__finitef:
3215   case Builtin::BIfinitel:
3216   case Builtin::BI__finitel:
3217   case Builtin::BI__builtin_isinf:
3218   case Builtin::BI__builtin_isfinite: {
3219     // isinf(x)    --> fabs(x) == infinity
3220     // isfinite(x) --> fabs(x) != infinity
3221     // x != NaN via the ordered compare in either case.
3222     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3223     Value *V = EmitScalarExpr(E->getArg(0));
3224     llvm::Type *Ty = V->getType();
3225     if (!Builder.getIsFPConstrained() ||
3226         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3227         !Ty->isIEEE()) {
3228       Value *Fabs = EmitFAbs(*this, V);
3229       Constant *Infinity = ConstantFP::getInfinity(V->getType());
3230       CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3231                                     ? CmpInst::FCMP_OEQ
3232                                     : CmpInst::FCMP_ONE;
3233       Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3234       return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3235     }
3236 
3237     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3238       return RValue::get(Result);
3239 
3240     // Inf values have all exp bits set and a zero significand. Therefore:
3241     // isinf(V) == ((V << 1) == ((exp mask) << 1))
3242     // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3243     unsigned bitsize = Ty->getScalarSizeInBits();
3244     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3245     Value *IntV = Builder.CreateBitCast(V, IntTy);
3246     Value *Shl1 = Builder.CreateShl(IntV, 1);
3247     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3248     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3249     Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3250     if (BuiltinID == Builtin::BI__builtin_isinf)
3251       V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3252     else
3253       V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3254     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3255   }
3256 
3257   case Builtin::BI__builtin_isinf_sign: {
3258     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3259     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3260     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3261     Value *Arg = EmitScalarExpr(E->getArg(0));
3262     Value *AbsArg = EmitFAbs(*this, Arg);
3263     Value *IsInf = Builder.CreateFCmpOEQ(
3264         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3265     Value *IsNeg = EmitSignBit(*this, Arg);
3266 
3267     llvm::Type *IntTy = ConvertType(E->getType());
3268     Value *Zero = Constant::getNullValue(IntTy);
3269     Value *One = ConstantInt::get(IntTy, 1);
3270     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3271     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3272     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3273     return RValue::get(Result);
3274   }
3275 
3276   case Builtin::BI__builtin_isnormal: {
3277     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3278     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3279     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3280     Value *V = EmitScalarExpr(E->getArg(0));
3281     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3282 
3283     Value *Abs = EmitFAbs(*this, V);
3284     Value *IsLessThanInf =
3285       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3286     APFloat Smallest = APFloat::getSmallestNormalized(
3287                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3288     Value *IsNormal =
3289       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3290                             "isnormal");
3291     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3292     V = Builder.CreateAnd(V, IsNormal, "and");
3293     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3294   }
3295 
3296   case Builtin::BI__builtin_flt_rounds: {
3297     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3298 
3299     llvm::Type *ResultType = ConvertType(E->getType());
3300     Value *Result = Builder.CreateCall(F);
3301     if (Result->getType() != ResultType)
3302       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3303                                      "cast");
3304     return RValue::get(Result);
3305   }
3306 
3307   case Builtin::BI__builtin_fpclassify: {
3308     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3309     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3310     Value *V = EmitScalarExpr(E->getArg(5));
3311     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3312 
3313     // Create Result
3314     BasicBlock *Begin = Builder.GetInsertBlock();
3315     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3316     Builder.SetInsertPoint(End);
3317     PHINode *Result =
3318       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3319                         "fpclassify_result");
3320 
3321     // if (V==0) return FP_ZERO
3322     Builder.SetInsertPoint(Begin);
3323     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3324                                           "iszero");
3325     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3326     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3327     Builder.CreateCondBr(IsZero, End, NotZero);
3328     Result->addIncoming(ZeroLiteral, Begin);
3329 
3330     // if (V != V) return FP_NAN
3331     Builder.SetInsertPoint(NotZero);
3332     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3333     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3334     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3335     Builder.CreateCondBr(IsNan, End, NotNan);
3336     Result->addIncoming(NanLiteral, NotZero);
3337 
3338     // if (fabs(V) == infinity) return FP_INFINITY
3339     Builder.SetInsertPoint(NotNan);
3340     Value *VAbs = EmitFAbs(*this, V);
3341     Value *IsInf =
3342       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3343                             "isinf");
3344     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3345     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3346     Builder.CreateCondBr(IsInf, End, NotInf);
3347     Result->addIncoming(InfLiteral, NotNan);
3348 
3349     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3350     Builder.SetInsertPoint(NotInf);
3351     APFloat Smallest = APFloat::getSmallestNormalized(
3352         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3353     Value *IsNormal =
3354       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3355                             "isnormal");
3356     Value *NormalResult =
3357       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3358                            EmitScalarExpr(E->getArg(3)));
3359     Builder.CreateBr(End);
3360     Result->addIncoming(NormalResult, NotInf);
3361 
3362     // return Result
3363     Builder.SetInsertPoint(End);
3364     return RValue::get(Result);
3365   }
3366 
3367   case Builtin::BIalloca:
3368   case Builtin::BI_alloca:
3369   case Builtin::BI__builtin_alloca_uninitialized:
3370   case Builtin::BI__builtin_alloca: {
3371     Value *Size = EmitScalarExpr(E->getArg(0));
3372     const TargetInfo &TI = getContext().getTargetInfo();
3373     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3374     const Align SuitableAlignmentInBytes =
3375         CGM.getContext()
3376             .toCharUnitsFromBits(TI.getSuitableAlign())
3377             .getAsAlign();
3378     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3379     AI->setAlignment(SuitableAlignmentInBytes);
3380     if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3381       initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3382     return RValue::get(AI);
3383   }
3384 
3385   case Builtin::BI__builtin_alloca_with_align_uninitialized:
3386   case Builtin::BI__builtin_alloca_with_align: {
3387     Value *Size = EmitScalarExpr(E->getArg(0));
3388     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3389     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3390     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3391     const Align AlignmentInBytes =
3392         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3393     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3394     AI->setAlignment(AlignmentInBytes);
3395     if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3396       initializeAlloca(*this, AI, Size, AlignmentInBytes);
3397     return RValue::get(AI);
3398   }
3399 
3400   case Builtin::BIbzero:
3401   case Builtin::BI__builtin_bzero: {
3402     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3403     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3404     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3405                         E->getArg(0)->getExprLoc(), FD, 0);
3406     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3407     return RValue::get(nullptr);
3408   }
3409   case Builtin::BImemcpy:
3410   case Builtin::BI__builtin_memcpy:
3411   case Builtin::BImempcpy:
3412   case Builtin::BI__builtin_mempcpy: {
3413     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3414     Address Src = EmitPointerWithAlignment(E->getArg(1));
3415     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3416     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3417                         E->getArg(0)->getExprLoc(), FD, 0);
3418     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3419                         E->getArg(1)->getExprLoc(), FD, 1);
3420     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3421     if (BuiltinID == Builtin::BImempcpy ||
3422         BuiltinID == Builtin::BI__builtin_mempcpy)
3423       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3424                                                    Dest.getPointer(), SizeVal));
3425     else
3426       return RValue::get(Dest.getPointer());
3427   }
3428 
3429   case Builtin::BI__builtin_memcpy_inline: {
3430     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3431     Address Src = EmitPointerWithAlignment(E->getArg(1));
3432     uint64_t Size =
3433         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3434     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3435                         E->getArg(0)->getExprLoc(), FD, 0);
3436     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3437                         E->getArg(1)->getExprLoc(), FD, 1);
3438     Builder.CreateMemCpyInline(Dest, Src, Size);
3439     return RValue::get(nullptr);
3440   }
3441 
3442   case Builtin::BI__builtin_char_memchr:
3443     BuiltinID = Builtin::BI__builtin_memchr;
3444     break;
3445 
3446   case Builtin::BI__builtin___memcpy_chk: {
3447     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3448     Expr::EvalResult SizeResult, DstSizeResult;
3449     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3450         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3451       break;
3452     llvm::APSInt Size = SizeResult.Val.getInt();
3453     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3454     if (Size.ugt(DstSize))
3455       break;
3456     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3457     Address Src = EmitPointerWithAlignment(E->getArg(1));
3458     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3459     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3460     return RValue::get(Dest.getPointer());
3461   }
3462 
3463   case Builtin::BI__builtin_objc_memmove_collectable: {
3464     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3465     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3466     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3467     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3468                                                   DestAddr, SrcAddr, SizeVal);
3469     return RValue::get(DestAddr.getPointer());
3470   }
3471 
3472   case Builtin::BI__builtin___memmove_chk: {
3473     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3474     Expr::EvalResult SizeResult, DstSizeResult;
3475     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3476         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3477       break;
3478     llvm::APSInt Size = SizeResult.Val.getInt();
3479     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3480     if (Size.ugt(DstSize))
3481       break;
3482     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3483     Address Src = EmitPointerWithAlignment(E->getArg(1));
3484     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3485     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3486     return RValue::get(Dest.getPointer());
3487   }
3488 
3489   case Builtin::BImemmove:
3490   case Builtin::BI__builtin_memmove: {
3491     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3492     Address Src = EmitPointerWithAlignment(E->getArg(1));
3493     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3494     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3495                         E->getArg(0)->getExprLoc(), FD, 0);
3496     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3497                         E->getArg(1)->getExprLoc(), FD, 1);
3498     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3499     return RValue::get(Dest.getPointer());
3500   }
3501   case Builtin::BImemset:
3502   case Builtin::BI__builtin_memset: {
3503     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3504     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3505                                          Builder.getInt8Ty());
3506     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3507     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3508                         E->getArg(0)->getExprLoc(), FD, 0);
3509     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3510     return RValue::get(Dest.getPointer());
3511   }
3512   case Builtin::BI__builtin_memset_inline: {
3513     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3514     Value *ByteVal =
3515         Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty());
3516     uint64_t Size =
3517         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3518     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3519                         E->getArg(0)->getExprLoc(), FD, 0);
3520     Builder.CreateMemSetInline(Dest, ByteVal, Size);
3521     return RValue::get(nullptr);
3522   }
3523   case Builtin::BI__builtin___memset_chk: {
3524     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3525     Expr::EvalResult SizeResult, DstSizeResult;
3526     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3527         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3528       break;
3529     llvm::APSInt Size = SizeResult.Val.getInt();
3530     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3531     if (Size.ugt(DstSize))
3532       break;
3533     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3534     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3535                                          Builder.getInt8Ty());
3536     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3537     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3538     return RValue::get(Dest.getPointer());
3539   }
3540   case Builtin::BI__builtin_wmemchr: {
3541     // The MSVC runtime library does not provide a definition of wmemchr, so we
3542     // need an inline implementation.
3543     if (!getTarget().getTriple().isOSMSVCRT())
3544       break;
3545 
3546     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3547     Value *Str = EmitScalarExpr(E->getArg(0));
3548     Value *Chr = EmitScalarExpr(E->getArg(1));
3549     Value *Size = EmitScalarExpr(E->getArg(2));
3550 
3551     BasicBlock *Entry = Builder.GetInsertBlock();
3552     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3553     BasicBlock *Next = createBasicBlock("wmemchr.next");
3554     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3555     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3556     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3557 
3558     EmitBlock(CmpEq);
3559     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3560     StrPhi->addIncoming(Str, Entry);
3561     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3562     SizePhi->addIncoming(Size, Entry);
3563     CharUnits WCharAlign =
3564         getContext().getTypeAlignInChars(getContext().WCharTy);
3565     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3566     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3567     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3568     Builder.CreateCondBr(StrEqChr, Exit, Next);
3569 
3570     EmitBlock(Next);
3571     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3572     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3573     Value *NextSizeEq0 =
3574         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3575     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3576     StrPhi->addIncoming(NextStr, Next);
3577     SizePhi->addIncoming(NextSize, Next);
3578 
3579     EmitBlock(Exit);
3580     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3581     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3582     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3583     Ret->addIncoming(FoundChr, CmpEq);
3584     return RValue::get(Ret);
3585   }
3586   case Builtin::BI__builtin_wmemcmp: {
3587     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3588     // need an inline implementation.
3589     if (!getTarget().getTriple().isOSMSVCRT())
3590       break;
3591 
3592     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3593 
3594     Value *Dst = EmitScalarExpr(E->getArg(0));
3595     Value *Src = EmitScalarExpr(E->getArg(1));
3596     Value *Size = EmitScalarExpr(E->getArg(2));
3597 
3598     BasicBlock *Entry = Builder.GetInsertBlock();
3599     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3600     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3601     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3602     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3603     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3604     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3605 
3606     EmitBlock(CmpGT);
3607     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3608     DstPhi->addIncoming(Dst, Entry);
3609     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3610     SrcPhi->addIncoming(Src, Entry);
3611     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3612     SizePhi->addIncoming(Size, Entry);
3613     CharUnits WCharAlign =
3614         getContext().getTypeAlignInChars(getContext().WCharTy);
3615     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3616     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3617     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3618     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3619 
3620     EmitBlock(CmpLT);
3621     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3622     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3623 
3624     EmitBlock(Next);
3625     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3626     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3627     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3628     Value *NextSizeEq0 =
3629         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3630     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3631     DstPhi->addIncoming(NextDst, Next);
3632     SrcPhi->addIncoming(NextSrc, Next);
3633     SizePhi->addIncoming(NextSize, Next);
3634 
3635     EmitBlock(Exit);
3636     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3637     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3638     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3639     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3640     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3641     return RValue::get(Ret);
3642   }
3643   case Builtin::BI__builtin_dwarf_cfa: {
3644     // The offset in bytes from the first argument to the CFA.
3645     //
3646     // Why on earth is this in the frontend?  Is there any reason at
3647     // all that the backend can't reasonably determine this while
3648     // lowering llvm.eh.dwarf.cfa()?
3649     //
3650     // TODO: If there's a satisfactory reason, add a target hook for
3651     // this instead of hard-coding 0, which is correct for most targets.
3652     int32_t Offset = 0;
3653 
3654     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3655     return RValue::get(Builder.CreateCall(F,
3656                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3657   }
3658   case Builtin::BI__builtin_return_address: {
3659     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3660                                                    getContext().UnsignedIntTy);
3661     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3662     return RValue::get(Builder.CreateCall(F, Depth));
3663   }
3664   case Builtin::BI_ReturnAddress: {
3665     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3666     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3667   }
3668   case Builtin::BI__builtin_frame_address: {
3669     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3670                                                    getContext().UnsignedIntTy);
3671     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3672     return RValue::get(Builder.CreateCall(F, Depth));
3673   }
3674   case Builtin::BI__builtin_extract_return_addr: {
3675     Value *Address = EmitScalarExpr(E->getArg(0));
3676     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3677     return RValue::get(Result);
3678   }
3679   case Builtin::BI__builtin_frob_return_addr: {
3680     Value *Address = EmitScalarExpr(E->getArg(0));
3681     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3682     return RValue::get(Result);
3683   }
3684   case Builtin::BI__builtin_dwarf_sp_column: {
3685     llvm::IntegerType *Ty
3686       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3687     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3688     if (Column == -1) {
3689       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3690       return RValue::get(llvm::UndefValue::get(Ty));
3691     }
3692     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3693   }
3694   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3695     Value *Address = EmitScalarExpr(E->getArg(0));
3696     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3697       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3698     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3699   }
3700   case Builtin::BI__builtin_eh_return: {
3701     Value *Int = EmitScalarExpr(E->getArg(0));
3702     Value *Ptr = EmitScalarExpr(E->getArg(1));
3703 
3704     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3705     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3706            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3707     Function *F =
3708         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3709                                                     : Intrinsic::eh_return_i64);
3710     Builder.CreateCall(F, {Int, Ptr});
3711     Builder.CreateUnreachable();
3712 
3713     // We do need to preserve an insertion point.
3714     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3715 
3716     return RValue::get(nullptr);
3717   }
3718   case Builtin::BI__builtin_unwind_init: {
3719     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3720     return RValue::get(Builder.CreateCall(F));
3721   }
3722   case Builtin::BI__builtin_extend_pointer: {
3723     // Extends a pointer to the size of an _Unwind_Word, which is
3724     // uint64_t on all platforms.  Generally this gets poked into a
3725     // register and eventually used as an address, so if the
3726     // addressing registers are wider than pointers and the platform
3727     // doesn't implicitly ignore high-order bits when doing
3728     // addressing, we need to make sure we zext / sext based on
3729     // the platform's expectations.
3730     //
3731     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3732 
3733     // Cast the pointer to intptr_t.
3734     Value *Ptr = EmitScalarExpr(E->getArg(0));
3735     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3736 
3737     // If that's 64 bits, we're done.
3738     if (IntPtrTy->getBitWidth() == 64)
3739       return RValue::get(Result);
3740 
3741     // Otherwise, ask the codegen data what to do.
3742     if (getTargetHooks().extendPointerWithSExt())
3743       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3744     else
3745       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3746   }
3747   case Builtin::BI__builtin_setjmp: {
3748     // Buffer is a void**.
3749     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3750 
3751     // Store the frame pointer to the setjmp buffer.
3752     Value *FrameAddr = Builder.CreateCall(
3753         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3754         ConstantInt::get(Int32Ty, 0));
3755     Builder.CreateStore(FrameAddr, Buf);
3756 
3757     // Store the stack pointer to the setjmp buffer.
3758     Value *StackAddr =
3759         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3760     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3761     Builder.CreateStore(StackAddr, StackSaveSlot);
3762 
3763     // Call LLVM's EH setjmp, which is lightweight.
3764     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3765     Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3766     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3767   }
3768   case Builtin::BI__builtin_longjmp: {
3769     Value *Buf = EmitScalarExpr(E->getArg(0));
3770     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3771 
3772     // Call LLVM's EH longjmp, which is lightweight.
3773     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3774 
3775     // longjmp doesn't return; mark this as unreachable.
3776     Builder.CreateUnreachable();
3777 
3778     // We do need to preserve an insertion point.
3779     EmitBlock(createBasicBlock("longjmp.cont"));
3780 
3781     return RValue::get(nullptr);
3782   }
3783   case Builtin::BI__builtin_launder: {
3784     const Expr *Arg = E->getArg(0);
3785     QualType ArgTy = Arg->getType()->getPointeeType();
3786     Value *Ptr = EmitScalarExpr(Arg);
3787     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3788       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3789 
3790     return RValue::get(Ptr);
3791   }
3792   case Builtin::BI__sync_fetch_and_add:
3793   case Builtin::BI__sync_fetch_and_sub:
3794   case Builtin::BI__sync_fetch_and_or:
3795   case Builtin::BI__sync_fetch_and_and:
3796   case Builtin::BI__sync_fetch_and_xor:
3797   case Builtin::BI__sync_fetch_and_nand:
3798   case Builtin::BI__sync_add_and_fetch:
3799   case Builtin::BI__sync_sub_and_fetch:
3800   case Builtin::BI__sync_and_and_fetch:
3801   case Builtin::BI__sync_or_and_fetch:
3802   case Builtin::BI__sync_xor_and_fetch:
3803   case Builtin::BI__sync_nand_and_fetch:
3804   case Builtin::BI__sync_val_compare_and_swap:
3805   case Builtin::BI__sync_bool_compare_and_swap:
3806   case Builtin::BI__sync_lock_test_and_set:
3807   case Builtin::BI__sync_lock_release:
3808   case Builtin::BI__sync_swap:
3809     llvm_unreachable("Shouldn't make it through sema");
3810   case Builtin::BI__sync_fetch_and_add_1:
3811   case Builtin::BI__sync_fetch_and_add_2:
3812   case Builtin::BI__sync_fetch_and_add_4:
3813   case Builtin::BI__sync_fetch_and_add_8:
3814   case Builtin::BI__sync_fetch_and_add_16:
3815     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3816   case Builtin::BI__sync_fetch_and_sub_1:
3817   case Builtin::BI__sync_fetch_and_sub_2:
3818   case Builtin::BI__sync_fetch_and_sub_4:
3819   case Builtin::BI__sync_fetch_and_sub_8:
3820   case Builtin::BI__sync_fetch_and_sub_16:
3821     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3822   case Builtin::BI__sync_fetch_and_or_1:
3823   case Builtin::BI__sync_fetch_and_or_2:
3824   case Builtin::BI__sync_fetch_and_or_4:
3825   case Builtin::BI__sync_fetch_and_or_8:
3826   case Builtin::BI__sync_fetch_and_or_16:
3827     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3828   case Builtin::BI__sync_fetch_and_and_1:
3829   case Builtin::BI__sync_fetch_and_and_2:
3830   case Builtin::BI__sync_fetch_and_and_4:
3831   case Builtin::BI__sync_fetch_and_and_8:
3832   case Builtin::BI__sync_fetch_and_and_16:
3833     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3834   case Builtin::BI__sync_fetch_and_xor_1:
3835   case Builtin::BI__sync_fetch_and_xor_2:
3836   case Builtin::BI__sync_fetch_and_xor_4:
3837   case Builtin::BI__sync_fetch_and_xor_8:
3838   case Builtin::BI__sync_fetch_and_xor_16:
3839     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3840   case Builtin::BI__sync_fetch_and_nand_1:
3841   case Builtin::BI__sync_fetch_and_nand_2:
3842   case Builtin::BI__sync_fetch_and_nand_4:
3843   case Builtin::BI__sync_fetch_and_nand_8:
3844   case Builtin::BI__sync_fetch_and_nand_16:
3845     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3846 
3847   // Clang extensions: not overloaded yet.
3848   case Builtin::BI__sync_fetch_and_min:
3849     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3850   case Builtin::BI__sync_fetch_and_max:
3851     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3852   case Builtin::BI__sync_fetch_and_umin:
3853     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3854   case Builtin::BI__sync_fetch_and_umax:
3855     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3856 
3857   case Builtin::BI__sync_add_and_fetch_1:
3858   case Builtin::BI__sync_add_and_fetch_2:
3859   case Builtin::BI__sync_add_and_fetch_4:
3860   case Builtin::BI__sync_add_and_fetch_8:
3861   case Builtin::BI__sync_add_and_fetch_16:
3862     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3863                                 llvm::Instruction::Add);
3864   case Builtin::BI__sync_sub_and_fetch_1:
3865   case Builtin::BI__sync_sub_and_fetch_2:
3866   case Builtin::BI__sync_sub_and_fetch_4:
3867   case Builtin::BI__sync_sub_and_fetch_8:
3868   case Builtin::BI__sync_sub_and_fetch_16:
3869     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3870                                 llvm::Instruction::Sub);
3871   case Builtin::BI__sync_and_and_fetch_1:
3872   case Builtin::BI__sync_and_and_fetch_2:
3873   case Builtin::BI__sync_and_and_fetch_4:
3874   case Builtin::BI__sync_and_and_fetch_8:
3875   case Builtin::BI__sync_and_and_fetch_16:
3876     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3877                                 llvm::Instruction::And);
3878   case Builtin::BI__sync_or_and_fetch_1:
3879   case Builtin::BI__sync_or_and_fetch_2:
3880   case Builtin::BI__sync_or_and_fetch_4:
3881   case Builtin::BI__sync_or_and_fetch_8:
3882   case Builtin::BI__sync_or_and_fetch_16:
3883     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3884                                 llvm::Instruction::Or);
3885   case Builtin::BI__sync_xor_and_fetch_1:
3886   case Builtin::BI__sync_xor_and_fetch_2:
3887   case Builtin::BI__sync_xor_and_fetch_4:
3888   case Builtin::BI__sync_xor_and_fetch_8:
3889   case Builtin::BI__sync_xor_and_fetch_16:
3890     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3891                                 llvm::Instruction::Xor);
3892   case Builtin::BI__sync_nand_and_fetch_1:
3893   case Builtin::BI__sync_nand_and_fetch_2:
3894   case Builtin::BI__sync_nand_and_fetch_4:
3895   case Builtin::BI__sync_nand_and_fetch_8:
3896   case Builtin::BI__sync_nand_and_fetch_16:
3897     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3898                                 llvm::Instruction::And, true);
3899 
3900   case Builtin::BI__sync_val_compare_and_swap_1:
3901   case Builtin::BI__sync_val_compare_and_swap_2:
3902   case Builtin::BI__sync_val_compare_and_swap_4:
3903   case Builtin::BI__sync_val_compare_and_swap_8:
3904   case Builtin::BI__sync_val_compare_and_swap_16:
3905     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3906 
3907   case Builtin::BI__sync_bool_compare_and_swap_1:
3908   case Builtin::BI__sync_bool_compare_and_swap_2:
3909   case Builtin::BI__sync_bool_compare_and_swap_4:
3910   case Builtin::BI__sync_bool_compare_and_swap_8:
3911   case Builtin::BI__sync_bool_compare_and_swap_16:
3912     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3913 
3914   case Builtin::BI__sync_swap_1:
3915   case Builtin::BI__sync_swap_2:
3916   case Builtin::BI__sync_swap_4:
3917   case Builtin::BI__sync_swap_8:
3918   case Builtin::BI__sync_swap_16:
3919     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3920 
3921   case Builtin::BI__sync_lock_test_and_set_1:
3922   case Builtin::BI__sync_lock_test_and_set_2:
3923   case Builtin::BI__sync_lock_test_and_set_4:
3924   case Builtin::BI__sync_lock_test_and_set_8:
3925   case Builtin::BI__sync_lock_test_and_set_16:
3926     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3927 
3928   case Builtin::BI__sync_lock_release_1:
3929   case Builtin::BI__sync_lock_release_2:
3930   case Builtin::BI__sync_lock_release_4:
3931   case Builtin::BI__sync_lock_release_8:
3932   case Builtin::BI__sync_lock_release_16: {
3933     Value *Ptr = EmitScalarExpr(E->getArg(0));
3934     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3935     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3936     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3937                                              StoreSize.getQuantity() * 8);
3938     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3939     llvm::StoreInst *Store =
3940       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3941                                  StoreSize);
3942     Store->setAtomic(llvm::AtomicOrdering::Release);
3943     return RValue::get(nullptr);
3944   }
3945 
3946   case Builtin::BI__sync_synchronize: {
3947     // We assume this is supposed to correspond to a C++0x-style
3948     // sequentially-consistent fence (i.e. this is only usable for
3949     // synchronization, not device I/O or anything like that). This intrinsic
3950     // is really badly designed in the sense that in theory, there isn't
3951     // any way to safely use it... but in practice, it mostly works
3952     // to use it with non-atomic loads and stores to get acquire/release
3953     // semantics.
3954     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3955     return RValue::get(nullptr);
3956   }
3957 
3958   case Builtin::BI__builtin_nontemporal_load:
3959     return RValue::get(EmitNontemporalLoad(*this, E));
3960   case Builtin::BI__builtin_nontemporal_store:
3961     return RValue::get(EmitNontemporalStore(*this, E));
3962   case Builtin::BI__c11_atomic_is_lock_free:
3963   case Builtin::BI__atomic_is_lock_free: {
3964     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3965     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3966     // _Atomic(T) is always properly-aligned.
3967     const char *LibCallName = "__atomic_is_lock_free";
3968     CallArgList Args;
3969     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3970              getContext().getSizeType());
3971     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3972       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3973                getContext().VoidPtrTy);
3974     else
3975       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3976                getContext().VoidPtrTy);
3977     const CGFunctionInfo &FuncInfo =
3978         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3979     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3980     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3981     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3982                     ReturnValueSlot(), Args);
3983   }
3984 
3985   case Builtin::BI__atomic_test_and_set: {
3986     // Look at the argument type to determine whether this is a volatile
3987     // operation. The parameter type is always volatile.
3988     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3989     bool Volatile =
3990         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3991 
3992     Value *Ptr = EmitScalarExpr(E->getArg(0));
3993     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3994     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3995     Value *NewVal = Builder.getInt8(1);
3996     Value *Order = EmitScalarExpr(E->getArg(1));
3997     if (isa<llvm::ConstantInt>(Order)) {
3998       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3999       AtomicRMWInst *Result = nullptr;
4000       switch (ord) {
4001       case 0:  // memory_order_relaxed
4002       default: // invalid order
4003         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4004                                          llvm::AtomicOrdering::Monotonic);
4005         break;
4006       case 1: // memory_order_consume
4007       case 2: // memory_order_acquire
4008         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4009                                          llvm::AtomicOrdering::Acquire);
4010         break;
4011       case 3: // memory_order_release
4012         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4013                                          llvm::AtomicOrdering::Release);
4014         break;
4015       case 4: // memory_order_acq_rel
4016 
4017         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4018                                          llvm::AtomicOrdering::AcquireRelease);
4019         break;
4020       case 5: // memory_order_seq_cst
4021         Result = Builder.CreateAtomicRMW(
4022             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4023             llvm::AtomicOrdering::SequentiallyConsistent);
4024         break;
4025       }
4026       Result->setVolatile(Volatile);
4027       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4028     }
4029 
4030     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4031 
4032     llvm::BasicBlock *BBs[5] = {
4033       createBasicBlock("monotonic", CurFn),
4034       createBasicBlock("acquire", CurFn),
4035       createBasicBlock("release", CurFn),
4036       createBasicBlock("acqrel", CurFn),
4037       createBasicBlock("seqcst", CurFn)
4038     };
4039     llvm::AtomicOrdering Orders[5] = {
4040         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4041         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4042         llvm::AtomicOrdering::SequentiallyConsistent};
4043 
4044     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4045     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4046 
4047     Builder.SetInsertPoint(ContBB);
4048     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4049 
4050     for (unsigned i = 0; i < 5; ++i) {
4051       Builder.SetInsertPoint(BBs[i]);
4052       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4053                                                    Ptr, NewVal, Orders[i]);
4054       RMW->setVolatile(Volatile);
4055       Result->addIncoming(RMW, BBs[i]);
4056       Builder.CreateBr(ContBB);
4057     }
4058 
4059     SI->addCase(Builder.getInt32(0), BBs[0]);
4060     SI->addCase(Builder.getInt32(1), BBs[1]);
4061     SI->addCase(Builder.getInt32(2), BBs[1]);
4062     SI->addCase(Builder.getInt32(3), BBs[2]);
4063     SI->addCase(Builder.getInt32(4), BBs[3]);
4064     SI->addCase(Builder.getInt32(5), BBs[4]);
4065 
4066     Builder.SetInsertPoint(ContBB);
4067     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4068   }
4069 
4070   case Builtin::BI__atomic_clear: {
4071     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4072     bool Volatile =
4073         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4074 
4075     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4076     Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4077     Value *NewVal = Builder.getInt8(0);
4078     Value *Order = EmitScalarExpr(E->getArg(1));
4079     if (isa<llvm::ConstantInt>(Order)) {
4080       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4081       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4082       switch (ord) {
4083       case 0:  // memory_order_relaxed
4084       default: // invalid order
4085         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4086         break;
4087       case 3:  // memory_order_release
4088         Store->setOrdering(llvm::AtomicOrdering::Release);
4089         break;
4090       case 5:  // memory_order_seq_cst
4091         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4092         break;
4093       }
4094       return RValue::get(nullptr);
4095     }
4096 
4097     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4098 
4099     llvm::BasicBlock *BBs[3] = {
4100       createBasicBlock("monotonic", CurFn),
4101       createBasicBlock("release", CurFn),
4102       createBasicBlock("seqcst", CurFn)
4103     };
4104     llvm::AtomicOrdering Orders[3] = {
4105         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4106         llvm::AtomicOrdering::SequentiallyConsistent};
4107 
4108     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4109     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4110 
4111     for (unsigned i = 0; i < 3; ++i) {
4112       Builder.SetInsertPoint(BBs[i]);
4113       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4114       Store->setOrdering(Orders[i]);
4115       Builder.CreateBr(ContBB);
4116     }
4117 
4118     SI->addCase(Builder.getInt32(0), BBs[0]);
4119     SI->addCase(Builder.getInt32(3), BBs[1]);
4120     SI->addCase(Builder.getInt32(5), BBs[2]);
4121 
4122     Builder.SetInsertPoint(ContBB);
4123     return RValue::get(nullptr);
4124   }
4125 
4126   case Builtin::BI__atomic_thread_fence:
4127   case Builtin::BI__atomic_signal_fence:
4128   case Builtin::BI__c11_atomic_thread_fence:
4129   case Builtin::BI__c11_atomic_signal_fence: {
4130     llvm::SyncScope::ID SSID;
4131     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4132         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4133       SSID = llvm::SyncScope::SingleThread;
4134     else
4135       SSID = llvm::SyncScope::System;
4136     Value *Order = EmitScalarExpr(E->getArg(0));
4137     if (isa<llvm::ConstantInt>(Order)) {
4138       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4139       switch (ord) {
4140       case 0:  // memory_order_relaxed
4141       default: // invalid order
4142         break;
4143       case 1:  // memory_order_consume
4144       case 2:  // memory_order_acquire
4145         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4146         break;
4147       case 3:  // memory_order_release
4148         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4149         break;
4150       case 4:  // memory_order_acq_rel
4151         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4152         break;
4153       case 5:  // memory_order_seq_cst
4154         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4155         break;
4156       }
4157       return RValue::get(nullptr);
4158     }
4159 
4160     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4161     AcquireBB = createBasicBlock("acquire", CurFn);
4162     ReleaseBB = createBasicBlock("release", CurFn);
4163     AcqRelBB = createBasicBlock("acqrel", CurFn);
4164     SeqCstBB = createBasicBlock("seqcst", CurFn);
4165     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4166 
4167     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4168     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4169 
4170     Builder.SetInsertPoint(AcquireBB);
4171     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4172     Builder.CreateBr(ContBB);
4173     SI->addCase(Builder.getInt32(1), AcquireBB);
4174     SI->addCase(Builder.getInt32(2), AcquireBB);
4175 
4176     Builder.SetInsertPoint(ReleaseBB);
4177     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4178     Builder.CreateBr(ContBB);
4179     SI->addCase(Builder.getInt32(3), ReleaseBB);
4180 
4181     Builder.SetInsertPoint(AcqRelBB);
4182     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4183     Builder.CreateBr(ContBB);
4184     SI->addCase(Builder.getInt32(4), AcqRelBB);
4185 
4186     Builder.SetInsertPoint(SeqCstBB);
4187     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4188     Builder.CreateBr(ContBB);
4189     SI->addCase(Builder.getInt32(5), SeqCstBB);
4190 
4191     Builder.SetInsertPoint(ContBB);
4192     return RValue::get(nullptr);
4193   }
4194 
4195   case Builtin::BI__builtin_signbit:
4196   case Builtin::BI__builtin_signbitf:
4197   case Builtin::BI__builtin_signbitl: {
4198     return RValue::get(
4199         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4200                            ConvertType(E->getType())));
4201   }
4202   case Builtin::BI__warn_memset_zero_len:
4203     return RValue::getIgnored();
4204   case Builtin::BI__annotation: {
4205     // Re-encode each wide string to UTF8 and make an MDString.
4206     SmallVector<Metadata *, 1> Strings;
4207     for (const Expr *Arg : E->arguments()) {
4208       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4209       assert(Str->getCharByteWidth() == 2);
4210       StringRef WideBytes = Str->getBytes();
4211       std::string StrUtf8;
4212       if (!convertUTF16ToUTF8String(
4213               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4214         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4215         continue;
4216       }
4217       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4218     }
4219 
4220     // Build and MDTuple of MDStrings and emit the intrinsic call.
4221     llvm::Function *F =
4222         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4223     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4224     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4225     return RValue::getIgnored();
4226   }
4227   case Builtin::BI__builtin_annotation: {
4228     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4229     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4230                                       AnnVal->getType());
4231 
4232     // Get the annotation string, go through casts. Sema requires this to be a
4233     // non-wide string literal, potentially casted, so the cast<> is safe.
4234     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4235     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4236     return RValue::get(
4237         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4238   }
4239   case Builtin::BI__builtin_addcb:
4240   case Builtin::BI__builtin_addcs:
4241   case Builtin::BI__builtin_addc:
4242   case Builtin::BI__builtin_addcl:
4243   case Builtin::BI__builtin_addcll:
4244   case Builtin::BI__builtin_subcb:
4245   case Builtin::BI__builtin_subcs:
4246   case Builtin::BI__builtin_subc:
4247   case Builtin::BI__builtin_subcl:
4248   case Builtin::BI__builtin_subcll: {
4249 
4250     // We translate all of these builtins from expressions of the form:
4251     //   int x = ..., y = ..., carryin = ..., carryout, result;
4252     //   result = __builtin_addc(x, y, carryin, &carryout);
4253     //
4254     // to LLVM IR of the form:
4255     //
4256     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4257     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4258     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4259     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4260     //                                                       i32 %carryin)
4261     //   %result = extractvalue {i32, i1} %tmp2, 0
4262     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4263     //   %tmp3 = or i1 %carry1, %carry2
4264     //   %tmp4 = zext i1 %tmp3 to i32
4265     //   store i32 %tmp4, i32* %carryout
4266 
4267     // Scalarize our inputs.
4268     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4269     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4270     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4271     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4272 
4273     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4274     llvm::Intrinsic::ID IntrinsicId;
4275     switch (BuiltinID) {
4276     default: llvm_unreachable("Unknown multiprecision builtin id.");
4277     case Builtin::BI__builtin_addcb:
4278     case Builtin::BI__builtin_addcs:
4279     case Builtin::BI__builtin_addc:
4280     case Builtin::BI__builtin_addcl:
4281     case Builtin::BI__builtin_addcll:
4282       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4283       break;
4284     case Builtin::BI__builtin_subcb:
4285     case Builtin::BI__builtin_subcs:
4286     case Builtin::BI__builtin_subc:
4287     case Builtin::BI__builtin_subcl:
4288     case Builtin::BI__builtin_subcll:
4289       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4290       break;
4291     }
4292 
4293     // Construct our resulting LLVM IR expression.
4294     llvm::Value *Carry1;
4295     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4296                                               X, Y, Carry1);
4297     llvm::Value *Carry2;
4298     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4299                                               Sum1, Carryin, Carry2);
4300     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4301                                                X->getType());
4302     Builder.CreateStore(CarryOut, CarryOutPtr);
4303     return RValue::get(Sum2);
4304   }
4305 
4306   case Builtin::BI__builtin_add_overflow:
4307   case Builtin::BI__builtin_sub_overflow:
4308   case Builtin::BI__builtin_mul_overflow: {
4309     const clang::Expr *LeftArg = E->getArg(0);
4310     const clang::Expr *RightArg = E->getArg(1);
4311     const clang::Expr *ResultArg = E->getArg(2);
4312 
4313     clang::QualType ResultQTy =
4314         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4315 
4316     WidthAndSignedness LeftInfo =
4317         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4318     WidthAndSignedness RightInfo =
4319         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4320     WidthAndSignedness ResultInfo =
4321         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4322 
4323     // Handle mixed-sign multiplication as a special case, because adding
4324     // runtime or backend support for our generic irgen would be too expensive.
4325     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4326       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4327                                           RightInfo, ResultArg, ResultQTy,
4328                                           ResultInfo);
4329 
4330     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4331                                               ResultInfo))
4332       return EmitCheckedUnsignedMultiplySignedResult(
4333           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4334           ResultInfo);
4335 
4336     WidthAndSignedness EncompassingInfo =
4337         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4338 
4339     llvm::Type *EncompassingLLVMTy =
4340         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4341 
4342     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4343 
4344     llvm::Intrinsic::ID IntrinsicId;
4345     switch (BuiltinID) {
4346     default:
4347       llvm_unreachable("Unknown overflow builtin id.");
4348     case Builtin::BI__builtin_add_overflow:
4349       IntrinsicId = EncompassingInfo.Signed
4350                         ? llvm::Intrinsic::sadd_with_overflow
4351                         : llvm::Intrinsic::uadd_with_overflow;
4352       break;
4353     case Builtin::BI__builtin_sub_overflow:
4354       IntrinsicId = EncompassingInfo.Signed
4355                         ? llvm::Intrinsic::ssub_with_overflow
4356                         : llvm::Intrinsic::usub_with_overflow;
4357       break;
4358     case Builtin::BI__builtin_mul_overflow:
4359       IntrinsicId = EncompassingInfo.Signed
4360                         ? llvm::Intrinsic::smul_with_overflow
4361                         : llvm::Intrinsic::umul_with_overflow;
4362       break;
4363     }
4364 
4365     llvm::Value *Left = EmitScalarExpr(LeftArg);
4366     llvm::Value *Right = EmitScalarExpr(RightArg);
4367     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4368 
4369     // Extend each operand to the encompassing type.
4370     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4371     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4372 
4373     // Perform the operation on the extended values.
4374     llvm::Value *Overflow, *Result;
4375     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4376 
4377     if (EncompassingInfo.Width > ResultInfo.Width) {
4378       // The encompassing type is wider than the result type, so we need to
4379       // truncate it.
4380       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4381 
4382       // To see if the truncation caused an overflow, we will extend
4383       // the result and then compare it to the original result.
4384       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4385           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4386       llvm::Value *TruncationOverflow =
4387           Builder.CreateICmpNE(Result, ResultTruncExt);
4388 
4389       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4390       Result = ResultTrunc;
4391     }
4392 
4393     // Finally, store the result using the pointer.
4394     bool isVolatile =
4395       ResultArg->getType()->getPointeeType().isVolatileQualified();
4396     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4397 
4398     return RValue::get(Overflow);
4399   }
4400 
4401   case Builtin::BI__builtin_uadd_overflow:
4402   case Builtin::BI__builtin_uaddl_overflow:
4403   case Builtin::BI__builtin_uaddll_overflow:
4404   case Builtin::BI__builtin_usub_overflow:
4405   case Builtin::BI__builtin_usubl_overflow:
4406   case Builtin::BI__builtin_usubll_overflow:
4407   case Builtin::BI__builtin_umul_overflow:
4408   case Builtin::BI__builtin_umull_overflow:
4409   case Builtin::BI__builtin_umulll_overflow:
4410   case Builtin::BI__builtin_sadd_overflow:
4411   case Builtin::BI__builtin_saddl_overflow:
4412   case Builtin::BI__builtin_saddll_overflow:
4413   case Builtin::BI__builtin_ssub_overflow:
4414   case Builtin::BI__builtin_ssubl_overflow:
4415   case Builtin::BI__builtin_ssubll_overflow:
4416   case Builtin::BI__builtin_smul_overflow:
4417   case Builtin::BI__builtin_smull_overflow:
4418   case Builtin::BI__builtin_smulll_overflow: {
4419 
4420     // We translate all of these builtins directly to the relevant llvm IR node.
4421 
4422     // Scalarize our inputs.
4423     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4424     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4425     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4426 
4427     // Decide which of the overflow intrinsics we are lowering to:
4428     llvm::Intrinsic::ID IntrinsicId;
4429     switch (BuiltinID) {
4430     default: llvm_unreachable("Unknown overflow builtin id.");
4431     case Builtin::BI__builtin_uadd_overflow:
4432     case Builtin::BI__builtin_uaddl_overflow:
4433     case Builtin::BI__builtin_uaddll_overflow:
4434       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4435       break;
4436     case Builtin::BI__builtin_usub_overflow:
4437     case Builtin::BI__builtin_usubl_overflow:
4438     case Builtin::BI__builtin_usubll_overflow:
4439       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4440       break;
4441     case Builtin::BI__builtin_umul_overflow:
4442     case Builtin::BI__builtin_umull_overflow:
4443     case Builtin::BI__builtin_umulll_overflow:
4444       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4445       break;
4446     case Builtin::BI__builtin_sadd_overflow:
4447     case Builtin::BI__builtin_saddl_overflow:
4448     case Builtin::BI__builtin_saddll_overflow:
4449       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4450       break;
4451     case Builtin::BI__builtin_ssub_overflow:
4452     case Builtin::BI__builtin_ssubl_overflow:
4453     case Builtin::BI__builtin_ssubll_overflow:
4454       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4455       break;
4456     case Builtin::BI__builtin_smul_overflow:
4457     case Builtin::BI__builtin_smull_overflow:
4458     case Builtin::BI__builtin_smulll_overflow:
4459       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4460       break;
4461     }
4462 
4463 
4464     llvm::Value *Carry;
4465     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4466     Builder.CreateStore(Sum, SumOutPtr);
4467 
4468     return RValue::get(Carry);
4469   }
4470   case Builtin::BIaddressof:
4471   case Builtin::BI__addressof:
4472   case Builtin::BI__builtin_addressof:
4473     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4474   case Builtin::BI__builtin_function_start:
4475     return RValue::get(CGM.GetFunctionStart(
4476         E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4477   case Builtin::BI__builtin_operator_new:
4478     return EmitBuiltinNewDeleteCall(
4479         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4480   case Builtin::BI__builtin_operator_delete:
4481     return EmitBuiltinNewDeleteCall(
4482         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4483 
4484   case Builtin::BI__builtin_is_aligned:
4485     return EmitBuiltinIsAligned(E);
4486   case Builtin::BI__builtin_align_up:
4487     return EmitBuiltinAlignTo(E, true);
4488   case Builtin::BI__builtin_align_down:
4489     return EmitBuiltinAlignTo(E, false);
4490 
4491   case Builtin::BI__noop:
4492     // __noop always evaluates to an integer literal zero.
4493     return RValue::get(ConstantInt::get(IntTy, 0));
4494   case Builtin::BI__builtin_call_with_static_chain: {
4495     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4496     const Expr *Chain = E->getArg(1);
4497     return EmitCall(Call->getCallee()->getType(),
4498                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4499                     EmitScalarExpr(Chain));
4500   }
4501   case Builtin::BI_InterlockedExchange8:
4502   case Builtin::BI_InterlockedExchange16:
4503   case Builtin::BI_InterlockedExchange:
4504   case Builtin::BI_InterlockedExchangePointer:
4505     return RValue::get(
4506         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4507   case Builtin::BI_InterlockedCompareExchangePointer:
4508   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4509     llvm::Type *RTy;
4510     llvm::IntegerType *IntType =
4511       IntegerType::get(getLLVMContext(),
4512                        getContext().getTypeSize(E->getType()));
4513     llvm::Type *IntPtrType = IntType->getPointerTo();
4514 
4515     llvm::Value *Destination =
4516       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4517 
4518     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4519     RTy = Exchange->getType();
4520     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4521 
4522     llvm::Value *Comparand =
4523       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4524 
4525     auto Ordering =
4526       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4527       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4528 
4529     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4530                                               Ordering, Ordering);
4531     Result->setVolatile(true);
4532 
4533     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4534                                                                          0),
4535                                               RTy));
4536   }
4537   case Builtin::BI_InterlockedCompareExchange8:
4538   case Builtin::BI_InterlockedCompareExchange16:
4539   case Builtin::BI_InterlockedCompareExchange:
4540   case Builtin::BI_InterlockedCompareExchange64:
4541     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4542   case Builtin::BI_InterlockedIncrement16:
4543   case Builtin::BI_InterlockedIncrement:
4544     return RValue::get(
4545         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4546   case Builtin::BI_InterlockedDecrement16:
4547   case Builtin::BI_InterlockedDecrement:
4548     return RValue::get(
4549         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4550   case Builtin::BI_InterlockedAnd8:
4551   case Builtin::BI_InterlockedAnd16:
4552   case Builtin::BI_InterlockedAnd:
4553     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4554   case Builtin::BI_InterlockedExchangeAdd8:
4555   case Builtin::BI_InterlockedExchangeAdd16:
4556   case Builtin::BI_InterlockedExchangeAdd:
4557     return RValue::get(
4558         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4559   case Builtin::BI_InterlockedExchangeSub8:
4560   case Builtin::BI_InterlockedExchangeSub16:
4561   case Builtin::BI_InterlockedExchangeSub:
4562     return RValue::get(
4563         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4564   case Builtin::BI_InterlockedOr8:
4565   case Builtin::BI_InterlockedOr16:
4566   case Builtin::BI_InterlockedOr:
4567     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4568   case Builtin::BI_InterlockedXor8:
4569   case Builtin::BI_InterlockedXor16:
4570   case Builtin::BI_InterlockedXor:
4571     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4572 
4573   case Builtin::BI_bittest64:
4574   case Builtin::BI_bittest:
4575   case Builtin::BI_bittestandcomplement64:
4576   case Builtin::BI_bittestandcomplement:
4577   case Builtin::BI_bittestandreset64:
4578   case Builtin::BI_bittestandreset:
4579   case Builtin::BI_bittestandset64:
4580   case Builtin::BI_bittestandset:
4581   case Builtin::BI_interlockedbittestandreset:
4582   case Builtin::BI_interlockedbittestandreset64:
4583   case Builtin::BI_interlockedbittestandset64:
4584   case Builtin::BI_interlockedbittestandset:
4585   case Builtin::BI_interlockedbittestandset_acq:
4586   case Builtin::BI_interlockedbittestandset_rel:
4587   case Builtin::BI_interlockedbittestandset_nf:
4588   case Builtin::BI_interlockedbittestandreset_acq:
4589   case Builtin::BI_interlockedbittestandreset_rel:
4590   case Builtin::BI_interlockedbittestandreset_nf:
4591     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4592 
4593     // These builtins exist to emit regular volatile loads and stores not
4594     // affected by the -fms-volatile setting.
4595   case Builtin::BI__iso_volatile_load8:
4596   case Builtin::BI__iso_volatile_load16:
4597   case Builtin::BI__iso_volatile_load32:
4598   case Builtin::BI__iso_volatile_load64:
4599     return RValue::get(EmitISOVolatileLoad(*this, E));
4600   case Builtin::BI__iso_volatile_store8:
4601   case Builtin::BI__iso_volatile_store16:
4602   case Builtin::BI__iso_volatile_store32:
4603   case Builtin::BI__iso_volatile_store64:
4604     return RValue::get(EmitISOVolatileStore(*this, E));
4605 
4606   case Builtin::BI__exception_code:
4607   case Builtin::BI_exception_code:
4608     return RValue::get(EmitSEHExceptionCode());
4609   case Builtin::BI__exception_info:
4610   case Builtin::BI_exception_info:
4611     return RValue::get(EmitSEHExceptionInfo());
4612   case Builtin::BI__abnormal_termination:
4613   case Builtin::BI_abnormal_termination:
4614     return RValue::get(EmitSEHAbnormalTermination());
4615   case Builtin::BI_setjmpex:
4616     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4617         E->getArg(0)->getType()->isPointerType())
4618       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4619     break;
4620   case Builtin::BI_setjmp:
4621     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4622         E->getArg(0)->getType()->isPointerType()) {
4623       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4624         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4625       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4626         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4627       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4628     }
4629     break;
4630 
4631   // C++ std:: builtins.
4632   case Builtin::BImove:
4633   case Builtin::BImove_if_noexcept:
4634   case Builtin::BIforward:
4635   case Builtin::BIas_const:
4636     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4637   case Builtin::BI__GetExceptionInfo: {
4638     if (llvm::GlobalVariable *GV =
4639             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4640       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4641     break;
4642   }
4643 
4644   case Builtin::BI__fastfail:
4645     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4646 
4647   case Builtin::BI__builtin_coro_size: {
4648     auto & Context = getContext();
4649     auto SizeTy = Context.getSizeType();
4650     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4651     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4652     return RValue::get(Builder.CreateCall(F));
4653   }
4654 
4655   case Builtin::BI__builtin_coro_id:
4656     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4657   case Builtin::BI__builtin_coro_promise:
4658     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4659   case Builtin::BI__builtin_coro_resume:
4660     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4661   case Builtin::BI__builtin_coro_frame:
4662     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4663   case Builtin::BI__builtin_coro_noop:
4664     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4665   case Builtin::BI__builtin_coro_free:
4666     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4667   case Builtin::BI__builtin_coro_destroy:
4668     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4669   case Builtin::BI__builtin_coro_done:
4670     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4671   case Builtin::BI__builtin_coro_alloc:
4672     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4673   case Builtin::BI__builtin_coro_begin:
4674     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4675   case Builtin::BI__builtin_coro_end:
4676     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4677   case Builtin::BI__builtin_coro_suspend:
4678     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4679 
4680   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4681   case Builtin::BIread_pipe:
4682   case Builtin::BIwrite_pipe: {
4683     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4684           *Arg1 = EmitScalarExpr(E->getArg(1));
4685     CGOpenCLRuntime OpenCLRT(CGM);
4686     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4687     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4688 
4689     // Type of the generic packet parameter.
4690     unsigned GenericAS =
4691         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4692     llvm::Type *I8PTy = llvm::PointerType::get(
4693         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4694 
4695     // Testing which overloaded version we should generate the call for.
4696     if (2U == E->getNumArgs()) {
4697       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4698                                                              : "__write_pipe_2";
4699       // Creating a generic function type to be able to call with any builtin or
4700       // user defined type.
4701       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4702       llvm::FunctionType *FTy = llvm::FunctionType::get(
4703           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4704       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4705       return RValue::get(
4706           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4707                           {Arg0, BCast, PacketSize, PacketAlign}));
4708     } else {
4709       assert(4 == E->getNumArgs() &&
4710              "Illegal number of parameters to pipe function");
4711       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4712                                                              : "__write_pipe_4";
4713 
4714       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4715                               Int32Ty, Int32Ty};
4716       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4717             *Arg3 = EmitScalarExpr(E->getArg(3));
4718       llvm::FunctionType *FTy = llvm::FunctionType::get(
4719           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4720       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4721       // We know the third argument is an integer type, but we may need to cast
4722       // it to i32.
4723       if (Arg2->getType() != Int32Ty)
4724         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4725       return RValue::get(
4726           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4727                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4728     }
4729   }
4730   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4731   // functions
4732   case Builtin::BIreserve_read_pipe:
4733   case Builtin::BIreserve_write_pipe:
4734   case Builtin::BIwork_group_reserve_read_pipe:
4735   case Builtin::BIwork_group_reserve_write_pipe:
4736   case Builtin::BIsub_group_reserve_read_pipe:
4737   case Builtin::BIsub_group_reserve_write_pipe: {
4738     // Composing the mangled name for the function.
4739     const char *Name;
4740     if (BuiltinID == Builtin::BIreserve_read_pipe)
4741       Name = "__reserve_read_pipe";
4742     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4743       Name = "__reserve_write_pipe";
4744     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4745       Name = "__work_group_reserve_read_pipe";
4746     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4747       Name = "__work_group_reserve_write_pipe";
4748     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4749       Name = "__sub_group_reserve_read_pipe";
4750     else
4751       Name = "__sub_group_reserve_write_pipe";
4752 
4753     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4754           *Arg1 = EmitScalarExpr(E->getArg(1));
4755     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4756     CGOpenCLRuntime OpenCLRT(CGM);
4757     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4758     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4759 
4760     // Building the generic function prototype.
4761     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4762     llvm::FunctionType *FTy = llvm::FunctionType::get(
4763         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4764     // We know the second argument is an integer type, but we may need to cast
4765     // it to i32.
4766     if (Arg1->getType() != Int32Ty)
4767       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4768     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4769                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4770   }
4771   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4772   // functions
4773   case Builtin::BIcommit_read_pipe:
4774   case Builtin::BIcommit_write_pipe:
4775   case Builtin::BIwork_group_commit_read_pipe:
4776   case Builtin::BIwork_group_commit_write_pipe:
4777   case Builtin::BIsub_group_commit_read_pipe:
4778   case Builtin::BIsub_group_commit_write_pipe: {
4779     const char *Name;
4780     if (BuiltinID == Builtin::BIcommit_read_pipe)
4781       Name = "__commit_read_pipe";
4782     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4783       Name = "__commit_write_pipe";
4784     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4785       Name = "__work_group_commit_read_pipe";
4786     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4787       Name = "__work_group_commit_write_pipe";
4788     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4789       Name = "__sub_group_commit_read_pipe";
4790     else
4791       Name = "__sub_group_commit_write_pipe";
4792 
4793     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4794           *Arg1 = EmitScalarExpr(E->getArg(1));
4795     CGOpenCLRuntime OpenCLRT(CGM);
4796     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4797     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4798 
4799     // Building the generic function prototype.
4800     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4801     llvm::FunctionType *FTy =
4802         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4803                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4804 
4805     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4806                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4807   }
4808   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4809   case Builtin::BIget_pipe_num_packets:
4810   case Builtin::BIget_pipe_max_packets: {
4811     const char *BaseName;
4812     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4813     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4814       BaseName = "__get_pipe_num_packets";
4815     else
4816       BaseName = "__get_pipe_max_packets";
4817     std::string Name = std::string(BaseName) +
4818                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4819 
4820     // Building the generic function prototype.
4821     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4822     CGOpenCLRuntime OpenCLRT(CGM);
4823     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4824     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4825     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4826     llvm::FunctionType *FTy = llvm::FunctionType::get(
4827         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4828 
4829     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4830                                        {Arg0, PacketSize, PacketAlign}));
4831   }
4832 
4833   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4834   case Builtin::BIto_global:
4835   case Builtin::BIto_local:
4836   case Builtin::BIto_private: {
4837     auto Arg0 = EmitScalarExpr(E->getArg(0));
4838     auto NewArgT = llvm::PointerType::get(Int8Ty,
4839       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4840     auto NewRetT = llvm::PointerType::get(Int8Ty,
4841       CGM.getContext().getTargetAddressSpace(
4842         E->getType()->getPointeeType().getAddressSpace()));
4843     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4844     llvm::Value *NewArg;
4845     if (Arg0->getType()->getPointerAddressSpace() !=
4846         NewArgT->getPointerAddressSpace())
4847       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4848     else
4849       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4850     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4851     auto NewCall =
4852         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4853     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4854       ConvertType(E->getType())));
4855   }
4856 
4857   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4858   // It contains four different overload formats specified in Table 6.13.17.1.
4859   case Builtin::BIenqueue_kernel: {
4860     StringRef Name; // Generated function call name
4861     unsigned NumArgs = E->getNumArgs();
4862 
4863     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4864     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4865         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4866 
4867     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4868     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4869     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4870     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4871     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4872 
4873     if (NumArgs == 4) {
4874       // The most basic form of the call with parameters:
4875       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4876       Name = "__enqueue_kernel_basic";
4877       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4878                               GenericVoidPtrTy};
4879       llvm::FunctionType *FTy = llvm::FunctionType::get(
4880           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4881 
4882       auto Info =
4883           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4884       llvm::Value *Kernel =
4885           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4886       llvm::Value *Block =
4887           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4888 
4889       AttrBuilder B(Builder.getContext());
4890       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4891       llvm::AttributeList ByValAttrSet =
4892           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4893 
4894       auto RTCall =
4895           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4896                           {Queue, Flags, Range, Kernel, Block});
4897       RTCall->setAttributes(ByValAttrSet);
4898       return RValue::get(RTCall);
4899     }
4900     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4901 
4902     // Create a temporary array to hold the sizes of local pointer arguments
4903     // for the block. \p First is the position of the first size argument.
4904     auto CreateArrayForSizeVar = [=](unsigned First)
4905         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4906       llvm::APInt ArraySize(32, NumArgs - First);
4907       QualType SizeArrayTy = getContext().getConstantArrayType(
4908           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4909           /*IndexTypeQuals=*/0);
4910       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4911       llvm::Value *TmpPtr = Tmp.getPointer();
4912       llvm::Value *TmpSize = EmitLifetimeStart(
4913           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4914       llvm::Value *ElemPtr;
4915       // Each of the following arguments specifies the size of the corresponding
4916       // argument passed to the enqueued block.
4917       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4918       for (unsigned I = First; I < NumArgs; ++I) {
4919         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4920         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4921                                       {Zero, Index});
4922         if (I == First)
4923           ElemPtr = GEP;
4924         auto *V =
4925             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4926         Builder.CreateAlignedStore(
4927             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4928       }
4929       return std::tie(ElemPtr, TmpSize, TmpPtr);
4930     };
4931 
4932     // Could have events and/or varargs.
4933     if (E->getArg(3)->getType()->isBlockPointerType()) {
4934       // No events passed, but has variadic arguments.
4935       Name = "__enqueue_kernel_varargs";
4936       auto Info =
4937           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4938       llvm::Value *Kernel =
4939           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4940       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4941       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4942       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4943 
4944       // Create a vector of the arguments, as well as a constant value to
4945       // express to the runtime the number of variadic arguments.
4946       llvm::Value *const Args[] = {Queue,  Flags,
4947                                    Range,  Kernel,
4948                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4949                                    ElemPtr};
4950       llvm::Type *const ArgTys[] = {
4951           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4952           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4953 
4954       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4955       auto Call = RValue::get(
4956           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4957       if (TmpSize)
4958         EmitLifetimeEnd(TmpSize, TmpPtr);
4959       return Call;
4960     }
4961     // Any calls now have event arguments passed.
4962     if (NumArgs >= 7) {
4963       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4964       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4965           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4966 
4967       llvm::Value *NumEvents =
4968           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4969 
4970       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4971       // to be a null pointer constant (including `0` literal), we can take it
4972       // into account and emit null pointer directly.
4973       llvm::Value *EventWaitList = nullptr;
4974       if (E->getArg(4)->isNullPointerConstant(
4975               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4976         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4977       } else {
4978         EventWaitList = E->getArg(4)->getType()->isArrayType()
4979                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4980                         : EmitScalarExpr(E->getArg(4));
4981         // Convert to generic address space.
4982         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4983       }
4984       llvm::Value *EventRet = nullptr;
4985       if (E->getArg(5)->isNullPointerConstant(
4986               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4987         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4988       } else {
4989         EventRet =
4990             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4991       }
4992 
4993       auto Info =
4994           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4995       llvm::Value *Kernel =
4996           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4997       llvm::Value *Block =
4998           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4999 
5000       std::vector<llvm::Type *> ArgTys = {
5001           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
5002           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5003 
5004       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
5005                                          NumEvents, EventWaitList, EventRet,
5006                                          Kernel,    Block};
5007 
5008       if (NumArgs == 7) {
5009         // Has events but no variadics.
5010         Name = "__enqueue_kernel_basic_events";
5011         llvm::FunctionType *FTy = llvm::FunctionType::get(
5012             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5013         return RValue::get(
5014             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5015                             llvm::ArrayRef<llvm::Value *>(Args)));
5016       }
5017       // Has event info and variadics
5018       // Pass the number of variadics to the runtime function too.
5019       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5020       ArgTys.push_back(Int32Ty);
5021       Name = "__enqueue_kernel_events_varargs";
5022 
5023       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5024       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5025       Args.push_back(ElemPtr);
5026       ArgTys.push_back(ElemPtr->getType());
5027 
5028       llvm::FunctionType *FTy = llvm::FunctionType::get(
5029           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5030       auto Call =
5031           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5032                                       llvm::ArrayRef<llvm::Value *>(Args)));
5033       if (TmpSize)
5034         EmitLifetimeEnd(TmpSize, TmpPtr);
5035       return Call;
5036     }
5037     LLVM_FALLTHROUGH;
5038   }
5039   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5040   // parameter.
5041   case Builtin::BIget_kernel_work_group_size: {
5042     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5043         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5044     auto Info =
5045         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5046     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5047     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5048     return RValue::get(EmitRuntimeCall(
5049         CGM.CreateRuntimeFunction(
5050             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5051                                     false),
5052             "__get_kernel_work_group_size_impl"),
5053         {Kernel, Arg}));
5054   }
5055   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5056     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5057         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5058     auto Info =
5059         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5060     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5061     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5062     return RValue::get(EmitRuntimeCall(
5063         CGM.CreateRuntimeFunction(
5064             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5065                                     false),
5066             "__get_kernel_preferred_work_group_size_multiple_impl"),
5067         {Kernel, Arg}));
5068   }
5069   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5070   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5071     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5072         getContext().getTargetAddressSpace(LangAS::opencl_generic));
5073     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5074     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5075     auto Info =
5076         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5077     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5078     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5079     const char *Name =
5080         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5081             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5082             : "__get_kernel_sub_group_count_for_ndrange_impl";
5083     return RValue::get(EmitRuntimeCall(
5084         CGM.CreateRuntimeFunction(
5085             llvm::FunctionType::get(
5086                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5087                 false),
5088             Name),
5089         {NDRange, Kernel, Block}));
5090   }
5091 
5092   case Builtin::BI__builtin_store_half:
5093   case Builtin::BI__builtin_store_halff: {
5094     Value *Val = EmitScalarExpr(E->getArg(0));
5095     Address Address = EmitPointerWithAlignment(E->getArg(1));
5096     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5097     return RValue::get(Builder.CreateStore(HalfVal, Address));
5098   }
5099   case Builtin::BI__builtin_load_half: {
5100     Address Address = EmitPointerWithAlignment(E->getArg(0));
5101     Value *HalfVal = Builder.CreateLoad(Address);
5102     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5103   }
5104   case Builtin::BI__builtin_load_halff: {
5105     Address Address = EmitPointerWithAlignment(E->getArg(0));
5106     Value *HalfVal = Builder.CreateLoad(Address);
5107     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5108   }
5109   case Builtin::BIprintf:
5110     if (getTarget().getTriple().isNVPTX() ||
5111         getTarget().getTriple().isAMDGCN()) {
5112       if (getLangOpts().OpenMPIsDevice)
5113         return EmitOpenMPDevicePrintfCallExpr(E);
5114       if (getTarget().getTriple().isNVPTX())
5115         return EmitNVPTXDevicePrintfCallExpr(E);
5116       if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5117         return EmitAMDGPUDevicePrintfCallExpr(E);
5118     }
5119 
5120     break;
5121   case Builtin::BI__builtin_canonicalize:
5122   case Builtin::BI__builtin_canonicalizef:
5123   case Builtin::BI__builtin_canonicalizef16:
5124   case Builtin::BI__builtin_canonicalizel:
5125     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5126 
5127   case Builtin::BI__builtin_thread_pointer: {
5128     if (!getContext().getTargetInfo().isTLSSupported())
5129       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5130     // Fall through - it's already mapped to the intrinsic by ClangBuiltin.
5131     break;
5132   }
5133   case Builtin::BI__builtin_os_log_format:
5134     return emitBuiltinOSLogFormat(*E);
5135 
5136   case Builtin::BI__xray_customevent: {
5137     if (!ShouldXRayInstrumentFunction())
5138       return RValue::getIgnored();
5139 
5140     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5141             XRayInstrKind::Custom))
5142       return RValue::getIgnored();
5143 
5144     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5145       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5146         return RValue::getIgnored();
5147 
5148     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5149     auto FTy = F->getFunctionType();
5150     auto Arg0 = E->getArg(0);
5151     auto Arg0Val = EmitScalarExpr(Arg0);
5152     auto Arg0Ty = Arg0->getType();
5153     auto PTy0 = FTy->getParamType(0);
5154     if (PTy0 != Arg0Val->getType()) {
5155       if (Arg0Ty->isArrayType())
5156         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5157       else
5158         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5159     }
5160     auto Arg1 = EmitScalarExpr(E->getArg(1));
5161     auto PTy1 = FTy->getParamType(1);
5162     if (PTy1 != Arg1->getType())
5163       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5164     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5165   }
5166 
5167   case Builtin::BI__xray_typedevent: {
5168     // TODO: There should be a way to always emit events even if the current
5169     // function is not instrumented. Losing events in a stream can cripple
5170     // a trace.
5171     if (!ShouldXRayInstrumentFunction())
5172       return RValue::getIgnored();
5173 
5174     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5175             XRayInstrKind::Typed))
5176       return RValue::getIgnored();
5177 
5178     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5179       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5180         return RValue::getIgnored();
5181 
5182     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5183     auto FTy = F->getFunctionType();
5184     auto Arg0 = EmitScalarExpr(E->getArg(0));
5185     auto PTy0 = FTy->getParamType(0);
5186     if (PTy0 != Arg0->getType())
5187       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5188     auto Arg1 = E->getArg(1);
5189     auto Arg1Val = EmitScalarExpr(Arg1);
5190     auto Arg1Ty = Arg1->getType();
5191     auto PTy1 = FTy->getParamType(1);
5192     if (PTy1 != Arg1Val->getType()) {
5193       if (Arg1Ty->isArrayType())
5194         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5195       else
5196         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5197     }
5198     auto Arg2 = EmitScalarExpr(E->getArg(2));
5199     auto PTy2 = FTy->getParamType(2);
5200     if (PTy2 != Arg2->getType())
5201       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5202     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5203   }
5204 
5205   case Builtin::BI__builtin_ms_va_start:
5206   case Builtin::BI__builtin_ms_va_end:
5207     return RValue::get(
5208         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5209                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5210 
5211   case Builtin::BI__builtin_ms_va_copy: {
5212     // Lower this manually. We can't reliably determine whether or not any
5213     // given va_copy() is for a Win64 va_list from the calling convention
5214     // alone, because it's legal to do this from a System V ABI function.
5215     // With opaque pointer types, we won't have enough information in LLVM
5216     // IR to determine this from the argument types, either. Best to do it
5217     // now, while we have enough information.
5218     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5219     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5220 
5221     llvm::Type *BPP = Int8PtrPtrTy;
5222 
5223     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5224                        Int8PtrTy, DestAddr.getAlignment());
5225     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5226                       Int8PtrTy, SrcAddr.getAlignment());
5227 
5228     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5229     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5230   }
5231 
5232   case Builtin::BI__builtin_get_device_side_mangled_name: {
5233     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5234         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5235     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5236     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5237                                llvm::ConstantInt::get(SizeTy, 0)};
5238     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5239                                                      Str.getPointer(), Zeros);
5240     return RValue::get(Ptr);
5241   }
5242   }
5243 
5244   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5245   // the call using the normal call path, but using the unmangled
5246   // version of the function name.
5247   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5248     return emitLibraryCall(*this, FD, E,
5249                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5250 
5251   // If this is a predefined lib function (e.g. malloc), emit the call
5252   // using exactly the normal call path.
5253   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5254     return emitLibraryCall(*this, FD, E,
5255                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5256 
5257   // Check that a call to a target specific builtin has the correct target
5258   // features.
5259   // This is down here to avoid non-target specific builtins, however, if
5260   // generic builtins start to require generic target features then we
5261   // can move this up to the beginning of the function.
5262   checkTargetFeatures(E, FD);
5263 
5264   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5265     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5266 
5267   // See if we have a target specific intrinsic.
5268   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5269   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5270   StringRef Prefix =
5271       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5272   if (!Prefix.empty()) {
5273     IntrinsicID = Intrinsic::getIntrinsicForClangBuiltin(Prefix.data(), Name);
5274     // NOTE we don't need to perform a compatibility flag check here since the
5275     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5276     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5277     if (IntrinsicID == Intrinsic::not_intrinsic)
5278       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5279   }
5280 
5281   if (IntrinsicID != Intrinsic::not_intrinsic) {
5282     SmallVector<Value*, 16> Args;
5283 
5284     // Find out if any arguments are required to be integer constant
5285     // expressions.
5286     unsigned ICEArguments = 0;
5287     ASTContext::GetBuiltinTypeError Error;
5288     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5289     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5290 
5291     Function *F = CGM.getIntrinsic(IntrinsicID);
5292     llvm::FunctionType *FTy = F->getFunctionType();
5293 
5294     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5295       Value *ArgValue;
5296       // If this is a normal argument, just emit it as a scalar.
5297       if ((ICEArguments & (1 << i)) == 0) {
5298         ArgValue = EmitScalarExpr(E->getArg(i));
5299       } else {
5300         // If this is required to be a constant, constant fold it so that we
5301         // know that the generated intrinsic gets a ConstantInt.
5302         ArgValue = llvm::ConstantInt::get(
5303             getLLVMContext(),
5304             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5305       }
5306 
5307       // If the intrinsic arg type is different from the builtin arg type
5308       // we need to do a bit cast.
5309       llvm::Type *PTy = FTy->getParamType(i);
5310       if (PTy != ArgValue->getType()) {
5311         // XXX - vector of pointers?
5312         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5313           if (PtrTy->getAddressSpace() !=
5314               ArgValue->getType()->getPointerAddressSpace()) {
5315             ArgValue = Builder.CreateAddrSpaceCast(
5316               ArgValue,
5317               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5318           }
5319         }
5320 
5321         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5322                "Must be able to losslessly bit cast to param");
5323         // Cast vector type (e.g., v256i32) to x86_amx, this only happen
5324         // in amx intrinsics.
5325         if (PTy->isX86_AMXTy())
5326           ArgValue = Builder.CreateIntrinsic(Intrinsic::x86_cast_vector_to_tile,
5327                                              {ArgValue->getType()}, {ArgValue});
5328         else
5329           ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5330       }
5331 
5332       Args.push_back(ArgValue);
5333     }
5334 
5335     Value *V = Builder.CreateCall(F, Args);
5336     QualType BuiltinRetType = E->getType();
5337 
5338     llvm::Type *RetTy = VoidTy;
5339     if (!BuiltinRetType->isVoidType())
5340       RetTy = ConvertType(BuiltinRetType);
5341 
5342     if (RetTy != V->getType()) {
5343       // XXX - vector of pointers?
5344       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5345         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5346           V = Builder.CreateAddrSpaceCast(
5347             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5348         }
5349       }
5350 
5351       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5352              "Must be able to losslessly bit cast result type");
5353       // Cast x86_amx to vector type (e.g., v256i32), this only happen
5354       // in amx intrinsics.
5355       if (V->getType()->isX86_AMXTy())
5356         V = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector, {RetTy},
5357                                     {V});
5358       else
5359         V = Builder.CreateBitCast(V, RetTy);
5360     }
5361 
5362     return RValue::get(V);
5363   }
5364 
5365   // Some target-specific builtins can have aggregate return values, e.g.
5366   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5367   // ReturnValue to be non-null, so that the target-specific emission code can
5368   // always just emit into it.
5369   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5370   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5371     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5372     ReturnValue = ReturnValueSlot(DestPtr, false);
5373   }
5374 
5375   // Now see if we can emit a target-specific builtin.
5376   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5377     switch (EvalKind) {
5378     case TEK_Scalar:
5379       return RValue::get(V);
5380     case TEK_Aggregate:
5381       return RValue::getAggregate(ReturnValue.getValue(),
5382                                   ReturnValue.isVolatile());
5383     case TEK_Complex:
5384       llvm_unreachable("No current target builtin returns complex");
5385     }
5386     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5387   }
5388 
5389   ErrorUnsupported(E, "builtin function");
5390 
5391   // Unknown builtin, for now just dump it out and return undef.
5392   return GetUndefRValue(E->getType());
5393 }
5394 
5395 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5396                                         unsigned BuiltinID, const CallExpr *E,
5397                                         ReturnValueSlot ReturnValue,
5398                                         llvm::Triple::ArchType Arch) {
5399   switch (Arch) {
5400   case llvm::Triple::arm:
5401   case llvm::Triple::armeb:
5402   case llvm::Triple::thumb:
5403   case llvm::Triple::thumbeb:
5404     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5405   case llvm::Triple::aarch64:
5406   case llvm::Triple::aarch64_32:
5407   case llvm::Triple::aarch64_be:
5408     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5409   case llvm::Triple::bpfeb:
5410   case llvm::Triple::bpfel:
5411     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5412   case llvm::Triple::x86:
5413   case llvm::Triple::x86_64:
5414     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5415   case llvm::Triple::ppc:
5416   case llvm::Triple::ppcle:
5417   case llvm::Triple::ppc64:
5418   case llvm::Triple::ppc64le:
5419     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5420   case llvm::Triple::r600:
5421   case llvm::Triple::amdgcn:
5422     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5423   case llvm::Triple::systemz:
5424     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5425   case llvm::Triple::nvptx:
5426   case llvm::Triple::nvptx64:
5427     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5428   case llvm::Triple::wasm32:
5429   case llvm::Triple::wasm64:
5430     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5431   case llvm::Triple::hexagon:
5432     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5433   case llvm::Triple::riscv32:
5434   case llvm::Triple::riscv64:
5435     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5436   default:
5437     return nullptr;
5438   }
5439 }
5440 
5441 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5442                                               const CallExpr *E,
5443                                               ReturnValueSlot ReturnValue) {
5444   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5445     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5446     return EmitTargetArchBuiltinExpr(
5447         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5448         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5449   }
5450 
5451   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5452                                    getTarget().getTriple().getArch());
5453 }
5454 
5455 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5456                                           NeonTypeFlags TypeFlags,
5457                                           bool HasLegalHalfType = true,
5458                                           bool V1Ty = false,
5459                                           bool AllowBFloatArgsAndRet = true) {
5460   int IsQuad = TypeFlags.isQuad();
5461   switch (TypeFlags.getEltType()) {
5462   case NeonTypeFlags::Int8:
5463   case NeonTypeFlags::Poly8:
5464     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5465   case NeonTypeFlags::Int16:
5466   case NeonTypeFlags::Poly16:
5467     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5468   case NeonTypeFlags::BFloat16:
5469     if (AllowBFloatArgsAndRet)
5470       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5471     else
5472       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5473   case NeonTypeFlags::Float16:
5474     if (HasLegalHalfType)
5475       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5476     else
5477       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5478   case NeonTypeFlags::Int32:
5479     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5480   case NeonTypeFlags::Int64:
5481   case NeonTypeFlags::Poly64:
5482     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5483   case NeonTypeFlags::Poly128:
5484     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5485     // There is a lot of i128 and f128 API missing.
5486     // so we use v16i8 to represent poly128 and get pattern matched.
5487     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5488   case NeonTypeFlags::Float32:
5489     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5490   case NeonTypeFlags::Float64:
5491     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5492   }
5493   llvm_unreachable("Unknown vector element type!");
5494 }
5495 
5496 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5497                                           NeonTypeFlags IntTypeFlags) {
5498   int IsQuad = IntTypeFlags.isQuad();
5499   switch (IntTypeFlags.getEltType()) {
5500   case NeonTypeFlags::Int16:
5501     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5502   case NeonTypeFlags::Int32:
5503     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5504   case NeonTypeFlags::Int64:
5505     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5506   default:
5507     llvm_unreachable("Type can't be converted to floating-point!");
5508   }
5509 }
5510 
5511 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5512                                       const ElementCount &Count) {
5513   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5514   return Builder.CreateShuffleVector(V, V, SV, "lane");
5515 }
5516 
5517 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5518   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5519   return EmitNeonSplat(V, C, EC);
5520 }
5521 
5522 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5523                                      const char *name,
5524                                      unsigned shift, bool rightshift) {
5525   unsigned j = 0;
5526   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5527        ai != ae; ++ai, ++j) {
5528     if (F->isConstrainedFPIntrinsic())
5529       if (ai->getType()->isMetadataTy())
5530         continue;
5531     if (shift > 0 && shift == j)
5532       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5533     else
5534       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5535   }
5536 
5537   if (F->isConstrainedFPIntrinsic())
5538     return Builder.CreateConstrainedFPCall(F, Ops, name);
5539   else
5540     return Builder.CreateCall(F, Ops, name);
5541 }
5542 
5543 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5544                                             bool neg) {
5545   int SV = cast<ConstantInt>(V)->getSExtValue();
5546   return ConstantInt::get(Ty, neg ? -SV : SV);
5547 }
5548 
5549 // Right-shift a vector by a constant.
5550 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5551                                           llvm::Type *Ty, bool usgn,
5552                                           const char *name) {
5553   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5554 
5555   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5556   int EltSize = VTy->getScalarSizeInBits();
5557 
5558   Vec = Builder.CreateBitCast(Vec, Ty);
5559 
5560   // lshr/ashr are undefined when the shift amount is equal to the vector
5561   // element size.
5562   if (ShiftAmt == EltSize) {
5563     if (usgn) {
5564       // Right-shifting an unsigned value by its size yields 0.
5565       return llvm::ConstantAggregateZero::get(VTy);
5566     } else {
5567       // Right-shifting a signed value by its size is equivalent
5568       // to a shift of size-1.
5569       --ShiftAmt;
5570       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5571     }
5572   }
5573 
5574   Shift = EmitNeonShiftVector(Shift, Ty, false);
5575   if (usgn)
5576     return Builder.CreateLShr(Vec, Shift, name);
5577   else
5578     return Builder.CreateAShr(Vec, Shift, name);
5579 }
5580 
5581 enum {
5582   AddRetType = (1 << 0),
5583   Add1ArgType = (1 << 1),
5584   Add2ArgTypes = (1 << 2),
5585 
5586   VectorizeRetType = (1 << 3),
5587   VectorizeArgTypes = (1 << 4),
5588 
5589   InventFloatType = (1 << 5),
5590   UnsignedAlts = (1 << 6),
5591 
5592   Use64BitVectors = (1 << 7),
5593   Use128BitVectors = (1 << 8),
5594 
5595   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5596   VectorRet = AddRetType | VectorizeRetType,
5597   VectorRetGetArgs01 =
5598       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5599   FpCmpzModifiers =
5600       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5601 };
5602 
5603 namespace {
5604 struct ARMVectorIntrinsicInfo {
5605   const char *NameHint;
5606   unsigned BuiltinID;
5607   unsigned LLVMIntrinsic;
5608   unsigned AltLLVMIntrinsic;
5609   uint64_t TypeModifier;
5610 
5611   bool operator<(unsigned RHSBuiltinID) const {
5612     return BuiltinID < RHSBuiltinID;
5613   }
5614   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5615     return BuiltinID < TE.BuiltinID;
5616   }
5617 };
5618 } // end anonymous namespace
5619 
5620 #define NEONMAP0(NameBase) \
5621   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5622 
5623 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5624   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5625       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5626 
5627 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5628   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5629       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5630       TypeModifier }
5631 
5632 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5633   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5634   NEONMAP0(splat_lane_v),
5635   NEONMAP0(splat_laneq_v),
5636   NEONMAP0(splatq_lane_v),
5637   NEONMAP0(splatq_laneq_v),
5638   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5639   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5640   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5641   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5642   NEONMAP0(vadd_v),
5643   NEONMAP0(vaddhn_v),
5644   NEONMAP0(vaddq_v),
5645   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5646   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5647   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5648   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5649   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5650   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5651   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5652   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5653   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5654   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5655   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5656   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5657   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5658   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5659   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5660   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5661   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5662   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5663   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5664   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5665   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5666   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5667   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5668   NEONMAP0(vceqz_v),
5669   NEONMAP0(vceqzq_v),
5670   NEONMAP0(vcgez_v),
5671   NEONMAP0(vcgezq_v),
5672   NEONMAP0(vcgtz_v),
5673   NEONMAP0(vcgtzq_v),
5674   NEONMAP0(vclez_v),
5675   NEONMAP0(vclezq_v),
5676   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5677   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5678   NEONMAP0(vcltz_v),
5679   NEONMAP0(vcltzq_v),
5680   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5681   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5682   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5683   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5684   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5685   NEONMAP0(vcvt_f16_v),
5686   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5687   NEONMAP0(vcvt_f32_v),
5688   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5689   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5690   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5691   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5692   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5693   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5694   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5695   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5696   NEONMAP0(vcvt_s16_v),
5697   NEONMAP0(vcvt_s32_v),
5698   NEONMAP0(vcvt_s64_v),
5699   NEONMAP0(vcvt_u16_v),
5700   NEONMAP0(vcvt_u32_v),
5701   NEONMAP0(vcvt_u64_v),
5702   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5703   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5704   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5705   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5706   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5707   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5708   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5709   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5710   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5711   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5712   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5713   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5714   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5715   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5716   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5717   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5718   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5719   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5720   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5721   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5722   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5723   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5724   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5725   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5726   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5727   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5728   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5729   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5730   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5731   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5732   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5733   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5734   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5735   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5736   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5737   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5738   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5739   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5740   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5741   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5742   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5743   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5744   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5745   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5746   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5747   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5748   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5749   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5750   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5751   NEONMAP0(vcvtq_f16_v),
5752   NEONMAP0(vcvtq_f32_v),
5753   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5754   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5755   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5756   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5757   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5758   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5759   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5760   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5761   NEONMAP0(vcvtq_s16_v),
5762   NEONMAP0(vcvtq_s32_v),
5763   NEONMAP0(vcvtq_s64_v),
5764   NEONMAP0(vcvtq_u16_v),
5765   NEONMAP0(vcvtq_u32_v),
5766   NEONMAP0(vcvtq_u64_v),
5767   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5768   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5769   NEONMAP0(vext_v),
5770   NEONMAP0(vextq_v),
5771   NEONMAP0(vfma_v),
5772   NEONMAP0(vfmaq_v),
5773   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5774   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5775   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5776   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5777   NEONMAP0(vld1_dup_v),
5778   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5779   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5780   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5781   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5782   NEONMAP0(vld1q_dup_v),
5783   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5784   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5785   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5786   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5787   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5788   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5789   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5790   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5791   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5792   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5793   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5794   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5795   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5796   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5797   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5798   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5799   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5800   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5801   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5802   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5803   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5804   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5805   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5806   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5807   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5808   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5809   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5810   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5811   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5812   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5813   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5814   NEONMAP0(vmovl_v),
5815   NEONMAP0(vmovn_v),
5816   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5817   NEONMAP0(vmull_v),
5818   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5819   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5820   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5821   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5822   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5823   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5824   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5825   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5826   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5827   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5828   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5829   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5830   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5831   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5832   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5833   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5834   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5835   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5836   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5837   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5838   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5839   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5840   NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType),
5841   NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType),
5842   NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType),
5843   NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType),
5844   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5845   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5846   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5847   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5848   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5849   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5850   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5851   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5852   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5853   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5854   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5855   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5856   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5857   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5858   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5859   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5860   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5861   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5862   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5863   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5864   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5865   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5866   NEONMAP0(vrndi_v),
5867   NEONMAP0(vrndiq_v),
5868   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5869   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5870   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5871   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5872   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5873   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5874   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5875   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5876   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5877   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5878   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5879   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5880   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5881   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5882   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5883   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5884   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5885   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5886   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5887   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5888   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5889   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5890   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5891   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5892   NEONMAP0(vshl_n_v),
5893   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5894   NEONMAP0(vshll_n_v),
5895   NEONMAP0(vshlq_n_v),
5896   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5897   NEONMAP0(vshr_n_v),
5898   NEONMAP0(vshrn_n_v),
5899   NEONMAP0(vshrq_n_v),
5900   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5901   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5902   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5903   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5904   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5905   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5906   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5907   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5908   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5909   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5910   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5911   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5912   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5913   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5914   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5915   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5916   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5917   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5918   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5919   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5920   NEONMAP0(vsubhn_v),
5921   NEONMAP0(vtrn_v),
5922   NEONMAP0(vtrnq_v),
5923   NEONMAP0(vtst_v),
5924   NEONMAP0(vtstq_v),
5925   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5926   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5927   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5928   NEONMAP0(vuzp_v),
5929   NEONMAP0(vuzpq_v),
5930   NEONMAP0(vzip_v),
5931   NEONMAP0(vzipq_v)
5932 };
5933 
5934 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5935   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5936   NEONMAP0(splat_lane_v),
5937   NEONMAP0(splat_laneq_v),
5938   NEONMAP0(splatq_lane_v),
5939   NEONMAP0(splatq_laneq_v),
5940   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5941   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5942   NEONMAP0(vadd_v),
5943   NEONMAP0(vaddhn_v),
5944   NEONMAP0(vaddq_p128),
5945   NEONMAP0(vaddq_v),
5946   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5947   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5948   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5949   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5950   NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5951   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5952   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5953   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5954   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5955   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5956   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5957   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5958   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5959   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5960   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5961   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5962   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5963   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5964   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5965   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5966   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5967   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5968   NEONMAP0(vceqz_v),
5969   NEONMAP0(vceqzq_v),
5970   NEONMAP0(vcgez_v),
5971   NEONMAP0(vcgezq_v),
5972   NEONMAP0(vcgtz_v),
5973   NEONMAP0(vcgtzq_v),
5974   NEONMAP0(vclez_v),
5975   NEONMAP0(vclezq_v),
5976   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5977   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5978   NEONMAP0(vcltz_v),
5979   NEONMAP0(vcltzq_v),
5980   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5981   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5982   NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5983   NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5984   NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5985   NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5986   NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5987   NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5988   NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5989   NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5990   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5991   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5992   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5993   NEONMAP0(vcvt_f16_v),
5994   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5995   NEONMAP0(vcvt_f32_v),
5996   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5997   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5998   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5999   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6000   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6001   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6002   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6003   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6004   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6005   NEONMAP0(vcvtq_f16_v),
6006   NEONMAP0(vcvtq_f32_v),
6007   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
6008   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6009   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6010   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6011   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6012   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6013   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6014   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6015   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6016   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6017   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6018   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6019   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6020   NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6021   NEONMAP0(vext_v),
6022   NEONMAP0(vextq_v),
6023   NEONMAP0(vfma_v),
6024   NEONMAP0(vfmaq_v),
6025   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
6026   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
6027   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
6028   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
6029   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
6030   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
6031   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
6032   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
6033   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6034   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6035   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6036   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6037   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6038   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6039   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6040   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6041   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6042   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6043   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
6044   NEONMAP0(vmovl_v),
6045   NEONMAP0(vmovn_v),
6046   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6047   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6048   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6049   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6050   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6051   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6052   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6053   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6054   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6055   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6056   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6057   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6058   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6059   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6060   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6061   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6062   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6063   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6064   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6065   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6066   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6067   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6068   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6069   NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType),
6070   NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType),
6071   NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6072   NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6073   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6074   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6075   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6076   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6077   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6078   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6079   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6080   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6081   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6082   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6083   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6084   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6085   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6086   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6087   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6088   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6089   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6090   NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
6091   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6092   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6093   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6094   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6095   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6096   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6097   NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
6098   NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
6099   NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
6100   NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
6101   NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
6102   NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
6103   NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
6104   NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
6105   NEONMAP0(vrndi_v),
6106   NEONMAP0(vrndiq_v),
6107   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6108   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6109   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6110   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6111   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6112   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6113   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6114   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6115   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6116   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6117   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6118   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6119   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6120   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6121   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6122   NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6123   NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6124   NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6125   NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6126   NEONMAP0(vshl_n_v),
6127   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6128   NEONMAP0(vshll_n_v),
6129   NEONMAP0(vshlq_n_v),
6130   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6131   NEONMAP0(vshr_n_v),
6132   NEONMAP0(vshrn_n_v),
6133   NEONMAP0(vshrq_n_v),
6134   NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6135   NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6136   NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6137   NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6138   NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6139   NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6140   NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6141   NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6142   NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6143   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6144   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6145   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6146   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6147   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6148   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6149   NEONMAP0(vsubhn_v),
6150   NEONMAP0(vtst_v),
6151   NEONMAP0(vtstq_v),
6152   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6153   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6154   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6155   NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6156 };
6157 
6158 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6159   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6160   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6161   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6162   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6163   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6164   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6165   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6166   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6167   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6168   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6169   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6170   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6171   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6172   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6173   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6174   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6175   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6176   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6177   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6178   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6179   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6180   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6181   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6182   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6183   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6184   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6185   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6186   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6187   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6188   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6189   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6190   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6191   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6192   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6193   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6194   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6195   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6196   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6197   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6198   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6199   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6200   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6201   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6202   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6203   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6204   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6205   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6206   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6207   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6208   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6209   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6210   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6211   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6212   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6213   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6214   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6215   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6216   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6217   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6218   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6219   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6220   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6221   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6222   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6223   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6224   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6225   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6226   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6227   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6228   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6229   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6230   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6231   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6232   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6233   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6234   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6235   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6236   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6237   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6238   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6239   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6240   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6241   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6242   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6243   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6244   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6245   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6246   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6247   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6248   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6249   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6250   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6251   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6252   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6253   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6254   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6255   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6256   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6257   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6258   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6259   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6260   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6261   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6262   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6263   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6264   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6265   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6266   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6267   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6268   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6269   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6270   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6271   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6272   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6273   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6274   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6275   NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6276   NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6277   NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6278   NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6279   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6280   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6281   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6282   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6283   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6284   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6285   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6286   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6287   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6288   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6289   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6290   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6291   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6292   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6293   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6294   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6295   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6296   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6297   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6298   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6299   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6300   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6301   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6302   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6303   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6304   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6305   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6306   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6307   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6308   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6309   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6310   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6311   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6312   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6313   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6314   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6315   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6316   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6317   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6318   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6319   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6320   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6321   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6322   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6323   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6324   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6325   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6326   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6327   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6328   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6329   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6330   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6331   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6332   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6333   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6334   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6335   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6336   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6337   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6338   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6339   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6340   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6341   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6342   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6343   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6344   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6345   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6346   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6347   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6348   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6349   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6350   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6351   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6352   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6353   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6354   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6355   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6356   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6357   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6358   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6359   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6360   // FP16 scalar intrinisics go here.
6361   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6362   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6363   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6364   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6365   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6366   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6367   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6368   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6369   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6370   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6371   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6372   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6373   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6374   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6375   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6376   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6377   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6378   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6379   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6380   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6381   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6382   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6383   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6384   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6385   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6386   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6387   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6388   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6389   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6390   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6391   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6392   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6393   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6394   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6395 };
6396 
6397 #undef NEONMAP0
6398 #undef NEONMAP1
6399 #undef NEONMAP2
6400 
6401 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6402   {                                                                            \
6403     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6404         TypeModifier                                                           \
6405   }
6406 
6407 #define SVEMAP2(NameBase, TypeModifier)                                        \
6408   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6409 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6410 #define GET_SVE_LLVM_INTRINSIC_MAP
6411 #include "clang/Basic/arm_sve_builtin_cg.inc"
6412 #include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6413 #undef GET_SVE_LLVM_INTRINSIC_MAP
6414 };
6415 
6416 #undef SVEMAP1
6417 #undef SVEMAP2
6418 
6419 static bool NEONSIMDIntrinsicsProvenSorted = false;
6420 
6421 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6422 static bool AArch64SISDIntrinsicsProvenSorted = false;
6423 static bool AArch64SVEIntrinsicsProvenSorted = false;
6424 
6425 static const ARMVectorIntrinsicInfo *
6426 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6427                             unsigned BuiltinID, bool &MapProvenSorted) {
6428 
6429 #ifndef NDEBUG
6430   if (!MapProvenSorted) {
6431     assert(llvm::is_sorted(IntrinsicMap));
6432     MapProvenSorted = true;
6433   }
6434 #endif
6435 
6436   const ARMVectorIntrinsicInfo *Builtin =
6437       llvm::lower_bound(IntrinsicMap, BuiltinID);
6438 
6439   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6440     return Builtin;
6441 
6442   return nullptr;
6443 }
6444 
6445 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6446                                                    unsigned Modifier,
6447                                                    llvm::Type *ArgType,
6448                                                    const CallExpr *E) {
6449   int VectorSize = 0;
6450   if (Modifier & Use64BitVectors)
6451     VectorSize = 64;
6452   else if (Modifier & Use128BitVectors)
6453     VectorSize = 128;
6454 
6455   // Return type.
6456   SmallVector<llvm::Type *, 3> Tys;
6457   if (Modifier & AddRetType) {
6458     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6459     if (Modifier & VectorizeRetType)
6460       Ty = llvm::FixedVectorType::get(
6461           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6462 
6463     Tys.push_back(Ty);
6464   }
6465 
6466   // Arguments.
6467   if (Modifier & VectorizeArgTypes) {
6468     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6469     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6470   }
6471 
6472   if (Modifier & (Add1ArgType | Add2ArgTypes))
6473     Tys.push_back(ArgType);
6474 
6475   if (Modifier & Add2ArgTypes)
6476     Tys.push_back(ArgType);
6477 
6478   if (Modifier & InventFloatType)
6479     Tys.push_back(FloatTy);
6480 
6481   return CGM.getIntrinsic(IntrinsicID, Tys);
6482 }
6483 
6484 static Value *EmitCommonNeonSISDBuiltinExpr(
6485     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6486     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6487   unsigned BuiltinID = SISDInfo.BuiltinID;
6488   unsigned int Int = SISDInfo.LLVMIntrinsic;
6489   unsigned Modifier = SISDInfo.TypeModifier;
6490   const char *s = SISDInfo.NameHint;
6491 
6492   switch (BuiltinID) {
6493   case NEON::BI__builtin_neon_vcled_s64:
6494   case NEON::BI__builtin_neon_vcled_u64:
6495   case NEON::BI__builtin_neon_vcles_f32:
6496   case NEON::BI__builtin_neon_vcled_f64:
6497   case NEON::BI__builtin_neon_vcltd_s64:
6498   case NEON::BI__builtin_neon_vcltd_u64:
6499   case NEON::BI__builtin_neon_vclts_f32:
6500   case NEON::BI__builtin_neon_vcltd_f64:
6501   case NEON::BI__builtin_neon_vcales_f32:
6502   case NEON::BI__builtin_neon_vcaled_f64:
6503   case NEON::BI__builtin_neon_vcalts_f32:
6504   case NEON::BI__builtin_neon_vcaltd_f64:
6505     // Only one direction of comparisons actually exist, cmle is actually a cmge
6506     // with swapped operands. The table gives us the right intrinsic but we
6507     // still need to do the swap.
6508     std::swap(Ops[0], Ops[1]);
6509     break;
6510   }
6511 
6512   assert(Int && "Generic code assumes a valid intrinsic");
6513 
6514   // Determine the type(s) of this overloaded AArch64 intrinsic.
6515   const Expr *Arg = E->getArg(0);
6516   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6517   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6518 
6519   int j = 0;
6520   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6521   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6522        ai != ae; ++ai, ++j) {
6523     llvm::Type *ArgTy = ai->getType();
6524     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6525              ArgTy->getPrimitiveSizeInBits())
6526       continue;
6527 
6528     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6529     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6530     // it before inserting.
6531     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6532         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6533     Ops[j] =
6534         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6535   }
6536 
6537   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6538   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6539   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6540       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6541     return CGF.Builder.CreateExtractElement(Result, C0);
6542 
6543   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6544 }
6545 
6546 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6547     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6548     const char *NameHint, unsigned Modifier, const CallExpr *E,
6549     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6550     llvm::Triple::ArchType Arch) {
6551   // Get the last argument, which specifies the vector type.
6552   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6553   Optional<llvm::APSInt> NeonTypeConst =
6554       Arg->getIntegerConstantExpr(getContext());
6555   if (!NeonTypeConst)
6556     return nullptr;
6557 
6558   // Determine the type of this overloaded NEON intrinsic.
6559   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6560   bool Usgn = Type.isUnsigned();
6561   bool Quad = Type.isQuad();
6562   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6563   const bool AllowBFloatArgsAndRet =
6564       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6565 
6566   llvm::FixedVectorType *VTy =
6567       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6568   llvm::Type *Ty = VTy;
6569   if (!Ty)
6570     return nullptr;
6571 
6572   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6573     return Builder.getInt32(addr.getAlignment().getQuantity());
6574   };
6575 
6576   unsigned Int = LLVMIntrinsic;
6577   if ((Modifier & UnsignedAlts) && !Usgn)
6578     Int = AltLLVMIntrinsic;
6579 
6580   switch (BuiltinID) {
6581   default: break;
6582   case NEON::BI__builtin_neon_splat_lane_v:
6583   case NEON::BI__builtin_neon_splat_laneq_v:
6584   case NEON::BI__builtin_neon_splatq_lane_v:
6585   case NEON::BI__builtin_neon_splatq_laneq_v: {
6586     auto NumElements = VTy->getElementCount();
6587     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6588       NumElements = NumElements * 2;
6589     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6590       NumElements = NumElements.divideCoefficientBy(2);
6591 
6592     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6593     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6594   }
6595   case NEON::BI__builtin_neon_vpadd_v:
6596   case NEON::BI__builtin_neon_vpaddq_v:
6597     // We don't allow fp/int overloading of intrinsics.
6598     if (VTy->getElementType()->isFloatingPointTy() &&
6599         Int == Intrinsic::aarch64_neon_addp)
6600       Int = Intrinsic::aarch64_neon_faddp;
6601     break;
6602   case NEON::BI__builtin_neon_vabs_v:
6603   case NEON::BI__builtin_neon_vabsq_v:
6604     if (VTy->getElementType()->isFloatingPointTy())
6605       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6606     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6607   case NEON::BI__builtin_neon_vadd_v:
6608   case NEON::BI__builtin_neon_vaddq_v: {
6609     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6610     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6611     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6612     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
6613     return Builder.CreateBitCast(Ops[0], Ty);
6614   }
6615   case NEON::BI__builtin_neon_vaddhn_v: {
6616     llvm::FixedVectorType *SrcTy =
6617         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6618 
6619     // %sum = add <4 x i32> %lhs, %rhs
6620     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6621     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6622     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6623 
6624     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6625     Constant *ShiftAmt =
6626         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6627     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6628 
6629     // %res = trunc <4 x i32> %high to <4 x i16>
6630     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6631   }
6632   case NEON::BI__builtin_neon_vcale_v:
6633   case NEON::BI__builtin_neon_vcaleq_v:
6634   case NEON::BI__builtin_neon_vcalt_v:
6635   case NEON::BI__builtin_neon_vcaltq_v:
6636     std::swap(Ops[0], Ops[1]);
6637     LLVM_FALLTHROUGH;
6638   case NEON::BI__builtin_neon_vcage_v:
6639   case NEON::BI__builtin_neon_vcageq_v:
6640   case NEON::BI__builtin_neon_vcagt_v:
6641   case NEON::BI__builtin_neon_vcagtq_v: {
6642     llvm::Type *Ty;
6643     switch (VTy->getScalarSizeInBits()) {
6644     default: llvm_unreachable("unexpected type");
6645     case 32:
6646       Ty = FloatTy;
6647       break;
6648     case 64:
6649       Ty = DoubleTy;
6650       break;
6651     case 16:
6652       Ty = HalfTy;
6653       break;
6654     }
6655     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6656     llvm::Type *Tys[] = { VTy, VecFlt };
6657     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6658     return EmitNeonCall(F, Ops, NameHint);
6659   }
6660   case NEON::BI__builtin_neon_vceqz_v:
6661   case NEON::BI__builtin_neon_vceqzq_v:
6662     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6663                                          ICmpInst::ICMP_EQ, "vceqz");
6664   case NEON::BI__builtin_neon_vcgez_v:
6665   case NEON::BI__builtin_neon_vcgezq_v:
6666     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6667                                          ICmpInst::ICMP_SGE, "vcgez");
6668   case NEON::BI__builtin_neon_vclez_v:
6669   case NEON::BI__builtin_neon_vclezq_v:
6670     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6671                                          ICmpInst::ICMP_SLE, "vclez");
6672   case NEON::BI__builtin_neon_vcgtz_v:
6673   case NEON::BI__builtin_neon_vcgtzq_v:
6674     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6675                                          ICmpInst::ICMP_SGT, "vcgtz");
6676   case NEON::BI__builtin_neon_vcltz_v:
6677   case NEON::BI__builtin_neon_vcltzq_v:
6678     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6679                                          ICmpInst::ICMP_SLT, "vcltz");
6680   case NEON::BI__builtin_neon_vclz_v:
6681   case NEON::BI__builtin_neon_vclzq_v:
6682     // We generate target-independent intrinsic, which needs a second argument
6683     // for whether or not clz of zero is undefined; on ARM it isn't.
6684     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6685     break;
6686   case NEON::BI__builtin_neon_vcvt_f32_v:
6687   case NEON::BI__builtin_neon_vcvtq_f32_v:
6688     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6689     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6690                      HasLegalHalfType);
6691     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6692                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6693   case NEON::BI__builtin_neon_vcvt_f16_v:
6694   case NEON::BI__builtin_neon_vcvtq_f16_v:
6695     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6696     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6697                      HasLegalHalfType);
6698     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6699                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6700   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6701   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6702   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6703   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6704   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6705   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6706     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6707     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6708     Function *F = CGM.getIntrinsic(Int, Tys);
6709     return EmitNeonCall(F, Ops, "vcvt_n");
6710   }
6711   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6712   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6713   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6714   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6715   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6716   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6717   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6718   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6719   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6720   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6721   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6722   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6723     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6724     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6725     return EmitNeonCall(F, Ops, "vcvt_n");
6726   }
6727   case NEON::BI__builtin_neon_vcvt_s32_v:
6728   case NEON::BI__builtin_neon_vcvt_u32_v:
6729   case NEON::BI__builtin_neon_vcvt_s64_v:
6730   case NEON::BI__builtin_neon_vcvt_u64_v:
6731   case NEON::BI__builtin_neon_vcvt_s16_v:
6732   case NEON::BI__builtin_neon_vcvt_u16_v:
6733   case NEON::BI__builtin_neon_vcvtq_s32_v:
6734   case NEON::BI__builtin_neon_vcvtq_u32_v:
6735   case NEON::BI__builtin_neon_vcvtq_s64_v:
6736   case NEON::BI__builtin_neon_vcvtq_u64_v:
6737   case NEON::BI__builtin_neon_vcvtq_s16_v:
6738   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6739     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6740     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6741                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6742   }
6743   case NEON::BI__builtin_neon_vcvta_s16_v:
6744   case NEON::BI__builtin_neon_vcvta_s32_v:
6745   case NEON::BI__builtin_neon_vcvta_s64_v:
6746   case NEON::BI__builtin_neon_vcvta_u16_v:
6747   case NEON::BI__builtin_neon_vcvta_u32_v:
6748   case NEON::BI__builtin_neon_vcvta_u64_v:
6749   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6750   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6751   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6752   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6753   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6754   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6755   case NEON::BI__builtin_neon_vcvtn_s16_v:
6756   case NEON::BI__builtin_neon_vcvtn_s32_v:
6757   case NEON::BI__builtin_neon_vcvtn_s64_v:
6758   case NEON::BI__builtin_neon_vcvtn_u16_v:
6759   case NEON::BI__builtin_neon_vcvtn_u32_v:
6760   case NEON::BI__builtin_neon_vcvtn_u64_v:
6761   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6762   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6763   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6764   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6765   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6766   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6767   case NEON::BI__builtin_neon_vcvtp_s16_v:
6768   case NEON::BI__builtin_neon_vcvtp_s32_v:
6769   case NEON::BI__builtin_neon_vcvtp_s64_v:
6770   case NEON::BI__builtin_neon_vcvtp_u16_v:
6771   case NEON::BI__builtin_neon_vcvtp_u32_v:
6772   case NEON::BI__builtin_neon_vcvtp_u64_v:
6773   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6774   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6775   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6776   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6777   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6778   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6779   case NEON::BI__builtin_neon_vcvtm_s16_v:
6780   case NEON::BI__builtin_neon_vcvtm_s32_v:
6781   case NEON::BI__builtin_neon_vcvtm_s64_v:
6782   case NEON::BI__builtin_neon_vcvtm_u16_v:
6783   case NEON::BI__builtin_neon_vcvtm_u32_v:
6784   case NEON::BI__builtin_neon_vcvtm_u64_v:
6785   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6786   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6787   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6788   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6789   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6790   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6791     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6792     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6793   }
6794   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6795     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6796     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6797 
6798   }
6799   case NEON::BI__builtin_neon_vext_v:
6800   case NEON::BI__builtin_neon_vextq_v: {
6801     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6802     SmallVector<int, 16> Indices;
6803     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6804       Indices.push_back(i+CV);
6805 
6806     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6807     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6808     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6809   }
6810   case NEON::BI__builtin_neon_vfma_v:
6811   case NEON::BI__builtin_neon_vfmaq_v: {
6812     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6813     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6814     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6815 
6816     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6817     return emitCallMaybeConstrainedFPBuiltin(
6818         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6819         {Ops[1], Ops[2], Ops[0]});
6820   }
6821   case NEON::BI__builtin_neon_vld1_v:
6822   case NEON::BI__builtin_neon_vld1q_v: {
6823     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6824     Ops.push_back(getAlignmentValue32(PtrOp0));
6825     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6826   }
6827   case NEON::BI__builtin_neon_vld1_x2_v:
6828   case NEON::BI__builtin_neon_vld1q_x2_v:
6829   case NEON::BI__builtin_neon_vld1_x3_v:
6830   case NEON::BI__builtin_neon_vld1q_x3_v:
6831   case NEON::BI__builtin_neon_vld1_x4_v:
6832   case NEON::BI__builtin_neon_vld1q_x4_v: {
6833     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6834     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6835     llvm::Type *Tys[2] = { VTy, PTy };
6836     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6837     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6838     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6839     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6840     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6841   }
6842   case NEON::BI__builtin_neon_vld2_v:
6843   case NEON::BI__builtin_neon_vld2q_v:
6844   case NEON::BI__builtin_neon_vld3_v:
6845   case NEON::BI__builtin_neon_vld3q_v:
6846   case NEON::BI__builtin_neon_vld4_v:
6847   case NEON::BI__builtin_neon_vld4q_v:
6848   case NEON::BI__builtin_neon_vld2_dup_v:
6849   case NEON::BI__builtin_neon_vld2q_dup_v:
6850   case NEON::BI__builtin_neon_vld3_dup_v:
6851   case NEON::BI__builtin_neon_vld3q_dup_v:
6852   case NEON::BI__builtin_neon_vld4_dup_v:
6853   case NEON::BI__builtin_neon_vld4q_dup_v: {
6854     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6855     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6856     Value *Align = getAlignmentValue32(PtrOp1);
6857     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6858     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6859     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6860     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6861   }
6862   case NEON::BI__builtin_neon_vld1_dup_v:
6863   case NEON::BI__builtin_neon_vld1q_dup_v: {
6864     Value *V = UndefValue::get(Ty);
6865     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6866     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6867     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6868     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6869     return EmitNeonSplat(Ops[0], CI);
6870   }
6871   case NEON::BI__builtin_neon_vld2_lane_v:
6872   case NEON::BI__builtin_neon_vld2q_lane_v:
6873   case NEON::BI__builtin_neon_vld3_lane_v:
6874   case NEON::BI__builtin_neon_vld3q_lane_v:
6875   case NEON::BI__builtin_neon_vld4_lane_v:
6876   case NEON::BI__builtin_neon_vld4q_lane_v: {
6877     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6878     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6879     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6880       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6881     Ops.push_back(getAlignmentValue32(PtrOp1));
6882     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6883     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6884     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6885     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6886   }
6887   case NEON::BI__builtin_neon_vmovl_v: {
6888     llvm::FixedVectorType *DTy =
6889         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6890     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6891     if (Usgn)
6892       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6893     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6894   }
6895   case NEON::BI__builtin_neon_vmovn_v: {
6896     llvm::FixedVectorType *QTy =
6897         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6898     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6899     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6900   }
6901   case NEON::BI__builtin_neon_vmull_v:
6902     // FIXME: the integer vmull operations could be emitted in terms of pure
6903     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6904     // hoisting the exts outside loops. Until global ISel comes along that can
6905     // see through such movement this leads to bad CodeGen. So we need an
6906     // intrinsic for now.
6907     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6908     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6909     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6910   case NEON::BI__builtin_neon_vpadal_v:
6911   case NEON::BI__builtin_neon_vpadalq_v: {
6912     // The source operand type has twice as many elements of half the size.
6913     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6914     llvm::Type *EltTy =
6915       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6916     auto *NarrowTy =
6917         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6918     llvm::Type *Tys[2] = { Ty, NarrowTy };
6919     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6920   }
6921   case NEON::BI__builtin_neon_vpaddl_v:
6922   case NEON::BI__builtin_neon_vpaddlq_v: {
6923     // The source operand type has twice as many elements of half the size.
6924     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6925     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6926     auto *NarrowTy =
6927         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6928     llvm::Type *Tys[2] = { Ty, NarrowTy };
6929     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6930   }
6931   case NEON::BI__builtin_neon_vqdmlal_v:
6932   case NEON::BI__builtin_neon_vqdmlsl_v: {
6933     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6934     Ops[1] =
6935         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6936     Ops.resize(2);
6937     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6938   }
6939   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6940   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6941   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6942   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6943     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6944     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6945         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6946       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6947                                        RTy->getNumElements() * 2);
6948     llvm::Type *Tys[2] = {
6949         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6950                                              /*isQuad*/ false))};
6951     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6952   }
6953   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6954   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6955   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6956   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6957     llvm::Type *Tys[2] = {
6958         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6959                                             /*isQuad*/ true))};
6960     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6961   }
6962   case NEON::BI__builtin_neon_vqshl_n_v:
6963   case NEON::BI__builtin_neon_vqshlq_n_v:
6964     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6965                         1, false);
6966   case NEON::BI__builtin_neon_vqshlu_n_v:
6967   case NEON::BI__builtin_neon_vqshluq_n_v:
6968     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6969                         1, false);
6970   case NEON::BI__builtin_neon_vrecpe_v:
6971   case NEON::BI__builtin_neon_vrecpeq_v:
6972   case NEON::BI__builtin_neon_vrsqrte_v:
6973   case NEON::BI__builtin_neon_vrsqrteq_v:
6974     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6975     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6976   case NEON::BI__builtin_neon_vrndi_v:
6977   case NEON::BI__builtin_neon_vrndiq_v:
6978     Int = Builder.getIsFPConstrained()
6979               ? Intrinsic::experimental_constrained_nearbyint
6980               : Intrinsic::nearbyint;
6981     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6982   case NEON::BI__builtin_neon_vrshr_n_v:
6983   case NEON::BI__builtin_neon_vrshrq_n_v:
6984     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6985                         1, true);
6986   case NEON::BI__builtin_neon_vsha512hq_v:
6987   case NEON::BI__builtin_neon_vsha512h2q_v:
6988   case NEON::BI__builtin_neon_vsha512su0q_v:
6989   case NEON::BI__builtin_neon_vsha512su1q_v: {
6990     Function *F = CGM.getIntrinsic(Int);
6991     return EmitNeonCall(F, Ops, "");
6992   }
6993   case NEON::BI__builtin_neon_vshl_n_v:
6994   case NEON::BI__builtin_neon_vshlq_n_v:
6995     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6996     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6997                              "vshl_n");
6998   case NEON::BI__builtin_neon_vshll_n_v: {
6999     llvm::FixedVectorType *SrcTy =
7000         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7001     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7002     if (Usgn)
7003       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7004     else
7005       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7006     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7007     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7008   }
7009   case NEON::BI__builtin_neon_vshrn_n_v: {
7010     llvm::FixedVectorType *SrcTy =
7011         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7012     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7013     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7014     if (Usgn)
7015       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7016     else
7017       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7018     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7019   }
7020   case NEON::BI__builtin_neon_vshr_n_v:
7021   case NEON::BI__builtin_neon_vshrq_n_v:
7022     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7023   case NEON::BI__builtin_neon_vst1_v:
7024   case NEON::BI__builtin_neon_vst1q_v:
7025   case NEON::BI__builtin_neon_vst2_v:
7026   case NEON::BI__builtin_neon_vst2q_v:
7027   case NEON::BI__builtin_neon_vst3_v:
7028   case NEON::BI__builtin_neon_vst3q_v:
7029   case NEON::BI__builtin_neon_vst4_v:
7030   case NEON::BI__builtin_neon_vst4q_v:
7031   case NEON::BI__builtin_neon_vst2_lane_v:
7032   case NEON::BI__builtin_neon_vst2q_lane_v:
7033   case NEON::BI__builtin_neon_vst3_lane_v:
7034   case NEON::BI__builtin_neon_vst3q_lane_v:
7035   case NEON::BI__builtin_neon_vst4_lane_v:
7036   case NEON::BI__builtin_neon_vst4q_lane_v: {
7037     llvm::Type *Tys[] = {Int8PtrTy, Ty};
7038     Ops.push_back(getAlignmentValue32(PtrOp0));
7039     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7040   }
7041   case NEON::BI__builtin_neon_vsm3partw1q_v:
7042   case NEON::BI__builtin_neon_vsm3partw2q_v:
7043   case NEON::BI__builtin_neon_vsm3ss1q_v:
7044   case NEON::BI__builtin_neon_vsm4ekeyq_v:
7045   case NEON::BI__builtin_neon_vsm4eq_v: {
7046     Function *F = CGM.getIntrinsic(Int);
7047     return EmitNeonCall(F, Ops, "");
7048   }
7049   case NEON::BI__builtin_neon_vsm3tt1aq_v:
7050   case NEON::BI__builtin_neon_vsm3tt1bq_v:
7051   case NEON::BI__builtin_neon_vsm3tt2aq_v:
7052   case NEON::BI__builtin_neon_vsm3tt2bq_v: {
7053     Function *F = CGM.getIntrinsic(Int);
7054     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7055     return EmitNeonCall(F, Ops, "");
7056   }
7057   case NEON::BI__builtin_neon_vst1_x2_v:
7058   case NEON::BI__builtin_neon_vst1q_x2_v:
7059   case NEON::BI__builtin_neon_vst1_x3_v:
7060   case NEON::BI__builtin_neon_vst1q_x3_v:
7061   case NEON::BI__builtin_neon_vst1_x4_v:
7062   case NEON::BI__builtin_neon_vst1q_x4_v: {
7063     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7064     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7065     // in AArch64 it comes last. We may want to stick to one or another.
7066     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7067         Arch == llvm::Triple::aarch64_32) {
7068       llvm::Type *Tys[2] = { VTy, PTy };
7069       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7070       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7071     }
7072     llvm::Type *Tys[2] = { PTy, VTy };
7073     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7074   }
7075   case NEON::BI__builtin_neon_vsubhn_v: {
7076     llvm::FixedVectorType *SrcTy =
7077         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7078 
7079     // %sum = add <4 x i32> %lhs, %rhs
7080     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7081     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7082     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7083 
7084     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7085     Constant *ShiftAmt =
7086         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7087     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7088 
7089     // %res = trunc <4 x i32> %high to <4 x i16>
7090     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7091   }
7092   case NEON::BI__builtin_neon_vtrn_v:
7093   case NEON::BI__builtin_neon_vtrnq_v: {
7094     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7095     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7096     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7097     Value *SV = nullptr;
7098 
7099     for (unsigned vi = 0; vi != 2; ++vi) {
7100       SmallVector<int, 16> Indices;
7101       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7102         Indices.push_back(i+vi);
7103         Indices.push_back(i+e+vi);
7104       }
7105       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7106       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7107       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7108     }
7109     return SV;
7110   }
7111   case NEON::BI__builtin_neon_vtst_v:
7112   case NEON::BI__builtin_neon_vtstq_v: {
7113     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7114     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7115     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7116     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7117                                 ConstantAggregateZero::get(Ty));
7118     return Builder.CreateSExt(Ops[0], Ty, "vtst");
7119   }
7120   case NEON::BI__builtin_neon_vuzp_v:
7121   case NEON::BI__builtin_neon_vuzpq_v: {
7122     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7123     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7124     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7125     Value *SV = nullptr;
7126 
7127     for (unsigned vi = 0; vi != 2; ++vi) {
7128       SmallVector<int, 16> Indices;
7129       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7130         Indices.push_back(2*i+vi);
7131 
7132       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7133       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7134       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7135     }
7136     return SV;
7137   }
7138   case NEON::BI__builtin_neon_vxarq_v: {
7139     Function *F = CGM.getIntrinsic(Int);
7140     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7141     return EmitNeonCall(F, Ops, "");
7142   }
7143   case NEON::BI__builtin_neon_vzip_v:
7144   case NEON::BI__builtin_neon_vzipq_v: {
7145     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7146     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7147     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7148     Value *SV = nullptr;
7149 
7150     for (unsigned vi = 0; vi != 2; ++vi) {
7151       SmallVector<int, 16> Indices;
7152       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7153         Indices.push_back((i + vi*e) >> 1);
7154         Indices.push_back(((i + vi*e) >> 1)+e);
7155       }
7156       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7157       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7158       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7159     }
7160     return SV;
7161   }
7162   case NEON::BI__builtin_neon_vdot_v:
7163   case NEON::BI__builtin_neon_vdotq_v: {
7164     auto *InputTy =
7165         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7166     llvm::Type *Tys[2] = { Ty, InputTy };
7167     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7168     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7169   }
7170   case NEON::BI__builtin_neon_vfmlal_low_v:
7171   case NEON::BI__builtin_neon_vfmlalq_low_v: {
7172     auto *InputTy =
7173         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7174     llvm::Type *Tys[2] = { Ty, InputTy };
7175     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7176   }
7177   case NEON::BI__builtin_neon_vfmlsl_low_v:
7178   case NEON::BI__builtin_neon_vfmlslq_low_v: {
7179     auto *InputTy =
7180         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7181     llvm::Type *Tys[2] = { Ty, InputTy };
7182     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7183   }
7184   case NEON::BI__builtin_neon_vfmlal_high_v:
7185   case NEON::BI__builtin_neon_vfmlalq_high_v: {
7186     auto *InputTy =
7187         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7188     llvm::Type *Tys[2] = { Ty, InputTy };
7189     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7190   }
7191   case NEON::BI__builtin_neon_vfmlsl_high_v:
7192   case NEON::BI__builtin_neon_vfmlslq_high_v: {
7193     auto *InputTy =
7194         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7195     llvm::Type *Tys[2] = { Ty, InputTy };
7196     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7197   }
7198   case NEON::BI__builtin_neon_vmmlaq_v: {
7199     auto *InputTy =
7200         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7201     llvm::Type *Tys[2] = { Ty, InputTy };
7202     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7203     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7204   }
7205   case NEON::BI__builtin_neon_vusmmlaq_v: {
7206     auto *InputTy =
7207         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7208     llvm::Type *Tys[2] = { Ty, InputTy };
7209     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7210   }
7211   case NEON::BI__builtin_neon_vusdot_v:
7212   case NEON::BI__builtin_neon_vusdotq_v: {
7213     auto *InputTy =
7214         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7215     llvm::Type *Tys[2] = { Ty, InputTy };
7216     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7217   }
7218   case NEON::BI__builtin_neon_vbfdot_v:
7219   case NEON::BI__builtin_neon_vbfdotq_v: {
7220     llvm::Type *InputTy =
7221         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7222     llvm::Type *Tys[2] = { Ty, InputTy };
7223     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7224   }
7225   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7226     llvm::Type *Tys[1] = { Ty };
7227     Function *F = CGM.getIntrinsic(Int, Tys);
7228     return EmitNeonCall(F, Ops, "vcvtfp2bf");
7229   }
7230 
7231   }
7232 
7233   assert(Int && "Expected valid intrinsic number");
7234 
7235   // Determine the type(s) of this overloaded AArch64 intrinsic.
7236   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7237 
7238   Value *Result = EmitNeonCall(F, Ops, NameHint);
7239   llvm::Type *ResultType = ConvertType(E->getType());
7240   // AArch64 intrinsic one-element vector type cast to
7241   // scalar type expected by the builtin
7242   return Builder.CreateBitCast(Result, ResultType, NameHint);
7243 }
7244 
7245 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7246     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7247     const CmpInst::Predicate Ip, const Twine &Name) {
7248   llvm::Type *OTy = Op->getType();
7249 
7250   // FIXME: this is utterly horrific. We should not be looking at previous
7251   // codegen context to find out what needs doing. Unfortunately TableGen
7252   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7253   // (etc).
7254   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7255     OTy = BI->getOperand(0)->getType();
7256 
7257   Op = Builder.CreateBitCast(Op, OTy);
7258   if (OTy->getScalarType()->isFloatingPointTy()) {
7259     if (Fp == CmpInst::FCMP_OEQ)
7260       Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7261     else
7262       Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7263   } else {
7264     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7265   }
7266   return Builder.CreateSExt(Op, Ty, Name);
7267 }
7268 
7269 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7270                                  Value *ExtOp, Value *IndexOp,
7271                                  llvm::Type *ResTy, unsigned IntID,
7272                                  const char *Name) {
7273   SmallVector<Value *, 2> TblOps;
7274   if (ExtOp)
7275     TblOps.push_back(ExtOp);
7276 
7277   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7278   SmallVector<int, 16> Indices;
7279   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7280   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7281     Indices.push_back(2*i);
7282     Indices.push_back(2*i+1);
7283   }
7284 
7285   int PairPos = 0, End = Ops.size() - 1;
7286   while (PairPos < End) {
7287     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7288                                                      Ops[PairPos+1], Indices,
7289                                                      Name));
7290     PairPos += 2;
7291   }
7292 
7293   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7294   // of the 128-bit lookup table with zero.
7295   if (PairPos == End) {
7296     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7297     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7298                                                      ZeroTbl, Indices, Name));
7299   }
7300 
7301   Function *TblF;
7302   TblOps.push_back(IndexOp);
7303   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7304 
7305   return CGF.EmitNeonCall(TblF, TblOps, Name);
7306 }
7307 
7308 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7309   unsigned Value;
7310   switch (BuiltinID) {
7311   default:
7312     return nullptr;
7313   case clang::ARM::BI__builtin_arm_nop:
7314     Value = 0;
7315     break;
7316   case clang::ARM::BI__builtin_arm_yield:
7317   case clang::ARM::BI__yield:
7318     Value = 1;
7319     break;
7320   case clang::ARM::BI__builtin_arm_wfe:
7321   case clang::ARM::BI__wfe:
7322     Value = 2;
7323     break;
7324   case clang::ARM::BI__builtin_arm_wfi:
7325   case clang::ARM::BI__wfi:
7326     Value = 3;
7327     break;
7328   case clang::ARM::BI__builtin_arm_sev:
7329   case clang::ARM::BI__sev:
7330     Value = 4;
7331     break;
7332   case clang::ARM::BI__builtin_arm_sevl:
7333   case clang::ARM::BI__sevl:
7334     Value = 5;
7335     break;
7336   }
7337 
7338   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7339                             llvm::ConstantInt::get(Int32Ty, Value));
7340 }
7341 
7342 enum SpecialRegisterAccessKind {
7343   NormalRead,
7344   VolatileRead,
7345   Write,
7346 };
7347 
7348 // Generates the IR for the read/write special register builtin,
7349 // ValueType is the type of the value that is to be written or read,
7350 // RegisterType is the type of the register being written to or read from.
7351 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7352                                          const CallExpr *E,
7353                                          llvm::Type *RegisterType,
7354                                          llvm::Type *ValueType,
7355                                          SpecialRegisterAccessKind AccessKind,
7356                                          StringRef SysReg = "") {
7357   // write and register intrinsics only support 32 and 64 bit operations.
7358   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
7359           && "Unsupported size for register.");
7360 
7361   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7362   CodeGen::CodeGenModule &CGM = CGF.CGM;
7363   LLVMContext &Context = CGM.getLLVMContext();
7364 
7365   if (SysReg.empty()) {
7366     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7367     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7368   }
7369 
7370   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7371   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7372   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7373 
7374   llvm::Type *Types[] = { RegisterType };
7375 
7376   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7377   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7378             && "Can't fit 64-bit value in 32-bit register");
7379 
7380   if (AccessKind != Write) {
7381     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7382     llvm::Function *F = CGM.getIntrinsic(
7383         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7384                                    : llvm::Intrinsic::read_register,
7385         Types);
7386     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7387 
7388     if (MixedTypes)
7389       // Read into 64 bit register and then truncate result to 32 bit.
7390       return Builder.CreateTrunc(Call, ValueType);
7391 
7392     if (ValueType->isPointerTy())
7393       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7394       return Builder.CreateIntToPtr(Call, ValueType);
7395 
7396     return Call;
7397   }
7398 
7399   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7400   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7401   if (MixedTypes) {
7402     // Extend 32 bit write value to 64 bit to pass to write.
7403     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7404     return Builder.CreateCall(F, { Metadata, ArgValue });
7405   }
7406 
7407   if (ValueType->isPointerTy()) {
7408     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7409     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7410     return Builder.CreateCall(F, { Metadata, ArgValue });
7411   }
7412 
7413   return Builder.CreateCall(F, { Metadata, ArgValue });
7414 }
7415 
7416 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7417 /// argument that specifies the vector type.
7418 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7419   switch (BuiltinID) {
7420   default: break;
7421   case NEON::BI__builtin_neon_vget_lane_i8:
7422   case NEON::BI__builtin_neon_vget_lane_i16:
7423   case NEON::BI__builtin_neon_vget_lane_bf16:
7424   case NEON::BI__builtin_neon_vget_lane_i32:
7425   case NEON::BI__builtin_neon_vget_lane_i64:
7426   case NEON::BI__builtin_neon_vget_lane_f32:
7427   case NEON::BI__builtin_neon_vgetq_lane_i8:
7428   case NEON::BI__builtin_neon_vgetq_lane_i16:
7429   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7430   case NEON::BI__builtin_neon_vgetq_lane_i32:
7431   case NEON::BI__builtin_neon_vgetq_lane_i64:
7432   case NEON::BI__builtin_neon_vgetq_lane_f32:
7433   case NEON::BI__builtin_neon_vduph_lane_bf16:
7434   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7435   case NEON::BI__builtin_neon_vset_lane_i8:
7436   case NEON::BI__builtin_neon_vset_lane_i16:
7437   case NEON::BI__builtin_neon_vset_lane_bf16:
7438   case NEON::BI__builtin_neon_vset_lane_i32:
7439   case NEON::BI__builtin_neon_vset_lane_i64:
7440   case NEON::BI__builtin_neon_vset_lane_f32:
7441   case NEON::BI__builtin_neon_vsetq_lane_i8:
7442   case NEON::BI__builtin_neon_vsetq_lane_i16:
7443   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7444   case NEON::BI__builtin_neon_vsetq_lane_i32:
7445   case NEON::BI__builtin_neon_vsetq_lane_i64:
7446   case NEON::BI__builtin_neon_vsetq_lane_f32:
7447   case NEON::BI__builtin_neon_vsha1h_u32:
7448   case NEON::BI__builtin_neon_vsha1cq_u32:
7449   case NEON::BI__builtin_neon_vsha1pq_u32:
7450   case NEON::BI__builtin_neon_vsha1mq_u32:
7451   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7452   case clang::ARM::BI_MoveToCoprocessor:
7453   case clang::ARM::BI_MoveToCoprocessor2:
7454     return false;
7455   }
7456   return true;
7457 }
7458 
7459 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7460                                            const CallExpr *E,
7461                                            ReturnValueSlot ReturnValue,
7462                                            llvm::Triple::ArchType Arch) {
7463   if (auto Hint = GetValueForARMHint(BuiltinID))
7464     return Hint;
7465 
7466   if (BuiltinID == clang::ARM::BI__emit) {
7467     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7468     llvm::FunctionType *FTy =
7469         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7470 
7471     Expr::EvalResult Result;
7472     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7473       llvm_unreachable("Sema will ensure that the parameter is constant");
7474 
7475     llvm::APSInt Value = Result.Val.getInt();
7476     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7477 
7478     llvm::InlineAsm *Emit =
7479         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7480                                  /*hasSideEffects=*/true)
7481                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7482                                  /*hasSideEffects=*/true);
7483 
7484     return Builder.CreateCall(Emit);
7485   }
7486 
7487   if (BuiltinID == clang::ARM::BI__builtin_arm_dbg) {
7488     Value *Option = EmitScalarExpr(E->getArg(0));
7489     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7490   }
7491 
7492   if (BuiltinID == clang::ARM::BI__builtin_arm_prefetch) {
7493     Value *Address = EmitScalarExpr(E->getArg(0));
7494     Value *RW      = EmitScalarExpr(E->getArg(1));
7495     Value *IsData  = EmitScalarExpr(E->getArg(2));
7496 
7497     // Locality is not supported on ARM target
7498     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7499 
7500     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7501     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7502   }
7503 
7504   if (BuiltinID == clang::ARM::BI__builtin_arm_rbit) {
7505     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7506     return Builder.CreateCall(
7507         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7508   }
7509 
7510   if (BuiltinID == clang::ARM::BI__builtin_arm_cls) {
7511     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7512     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7513   }
7514   if (BuiltinID == clang::ARM::BI__builtin_arm_cls64) {
7515     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7516     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7517                               "cls");
7518   }
7519 
7520   if (BuiltinID == clang::ARM::BI__clear_cache) {
7521     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7522     const FunctionDecl *FD = E->getDirectCallee();
7523     Value *Ops[2];
7524     for (unsigned i = 0; i < 2; i++)
7525       Ops[i] = EmitScalarExpr(E->getArg(i));
7526     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7527     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7528     StringRef Name = FD->getName();
7529     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7530   }
7531 
7532   if (BuiltinID == clang::ARM::BI__builtin_arm_mcrr ||
7533       BuiltinID == clang::ARM::BI__builtin_arm_mcrr2) {
7534     Function *F;
7535 
7536     switch (BuiltinID) {
7537     default: llvm_unreachable("unexpected builtin");
7538     case clang::ARM::BI__builtin_arm_mcrr:
7539       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7540       break;
7541     case clang::ARM::BI__builtin_arm_mcrr2:
7542       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7543       break;
7544     }
7545 
7546     // MCRR{2} instruction has 5 operands but
7547     // the intrinsic has 4 because Rt and Rt2
7548     // are represented as a single unsigned 64
7549     // bit integer in the intrinsic definition
7550     // but internally it's represented as 2 32
7551     // bit integers.
7552 
7553     Value *Coproc = EmitScalarExpr(E->getArg(0));
7554     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7555     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7556     Value *CRm = EmitScalarExpr(E->getArg(3));
7557 
7558     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7559     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7560     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7561     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7562 
7563     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7564   }
7565 
7566   if (BuiltinID == clang::ARM::BI__builtin_arm_mrrc ||
7567       BuiltinID == clang::ARM::BI__builtin_arm_mrrc2) {
7568     Function *F;
7569 
7570     switch (BuiltinID) {
7571     default: llvm_unreachable("unexpected builtin");
7572     case clang::ARM::BI__builtin_arm_mrrc:
7573       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7574       break;
7575     case clang::ARM::BI__builtin_arm_mrrc2:
7576       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7577       break;
7578     }
7579 
7580     Value *Coproc = EmitScalarExpr(E->getArg(0));
7581     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7582     Value *CRm  = EmitScalarExpr(E->getArg(2));
7583     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7584 
7585     // Returns an unsigned 64 bit integer, represented
7586     // as two 32 bit integers.
7587 
7588     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7589     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7590     Rt = Builder.CreateZExt(Rt, Int64Ty);
7591     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7592 
7593     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7594     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7595     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7596 
7597     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7598   }
7599 
7600   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrexd ||
7601       ((BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7602         BuiltinID == clang::ARM::BI__builtin_arm_ldaex) &&
7603        getContext().getTypeSize(E->getType()) == 64) ||
7604       BuiltinID == clang::ARM::BI__ldrexd) {
7605     Function *F;
7606 
7607     switch (BuiltinID) {
7608     default: llvm_unreachable("unexpected builtin");
7609     case clang::ARM::BI__builtin_arm_ldaex:
7610       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7611       break;
7612     case clang::ARM::BI__builtin_arm_ldrexd:
7613     case clang::ARM::BI__builtin_arm_ldrex:
7614     case clang::ARM::BI__ldrexd:
7615       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7616       break;
7617     }
7618 
7619     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7620     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7621                                     "ldrexd");
7622 
7623     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7624     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7625     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7626     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7627 
7628     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7629     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7630     Val = Builder.CreateOr(Val, Val1);
7631     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7632   }
7633 
7634   if (BuiltinID == clang::ARM::BI__builtin_arm_ldrex ||
7635       BuiltinID == clang::ARM::BI__builtin_arm_ldaex) {
7636     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7637 
7638     QualType Ty = E->getType();
7639     llvm::Type *RealResTy = ConvertType(Ty);
7640     llvm::Type *IntTy =
7641         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
7642     llvm::Type *PtrTy = IntTy->getPointerTo();
7643     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7644 
7645     Function *F = CGM.getIntrinsic(
7646         BuiltinID == clang::ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex
7647                                                        : Intrinsic::arm_ldrex,
7648         PtrTy);
7649     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7650     Val->addParamAttr(
7651         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
7652 
7653     if (RealResTy->isPointerTy())
7654       return Builder.CreateIntToPtr(Val, RealResTy);
7655     else {
7656       llvm::Type *IntResTy = llvm::IntegerType::get(
7657           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7658       return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
7659                                    RealResTy);
7660     }
7661   }
7662 
7663   if (BuiltinID == clang::ARM::BI__builtin_arm_strexd ||
7664       ((BuiltinID == clang::ARM::BI__builtin_arm_stlex ||
7665         BuiltinID == clang::ARM::BI__builtin_arm_strex) &&
7666        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7667     Function *F = CGM.getIntrinsic(
7668         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd
7669                                                        : Intrinsic::arm_strexd);
7670     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7671 
7672     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7673     Value *Val = EmitScalarExpr(E->getArg(0));
7674     Builder.CreateStore(Val, Tmp);
7675 
7676     Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
7677     Val = Builder.CreateLoad(LdPtr);
7678 
7679     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7680     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7681     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7682     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7683   }
7684 
7685   if (BuiltinID == clang::ARM::BI__builtin_arm_strex ||
7686       BuiltinID == clang::ARM::BI__builtin_arm_stlex) {
7687     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7688     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7689 
7690     QualType Ty = E->getArg(0)->getType();
7691     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7692                                                  getContext().getTypeSize(Ty));
7693     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7694 
7695     if (StoreVal->getType()->isPointerTy())
7696       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7697     else {
7698       llvm::Type *IntTy = llvm::IntegerType::get(
7699           getLLVMContext(),
7700           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7701       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7702       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7703     }
7704 
7705     Function *F = CGM.getIntrinsic(
7706         BuiltinID == clang::ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex
7707                                                        : Intrinsic::arm_strex,
7708         StoreAddr->getType());
7709 
7710     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7711     CI->addParamAttr(
7712         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
7713     return CI;
7714   }
7715 
7716   if (BuiltinID == clang::ARM::BI__builtin_arm_clrex) {
7717     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7718     return Builder.CreateCall(F);
7719   }
7720 
7721   // CRC32
7722   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7723   switch (BuiltinID) {
7724   case clang::ARM::BI__builtin_arm_crc32b:
7725     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7726   case clang::ARM::BI__builtin_arm_crc32cb:
7727     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7728   case clang::ARM::BI__builtin_arm_crc32h:
7729     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7730   case clang::ARM::BI__builtin_arm_crc32ch:
7731     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7732   case clang::ARM::BI__builtin_arm_crc32w:
7733   case clang::ARM::BI__builtin_arm_crc32d:
7734     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7735   case clang::ARM::BI__builtin_arm_crc32cw:
7736   case clang::ARM::BI__builtin_arm_crc32cd:
7737     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7738   }
7739 
7740   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7741     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7742     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7743 
7744     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7745     // intrinsics, hence we need different codegen for these cases.
7746     if (BuiltinID == clang::ARM::BI__builtin_arm_crc32d ||
7747         BuiltinID == clang::ARM::BI__builtin_arm_crc32cd) {
7748       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7749       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7750       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7751       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7752 
7753       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7754       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7755       return Builder.CreateCall(F, {Res, Arg1b});
7756     } else {
7757       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7758 
7759       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7760       return Builder.CreateCall(F, {Arg0, Arg1});
7761     }
7762   }
7763 
7764   if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
7765       BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
7766       BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
7767       BuiltinID == clang::ARM::BI__builtin_arm_wsr ||
7768       BuiltinID == clang::ARM::BI__builtin_arm_wsr64 ||
7769       BuiltinID == clang::ARM::BI__builtin_arm_wsrp) {
7770 
7771     SpecialRegisterAccessKind AccessKind = Write;
7772     if (BuiltinID == clang::ARM::BI__builtin_arm_rsr ||
7773         BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
7774         BuiltinID == clang::ARM::BI__builtin_arm_rsrp)
7775       AccessKind = VolatileRead;
7776 
7777     bool IsPointerBuiltin = BuiltinID == clang::ARM::BI__builtin_arm_rsrp ||
7778                             BuiltinID == clang::ARM::BI__builtin_arm_wsrp;
7779 
7780     bool Is64Bit = BuiltinID == clang::ARM::BI__builtin_arm_rsr64 ||
7781                    BuiltinID == clang::ARM::BI__builtin_arm_wsr64;
7782 
7783     llvm::Type *ValueType;
7784     llvm::Type *RegisterType;
7785     if (IsPointerBuiltin) {
7786       ValueType = VoidPtrTy;
7787       RegisterType = Int32Ty;
7788     } else if (Is64Bit) {
7789       ValueType = RegisterType = Int64Ty;
7790     } else {
7791       ValueType = RegisterType = Int32Ty;
7792     }
7793 
7794     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7795                                       AccessKind);
7796   }
7797 
7798   if (BuiltinID == ARM::BI__builtin_sponentry) {
7799     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
7800     return Builder.CreateCall(F);
7801   }
7802 
7803   // Handle MSVC intrinsics before argument evaluation to prevent double
7804   // evaluation.
7805   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7806     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7807 
7808   // Deal with MVE builtins
7809   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7810     return Result;
7811   // Handle CDE builtins
7812   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7813     return Result;
7814 
7815   // Find out if any arguments are required to be integer constant
7816   // expressions.
7817   unsigned ICEArguments = 0;
7818   ASTContext::GetBuiltinTypeError Error;
7819   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7820   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7821 
7822   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7823     return Builder.getInt32(addr.getAlignment().getQuantity());
7824   };
7825 
7826   Address PtrOp0 = Address::invalid();
7827   Address PtrOp1 = Address::invalid();
7828   SmallVector<Value*, 4> Ops;
7829   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7830   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7831   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7832     if (i == 0) {
7833       switch (BuiltinID) {
7834       case NEON::BI__builtin_neon_vld1_v:
7835       case NEON::BI__builtin_neon_vld1q_v:
7836       case NEON::BI__builtin_neon_vld1q_lane_v:
7837       case NEON::BI__builtin_neon_vld1_lane_v:
7838       case NEON::BI__builtin_neon_vld1_dup_v:
7839       case NEON::BI__builtin_neon_vld1q_dup_v:
7840       case NEON::BI__builtin_neon_vst1_v:
7841       case NEON::BI__builtin_neon_vst1q_v:
7842       case NEON::BI__builtin_neon_vst1q_lane_v:
7843       case NEON::BI__builtin_neon_vst1_lane_v:
7844       case NEON::BI__builtin_neon_vst2_v:
7845       case NEON::BI__builtin_neon_vst2q_v:
7846       case NEON::BI__builtin_neon_vst2_lane_v:
7847       case NEON::BI__builtin_neon_vst2q_lane_v:
7848       case NEON::BI__builtin_neon_vst3_v:
7849       case NEON::BI__builtin_neon_vst3q_v:
7850       case NEON::BI__builtin_neon_vst3_lane_v:
7851       case NEON::BI__builtin_neon_vst3q_lane_v:
7852       case NEON::BI__builtin_neon_vst4_v:
7853       case NEON::BI__builtin_neon_vst4q_v:
7854       case NEON::BI__builtin_neon_vst4_lane_v:
7855       case NEON::BI__builtin_neon_vst4q_lane_v:
7856         // Get the alignment for the argument in addition to the value;
7857         // we'll use it later.
7858         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7859         Ops.push_back(PtrOp0.getPointer());
7860         continue;
7861       }
7862     }
7863     if (i == 1) {
7864       switch (BuiltinID) {
7865       case NEON::BI__builtin_neon_vld2_v:
7866       case NEON::BI__builtin_neon_vld2q_v:
7867       case NEON::BI__builtin_neon_vld3_v:
7868       case NEON::BI__builtin_neon_vld3q_v:
7869       case NEON::BI__builtin_neon_vld4_v:
7870       case NEON::BI__builtin_neon_vld4q_v:
7871       case NEON::BI__builtin_neon_vld2_lane_v:
7872       case NEON::BI__builtin_neon_vld2q_lane_v:
7873       case NEON::BI__builtin_neon_vld3_lane_v:
7874       case NEON::BI__builtin_neon_vld3q_lane_v:
7875       case NEON::BI__builtin_neon_vld4_lane_v:
7876       case NEON::BI__builtin_neon_vld4q_lane_v:
7877       case NEON::BI__builtin_neon_vld2_dup_v:
7878       case NEON::BI__builtin_neon_vld2q_dup_v:
7879       case NEON::BI__builtin_neon_vld3_dup_v:
7880       case NEON::BI__builtin_neon_vld3q_dup_v:
7881       case NEON::BI__builtin_neon_vld4_dup_v:
7882       case NEON::BI__builtin_neon_vld4q_dup_v:
7883         // Get the alignment for the argument in addition to the value;
7884         // we'll use it later.
7885         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7886         Ops.push_back(PtrOp1.getPointer());
7887         continue;
7888       }
7889     }
7890 
7891     if ((ICEArguments & (1 << i)) == 0) {
7892       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7893     } else {
7894       // If this is required to be a constant, constant fold it so that we know
7895       // that the generated intrinsic gets a ConstantInt.
7896       Ops.push_back(llvm::ConstantInt::get(
7897           getLLVMContext(),
7898           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7899     }
7900   }
7901 
7902   switch (BuiltinID) {
7903   default: break;
7904 
7905   case NEON::BI__builtin_neon_vget_lane_i8:
7906   case NEON::BI__builtin_neon_vget_lane_i16:
7907   case NEON::BI__builtin_neon_vget_lane_i32:
7908   case NEON::BI__builtin_neon_vget_lane_i64:
7909   case NEON::BI__builtin_neon_vget_lane_bf16:
7910   case NEON::BI__builtin_neon_vget_lane_f32:
7911   case NEON::BI__builtin_neon_vgetq_lane_i8:
7912   case NEON::BI__builtin_neon_vgetq_lane_i16:
7913   case NEON::BI__builtin_neon_vgetq_lane_i32:
7914   case NEON::BI__builtin_neon_vgetq_lane_i64:
7915   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7916   case NEON::BI__builtin_neon_vgetq_lane_f32:
7917   case NEON::BI__builtin_neon_vduph_lane_bf16:
7918   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7919     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7920 
7921   case NEON::BI__builtin_neon_vrndns_f32: {
7922     Value *Arg = EmitScalarExpr(E->getArg(0));
7923     llvm::Type *Tys[] = {Arg->getType()};
7924     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7925     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7926 
7927   case NEON::BI__builtin_neon_vset_lane_i8:
7928   case NEON::BI__builtin_neon_vset_lane_i16:
7929   case NEON::BI__builtin_neon_vset_lane_i32:
7930   case NEON::BI__builtin_neon_vset_lane_i64:
7931   case NEON::BI__builtin_neon_vset_lane_bf16:
7932   case NEON::BI__builtin_neon_vset_lane_f32:
7933   case NEON::BI__builtin_neon_vsetq_lane_i8:
7934   case NEON::BI__builtin_neon_vsetq_lane_i16:
7935   case NEON::BI__builtin_neon_vsetq_lane_i32:
7936   case NEON::BI__builtin_neon_vsetq_lane_i64:
7937   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7938   case NEON::BI__builtin_neon_vsetq_lane_f32:
7939     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7940 
7941   case NEON::BI__builtin_neon_vsha1h_u32:
7942     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7943                         "vsha1h");
7944   case NEON::BI__builtin_neon_vsha1cq_u32:
7945     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7946                         "vsha1h");
7947   case NEON::BI__builtin_neon_vsha1pq_u32:
7948     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7949                         "vsha1h");
7950   case NEON::BI__builtin_neon_vsha1mq_u32:
7951     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7952                         "vsha1h");
7953 
7954   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7955     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7956                         "vcvtbfp2bf");
7957   }
7958 
7959   // The ARM _MoveToCoprocessor builtins put the input register value as
7960   // the first argument, but the LLVM intrinsic expects it as the third one.
7961   case clang::ARM::BI_MoveToCoprocessor:
7962   case clang::ARM::BI_MoveToCoprocessor2: {
7963     Function *F = CGM.getIntrinsic(BuiltinID == clang::ARM::BI_MoveToCoprocessor
7964                                        ? Intrinsic::arm_mcr
7965                                        : Intrinsic::arm_mcr2);
7966     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7967                                   Ops[3], Ops[4], Ops[5]});
7968   }
7969   }
7970 
7971   // Get the last argument, which specifies the vector type.
7972   assert(HasExtraArg);
7973   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7974   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7975   if (!Result)
7976     return nullptr;
7977 
7978   if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f ||
7979       BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_d) {
7980     // Determine the overloaded type of this builtin.
7981     llvm::Type *Ty;
7982     if (BuiltinID == clang::ARM::BI__builtin_arm_vcvtr_f)
7983       Ty = FloatTy;
7984     else
7985       Ty = DoubleTy;
7986 
7987     // Determine whether this is an unsigned conversion or not.
7988     bool usgn = Result->getZExtValue() == 1;
7989     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7990 
7991     // Call the appropriate intrinsic.
7992     Function *F = CGM.getIntrinsic(Int, Ty);
7993     return Builder.CreateCall(F, Ops, "vcvtr");
7994   }
7995 
7996   // Determine the type of this overloaded NEON intrinsic.
7997   NeonTypeFlags Type = Result->getZExtValue();
7998   bool usgn = Type.isUnsigned();
7999   bool rightShift = false;
8000 
8001   llvm::FixedVectorType *VTy =
8002       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8003                   getTarget().hasBFloat16Type());
8004   llvm::Type *Ty = VTy;
8005   if (!Ty)
8006     return nullptr;
8007 
8008   // Many NEON builtins have identical semantics and uses in ARM and
8009   // AArch64. Emit these in a single function.
8010   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
8011   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8012       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8013   if (Builtin)
8014     return EmitCommonNeonBuiltinExpr(
8015         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8016         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8017 
8018   unsigned Int;
8019   switch (BuiltinID) {
8020   default: return nullptr;
8021   case NEON::BI__builtin_neon_vld1q_lane_v:
8022     // Handle 64-bit integer elements as a special case.  Use shuffles of
8023     // one-element vectors to avoid poor code for i64 in the backend.
8024     if (VTy->getElementType()->isIntegerTy(64)) {
8025       // Extract the other lane.
8026       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8027       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8028       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8029       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8030       // Load the value as a one-element vector.
8031       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8032       llvm::Type *Tys[] = {Ty, Int8PtrTy};
8033       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8034       Value *Align = getAlignmentValue32(PtrOp0);
8035       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8036       // Combine them.
8037       int Indices[] = {1 - Lane, Lane};
8038       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8039     }
8040     LLVM_FALLTHROUGH;
8041   case NEON::BI__builtin_neon_vld1_lane_v: {
8042     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8043     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8044     Value *Ld = Builder.CreateLoad(PtrOp0);
8045     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8046   }
8047   case NEON::BI__builtin_neon_vqrshrn_n_v:
8048     Int =
8049       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8050     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8051                         1, true);
8052   case NEON::BI__builtin_neon_vqrshrun_n_v:
8053     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8054                         Ops, "vqrshrun_n", 1, true);
8055   case NEON::BI__builtin_neon_vqshrn_n_v:
8056     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8057     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8058                         1, true);
8059   case NEON::BI__builtin_neon_vqshrun_n_v:
8060     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8061                         Ops, "vqshrun_n", 1, true);
8062   case NEON::BI__builtin_neon_vrecpe_v:
8063   case NEON::BI__builtin_neon_vrecpeq_v:
8064     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8065                         Ops, "vrecpe");
8066   case NEON::BI__builtin_neon_vrshrn_n_v:
8067     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8068                         Ops, "vrshrn_n", 1, true);
8069   case NEON::BI__builtin_neon_vrsra_n_v:
8070   case NEON::BI__builtin_neon_vrsraq_n_v:
8071     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8072     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8073     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8074     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8075     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8076     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8077   case NEON::BI__builtin_neon_vsri_n_v:
8078   case NEON::BI__builtin_neon_vsriq_n_v:
8079     rightShift = true;
8080     LLVM_FALLTHROUGH;
8081   case NEON::BI__builtin_neon_vsli_n_v:
8082   case NEON::BI__builtin_neon_vsliq_n_v:
8083     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8084     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8085                         Ops, "vsli_n");
8086   case NEON::BI__builtin_neon_vsra_n_v:
8087   case NEON::BI__builtin_neon_vsraq_n_v:
8088     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8089     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8090     return Builder.CreateAdd(Ops[0], Ops[1]);
8091   case NEON::BI__builtin_neon_vst1q_lane_v:
8092     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
8093     // a one-element vector and avoid poor code for i64 in the backend.
8094     if (VTy->getElementType()->isIntegerTy(64)) {
8095       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8096       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8097       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8098       Ops[2] = getAlignmentValue32(PtrOp0);
8099       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8100       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8101                                                  Tys), Ops);
8102     }
8103     LLVM_FALLTHROUGH;
8104   case NEON::BI__builtin_neon_vst1_lane_v: {
8105     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8106     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8107     auto St = Builder.CreateStore(
8108         Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8109     return St;
8110   }
8111   case NEON::BI__builtin_neon_vtbl1_v:
8112     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8113                         Ops, "vtbl1");
8114   case NEON::BI__builtin_neon_vtbl2_v:
8115     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8116                         Ops, "vtbl2");
8117   case NEON::BI__builtin_neon_vtbl3_v:
8118     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8119                         Ops, "vtbl3");
8120   case NEON::BI__builtin_neon_vtbl4_v:
8121     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8122                         Ops, "vtbl4");
8123   case NEON::BI__builtin_neon_vtbx1_v:
8124     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8125                         Ops, "vtbx1");
8126   case NEON::BI__builtin_neon_vtbx2_v:
8127     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8128                         Ops, "vtbx2");
8129   case NEON::BI__builtin_neon_vtbx3_v:
8130     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8131                         Ops, "vtbx3");
8132   case NEON::BI__builtin_neon_vtbx4_v:
8133     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8134                         Ops, "vtbx4");
8135   }
8136 }
8137 
8138 template<typename Integer>
8139 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8140   return E->getIntegerConstantExpr(Context)->getExtValue();
8141 }
8142 
8143 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8144                                      llvm::Type *T, bool Unsigned) {
8145   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8146   // which finds it convenient to specify signed/unsigned as a boolean flag.
8147   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8148 }
8149 
8150 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8151                                     uint32_t Shift, bool Unsigned) {
8152   // MVE helper function for integer shift right. This must handle signed vs
8153   // unsigned, and also deal specially with the case where the shift count is
8154   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8155   // undefined behavior, but in MVE it's legal, so we must convert it to code
8156   // that is not undefined in IR.
8157   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8158                           ->getElementType()
8159                           ->getPrimitiveSizeInBits();
8160   if (Shift == LaneBits) {
8161     // An unsigned shift of the full lane size always generates zero, so we can
8162     // simply emit a zero vector. A signed shift of the full lane size does the
8163     // same thing as shifting by one bit fewer.
8164     if (Unsigned)
8165       return llvm::Constant::getNullValue(V->getType());
8166     else
8167       --Shift;
8168   }
8169   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8170 }
8171 
8172 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8173   // MVE-specific helper function for a vector splat, which infers the element
8174   // count of the output vector by knowing that MVE vectors are all 128 bits
8175   // wide.
8176   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8177   return Builder.CreateVectorSplat(Elements, V);
8178 }
8179 
8180 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8181                                             CodeGenFunction *CGF,
8182                                             llvm::Value *V,
8183                                             llvm::Type *DestType) {
8184   // Convert one MVE vector type into another by reinterpreting its in-register
8185   // format.
8186   //
8187   // Little-endian, this is identical to a bitcast (which reinterprets the
8188   // memory format). But big-endian, they're not necessarily the same, because
8189   // the register and memory formats map to each other differently depending on
8190   // the lane size.
8191   //
8192   // We generate a bitcast whenever we can (if we're little-endian, or if the
8193   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8194   // that performs the different kind of reinterpretation.
8195   if (CGF->getTarget().isBigEndian() &&
8196       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8197     return Builder.CreateCall(
8198         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8199                               {DestType, V->getType()}),
8200         V);
8201   } else {
8202     return Builder.CreateBitCast(V, DestType);
8203   }
8204 }
8205 
8206 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8207   // Make a shufflevector that extracts every other element of a vector (evens
8208   // or odds, as desired).
8209   SmallVector<int, 16> Indices;
8210   unsigned InputElements =
8211       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8212   for (unsigned i = 0; i < InputElements; i += 2)
8213     Indices.push_back(i + Odd);
8214   return Builder.CreateShuffleVector(V, Indices);
8215 }
8216 
8217 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8218                               llvm::Value *V1) {
8219   // Make a shufflevector that interleaves two vectors element by element.
8220   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8221   SmallVector<int, 16> Indices;
8222   unsigned InputElements =
8223       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8224   for (unsigned i = 0; i < InputElements; i++) {
8225     Indices.push_back(i);
8226     Indices.push_back(i + InputElements);
8227   }
8228   return Builder.CreateShuffleVector(V0, V1, Indices);
8229 }
8230 
8231 template<unsigned HighBit, unsigned OtherBits>
8232 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8233   // MVE-specific helper function to make a vector splat of a constant such as
8234   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8235   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8236   unsigned LaneBits = T->getPrimitiveSizeInBits();
8237   uint32_t Value = HighBit << (LaneBits - 1);
8238   if (OtherBits)
8239     Value |= (1UL << (LaneBits - 1)) - 1;
8240   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8241   return ARMMVEVectorSplat(Builder, Lane);
8242 }
8243 
8244 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8245                                                llvm::Value *V,
8246                                                unsigned ReverseWidth) {
8247   // MVE-specific helper function which reverses the elements of a
8248   // vector within every (ReverseWidth)-bit collection of lanes.
8249   SmallVector<int, 16> Indices;
8250   unsigned LaneSize = V->getType()->getScalarSizeInBits();
8251   unsigned Elements = 128 / LaneSize;
8252   unsigned Mask = ReverseWidth / LaneSize - 1;
8253   for (unsigned i = 0; i < Elements; i++)
8254     Indices.push_back(i ^ Mask);
8255   return Builder.CreateShuffleVector(V, Indices);
8256 }
8257 
8258 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8259                                               const CallExpr *E,
8260                                               ReturnValueSlot ReturnValue,
8261                                               llvm::Triple::ArchType Arch) {
8262   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8263   Intrinsic::ID IRIntr;
8264   unsigned NumVectors;
8265 
8266   // Code autogenerated by Tablegen will handle all the simple builtins.
8267   switch (BuiltinID) {
8268     #include "clang/Basic/arm_mve_builtin_cg.inc"
8269 
8270     // If we didn't match an MVE builtin id at all, go back to the
8271     // main EmitARMBuiltinExpr.
8272   default:
8273     return nullptr;
8274   }
8275 
8276   // Anything that breaks from that switch is an MVE builtin that
8277   // needs handwritten code to generate.
8278 
8279   switch (CustomCodeGenType) {
8280 
8281   case CustomCodeGen::VLD24: {
8282     llvm::SmallVector<Value *, 4> Ops;
8283     llvm::SmallVector<llvm::Type *, 4> Tys;
8284 
8285     auto MvecCType = E->getType();
8286     auto MvecLType = ConvertType(MvecCType);
8287     assert(MvecLType->isStructTy() &&
8288            "Return type for vld[24]q should be a struct");
8289     assert(MvecLType->getStructNumElements() == 1 &&
8290            "Return-type struct for vld[24]q should have one element");
8291     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8292     assert(MvecLTypeInner->isArrayTy() &&
8293            "Return-type struct for vld[24]q should contain an array");
8294     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8295            "Array member of return-type struct vld[24]q has wrong length");
8296     auto VecLType = MvecLTypeInner->getArrayElementType();
8297 
8298     Tys.push_back(VecLType);
8299 
8300     auto Addr = E->getArg(0);
8301     Ops.push_back(EmitScalarExpr(Addr));
8302     Tys.push_back(ConvertType(Addr->getType()));
8303 
8304     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8305     Value *LoadResult = Builder.CreateCall(F, Ops);
8306     Value *MvecOut = UndefValue::get(MvecLType);
8307     for (unsigned i = 0; i < NumVectors; ++i) {
8308       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8309       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8310     }
8311 
8312     if (ReturnValue.isNull())
8313       return MvecOut;
8314     else
8315       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8316   }
8317 
8318   case CustomCodeGen::VST24: {
8319     llvm::SmallVector<Value *, 4> Ops;
8320     llvm::SmallVector<llvm::Type *, 4> Tys;
8321 
8322     auto Addr = E->getArg(0);
8323     Ops.push_back(EmitScalarExpr(Addr));
8324     Tys.push_back(ConvertType(Addr->getType()));
8325 
8326     auto MvecCType = E->getArg(1)->getType();
8327     auto MvecLType = ConvertType(MvecCType);
8328     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8329     assert(MvecLType->getStructNumElements() == 1 &&
8330            "Data-type struct for vst2q should have one element");
8331     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8332     assert(MvecLTypeInner->isArrayTy() &&
8333            "Data-type struct for vst2q should contain an array");
8334     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8335            "Array member of return-type struct vld[24]q has wrong length");
8336     auto VecLType = MvecLTypeInner->getArrayElementType();
8337 
8338     Tys.push_back(VecLType);
8339 
8340     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8341     EmitAggExpr(E->getArg(1), MvecSlot);
8342     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8343     for (unsigned i = 0; i < NumVectors; i++)
8344       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8345 
8346     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8347     Value *ToReturn = nullptr;
8348     for (unsigned i = 0; i < NumVectors; i++) {
8349       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8350       ToReturn = Builder.CreateCall(F, Ops);
8351       Ops.pop_back();
8352     }
8353     return ToReturn;
8354   }
8355   }
8356   llvm_unreachable("unknown custom codegen type.");
8357 }
8358 
8359 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8360                                               const CallExpr *E,
8361                                               ReturnValueSlot ReturnValue,
8362                                               llvm::Triple::ArchType Arch) {
8363   switch (BuiltinID) {
8364   default:
8365     return nullptr;
8366 #include "clang/Basic/arm_cde_builtin_cg.inc"
8367   }
8368 }
8369 
8370 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8371                                       const CallExpr *E,
8372                                       SmallVectorImpl<Value *> &Ops,
8373                                       llvm::Triple::ArchType Arch) {
8374   unsigned int Int = 0;
8375   const char *s = nullptr;
8376 
8377   switch (BuiltinID) {
8378   default:
8379     return nullptr;
8380   case NEON::BI__builtin_neon_vtbl1_v:
8381   case NEON::BI__builtin_neon_vqtbl1_v:
8382   case NEON::BI__builtin_neon_vqtbl1q_v:
8383   case NEON::BI__builtin_neon_vtbl2_v:
8384   case NEON::BI__builtin_neon_vqtbl2_v:
8385   case NEON::BI__builtin_neon_vqtbl2q_v:
8386   case NEON::BI__builtin_neon_vtbl3_v:
8387   case NEON::BI__builtin_neon_vqtbl3_v:
8388   case NEON::BI__builtin_neon_vqtbl3q_v:
8389   case NEON::BI__builtin_neon_vtbl4_v:
8390   case NEON::BI__builtin_neon_vqtbl4_v:
8391   case NEON::BI__builtin_neon_vqtbl4q_v:
8392     break;
8393   case NEON::BI__builtin_neon_vtbx1_v:
8394   case NEON::BI__builtin_neon_vqtbx1_v:
8395   case NEON::BI__builtin_neon_vqtbx1q_v:
8396   case NEON::BI__builtin_neon_vtbx2_v:
8397   case NEON::BI__builtin_neon_vqtbx2_v:
8398   case NEON::BI__builtin_neon_vqtbx2q_v:
8399   case NEON::BI__builtin_neon_vtbx3_v:
8400   case NEON::BI__builtin_neon_vqtbx3_v:
8401   case NEON::BI__builtin_neon_vqtbx3q_v:
8402   case NEON::BI__builtin_neon_vtbx4_v:
8403   case NEON::BI__builtin_neon_vqtbx4_v:
8404   case NEON::BI__builtin_neon_vqtbx4q_v:
8405     break;
8406   }
8407 
8408   assert(E->getNumArgs() >= 3);
8409 
8410   // Get the last argument, which specifies the vector type.
8411   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8412   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8413   if (!Result)
8414     return nullptr;
8415 
8416   // Determine the type of this overloaded NEON intrinsic.
8417   NeonTypeFlags Type = Result->getZExtValue();
8418   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8419   if (!Ty)
8420     return nullptr;
8421 
8422   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8423 
8424   // AArch64 scalar builtins are not overloaded, they do not have an extra
8425   // argument that specifies the vector type, need to handle each case.
8426   switch (BuiltinID) {
8427   case NEON::BI__builtin_neon_vtbl1_v: {
8428     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8429                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8430                               "vtbl1");
8431   }
8432   case NEON::BI__builtin_neon_vtbl2_v: {
8433     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8434                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8435                               "vtbl1");
8436   }
8437   case NEON::BI__builtin_neon_vtbl3_v: {
8438     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8439                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8440                               "vtbl2");
8441   }
8442   case NEON::BI__builtin_neon_vtbl4_v: {
8443     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8444                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8445                               "vtbl2");
8446   }
8447   case NEON::BI__builtin_neon_vtbx1_v: {
8448     Value *TblRes =
8449         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8450                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8451 
8452     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8453     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8454     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8455 
8456     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8457     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8458     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8459   }
8460   case NEON::BI__builtin_neon_vtbx2_v: {
8461     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8462                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8463                               "vtbx1");
8464   }
8465   case NEON::BI__builtin_neon_vtbx3_v: {
8466     Value *TblRes =
8467         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8468                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8469 
8470     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8471     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8472                                            TwentyFourV);
8473     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8474 
8475     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8476     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8477     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8478   }
8479   case NEON::BI__builtin_neon_vtbx4_v: {
8480     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8481                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8482                               "vtbx2");
8483   }
8484   case NEON::BI__builtin_neon_vqtbl1_v:
8485   case NEON::BI__builtin_neon_vqtbl1q_v:
8486     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8487   case NEON::BI__builtin_neon_vqtbl2_v:
8488   case NEON::BI__builtin_neon_vqtbl2q_v: {
8489     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8490   case NEON::BI__builtin_neon_vqtbl3_v:
8491   case NEON::BI__builtin_neon_vqtbl3q_v:
8492     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8493   case NEON::BI__builtin_neon_vqtbl4_v:
8494   case NEON::BI__builtin_neon_vqtbl4q_v:
8495     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8496   case NEON::BI__builtin_neon_vqtbx1_v:
8497   case NEON::BI__builtin_neon_vqtbx1q_v:
8498     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8499   case NEON::BI__builtin_neon_vqtbx2_v:
8500   case NEON::BI__builtin_neon_vqtbx2q_v:
8501     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8502   case NEON::BI__builtin_neon_vqtbx3_v:
8503   case NEON::BI__builtin_neon_vqtbx3q_v:
8504     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8505   case NEON::BI__builtin_neon_vqtbx4_v:
8506   case NEON::BI__builtin_neon_vqtbx4q_v:
8507     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8508   }
8509   }
8510 
8511   if (!Int)
8512     return nullptr;
8513 
8514   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8515   return CGF.EmitNeonCall(F, Ops, s);
8516 }
8517 
8518 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8519   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8520   Op = Builder.CreateBitCast(Op, Int16Ty);
8521   Value *V = UndefValue::get(VTy);
8522   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8523   Op = Builder.CreateInsertElement(V, Op, CI);
8524   return Op;
8525 }
8526 
8527 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8528 /// access builtin.  Only required if it can't be inferred from the base pointer
8529 /// operand.
8530 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8531   switch (TypeFlags.getMemEltType()) {
8532   case SVETypeFlags::MemEltTyDefault:
8533     return getEltType(TypeFlags);
8534   case SVETypeFlags::MemEltTyInt8:
8535     return Builder.getInt8Ty();
8536   case SVETypeFlags::MemEltTyInt16:
8537     return Builder.getInt16Ty();
8538   case SVETypeFlags::MemEltTyInt32:
8539     return Builder.getInt32Ty();
8540   case SVETypeFlags::MemEltTyInt64:
8541     return Builder.getInt64Ty();
8542   }
8543   llvm_unreachable("Unknown MemEltType");
8544 }
8545 
8546 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8547   switch (TypeFlags.getEltType()) {
8548   default:
8549     llvm_unreachable("Invalid SVETypeFlag!");
8550 
8551   case SVETypeFlags::EltTyInt8:
8552     return Builder.getInt8Ty();
8553   case SVETypeFlags::EltTyInt16:
8554     return Builder.getInt16Ty();
8555   case SVETypeFlags::EltTyInt32:
8556     return Builder.getInt32Ty();
8557   case SVETypeFlags::EltTyInt64:
8558     return Builder.getInt64Ty();
8559 
8560   case SVETypeFlags::EltTyFloat16:
8561     return Builder.getHalfTy();
8562   case SVETypeFlags::EltTyFloat32:
8563     return Builder.getFloatTy();
8564   case SVETypeFlags::EltTyFloat64:
8565     return Builder.getDoubleTy();
8566 
8567   case SVETypeFlags::EltTyBFloat16:
8568     return Builder.getBFloatTy();
8569 
8570   case SVETypeFlags::EltTyBool8:
8571   case SVETypeFlags::EltTyBool16:
8572   case SVETypeFlags::EltTyBool32:
8573   case SVETypeFlags::EltTyBool64:
8574     return Builder.getInt1Ty();
8575   }
8576 }
8577 
8578 // Return the llvm predicate vector type corresponding to the specified element
8579 // TypeFlags.
8580 llvm::ScalableVectorType *
8581 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8582   switch (TypeFlags.getEltType()) {
8583   default: llvm_unreachable("Unhandled SVETypeFlag!");
8584 
8585   case SVETypeFlags::EltTyInt8:
8586     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8587   case SVETypeFlags::EltTyInt16:
8588     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8589   case SVETypeFlags::EltTyInt32:
8590     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8591   case SVETypeFlags::EltTyInt64:
8592     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8593 
8594   case SVETypeFlags::EltTyBFloat16:
8595     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8596   case SVETypeFlags::EltTyFloat16:
8597     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8598   case SVETypeFlags::EltTyFloat32:
8599     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8600   case SVETypeFlags::EltTyFloat64:
8601     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8602 
8603   case SVETypeFlags::EltTyBool8:
8604     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8605   case SVETypeFlags::EltTyBool16:
8606     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8607   case SVETypeFlags::EltTyBool32:
8608     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8609   case SVETypeFlags::EltTyBool64:
8610     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8611   }
8612 }
8613 
8614 // Return the llvm vector type corresponding to the specified element TypeFlags.
8615 llvm::ScalableVectorType *
8616 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8617   switch (TypeFlags.getEltType()) {
8618   default:
8619     llvm_unreachable("Invalid SVETypeFlag!");
8620 
8621   case SVETypeFlags::EltTyInt8:
8622     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8623   case SVETypeFlags::EltTyInt16:
8624     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8625   case SVETypeFlags::EltTyInt32:
8626     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8627   case SVETypeFlags::EltTyInt64:
8628     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8629 
8630   case SVETypeFlags::EltTyFloat16:
8631     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8632   case SVETypeFlags::EltTyBFloat16:
8633     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8634   case SVETypeFlags::EltTyFloat32:
8635     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8636   case SVETypeFlags::EltTyFloat64:
8637     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8638 
8639   case SVETypeFlags::EltTyBool8:
8640     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8641   case SVETypeFlags::EltTyBool16:
8642     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8643   case SVETypeFlags::EltTyBool32:
8644     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8645   case SVETypeFlags::EltTyBool64:
8646     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8647   }
8648 }
8649 
8650 llvm::Value *
8651 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8652   Function *Ptrue =
8653       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8654   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8655 }
8656 
8657 constexpr unsigned SVEBitsPerBlock = 128;
8658 
8659 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8660   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8661   return llvm::ScalableVectorType::get(EltTy, NumElts);
8662 }
8663 
8664 // Reinterpret the input predicate so that it can be used to correctly isolate
8665 // the elements of the specified datatype.
8666 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8667                                              llvm::ScalableVectorType *VTy) {
8668   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8669   if (Pred->getType() == RTy)
8670     return Pred;
8671 
8672   unsigned IntID;
8673   llvm::Type *IntrinsicTy;
8674   switch (VTy->getMinNumElements()) {
8675   default:
8676     llvm_unreachable("unsupported element count!");
8677   case 2:
8678   case 4:
8679   case 8:
8680     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8681     IntrinsicTy = RTy;
8682     break;
8683   case 16:
8684     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8685     IntrinsicTy = Pred->getType();
8686     break;
8687   }
8688 
8689   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8690   Value *C = Builder.CreateCall(F, Pred);
8691   assert(C->getType() == RTy && "Unexpected return type!");
8692   return C;
8693 }
8694 
8695 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8696                                           SmallVectorImpl<Value *> &Ops,
8697                                           unsigned IntID) {
8698   auto *ResultTy = getSVEType(TypeFlags);
8699   auto *OverloadedTy =
8700       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8701 
8702   // At the ACLE level there's only one predicate type, svbool_t, which is
8703   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8704   // actual type being loaded. For example, when loading doubles (i64) the
8705   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8706   // the predicate and the data being loaded must match. Cast accordingly.
8707   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8708 
8709   Function *F = nullptr;
8710   if (Ops[1]->getType()->isVectorTy())
8711     // This is the "vector base, scalar offset" case. In order to uniquely
8712     // map this built-in to an LLVM IR intrinsic, we need both the return type
8713     // and the type of the vector base.
8714     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8715   else
8716     // This is the "scalar base, vector offset case". The type of the offset
8717     // is encoded in the name of the intrinsic. We only need to specify the
8718     // return type in order to uniquely map this built-in to an LLVM IR
8719     // intrinsic.
8720     F = CGM.getIntrinsic(IntID, OverloadedTy);
8721 
8722   // Pass 0 when the offset is missing. This can only be applied when using
8723   // the "vector base" addressing mode for which ACLE allows no offset. The
8724   // corresponding LLVM IR always requires an offset.
8725   if (Ops.size() == 2) {
8726     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8727     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8728   }
8729 
8730   // For "vector base, scalar index" scale the index so that it becomes a
8731   // scalar offset.
8732   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8733     unsigned BytesPerElt =
8734         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8735     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8736     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8737   }
8738 
8739   Value *Call = Builder.CreateCall(F, Ops);
8740 
8741   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8742   // other cases it's folded into a nop.
8743   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8744                                   : Builder.CreateSExt(Call, ResultTy);
8745 }
8746 
8747 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
8748                                             SmallVectorImpl<Value *> &Ops,
8749                                             unsigned IntID) {
8750   auto *SrcDataTy = getSVEType(TypeFlags);
8751   auto *OverloadedTy =
8752       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8753 
8754   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8755   // it's the first argument. Move it accordingly.
8756   Ops.insert(Ops.begin(), Ops.pop_back_val());
8757 
8758   Function *F = nullptr;
8759   if (Ops[2]->getType()->isVectorTy())
8760     // This is the "vector base, scalar offset" case. In order to uniquely
8761     // map this built-in to an LLVM IR intrinsic, we need both the return type
8762     // and the type of the vector base.
8763     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8764   else
8765     // This is the "scalar base, vector offset case". The type of the offset
8766     // is encoded in the name of the intrinsic. We only need to specify the
8767     // return type in order to uniquely map this built-in to an LLVM IR
8768     // intrinsic.
8769     F = CGM.getIntrinsic(IntID, OverloadedTy);
8770 
8771   // Pass 0 when the offset is missing. This can only be applied when using
8772   // the "vector base" addressing mode for which ACLE allows no offset. The
8773   // corresponding LLVM IR always requires an offset.
8774   if (Ops.size() == 3) {
8775     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8776     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8777   }
8778 
8779   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8780   // folded into a nop.
8781   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8782 
8783   // At the ACLE level there's only one predicate type, svbool_t, which is
8784   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8785   // actual type being stored. For example, when storing doubles (i64) the
8786   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8787   // the predicate and the data being stored must match. Cast accordingly.
8788   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8789 
8790   // For "vector base, scalar index" scale the index so that it becomes a
8791   // scalar offset.
8792   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8793     unsigned BytesPerElt =
8794         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8795     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8796     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8797   }
8798 
8799   return Builder.CreateCall(F, Ops);
8800 }
8801 
8802 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
8803                                               SmallVectorImpl<Value *> &Ops,
8804                                               unsigned IntID) {
8805   // The gather prefetches are overloaded on the vector input - this can either
8806   // be the vector of base addresses or vector of offsets.
8807   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8808   if (!OverloadedTy)
8809     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8810 
8811   // Cast the predicate from svbool_t to the right number of elements.
8812   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8813 
8814   // vector + imm addressing modes
8815   if (Ops[1]->getType()->isVectorTy()) {
8816     if (Ops.size() == 3) {
8817       // Pass 0 for 'vector+imm' when the index is omitted.
8818       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8819 
8820       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8821       std::swap(Ops[2], Ops[3]);
8822     } else {
8823       // Index needs to be passed as scaled offset.
8824       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8825       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8826       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8827       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8828     }
8829   }
8830 
8831   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8832   return Builder.CreateCall(F, Ops);
8833 }
8834 
8835 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
8836                                           SmallVectorImpl<Value*> &Ops,
8837                                           unsigned IntID) {
8838   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8839   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8840   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8841 
8842   unsigned N;
8843   switch (IntID) {
8844   case Intrinsic::aarch64_sve_ld2:
8845     N = 2;
8846     break;
8847   case Intrinsic::aarch64_sve_ld3:
8848     N = 3;
8849     break;
8850   case Intrinsic::aarch64_sve_ld4:
8851     N = 4;
8852     break;
8853   default:
8854     llvm_unreachable("unknown intrinsic!");
8855   }
8856   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8857                                      VTy->getElementCount() * N);
8858 
8859 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8860   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8861   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8862   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8863   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8864 
8865   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8866   return Builder.CreateCall(F, { Predicate, BasePtr });
8867 }
8868 
8869 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
8870                                            SmallVectorImpl<Value*> &Ops,
8871                                            unsigned IntID) {
8872   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8873   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8874   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8875 
8876   unsigned N;
8877   switch (IntID) {
8878   case Intrinsic::aarch64_sve_st2:
8879     N = 2;
8880     break;
8881   case Intrinsic::aarch64_sve_st3:
8882     N = 3;
8883     break;
8884   case Intrinsic::aarch64_sve_st4:
8885     N = 4;
8886     break;
8887   default:
8888     llvm_unreachable("unknown intrinsic!");
8889   }
8890   auto TupleTy =
8891       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8892 
8893   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8894   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8895   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8896   Value *Val = Ops.back();
8897   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8898   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8899 
8900   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8901   // need to break up the tuple vector.
8902   SmallVector<llvm::Value*, 5> Operands;
8903   Function *FExtr =
8904       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8905   for (unsigned I = 0; I < N; ++I)
8906     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8907   Operands.append({Predicate, BasePtr});
8908 
8909   Function *F = CGM.getIntrinsic(IntID, { VTy });
8910   return Builder.CreateCall(F, Operands);
8911 }
8912 
8913 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8914 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8915 // to a wider type.
8916 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
8917                                      SmallVectorImpl<Value *> &Ops,
8918                                      unsigned BuiltinID) {
8919   // Splat scalar operand to vector (intrinsics with _n infix)
8920   if (TypeFlags.hasSplatOperand()) {
8921     unsigned OpNo = TypeFlags.getSplatOperand();
8922     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8923   }
8924 
8925   // The pair-wise function has a narrower overloaded type.
8926   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8927   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8928 
8929   // Now bitcast to the wider result type.
8930   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8931   return EmitSVEReinterpret(Call, Ty);
8932 }
8933 
8934 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
8935                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8936   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8937   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8938   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8939 }
8940 
8941 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
8942                                             SmallVectorImpl<Value *> &Ops,
8943                                             unsigned BuiltinID) {
8944   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8945   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8946   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8947 
8948   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8949   Value *BasePtr = Ops[1];
8950 
8951   // Implement the index operand if not omitted.
8952   if (Ops.size() > 3) {
8953     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8954     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8955   }
8956 
8957   // Prefetch intriniscs always expect an i8*
8958   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8959   Value *PrfOp = Ops.back();
8960 
8961   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8962   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8963 }
8964 
8965 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8966                                           llvm::Type *ReturnTy,
8967                                           SmallVectorImpl<Value *> &Ops,
8968                                           unsigned BuiltinID,
8969                                           bool IsZExtReturn) {
8970   QualType LangPTy = E->getArg(1)->getType();
8971   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8972       LangPTy->castAs<PointerType>()->getPointeeType());
8973 
8974   // The vector type that is returned may be different from the
8975   // eventual type loaded from memory.
8976   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8977   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8978 
8979   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8980   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8981   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8982   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8983 
8984   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8985   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8986   auto *Load =
8987       cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
8988   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
8989   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
8990 
8991   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8992                      : Builder.CreateSExt(Load, VectorTy);
8993 }
8994 
8995 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8996                                            SmallVectorImpl<Value *> &Ops,
8997                                            unsigned BuiltinID) {
8998   QualType LangPTy = E->getArg(1)->getType();
8999   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9000       LangPTy->castAs<PointerType>()->getPointeeType());
9001 
9002   // The vector type that is stored may be different from the
9003   // eventual type stored to memory.
9004   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9005   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9006 
9007   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9008   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9009   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
9010   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9011 
9012   // Last value is always the data
9013   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9014 
9015   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9016   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9017   auto *Store =
9018       cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9019   auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9020   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9021   return Store;
9022 }
9023 
9024 // Limit the usage of scalable llvm IR generated by the ACLE by using the
9025 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9026 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9027   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
9028   return Builder.CreateCall(F, Scalar);
9029 }
9030 
9031 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9032   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9033 }
9034 
9035 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9036   // FIXME: For big endian this needs an additional REV, or needs a separate
9037   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9038   // instruction is defined as 'bitwise' equivalent from memory point of
9039   // view (when storing/reloading), whereas the svreinterpret builtin
9040   // implements bitwise equivalent cast from register point of view.
9041   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9042   return Builder.CreateBitCast(Val, Ty);
9043 }
9044 
9045 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9046                                       SmallVectorImpl<Value *> &Ops) {
9047   auto *SplatZero = Constant::getNullValue(Ty);
9048   Ops.insert(Ops.begin(), SplatZero);
9049 }
9050 
9051 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9052                                        SmallVectorImpl<Value *> &Ops) {
9053   auto *SplatUndef = UndefValue::get(Ty);
9054   Ops.insert(Ops.begin(), SplatUndef);
9055 }
9056 
9057 SmallVector<llvm::Type *, 2>
9058 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9059                                      llvm::Type *ResultType,
9060                                      ArrayRef<Value *> Ops) {
9061   if (TypeFlags.isOverloadNone())
9062     return {};
9063 
9064   llvm::Type *DefaultType = getSVEType(TypeFlags);
9065 
9066   if (TypeFlags.isOverloadWhile())
9067     return {DefaultType, Ops[1]->getType()};
9068 
9069   if (TypeFlags.isOverloadWhileRW())
9070     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9071 
9072   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
9073     return {Ops[0]->getType(), Ops.back()->getType()};
9074 
9075   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
9076     return {ResultType, Ops[0]->getType()};
9077 
9078   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
9079   return {DefaultType};
9080 }
9081 
9082 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9083                                                   const CallExpr *E) {
9084   // Find out if any arguments are required to be integer constant expressions.
9085   unsigned ICEArguments = 0;
9086   ASTContext::GetBuiltinTypeError Error;
9087   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9088   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9089 
9090   llvm::Type *Ty = ConvertType(E->getType());
9091   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9092       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9093     Value *Val = EmitScalarExpr(E->getArg(0));
9094     return EmitSVEReinterpret(Val, Ty);
9095   }
9096 
9097   llvm::SmallVector<Value *, 4> Ops;
9098   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9099     if ((ICEArguments & (1 << i)) == 0)
9100       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9101     else {
9102       // If this is required to be a constant, constant fold it so that we know
9103       // that the generated intrinsic gets a ConstantInt.
9104       Optional<llvm::APSInt> Result =
9105           E->getArg(i)->getIntegerConstantExpr(getContext());
9106       assert(Result && "Expected argument to be a constant");
9107 
9108       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
9109       // truncate because the immediate has been range checked and no valid
9110       // immediate requires more than a handful of bits.
9111       *Result = Result->extOrTrunc(32);
9112       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9113     }
9114   }
9115 
9116   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9117                                               AArch64SVEIntrinsicsProvenSorted);
9118   SVETypeFlags TypeFlags(Builtin->TypeModifier);
9119   if (TypeFlags.isLoad())
9120     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9121                              TypeFlags.isZExtReturn());
9122   else if (TypeFlags.isStore())
9123     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9124   else if (TypeFlags.isGatherLoad())
9125     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9126   else if (TypeFlags.isScatterStore())
9127     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9128   else if (TypeFlags.isPrefetch())
9129     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9130   else if (TypeFlags.isGatherPrefetch())
9131     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9132 	else if (TypeFlags.isStructLoad())
9133 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9134 	else if (TypeFlags.isStructStore())
9135 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9136   else if (TypeFlags.isUndef())
9137     return UndefValue::get(Ty);
9138   else if (Builtin->LLVMIntrinsic != 0) {
9139     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9140       InsertExplicitZeroOperand(Builder, Ty, Ops);
9141 
9142     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9143       InsertExplicitUndefOperand(Builder, Ty, Ops);
9144 
9145     // Some ACLE builtins leave out the argument to specify the predicate
9146     // pattern, which is expected to be expanded to an SV_ALL pattern.
9147     if (TypeFlags.isAppendSVALL())
9148       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9149     if (TypeFlags.isInsertOp1SVALL())
9150       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9151 
9152     // Predicates must match the main datatype.
9153     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9154       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9155         if (PredTy->getElementType()->isIntegerTy(1))
9156           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9157 
9158     // Splat scalar operand to vector (intrinsics with _n infix)
9159     if (TypeFlags.hasSplatOperand()) {
9160       unsigned OpNo = TypeFlags.getSplatOperand();
9161       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9162     }
9163 
9164     if (TypeFlags.isReverseCompare())
9165       std::swap(Ops[1], Ops[2]);
9166 
9167     if (TypeFlags.isReverseUSDOT())
9168       std::swap(Ops[1], Ops[2]);
9169 
9170     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9171     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9172       llvm::Type *OpndTy = Ops[1]->getType();
9173       auto *SplatZero = Constant::getNullValue(OpndTy);
9174       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9175       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9176     }
9177 
9178     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9179                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
9180     Value *Call = Builder.CreateCall(F, Ops);
9181 
9182     // Predicate results must be converted to svbool_t.
9183     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9184       if (PredTy->getScalarType()->isIntegerTy(1))
9185         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9186 
9187     return Call;
9188   }
9189 
9190   switch (BuiltinID) {
9191   default:
9192     return nullptr;
9193 
9194   case SVE::BI__builtin_sve_svmov_b_z: {
9195     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9196     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9197     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9198     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9199     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9200   }
9201 
9202   case SVE::BI__builtin_sve_svnot_b_z: {
9203     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9204     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9205     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9206     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9207     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9208   }
9209 
9210   case SVE::BI__builtin_sve_svmovlb_u16:
9211   case SVE::BI__builtin_sve_svmovlb_u32:
9212   case SVE::BI__builtin_sve_svmovlb_u64:
9213     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9214 
9215   case SVE::BI__builtin_sve_svmovlb_s16:
9216   case SVE::BI__builtin_sve_svmovlb_s32:
9217   case SVE::BI__builtin_sve_svmovlb_s64:
9218     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9219 
9220   case SVE::BI__builtin_sve_svmovlt_u16:
9221   case SVE::BI__builtin_sve_svmovlt_u32:
9222   case SVE::BI__builtin_sve_svmovlt_u64:
9223     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9224 
9225   case SVE::BI__builtin_sve_svmovlt_s16:
9226   case SVE::BI__builtin_sve_svmovlt_s32:
9227   case SVE::BI__builtin_sve_svmovlt_s64:
9228     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9229 
9230   case SVE::BI__builtin_sve_svpmullt_u16:
9231   case SVE::BI__builtin_sve_svpmullt_u64:
9232   case SVE::BI__builtin_sve_svpmullt_n_u16:
9233   case SVE::BI__builtin_sve_svpmullt_n_u64:
9234     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9235 
9236   case SVE::BI__builtin_sve_svpmullb_u16:
9237   case SVE::BI__builtin_sve_svpmullb_u64:
9238   case SVE::BI__builtin_sve_svpmullb_n_u16:
9239   case SVE::BI__builtin_sve_svpmullb_n_u64:
9240     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9241 
9242   case SVE::BI__builtin_sve_svdup_n_b8:
9243   case SVE::BI__builtin_sve_svdup_n_b16:
9244   case SVE::BI__builtin_sve_svdup_n_b32:
9245   case SVE::BI__builtin_sve_svdup_n_b64: {
9246     Value *CmpNE =
9247         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9248     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9249     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9250     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9251   }
9252 
9253   case SVE::BI__builtin_sve_svdupq_n_b8:
9254   case SVE::BI__builtin_sve_svdupq_n_b16:
9255   case SVE::BI__builtin_sve_svdupq_n_b32:
9256   case SVE::BI__builtin_sve_svdupq_n_b64:
9257   case SVE::BI__builtin_sve_svdupq_n_u8:
9258   case SVE::BI__builtin_sve_svdupq_n_s8:
9259   case SVE::BI__builtin_sve_svdupq_n_u64:
9260   case SVE::BI__builtin_sve_svdupq_n_f64:
9261   case SVE::BI__builtin_sve_svdupq_n_s64:
9262   case SVE::BI__builtin_sve_svdupq_n_u16:
9263   case SVE::BI__builtin_sve_svdupq_n_f16:
9264   case SVE::BI__builtin_sve_svdupq_n_bf16:
9265   case SVE::BI__builtin_sve_svdupq_n_s16:
9266   case SVE::BI__builtin_sve_svdupq_n_u32:
9267   case SVE::BI__builtin_sve_svdupq_n_f32:
9268   case SVE::BI__builtin_sve_svdupq_n_s32: {
9269     // These builtins are implemented by storing each element to an array and using
9270     // ld1rq to materialize a vector.
9271     unsigned NumOpnds = Ops.size();
9272 
9273     bool IsBoolTy =
9274         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9275 
9276     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9277     // so that the compare can use the width that is natural for the expected
9278     // number of predicate lanes.
9279     llvm::Type *EltTy = Ops[0]->getType();
9280     if (IsBoolTy)
9281       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9282 
9283     SmallVector<llvm::Value *, 16> VecOps;
9284     for (unsigned I = 0; I < NumOpnds; ++I)
9285         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9286     Value *Vec = BuildVector(VecOps);
9287 
9288     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9289     Value *Pred = EmitSVEAllTruePred(TypeFlags);
9290 
9291     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9292     Value *InsertSubVec = Builder.CreateInsertVector(
9293         OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9294 
9295     Function *F =
9296         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9297     Value *DupQLane =
9298         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9299 
9300     if (!IsBoolTy)
9301       return DupQLane;
9302 
9303     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9304     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9305                                        : Intrinsic::aarch64_sve_cmpne_wide,
9306                          OverloadedTy);
9307     Value *Call = Builder.CreateCall(
9308         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9309     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9310   }
9311 
9312   case SVE::BI__builtin_sve_svpfalse_b:
9313     return ConstantInt::getFalse(Ty);
9314 
9315   case SVE::BI__builtin_sve_svlen_bf16:
9316   case SVE::BI__builtin_sve_svlen_f16:
9317   case SVE::BI__builtin_sve_svlen_f32:
9318   case SVE::BI__builtin_sve_svlen_f64:
9319   case SVE::BI__builtin_sve_svlen_s8:
9320   case SVE::BI__builtin_sve_svlen_s16:
9321   case SVE::BI__builtin_sve_svlen_s32:
9322   case SVE::BI__builtin_sve_svlen_s64:
9323   case SVE::BI__builtin_sve_svlen_u8:
9324   case SVE::BI__builtin_sve_svlen_u16:
9325   case SVE::BI__builtin_sve_svlen_u32:
9326   case SVE::BI__builtin_sve_svlen_u64: {
9327     SVETypeFlags TF(Builtin->TypeModifier);
9328     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9329     auto *NumEls =
9330         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9331 
9332     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9333     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9334   }
9335 
9336   case SVE::BI__builtin_sve_svtbl2_u8:
9337   case SVE::BI__builtin_sve_svtbl2_s8:
9338   case SVE::BI__builtin_sve_svtbl2_u16:
9339   case SVE::BI__builtin_sve_svtbl2_s16:
9340   case SVE::BI__builtin_sve_svtbl2_u32:
9341   case SVE::BI__builtin_sve_svtbl2_s32:
9342   case SVE::BI__builtin_sve_svtbl2_u64:
9343   case SVE::BI__builtin_sve_svtbl2_s64:
9344   case SVE::BI__builtin_sve_svtbl2_f16:
9345   case SVE::BI__builtin_sve_svtbl2_bf16:
9346   case SVE::BI__builtin_sve_svtbl2_f32:
9347   case SVE::BI__builtin_sve_svtbl2_f64: {
9348     SVETypeFlags TF(Builtin->TypeModifier);
9349     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9350     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9351     Function *FExtr =
9352         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9353     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9354     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9355     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9356     return Builder.CreateCall(F, {V0, V1, Ops[1]});
9357   }
9358 
9359   case SVE::BI__builtin_sve_svset_neonq_s8:
9360   case SVE::BI__builtin_sve_svset_neonq_s16:
9361   case SVE::BI__builtin_sve_svset_neonq_s32:
9362   case SVE::BI__builtin_sve_svset_neonq_s64:
9363   case SVE::BI__builtin_sve_svset_neonq_u8:
9364   case SVE::BI__builtin_sve_svset_neonq_u16:
9365   case SVE::BI__builtin_sve_svset_neonq_u32:
9366   case SVE::BI__builtin_sve_svset_neonq_u64:
9367   case SVE::BI__builtin_sve_svset_neonq_f16:
9368   case SVE::BI__builtin_sve_svset_neonq_f32:
9369   case SVE::BI__builtin_sve_svset_neonq_f64:
9370   case SVE::BI__builtin_sve_svset_neonq_bf16: {
9371     return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9372   }
9373 
9374   case SVE::BI__builtin_sve_svget_neonq_s8:
9375   case SVE::BI__builtin_sve_svget_neonq_s16:
9376   case SVE::BI__builtin_sve_svget_neonq_s32:
9377   case SVE::BI__builtin_sve_svget_neonq_s64:
9378   case SVE::BI__builtin_sve_svget_neonq_u8:
9379   case SVE::BI__builtin_sve_svget_neonq_u16:
9380   case SVE::BI__builtin_sve_svget_neonq_u32:
9381   case SVE::BI__builtin_sve_svget_neonq_u64:
9382   case SVE::BI__builtin_sve_svget_neonq_f16:
9383   case SVE::BI__builtin_sve_svget_neonq_f32:
9384   case SVE::BI__builtin_sve_svget_neonq_f64:
9385   case SVE::BI__builtin_sve_svget_neonq_bf16: {
9386     return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9387   }
9388 
9389   case SVE::BI__builtin_sve_svdup_neonq_s8:
9390   case SVE::BI__builtin_sve_svdup_neonq_s16:
9391   case SVE::BI__builtin_sve_svdup_neonq_s32:
9392   case SVE::BI__builtin_sve_svdup_neonq_s64:
9393   case SVE::BI__builtin_sve_svdup_neonq_u8:
9394   case SVE::BI__builtin_sve_svdup_neonq_u16:
9395   case SVE::BI__builtin_sve_svdup_neonq_u32:
9396   case SVE::BI__builtin_sve_svdup_neonq_u64:
9397   case SVE::BI__builtin_sve_svdup_neonq_f16:
9398   case SVE::BI__builtin_sve_svdup_neonq_f32:
9399   case SVE::BI__builtin_sve_svdup_neonq_f64:
9400   case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9401     Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0],
9402                                                Builder.getInt64(0));
9403     return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9404                                    {Insert, Builder.getInt64(0)});
9405   }
9406   }
9407 
9408   /// Should not happen
9409   return nullptr;
9410 }
9411 
9412 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9413                                                const CallExpr *E,
9414                                                llvm::Triple::ArchType Arch) {
9415   if (BuiltinID >= clang::AArch64::FirstSVEBuiltin &&
9416       BuiltinID <= clang::AArch64::LastSVEBuiltin)
9417     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9418 
9419   unsigned HintID = static_cast<unsigned>(-1);
9420   switch (BuiltinID) {
9421   default: break;
9422   case clang::AArch64::BI__builtin_arm_nop:
9423     HintID = 0;
9424     break;
9425   case clang::AArch64::BI__builtin_arm_yield:
9426   case clang::AArch64::BI__yield:
9427     HintID = 1;
9428     break;
9429   case clang::AArch64::BI__builtin_arm_wfe:
9430   case clang::AArch64::BI__wfe:
9431     HintID = 2;
9432     break;
9433   case clang::AArch64::BI__builtin_arm_wfi:
9434   case clang::AArch64::BI__wfi:
9435     HintID = 3;
9436     break;
9437   case clang::AArch64::BI__builtin_arm_sev:
9438   case clang::AArch64::BI__sev:
9439     HintID = 4;
9440     break;
9441   case clang::AArch64::BI__builtin_arm_sevl:
9442   case clang::AArch64::BI__sevl:
9443     HintID = 5;
9444     break;
9445   }
9446 
9447   if (HintID != static_cast<unsigned>(-1)) {
9448     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9449     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9450   }
9451 
9452   if (BuiltinID == clang::AArch64::BI__builtin_arm_prefetch) {
9453     Value *Address         = EmitScalarExpr(E->getArg(0));
9454     Value *RW              = EmitScalarExpr(E->getArg(1));
9455     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
9456     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9457     Value *IsData          = EmitScalarExpr(E->getArg(4));
9458 
9459     Value *Locality = nullptr;
9460     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9461       // Temporal fetch, needs to convert cache level to locality.
9462       Locality = llvm::ConstantInt::get(Int32Ty,
9463         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9464     } else {
9465       // Streaming fetch.
9466       Locality = llvm::ConstantInt::get(Int32Ty, 0);
9467     }
9468 
9469     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9470     // PLDL3STRM or PLDL2STRM.
9471     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9472     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9473   }
9474 
9475   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit) {
9476     assert((getContext().getTypeSize(E->getType()) == 32) &&
9477            "rbit of unusual size!");
9478     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9479     return Builder.CreateCall(
9480         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9481   }
9482   if (BuiltinID == clang::AArch64::BI__builtin_arm_rbit64) {
9483     assert((getContext().getTypeSize(E->getType()) == 64) &&
9484            "rbit of unusual size!");
9485     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9486     return Builder.CreateCall(
9487         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9488   }
9489 
9490   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls) {
9491     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9492     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9493                               "cls");
9494   }
9495   if (BuiltinID == clang::AArch64::BI__builtin_arm_cls64) {
9496     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9497     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9498                               "cls");
9499   }
9500 
9501   if (BuiltinID == clang::AArch64::BI__builtin_arm_frint32zf ||
9502       BuiltinID == clang::AArch64::BI__builtin_arm_frint32z) {
9503     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9504     llvm::Type *Ty = Arg->getType();
9505     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9506                               Arg, "frint32z");
9507   }
9508 
9509   if (BuiltinID == clang::AArch64::BI__builtin_arm_frint64zf ||
9510       BuiltinID == clang::AArch64::BI__builtin_arm_frint64z) {
9511     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9512     llvm::Type *Ty = Arg->getType();
9513     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9514                               Arg, "frint64z");
9515   }
9516 
9517   if (BuiltinID == clang::AArch64::BI__builtin_arm_frint32xf ||
9518       BuiltinID == clang::AArch64::BI__builtin_arm_frint32x) {
9519     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9520     llvm::Type *Ty = Arg->getType();
9521     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9522                               Arg, "frint32x");
9523   }
9524 
9525   if (BuiltinID == clang::AArch64::BI__builtin_arm_frint64xf ||
9526       BuiltinID == clang::AArch64::BI__builtin_arm_frint64x) {
9527     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9528     llvm::Type *Ty = Arg->getType();
9529     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9530                               Arg, "frint64x");
9531   }
9532 
9533   if (BuiltinID == clang::AArch64::BI__builtin_arm_jcvt) {
9534     assert((getContext().getTypeSize(E->getType()) == 32) &&
9535            "__jcvt of unusual size!");
9536     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9537     return Builder.CreateCall(
9538         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9539   }
9540 
9541   if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b ||
9542       BuiltinID == clang::AArch64::BI__builtin_arm_st64b ||
9543       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv ||
9544       BuiltinID == clang::AArch64::BI__builtin_arm_st64bv0) {
9545     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9546     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9547 
9548     if (BuiltinID == clang::AArch64::BI__builtin_arm_ld64b) {
9549       // Load from the address via an LLVM intrinsic, receiving a
9550       // tuple of 8 i64 words, and store each one to ValPtr.
9551       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9552       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9553       llvm::Value *ToRet;
9554       for (size_t i = 0; i < 8; i++) {
9555         llvm::Value *ValOffsetPtr =
9556             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9557         Address Addr =
9558             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9559         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9560       }
9561       return ToRet;
9562     } else {
9563       // Load 8 i64 words from ValPtr, and store them to the address
9564       // via an LLVM intrinsic.
9565       SmallVector<llvm::Value *, 9> Args;
9566       Args.push_back(MemAddr);
9567       for (size_t i = 0; i < 8; i++) {
9568         llvm::Value *ValOffsetPtr =
9569             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9570         Address Addr =
9571             Address(ValOffsetPtr, Int64Ty, CharUnits::fromQuantity(8));
9572         Args.push_back(Builder.CreateLoad(Addr));
9573       }
9574 
9575       auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_st64b
9576                        ? Intrinsic::aarch64_st64b
9577                    : BuiltinID == clang::AArch64::BI__builtin_arm_st64bv
9578                        ? Intrinsic::aarch64_st64bv
9579                        : Intrinsic::aarch64_st64bv0);
9580       Function *F = CGM.getIntrinsic(Intr);
9581       return Builder.CreateCall(F, Args);
9582     }
9583   }
9584 
9585   if (BuiltinID == clang::AArch64::BI__builtin_arm_rndr ||
9586       BuiltinID == clang::AArch64::BI__builtin_arm_rndrrs) {
9587 
9588     auto Intr = (BuiltinID == clang::AArch64::BI__builtin_arm_rndr
9589                      ? Intrinsic::aarch64_rndr
9590                      : Intrinsic::aarch64_rndrrs);
9591     Function *F = CGM.getIntrinsic(Intr);
9592     llvm::Value *Val = Builder.CreateCall(F);
9593     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9594     Value *Status = Builder.CreateExtractValue(Val, 1);
9595 
9596     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9597     Builder.CreateStore(RandomValue, MemAddress);
9598     Status = Builder.CreateZExt(Status, Int32Ty);
9599     return Status;
9600   }
9601 
9602   if (BuiltinID == clang::AArch64::BI__clear_cache) {
9603     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9604     const FunctionDecl *FD = E->getDirectCallee();
9605     Value *Ops[2];
9606     for (unsigned i = 0; i < 2; i++)
9607       Ops[i] = EmitScalarExpr(E->getArg(i));
9608     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9609     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9610     StringRef Name = FD->getName();
9611     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9612   }
9613 
9614   if ((BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
9615        BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) &&
9616       getContext().getTypeSize(E->getType()) == 128) {
9617     Function *F =
9618         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
9619                              ? Intrinsic::aarch64_ldaxp
9620                              : Intrinsic::aarch64_ldxp);
9621 
9622     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9623     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9624                                     "ldxp");
9625 
9626     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9627     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9628     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9629     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9630     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9631 
9632     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9633     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9634     Val = Builder.CreateOr(Val, Val1);
9635     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9636   } else if (BuiltinID == clang::AArch64::BI__builtin_arm_ldrex ||
9637              BuiltinID == clang::AArch64::BI__builtin_arm_ldaex) {
9638     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9639 
9640     QualType Ty = E->getType();
9641     llvm::Type *RealResTy = ConvertType(Ty);
9642     llvm::Type *IntTy =
9643         llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty));
9644     llvm::Type *PtrTy = IntTy->getPointerTo();
9645     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9646 
9647     Function *F =
9648         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_ldaex
9649                              ? Intrinsic::aarch64_ldaxr
9650                              : Intrinsic::aarch64_ldxr,
9651                          PtrTy);
9652     CallInst *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9653     Val->addParamAttr(
9654         0, Attribute::get(getLLVMContext(), Attribute::ElementType, IntTy));
9655 
9656     if (RealResTy->isPointerTy())
9657       return Builder.CreateIntToPtr(Val, RealResTy);
9658 
9659     llvm::Type *IntResTy = llvm::IntegerType::get(
9660         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9661     return Builder.CreateBitCast(Builder.CreateTruncOrBitCast(Val, IntResTy),
9662                                  RealResTy);
9663   }
9664 
9665   if ((BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
9666        BuiltinID == clang::AArch64::BI__builtin_arm_stlex) &&
9667       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9668     Function *F =
9669         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
9670                              ? Intrinsic::aarch64_stlxp
9671                              : Intrinsic::aarch64_stxp);
9672     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9673 
9674     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9675     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9676 
9677     Tmp = Builder.CreateElementBitCast(Tmp, STy);
9678     llvm::Value *Val = Builder.CreateLoad(Tmp);
9679 
9680     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9681     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9682     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9683                                          Int8PtrTy);
9684     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9685   }
9686 
9687   if (BuiltinID == clang::AArch64::BI__builtin_arm_strex ||
9688       BuiltinID == clang::AArch64::BI__builtin_arm_stlex) {
9689     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9690     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9691 
9692     QualType Ty = E->getArg(0)->getType();
9693     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9694                                                  getContext().getTypeSize(Ty));
9695     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9696 
9697     if (StoreVal->getType()->isPointerTy())
9698       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9699     else {
9700       llvm::Type *IntTy = llvm::IntegerType::get(
9701           getLLVMContext(),
9702           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9703       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9704       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9705     }
9706 
9707     Function *F =
9708         CGM.getIntrinsic(BuiltinID == clang::AArch64::BI__builtin_arm_stlex
9709                              ? Intrinsic::aarch64_stlxr
9710                              : Intrinsic::aarch64_stxr,
9711                          StoreAddr->getType());
9712     CallInst *CI = Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9713     CI->addParamAttr(
9714         1, Attribute::get(getLLVMContext(), Attribute::ElementType, StoreTy));
9715     return CI;
9716   }
9717 
9718   if (BuiltinID == clang::AArch64::BI__getReg) {
9719     Expr::EvalResult Result;
9720     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9721       llvm_unreachable("Sema will ensure that the parameter is constant");
9722 
9723     llvm::APSInt Value = Result.Val.getInt();
9724     LLVMContext &Context = CGM.getLLVMContext();
9725     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9726 
9727     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9728     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9729     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9730 
9731     llvm::Function *F =
9732         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9733     return Builder.CreateCall(F, Metadata);
9734   }
9735 
9736   if (BuiltinID == clang::AArch64::BI__break) {
9737     Expr::EvalResult Result;
9738     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9739       llvm_unreachable("Sema will ensure that the parameter is constant");
9740 
9741     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::aarch64_break);
9742     return Builder.CreateCall(F, {EmitScalarExpr(E->getArg(0))});
9743   }
9744 
9745   if (BuiltinID == clang::AArch64::BI__builtin_arm_clrex) {
9746     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9747     return Builder.CreateCall(F);
9748   }
9749 
9750   if (BuiltinID == clang::AArch64::BI_ReadWriteBarrier)
9751     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9752                                llvm::SyncScope::SingleThread);
9753 
9754   // CRC32
9755   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9756   switch (BuiltinID) {
9757   case clang::AArch64::BI__builtin_arm_crc32b:
9758     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9759   case clang::AArch64::BI__builtin_arm_crc32cb:
9760     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9761   case clang::AArch64::BI__builtin_arm_crc32h:
9762     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9763   case clang::AArch64::BI__builtin_arm_crc32ch:
9764     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9765   case clang::AArch64::BI__builtin_arm_crc32w:
9766     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9767   case clang::AArch64::BI__builtin_arm_crc32cw:
9768     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9769   case clang::AArch64::BI__builtin_arm_crc32d:
9770     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9771   case clang::AArch64::BI__builtin_arm_crc32cd:
9772     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9773   }
9774 
9775   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9776     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9777     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9778     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9779 
9780     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9781     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9782 
9783     return Builder.CreateCall(F, {Arg0, Arg1});
9784   }
9785 
9786   // Memory Operations (MOPS)
9787   if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
9788     Value *Dst = EmitScalarExpr(E->getArg(0));
9789     Value *Val = EmitScalarExpr(E->getArg(1));
9790     Value *Size = EmitScalarExpr(E->getArg(2));
9791     Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
9792     Val = Builder.CreateTrunc(Val, Int8Ty);
9793     Size = Builder.CreateIntCast(Size, Int64Ty, false);
9794     return Builder.CreateCall(
9795         CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
9796   }
9797 
9798   // Memory Tagging Extensions (MTE) Intrinsics
9799   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9800   switch (BuiltinID) {
9801   case clang::AArch64::BI__builtin_arm_irg:
9802     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9803   case clang::AArch64::BI__builtin_arm_addg:
9804     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9805   case clang::AArch64::BI__builtin_arm_gmi:
9806     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9807   case clang::AArch64::BI__builtin_arm_ldg:
9808     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9809   case clang::AArch64::BI__builtin_arm_stg:
9810     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9811   case clang::AArch64::BI__builtin_arm_subp:
9812     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9813   }
9814 
9815   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9816     llvm::Type *T = ConvertType(E->getType());
9817 
9818     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9819       Value *Pointer = EmitScalarExpr(E->getArg(0));
9820       Value *Mask = EmitScalarExpr(E->getArg(1));
9821 
9822       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9823       Mask = Builder.CreateZExt(Mask, Int64Ty);
9824       Value *RV = Builder.CreateCall(
9825                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9826        return Builder.CreatePointerCast(RV, T);
9827     }
9828     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9829       Value *Pointer = EmitScalarExpr(E->getArg(0));
9830       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9831 
9832       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9833       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9834       Value *RV = Builder.CreateCall(
9835                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9836       return Builder.CreatePointerCast(RV, T);
9837     }
9838     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9839       Value *Pointer = EmitScalarExpr(E->getArg(0));
9840       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9841 
9842       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9843       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9844       return Builder.CreateCall(
9845                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9846     }
9847     // Although it is possible to supply a different return
9848     // address (first arg) to this intrinsic, for now we set
9849     // return address same as input address.
9850     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9851       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9852       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9853       Value *RV = Builder.CreateCall(
9854                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9855       return Builder.CreatePointerCast(RV, T);
9856     }
9857     // Although it is possible to supply a different tag (to set)
9858     // to this intrinsic (as first arg), for now we supply
9859     // the tag that is in input address arg (common use case).
9860     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9861         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9862         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9863         return Builder.CreateCall(
9864                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9865     }
9866     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9867       Value *PointerA = EmitScalarExpr(E->getArg(0));
9868       Value *PointerB = EmitScalarExpr(E->getArg(1));
9869       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9870       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9871       return Builder.CreateCall(
9872                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9873     }
9874   }
9875 
9876   if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
9877       BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
9878       BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
9879       BuiltinID == clang::AArch64::BI__builtin_arm_wsr ||
9880       BuiltinID == clang::AArch64::BI__builtin_arm_wsr64 ||
9881       BuiltinID == clang::AArch64::BI__builtin_arm_wsrp) {
9882 
9883     SpecialRegisterAccessKind AccessKind = Write;
9884     if (BuiltinID == clang::AArch64::BI__builtin_arm_rsr ||
9885         BuiltinID == clang::AArch64::BI__builtin_arm_rsr64 ||
9886         BuiltinID == clang::AArch64::BI__builtin_arm_rsrp)
9887       AccessKind = VolatileRead;
9888 
9889     bool IsPointerBuiltin = BuiltinID == clang::AArch64::BI__builtin_arm_rsrp ||
9890                             BuiltinID == clang::AArch64::BI__builtin_arm_wsrp;
9891 
9892     bool Is64Bit = BuiltinID != clang::AArch64::BI__builtin_arm_rsr &&
9893                    BuiltinID != clang::AArch64::BI__builtin_arm_wsr;
9894 
9895     llvm::Type *ValueType;
9896     llvm::Type *RegisterType = Int64Ty;
9897     if (IsPointerBuiltin) {
9898       ValueType = VoidPtrTy;
9899     } else if (Is64Bit) {
9900       ValueType = Int64Ty;
9901     } else {
9902       ValueType = Int32Ty;
9903     }
9904 
9905     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9906                                       AccessKind);
9907   }
9908 
9909   if (BuiltinID == clang::AArch64::BI_ReadStatusReg ||
9910       BuiltinID == clang::AArch64::BI_WriteStatusReg) {
9911     LLVMContext &Context = CGM.getLLVMContext();
9912 
9913     unsigned SysReg =
9914       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9915 
9916     std::string SysRegStr;
9917     llvm::raw_string_ostream(SysRegStr) <<
9918                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9919                        ((SysReg >> 11) & 7)               << ":" <<
9920                        ((SysReg >> 7)  & 15)              << ":" <<
9921                        ((SysReg >> 3)  & 15)              << ":" <<
9922                        ( SysReg        & 7);
9923 
9924     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9925     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9926     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9927 
9928     llvm::Type *RegisterType = Int64Ty;
9929     llvm::Type *Types[] = { RegisterType };
9930 
9931     if (BuiltinID == clang::AArch64::BI_ReadStatusReg) {
9932       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9933 
9934       return Builder.CreateCall(F, Metadata);
9935     }
9936 
9937     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9938     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9939 
9940     return Builder.CreateCall(F, { Metadata, ArgValue });
9941   }
9942 
9943   if (BuiltinID == clang::AArch64::BI_AddressOfReturnAddress) {
9944     llvm::Function *F =
9945         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9946     return Builder.CreateCall(F);
9947   }
9948 
9949   if (BuiltinID == clang::AArch64::BI__builtin_sponentry) {
9950     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9951     return Builder.CreateCall(F);
9952   }
9953 
9954   if (BuiltinID == clang::AArch64::BI__mulh ||
9955       BuiltinID == clang::AArch64::BI__umulh) {
9956     llvm::Type *ResType = ConvertType(E->getType());
9957     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9958 
9959     bool IsSigned = BuiltinID == clang::AArch64::BI__mulh;
9960     Value *LHS =
9961         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
9962     Value *RHS =
9963         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
9964 
9965     Value *MulResult, *HigherBits;
9966     if (IsSigned) {
9967       MulResult = Builder.CreateNSWMul(LHS, RHS);
9968       HigherBits = Builder.CreateAShr(MulResult, 64);
9969     } else {
9970       MulResult = Builder.CreateNUWMul(LHS, RHS);
9971       HigherBits = Builder.CreateLShr(MulResult, 64);
9972     }
9973     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
9974 
9975     return HigherBits;
9976   }
9977 
9978   if (BuiltinID == AArch64::BI__writex18byte ||
9979       BuiltinID == AArch64::BI__writex18word ||
9980       BuiltinID == AArch64::BI__writex18dword ||
9981       BuiltinID == AArch64::BI__writex18qword) {
9982     llvm::Type *IntTy = ConvertType(E->getArg(1)->getType());
9983 
9984     // Read x18 as i8*
9985     LLVMContext &Context = CGM.getLLVMContext();
9986     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
9987     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9988     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9989     llvm::Function *F =
9990         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9991     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
9992     X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
9993 
9994     // Store val at x18 + offset
9995     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
9996     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
9997     Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
9998     Value *Val = EmitScalarExpr(E->getArg(1));
9999     StoreInst *Store = Builder.CreateAlignedStore(Val, Ptr, CharUnits::One());
10000     return Store;
10001   }
10002 
10003   if (BuiltinID == AArch64::BI__readx18byte ||
10004       BuiltinID == AArch64::BI__readx18word ||
10005       BuiltinID == AArch64::BI__readx18dword ||
10006       BuiltinID == AArch64::BI__readx18qword) {
10007     llvm::Type *IntTy = ConvertType(E->getType());
10008 
10009     // Read x18 as i8*
10010     LLVMContext &Context = CGM.getLLVMContext();
10011     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, "x18")};
10012     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
10013     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
10014     llvm::Function *F =
10015         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
10016     llvm::Value *X18 = Builder.CreateCall(F, Metadata);
10017     X18 = Builder.CreateIntToPtr(X18, llvm::PointerType::get(Int8Ty, 0));
10018 
10019     // Load x18 + offset
10020     Value *Offset = Builder.CreateZExt(EmitScalarExpr(E->getArg(0)), Int64Ty);
10021     Value *Ptr = Builder.CreateGEP(Int8Ty, X18, Offset);
10022     Ptr = Builder.CreatePointerCast(Ptr, llvm::PointerType::get(IntTy, 0));
10023     LoadInst *Load = Builder.CreateAlignedLoad(IntTy, Ptr, CharUnits::One());
10024     return Load;
10025   }
10026 
10027   // Handle MSVC intrinsics before argument evaluation to prevent double
10028   // evaluation.
10029   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
10030     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10031 
10032   // Find out if any arguments are required to be integer constant
10033   // expressions.
10034   unsigned ICEArguments = 0;
10035   ASTContext::GetBuiltinTypeError Error;
10036   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10037   assert(Error == ASTContext::GE_None && "Should not codegen an error");
10038 
10039   llvm::SmallVector<Value*, 4> Ops;
10040   Address PtrOp0 = Address::invalid();
10041   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10042     if (i == 0) {
10043       switch (BuiltinID) {
10044       case NEON::BI__builtin_neon_vld1_v:
10045       case NEON::BI__builtin_neon_vld1q_v:
10046       case NEON::BI__builtin_neon_vld1_dup_v:
10047       case NEON::BI__builtin_neon_vld1q_dup_v:
10048       case NEON::BI__builtin_neon_vld1_lane_v:
10049       case NEON::BI__builtin_neon_vld1q_lane_v:
10050       case NEON::BI__builtin_neon_vst1_v:
10051       case NEON::BI__builtin_neon_vst1q_v:
10052       case NEON::BI__builtin_neon_vst1_lane_v:
10053       case NEON::BI__builtin_neon_vst1q_lane_v:
10054         // Get the alignment for the argument in addition to the value;
10055         // we'll use it later.
10056         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10057         Ops.push_back(PtrOp0.getPointer());
10058         continue;
10059       }
10060     }
10061     if ((ICEArguments & (1 << i)) == 0) {
10062       Ops.push_back(EmitScalarExpr(E->getArg(i)));
10063     } else {
10064       // If this is required to be a constant, constant fold it so that we know
10065       // that the generated intrinsic gets a ConstantInt.
10066       Ops.push_back(llvm::ConstantInt::get(
10067           getLLVMContext(),
10068           *E->getArg(i)->getIntegerConstantExpr(getContext())));
10069     }
10070   }
10071 
10072   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
10073   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10074       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10075 
10076   if (Builtin) {
10077     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10078     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10079     assert(Result && "SISD intrinsic should have been handled");
10080     return Result;
10081   }
10082 
10083   const Expr *Arg = E->getArg(E->getNumArgs()-1);
10084   NeonTypeFlags Type(0);
10085   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
10086     // Determine the type of this overloaded NEON intrinsic.
10087     Type = NeonTypeFlags(Result->getZExtValue());
10088 
10089   bool usgn = Type.isUnsigned();
10090   bool quad = Type.isQuad();
10091 
10092   // Handle non-overloaded intrinsics first.
10093   switch (BuiltinID) {
10094   default: break;
10095   case NEON::BI__builtin_neon_vabsh_f16:
10096     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10097     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10098   case NEON::BI__builtin_neon_vaddq_p128: {
10099     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10100     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10101     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10102     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10103     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
10104     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10105     return Builder.CreateBitCast(Ops[0], Int128Ty);
10106   }
10107   case NEON::BI__builtin_neon_vldrq_p128: {
10108     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10109     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10110     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10111     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10112                                      CharUnits::fromQuantity(16));
10113   }
10114   case NEON::BI__builtin_neon_vstrq_p128: {
10115     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10116     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10117     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10118   }
10119   case NEON::BI__builtin_neon_vcvts_f32_u32:
10120   case NEON::BI__builtin_neon_vcvtd_f64_u64:
10121     usgn = true;
10122     LLVM_FALLTHROUGH;
10123   case NEON::BI__builtin_neon_vcvts_f32_s32:
10124   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10125     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10126     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10127     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10128     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10129     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10130     if (usgn)
10131       return Builder.CreateUIToFP(Ops[0], FTy);
10132     return Builder.CreateSIToFP(Ops[0], FTy);
10133   }
10134   case NEON::BI__builtin_neon_vcvth_f16_u16:
10135   case NEON::BI__builtin_neon_vcvth_f16_u32:
10136   case NEON::BI__builtin_neon_vcvth_f16_u64:
10137     usgn = true;
10138     LLVM_FALLTHROUGH;
10139   case NEON::BI__builtin_neon_vcvth_f16_s16:
10140   case NEON::BI__builtin_neon_vcvth_f16_s32:
10141   case NEON::BI__builtin_neon_vcvth_f16_s64: {
10142     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10143     llvm::Type *FTy = HalfTy;
10144     llvm::Type *InTy;
10145     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10146       InTy = Int64Ty;
10147     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10148       InTy = Int32Ty;
10149     else
10150       InTy = Int16Ty;
10151     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10152     if (usgn)
10153       return Builder.CreateUIToFP(Ops[0], FTy);
10154     return Builder.CreateSIToFP(Ops[0], FTy);
10155   }
10156   case NEON::BI__builtin_neon_vcvtah_u16_f16:
10157   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10158   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10159   case NEON::BI__builtin_neon_vcvtph_u16_f16:
10160   case NEON::BI__builtin_neon_vcvth_u16_f16:
10161   case NEON::BI__builtin_neon_vcvtah_s16_f16:
10162   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10163   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10164   case NEON::BI__builtin_neon_vcvtph_s16_f16:
10165   case NEON::BI__builtin_neon_vcvth_s16_f16: {
10166     unsigned Int;
10167     llvm::Type* InTy = Int32Ty;
10168     llvm::Type* FTy  = HalfTy;
10169     llvm::Type *Tys[2] = {InTy, FTy};
10170     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10171     switch (BuiltinID) {
10172     default: llvm_unreachable("missing builtin ID in switch!");
10173     case NEON::BI__builtin_neon_vcvtah_u16_f16:
10174       Int = Intrinsic::aarch64_neon_fcvtau; break;
10175     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10176       Int = Intrinsic::aarch64_neon_fcvtmu; break;
10177     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10178       Int = Intrinsic::aarch64_neon_fcvtnu; break;
10179     case NEON::BI__builtin_neon_vcvtph_u16_f16:
10180       Int = Intrinsic::aarch64_neon_fcvtpu; break;
10181     case NEON::BI__builtin_neon_vcvth_u16_f16:
10182       Int = Intrinsic::aarch64_neon_fcvtzu; break;
10183     case NEON::BI__builtin_neon_vcvtah_s16_f16:
10184       Int = Intrinsic::aarch64_neon_fcvtas; break;
10185     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10186       Int = Intrinsic::aarch64_neon_fcvtms; break;
10187     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10188       Int = Intrinsic::aarch64_neon_fcvtns; break;
10189     case NEON::BI__builtin_neon_vcvtph_s16_f16:
10190       Int = Intrinsic::aarch64_neon_fcvtps; break;
10191     case NEON::BI__builtin_neon_vcvth_s16_f16:
10192       Int = Intrinsic::aarch64_neon_fcvtzs; break;
10193     }
10194     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10195     return Builder.CreateTrunc(Ops[0], Int16Ty);
10196   }
10197   case NEON::BI__builtin_neon_vcaleh_f16:
10198   case NEON::BI__builtin_neon_vcalth_f16:
10199   case NEON::BI__builtin_neon_vcageh_f16:
10200   case NEON::BI__builtin_neon_vcagth_f16: {
10201     unsigned Int;
10202     llvm::Type* InTy = Int32Ty;
10203     llvm::Type* FTy  = HalfTy;
10204     llvm::Type *Tys[2] = {InTy, FTy};
10205     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10206     switch (BuiltinID) {
10207     default: llvm_unreachable("missing builtin ID in switch!");
10208     case NEON::BI__builtin_neon_vcageh_f16:
10209       Int = Intrinsic::aarch64_neon_facge; break;
10210     case NEON::BI__builtin_neon_vcagth_f16:
10211       Int = Intrinsic::aarch64_neon_facgt; break;
10212     case NEON::BI__builtin_neon_vcaleh_f16:
10213       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10214     case NEON::BI__builtin_neon_vcalth_f16:
10215       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10216     }
10217     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10218     return Builder.CreateTrunc(Ops[0], Int16Ty);
10219   }
10220   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10221   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10222     unsigned Int;
10223     llvm::Type* InTy = Int32Ty;
10224     llvm::Type* FTy  = HalfTy;
10225     llvm::Type *Tys[2] = {InTy, FTy};
10226     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10227     switch (BuiltinID) {
10228     default: llvm_unreachable("missing builtin ID in switch!");
10229     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10230       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10231     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10232       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10233     }
10234     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10235     return Builder.CreateTrunc(Ops[0], Int16Ty);
10236   }
10237   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10238   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10239     unsigned Int;
10240     llvm::Type* FTy  = HalfTy;
10241     llvm::Type* InTy = Int32Ty;
10242     llvm::Type *Tys[2] = {FTy, InTy};
10243     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10244     switch (BuiltinID) {
10245     default: llvm_unreachable("missing builtin ID in switch!");
10246     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10247       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10248       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10249       break;
10250     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10251       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10252       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10253       break;
10254     }
10255     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10256   }
10257   case NEON::BI__builtin_neon_vpaddd_s64: {
10258     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10259     Value *Vec = EmitScalarExpr(E->getArg(0));
10260     // The vector is v2f64, so make sure it's bitcast to that.
10261     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10262     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10263     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10264     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10265     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10266     // Pairwise addition of a v2f64 into a scalar f64.
10267     return Builder.CreateAdd(Op0, Op1, "vpaddd");
10268   }
10269   case NEON::BI__builtin_neon_vpaddd_f64: {
10270     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10271     Value *Vec = EmitScalarExpr(E->getArg(0));
10272     // The vector is v2f64, so make sure it's bitcast to that.
10273     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10274     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10275     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10276     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10277     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10278     // Pairwise addition of a v2f64 into a scalar f64.
10279     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10280   }
10281   case NEON::BI__builtin_neon_vpadds_f32: {
10282     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10283     Value *Vec = EmitScalarExpr(E->getArg(0));
10284     // The vector is v2f32, so make sure it's bitcast to that.
10285     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10286     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10287     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10288     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10289     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10290     // Pairwise addition of a v2f32 into a scalar f32.
10291     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10292   }
10293   case NEON::BI__builtin_neon_vceqzd_s64:
10294   case NEON::BI__builtin_neon_vceqzd_f64:
10295   case NEON::BI__builtin_neon_vceqzs_f32:
10296   case NEON::BI__builtin_neon_vceqzh_f16:
10297     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10298     return EmitAArch64CompareBuiltinExpr(
10299         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10300         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10301   case NEON::BI__builtin_neon_vcgezd_s64:
10302   case NEON::BI__builtin_neon_vcgezd_f64:
10303   case NEON::BI__builtin_neon_vcgezs_f32:
10304   case NEON::BI__builtin_neon_vcgezh_f16:
10305     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10306     return EmitAArch64CompareBuiltinExpr(
10307         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10308         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10309   case NEON::BI__builtin_neon_vclezd_s64:
10310   case NEON::BI__builtin_neon_vclezd_f64:
10311   case NEON::BI__builtin_neon_vclezs_f32:
10312   case NEON::BI__builtin_neon_vclezh_f16:
10313     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10314     return EmitAArch64CompareBuiltinExpr(
10315         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10316         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10317   case NEON::BI__builtin_neon_vcgtzd_s64:
10318   case NEON::BI__builtin_neon_vcgtzd_f64:
10319   case NEON::BI__builtin_neon_vcgtzs_f32:
10320   case NEON::BI__builtin_neon_vcgtzh_f16:
10321     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10322     return EmitAArch64CompareBuiltinExpr(
10323         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10324         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10325   case NEON::BI__builtin_neon_vcltzd_s64:
10326   case NEON::BI__builtin_neon_vcltzd_f64:
10327   case NEON::BI__builtin_neon_vcltzs_f32:
10328   case NEON::BI__builtin_neon_vcltzh_f16:
10329     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10330     return EmitAArch64CompareBuiltinExpr(
10331         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10332         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10333 
10334   case NEON::BI__builtin_neon_vceqzd_u64: {
10335     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10336     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10337     Ops[0] =
10338         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10339     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10340   }
10341   case NEON::BI__builtin_neon_vceqd_f64:
10342   case NEON::BI__builtin_neon_vcled_f64:
10343   case NEON::BI__builtin_neon_vcltd_f64:
10344   case NEON::BI__builtin_neon_vcged_f64:
10345   case NEON::BI__builtin_neon_vcgtd_f64: {
10346     llvm::CmpInst::Predicate P;
10347     switch (BuiltinID) {
10348     default: llvm_unreachable("missing builtin ID in switch!");
10349     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10350     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10351     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10352     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10353     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10354     }
10355     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10356     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10357     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10358     if (P == llvm::FCmpInst::FCMP_OEQ)
10359       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10360     else
10361       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10362     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10363   }
10364   case NEON::BI__builtin_neon_vceqs_f32:
10365   case NEON::BI__builtin_neon_vcles_f32:
10366   case NEON::BI__builtin_neon_vclts_f32:
10367   case NEON::BI__builtin_neon_vcges_f32:
10368   case NEON::BI__builtin_neon_vcgts_f32: {
10369     llvm::CmpInst::Predicate P;
10370     switch (BuiltinID) {
10371     default: llvm_unreachable("missing builtin ID in switch!");
10372     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10373     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10374     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10375     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10376     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10377     }
10378     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10379     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10380     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10381     if (P == llvm::FCmpInst::FCMP_OEQ)
10382       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10383     else
10384       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10385     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10386   }
10387   case NEON::BI__builtin_neon_vceqh_f16:
10388   case NEON::BI__builtin_neon_vcleh_f16:
10389   case NEON::BI__builtin_neon_vclth_f16:
10390   case NEON::BI__builtin_neon_vcgeh_f16:
10391   case NEON::BI__builtin_neon_vcgth_f16: {
10392     llvm::CmpInst::Predicate P;
10393     switch (BuiltinID) {
10394     default: llvm_unreachable("missing builtin ID in switch!");
10395     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10396     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10397     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10398     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10399     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10400     }
10401     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10402     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10403     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10404     if (P == llvm::FCmpInst::FCMP_OEQ)
10405       Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10406     else
10407       Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10408     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10409   }
10410   case NEON::BI__builtin_neon_vceqd_s64:
10411   case NEON::BI__builtin_neon_vceqd_u64:
10412   case NEON::BI__builtin_neon_vcgtd_s64:
10413   case NEON::BI__builtin_neon_vcgtd_u64:
10414   case NEON::BI__builtin_neon_vcltd_s64:
10415   case NEON::BI__builtin_neon_vcltd_u64:
10416   case NEON::BI__builtin_neon_vcged_u64:
10417   case NEON::BI__builtin_neon_vcged_s64:
10418   case NEON::BI__builtin_neon_vcled_u64:
10419   case NEON::BI__builtin_neon_vcled_s64: {
10420     llvm::CmpInst::Predicate P;
10421     switch (BuiltinID) {
10422     default: llvm_unreachable("missing builtin ID in switch!");
10423     case NEON::BI__builtin_neon_vceqd_s64:
10424     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10425     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10426     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10427     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10428     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10429     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10430     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10431     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10432     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10433     }
10434     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10435     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10436     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10437     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10438     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10439   }
10440   case NEON::BI__builtin_neon_vtstd_s64:
10441   case NEON::BI__builtin_neon_vtstd_u64: {
10442     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10443     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10444     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10445     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10446     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10447                                 llvm::Constant::getNullValue(Int64Ty));
10448     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10449   }
10450   case NEON::BI__builtin_neon_vset_lane_i8:
10451   case NEON::BI__builtin_neon_vset_lane_i16:
10452   case NEON::BI__builtin_neon_vset_lane_i32:
10453   case NEON::BI__builtin_neon_vset_lane_i64:
10454   case NEON::BI__builtin_neon_vset_lane_bf16:
10455   case NEON::BI__builtin_neon_vset_lane_f32:
10456   case NEON::BI__builtin_neon_vsetq_lane_i8:
10457   case NEON::BI__builtin_neon_vsetq_lane_i16:
10458   case NEON::BI__builtin_neon_vsetq_lane_i32:
10459   case NEON::BI__builtin_neon_vsetq_lane_i64:
10460   case NEON::BI__builtin_neon_vsetq_lane_bf16:
10461   case NEON::BI__builtin_neon_vsetq_lane_f32:
10462     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10463     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10464   case NEON::BI__builtin_neon_vset_lane_f64:
10465     // The vector type needs a cast for the v1f64 variant.
10466     Ops[1] =
10467         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10468     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10469     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10470   case NEON::BI__builtin_neon_vsetq_lane_f64:
10471     // The vector type needs a cast for the v2f64 variant.
10472     Ops[1] =
10473         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10474     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10475     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10476 
10477   case NEON::BI__builtin_neon_vget_lane_i8:
10478   case NEON::BI__builtin_neon_vdupb_lane_i8:
10479     Ops[0] =
10480         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10481     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10482                                         "vget_lane");
10483   case NEON::BI__builtin_neon_vgetq_lane_i8:
10484   case NEON::BI__builtin_neon_vdupb_laneq_i8:
10485     Ops[0] =
10486         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10487     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10488                                         "vgetq_lane");
10489   case NEON::BI__builtin_neon_vget_lane_i16:
10490   case NEON::BI__builtin_neon_vduph_lane_i16:
10491     Ops[0] =
10492         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10493     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10494                                         "vget_lane");
10495   case NEON::BI__builtin_neon_vgetq_lane_i16:
10496   case NEON::BI__builtin_neon_vduph_laneq_i16:
10497     Ops[0] =
10498         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10499     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10500                                         "vgetq_lane");
10501   case NEON::BI__builtin_neon_vget_lane_i32:
10502   case NEON::BI__builtin_neon_vdups_lane_i32:
10503     Ops[0] =
10504         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10505     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10506                                         "vget_lane");
10507   case NEON::BI__builtin_neon_vdups_lane_f32:
10508     Ops[0] =
10509         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10510     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10511                                         "vdups_lane");
10512   case NEON::BI__builtin_neon_vgetq_lane_i32:
10513   case NEON::BI__builtin_neon_vdups_laneq_i32:
10514     Ops[0] =
10515         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10516     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10517                                         "vgetq_lane");
10518   case NEON::BI__builtin_neon_vget_lane_i64:
10519   case NEON::BI__builtin_neon_vdupd_lane_i64:
10520     Ops[0] =
10521         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10522     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10523                                         "vget_lane");
10524   case NEON::BI__builtin_neon_vdupd_lane_f64:
10525     Ops[0] =
10526         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10527     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10528                                         "vdupd_lane");
10529   case NEON::BI__builtin_neon_vgetq_lane_i64:
10530   case NEON::BI__builtin_neon_vdupd_laneq_i64:
10531     Ops[0] =
10532         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10533     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10534                                         "vgetq_lane");
10535   case NEON::BI__builtin_neon_vget_lane_f32:
10536     Ops[0] =
10537         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10538     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10539                                         "vget_lane");
10540   case NEON::BI__builtin_neon_vget_lane_f64:
10541     Ops[0] =
10542         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10543     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10544                                         "vget_lane");
10545   case NEON::BI__builtin_neon_vgetq_lane_f32:
10546   case NEON::BI__builtin_neon_vdups_laneq_f32:
10547     Ops[0] =
10548         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10549     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10550                                         "vgetq_lane");
10551   case NEON::BI__builtin_neon_vgetq_lane_f64:
10552   case NEON::BI__builtin_neon_vdupd_laneq_f64:
10553     Ops[0] =
10554         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10555     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10556                                         "vgetq_lane");
10557   case NEON::BI__builtin_neon_vaddh_f16:
10558     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10559     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10560   case NEON::BI__builtin_neon_vsubh_f16:
10561     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10562     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10563   case NEON::BI__builtin_neon_vmulh_f16:
10564     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10565     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10566   case NEON::BI__builtin_neon_vdivh_f16:
10567     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10568     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10569   case NEON::BI__builtin_neon_vfmah_f16:
10570     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10571     return emitCallMaybeConstrainedFPBuiltin(
10572         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10573         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10574   case NEON::BI__builtin_neon_vfmsh_f16: {
10575     // FIXME: This should be an fneg instruction:
10576     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10577     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10578 
10579     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10580     return emitCallMaybeConstrainedFPBuiltin(
10581         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10582         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10583   }
10584   case NEON::BI__builtin_neon_vaddd_s64:
10585   case NEON::BI__builtin_neon_vaddd_u64:
10586     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10587   case NEON::BI__builtin_neon_vsubd_s64:
10588   case NEON::BI__builtin_neon_vsubd_u64:
10589     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10590   case NEON::BI__builtin_neon_vqdmlalh_s16:
10591   case NEON::BI__builtin_neon_vqdmlslh_s16: {
10592     SmallVector<Value *, 2> ProductOps;
10593     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10594     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10595     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10596     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10597                           ProductOps, "vqdmlXl");
10598     Constant *CI = ConstantInt::get(SizeTy, 0);
10599     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10600 
10601     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10602                                         ? Intrinsic::aarch64_neon_sqadd
10603                                         : Intrinsic::aarch64_neon_sqsub;
10604     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10605   }
10606   case NEON::BI__builtin_neon_vqshlud_n_s64: {
10607     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10608     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10609     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10610                         Ops, "vqshlu_n");
10611   }
10612   case NEON::BI__builtin_neon_vqshld_n_u64:
10613   case NEON::BI__builtin_neon_vqshld_n_s64: {
10614     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10615                                    ? Intrinsic::aarch64_neon_uqshl
10616                                    : Intrinsic::aarch64_neon_sqshl;
10617     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10618     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10619     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10620   }
10621   case NEON::BI__builtin_neon_vrshrd_n_u64:
10622   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10623     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10624                                    ? Intrinsic::aarch64_neon_urshl
10625                                    : Intrinsic::aarch64_neon_srshl;
10626     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10627     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10628     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10629     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10630   }
10631   case NEON::BI__builtin_neon_vrsrad_n_u64:
10632   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10633     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10634                                    ? Intrinsic::aarch64_neon_urshl
10635                                    : Intrinsic::aarch64_neon_srshl;
10636     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10637     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10638     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10639                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10640     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10641   }
10642   case NEON::BI__builtin_neon_vshld_n_s64:
10643   case NEON::BI__builtin_neon_vshld_n_u64: {
10644     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10645     return Builder.CreateShl(
10646         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10647   }
10648   case NEON::BI__builtin_neon_vshrd_n_s64: {
10649     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10650     return Builder.CreateAShr(
10651         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10652                                                    Amt->getZExtValue())),
10653         "shrd_n");
10654   }
10655   case NEON::BI__builtin_neon_vshrd_n_u64: {
10656     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10657     uint64_t ShiftAmt = Amt->getZExtValue();
10658     // Right-shifting an unsigned value by its size yields 0.
10659     if (ShiftAmt == 64)
10660       return ConstantInt::get(Int64Ty, 0);
10661     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10662                               "shrd_n");
10663   }
10664   case NEON::BI__builtin_neon_vsrad_n_s64: {
10665     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10666     Ops[1] = Builder.CreateAShr(
10667         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10668                                                    Amt->getZExtValue())),
10669         "shrd_n");
10670     return Builder.CreateAdd(Ops[0], Ops[1]);
10671   }
10672   case NEON::BI__builtin_neon_vsrad_n_u64: {
10673     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10674     uint64_t ShiftAmt = Amt->getZExtValue();
10675     // Right-shifting an unsigned value by its size yields 0.
10676     // As Op + 0 = Op, return Ops[0] directly.
10677     if (ShiftAmt == 64)
10678       return Ops[0];
10679     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10680                                 "shrd_n");
10681     return Builder.CreateAdd(Ops[0], Ops[1]);
10682   }
10683   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10684   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10685   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10686   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10687     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10688                                           "lane");
10689     SmallVector<Value *, 2> ProductOps;
10690     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10691     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10692     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10693     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10694                           ProductOps, "vqdmlXl");
10695     Constant *CI = ConstantInt::get(SizeTy, 0);
10696     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10697     Ops.pop_back();
10698 
10699     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10700                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10701                           ? Intrinsic::aarch64_neon_sqadd
10702                           : Intrinsic::aarch64_neon_sqsub;
10703     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10704   }
10705   case NEON::BI__builtin_neon_vqdmlals_s32:
10706   case NEON::BI__builtin_neon_vqdmlsls_s32: {
10707     SmallVector<Value *, 2> ProductOps;
10708     ProductOps.push_back(Ops[1]);
10709     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10710     Ops[1] =
10711         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10712                      ProductOps, "vqdmlXl");
10713 
10714     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10715                                         ? Intrinsic::aarch64_neon_sqadd
10716                                         : Intrinsic::aarch64_neon_sqsub;
10717     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10718   }
10719   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10720   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10721   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10722   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10723     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10724                                           "lane");
10725     SmallVector<Value *, 2> ProductOps;
10726     ProductOps.push_back(Ops[1]);
10727     ProductOps.push_back(Ops[2]);
10728     Ops[1] =
10729         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10730                      ProductOps, "vqdmlXl");
10731     Ops.pop_back();
10732 
10733     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10734                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10735                           ? Intrinsic::aarch64_neon_sqadd
10736                           : Intrinsic::aarch64_neon_sqsub;
10737     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10738   }
10739   case NEON::BI__builtin_neon_vget_lane_bf16:
10740   case NEON::BI__builtin_neon_vduph_lane_bf16:
10741   case NEON::BI__builtin_neon_vduph_lane_f16: {
10742     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10743                                         "vget_lane");
10744   }
10745   case NEON::BI__builtin_neon_vgetq_lane_bf16:
10746   case NEON::BI__builtin_neon_vduph_laneq_bf16:
10747   case NEON::BI__builtin_neon_vduph_laneq_f16: {
10748     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10749                                         "vgetq_lane");
10750   }
10751 
10752   case clang::AArch64::BI_InterlockedAdd: {
10753     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10754     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10755     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10756       AtomicRMWInst::Add, Arg0, Arg1,
10757       llvm::AtomicOrdering::SequentiallyConsistent);
10758     return Builder.CreateAdd(RMWI, Arg1);
10759   }
10760   }
10761 
10762   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10763   llvm::Type *Ty = VTy;
10764   if (!Ty)
10765     return nullptr;
10766 
10767   // Not all intrinsics handled by the common case work for AArch64 yet, so only
10768   // defer to common code if it's been added to our special map.
10769   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10770                                         AArch64SIMDIntrinsicsProvenSorted);
10771 
10772   if (Builtin)
10773     return EmitCommonNeonBuiltinExpr(
10774         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10775         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10776         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10777 
10778   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10779     return V;
10780 
10781   unsigned Int;
10782   switch (BuiltinID) {
10783   default: return nullptr;
10784   case NEON::BI__builtin_neon_vbsl_v:
10785   case NEON::BI__builtin_neon_vbslq_v: {
10786     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10787     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10788     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10789     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10790 
10791     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10792     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10793     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10794     return Builder.CreateBitCast(Ops[0], Ty);
10795   }
10796   case NEON::BI__builtin_neon_vfma_lane_v:
10797   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10798     // The ARM builtins (and instructions) have the addend as the first
10799     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10800     Value *Addend = Ops[0];
10801     Value *Multiplicand = Ops[1];
10802     Value *LaneSource = Ops[2];
10803     Ops[0] = Multiplicand;
10804     Ops[1] = LaneSource;
10805     Ops[2] = Addend;
10806 
10807     // Now adjust things to handle the lane access.
10808     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10809                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10810                                                       VTy->getNumElements() / 2)
10811                          : VTy;
10812     llvm::Constant *cst = cast<Constant>(Ops[3]);
10813     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10814     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10815     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10816 
10817     Ops.pop_back();
10818     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10819                                        : Intrinsic::fma;
10820     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10821   }
10822   case NEON::BI__builtin_neon_vfma_laneq_v: {
10823     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10824     // v1f64 fma should be mapped to Neon scalar f64 fma
10825     if (VTy && VTy->getElementType() == DoubleTy) {
10826       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10827       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10828       llvm::FixedVectorType *VTy =
10829           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10830       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10831       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10832       Value *Result;
10833       Result = emitCallMaybeConstrainedFPBuiltin(
10834           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10835           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10836       return Builder.CreateBitCast(Result, Ty);
10837     }
10838     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10839     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10840 
10841     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10842                                            VTy->getNumElements() * 2);
10843     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10844     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10845                                                cast<ConstantInt>(Ops[3]));
10846     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10847 
10848     return emitCallMaybeConstrainedFPBuiltin(
10849         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10850         {Ops[2], Ops[1], Ops[0]});
10851   }
10852   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10853     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10854     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10855 
10856     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10857     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10858     return emitCallMaybeConstrainedFPBuiltin(
10859         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10860         {Ops[2], Ops[1], Ops[0]});
10861   }
10862   case NEON::BI__builtin_neon_vfmah_lane_f16:
10863   case NEON::BI__builtin_neon_vfmas_lane_f32:
10864   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10865   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10866   case NEON::BI__builtin_neon_vfmad_lane_f64:
10867   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10868     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10869     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10870     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10871     return emitCallMaybeConstrainedFPBuiltin(
10872         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10873         {Ops[1], Ops[2], Ops[0]});
10874   }
10875   case NEON::BI__builtin_neon_vmull_v:
10876     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10877     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10878     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10879     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10880   case NEON::BI__builtin_neon_vmax_v:
10881   case NEON::BI__builtin_neon_vmaxq_v:
10882     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10883     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10884     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10885     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10886   case NEON::BI__builtin_neon_vmaxh_f16: {
10887     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10888     Int = Intrinsic::aarch64_neon_fmax;
10889     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10890   }
10891   case NEON::BI__builtin_neon_vmin_v:
10892   case NEON::BI__builtin_neon_vminq_v:
10893     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10894     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10895     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10896     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10897   case NEON::BI__builtin_neon_vminh_f16: {
10898     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10899     Int = Intrinsic::aarch64_neon_fmin;
10900     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10901   }
10902   case NEON::BI__builtin_neon_vabd_v:
10903   case NEON::BI__builtin_neon_vabdq_v:
10904     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10905     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10906     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10907     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10908   case NEON::BI__builtin_neon_vpadal_v:
10909   case NEON::BI__builtin_neon_vpadalq_v: {
10910     unsigned ArgElts = VTy->getNumElements();
10911     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10912     unsigned BitWidth = EltTy->getBitWidth();
10913     auto *ArgTy = llvm::FixedVectorType::get(
10914         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10915     llvm::Type* Tys[2] = { VTy, ArgTy };
10916     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10917     SmallVector<llvm::Value*, 1> TmpOps;
10918     TmpOps.push_back(Ops[1]);
10919     Function *F = CGM.getIntrinsic(Int, Tys);
10920     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10921     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10922     return Builder.CreateAdd(tmp, addend);
10923   }
10924   case NEON::BI__builtin_neon_vpmin_v:
10925   case NEON::BI__builtin_neon_vpminq_v:
10926     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10927     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10928     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10929     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10930   case NEON::BI__builtin_neon_vpmax_v:
10931   case NEON::BI__builtin_neon_vpmaxq_v:
10932     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10933     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10934     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10935     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10936   case NEON::BI__builtin_neon_vminnm_v:
10937   case NEON::BI__builtin_neon_vminnmq_v:
10938     Int = Intrinsic::aarch64_neon_fminnm;
10939     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10940   case NEON::BI__builtin_neon_vminnmh_f16:
10941     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10942     Int = Intrinsic::aarch64_neon_fminnm;
10943     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10944   case NEON::BI__builtin_neon_vmaxnm_v:
10945   case NEON::BI__builtin_neon_vmaxnmq_v:
10946     Int = Intrinsic::aarch64_neon_fmaxnm;
10947     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10948   case NEON::BI__builtin_neon_vmaxnmh_f16:
10949     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10950     Int = Intrinsic::aarch64_neon_fmaxnm;
10951     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10952   case NEON::BI__builtin_neon_vrecpss_f32: {
10953     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10954     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10955                         Ops, "vrecps");
10956   }
10957   case NEON::BI__builtin_neon_vrecpsd_f64:
10958     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10959     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10960                         Ops, "vrecps");
10961   case NEON::BI__builtin_neon_vrecpsh_f16:
10962     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10963     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10964                         Ops, "vrecps");
10965   case NEON::BI__builtin_neon_vqshrun_n_v:
10966     Int = Intrinsic::aarch64_neon_sqshrun;
10967     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10968   case NEON::BI__builtin_neon_vqrshrun_n_v:
10969     Int = Intrinsic::aarch64_neon_sqrshrun;
10970     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10971   case NEON::BI__builtin_neon_vqshrn_n_v:
10972     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10973     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10974   case NEON::BI__builtin_neon_vrshrn_n_v:
10975     Int = Intrinsic::aarch64_neon_rshrn;
10976     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10977   case NEON::BI__builtin_neon_vqrshrn_n_v:
10978     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10979     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10980   case NEON::BI__builtin_neon_vrndah_f16: {
10981     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10982     Int = Builder.getIsFPConstrained()
10983               ? Intrinsic::experimental_constrained_round
10984               : Intrinsic::round;
10985     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10986   }
10987   case NEON::BI__builtin_neon_vrnda_v:
10988   case NEON::BI__builtin_neon_vrndaq_v: {
10989     Int = Builder.getIsFPConstrained()
10990               ? Intrinsic::experimental_constrained_round
10991               : Intrinsic::round;
10992     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10993   }
10994   case NEON::BI__builtin_neon_vrndih_f16: {
10995     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10996     Int = Builder.getIsFPConstrained()
10997               ? Intrinsic::experimental_constrained_nearbyint
10998               : Intrinsic::nearbyint;
10999     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
11000   }
11001   case NEON::BI__builtin_neon_vrndmh_f16: {
11002     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11003     Int = Builder.getIsFPConstrained()
11004               ? Intrinsic::experimental_constrained_floor
11005               : Intrinsic::floor;
11006     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
11007   }
11008   case NEON::BI__builtin_neon_vrndm_v:
11009   case NEON::BI__builtin_neon_vrndmq_v: {
11010     Int = Builder.getIsFPConstrained()
11011               ? Intrinsic::experimental_constrained_floor
11012               : Intrinsic::floor;
11013     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
11014   }
11015   case NEON::BI__builtin_neon_vrndnh_f16: {
11016     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11017     Int = Builder.getIsFPConstrained()
11018               ? Intrinsic::experimental_constrained_roundeven
11019               : Intrinsic::roundeven;
11020     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
11021   }
11022   case NEON::BI__builtin_neon_vrndn_v:
11023   case NEON::BI__builtin_neon_vrndnq_v: {
11024     Int = Builder.getIsFPConstrained()
11025               ? Intrinsic::experimental_constrained_roundeven
11026               : Intrinsic::roundeven;
11027     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11028   }
11029   case NEON::BI__builtin_neon_vrndns_f32: {
11030     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11031     Int = Builder.getIsFPConstrained()
11032               ? Intrinsic::experimental_constrained_roundeven
11033               : Intrinsic::roundeven;
11034     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11035   }
11036   case NEON::BI__builtin_neon_vrndph_f16: {
11037     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11038     Int = Builder.getIsFPConstrained()
11039               ? Intrinsic::experimental_constrained_ceil
11040               : Intrinsic::ceil;
11041     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11042   }
11043   case NEON::BI__builtin_neon_vrndp_v:
11044   case NEON::BI__builtin_neon_vrndpq_v: {
11045     Int = Builder.getIsFPConstrained()
11046               ? Intrinsic::experimental_constrained_ceil
11047               : Intrinsic::ceil;
11048     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11049   }
11050   case NEON::BI__builtin_neon_vrndxh_f16: {
11051     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11052     Int = Builder.getIsFPConstrained()
11053               ? Intrinsic::experimental_constrained_rint
11054               : Intrinsic::rint;
11055     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11056   }
11057   case NEON::BI__builtin_neon_vrndx_v:
11058   case NEON::BI__builtin_neon_vrndxq_v: {
11059     Int = Builder.getIsFPConstrained()
11060               ? Intrinsic::experimental_constrained_rint
11061               : Intrinsic::rint;
11062     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11063   }
11064   case NEON::BI__builtin_neon_vrndh_f16: {
11065     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11066     Int = Builder.getIsFPConstrained()
11067               ? Intrinsic::experimental_constrained_trunc
11068               : Intrinsic::trunc;
11069     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11070   }
11071   case NEON::BI__builtin_neon_vrnd32x_v:
11072   case NEON::BI__builtin_neon_vrnd32xq_v: {
11073     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11074     Int = Intrinsic::aarch64_neon_frint32x;
11075     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11076   }
11077   case NEON::BI__builtin_neon_vrnd32z_v:
11078   case NEON::BI__builtin_neon_vrnd32zq_v: {
11079     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11080     Int = Intrinsic::aarch64_neon_frint32z;
11081     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11082   }
11083   case NEON::BI__builtin_neon_vrnd64x_v:
11084   case NEON::BI__builtin_neon_vrnd64xq_v: {
11085     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11086     Int = Intrinsic::aarch64_neon_frint64x;
11087     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11088   }
11089   case NEON::BI__builtin_neon_vrnd64z_v:
11090   case NEON::BI__builtin_neon_vrnd64zq_v: {
11091     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11092     Int = Intrinsic::aarch64_neon_frint64z;
11093     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11094   }
11095   case NEON::BI__builtin_neon_vrnd_v:
11096   case NEON::BI__builtin_neon_vrndq_v: {
11097     Int = Builder.getIsFPConstrained()
11098               ? Intrinsic::experimental_constrained_trunc
11099               : Intrinsic::trunc;
11100     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11101   }
11102   case NEON::BI__builtin_neon_vcvt_f64_v:
11103   case NEON::BI__builtin_neon_vcvtq_f64_v:
11104     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11105     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11106     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11107                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11108   case NEON::BI__builtin_neon_vcvt_f64_f32: {
11109     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
11110            "unexpected vcvt_f64_f32 builtin");
11111     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11112     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11113 
11114     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11115   }
11116   case NEON::BI__builtin_neon_vcvt_f32_f64: {
11117     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
11118            "unexpected vcvt_f32_f64 builtin");
11119     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11120     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11121 
11122     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11123   }
11124   case NEON::BI__builtin_neon_vcvt_s32_v:
11125   case NEON::BI__builtin_neon_vcvt_u32_v:
11126   case NEON::BI__builtin_neon_vcvt_s64_v:
11127   case NEON::BI__builtin_neon_vcvt_u64_v:
11128   case NEON::BI__builtin_neon_vcvt_s16_v:
11129   case NEON::BI__builtin_neon_vcvt_u16_v:
11130   case NEON::BI__builtin_neon_vcvtq_s32_v:
11131   case NEON::BI__builtin_neon_vcvtq_u32_v:
11132   case NEON::BI__builtin_neon_vcvtq_s64_v:
11133   case NEON::BI__builtin_neon_vcvtq_u64_v:
11134   case NEON::BI__builtin_neon_vcvtq_s16_v:
11135   case NEON::BI__builtin_neon_vcvtq_u16_v: {
11136     Int =
11137         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11138     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11139     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11140   }
11141   case NEON::BI__builtin_neon_vcvta_s16_v:
11142   case NEON::BI__builtin_neon_vcvta_u16_v:
11143   case NEON::BI__builtin_neon_vcvta_s32_v:
11144   case NEON::BI__builtin_neon_vcvtaq_s16_v:
11145   case NEON::BI__builtin_neon_vcvtaq_s32_v:
11146   case NEON::BI__builtin_neon_vcvta_u32_v:
11147   case NEON::BI__builtin_neon_vcvtaq_u16_v:
11148   case NEON::BI__builtin_neon_vcvtaq_u32_v:
11149   case NEON::BI__builtin_neon_vcvta_s64_v:
11150   case NEON::BI__builtin_neon_vcvtaq_s64_v:
11151   case NEON::BI__builtin_neon_vcvta_u64_v:
11152   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11153     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11154     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11155     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11156   }
11157   case NEON::BI__builtin_neon_vcvtm_s16_v:
11158   case NEON::BI__builtin_neon_vcvtm_s32_v:
11159   case NEON::BI__builtin_neon_vcvtmq_s16_v:
11160   case NEON::BI__builtin_neon_vcvtmq_s32_v:
11161   case NEON::BI__builtin_neon_vcvtm_u16_v:
11162   case NEON::BI__builtin_neon_vcvtm_u32_v:
11163   case NEON::BI__builtin_neon_vcvtmq_u16_v:
11164   case NEON::BI__builtin_neon_vcvtmq_u32_v:
11165   case NEON::BI__builtin_neon_vcvtm_s64_v:
11166   case NEON::BI__builtin_neon_vcvtmq_s64_v:
11167   case NEON::BI__builtin_neon_vcvtm_u64_v:
11168   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11169     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11170     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11171     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11172   }
11173   case NEON::BI__builtin_neon_vcvtn_s16_v:
11174   case NEON::BI__builtin_neon_vcvtn_s32_v:
11175   case NEON::BI__builtin_neon_vcvtnq_s16_v:
11176   case NEON::BI__builtin_neon_vcvtnq_s32_v:
11177   case NEON::BI__builtin_neon_vcvtn_u16_v:
11178   case NEON::BI__builtin_neon_vcvtn_u32_v:
11179   case NEON::BI__builtin_neon_vcvtnq_u16_v:
11180   case NEON::BI__builtin_neon_vcvtnq_u32_v:
11181   case NEON::BI__builtin_neon_vcvtn_s64_v:
11182   case NEON::BI__builtin_neon_vcvtnq_s64_v:
11183   case NEON::BI__builtin_neon_vcvtn_u64_v:
11184   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11185     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11186     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11187     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11188   }
11189   case NEON::BI__builtin_neon_vcvtp_s16_v:
11190   case NEON::BI__builtin_neon_vcvtp_s32_v:
11191   case NEON::BI__builtin_neon_vcvtpq_s16_v:
11192   case NEON::BI__builtin_neon_vcvtpq_s32_v:
11193   case NEON::BI__builtin_neon_vcvtp_u16_v:
11194   case NEON::BI__builtin_neon_vcvtp_u32_v:
11195   case NEON::BI__builtin_neon_vcvtpq_u16_v:
11196   case NEON::BI__builtin_neon_vcvtpq_u32_v:
11197   case NEON::BI__builtin_neon_vcvtp_s64_v:
11198   case NEON::BI__builtin_neon_vcvtpq_s64_v:
11199   case NEON::BI__builtin_neon_vcvtp_u64_v:
11200   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11201     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11202     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11203     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11204   }
11205   case NEON::BI__builtin_neon_vmulx_v:
11206   case NEON::BI__builtin_neon_vmulxq_v: {
11207     Int = Intrinsic::aarch64_neon_fmulx;
11208     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11209   }
11210   case NEON::BI__builtin_neon_vmulxh_lane_f16:
11211   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11212     // vmulx_lane should be mapped to Neon scalar mulx after
11213     // extracting the scalar element
11214     Ops.push_back(EmitScalarExpr(E->getArg(2)));
11215     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11216     Ops.pop_back();
11217     Int = Intrinsic::aarch64_neon_fmulx;
11218     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11219   }
11220   case NEON::BI__builtin_neon_vmul_lane_v:
11221   case NEON::BI__builtin_neon_vmul_laneq_v: {
11222     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11223     bool Quad = false;
11224     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11225       Quad = true;
11226     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11227     llvm::FixedVectorType *VTy =
11228         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11229     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11230     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11231     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11232     return Builder.CreateBitCast(Result, Ty);
11233   }
11234   case NEON::BI__builtin_neon_vnegd_s64:
11235     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11236   case NEON::BI__builtin_neon_vnegh_f16:
11237     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11238   case NEON::BI__builtin_neon_vpmaxnm_v:
11239   case NEON::BI__builtin_neon_vpmaxnmq_v: {
11240     Int = Intrinsic::aarch64_neon_fmaxnmp;
11241     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11242   }
11243   case NEON::BI__builtin_neon_vpminnm_v:
11244   case NEON::BI__builtin_neon_vpminnmq_v: {
11245     Int = Intrinsic::aarch64_neon_fminnmp;
11246     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11247   }
11248   case NEON::BI__builtin_neon_vsqrth_f16: {
11249     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11250     Int = Builder.getIsFPConstrained()
11251               ? Intrinsic::experimental_constrained_sqrt
11252               : Intrinsic::sqrt;
11253     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11254   }
11255   case NEON::BI__builtin_neon_vsqrt_v:
11256   case NEON::BI__builtin_neon_vsqrtq_v: {
11257     Int = Builder.getIsFPConstrained()
11258               ? Intrinsic::experimental_constrained_sqrt
11259               : Intrinsic::sqrt;
11260     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11261     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11262   }
11263   case NEON::BI__builtin_neon_vrbit_v:
11264   case NEON::BI__builtin_neon_vrbitq_v: {
11265     Int = Intrinsic::bitreverse;
11266     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11267   }
11268   case NEON::BI__builtin_neon_vaddv_u8:
11269     // FIXME: These are handled by the AArch64 scalar code.
11270     usgn = true;
11271     LLVM_FALLTHROUGH;
11272   case NEON::BI__builtin_neon_vaddv_s8: {
11273     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11274     Ty = Int32Ty;
11275     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11276     llvm::Type *Tys[2] = { Ty, VTy };
11277     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11278     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11279     return Builder.CreateTrunc(Ops[0], Int8Ty);
11280   }
11281   case NEON::BI__builtin_neon_vaddv_u16:
11282     usgn = true;
11283     LLVM_FALLTHROUGH;
11284   case NEON::BI__builtin_neon_vaddv_s16: {
11285     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11286     Ty = Int32Ty;
11287     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11288     llvm::Type *Tys[2] = { Ty, VTy };
11289     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11290     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11291     return Builder.CreateTrunc(Ops[0], Int16Ty);
11292   }
11293   case NEON::BI__builtin_neon_vaddvq_u8:
11294     usgn = true;
11295     LLVM_FALLTHROUGH;
11296   case NEON::BI__builtin_neon_vaddvq_s8: {
11297     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11298     Ty = Int32Ty;
11299     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11300     llvm::Type *Tys[2] = { Ty, VTy };
11301     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11302     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11303     return Builder.CreateTrunc(Ops[0], Int8Ty);
11304   }
11305   case NEON::BI__builtin_neon_vaddvq_u16:
11306     usgn = true;
11307     LLVM_FALLTHROUGH;
11308   case NEON::BI__builtin_neon_vaddvq_s16: {
11309     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11310     Ty = Int32Ty;
11311     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11312     llvm::Type *Tys[2] = { Ty, VTy };
11313     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11314     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11315     return Builder.CreateTrunc(Ops[0], Int16Ty);
11316   }
11317   case NEON::BI__builtin_neon_vmaxv_u8: {
11318     Int = Intrinsic::aarch64_neon_umaxv;
11319     Ty = Int32Ty;
11320     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11321     llvm::Type *Tys[2] = { Ty, VTy };
11322     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11323     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11324     return Builder.CreateTrunc(Ops[0], Int8Ty);
11325   }
11326   case NEON::BI__builtin_neon_vmaxv_u16: {
11327     Int = Intrinsic::aarch64_neon_umaxv;
11328     Ty = Int32Ty;
11329     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11330     llvm::Type *Tys[2] = { Ty, VTy };
11331     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11332     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11333     return Builder.CreateTrunc(Ops[0], Int16Ty);
11334   }
11335   case NEON::BI__builtin_neon_vmaxvq_u8: {
11336     Int = Intrinsic::aarch64_neon_umaxv;
11337     Ty = Int32Ty;
11338     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11339     llvm::Type *Tys[2] = { Ty, VTy };
11340     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11341     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11342     return Builder.CreateTrunc(Ops[0], Int8Ty);
11343   }
11344   case NEON::BI__builtin_neon_vmaxvq_u16: {
11345     Int = Intrinsic::aarch64_neon_umaxv;
11346     Ty = Int32Ty;
11347     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11348     llvm::Type *Tys[2] = { Ty, VTy };
11349     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11350     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11351     return Builder.CreateTrunc(Ops[0], Int16Ty);
11352   }
11353   case NEON::BI__builtin_neon_vmaxv_s8: {
11354     Int = Intrinsic::aarch64_neon_smaxv;
11355     Ty = Int32Ty;
11356     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11357     llvm::Type *Tys[2] = { Ty, VTy };
11358     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11359     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11360     return Builder.CreateTrunc(Ops[0], Int8Ty);
11361   }
11362   case NEON::BI__builtin_neon_vmaxv_s16: {
11363     Int = Intrinsic::aarch64_neon_smaxv;
11364     Ty = Int32Ty;
11365     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11366     llvm::Type *Tys[2] = { Ty, VTy };
11367     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11368     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11369     return Builder.CreateTrunc(Ops[0], Int16Ty);
11370   }
11371   case NEON::BI__builtin_neon_vmaxvq_s8: {
11372     Int = Intrinsic::aarch64_neon_smaxv;
11373     Ty = Int32Ty;
11374     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11375     llvm::Type *Tys[2] = { Ty, VTy };
11376     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11377     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11378     return Builder.CreateTrunc(Ops[0], Int8Ty);
11379   }
11380   case NEON::BI__builtin_neon_vmaxvq_s16: {
11381     Int = Intrinsic::aarch64_neon_smaxv;
11382     Ty = Int32Ty;
11383     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11384     llvm::Type *Tys[2] = { Ty, VTy };
11385     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11386     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11387     return Builder.CreateTrunc(Ops[0], Int16Ty);
11388   }
11389   case NEON::BI__builtin_neon_vmaxv_f16: {
11390     Int = Intrinsic::aarch64_neon_fmaxv;
11391     Ty = HalfTy;
11392     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11393     llvm::Type *Tys[2] = { Ty, VTy };
11394     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11395     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11396     return Builder.CreateTrunc(Ops[0], HalfTy);
11397   }
11398   case NEON::BI__builtin_neon_vmaxvq_f16: {
11399     Int = Intrinsic::aarch64_neon_fmaxv;
11400     Ty = HalfTy;
11401     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11402     llvm::Type *Tys[2] = { Ty, VTy };
11403     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11404     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11405     return Builder.CreateTrunc(Ops[0], HalfTy);
11406   }
11407   case NEON::BI__builtin_neon_vminv_u8: {
11408     Int = Intrinsic::aarch64_neon_uminv;
11409     Ty = Int32Ty;
11410     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11411     llvm::Type *Tys[2] = { Ty, VTy };
11412     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11413     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11414     return Builder.CreateTrunc(Ops[0], Int8Ty);
11415   }
11416   case NEON::BI__builtin_neon_vminv_u16: {
11417     Int = Intrinsic::aarch64_neon_uminv;
11418     Ty = Int32Ty;
11419     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11420     llvm::Type *Tys[2] = { Ty, VTy };
11421     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11422     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11423     return Builder.CreateTrunc(Ops[0], Int16Ty);
11424   }
11425   case NEON::BI__builtin_neon_vminvq_u8: {
11426     Int = Intrinsic::aarch64_neon_uminv;
11427     Ty = Int32Ty;
11428     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11429     llvm::Type *Tys[2] = { Ty, VTy };
11430     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11431     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11432     return Builder.CreateTrunc(Ops[0], Int8Ty);
11433   }
11434   case NEON::BI__builtin_neon_vminvq_u16: {
11435     Int = Intrinsic::aarch64_neon_uminv;
11436     Ty = Int32Ty;
11437     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11438     llvm::Type *Tys[2] = { Ty, VTy };
11439     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11440     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11441     return Builder.CreateTrunc(Ops[0], Int16Ty);
11442   }
11443   case NEON::BI__builtin_neon_vminv_s8: {
11444     Int = Intrinsic::aarch64_neon_sminv;
11445     Ty = Int32Ty;
11446     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11447     llvm::Type *Tys[2] = { Ty, VTy };
11448     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11449     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11450     return Builder.CreateTrunc(Ops[0], Int8Ty);
11451   }
11452   case NEON::BI__builtin_neon_vminv_s16: {
11453     Int = Intrinsic::aarch64_neon_sminv;
11454     Ty = Int32Ty;
11455     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11456     llvm::Type *Tys[2] = { Ty, VTy };
11457     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11458     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11459     return Builder.CreateTrunc(Ops[0], Int16Ty);
11460   }
11461   case NEON::BI__builtin_neon_vminvq_s8: {
11462     Int = Intrinsic::aarch64_neon_sminv;
11463     Ty = Int32Ty;
11464     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11465     llvm::Type *Tys[2] = { Ty, VTy };
11466     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11467     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11468     return Builder.CreateTrunc(Ops[0], Int8Ty);
11469   }
11470   case NEON::BI__builtin_neon_vminvq_s16: {
11471     Int = Intrinsic::aarch64_neon_sminv;
11472     Ty = Int32Ty;
11473     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11474     llvm::Type *Tys[2] = { Ty, VTy };
11475     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11476     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11477     return Builder.CreateTrunc(Ops[0], Int16Ty);
11478   }
11479   case NEON::BI__builtin_neon_vminv_f16: {
11480     Int = Intrinsic::aarch64_neon_fminv;
11481     Ty = HalfTy;
11482     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11483     llvm::Type *Tys[2] = { Ty, VTy };
11484     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11485     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11486     return Builder.CreateTrunc(Ops[0], HalfTy);
11487   }
11488   case NEON::BI__builtin_neon_vminvq_f16: {
11489     Int = Intrinsic::aarch64_neon_fminv;
11490     Ty = HalfTy;
11491     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11492     llvm::Type *Tys[2] = { Ty, VTy };
11493     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11494     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11495     return Builder.CreateTrunc(Ops[0], HalfTy);
11496   }
11497   case NEON::BI__builtin_neon_vmaxnmv_f16: {
11498     Int = Intrinsic::aarch64_neon_fmaxnmv;
11499     Ty = HalfTy;
11500     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11501     llvm::Type *Tys[2] = { Ty, VTy };
11502     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11503     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11504     return Builder.CreateTrunc(Ops[0], HalfTy);
11505   }
11506   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11507     Int = Intrinsic::aarch64_neon_fmaxnmv;
11508     Ty = HalfTy;
11509     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11510     llvm::Type *Tys[2] = { Ty, VTy };
11511     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11512     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11513     return Builder.CreateTrunc(Ops[0], HalfTy);
11514   }
11515   case NEON::BI__builtin_neon_vminnmv_f16: {
11516     Int = Intrinsic::aarch64_neon_fminnmv;
11517     Ty = HalfTy;
11518     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11519     llvm::Type *Tys[2] = { Ty, VTy };
11520     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11521     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11522     return Builder.CreateTrunc(Ops[0], HalfTy);
11523   }
11524   case NEON::BI__builtin_neon_vminnmvq_f16: {
11525     Int = Intrinsic::aarch64_neon_fminnmv;
11526     Ty = HalfTy;
11527     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11528     llvm::Type *Tys[2] = { Ty, VTy };
11529     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11530     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11531     return Builder.CreateTrunc(Ops[0], HalfTy);
11532   }
11533   case NEON::BI__builtin_neon_vmul_n_f64: {
11534     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11535     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11536     return Builder.CreateFMul(Ops[0], RHS);
11537   }
11538   case NEON::BI__builtin_neon_vaddlv_u8: {
11539     Int = Intrinsic::aarch64_neon_uaddlv;
11540     Ty = Int32Ty;
11541     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11542     llvm::Type *Tys[2] = { Ty, VTy };
11543     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11544     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11545     return Builder.CreateTrunc(Ops[0], Int16Ty);
11546   }
11547   case NEON::BI__builtin_neon_vaddlv_u16: {
11548     Int = Intrinsic::aarch64_neon_uaddlv;
11549     Ty = Int32Ty;
11550     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11551     llvm::Type *Tys[2] = { Ty, VTy };
11552     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11553     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11554   }
11555   case NEON::BI__builtin_neon_vaddlvq_u8: {
11556     Int = Intrinsic::aarch64_neon_uaddlv;
11557     Ty = Int32Ty;
11558     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11559     llvm::Type *Tys[2] = { Ty, VTy };
11560     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11561     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11562     return Builder.CreateTrunc(Ops[0], Int16Ty);
11563   }
11564   case NEON::BI__builtin_neon_vaddlvq_u16: {
11565     Int = Intrinsic::aarch64_neon_uaddlv;
11566     Ty = Int32Ty;
11567     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11568     llvm::Type *Tys[2] = { Ty, VTy };
11569     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11570     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11571   }
11572   case NEON::BI__builtin_neon_vaddlv_s8: {
11573     Int = Intrinsic::aarch64_neon_saddlv;
11574     Ty = Int32Ty;
11575     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11576     llvm::Type *Tys[2] = { Ty, VTy };
11577     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11578     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11579     return Builder.CreateTrunc(Ops[0], Int16Ty);
11580   }
11581   case NEON::BI__builtin_neon_vaddlv_s16: {
11582     Int = Intrinsic::aarch64_neon_saddlv;
11583     Ty = Int32Ty;
11584     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11585     llvm::Type *Tys[2] = { Ty, VTy };
11586     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11587     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11588   }
11589   case NEON::BI__builtin_neon_vaddlvq_s8: {
11590     Int = Intrinsic::aarch64_neon_saddlv;
11591     Ty = Int32Ty;
11592     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11593     llvm::Type *Tys[2] = { Ty, VTy };
11594     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11595     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11596     return Builder.CreateTrunc(Ops[0], Int16Ty);
11597   }
11598   case NEON::BI__builtin_neon_vaddlvq_s16: {
11599     Int = Intrinsic::aarch64_neon_saddlv;
11600     Ty = Int32Ty;
11601     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11602     llvm::Type *Tys[2] = { Ty, VTy };
11603     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11604     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11605   }
11606   case NEON::BI__builtin_neon_vsri_n_v:
11607   case NEON::BI__builtin_neon_vsriq_n_v: {
11608     Int = Intrinsic::aarch64_neon_vsri;
11609     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11610     return EmitNeonCall(Intrin, Ops, "vsri_n");
11611   }
11612   case NEON::BI__builtin_neon_vsli_n_v:
11613   case NEON::BI__builtin_neon_vsliq_n_v: {
11614     Int = Intrinsic::aarch64_neon_vsli;
11615     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11616     return EmitNeonCall(Intrin, Ops, "vsli_n");
11617   }
11618   case NEON::BI__builtin_neon_vsra_n_v:
11619   case NEON::BI__builtin_neon_vsraq_n_v:
11620     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11621     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11622     return Builder.CreateAdd(Ops[0], Ops[1]);
11623   case NEON::BI__builtin_neon_vrsra_n_v:
11624   case NEON::BI__builtin_neon_vrsraq_n_v: {
11625     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11626     SmallVector<llvm::Value*,2> TmpOps;
11627     TmpOps.push_back(Ops[1]);
11628     TmpOps.push_back(Ops[2]);
11629     Function* F = CGM.getIntrinsic(Int, Ty);
11630     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11631     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11632     return Builder.CreateAdd(Ops[0], tmp);
11633   }
11634   case NEON::BI__builtin_neon_vld1_v:
11635   case NEON::BI__builtin_neon_vld1q_v: {
11636     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11637     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11638   }
11639   case NEON::BI__builtin_neon_vst1_v:
11640   case NEON::BI__builtin_neon_vst1q_v:
11641     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11642     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11643     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11644   case NEON::BI__builtin_neon_vld1_lane_v:
11645   case NEON::BI__builtin_neon_vld1q_lane_v: {
11646     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11647     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11648     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11649     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11650                                        PtrOp0.getAlignment());
11651     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11652   }
11653   case NEON::BI__builtin_neon_vld1_dup_v:
11654   case NEON::BI__builtin_neon_vld1q_dup_v: {
11655     Value *V = UndefValue::get(Ty);
11656     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11657     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11658     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11659                                        PtrOp0.getAlignment());
11660     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11661     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11662     return EmitNeonSplat(Ops[0], CI);
11663   }
11664   case NEON::BI__builtin_neon_vst1_lane_v:
11665   case NEON::BI__builtin_neon_vst1q_lane_v:
11666     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11667     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11668     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11669     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11670                                       PtrOp0.getAlignment());
11671   case NEON::BI__builtin_neon_vld2_v:
11672   case NEON::BI__builtin_neon_vld2q_v: {
11673     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11674     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11675     llvm::Type *Tys[2] = { VTy, PTy };
11676     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11677     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11678     Ops[0] = Builder.CreateBitCast(Ops[0],
11679                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11680     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11681   }
11682   case NEON::BI__builtin_neon_vld3_v:
11683   case NEON::BI__builtin_neon_vld3q_v: {
11684     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11685     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11686     llvm::Type *Tys[2] = { VTy, PTy };
11687     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11688     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11689     Ops[0] = Builder.CreateBitCast(Ops[0],
11690                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11691     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11692   }
11693   case NEON::BI__builtin_neon_vld4_v:
11694   case NEON::BI__builtin_neon_vld4q_v: {
11695     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11696     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11697     llvm::Type *Tys[2] = { VTy, PTy };
11698     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11699     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11700     Ops[0] = Builder.CreateBitCast(Ops[0],
11701                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11702     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11703   }
11704   case NEON::BI__builtin_neon_vld2_dup_v:
11705   case NEON::BI__builtin_neon_vld2q_dup_v: {
11706     llvm::Type *PTy =
11707       llvm::PointerType::getUnqual(VTy->getElementType());
11708     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11709     llvm::Type *Tys[2] = { VTy, PTy };
11710     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11711     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11712     Ops[0] = Builder.CreateBitCast(Ops[0],
11713                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11714     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11715   }
11716   case NEON::BI__builtin_neon_vld3_dup_v:
11717   case NEON::BI__builtin_neon_vld3q_dup_v: {
11718     llvm::Type *PTy =
11719       llvm::PointerType::getUnqual(VTy->getElementType());
11720     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11721     llvm::Type *Tys[2] = { VTy, PTy };
11722     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11723     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11724     Ops[0] = Builder.CreateBitCast(Ops[0],
11725                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11726     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11727   }
11728   case NEON::BI__builtin_neon_vld4_dup_v:
11729   case NEON::BI__builtin_neon_vld4q_dup_v: {
11730     llvm::Type *PTy =
11731       llvm::PointerType::getUnqual(VTy->getElementType());
11732     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11733     llvm::Type *Tys[2] = { VTy, PTy };
11734     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11735     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11736     Ops[0] = Builder.CreateBitCast(Ops[0],
11737                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11738     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11739   }
11740   case NEON::BI__builtin_neon_vld2_lane_v:
11741   case NEON::BI__builtin_neon_vld2q_lane_v: {
11742     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11743     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11744     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11745     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11746     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11747     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11748     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11749     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11750     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11751     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11752   }
11753   case NEON::BI__builtin_neon_vld3_lane_v:
11754   case NEON::BI__builtin_neon_vld3q_lane_v: {
11755     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11756     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11757     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11758     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11759     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11760     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11761     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11762     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11763     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11764     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11765     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11766   }
11767   case NEON::BI__builtin_neon_vld4_lane_v:
11768   case NEON::BI__builtin_neon_vld4q_lane_v: {
11769     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11770     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11771     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11772     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11773     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11774     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11775     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11776     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11777     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11778     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11779     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11780     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11781   }
11782   case NEON::BI__builtin_neon_vst2_v:
11783   case NEON::BI__builtin_neon_vst2q_v: {
11784     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11785     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11786     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11787                         Ops, "");
11788   }
11789   case NEON::BI__builtin_neon_vst2_lane_v:
11790   case NEON::BI__builtin_neon_vst2q_lane_v: {
11791     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11792     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11793     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11794     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11795                         Ops, "");
11796   }
11797   case NEON::BI__builtin_neon_vst3_v:
11798   case NEON::BI__builtin_neon_vst3q_v: {
11799     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11800     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11801     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11802                         Ops, "");
11803   }
11804   case NEON::BI__builtin_neon_vst3_lane_v:
11805   case NEON::BI__builtin_neon_vst3q_lane_v: {
11806     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11807     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11808     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11809     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11810                         Ops, "");
11811   }
11812   case NEON::BI__builtin_neon_vst4_v:
11813   case NEON::BI__builtin_neon_vst4q_v: {
11814     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11815     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11816     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11817                         Ops, "");
11818   }
11819   case NEON::BI__builtin_neon_vst4_lane_v:
11820   case NEON::BI__builtin_neon_vst4q_lane_v: {
11821     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11822     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11823     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11824     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11825                         Ops, "");
11826   }
11827   case NEON::BI__builtin_neon_vtrn_v:
11828   case NEON::BI__builtin_neon_vtrnq_v: {
11829     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11830     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11831     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11832     Value *SV = nullptr;
11833 
11834     for (unsigned vi = 0; vi != 2; ++vi) {
11835       SmallVector<int, 16> Indices;
11836       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11837         Indices.push_back(i+vi);
11838         Indices.push_back(i+e+vi);
11839       }
11840       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11841       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11842       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11843     }
11844     return SV;
11845   }
11846   case NEON::BI__builtin_neon_vuzp_v:
11847   case NEON::BI__builtin_neon_vuzpq_v: {
11848     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11849     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11850     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11851     Value *SV = nullptr;
11852 
11853     for (unsigned vi = 0; vi != 2; ++vi) {
11854       SmallVector<int, 16> Indices;
11855       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11856         Indices.push_back(2*i+vi);
11857 
11858       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11859       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11860       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11861     }
11862     return SV;
11863   }
11864   case NEON::BI__builtin_neon_vzip_v:
11865   case NEON::BI__builtin_neon_vzipq_v: {
11866     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11867     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11868     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11869     Value *SV = nullptr;
11870 
11871     for (unsigned vi = 0; vi != 2; ++vi) {
11872       SmallVector<int, 16> Indices;
11873       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11874         Indices.push_back((i + vi*e) >> 1);
11875         Indices.push_back(((i + vi*e) >> 1)+e);
11876       }
11877       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11878       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11879       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11880     }
11881     return SV;
11882   }
11883   case NEON::BI__builtin_neon_vqtbl1q_v: {
11884     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11885                         Ops, "vtbl1");
11886   }
11887   case NEON::BI__builtin_neon_vqtbl2q_v: {
11888     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11889                         Ops, "vtbl2");
11890   }
11891   case NEON::BI__builtin_neon_vqtbl3q_v: {
11892     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11893                         Ops, "vtbl3");
11894   }
11895   case NEON::BI__builtin_neon_vqtbl4q_v: {
11896     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11897                         Ops, "vtbl4");
11898   }
11899   case NEON::BI__builtin_neon_vqtbx1q_v: {
11900     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11901                         Ops, "vtbx1");
11902   }
11903   case NEON::BI__builtin_neon_vqtbx2q_v: {
11904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11905                         Ops, "vtbx2");
11906   }
11907   case NEON::BI__builtin_neon_vqtbx3q_v: {
11908     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11909                         Ops, "vtbx3");
11910   }
11911   case NEON::BI__builtin_neon_vqtbx4q_v: {
11912     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11913                         Ops, "vtbx4");
11914   }
11915   case NEON::BI__builtin_neon_vsqadd_v:
11916   case NEON::BI__builtin_neon_vsqaddq_v: {
11917     Int = Intrinsic::aarch64_neon_usqadd;
11918     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11919   }
11920   case NEON::BI__builtin_neon_vuqadd_v:
11921   case NEON::BI__builtin_neon_vuqaddq_v: {
11922     Int = Intrinsic::aarch64_neon_suqadd;
11923     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11924   }
11925   }
11926 }
11927 
11928 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11929                                            const CallExpr *E) {
11930   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11931           BuiltinID == BPF::BI__builtin_btf_type_id ||
11932           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11933           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11934          "unexpected BPF builtin");
11935 
11936   // A sequence number, injected into IR builtin functions, to
11937   // prevent CSE given the only difference of the funciton
11938   // may just be the debuginfo metadata.
11939   static uint32_t BuiltinSeqNum;
11940 
11941   switch (BuiltinID) {
11942   default:
11943     llvm_unreachable("Unexpected BPF builtin");
11944   case BPF::BI__builtin_preserve_field_info: {
11945     const Expr *Arg = E->getArg(0);
11946     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11947 
11948     if (!getDebugInfo()) {
11949       CGM.Error(E->getExprLoc(),
11950                 "using __builtin_preserve_field_info() without -g");
11951       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11952                         : EmitLValue(Arg).getPointer(*this);
11953     }
11954 
11955     // Enable underlying preserve_*_access_index() generation.
11956     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11957     IsInPreservedAIRegion = true;
11958     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11959                                   : EmitLValue(Arg).getPointer(*this);
11960     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11961 
11962     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11963     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11964 
11965     // Built the IR for the preserve_field_info intrinsic.
11966     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11967         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11968         {FieldAddr->getType()});
11969     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11970   }
11971   case BPF::BI__builtin_btf_type_id:
11972   case BPF::BI__builtin_preserve_type_info: {
11973     if (!getDebugInfo()) {
11974       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11975       return nullptr;
11976     }
11977 
11978     const Expr *Arg0 = E->getArg(0);
11979     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11980         Arg0->getType(), Arg0->getExprLoc());
11981 
11982     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11983     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11984     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11985 
11986     llvm::Function *FnDecl;
11987     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11988       FnDecl = llvm::Intrinsic::getDeclaration(
11989           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11990     else
11991       FnDecl = llvm::Intrinsic::getDeclaration(
11992           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11993     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11994     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11995     return Fn;
11996   }
11997   case BPF::BI__builtin_preserve_enum_value: {
11998     if (!getDebugInfo()) {
11999       CGM.Error(E->getExprLoc(), "using builtin function without -g");
12000       return nullptr;
12001     }
12002 
12003     const Expr *Arg0 = E->getArg(0);
12004     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
12005         Arg0->getType(), Arg0->getExprLoc());
12006 
12007     // Find enumerator
12008     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
12009     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
12010     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
12011     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
12012 
12013     auto &InitVal = Enumerator->getInitVal();
12014     std::string InitValStr;
12015     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
12016       InitValStr = std::to_string(InitVal.getSExtValue());
12017     else
12018       InitValStr = std::to_string(InitVal.getZExtValue());
12019     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
12020     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
12021 
12022     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
12023     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
12024     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
12025 
12026     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12027         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12028     CallInst *Fn =
12029         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12030     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12031     return Fn;
12032   }
12033   }
12034 }
12035 
12036 llvm::Value *CodeGenFunction::
12037 BuildVector(ArrayRef<llvm::Value*> Ops) {
12038   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
12039          "Not a power-of-two sized vector!");
12040   bool AllConstants = true;
12041   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12042     AllConstants &= isa<Constant>(Ops[i]);
12043 
12044   // If this is a constant vector, create a ConstantVector.
12045   if (AllConstants) {
12046     SmallVector<llvm::Constant*, 16> CstOps;
12047     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12048       CstOps.push_back(cast<Constant>(Ops[i]));
12049     return llvm::ConstantVector::get(CstOps);
12050   }
12051 
12052   // Otherwise, insertelement the values to build the vector.
12053   Value *Result = llvm::UndefValue::get(
12054       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12055 
12056   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12057     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
12058 
12059   return Result;
12060 }
12061 
12062 // Convert the mask from an integer type to a vector of i1.
12063 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12064                               unsigned NumElts) {
12065 
12066   auto *MaskTy = llvm::FixedVectorType::get(
12067       CGF.Builder.getInt1Ty(),
12068       cast<IntegerType>(Mask->getType())->getBitWidth());
12069   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12070 
12071   // If we have less than 8 elements, then the starting mask was an i8 and
12072   // we need to extract down to the right number of elements.
12073   if (NumElts < 8) {
12074     int Indices[4];
12075     for (unsigned i = 0; i != NumElts; ++i)
12076       Indices[i] = i;
12077     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
12078                                              makeArrayRef(Indices, NumElts),
12079                                              "extract");
12080   }
12081   return MaskVec;
12082 }
12083 
12084 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12085                                  Align Alignment) {
12086   // Cast the pointer to right type.
12087   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12088                                llvm::PointerType::getUnqual(Ops[1]->getType()));
12089 
12090   Value *MaskVec = getMaskVecValue(
12091       CGF, Ops[2],
12092       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12093 
12094   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12095 }
12096 
12097 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12098                                 Align Alignment) {
12099   // Cast the pointer to right type.
12100   llvm::Type *Ty = Ops[1]->getType();
12101   Value *Ptr =
12102       CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12103 
12104   Value *MaskVec = getMaskVecValue(
12105       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12106 
12107   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12108 }
12109 
12110 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12111                                 ArrayRef<Value *> Ops) {
12112   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12113   llvm::Type *PtrTy = ResultTy->getElementType();
12114 
12115   // Cast the pointer to element type.
12116   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12117                                          llvm::PointerType::getUnqual(PtrTy));
12118 
12119   Value *MaskVec = getMaskVecValue(
12120       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12121 
12122   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12123                                            ResultTy);
12124   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12125 }
12126 
12127 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12128                                     ArrayRef<Value *> Ops,
12129                                     bool IsCompress) {
12130   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12131 
12132   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12133 
12134   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12135                                  : Intrinsic::x86_avx512_mask_expand;
12136   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12137   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12138 }
12139 
12140 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12141                                    ArrayRef<Value *> Ops) {
12142   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12143   llvm::Type *PtrTy = ResultTy->getElementType();
12144 
12145   // Cast the pointer to element type.
12146   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12147                                          llvm::PointerType::getUnqual(PtrTy));
12148 
12149   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12150 
12151   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12152                                            ResultTy);
12153   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12154 }
12155 
12156 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12157                               ArrayRef<Value *> Ops,
12158                               bool InvertLHS = false) {
12159   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12160   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12161   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12162 
12163   if (InvertLHS)
12164     LHS = CGF.Builder.CreateNot(LHS);
12165 
12166   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12167                                    Ops[0]->getType());
12168 }
12169 
12170 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12171                                  Value *Amt, bool IsRight) {
12172   llvm::Type *Ty = Op0->getType();
12173 
12174   // Amount may be scalar immediate, in which case create a splat vector.
12175   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12176   // we only care about the lowest log2 bits anyway.
12177   if (Amt->getType() != Ty) {
12178     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12179     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12180     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12181   }
12182 
12183   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12184   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12185   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12186 }
12187 
12188 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12189                            bool IsSigned) {
12190   Value *Op0 = Ops[0];
12191   Value *Op1 = Ops[1];
12192   llvm::Type *Ty = Op0->getType();
12193   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12194 
12195   CmpInst::Predicate Pred;
12196   switch (Imm) {
12197   case 0x0:
12198     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12199     break;
12200   case 0x1:
12201     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12202     break;
12203   case 0x2:
12204     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12205     break;
12206   case 0x3:
12207     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12208     break;
12209   case 0x4:
12210     Pred = ICmpInst::ICMP_EQ;
12211     break;
12212   case 0x5:
12213     Pred = ICmpInst::ICMP_NE;
12214     break;
12215   case 0x6:
12216     return llvm::Constant::getNullValue(Ty); // FALSE
12217   case 0x7:
12218     return llvm::Constant::getAllOnesValue(Ty); // TRUE
12219   default:
12220     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
12221   }
12222 
12223   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12224   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12225   return Res;
12226 }
12227 
12228 static Value *EmitX86Select(CodeGenFunction &CGF,
12229                             Value *Mask, Value *Op0, Value *Op1) {
12230 
12231   // If the mask is all ones just return first argument.
12232   if (const auto *C = dyn_cast<Constant>(Mask))
12233     if (C->isAllOnesValue())
12234       return Op0;
12235 
12236   Mask = getMaskVecValue(
12237       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12238 
12239   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12240 }
12241 
12242 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12243                                   Value *Mask, Value *Op0, Value *Op1) {
12244   // If the mask is all ones just return first argument.
12245   if (const auto *C = dyn_cast<Constant>(Mask))
12246     if (C->isAllOnesValue())
12247       return Op0;
12248 
12249   auto *MaskTy = llvm::FixedVectorType::get(
12250       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12251   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12252   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12253   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12254 }
12255 
12256 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12257                                          unsigned NumElts, Value *MaskIn) {
12258   if (MaskIn) {
12259     const auto *C = dyn_cast<Constant>(MaskIn);
12260     if (!C || !C->isAllOnesValue())
12261       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12262   }
12263 
12264   if (NumElts < 8) {
12265     int Indices[8];
12266     for (unsigned i = 0; i != NumElts; ++i)
12267       Indices[i] = i;
12268     for (unsigned i = NumElts; i != 8; ++i)
12269       Indices[i] = i % NumElts + NumElts;
12270     Cmp = CGF.Builder.CreateShuffleVector(
12271         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12272   }
12273 
12274   return CGF.Builder.CreateBitCast(Cmp,
12275                                    IntegerType::get(CGF.getLLVMContext(),
12276                                                     std::max(NumElts, 8U)));
12277 }
12278 
12279 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12280                                    bool Signed, ArrayRef<Value *> Ops) {
12281   assert((Ops.size() == 2 || Ops.size() == 4) &&
12282          "Unexpected number of arguments");
12283   unsigned NumElts =
12284       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12285   Value *Cmp;
12286 
12287   if (CC == 3) {
12288     Cmp = Constant::getNullValue(
12289         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12290   } else if (CC == 7) {
12291     Cmp = Constant::getAllOnesValue(
12292         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12293   } else {
12294     ICmpInst::Predicate Pred;
12295     switch (CC) {
12296     default: llvm_unreachable("Unknown condition code");
12297     case 0: Pred = ICmpInst::ICMP_EQ;  break;
12298     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12299     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12300     case 4: Pred = ICmpInst::ICMP_NE;  break;
12301     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12302     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12303     }
12304     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12305   }
12306 
12307   Value *MaskIn = nullptr;
12308   if (Ops.size() == 4)
12309     MaskIn = Ops[3];
12310 
12311   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12312 }
12313 
12314 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12315   Value *Zero = Constant::getNullValue(In->getType());
12316   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12317 }
12318 
12319 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12320                                     ArrayRef<Value *> Ops, bool IsSigned) {
12321   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12322   llvm::Type *Ty = Ops[1]->getType();
12323 
12324   Value *Res;
12325   if (Rnd != 4) {
12326     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12327                                  : Intrinsic::x86_avx512_uitofp_round;
12328     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12329     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12330   } else {
12331     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12332     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12333                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12334   }
12335 
12336   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12337 }
12338 
12339 // Lowers X86 FMA intrinsics to IR.
12340 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12341                              ArrayRef<Value *> Ops, unsigned BuiltinID,
12342                              bool IsAddSub) {
12343 
12344   bool Subtract = false;
12345   Intrinsic::ID IID = Intrinsic::not_intrinsic;
12346   switch (BuiltinID) {
12347   default: break;
12348   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12349     Subtract = true;
12350     LLVM_FALLTHROUGH;
12351   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12352   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12353   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12354     IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12355     break;
12356   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12357     Subtract = true;
12358     LLVM_FALLTHROUGH;
12359   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12360   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12361   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12362     IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12363     break;
12364   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12365     Subtract = true;
12366     LLVM_FALLTHROUGH;
12367   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12368   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12369   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12370     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12371   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12372     Subtract = true;
12373     LLVM_FALLTHROUGH;
12374   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12375   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12376   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12377     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12378   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12379     Subtract = true;
12380     LLVM_FALLTHROUGH;
12381   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12382   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12383   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12384     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12385     break;
12386   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12387     Subtract = true;
12388     LLVM_FALLTHROUGH;
12389   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12390   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12391   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12392     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12393     break;
12394   }
12395 
12396   Value *A = Ops[0];
12397   Value *B = Ops[1];
12398   Value *C = Ops[2];
12399 
12400   if (Subtract)
12401     C = CGF.Builder.CreateFNeg(C);
12402 
12403   Value *Res;
12404 
12405   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12406   if (IID != Intrinsic::not_intrinsic &&
12407       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12408        IsAddSub)) {
12409     Function *Intr = CGF.CGM.getIntrinsic(IID);
12410     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12411   } else {
12412     llvm::Type *Ty = A->getType();
12413     Function *FMA;
12414     if (CGF.Builder.getIsFPConstrained()) {
12415       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12416       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12417       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12418     } else {
12419       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12420       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12421     }
12422   }
12423 
12424   // Handle any required masking.
12425   Value *MaskFalseVal = nullptr;
12426   switch (BuiltinID) {
12427   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12428   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12429   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12430   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12431   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12432   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12433     MaskFalseVal = Ops[0];
12434     break;
12435   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12436   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12437   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12438   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12439   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12440   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12441     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12442     break;
12443   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12444   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12445   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12446   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12447   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12448   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12449   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12450   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12451   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12452   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12453   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12454   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12455     MaskFalseVal = Ops[2];
12456     break;
12457   }
12458 
12459   if (MaskFalseVal)
12460     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12461 
12462   return Res;
12463 }
12464 
12465 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12466                                 MutableArrayRef<Value *> Ops, Value *Upper,
12467                                 bool ZeroMask = false, unsigned PTIdx = 0,
12468                                 bool NegAcc = false) {
12469   unsigned Rnd = 4;
12470   if (Ops.size() > 4)
12471     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12472 
12473   if (NegAcc)
12474     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12475 
12476   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12477   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12478   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12479   Value *Res;
12480   if (Rnd != 4) {
12481     Intrinsic::ID IID;
12482 
12483     switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12484     case 16:
12485       IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12486       break;
12487     case 32:
12488       IID = Intrinsic::x86_avx512_vfmadd_f32;
12489       break;
12490     case 64:
12491       IID = Intrinsic::x86_avx512_vfmadd_f64;
12492       break;
12493     default:
12494       llvm_unreachable("Unexpected size");
12495     }
12496     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12497                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
12498   } else if (CGF.Builder.getIsFPConstrained()) {
12499     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12500     Function *FMA = CGF.CGM.getIntrinsic(
12501         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12502     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12503   } else {
12504     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12505     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12506   }
12507   // If we have more than 3 arguments, we need to do masking.
12508   if (Ops.size() > 3) {
12509     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12510                                : Ops[PTIdx];
12511 
12512     // If we negated the accumulator and the its the PassThru value we need to
12513     // bypass the negate. Conveniently Upper should be the same thing in this
12514     // case.
12515     if (NegAcc && PTIdx == 2)
12516       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12517 
12518     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12519   }
12520   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12521 }
12522 
12523 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12524                            ArrayRef<Value *> Ops) {
12525   llvm::Type *Ty = Ops[0]->getType();
12526   // Arguments have a vXi32 type so cast to vXi64.
12527   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12528                                   Ty->getPrimitiveSizeInBits() / 64);
12529   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12530   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12531 
12532   if (IsSigned) {
12533     // Shift left then arithmetic shift right.
12534     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12535     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12536     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12537     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12538     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12539   } else {
12540     // Clear the upper bits.
12541     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12542     LHS = CGF.Builder.CreateAnd(LHS, Mask);
12543     RHS = CGF.Builder.CreateAnd(RHS, Mask);
12544   }
12545 
12546   return CGF.Builder.CreateMul(LHS, RHS);
12547 }
12548 
12549 // Emit a masked pternlog intrinsic. This only exists because the header has to
12550 // use a macro and we aren't able to pass the input argument to a pternlog
12551 // builtin and a select builtin without evaluating it twice.
12552 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12553                              ArrayRef<Value *> Ops) {
12554   llvm::Type *Ty = Ops[0]->getType();
12555 
12556   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12557   unsigned EltWidth = Ty->getScalarSizeInBits();
12558   Intrinsic::ID IID;
12559   if (VecWidth == 128 && EltWidth == 32)
12560     IID = Intrinsic::x86_avx512_pternlog_d_128;
12561   else if (VecWidth == 256 && EltWidth == 32)
12562     IID = Intrinsic::x86_avx512_pternlog_d_256;
12563   else if (VecWidth == 512 && EltWidth == 32)
12564     IID = Intrinsic::x86_avx512_pternlog_d_512;
12565   else if (VecWidth == 128 && EltWidth == 64)
12566     IID = Intrinsic::x86_avx512_pternlog_q_128;
12567   else if (VecWidth == 256 && EltWidth == 64)
12568     IID = Intrinsic::x86_avx512_pternlog_q_256;
12569   else if (VecWidth == 512 && EltWidth == 64)
12570     IID = Intrinsic::x86_avx512_pternlog_q_512;
12571   else
12572     llvm_unreachable("Unexpected intrinsic");
12573 
12574   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12575                                           Ops.drop_back());
12576   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12577   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12578 }
12579 
12580 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12581                               llvm::Type *DstTy) {
12582   unsigned NumberOfElements =
12583       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12584   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12585   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12586 }
12587 
12588 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12589   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12590   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12591   return EmitX86CpuIs(CPUStr);
12592 }
12593 
12594 // Convert F16 halfs to floats.
12595 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12596                                        ArrayRef<Value *> Ops,
12597                                        llvm::Type *DstTy) {
12598   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12599          "Unknown cvtph2ps intrinsic");
12600 
12601   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12602   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12603     Function *F =
12604         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12605     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12606   }
12607 
12608   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12609   Value *Src = Ops[0];
12610 
12611   // Extract the subvector.
12612   if (NumDstElts !=
12613       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12614     assert(NumDstElts == 4 && "Unexpected vector size");
12615     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12616   }
12617 
12618   // Bitcast from vXi16 to vXf16.
12619   auto *HalfTy = llvm::FixedVectorType::get(
12620       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12621   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12622 
12623   // Perform the fp-extension.
12624   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12625 
12626   if (Ops.size() >= 3)
12627     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12628   return Res;
12629 }
12630 
12631 // Convert a BF16 to a float.
12632 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12633                                         const CallExpr *E,
12634                                         ArrayRef<Value *> Ops) {
12635   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12636   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12637   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12638   llvm::Type *ResultType = CGF.ConvertType(E->getType());
12639   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12640   return BitCast;
12641 }
12642 
12643 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12644 
12645   llvm::Type *Int32Ty = Builder.getInt32Ty();
12646 
12647   // Matching the struct layout from the compiler-rt/libgcc structure that is
12648   // filled in:
12649   // unsigned int __cpu_vendor;
12650   // unsigned int __cpu_type;
12651   // unsigned int __cpu_subtype;
12652   // unsigned int __cpu_features[1];
12653   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12654                                           llvm::ArrayType::get(Int32Ty, 1));
12655 
12656   // Grab the global __cpu_model.
12657   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12658   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12659 
12660   // Calculate the index needed to access the correct field based on the
12661   // range. Also adjust the expected value.
12662   unsigned Index;
12663   unsigned Value;
12664   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12665 #define X86_VENDOR(ENUM, STRING)                                               \
12666   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12667 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
12668   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12669 #define X86_CPU_TYPE(ENUM, STR)                                                \
12670   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12671 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
12672   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12673 #include "llvm/Support/X86TargetParser.def"
12674                                .Default({0, 0});
12675   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12676 
12677   // Grab the appropriate field from __cpu_model.
12678   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12679                          ConstantInt::get(Int32Ty, Index)};
12680   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12681   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12682                                        CharUnits::fromQuantity(4));
12683 
12684   // Check the value of the field against the requested value.
12685   return Builder.CreateICmpEQ(CpuValue,
12686                                   llvm::ConstantInt::get(Int32Ty, Value));
12687 }
12688 
12689 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12690   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12691   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12692   return EmitX86CpuSupports(FeatureStr);
12693 }
12694 
12695 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12696   return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12697 }
12698 
12699 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12700   uint32_t Features1 = Lo_32(FeaturesMask);
12701   uint32_t Features2 = Hi_32(FeaturesMask);
12702 
12703   Value *Result = Builder.getTrue();
12704 
12705   if (Features1 != 0) {
12706     // Matching the struct layout from the compiler-rt/libgcc structure that is
12707     // filled in:
12708     // unsigned int __cpu_vendor;
12709     // unsigned int __cpu_type;
12710     // unsigned int __cpu_subtype;
12711     // unsigned int __cpu_features[1];
12712     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12713                                             llvm::ArrayType::get(Int32Ty, 1));
12714 
12715     // Grab the global __cpu_model.
12716     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12717     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12718 
12719     // Grab the first (0th) element from the field __cpu_features off of the
12720     // global in the struct STy.
12721     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12722                      Builder.getInt32(0)};
12723     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12724     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12725                                                 CharUnits::fromQuantity(4));
12726 
12727     // Check the value of the bit corresponding to the feature requested.
12728     Value *Mask = Builder.getInt32(Features1);
12729     Value *Bitset = Builder.CreateAnd(Features, Mask);
12730     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12731     Result = Builder.CreateAnd(Result, Cmp);
12732   }
12733 
12734   if (Features2 != 0) {
12735     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12736                                                              "__cpu_features2");
12737     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12738 
12739     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12740                                                 CharUnits::fromQuantity(4));
12741 
12742     // Check the value of the bit corresponding to the feature requested.
12743     Value *Mask = Builder.getInt32(Features2);
12744     Value *Bitset = Builder.CreateAnd(Features, Mask);
12745     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12746     Result = Builder.CreateAnd(Result, Cmp);
12747   }
12748 
12749   return Result;
12750 }
12751 
12752 Value *CodeGenFunction::EmitX86CpuInit() {
12753   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12754                                                     /*Variadic*/ false);
12755   llvm::FunctionCallee Func =
12756       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12757   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12758   cast<llvm::GlobalValue>(Func.getCallee())
12759       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12760   return Builder.CreateCall(Func);
12761 }
12762 
12763 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12764                                            const CallExpr *E) {
12765   if (BuiltinID == X86::BI__builtin_cpu_is)
12766     return EmitX86CpuIs(E);
12767   if (BuiltinID == X86::BI__builtin_cpu_supports)
12768     return EmitX86CpuSupports(E);
12769   if (BuiltinID == X86::BI__builtin_cpu_init)
12770     return EmitX86CpuInit();
12771 
12772   // Handle MSVC intrinsics before argument evaluation to prevent double
12773   // evaluation.
12774   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12775     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12776 
12777   SmallVector<Value*, 4> Ops;
12778   bool IsMaskFCmp = false;
12779   bool IsConjFMA = false;
12780 
12781   // Find out if any arguments are required to be integer constant expressions.
12782   unsigned ICEArguments = 0;
12783   ASTContext::GetBuiltinTypeError Error;
12784   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12785   assert(Error == ASTContext::GE_None && "Should not codegen an error");
12786 
12787   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12788     // If this is a normal argument, just emit it as a scalar.
12789     if ((ICEArguments & (1 << i)) == 0) {
12790       Ops.push_back(EmitScalarExpr(E->getArg(i)));
12791       continue;
12792     }
12793 
12794     // If this is required to be a constant, constant fold it so that we know
12795     // that the generated intrinsic gets a ConstantInt.
12796     Ops.push_back(llvm::ConstantInt::get(
12797         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12798   }
12799 
12800   // These exist so that the builtin that takes an immediate can be bounds
12801   // checked by clang to avoid passing bad immediates to the backend. Since
12802   // AVX has a larger immediate than SSE we would need separate builtins to
12803   // do the different bounds checking. Rather than create a clang specific
12804   // SSE only builtin, this implements eight separate builtins to match gcc
12805   // implementation.
12806   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12807     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12808     llvm::Function *F = CGM.getIntrinsic(ID);
12809     return Builder.CreateCall(F, Ops);
12810   };
12811 
12812   // For the vector forms of FP comparisons, translate the builtins directly to
12813   // IR.
12814   // TODO: The builtins could be removed if the SSE header files used vector
12815   // extension comparisons directly (vector ordered/unordered may need
12816   // additional support via __builtin_isnan()).
12817   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12818                                          bool IsSignaling) {
12819     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12820     Value *Cmp;
12821     if (IsSignaling)
12822       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12823     else
12824       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12825     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12826     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12827     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12828     return Builder.CreateBitCast(Sext, FPVecTy);
12829   };
12830 
12831   switch (BuiltinID) {
12832   default: return nullptr;
12833   case X86::BI_mm_prefetch: {
12834     Value *Address = Ops[0];
12835     ConstantInt *C = cast<ConstantInt>(Ops[1]);
12836     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12837     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12838     Value *Data = ConstantInt::get(Int32Ty, 1);
12839     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12840     return Builder.CreateCall(F, {Address, RW, Locality, Data});
12841   }
12842   case X86::BI_mm_clflush: {
12843     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12844                               Ops[0]);
12845   }
12846   case X86::BI_mm_lfence: {
12847     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12848   }
12849   case X86::BI_mm_mfence: {
12850     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12851   }
12852   case X86::BI_mm_sfence: {
12853     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12854   }
12855   case X86::BI_mm_pause: {
12856     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12857   }
12858   case X86::BI__rdtsc: {
12859     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12860   }
12861   case X86::BI__builtin_ia32_rdtscp: {
12862     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12863     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12864                                       Ops[0]);
12865     return Builder.CreateExtractValue(Call, 0);
12866   }
12867   case X86::BI__builtin_ia32_lzcnt_u16:
12868   case X86::BI__builtin_ia32_lzcnt_u32:
12869   case X86::BI__builtin_ia32_lzcnt_u64: {
12870     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12871     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12872   }
12873   case X86::BI__builtin_ia32_tzcnt_u16:
12874   case X86::BI__builtin_ia32_tzcnt_u32:
12875   case X86::BI__builtin_ia32_tzcnt_u64: {
12876     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12877     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12878   }
12879   case X86::BI__builtin_ia32_undef128:
12880   case X86::BI__builtin_ia32_undef256:
12881   case X86::BI__builtin_ia32_undef512:
12882     // The x86 definition of "undef" is not the same as the LLVM definition
12883     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12884     // IR optimizer and backend.
12885     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12886     // value, we should use that here instead of a zero.
12887     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12888   case X86::BI__builtin_ia32_vec_init_v8qi:
12889   case X86::BI__builtin_ia32_vec_init_v4hi:
12890   case X86::BI__builtin_ia32_vec_init_v2si:
12891     return Builder.CreateBitCast(BuildVector(Ops),
12892                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12893   case X86::BI__builtin_ia32_vec_ext_v2si:
12894   case X86::BI__builtin_ia32_vec_ext_v16qi:
12895   case X86::BI__builtin_ia32_vec_ext_v8hi:
12896   case X86::BI__builtin_ia32_vec_ext_v4si:
12897   case X86::BI__builtin_ia32_vec_ext_v4sf:
12898   case X86::BI__builtin_ia32_vec_ext_v2di:
12899   case X86::BI__builtin_ia32_vec_ext_v32qi:
12900   case X86::BI__builtin_ia32_vec_ext_v16hi:
12901   case X86::BI__builtin_ia32_vec_ext_v8si:
12902   case X86::BI__builtin_ia32_vec_ext_v4di: {
12903     unsigned NumElts =
12904         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12905     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12906     Index &= NumElts - 1;
12907     // These builtins exist so we can ensure the index is an ICE and in range.
12908     // Otherwise we could just do this in the header file.
12909     return Builder.CreateExtractElement(Ops[0], Index);
12910   }
12911   case X86::BI__builtin_ia32_vec_set_v16qi:
12912   case X86::BI__builtin_ia32_vec_set_v8hi:
12913   case X86::BI__builtin_ia32_vec_set_v4si:
12914   case X86::BI__builtin_ia32_vec_set_v2di:
12915   case X86::BI__builtin_ia32_vec_set_v32qi:
12916   case X86::BI__builtin_ia32_vec_set_v16hi:
12917   case X86::BI__builtin_ia32_vec_set_v8si:
12918   case X86::BI__builtin_ia32_vec_set_v4di: {
12919     unsigned NumElts =
12920         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12921     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12922     Index &= NumElts - 1;
12923     // These builtins exist so we can ensure the index is an ICE and in range.
12924     // Otherwise we could just do this in the header file.
12925     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12926   }
12927   case X86::BI_mm_setcsr:
12928   case X86::BI__builtin_ia32_ldmxcsr: {
12929     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12930     Builder.CreateStore(Ops[0], Tmp);
12931     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12932                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12933   }
12934   case X86::BI_mm_getcsr:
12935   case X86::BI__builtin_ia32_stmxcsr: {
12936     Address Tmp = CreateMemTemp(E->getType());
12937     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12938                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12939     return Builder.CreateLoad(Tmp, "stmxcsr");
12940   }
12941   case X86::BI__builtin_ia32_xsave:
12942   case X86::BI__builtin_ia32_xsave64:
12943   case X86::BI__builtin_ia32_xrstor:
12944   case X86::BI__builtin_ia32_xrstor64:
12945   case X86::BI__builtin_ia32_xsaveopt:
12946   case X86::BI__builtin_ia32_xsaveopt64:
12947   case X86::BI__builtin_ia32_xrstors:
12948   case X86::BI__builtin_ia32_xrstors64:
12949   case X86::BI__builtin_ia32_xsavec:
12950   case X86::BI__builtin_ia32_xsavec64:
12951   case X86::BI__builtin_ia32_xsaves:
12952   case X86::BI__builtin_ia32_xsaves64:
12953   case X86::BI__builtin_ia32_xsetbv:
12954   case X86::BI_xsetbv: {
12955     Intrinsic::ID ID;
12956 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12957     case X86::BI__builtin_ia32_##NAME: \
12958       ID = Intrinsic::x86_##NAME; \
12959       break
12960     switch (BuiltinID) {
12961     default: llvm_unreachable("Unsupported intrinsic!");
12962     INTRINSIC_X86_XSAVE_ID(xsave);
12963     INTRINSIC_X86_XSAVE_ID(xsave64);
12964     INTRINSIC_X86_XSAVE_ID(xrstor);
12965     INTRINSIC_X86_XSAVE_ID(xrstor64);
12966     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12967     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12968     INTRINSIC_X86_XSAVE_ID(xrstors);
12969     INTRINSIC_X86_XSAVE_ID(xrstors64);
12970     INTRINSIC_X86_XSAVE_ID(xsavec);
12971     INTRINSIC_X86_XSAVE_ID(xsavec64);
12972     INTRINSIC_X86_XSAVE_ID(xsaves);
12973     INTRINSIC_X86_XSAVE_ID(xsaves64);
12974     INTRINSIC_X86_XSAVE_ID(xsetbv);
12975     case X86::BI_xsetbv:
12976       ID = Intrinsic::x86_xsetbv;
12977       break;
12978     }
12979 #undef INTRINSIC_X86_XSAVE_ID
12980     Value *Mhi = Builder.CreateTrunc(
12981       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12982     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12983     Ops[1] = Mhi;
12984     Ops.push_back(Mlo);
12985     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12986   }
12987   case X86::BI__builtin_ia32_xgetbv:
12988   case X86::BI_xgetbv:
12989     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12990   case X86::BI__builtin_ia32_storedqudi128_mask:
12991   case X86::BI__builtin_ia32_storedqusi128_mask:
12992   case X86::BI__builtin_ia32_storedquhi128_mask:
12993   case X86::BI__builtin_ia32_storedquqi128_mask:
12994   case X86::BI__builtin_ia32_storeupd128_mask:
12995   case X86::BI__builtin_ia32_storeups128_mask:
12996   case X86::BI__builtin_ia32_storedqudi256_mask:
12997   case X86::BI__builtin_ia32_storedqusi256_mask:
12998   case X86::BI__builtin_ia32_storedquhi256_mask:
12999   case X86::BI__builtin_ia32_storedquqi256_mask:
13000   case X86::BI__builtin_ia32_storeupd256_mask:
13001   case X86::BI__builtin_ia32_storeups256_mask:
13002   case X86::BI__builtin_ia32_storedqudi512_mask:
13003   case X86::BI__builtin_ia32_storedqusi512_mask:
13004   case X86::BI__builtin_ia32_storedquhi512_mask:
13005   case X86::BI__builtin_ia32_storedquqi512_mask:
13006   case X86::BI__builtin_ia32_storeupd512_mask:
13007   case X86::BI__builtin_ia32_storeups512_mask:
13008     return EmitX86MaskedStore(*this, Ops, Align(1));
13009 
13010   case X86::BI__builtin_ia32_storesh128_mask:
13011   case X86::BI__builtin_ia32_storess128_mask:
13012   case X86::BI__builtin_ia32_storesd128_mask:
13013     return EmitX86MaskedStore(*this, Ops, Align(1));
13014 
13015   case X86::BI__builtin_ia32_vpopcntb_128:
13016   case X86::BI__builtin_ia32_vpopcntd_128:
13017   case X86::BI__builtin_ia32_vpopcntq_128:
13018   case X86::BI__builtin_ia32_vpopcntw_128:
13019   case X86::BI__builtin_ia32_vpopcntb_256:
13020   case X86::BI__builtin_ia32_vpopcntd_256:
13021   case X86::BI__builtin_ia32_vpopcntq_256:
13022   case X86::BI__builtin_ia32_vpopcntw_256:
13023   case X86::BI__builtin_ia32_vpopcntb_512:
13024   case X86::BI__builtin_ia32_vpopcntd_512:
13025   case X86::BI__builtin_ia32_vpopcntq_512:
13026   case X86::BI__builtin_ia32_vpopcntw_512: {
13027     llvm::Type *ResultType = ConvertType(E->getType());
13028     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13029     return Builder.CreateCall(F, Ops);
13030   }
13031   case X86::BI__builtin_ia32_cvtmask2b128:
13032   case X86::BI__builtin_ia32_cvtmask2b256:
13033   case X86::BI__builtin_ia32_cvtmask2b512:
13034   case X86::BI__builtin_ia32_cvtmask2w128:
13035   case X86::BI__builtin_ia32_cvtmask2w256:
13036   case X86::BI__builtin_ia32_cvtmask2w512:
13037   case X86::BI__builtin_ia32_cvtmask2d128:
13038   case X86::BI__builtin_ia32_cvtmask2d256:
13039   case X86::BI__builtin_ia32_cvtmask2d512:
13040   case X86::BI__builtin_ia32_cvtmask2q128:
13041   case X86::BI__builtin_ia32_cvtmask2q256:
13042   case X86::BI__builtin_ia32_cvtmask2q512:
13043     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13044 
13045   case X86::BI__builtin_ia32_cvtb2mask128:
13046   case X86::BI__builtin_ia32_cvtb2mask256:
13047   case X86::BI__builtin_ia32_cvtb2mask512:
13048   case X86::BI__builtin_ia32_cvtw2mask128:
13049   case X86::BI__builtin_ia32_cvtw2mask256:
13050   case X86::BI__builtin_ia32_cvtw2mask512:
13051   case X86::BI__builtin_ia32_cvtd2mask128:
13052   case X86::BI__builtin_ia32_cvtd2mask256:
13053   case X86::BI__builtin_ia32_cvtd2mask512:
13054   case X86::BI__builtin_ia32_cvtq2mask128:
13055   case X86::BI__builtin_ia32_cvtq2mask256:
13056   case X86::BI__builtin_ia32_cvtq2mask512:
13057     return EmitX86ConvertToMask(*this, Ops[0]);
13058 
13059   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13060   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13061   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13062   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13063   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13064   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13065     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13066   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13067   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13068   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13069   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13070   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13071   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13072     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13073 
13074   case X86::BI__builtin_ia32_vfmaddss3:
13075   case X86::BI__builtin_ia32_vfmaddsd3:
13076   case X86::BI__builtin_ia32_vfmaddsh3_mask:
13077   case X86::BI__builtin_ia32_vfmaddss3_mask:
13078   case X86::BI__builtin_ia32_vfmaddsd3_mask:
13079     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13080   case X86::BI__builtin_ia32_vfmaddss:
13081   case X86::BI__builtin_ia32_vfmaddsd:
13082     return EmitScalarFMAExpr(*this, E, Ops,
13083                              Constant::getNullValue(Ops[0]->getType()));
13084   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13085   case X86::BI__builtin_ia32_vfmaddss3_maskz:
13086   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13087     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13088   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13089   case X86::BI__builtin_ia32_vfmaddss3_mask3:
13090   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13091     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13092   case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13093   case X86::BI__builtin_ia32_vfmsubss3_mask3:
13094   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13095     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13096                              /*NegAcc*/ true);
13097   case X86::BI__builtin_ia32_vfmaddph:
13098   case X86::BI__builtin_ia32_vfmaddps:
13099   case X86::BI__builtin_ia32_vfmaddpd:
13100   case X86::BI__builtin_ia32_vfmaddph256:
13101   case X86::BI__builtin_ia32_vfmaddps256:
13102   case X86::BI__builtin_ia32_vfmaddpd256:
13103   case X86::BI__builtin_ia32_vfmaddph512_mask:
13104   case X86::BI__builtin_ia32_vfmaddph512_maskz:
13105   case X86::BI__builtin_ia32_vfmaddph512_mask3:
13106   case X86::BI__builtin_ia32_vfmaddps512_mask:
13107   case X86::BI__builtin_ia32_vfmaddps512_maskz:
13108   case X86::BI__builtin_ia32_vfmaddps512_mask3:
13109   case X86::BI__builtin_ia32_vfmsubps512_mask3:
13110   case X86::BI__builtin_ia32_vfmaddpd512_mask:
13111   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13112   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13113   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13114   case X86::BI__builtin_ia32_vfmsubph512_mask3:
13115     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13116   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13117   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13118   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13119   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13120   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13121   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13122   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13123   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13124   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13125   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13126   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13127   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13128     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13129 
13130   case X86::BI__builtin_ia32_movdqa32store128_mask:
13131   case X86::BI__builtin_ia32_movdqa64store128_mask:
13132   case X86::BI__builtin_ia32_storeaps128_mask:
13133   case X86::BI__builtin_ia32_storeapd128_mask:
13134   case X86::BI__builtin_ia32_movdqa32store256_mask:
13135   case X86::BI__builtin_ia32_movdqa64store256_mask:
13136   case X86::BI__builtin_ia32_storeaps256_mask:
13137   case X86::BI__builtin_ia32_storeapd256_mask:
13138   case X86::BI__builtin_ia32_movdqa32store512_mask:
13139   case X86::BI__builtin_ia32_movdqa64store512_mask:
13140   case X86::BI__builtin_ia32_storeaps512_mask:
13141   case X86::BI__builtin_ia32_storeapd512_mask:
13142     return EmitX86MaskedStore(
13143         *this, Ops,
13144         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13145 
13146   case X86::BI__builtin_ia32_loadups128_mask:
13147   case X86::BI__builtin_ia32_loadups256_mask:
13148   case X86::BI__builtin_ia32_loadups512_mask:
13149   case X86::BI__builtin_ia32_loadupd128_mask:
13150   case X86::BI__builtin_ia32_loadupd256_mask:
13151   case X86::BI__builtin_ia32_loadupd512_mask:
13152   case X86::BI__builtin_ia32_loaddquqi128_mask:
13153   case X86::BI__builtin_ia32_loaddquqi256_mask:
13154   case X86::BI__builtin_ia32_loaddquqi512_mask:
13155   case X86::BI__builtin_ia32_loaddquhi128_mask:
13156   case X86::BI__builtin_ia32_loaddquhi256_mask:
13157   case X86::BI__builtin_ia32_loaddquhi512_mask:
13158   case X86::BI__builtin_ia32_loaddqusi128_mask:
13159   case X86::BI__builtin_ia32_loaddqusi256_mask:
13160   case X86::BI__builtin_ia32_loaddqusi512_mask:
13161   case X86::BI__builtin_ia32_loaddqudi128_mask:
13162   case X86::BI__builtin_ia32_loaddqudi256_mask:
13163   case X86::BI__builtin_ia32_loaddqudi512_mask:
13164     return EmitX86MaskedLoad(*this, Ops, Align(1));
13165 
13166   case X86::BI__builtin_ia32_loadsh128_mask:
13167   case X86::BI__builtin_ia32_loadss128_mask:
13168   case X86::BI__builtin_ia32_loadsd128_mask:
13169     return EmitX86MaskedLoad(*this, Ops, Align(1));
13170 
13171   case X86::BI__builtin_ia32_loadaps128_mask:
13172   case X86::BI__builtin_ia32_loadaps256_mask:
13173   case X86::BI__builtin_ia32_loadaps512_mask:
13174   case X86::BI__builtin_ia32_loadapd128_mask:
13175   case X86::BI__builtin_ia32_loadapd256_mask:
13176   case X86::BI__builtin_ia32_loadapd512_mask:
13177   case X86::BI__builtin_ia32_movdqa32load128_mask:
13178   case X86::BI__builtin_ia32_movdqa32load256_mask:
13179   case X86::BI__builtin_ia32_movdqa32load512_mask:
13180   case X86::BI__builtin_ia32_movdqa64load128_mask:
13181   case X86::BI__builtin_ia32_movdqa64load256_mask:
13182   case X86::BI__builtin_ia32_movdqa64load512_mask:
13183     return EmitX86MaskedLoad(
13184         *this, Ops,
13185         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13186 
13187   case X86::BI__builtin_ia32_expandloaddf128_mask:
13188   case X86::BI__builtin_ia32_expandloaddf256_mask:
13189   case X86::BI__builtin_ia32_expandloaddf512_mask:
13190   case X86::BI__builtin_ia32_expandloadsf128_mask:
13191   case X86::BI__builtin_ia32_expandloadsf256_mask:
13192   case X86::BI__builtin_ia32_expandloadsf512_mask:
13193   case X86::BI__builtin_ia32_expandloaddi128_mask:
13194   case X86::BI__builtin_ia32_expandloaddi256_mask:
13195   case X86::BI__builtin_ia32_expandloaddi512_mask:
13196   case X86::BI__builtin_ia32_expandloadsi128_mask:
13197   case X86::BI__builtin_ia32_expandloadsi256_mask:
13198   case X86::BI__builtin_ia32_expandloadsi512_mask:
13199   case X86::BI__builtin_ia32_expandloadhi128_mask:
13200   case X86::BI__builtin_ia32_expandloadhi256_mask:
13201   case X86::BI__builtin_ia32_expandloadhi512_mask:
13202   case X86::BI__builtin_ia32_expandloadqi128_mask:
13203   case X86::BI__builtin_ia32_expandloadqi256_mask:
13204   case X86::BI__builtin_ia32_expandloadqi512_mask:
13205     return EmitX86ExpandLoad(*this, Ops);
13206 
13207   case X86::BI__builtin_ia32_compressstoredf128_mask:
13208   case X86::BI__builtin_ia32_compressstoredf256_mask:
13209   case X86::BI__builtin_ia32_compressstoredf512_mask:
13210   case X86::BI__builtin_ia32_compressstoresf128_mask:
13211   case X86::BI__builtin_ia32_compressstoresf256_mask:
13212   case X86::BI__builtin_ia32_compressstoresf512_mask:
13213   case X86::BI__builtin_ia32_compressstoredi128_mask:
13214   case X86::BI__builtin_ia32_compressstoredi256_mask:
13215   case X86::BI__builtin_ia32_compressstoredi512_mask:
13216   case X86::BI__builtin_ia32_compressstoresi128_mask:
13217   case X86::BI__builtin_ia32_compressstoresi256_mask:
13218   case X86::BI__builtin_ia32_compressstoresi512_mask:
13219   case X86::BI__builtin_ia32_compressstorehi128_mask:
13220   case X86::BI__builtin_ia32_compressstorehi256_mask:
13221   case X86::BI__builtin_ia32_compressstorehi512_mask:
13222   case X86::BI__builtin_ia32_compressstoreqi128_mask:
13223   case X86::BI__builtin_ia32_compressstoreqi256_mask:
13224   case X86::BI__builtin_ia32_compressstoreqi512_mask:
13225     return EmitX86CompressStore(*this, Ops);
13226 
13227   case X86::BI__builtin_ia32_expanddf128_mask:
13228   case X86::BI__builtin_ia32_expanddf256_mask:
13229   case X86::BI__builtin_ia32_expanddf512_mask:
13230   case X86::BI__builtin_ia32_expandsf128_mask:
13231   case X86::BI__builtin_ia32_expandsf256_mask:
13232   case X86::BI__builtin_ia32_expandsf512_mask:
13233   case X86::BI__builtin_ia32_expanddi128_mask:
13234   case X86::BI__builtin_ia32_expanddi256_mask:
13235   case X86::BI__builtin_ia32_expanddi512_mask:
13236   case X86::BI__builtin_ia32_expandsi128_mask:
13237   case X86::BI__builtin_ia32_expandsi256_mask:
13238   case X86::BI__builtin_ia32_expandsi512_mask:
13239   case X86::BI__builtin_ia32_expandhi128_mask:
13240   case X86::BI__builtin_ia32_expandhi256_mask:
13241   case X86::BI__builtin_ia32_expandhi512_mask:
13242   case X86::BI__builtin_ia32_expandqi128_mask:
13243   case X86::BI__builtin_ia32_expandqi256_mask:
13244   case X86::BI__builtin_ia32_expandqi512_mask:
13245     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13246 
13247   case X86::BI__builtin_ia32_compressdf128_mask:
13248   case X86::BI__builtin_ia32_compressdf256_mask:
13249   case X86::BI__builtin_ia32_compressdf512_mask:
13250   case X86::BI__builtin_ia32_compresssf128_mask:
13251   case X86::BI__builtin_ia32_compresssf256_mask:
13252   case X86::BI__builtin_ia32_compresssf512_mask:
13253   case X86::BI__builtin_ia32_compressdi128_mask:
13254   case X86::BI__builtin_ia32_compressdi256_mask:
13255   case X86::BI__builtin_ia32_compressdi512_mask:
13256   case X86::BI__builtin_ia32_compresssi128_mask:
13257   case X86::BI__builtin_ia32_compresssi256_mask:
13258   case X86::BI__builtin_ia32_compresssi512_mask:
13259   case X86::BI__builtin_ia32_compresshi128_mask:
13260   case X86::BI__builtin_ia32_compresshi256_mask:
13261   case X86::BI__builtin_ia32_compresshi512_mask:
13262   case X86::BI__builtin_ia32_compressqi128_mask:
13263   case X86::BI__builtin_ia32_compressqi256_mask:
13264   case X86::BI__builtin_ia32_compressqi512_mask:
13265     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13266 
13267   case X86::BI__builtin_ia32_gather3div2df:
13268   case X86::BI__builtin_ia32_gather3div2di:
13269   case X86::BI__builtin_ia32_gather3div4df:
13270   case X86::BI__builtin_ia32_gather3div4di:
13271   case X86::BI__builtin_ia32_gather3div4sf:
13272   case X86::BI__builtin_ia32_gather3div4si:
13273   case X86::BI__builtin_ia32_gather3div8sf:
13274   case X86::BI__builtin_ia32_gather3div8si:
13275   case X86::BI__builtin_ia32_gather3siv2df:
13276   case X86::BI__builtin_ia32_gather3siv2di:
13277   case X86::BI__builtin_ia32_gather3siv4df:
13278   case X86::BI__builtin_ia32_gather3siv4di:
13279   case X86::BI__builtin_ia32_gather3siv4sf:
13280   case X86::BI__builtin_ia32_gather3siv4si:
13281   case X86::BI__builtin_ia32_gather3siv8sf:
13282   case X86::BI__builtin_ia32_gather3siv8si:
13283   case X86::BI__builtin_ia32_gathersiv8df:
13284   case X86::BI__builtin_ia32_gathersiv16sf:
13285   case X86::BI__builtin_ia32_gatherdiv8df:
13286   case X86::BI__builtin_ia32_gatherdiv16sf:
13287   case X86::BI__builtin_ia32_gathersiv8di:
13288   case X86::BI__builtin_ia32_gathersiv16si:
13289   case X86::BI__builtin_ia32_gatherdiv8di:
13290   case X86::BI__builtin_ia32_gatherdiv16si: {
13291     Intrinsic::ID IID;
13292     switch (BuiltinID) {
13293     default: llvm_unreachable("Unexpected builtin");
13294     case X86::BI__builtin_ia32_gather3div2df:
13295       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13296       break;
13297     case X86::BI__builtin_ia32_gather3div2di:
13298       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13299       break;
13300     case X86::BI__builtin_ia32_gather3div4df:
13301       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13302       break;
13303     case X86::BI__builtin_ia32_gather3div4di:
13304       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13305       break;
13306     case X86::BI__builtin_ia32_gather3div4sf:
13307       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13308       break;
13309     case X86::BI__builtin_ia32_gather3div4si:
13310       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13311       break;
13312     case X86::BI__builtin_ia32_gather3div8sf:
13313       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13314       break;
13315     case X86::BI__builtin_ia32_gather3div8si:
13316       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13317       break;
13318     case X86::BI__builtin_ia32_gather3siv2df:
13319       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13320       break;
13321     case X86::BI__builtin_ia32_gather3siv2di:
13322       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13323       break;
13324     case X86::BI__builtin_ia32_gather3siv4df:
13325       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13326       break;
13327     case X86::BI__builtin_ia32_gather3siv4di:
13328       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13329       break;
13330     case X86::BI__builtin_ia32_gather3siv4sf:
13331       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13332       break;
13333     case X86::BI__builtin_ia32_gather3siv4si:
13334       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13335       break;
13336     case X86::BI__builtin_ia32_gather3siv8sf:
13337       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13338       break;
13339     case X86::BI__builtin_ia32_gather3siv8si:
13340       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13341       break;
13342     case X86::BI__builtin_ia32_gathersiv8df:
13343       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13344       break;
13345     case X86::BI__builtin_ia32_gathersiv16sf:
13346       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13347       break;
13348     case X86::BI__builtin_ia32_gatherdiv8df:
13349       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13350       break;
13351     case X86::BI__builtin_ia32_gatherdiv16sf:
13352       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13353       break;
13354     case X86::BI__builtin_ia32_gathersiv8di:
13355       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13356       break;
13357     case X86::BI__builtin_ia32_gathersiv16si:
13358       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13359       break;
13360     case X86::BI__builtin_ia32_gatherdiv8di:
13361       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13362       break;
13363     case X86::BI__builtin_ia32_gatherdiv16si:
13364       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13365       break;
13366     }
13367 
13368     unsigned MinElts = std::min(
13369         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13370         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13371     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13372     Function *Intr = CGM.getIntrinsic(IID);
13373     return Builder.CreateCall(Intr, Ops);
13374   }
13375 
13376   case X86::BI__builtin_ia32_scattersiv8df:
13377   case X86::BI__builtin_ia32_scattersiv16sf:
13378   case X86::BI__builtin_ia32_scatterdiv8df:
13379   case X86::BI__builtin_ia32_scatterdiv16sf:
13380   case X86::BI__builtin_ia32_scattersiv8di:
13381   case X86::BI__builtin_ia32_scattersiv16si:
13382   case X86::BI__builtin_ia32_scatterdiv8di:
13383   case X86::BI__builtin_ia32_scatterdiv16si:
13384   case X86::BI__builtin_ia32_scatterdiv2df:
13385   case X86::BI__builtin_ia32_scatterdiv2di:
13386   case X86::BI__builtin_ia32_scatterdiv4df:
13387   case X86::BI__builtin_ia32_scatterdiv4di:
13388   case X86::BI__builtin_ia32_scatterdiv4sf:
13389   case X86::BI__builtin_ia32_scatterdiv4si:
13390   case X86::BI__builtin_ia32_scatterdiv8sf:
13391   case X86::BI__builtin_ia32_scatterdiv8si:
13392   case X86::BI__builtin_ia32_scattersiv2df:
13393   case X86::BI__builtin_ia32_scattersiv2di:
13394   case X86::BI__builtin_ia32_scattersiv4df:
13395   case X86::BI__builtin_ia32_scattersiv4di:
13396   case X86::BI__builtin_ia32_scattersiv4sf:
13397   case X86::BI__builtin_ia32_scattersiv4si:
13398   case X86::BI__builtin_ia32_scattersiv8sf:
13399   case X86::BI__builtin_ia32_scattersiv8si: {
13400     Intrinsic::ID IID;
13401     switch (BuiltinID) {
13402     default: llvm_unreachable("Unexpected builtin");
13403     case X86::BI__builtin_ia32_scattersiv8df:
13404       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13405       break;
13406     case X86::BI__builtin_ia32_scattersiv16sf:
13407       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13408       break;
13409     case X86::BI__builtin_ia32_scatterdiv8df:
13410       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13411       break;
13412     case X86::BI__builtin_ia32_scatterdiv16sf:
13413       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13414       break;
13415     case X86::BI__builtin_ia32_scattersiv8di:
13416       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13417       break;
13418     case X86::BI__builtin_ia32_scattersiv16si:
13419       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13420       break;
13421     case X86::BI__builtin_ia32_scatterdiv8di:
13422       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13423       break;
13424     case X86::BI__builtin_ia32_scatterdiv16si:
13425       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13426       break;
13427     case X86::BI__builtin_ia32_scatterdiv2df:
13428       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13429       break;
13430     case X86::BI__builtin_ia32_scatterdiv2di:
13431       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13432       break;
13433     case X86::BI__builtin_ia32_scatterdiv4df:
13434       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13435       break;
13436     case X86::BI__builtin_ia32_scatterdiv4di:
13437       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13438       break;
13439     case X86::BI__builtin_ia32_scatterdiv4sf:
13440       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13441       break;
13442     case X86::BI__builtin_ia32_scatterdiv4si:
13443       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13444       break;
13445     case X86::BI__builtin_ia32_scatterdiv8sf:
13446       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13447       break;
13448     case X86::BI__builtin_ia32_scatterdiv8si:
13449       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13450       break;
13451     case X86::BI__builtin_ia32_scattersiv2df:
13452       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13453       break;
13454     case X86::BI__builtin_ia32_scattersiv2di:
13455       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13456       break;
13457     case X86::BI__builtin_ia32_scattersiv4df:
13458       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13459       break;
13460     case X86::BI__builtin_ia32_scattersiv4di:
13461       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13462       break;
13463     case X86::BI__builtin_ia32_scattersiv4sf:
13464       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13465       break;
13466     case X86::BI__builtin_ia32_scattersiv4si:
13467       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13468       break;
13469     case X86::BI__builtin_ia32_scattersiv8sf:
13470       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13471       break;
13472     case X86::BI__builtin_ia32_scattersiv8si:
13473       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13474       break;
13475     }
13476 
13477     unsigned MinElts = std::min(
13478         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13479         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13480     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13481     Function *Intr = CGM.getIntrinsic(IID);
13482     return Builder.CreateCall(Intr, Ops);
13483   }
13484 
13485   case X86::BI__builtin_ia32_vextractf128_pd256:
13486   case X86::BI__builtin_ia32_vextractf128_ps256:
13487   case X86::BI__builtin_ia32_vextractf128_si256:
13488   case X86::BI__builtin_ia32_extract128i256:
13489   case X86::BI__builtin_ia32_extractf64x4_mask:
13490   case X86::BI__builtin_ia32_extractf32x4_mask:
13491   case X86::BI__builtin_ia32_extracti64x4_mask:
13492   case X86::BI__builtin_ia32_extracti32x4_mask:
13493   case X86::BI__builtin_ia32_extractf32x8_mask:
13494   case X86::BI__builtin_ia32_extracti32x8_mask:
13495   case X86::BI__builtin_ia32_extractf32x4_256_mask:
13496   case X86::BI__builtin_ia32_extracti32x4_256_mask:
13497   case X86::BI__builtin_ia32_extractf64x2_256_mask:
13498   case X86::BI__builtin_ia32_extracti64x2_256_mask:
13499   case X86::BI__builtin_ia32_extractf64x2_512_mask:
13500   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13501     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13502     unsigned NumElts = DstTy->getNumElements();
13503     unsigned SrcNumElts =
13504         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13505     unsigned SubVectors = SrcNumElts / NumElts;
13506     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13507     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13508     Index &= SubVectors - 1; // Remove any extra bits.
13509     Index *= NumElts;
13510 
13511     int Indices[16];
13512     for (unsigned i = 0; i != NumElts; ++i)
13513       Indices[i] = i + Index;
13514 
13515     Value *Res = Builder.CreateShuffleVector(Ops[0],
13516                                              makeArrayRef(Indices, NumElts),
13517                                              "extract");
13518 
13519     if (Ops.size() == 4)
13520       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13521 
13522     return Res;
13523   }
13524   case X86::BI__builtin_ia32_vinsertf128_pd256:
13525   case X86::BI__builtin_ia32_vinsertf128_ps256:
13526   case X86::BI__builtin_ia32_vinsertf128_si256:
13527   case X86::BI__builtin_ia32_insert128i256:
13528   case X86::BI__builtin_ia32_insertf64x4:
13529   case X86::BI__builtin_ia32_insertf32x4:
13530   case X86::BI__builtin_ia32_inserti64x4:
13531   case X86::BI__builtin_ia32_inserti32x4:
13532   case X86::BI__builtin_ia32_insertf32x8:
13533   case X86::BI__builtin_ia32_inserti32x8:
13534   case X86::BI__builtin_ia32_insertf32x4_256:
13535   case X86::BI__builtin_ia32_inserti32x4_256:
13536   case X86::BI__builtin_ia32_insertf64x2_256:
13537   case X86::BI__builtin_ia32_inserti64x2_256:
13538   case X86::BI__builtin_ia32_insertf64x2_512:
13539   case X86::BI__builtin_ia32_inserti64x2_512: {
13540     unsigned DstNumElts =
13541         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13542     unsigned SrcNumElts =
13543         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13544     unsigned SubVectors = DstNumElts / SrcNumElts;
13545     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13546     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13547     Index &= SubVectors - 1; // Remove any extra bits.
13548     Index *= SrcNumElts;
13549 
13550     int Indices[16];
13551     for (unsigned i = 0; i != DstNumElts; ++i)
13552       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13553 
13554     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13555                                              makeArrayRef(Indices, DstNumElts),
13556                                              "widen");
13557 
13558     for (unsigned i = 0; i != DstNumElts; ++i) {
13559       if (i >= Index && i < (Index + SrcNumElts))
13560         Indices[i] = (i - Index) + DstNumElts;
13561       else
13562         Indices[i] = i;
13563     }
13564 
13565     return Builder.CreateShuffleVector(Ops[0], Op1,
13566                                        makeArrayRef(Indices, DstNumElts),
13567                                        "insert");
13568   }
13569   case X86::BI__builtin_ia32_pmovqd512_mask:
13570   case X86::BI__builtin_ia32_pmovwb512_mask: {
13571     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13572     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13573   }
13574   case X86::BI__builtin_ia32_pmovdb512_mask:
13575   case X86::BI__builtin_ia32_pmovdw512_mask:
13576   case X86::BI__builtin_ia32_pmovqw512_mask: {
13577     if (const auto *C = dyn_cast<Constant>(Ops[2]))
13578       if (C->isAllOnesValue())
13579         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13580 
13581     Intrinsic::ID IID;
13582     switch (BuiltinID) {
13583     default: llvm_unreachable("Unsupported intrinsic!");
13584     case X86::BI__builtin_ia32_pmovdb512_mask:
13585       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13586       break;
13587     case X86::BI__builtin_ia32_pmovdw512_mask:
13588       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13589       break;
13590     case X86::BI__builtin_ia32_pmovqw512_mask:
13591       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13592       break;
13593     }
13594 
13595     Function *Intr = CGM.getIntrinsic(IID);
13596     return Builder.CreateCall(Intr, Ops);
13597   }
13598   case X86::BI__builtin_ia32_pblendw128:
13599   case X86::BI__builtin_ia32_blendpd:
13600   case X86::BI__builtin_ia32_blendps:
13601   case X86::BI__builtin_ia32_blendpd256:
13602   case X86::BI__builtin_ia32_blendps256:
13603   case X86::BI__builtin_ia32_pblendw256:
13604   case X86::BI__builtin_ia32_pblendd128:
13605   case X86::BI__builtin_ia32_pblendd256: {
13606     unsigned NumElts =
13607         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13608     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13609 
13610     int Indices[16];
13611     // If there are more than 8 elements, the immediate is used twice so make
13612     // sure we handle that.
13613     for (unsigned i = 0; i != NumElts; ++i)
13614       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13615 
13616     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13617                                        makeArrayRef(Indices, NumElts),
13618                                        "blend");
13619   }
13620   case X86::BI__builtin_ia32_pshuflw:
13621   case X86::BI__builtin_ia32_pshuflw256:
13622   case X86::BI__builtin_ia32_pshuflw512: {
13623     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13624     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13625     unsigned NumElts = Ty->getNumElements();
13626 
13627     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13628     Imm = (Imm & 0xff) * 0x01010101;
13629 
13630     int Indices[32];
13631     for (unsigned l = 0; l != NumElts; l += 8) {
13632       for (unsigned i = 0; i != 4; ++i) {
13633         Indices[l + i] = l + (Imm & 3);
13634         Imm >>= 2;
13635       }
13636       for (unsigned i = 4; i != 8; ++i)
13637         Indices[l + i] = l + i;
13638     }
13639 
13640     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13641                                        "pshuflw");
13642   }
13643   case X86::BI__builtin_ia32_pshufhw:
13644   case X86::BI__builtin_ia32_pshufhw256:
13645   case X86::BI__builtin_ia32_pshufhw512: {
13646     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13647     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13648     unsigned NumElts = Ty->getNumElements();
13649 
13650     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13651     Imm = (Imm & 0xff) * 0x01010101;
13652 
13653     int Indices[32];
13654     for (unsigned l = 0; l != NumElts; l += 8) {
13655       for (unsigned i = 0; i != 4; ++i)
13656         Indices[l + i] = l + i;
13657       for (unsigned i = 4; i != 8; ++i) {
13658         Indices[l + i] = l + 4 + (Imm & 3);
13659         Imm >>= 2;
13660       }
13661     }
13662 
13663     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13664                                        "pshufhw");
13665   }
13666   case X86::BI__builtin_ia32_pshufd:
13667   case X86::BI__builtin_ia32_pshufd256:
13668   case X86::BI__builtin_ia32_pshufd512:
13669   case X86::BI__builtin_ia32_vpermilpd:
13670   case X86::BI__builtin_ia32_vpermilps:
13671   case X86::BI__builtin_ia32_vpermilpd256:
13672   case X86::BI__builtin_ia32_vpermilps256:
13673   case X86::BI__builtin_ia32_vpermilpd512:
13674   case X86::BI__builtin_ia32_vpermilps512: {
13675     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13676     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13677     unsigned NumElts = Ty->getNumElements();
13678     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13679     unsigned NumLaneElts = NumElts / NumLanes;
13680 
13681     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13682     Imm = (Imm & 0xff) * 0x01010101;
13683 
13684     int Indices[16];
13685     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13686       for (unsigned i = 0; i != NumLaneElts; ++i) {
13687         Indices[i + l] = (Imm % NumLaneElts) + l;
13688         Imm /= NumLaneElts;
13689       }
13690     }
13691 
13692     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13693                                        "permil");
13694   }
13695   case X86::BI__builtin_ia32_shufpd:
13696   case X86::BI__builtin_ia32_shufpd256:
13697   case X86::BI__builtin_ia32_shufpd512:
13698   case X86::BI__builtin_ia32_shufps:
13699   case X86::BI__builtin_ia32_shufps256:
13700   case X86::BI__builtin_ia32_shufps512: {
13701     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13702     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13703     unsigned NumElts = Ty->getNumElements();
13704     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13705     unsigned NumLaneElts = NumElts / NumLanes;
13706 
13707     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13708     Imm = (Imm & 0xff) * 0x01010101;
13709 
13710     int Indices[16];
13711     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13712       for (unsigned i = 0; i != NumLaneElts; ++i) {
13713         unsigned Index = Imm % NumLaneElts;
13714         Imm /= NumLaneElts;
13715         if (i >= (NumLaneElts / 2))
13716           Index += NumElts;
13717         Indices[l + i] = l + Index;
13718       }
13719     }
13720 
13721     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13722                                        makeArrayRef(Indices, NumElts),
13723                                        "shufp");
13724   }
13725   case X86::BI__builtin_ia32_permdi256:
13726   case X86::BI__builtin_ia32_permdf256:
13727   case X86::BI__builtin_ia32_permdi512:
13728   case X86::BI__builtin_ia32_permdf512: {
13729     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13730     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13731     unsigned NumElts = Ty->getNumElements();
13732 
13733     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13734     int Indices[8];
13735     for (unsigned l = 0; l != NumElts; l += 4)
13736       for (unsigned i = 0; i != 4; ++i)
13737         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13738 
13739     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13740                                        "perm");
13741   }
13742   case X86::BI__builtin_ia32_palignr128:
13743   case X86::BI__builtin_ia32_palignr256:
13744   case X86::BI__builtin_ia32_palignr512: {
13745     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13746 
13747     unsigned NumElts =
13748         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13749     assert(NumElts % 16 == 0);
13750 
13751     // If palignr is shifting the pair of vectors more than the size of two
13752     // lanes, emit zero.
13753     if (ShiftVal >= 32)
13754       return llvm::Constant::getNullValue(ConvertType(E->getType()));
13755 
13756     // If palignr is shifting the pair of input vectors more than one lane,
13757     // but less than two lanes, convert to shifting in zeroes.
13758     if (ShiftVal > 16) {
13759       ShiftVal -= 16;
13760       Ops[1] = Ops[0];
13761       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13762     }
13763 
13764     int Indices[64];
13765     // 256-bit palignr operates on 128-bit lanes so we need to handle that
13766     for (unsigned l = 0; l != NumElts; l += 16) {
13767       for (unsigned i = 0; i != 16; ++i) {
13768         unsigned Idx = ShiftVal + i;
13769         if (Idx >= 16)
13770           Idx += NumElts - 16; // End of lane, switch operand.
13771         Indices[l + i] = Idx + l;
13772       }
13773     }
13774 
13775     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13776                                        makeArrayRef(Indices, NumElts),
13777                                        "palignr");
13778   }
13779   case X86::BI__builtin_ia32_alignd128:
13780   case X86::BI__builtin_ia32_alignd256:
13781   case X86::BI__builtin_ia32_alignd512:
13782   case X86::BI__builtin_ia32_alignq128:
13783   case X86::BI__builtin_ia32_alignq256:
13784   case X86::BI__builtin_ia32_alignq512: {
13785     unsigned NumElts =
13786         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13787     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13788 
13789     // Mask the shift amount to width of a vector.
13790     ShiftVal &= NumElts - 1;
13791 
13792     int Indices[16];
13793     for (unsigned i = 0; i != NumElts; ++i)
13794       Indices[i] = i + ShiftVal;
13795 
13796     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13797                                        makeArrayRef(Indices, NumElts),
13798                                        "valign");
13799   }
13800   case X86::BI__builtin_ia32_shuf_f32x4_256:
13801   case X86::BI__builtin_ia32_shuf_f64x2_256:
13802   case X86::BI__builtin_ia32_shuf_i32x4_256:
13803   case X86::BI__builtin_ia32_shuf_i64x2_256:
13804   case X86::BI__builtin_ia32_shuf_f32x4:
13805   case X86::BI__builtin_ia32_shuf_f64x2:
13806   case X86::BI__builtin_ia32_shuf_i32x4:
13807   case X86::BI__builtin_ia32_shuf_i64x2: {
13808     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13809     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13810     unsigned NumElts = Ty->getNumElements();
13811     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13812     unsigned NumLaneElts = NumElts / NumLanes;
13813 
13814     int Indices[16];
13815     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13816       unsigned Index = (Imm % NumLanes) * NumLaneElts;
13817       Imm /= NumLanes; // Discard the bits we just used.
13818       if (l >= (NumElts / 2))
13819         Index += NumElts; // Switch to other source.
13820       for (unsigned i = 0; i != NumLaneElts; ++i) {
13821         Indices[l + i] = Index + i;
13822       }
13823     }
13824 
13825     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13826                                        makeArrayRef(Indices, NumElts),
13827                                        "shuf");
13828   }
13829 
13830   case X86::BI__builtin_ia32_vperm2f128_pd256:
13831   case X86::BI__builtin_ia32_vperm2f128_ps256:
13832   case X86::BI__builtin_ia32_vperm2f128_si256:
13833   case X86::BI__builtin_ia32_permti256: {
13834     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13835     unsigned NumElts =
13836         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13837 
13838     // This takes a very simple approach since there are two lanes and a
13839     // shuffle can have 2 inputs. So we reserve the first input for the first
13840     // lane and the second input for the second lane. This may result in
13841     // duplicate sources, but this can be dealt with in the backend.
13842 
13843     Value *OutOps[2];
13844     int Indices[8];
13845     for (unsigned l = 0; l != 2; ++l) {
13846       // Determine the source for this lane.
13847       if (Imm & (1 << ((l * 4) + 3)))
13848         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13849       else if (Imm & (1 << ((l * 4) + 1)))
13850         OutOps[l] = Ops[1];
13851       else
13852         OutOps[l] = Ops[0];
13853 
13854       for (unsigned i = 0; i != NumElts/2; ++i) {
13855         // Start with ith element of the source for this lane.
13856         unsigned Idx = (l * NumElts) + i;
13857         // If bit 0 of the immediate half is set, switch to the high half of
13858         // the source.
13859         if (Imm & (1 << (l * 4)))
13860           Idx += NumElts/2;
13861         Indices[(l * (NumElts/2)) + i] = Idx;
13862       }
13863     }
13864 
13865     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13866                                        makeArrayRef(Indices, NumElts),
13867                                        "vperm");
13868   }
13869 
13870   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13871   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13872   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13873     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13874     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13875     // Builtin type is vXi64 so multiply by 8 to get bytes.
13876     unsigned NumElts = ResultType->getNumElements() * 8;
13877 
13878     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13879     if (ShiftVal >= 16)
13880       return llvm::Constant::getNullValue(ResultType);
13881 
13882     int Indices[64];
13883     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13884     for (unsigned l = 0; l != NumElts; l += 16) {
13885       for (unsigned i = 0; i != 16; ++i) {
13886         unsigned Idx = NumElts + i - ShiftVal;
13887         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13888         Indices[l + i] = Idx + l;
13889       }
13890     }
13891 
13892     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13893     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13894     Value *Zero = llvm::Constant::getNullValue(VecTy);
13895     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13896                                             makeArrayRef(Indices, NumElts),
13897                                             "pslldq");
13898     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13899   }
13900   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13901   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13902   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13903     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13904     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13905     // Builtin type is vXi64 so multiply by 8 to get bytes.
13906     unsigned NumElts = ResultType->getNumElements() * 8;
13907 
13908     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13909     if (ShiftVal >= 16)
13910       return llvm::Constant::getNullValue(ResultType);
13911 
13912     int Indices[64];
13913     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13914     for (unsigned l = 0; l != NumElts; l += 16) {
13915       for (unsigned i = 0; i != 16; ++i) {
13916         unsigned Idx = i + ShiftVal;
13917         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13918         Indices[l + i] = Idx + l;
13919       }
13920     }
13921 
13922     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13923     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13924     Value *Zero = llvm::Constant::getNullValue(VecTy);
13925     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13926                                             makeArrayRef(Indices, NumElts),
13927                                             "psrldq");
13928     return Builder.CreateBitCast(SV, ResultType, "cast");
13929   }
13930   case X86::BI__builtin_ia32_kshiftliqi:
13931   case X86::BI__builtin_ia32_kshiftlihi:
13932   case X86::BI__builtin_ia32_kshiftlisi:
13933   case X86::BI__builtin_ia32_kshiftlidi: {
13934     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13935     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13936 
13937     if (ShiftVal >= NumElts)
13938       return llvm::Constant::getNullValue(Ops[0]->getType());
13939 
13940     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13941 
13942     int Indices[64];
13943     for (unsigned i = 0; i != NumElts; ++i)
13944       Indices[i] = NumElts + i - ShiftVal;
13945 
13946     Value *Zero = llvm::Constant::getNullValue(In->getType());
13947     Value *SV = Builder.CreateShuffleVector(Zero, In,
13948                                             makeArrayRef(Indices, NumElts),
13949                                             "kshiftl");
13950     return Builder.CreateBitCast(SV, Ops[0]->getType());
13951   }
13952   case X86::BI__builtin_ia32_kshiftriqi:
13953   case X86::BI__builtin_ia32_kshiftrihi:
13954   case X86::BI__builtin_ia32_kshiftrisi:
13955   case X86::BI__builtin_ia32_kshiftridi: {
13956     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13957     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13958 
13959     if (ShiftVal >= NumElts)
13960       return llvm::Constant::getNullValue(Ops[0]->getType());
13961 
13962     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13963 
13964     int Indices[64];
13965     for (unsigned i = 0; i != NumElts; ++i)
13966       Indices[i] = i + ShiftVal;
13967 
13968     Value *Zero = llvm::Constant::getNullValue(In->getType());
13969     Value *SV = Builder.CreateShuffleVector(In, Zero,
13970                                             makeArrayRef(Indices, NumElts),
13971                                             "kshiftr");
13972     return Builder.CreateBitCast(SV, Ops[0]->getType());
13973   }
13974   case X86::BI__builtin_ia32_movnti:
13975   case X86::BI__builtin_ia32_movnti64:
13976   case X86::BI__builtin_ia32_movntsd:
13977   case X86::BI__builtin_ia32_movntss: {
13978     llvm::MDNode *Node = llvm::MDNode::get(
13979         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13980 
13981     Value *Ptr = Ops[0];
13982     Value *Src = Ops[1];
13983 
13984     // Extract the 0'th element of the source vector.
13985     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13986         BuiltinID == X86::BI__builtin_ia32_movntss)
13987       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13988 
13989     // Convert the type of the pointer to a pointer to the stored type.
13990     Value *BC = Builder.CreateBitCast(
13991         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13992 
13993     // Unaligned nontemporal store of the scalar value.
13994     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13995     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13996     SI->setAlignment(llvm::Align(1));
13997     return SI;
13998   }
13999   // Rotate is a special case of funnel shift - 1st 2 args are the same.
14000   case X86::BI__builtin_ia32_vprotb:
14001   case X86::BI__builtin_ia32_vprotw:
14002   case X86::BI__builtin_ia32_vprotd:
14003   case X86::BI__builtin_ia32_vprotq:
14004   case X86::BI__builtin_ia32_vprotbi:
14005   case X86::BI__builtin_ia32_vprotwi:
14006   case X86::BI__builtin_ia32_vprotdi:
14007   case X86::BI__builtin_ia32_vprotqi:
14008   case X86::BI__builtin_ia32_prold128:
14009   case X86::BI__builtin_ia32_prold256:
14010   case X86::BI__builtin_ia32_prold512:
14011   case X86::BI__builtin_ia32_prolq128:
14012   case X86::BI__builtin_ia32_prolq256:
14013   case X86::BI__builtin_ia32_prolq512:
14014   case X86::BI__builtin_ia32_prolvd128:
14015   case X86::BI__builtin_ia32_prolvd256:
14016   case X86::BI__builtin_ia32_prolvd512:
14017   case X86::BI__builtin_ia32_prolvq128:
14018   case X86::BI__builtin_ia32_prolvq256:
14019   case X86::BI__builtin_ia32_prolvq512:
14020     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
14021   case X86::BI__builtin_ia32_prord128:
14022   case X86::BI__builtin_ia32_prord256:
14023   case X86::BI__builtin_ia32_prord512:
14024   case X86::BI__builtin_ia32_prorq128:
14025   case X86::BI__builtin_ia32_prorq256:
14026   case X86::BI__builtin_ia32_prorq512:
14027   case X86::BI__builtin_ia32_prorvd128:
14028   case X86::BI__builtin_ia32_prorvd256:
14029   case X86::BI__builtin_ia32_prorvd512:
14030   case X86::BI__builtin_ia32_prorvq128:
14031   case X86::BI__builtin_ia32_prorvq256:
14032   case X86::BI__builtin_ia32_prorvq512:
14033     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14034   case X86::BI__builtin_ia32_selectb_128:
14035   case X86::BI__builtin_ia32_selectb_256:
14036   case X86::BI__builtin_ia32_selectb_512:
14037   case X86::BI__builtin_ia32_selectw_128:
14038   case X86::BI__builtin_ia32_selectw_256:
14039   case X86::BI__builtin_ia32_selectw_512:
14040   case X86::BI__builtin_ia32_selectd_128:
14041   case X86::BI__builtin_ia32_selectd_256:
14042   case X86::BI__builtin_ia32_selectd_512:
14043   case X86::BI__builtin_ia32_selectq_128:
14044   case X86::BI__builtin_ia32_selectq_256:
14045   case X86::BI__builtin_ia32_selectq_512:
14046   case X86::BI__builtin_ia32_selectph_128:
14047   case X86::BI__builtin_ia32_selectph_256:
14048   case X86::BI__builtin_ia32_selectph_512:
14049   case X86::BI__builtin_ia32_selectps_128:
14050   case X86::BI__builtin_ia32_selectps_256:
14051   case X86::BI__builtin_ia32_selectps_512:
14052   case X86::BI__builtin_ia32_selectpd_128:
14053   case X86::BI__builtin_ia32_selectpd_256:
14054   case X86::BI__builtin_ia32_selectpd_512:
14055     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14056   case X86::BI__builtin_ia32_selectsh_128:
14057   case X86::BI__builtin_ia32_selectss_128:
14058   case X86::BI__builtin_ia32_selectsd_128: {
14059     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14060     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14061     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14062     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14063   }
14064   case X86::BI__builtin_ia32_cmpb128_mask:
14065   case X86::BI__builtin_ia32_cmpb256_mask:
14066   case X86::BI__builtin_ia32_cmpb512_mask:
14067   case X86::BI__builtin_ia32_cmpw128_mask:
14068   case X86::BI__builtin_ia32_cmpw256_mask:
14069   case X86::BI__builtin_ia32_cmpw512_mask:
14070   case X86::BI__builtin_ia32_cmpd128_mask:
14071   case X86::BI__builtin_ia32_cmpd256_mask:
14072   case X86::BI__builtin_ia32_cmpd512_mask:
14073   case X86::BI__builtin_ia32_cmpq128_mask:
14074   case X86::BI__builtin_ia32_cmpq256_mask:
14075   case X86::BI__builtin_ia32_cmpq512_mask: {
14076     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14077     return EmitX86MaskedCompare(*this, CC, true, Ops);
14078   }
14079   case X86::BI__builtin_ia32_ucmpb128_mask:
14080   case X86::BI__builtin_ia32_ucmpb256_mask:
14081   case X86::BI__builtin_ia32_ucmpb512_mask:
14082   case X86::BI__builtin_ia32_ucmpw128_mask:
14083   case X86::BI__builtin_ia32_ucmpw256_mask:
14084   case X86::BI__builtin_ia32_ucmpw512_mask:
14085   case X86::BI__builtin_ia32_ucmpd128_mask:
14086   case X86::BI__builtin_ia32_ucmpd256_mask:
14087   case X86::BI__builtin_ia32_ucmpd512_mask:
14088   case X86::BI__builtin_ia32_ucmpq128_mask:
14089   case X86::BI__builtin_ia32_ucmpq256_mask:
14090   case X86::BI__builtin_ia32_ucmpq512_mask: {
14091     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14092     return EmitX86MaskedCompare(*this, CC, false, Ops);
14093   }
14094   case X86::BI__builtin_ia32_vpcomb:
14095   case X86::BI__builtin_ia32_vpcomw:
14096   case X86::BI__builtin_ia32_vpcomd:
14097   case X86::BI__builtin_ia32_vpcomq:
14098     return EmitX86vpcom(*this, Ops, true);
14099   case X86::BI__builtin_ia32_vpcomub:
14100   case X86::BI__builtin_ia32_vpcomuw:
14101   case X86::BI__builtin_ia32_vpcomud:
14102   case X86::BI__builtin_ia32_vpcomuq:
14103     return EmitX86vpcom(*this, Ops, false);
14104 
14105   case X86::BI__builtin_ia32_kortestcqi:
14106   case X86::BI__builtin_ia32_kortestchi:
14107   case X86::BI__builtin_ia32_kortestcsi:
14108   case X86::BI__builtin_ia32_kortestcdi: {
14109     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14110     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14111     Value *Cmp = Builder.CreateICmpEQ(Or, C);
14112     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14113   }
14114   case X86::BI__builtin_ia32_kortestzqi:
14115   case X86::BI__builtin_ia32_kortestzhi:
14116   case X86::BI__builtin_ia32_kortestzsi:
14117   case X86::BI__builtin_ia32_kortestzdi: {
14118     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14119     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14120     Value *Cmp = Builder.CreateICmpEQ(Or, C);
14121     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14122   }
14123 
14124   case X86::BI__builtin_ia32_ktestcqi:
14125   case X86::BI__builtin_ia32_ktestzqi:
14126   case X86::BI__builtin_ia32_ktestchi:
14127   case X86::BI__builtin_ia32_ktestzhi:
14128   case X86::BI__builtin_ia32_ktestcsi:
14129   case X86::BI__builtin_ia32_ktestzsi:
14130   case X86::BI__builtin_ia32_ktestcdi:
14131   case X86::BI__builtin_ia32_ktestzdi: {
14132     Intrinsic::ID IID;
14133     switch (BuiltinID) {
14134     default: llvm_unreachable("Unsupported intrinsic!");
14135     case X86::BI__builtin_ia32_ktestcqi:
14136       IID = Intrinsic::x86_avx512_ktestc_b;
14137       break;
14138     case X86::BI__builtin_ia32_ktestzqi:
14139       IID = Intrinsic::x86_avx512_ktestz_b;
14140       break;
14141     case X86::BI__builtin_ia32_ktestchi:
14142       IID = Intrinsic::x86_avx512_ktestc_w;
14143       break;
14144     case X86::BI__builtin_ia32_ktestzhi:
14145       IID = Intrinsic::x86_avx512_ktestz_w;
14146       break;
14147     case X86::BI__builtin_ia32_ktestcsi:
14148       IID = Intrinsic::x86_avx512_ktestc_d;
14149       break;
14150     case X86::BI__builtin_ia32_ktestzsi:
14151       IID = Intrinsic::x86_avx512_ktestz_d;
14152       break;
14153     case X86::BI__builtin_ia32_ktestcdi:
14154       IID = Intrinsic::x86_avx512_ktestc_q;
14155       break;
14156     case X86::BI__builtin_ia32_ktestzdi:
14157       IID = Intrinsic::x86_avx512_ktestz_q;
14158       break;
14159     }
14160 
14161     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14162     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14163     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14164     Function *Intr = CGM.getIntrinsic(IID);
14165     return Builder.CreateCall(Intr, {LHS, RHS});
14166   }
14167 
14168   case X86::BI__builtin_ia32_kaddqi:
14169   case X86::BI__builtin_ia32_kaddhi:
14170   case X86::BI__builtin_ia32_kaddsi:
14171   case X86::BI__builtin_ia32_kadddi: {
14172     Intrinsic::ID IID;
14173     switch (BuiltinID) {
14174     default: llvm_unreachable("Unsupported intrinsic!");
14175     case X86::BI__builtin_ia32_kaddqi:
14176       IID = Intrinsic::x86_avx512_kadd_b;
14177       break;
14178     case X86::BI__builtin_ia32_kaddhi:
14179       IID = Intrinsic::x86_avx512_kadd_w;
14180       break;
14181     case X86::BI__builtin_ia32_kaddsi:
14182       IID = Intrinsic::x86_avx512_kadd_d;
14183       break;
14184     case X86::BI__builtin_ia32_kadddi:
14185       IID = Intrinsic::x86_avx512_kadd_q;
14186       break;
14187     }
14188 
14189     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14190     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14191     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14192     Function *Intr = CGM.getIntrinsic(IID);
14193     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14194     return Builder.CreateBitCast(Res, Ops[0]->getType());
14195   }
14196   case X86::BI__builtin_ia32_kandqi:
14197   case X86::BI__builtin_ia32_kandhi:
14198   case X86::BI__builtin_ia32_kandsi:
14199   case X86::BI__builtin_ia32_kanddi:
14200     return EmitX86MaskLogic(*this, Instruction::And, Ops);
14201   case X86::BI__builtin_ia32_kandnqi:
14202   case X86::BI__builtin_ia32_kandnhi:
14203   case X86::BI__builtin_ia32_kandnsi:
14204   case X86::BI__builtin_ia32_kandndi:
14205     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14206   case X86::BI__builtin_ia32_korqi:
14207   case X86::BI__builtin_ia32_korhi:
14208   case X86::BI__builtin_ia32_korsi:
14209   case X86::BI__builtin_ia32_kordi:
14210     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14211   case X86::BI__builtin_ia32_kxnorqi:
14212   case X86::BI__builtin_ia32_kxnorhi:
14213   case X86::BI__builtin_ia32_kxnorsi:
14214   case X86::BI__builtin_ia32_kxnordi:
14215     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14216   case X86::BI__builtin_ia32_kxorqi:
14217   case X86::BI__builtin_ia32_kxorhi:
14218   case X86::BI__builtin_ia32_kxorsi:
14219   case X86::BI__builtin_ia32_kxordi:
14220     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
14221   case X86::BI__builtin_ia32_knotqi:
14222   case X86::BI__builtin_ia32_knothi:
14223   case X86::BI__builtin_ia32_knotsi:
14224   case X86::BI__builtin_ia32_knotdi: {
14225     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14226     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14227     return Builder.CreateBitCast(Builder.CreateNot(Res),
14228                                  Ops[0]->getType());
14229   }
14230   case X86::BI__builtin_ia32_kmovb:
14231   case X86::BI__builtin_ia32_kmovw:
14232   case X86::BI__builtin_ia32_kmovd:
14233   case X86::BI__builtin_ia32_kmovq: {
14234     // Bitcast to vXi1 type and then back to integer. This gets the mask
14235     // register type into the IR, but might be optimized out depending on
14236     // what's around it.
14237     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14238     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14239     return Builder.CreateBitCast(Res, Ops[0]->getType());
14240   }
14241 
14242   case X86::BI__builtin_ia32_kunpckdi:
14243   case X86::BI__builtin_ia32_kunpcksi:
14244   case X86::BI__builtin_ia32_kunpckhi: {
14245     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14246     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14247     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14248     int Indices[64];
14249     for (unsigned i = 0; i != NumElts; ++i)
14250       Indices[i] = i;
14251 
14252     // First extract half of each vector. This gives better codegen than
14253     // doing it in a single shuffle.
14254     LHS = Builder.CreateShuffleVector(LHS, LHS,
14255                                       makeArrayRef(Indices, NumElts / 2));
14256     RHS = Builder.CreateShuffleVector(RHS, RHS,
14257                                       makeArrayRef(Indices, NumElts / 2));
14258     // Concat the vectors.
14259     // NOTE: Operands are swapped to match the intrinsic definition.
14260     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
14261                                              makeArrayRef(Indices, NumElts));
14262     return Builder.CreateBitCast(Res, Ops[0]->getType());
14263   }
14264 
14265   case X86::BI__builtin_ia32_vplzcntd_128:
14266   case X86::BI__builtin_ia32_vplzcntd_256:
14267   case X86::BI__builtin_ia32_vplzcntd_512:
14268   case X86::BI__builtin_ia32_vplzcntq_128:
14269   case X86::BI__builtin_ia32_vplzcntq_256:
14270   case X86::BI__builtin_ia32_vplzcntq_512: {
14271     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14272     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14273   }
14274   case X86::BI__builtin_ia32_sqrtss:
14275   case X86::BI__builtin_ia32_sqrtsd: {
14276     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14277     Function *F;
14278     if (Builder.getIsFPConstrained()) {
14279       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14280       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14281                            A->getType());
14282       A = Builder.CreateConstrainedFPCall(F, {A});
14283     } else {
14284       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14285       A = Builder.CreateCall(F, {A});
14286     }
14287     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14288   }
14289   case X86::BI__builtin_ia32_sqrtsh_round_mask:
14290   case X86::BI__builtin_ia32_sqrtsd_round_mask:
14291   case X86::BI__builtin_ia32_sqrtss_round_mask: {
14292     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14293     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14294     // otherwise keep the intrinsic.
14295     if (CC != 4) {
14296       Intrinsic::ID IID;
14297 
14298       switch (BuiltinID) {
14299       default:
14300         llvm_unreachable("Unsupported intrinsic!");
14301       case X86::BI__builtin_ia32_sqrtsh_round_mask:
14302         IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14303         break;
14304       case X86::BI__builtin_ia32_sqrtsd_round_mask:
14305         IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14306         break;
14307       case X86::BI__builtin_ia32_sqrtss_round_mask:
14308         IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14309         break;
14310       }
14311       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14312     }
14313     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14314     Function *F;
14315     if (Builder.getIsFPConstrained()) {
14316       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14317       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14318                            A->getType());
14319       A = Builder.CreateConstrainedFPCall(F, A);
14320     } else {
14321       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14322       A = Builder.CreateCall(F, A);
14323     }
14324     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14325     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14326     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14327   }
14328   case X86::BI__builtin_ia32_sqrtpd256:
14329   case X86::BI__builtin_ia32_sqrtpd:
14330   case X86::BI__builtin_ia32_sqrtps256:
14331   case X86::BI__builtin_ia32_sqrtps:
14332   case X86::BI__builtin_ia32_sqrtph256:
14333   case X86::BI__builtin_ia32_sqrtph:
14334   case X86::BI__builtin_ia32_sqrtph512:
14335   case X86::BI__builtin_ia32_sqrtps512:
14336   case X86::BI__builtin_ia32_sqrtpd512: {
14337     if (Ops.size() == 2) {
14338       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14339       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14340       // otherwise keep the intrinsic.
14341       if (CC != 4) {
14342         Intrinsic::ID IID;
14343 
14344         switch (BuiltinID) {
14345         default:
14346           llvm_unreachable("Unsupported intrinsic!");
14347         case X86::BI__builtin_ia32_sqrtph512:
14348           IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14349           break;
14350         case X86::BI__builtin_ia32_sqrtps512:
14351           IID = Intrinsic::x86_avx512_sqrt_ps_512;
14352           break;
14353         case X86::BI__builtin_ia32_sqrtpd512:
14354           IID = Intrinsic::x86_avx512_sqrt_pd_512;
14355           break;
14356         }
14357         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14358       }
14359     }
14360     if (Builder.getIsFPConstrained()) {
14361       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14362       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14363                                      Ops[0]->getType());
14364       return Builder.CreateConstrainedFPCall(F, Ops[0]);
14365     } else {
14366       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14367       return Builder.CreateCall(F, Ops[0]);
14368     }
14369   }
14370 
14371   case X86::BI__builtin_ia32_pmuludq128:
14372   case X86::BI__builtin_ia32_pmuludq256:
14373   case X86::BI__builtin_ia32_pmuludq512:
14374     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14375 
14376   case X86::BI__builtin_ia32_pmuldq128:
14377   case X86::BI__builtin_ia32_pmuldq256:
14378   case X86::BI__builtin_ia32_pmuldq512:
14379     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14380 
14381   case X86::BI__builtin_ia32_pternlogd512_mask:
14382   case X86::BI__builtin_ia32_pternlogq512_mask:
14383   case X86::BI__builtin_ia32_pternlogd128_mask:
14384   case X86::BI__builtin_ia32_pternlogd256_mask:
14385   case X86::BI__builtin_ia32_pternlogq128_mask:
14386   case X86::BI__builtin_ia32_pternlogq256_mask:
14387     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14388 
14389   case X86::BI__builtin_ia32_pternlogd512_maskz:
14390   case X86::BI__builtin_ia32_pternlogq512_maskz:
14391   case X86::BI__builtin_ia32_pternlogd128_maskz:
14392   case X86::BI__builtin_ia32_pternlogd256_maskz:
14393   case X86::BI__builtin_ia32_pternlogq128_maskz:
14394   case X86::BI__builtin_ia32_pternlogq256_maskz:
14395     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14396 
14397   case X86::BI__builtin_ia32_vpshldd128:
14398   case X86::BI__builtin_ia32_vpshldd256:
14399   case X86::BI__builtin_ia32_vpshldd512:
14400   case X86::BI__builtin_ia32_vpshldq128:
14401   case X86::BI__builtin_ia32_vpshldq256:
14402   case X86::BI__builtin_ia32_vpshldq512:
14403   case X86::BI__builtin_ia32_vpshldw128:
14404   case X86::BI__builtin_ia32_vpshldw256:
14405   case X86::BI__builtin_ia32_vpshldw512:
14406     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14407 
14408   case X86::BI__builtin_ia32_vpshrdd128:
14409   case X86::BI__builtin_ia32_vpshrdd256:
14410   case X86::BI__builtin_ia32_vpshrdd512:
14411   case X86::BI__builtin_ia32_vpshrdq128:
14412   case X86::BI__builtin_ia32_vpshrdq256:
14413   case X86::BI__builtin_ia32_vpshrdq512:
14414   case X86::BI__builtin_ia32_vpshrdw128:
14415   case X86::BI__builtin_ia32_vpshrdw256:
14416   case X86::BI__builtin_ia32_vpshrdw512:
14417     // Ops 0 and 1 are swapped.
14418     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14419 
14420   case X86::BI__builtin_ia32_vpshldvd128:
14421   case X86::BI__builtin_ia32_vpshldvd256:
14422   case X86::BI__builtin_ia32_vpshldvd512:
14423   case X86::BI__builtin_ia32_vpshldvq128:
14424   case X86::BI__builtin_ia32_vpshldvq256:
14425   case X86::BI__builtin_ia32_vpshldvq512:
14426   case X86::BI__builtin_ia32_vpshldvw128:
14427   case X86::BI__builtin_ia32_vpshldvw256:
14428   case X86::BI__builtin_ia32_vpshldvw512:
14429     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14430 
14431   case X86::BI__builtin_ia32_vpshrdvd128:
14432   case X86::BI__builtin_ia32_vpshrdvd256:
14433   case X86::BI__builtin_ia32_vpshrdvd512:
14434   case X86::BI__builtin_ia32_vpshrdvq128:
14435   case X86::BI__builtin_ia32_vpshrdvq256:
14436   case X86::BI__builtin_ia32_vpshrdvq512:
14437   case X86::BI__builtin_ia32_vpshrdvw128:
14438   case X86::BI__builtin_ia32_vpshrdvw256:
14439   case X86::BI__builtin_ia32_vpshrdvw512:
14440     // Ops 0 and 1 are swapped.
14441     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14442 
14443   // Reductions
14444   case X86::BI__builtin_ia32_reduce_fadd_pd512:
14445   case X86::BI__builtin_ia32_reduce_fadd_ps512:
14446   case X86::BI__builtin_ia32_reduce_fadd_ph512:
14447   case X86::BI__builtin_ia32_reduce_fadd_ph256:
14448   case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14449     Function *F =
14450         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14451     Builder.getFastMathFlags().setAllowReassoc();
14452     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14453   }
14454   case X86::BI__builtin_ia32_reduce_fmul_pd512:
14455   case X86::BI__builtin_ia32_reduce_fmul_ps512:
14456   case X86::BI__builtin_ia32_reduce_fmul_ph512:
14457   case X86::BI__builtin_ia32_reduce_fmul_ph256:
14458   case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14459     Function *F =
14460         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14461     Builder.getFastMathFlags().setAllowReassoc();
14462     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14463   }
14464   case X86::BI__builtin_ia32_reduce_fmax_pd512:
14465   case X86::BI__builtin_ia32_reduce_fmax_ps512:
14466   case X86::BI__builtin_ia32_reduce_fmax_ph512:
14467   case X86::BI__builtin_ia32_reduce_fmax_ph256:
14468   case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14469     Function *F =
14470         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14471     Builder.getFastMathFlags().setNoNaNs();
14472     return Builder.CreateCall(F, {Ops[0]});
14473   }
14474   case X86::BI__builtin_ia32_reduce_fmin_pd512:
14475   case X86::BI__builtin_ia32_reduce_fmin_ps512:
14476   case X86::BI__builtin_ia32_reduce_fmin_ph512:
14477   case X86::BI__builtin_ia32_reduce_fmin_ph256:
14478   case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14479     Function *F =
14480         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14481     Builder.getFastMathFlags().setNoNaNs();
14482     return Builder.CreateCall(F, {Ops[0]});
14483   }
14484 
14485   // 3DNow!
14486   case X86::BI__builtin_ia32_pswapdsf:
14487   case X86::BI__builtin_ia32_pswapdsi: {
14488     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14489     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14490     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14491     return Builder.CreateCall(F, Ops, "pswapd");
14492   }
14493   case X86::BI__builtin_ia32_rdrand16_step:
14494   case X86::BI__builtin_ia32_rdrand32_step:
14495   case X86::BI__builtin_ia32_rdrand64_step:
14496   case X86::BI__builtin_ia32_rdseed16_step:
14497   case X86::BI__builtin_ia32_rdseed32_step:
14498   case X86::BI__builtin_ia32_rdseed64_step: {
14499     Intrinsic::ID ID;
14500     switch (BuiltinID) {
14501     default: llvm_unreachable("Unsupported intrinsic!");
14502     case X86::BI__builtin_ia32_rdrand16_step:
14503       ID = Intrinsic::x86_rdrand_16;
14504       break;
14505     case X86::BI__builtin_ia32_rdrand32_step:
14506       ID = Intrinsic::x86_rdrand_32;
14507       break;
14508     case X86::BI__builtin_ia32_rdrand64_step:
14509       ID = Intrinsic::x86_rdrand_64;
14510       break;
14511     case X86::BI__builtin_ia32_rdseed16_step:
14512       ID = Intrinsic::x86_rdseed_16;
14513       break;
14514     case X86::BI__builtin_ia32_rdseed32_step:
14515       ID = Intrinsic::x86_rdseed_32;
14516       break;
14517     case X86::BI__builtin_ia32_rdseed64_step:
14518       ID = Intrinsic::x86_rdseed_64;
14519       break;
14520     }
14521 
14522     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14523     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14524                                       Ops[0]);
14525     return Builder.CreateExtractValue(Call, 1);
14526   }
14527   case X86::BI__builtin_ia32_addcarryx_u32:
14528   case X86::BI__builtin_ia32_addcarryx_u64:
14529   case X86::BI__builtin_ia32_subborrow_u32:
14530   case X86::BI__builtin_ia32_subborrow_u64: {
14531     Intrinsic::ID IID;
14532     switch (BuiltinID) {
14533     default: llvm_unreachable("Unsupported intrinsic!");
14534     case X86::BI__builtin_ia32_addcarryx_u32:
14535       IID = Intrinsic::x86_addcarry_32;
14536       break;
14537     case X86::BI__builtin_ia32_addcarryx_u64:
14538       IID = Intrinsic::x86_addcarry_64;
14539       break;
14540     case X86::BI__builtin_ia32_subborrow_u32:
14541       IID = Intrinsic::x86_subborrow_32;
14542       break;
14543     case X86::BI__builtin_ia32_subborrow_u64:
14544       IID = Intrinsic::x86_subborrow_64;
14545       break;
14546     }
14547 
14548     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14549                                      { Ops[0], Ops[1], Ops[2] });
14550     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14551                                       Ops[3]);
14552     return Builder.CreateExtractValue(Call, 0);
14553   }
14554 
14555   case X86::BI__builtin_ia32_fpclassps128_mask:
14556   case X86::BI__builtin_ia32_fpclassps256_mask:
14557   case X86::BI__builtin_ia32_fpclassps512_mask:
14558   case X86::BI__builtin_ia32_fpclassph128_mask:
14559   case X86::BI__builtin_ia32_fpclassph256_mask:
14560   case X86::BI__builtin_ia32_fpclassph512_mask:
14561   case X86::BI__builtin_ia32_fpclasspd128_mask:
14562   case X86::BI__builtin_ia32_fpclasspd256_mask:
14563   case X86::BI__builtin_ia32_fpclasspd512_mask: {
14564     unsigned NumElts =
14565         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14566     Value *MaskIn = Ops[2];
14567     Ops.erase(&Ops[2]);
14568 
14569     Intrinsic::ID ID;
14570     switch (BuiltinID) {
14571     default: llvm_unreachable("Unsupported intrinsic!");
14572     case X86::BI__builtin_ia32_fpclassph128_mask:
14573       ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14574       break;
14575     case X86::BI__builtin_ia32_fpclassph256_mask:
14576       ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14577       break;
14578     case X86::BI__builtin_ia32_fpclassph512_mask:
14579       ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14580       break;
14581     case X86::BI__builtin_ia32_fpclassps128_mask:
14582       ID = Intrinsic::x86_avx512_fpclass_ps_128;
14583       break;
14584     case X86::BI__builtin_ia32_fpclassps256_mask:
14585       ID = Intrinsic::x86_avx512_fpclass_ps_256;
14586       break;
14587     case X86::BI__builtin_ia32_fpclassps512_mask:
14588       ID = Intrinsic::x86_avx512_fpclass_ps_512;
14589       break;
14590     case X86::BI__builtin_ia32_fpclasspd128_mask:
14591       ID = Intrinsic::x86_avx512_fpclass_pd_128;
14592       break;
14593     case X86::BI__builtin_ia32_fpclasspd256_mask:
14594       ID = Intrinsic::x86_avx512_fpclass_pd_256;
14595       break;
14596     case X86::BI__builtin_ia32_fpclasspd512_mask:
14597       ID = Intrinsic::x86_avx512_fpclass_pd_512;
14598       break;
14599     }
14600 
14601     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14602     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14603   }
14604 
14605   case X86::BI__builtin_ia32_vp2intersect_q_512:
14606   case X86::BI__builtin_ia32_vp2intersect_q_256:
14607   case X86::BI__builtin_ia32_vp2intersect_q_128:
14608   case X86::BI__builtin_ia32_vp2intersect_d_512:
14609   case X86::BI__builtin_ia32_vp2intersect_d_256:
14610   case X86::BI__builtin_ia32_vp2intersect_d_128: {
14611     unsigned NumElts =
14612         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14613     Intrinsic::ID ID;
14614 
14615     switch (BuiltinID) {
14616     default: llvm_unreachable("Unsupported intrinsic!");
14617     case X86::BI__builtin_ia32_vp2intersect_q_512:
14618       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14619       break;
14620     case X86::BI__builtin_ia32_vp2intersect_q_256:
14621       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14622       break;
14623     case X86::BI__builtin_ia32_vp2intersect_q_128:
14624       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14625       break;
14626     case X86::BI__builtin_ia32_vp2intersect_d_512:
14627       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14628       break;
14629     case X86::BI__builtin_ia32_vp2intersect_d_256:
14630       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14631       break;
14632     case X86::BI__builtin_ia32_vp2intersect_d_128:
14633       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14634       break;
14635     }
14636 
14637     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14638     Value *Result = Builder.CreateExtractValue(Call, 0);
14639     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14640     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14641 
14642     Result = Builder.CreateExtractValue(Call, 1);
14643     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14644     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14645   }
14646 
14647   case X86::BI__builtin_ia32_vpmultishiftqb128:
14648   case X86::BI__builtin_ia32_vpmultishiftqb256:
14649   case X86::BI__builtin_ia32_vpmultishiftqb512: {
14650     Intrinsic::ID ID;
14651     switch (BuiltinID) {
14652     default: llvm_unreachable("Unsupported intrinsic!");
14653     case X86::BI__builtin_ia32_vpmultishiftqb128:
14654       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14655       break;
14656     case X86::BI__builtin_ia32_vpmultishiftqb256:
14657       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14658       break;
14659     case X86::BI__builtin_ia32_vpmultishiftqb512:
14660       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14661       break;
14662     }
14663 
14664     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14665   }
14666 
14667   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14668   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14669   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14670     unsigned NumElts =
14671         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14672     Value *MaskIn = Ops[2];
14673     Ops.erase(&Ops[2]);
14674 
14675     Intrinsic::ID ID;
14676     switch (BuiltinID) {
14677     default: llvm_unreachable("Unsupported intrinsic!");
14678     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14679       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14680       break;
14681     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14682       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14683       break;
14684     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14685       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14686       break;
14687     }
14688 
14689     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14690     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14691   }
14692 
14693   // packed comparison intrinsics
14694   case X86::BI__builtin_ia32_cmpeqps:
14695   case X86::BI__builtin_ia32_cmpeqpd:
14696     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14697   case X86::BI__builtin_ia32_cmpltps:
14698   case X86::BI__builtin_ia32_cmpltpd:
14699     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14700   case X86::BI__builtin_ia32_cmpleps:
14701   case X86::BI__builtin_ia32_cmplepd:
14702     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14703   case X86::BI__builtin_ia32_cmpunordps:
14704   case X86::BI__builtin_ia32_cmpunordpd:
14705     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14706   case X86::BI__builtin_ia32_cmpneqps:
14707   case X86::BI__builtin_ia32_cmpneqpd:
14708     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14709   case X86::BI__builtin_ia32_cmpnltps:
14710   case X86::BI__builtin_ia32_cmpnltpd:
14711     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14712   case X86::BI__builtin_ia32_cmpnleps:
14713   case X86::BI__builtin_ia32_cmpnlepd:
14714     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14715   case X86::BI__builtin_ia32_cmpordps:
14716   case X86::BI__builtin_ia32_cmpordpd:
14717     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14718   case X86::BI__builtin_ia32_cmpph128_mask:
14719   case X86::BI__builtin_ia32_cmpph256_mask:
14720   case X86::BI__builtin_ia32_cmpph512_mask:
14721   case X86::BI__builtin_ia32_cmpps128_mask:
14722   case X86::BI__builtin_ia32_cmpps256_mask:
14723   case X86::BI__builtin_ia32_cmpps512_mask:
14724   case X86::BI__builtin_ia32_cmppd128_mask:
14725   case X86::BI__builtin_ia32_cmppd256_mask:
14726   case X86::BI__builtin_ia32_cmppd512_mask:
14727     IsMaskFCmp = true;
14728     LLVM_FALLTHROUGH;
14729   case X86::BI__builtin_ia32_cmpps:
14730   case X86::BI__builtin_ia32_cmpps256:
14731   case X86::BI__builtin_ia32_cmppd:
14732   case X86::BI__builtin_ia32_cmppd256: {
14733     // Lowering vector comparisons to fcmp instructions, while
14734     // ignoring signalling behaviour requested
14735     // ignoring rounding mode requested
14736     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14737 
14738     // The third argument is the comparison condition, and integer in the
14739     // range [0, 31]
14740     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14741 
14742     // Lowering to IR fcmp instruction.
14743     // Ignoring requested signaling behaviour,
14744     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14745     FCmpInst::Predicate Pred;
14746     bool IsSignaling;
14747     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14748     // behavior is inverted. We'll handle that after the switch.
14749     switch (CC & 0xf) {
14750     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
14751     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
14752     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
14753     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
14754     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
14755     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
14756     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
14757     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
14758     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
14759     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
14760     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
14761     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14762     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
14763     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
14764     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
14765     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
14766     default: llvm_unreachable("Unhandled CC");
14767     }
14768 
14769     // Invert the signalling behavior for 16-31.
14770     if (CC & 0x10)
14771       IsSignaling = !IsSignaling;
14772 
14773     // If the predicate is true or false and we're using constrained intrinsics,
14774     // we don't have a compare intrinsic we can use. Just use the legacy X86
14775     // specific intrinsic.
14776     // If the intrinsic is mask enabled and we're using constrained intrinsics,
14777     // use the legacy X86 specific intrinsic.
14778     if (Builder.getIsFPConstrained() &&
14779         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14780          IsMaskFCmp)) {
14781 
14782       Intrinsic::ID IID;
14783       switch (BuiltinID) {
14784       default: llvm_unreachable("Unexpected builtin");
14785       case X86::BI__builtin_ia32_cmpps:
14786         IID = Intrinsic::x86_sse_cmp_ps;
14787         break;
14788       case X86::BI__builtin_ia32_cmpps256:
14789         IID = Intrinsic::x86_avx_cmp_ps_256;
14790         break;
14791       case X86::BI__builtin_ia32_cmppd:
14792         IID = Intrinsic::x86_sse2_cmp_pd;
14793         break;
14794       case X86::BI__builtin_ia32_cmppd256:
14795         IID = Intrinsic::x86_avx_cmp_pd_256;
14796         break;
14797       case X86::BI__builtin_ia32_cmpps512_mask:
14798         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14799         break;
14800       case X86::BI__builtin_ia32_cmppd512_mask:
14801         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14802         break;
14803       case X86::BI__builtin_ia32_cmpps128_mask:
14804         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14805         break;
14806       case X86::BI__builtin_ia32_cmpps256_mask:
14807         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14808         break;
14809       case X86::BI__builtin_ia32_cmppd128_mask:
14810         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14811         break;
14812       case X86::BI__builtin_ia32_cmppd256_mask:
14813         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14814         break;
14815       }
14816 
14817       Function *Intr = CGM.getIntrinsic(IID);
14818       if (IsMaskFCmp) {
14819         unsigned NumElts =
14820             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14821         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14822         Value *Cmp = Builder.CreateCall(Intr, Ops);
14823         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14824       }
14825 
14826       return Builder.CreateCall(Intr, Ops);
14827     }
14828 
14829     // Builtins without the _mask suffix return a vector of integers
14830     // of the same width as the input vectors
14831     if (IsMaskFCmp) {
14832       // We ignore SAE if strict FP is disabled. We only keep precise
14833       // exception behavior under strict FP.
14834       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14835       // object will be required.
14836       unsigned NumElts =
14837           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14838       Value *Cmp;
14839       if (IsSignaling)
14840         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14841       else
14842         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14843       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14844     }
14845 
14846     return getVectorFCmpIR(Pred, IsSignaling);
14847   }
14848 
14849   // SSE scalar comparison intrinsics
14850   case X86::BI__builtin_ia32_cmpeqss:
14851     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14852   case X86::BI__builtin_ia32_cmpltss:
14853     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14854   case X86::BI__builtin_ia32_cmpless:
14855     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14856   case X86::BI__builtin_ia32_cmpunordss:
14857     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14858   case X86::BI__builtin_ia32_cmpneqss:
14859     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14860   case X86::BI__builtin_ia32_cmpnltss:
14861     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14862   case X86::BI__builtin_ia32_cmpnless:
14863     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14864   case X86::BI__builtin_ia32_cmpordss:
14865     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14866   case X86::BI__builtin_ia32_cmpeqsd:
14867     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14868   case X86::BI__builtin_ia32_cmpltsd:
14869     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14870   case X86::BI__builtin_ia32_cmplesd:
14871     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14872   case X86::BI__builtin_ia32_cmpunordsd:
14873     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14874   case X86::BI__builtin_ia32_cmpneqsd:
14875     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14876   case X86::BI__builtin_ia32_cmpnltsd:
14877     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14878   case X86::BI__builtin_ia32_cmpnlesd:
14879     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14880   case X86::BI__builtin_ia32_cmpordsd:
14881     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14882 
14883   // f16c half2float intrinsics
14884   case X86::BI__builtin_ia32_vcvtph2ps:
14885   case X86::BI__builtin_ia32_vcvtph2ps256:
14886   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14887   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14888   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14889     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14890     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14891   }
14892 
14893 // AVX512 bf16 intrinsics
14894   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14895     Ops[2] = getMaskVecValue(
14896         *this, Ops[2],
14897         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14898     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14899     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14900   }
14901   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14902     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14903 
14904   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14905   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14906     Intrinsic::ID IID;
14907     switch (BuiltinID) {
14908     default: llvm_unreachable("Unsupported intrinsic!");
14909     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14910       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14911       break;
14912     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14913       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14914       break;
14915     }
14916     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14917     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14918   }
14919 
14920   case X86::BI__cpuid:
14921   case X86::BI__cpuidex: {
14922     Value *FuncId = EmitScalarExpr(E->getArg(1));
14923     Value *SubFuncId = BuiltinID == X86::BI__cpuidex
14924                            ? EmitScalarExpr(E->getArg(2))
14925                            : llvm::ConstantInt::get(Int32Ty, 0);
14926 
14927     llvm::StructType *CpuidRetTy =
14928         llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, Int32Ty);
14929     llvm::FunctionType *FTy =
14930         llvm::FunctionType::get(CpuidRetTy, {Int32Ty, Int32Ty}, false);
14931 
14932     StringRef Asm, Constraints;
14933     if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
14934       Asm = "cpuid";
14935       Constraints = "={ax},={bx},={cx},={dx},{ax},{cx}";
14936     } else {
14937       // x86-64 uses %rbx as the base register, so preserve it.
14938       Asm = "xchgq %rbx, ${1:q}\n"
14939             "cpuid\n"
14940             "xchgq %rbx, ${1:q}";
14941       Constraints = "={ax},=r,={cx},={dx},0,2";
14942     }
14943 
14944     llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints,
14945                                                /*hasSideEffects=*/false);
14946     Value *IACall = Builder.CreateCall(IA, {FuncId, SubFuncId});
14947     Value *BasePtr = EmitScalarExpr(E->getArg(0));
14948     Value *Store = nullptr;
14949     for (unsigned i = 0; i < 4; i++) {
14950       Value *Extracted = Builder.CreateExtractValue(IACall, i);
14951       Value *StorePtr = Builder.CreateConstInBoundsGEP1_32(Int32Ty, BasePtr, i);
14952       Store = Builder.CreateAlignedStore(Extracted, StorePtr, getIntAlign());
14953     }
14954 
14955     // Return the last store instruction to signal that we have emitted the
14956     // the intrinsic.
14957     return Store;
14958   }
14959 
14960   case X86::BI__emul:
14961   case X86::BI__emulu: {
14962     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14963     bool isSigned = (BuiltinID == X86::BI__emul);
14964     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14965     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14966     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14967   }
14968   case X86::BI__mulh:
14969   case X86::BI__umulh:
14970   case X86::BI_mul128:
14971   case X86::BI_umul128: {
14972     llvm::Type *ResType = ConvertType(E->getType());
14973     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14974 
14975     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14976     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14977     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14978 
14979     Value *MulResult, *HigherBits;
14980     if (IsSigned) {
14981       MulResult = Builder.CreateNSWMul(LHS, RHS);
14982       HigherBits = Builder.CreateAShr(MulResult, 64);
14983     } else {
14984       MulResult = Builder.CreateNUWMul(LHS, RHS);
14985       HigherBits = Builder.CreateLShr(MulResult, 64);
14986     }
14987     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14988 
14989     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14990       return HigherBits;
14991 
14992     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14993     Builder.CreateStore(HigherBits, HighBitsAddress);
14994     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14995   }
14996 
14997   case X86::BI__faststorefence: {
14998     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14999                                llvm::SyncScope::System);
15000   }
15001   case X86::BI__shiftleft128:
15002   case X86::BI__shiftright128: {
15003     llvm::Function *F = CGM.getIntrinsic(
15004         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
15005         Int64Ty);
15006     // Flip low/high ops and zero-extend amount to matching type.
15007     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
15008     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
15009     std::swap(Ops[0], Ops[1]);
15010     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15011     return Builder.CreateCall(F, Ops);
15012   }
15013   case X86::BI_ReadWriteBarrier:
15014   case X86::BI_ReadBarrier:
15015   case X86::BI_WriteBarrier: {
15016     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
15017                                llvm::SyncScope::SingleThread);
15018   }
15019 
15020   case X86::BI_AddressOfReturnAddress: {
15021     Function *F =
15022         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
15023     return Builder.CreateCall(F);
15024   }
15025   case X86::BI__stosb: {
15026     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
15027     // instruction, but it will create a memset that won't be optimized away.
15028     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
15029   }
15030   case X86::BI__ud2:
15031     // llvm.trap makes a ud2a instruction on x86.
15032     return EmitTrapCall(Intrinsic::trap);
15033   case X86::BI__int2c: {
15034     // This syscall signals a driver assertion failure in x86 NT kernels.
15035     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
15036     llvm::InlineAsm *IA =
15037         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
15038     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
15039         getLLVMContext(), llvm::AttributeList::FunctionIndex,
15040         llvm::Attribute::NoReturn);
15041     llvm::CallInst *CI = Builder.CreateCall(IA);
15042     CI->setAttributes(NoReturnAttr);
15043     return CI;
15044   }
15045   case X86::BI__readfsbyte:
15046   case X86::BI__readfsword:
15047   case X86::BI__readfsdword:
15048   case X86::BI__readfsqword: {
15049     llvm::Type *IntTy = ConvertType(E->getType());
15050     Value *Ptr =
15051         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
15052     LoadInst *Load = Builder.CreateAlignedLoad(
15053         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15054     Load->setVolatile(true);
15055     return Load;
15056   }
15057   case X86::BI__readgsbyte:
15058   case X86::BI__readgsword:
15059   case X86::BI__readgsdword:
15060   case X86::BI__readgsqword: {
15061     llvm::Type *IntTy = ConvertType(E->getType());
15062     Value *Ptr =
15063         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15064     LoadInst *Load = Builder.CreateAlignedLoad(
15065         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15066     Load->setVolatile(true);
15067     return Load;
15068   }
15069   case X86::BI__builtin_ia32_encodekey128_u32: {
15070     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15071 
15072     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15073 
15074     for (int i = 0; i < 3; ++i) {
15075       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15076       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15077       Ptr = Builder.CreateBitCast(
15078           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15079       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15080     }
15081 
15082     return Builder.CreateExtractValue(Call, 0);
15083   }
15084   case X86::BI__builtin_ia32_encodekey256_u32: {
15085     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15086 
15087     Value *Call =
15088         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15089 
15090     for (int i = 0; i < 4; ++i) {
15091       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15092       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15093       Ptr = Builder.CreateBitCast(
15094           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15095       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15096     }
15097 
15098     return Builder.CreateExtractValue(Call, 0);
15099   }
15100   case X86::BI__builtin_ia32_aesenc128kl_u8:
15101   case X86::BI__builtin_ia32_aesdec128kl_u8:
15102   case X86::BI__builtin_ia32_aesenc256kl_u8:
15103   case X86::BI__builtin_ia32_aesdec256kl_u8: {
15104     Intrinsic::ID IID;
15105     StringRef BlockName;
15106     switch (BuiltinID) {
15107     default:
15108       llvm_unreachable("Unexpected builtin");
15109     case X86::BI__builtin_ia32_aesenc128kl_u8:
15110       IID = Intrinsic::x86_aesenc128kl;
15111       BlockName = "aesenc128kl";
15112       break;
15113     case X86::BI__builtin_ia32_aesdec128kl_u8:
15114       IID = Intrinsic::x86_aesdec128kl;
15115       BlockName = "aesdec128kl";
15116       break;
15117     case X86::BI__builtin_ia32_aesenc256kl_u8:
15118       IID = Intrinsic::x86_aesenc256kl;
15119       BlockName = "aesenc256kl";
15120       break;
15121     case X86::BI__builtin_ia32_aesdec256kl_u8:
15122       IID = Intrinsic::x86_aesdec256kl;
15123       BlockName = "aesdec256kl";
15124       break;
15125     }
15126 
15127     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15128 
15129     BasicBlock *NoError =
15130         createBasicBlock(BlockName + "_no_error", this->CurFn);
15131     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15132     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15133 
15134     Value *Ret = Builder.CreateExtractValue(Call, 0);
15135     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15136     Value *Out = Builder.CreateExtractValue(Call, 1);
15137     Builder.CreateCondBr(Succ, NoError, Error);
15138 
15139     Builder.SetInsertPoint(NoError);
15140     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15141     Builder.CreateBr(End);
15142 
15143     Builder.SetInsertPoint(Error);
15144     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15145     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15146     Builder.CreateBr(End);
15147 
15148     Builder.SetInsertPoint(End);
15149     return Builder.CreateExtractValue(Call, 0);
15150   }
15151   case X86::BI__builtin_ia32_aesencwide128kl_u8:
15152   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15153   case X86::BI__builtin_ia32_aesencwide256kl_u8:
15154   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15155     Intrinsic::ID IID;
15156     StringRef BlockName;
15157     switch (BuiltinID) {
15158     case X86::BI__builtin_ia32_aesencwide128kl_u8:
15159       IID = Intrinsic::x86_aesencwide128kl;
15160       BlockName = "aesencwide128kl";
15161       break;
15162     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15163       IID = Intrinsic::x86_aesdecwide128kl;
15164       BlockName = "aesdecwide128kl";
15165       break;
15166     case X86::BI__builtin_ia32_aesencwide256kl_u8:
15167       IID = Intrinsic::x86_aesencwide256kl;
15168       BlockName = "aesencwide256kl";
15169       break;
15170     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15171       IID = Intrinsic::x86_aesdecwide256kl;
15172       BlockName = "aesdecwide256kl";
15173       break;
15174     }
15175 
15176     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15177     Value *InOps[9];
15178     InOps[0] = Ops[2];
15179     for (int i = 0; i != 8; ++i) {
15180       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15181       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15182     }
15183 
15184     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15185 
15186     BasicBlock *NoError =
15187         createBasicBlock(BlockName + "_no_error", this->CurFn);
15188     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15189     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15190 
15191     Value *Ret = Builder.CreateExtractValue(Call, 0);
15192     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15193     Builder.CreateCondBr(Succ, NoError, Error);
15194 
15195     Builder.SetInsertPoint(NoError);
15196     for (int i = 0; i != 8; ++i) {
15197       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15198       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15199       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15200     }
15201     Builder.CreateBr(End);
15202 
15203     Builder.SetInsertPoint(Error);
15204     for (int i = 0; i != 8; ++i) {
15205       Value *Out = Builder.CreateExtractValue(Call, i + 1);
15206       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15207       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15208       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15209     }
15210     Builder.CreateBr(End);
15211 
15212     Builder.SetInsertPoint(End);
15213     return Builder.CreateExtractValue(Call, 0);
15214   }
15215   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15216     IsConjFMA = true;
15217     LLVM_FALLTHROUGH;
15218   case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15219     Intrinsic::ID IID = IsConjFMA
15220                             ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15221                             : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15222     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15223     return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15224   }
15225   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15226     IsConjFMA = true;
15227     LLVM_FALLTHROUGH;
15228   case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15229     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15230                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15231     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15232     Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15233     return EmitX86Select(*this, And, Call, Ops[0]);
15234   }
15235   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15236     IsConjFMA = true;
15237     LLVM_FALLTHROUGH;
15238   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15239     Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15240                                   : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15241     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15242     static constexpr int Mask[] = {0, 5, 6, 7};
15243     return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15244   }
15245   }
15246 }
15247 
15248 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15249                                            const CallExpr *E) {
15250   // Do not emit the builtin arguments in the arguments of a function call,
15251   // because the evaluation order of function arguments is not specified in C++.
15252   // This is important when testing to ensure the arguments are emitted in the
15253   // same order every time. Eg:
15254   // Instead of:
15255   //   return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
15256   //                             EmitScalarExpr(E->getArg(1)), "swdiv");
15257   // Use:
15258   //   Value *Op0 = EmitScalarExpr(E->getArg(0));
15259   //   Value *Op1 = EmitScalarExpr(E->getArg(1));
15260   //   return Builder.CreateFDiv(Op0, Op1, "swdiv")
15261 
15262   Intrinsic::ID ID = Intrinsic::not_intrinsic;
15263 
15264   switch (BuiltinID) {
15265   default: return nullptr;
15266 
15267   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15268   // call __builtin_readcyclecounter.
15269   case PPC::BI__builtin_ppc_get_timebase:
15270     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15271 
15272   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15273   case PPC::BI__builtin_altivec_lvx:
15274   case PPC::BI__builtin_altivec_lvxl:
15275   case PPC::BI__builtin_altivec_lvebx:
15276   case PPC::BI__builtin_altivec_lvehx:
15277   case PPC::BI__builtin_altivec_lvewx:
15278   case PPC::BI__builtin_altivec_lvsl:
15279   case PPC::BI__builtin_altivec_lvsr:
15280   case PPC::BI__builtin_vsx_lxvd2x:
15281   case PPC::BI__builtin_vsx_lxvw4x:
15282   case PPC::BI__builtin_vsx_lxvd2x_be:
15283   case PPC::BI__builtin_vsx_lxvw4x_be:
15284   case PPC::BI__builtin_vsx_lxvl:
15285   case PPC::BI__builtin_vsx_lxvll:
15286   {
15287     SmallVector<Value *, 2> Ops;
15288     Ops.push_back(EmitScalarExpr(E->getArg(0)));
15289     Ops.push_back(EmitScalarExpr(E->getArg(1)));
15290     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15291        BuiltinID == PPC::BI__builtin_vsx_lxvll){
15292       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15293     }else {
15294       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15295       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15296       Ops.pop_back();
15297     }
15298 
15299     switch (BuiltinID) {
15300     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
15301     case PPC::BI__builtin_altivec_lvx:
15302       ID = Intrinsic::ppc_altivec_lvx;
15303       break;
15304     case PPC::BI__builtin_altivec_lvxl:
15305       ID = Intrinsic::ppc_altivec_lvxl;
15306       break;
15307     case PPC::BI__builtin_altivec_lvebx:
15308       ID = Intrinsic::ppc_altivec_lvebx;
15309       break;
15310     case PPC::BI__builtin_altivec_lvehx:
15311       ID = Intrinsic::ppc_altivec_lvehx;
15312       break;
15313     case PPC::BI__builtin_altivec_lvewx:
15314       ID = Intrinsic::ppc_altivec_lvewx;
15315       break;
15316     case PPC::BI__builtin_altivec_lvsl:
15317       ID = Intrinsic::ppc_altivec_lvsl;
15318       break;
15319     case PPC::BI__builtin_altivec_lvsr:
15320       ID = Intrinsic::ppc_altivec_lvsr;
15321       break;
15322     case PPC::BI__builtin_vsx_lxvd2x:
15323       ID = Intrinsic::ppc_vsx_lxvd2x;
15324       break;
15325     case PPC::BI__builtin_vsx_lxvw4x:
15326       ID = Intrinsic::ppc_vsx_lxvw4x;
15327       break;
15328     case PPC::BI__builtin_vsx_lxvd2x_be:
15329       ID = Intrinsic::ppc_vsx_lxvd2x_be;
15330       break;
15331     case PPC::BI__builtin_vsx_lxvw4x_be:
15332       ID = Intrinsic::ppc_vsx_lxvw4x_be;
15333       break;
15334     case PPC::BI__builtin_vsx_lxvl:
15335       ID = Intrinsic::ppc_vsx_lxvl;
15336       break;
15337     case PPC::BI__builtin_vsx_lxvll:
15338       ID = Intrinsic::ppc_vsx_lxvll;
15339       break;
15340     }
15341     llvm::Function *F = CGM.getIntrinsic(ID);
15342     return Builder.CreateCall(F, Ops, "");
15343   }
15344 
15345   // vec_st, vec_xst_be
15346   case PPC::BI__builtin_altivec_stvx:
15347   case PPC::BI__builtin_altivec_stvxl:
15348   case PPC::BI__builtin_altivec_stvebx:
15349   case PPC::BI__builtin_altivec_stvehx:
15350   case PPC::BI__builtin_altivec_stvewx:
15351   case PPC::BI__builtin_vsx_stxvd2x:
15352   case PPC::BI__builtin_vsx_stxvw4x:
15353   case PPC::BI__builtin_vsx_stxvd2x_be:
15354   case PPC::BI__builtin_vsx_stxvw4x_be:
15355   case PPC::BI__builtin_vsx_stxvl:
15356   case PPC::BI__builtin_vsx_stxvll:
15357   {
15358     SmallVector<Value *, 3> Ops;
15359     Ops.push_back(EmitScalarExpr(E->getArg(0)));
15360     Ops.push_back(EmitScalarExpr(E->getArg(1)));
15361     Ops.push_back(EmitScalarExpr(E->getArg(2)));
15362     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15363       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15364       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15365     }else {
15366       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15367       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15368       Ops.pop_back();
15369     }
15370 
15371     switch (BuiltinID) {
15372     default: llvm_unreachable("Unsupported st intrinsic!");
15373     case PPC::BI__builtin_altivec_stvx:
15374       ID = Intrinsic::ppc_altivec_stvx;
15375       break;
15376     case PPC::BI__builtin_altivec_stvxl:
15377       ID = Intrinsic::ppc_altivec_stvxl;
15378       break;
15379     case PPC::BI__builtin_altivec_stvebx:
15380       ID = Intrinsic::ppc_altivec_stvebx;
15381       break;
15382     case PPC::BI__builtin_altivec_stvehx:
15383       ID = Intrinsic::ppc_altivec_stvehx;
15384       break;
15385     case PPC::BI__builtin_altivec_stvewx:
15386       ID = Intrinsic::ppc_altivec_stvewx;
15387       break;
15388     case PPC::BI__builtin_vsx_stxvd2x:
15389       ID = Intrinsic::ppc_vsx_stxvd2x;
15390       break;
15391     case PPC::BI__builtin_vsx_stxvw4x:
15392       ID = Intrinsic::ppc_vsx_stxvw4x;
15393       break;
15394     case PPC::BI__builtin_vsx_stxvd2x_be:
15395       ID = Intrinsic::ppc_vsx_stxvd2x_be;
15396       break;
15397     case PPC::BI__builtin_vsx_stxvw4x_be:
15398       ID = Intrinsic::ppc_vsx_stxvw4x_be;
15399       break;
15400     case PPC::BI__builtin_vsx_stxvl:
15401       ID = Intrinsic::ppc_vsx_stxvl;
15402       break;
15403     case PPC::BI__builtin_vsx_stxvll:
15404       ID = Intrinsic::ppc_vsx_stxvll;
15405       break;
15406     }
15407     llvm::Function *F = CGM.getIntrinsic(ID);
15408     return Builder.CreateCall(F, Ops, "");
15409   }
15410   case PPC::BI__builtin_vsx_ldrmb: {
15411     // Essentially boils down to performing an unaligned VMX load sequence so
15412     // as to avoid crossing a page boundary and then shuffling the elements
15413     // into the right side of the vector register.
15414     Value *Op0 = EmitScalarExpr(E->getArg(0));
15415     Value *Op1 = EmitScalarExpr(E->getArg(1));
15416     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15417     llvm::Type *ResTy = ConvertType(E->getType());
15418     bool IsLE = getTarget().isLittleEndian();
15419 
15420     // If the user wants the entire vector, just load the entire vector.
15421     if (NumBytes == 16) {
15422       Value *BC = Builder.CreateBitCast(Op0, ResTy->getPointerTo());
15423       Value *LD =
15424           Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15425       if (!IsLE)
15426         return LD;
15427 
15428       // Reverse the bytes on LE.
15429       SmallVector<int, 16> RevMask;
15430       for (int Idx = 0; Idx < 16; Idx++)
15431         RevMask.push_back(15 - Idx);
15432       return Builder.CreateShuffleVector(LD, LD, RevMask);
15433     }
15434 
15435     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15436     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15437                                                 : Intrinsic::ppc_altivec_lvsl);
15438     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15439     Value *HiMem = Builder.CreateGEP(
15440         Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
15441     Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
15442     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15443     Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
15444 
15445     Op0 = IsLE ? HiLd : LoLd;
15446     Op1 = IsLE ? LoLd : HiLd;
15447     Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
15448     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15449 
15450     if (IsLE) {
15451       SmallVector<int, 16> Consts;
15452       for (int Idx = 0; Idx < 16; Idx++) {
15453         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15454                                             : 16 - (NumBytes - Idx);
15455         Consts.push_back(Val);
15456       }
15457       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15458                                          Zero, Consts);
15459     }
15460     SmallVector<Constant *, 16> Consts;
15461     for (int Idx = 0; Idx < 16; Idx++)
15462       Consts.push_back(Builder.getInt8(NumBytes + Idx));
15463     Value *Mask2 = ConstantVector::get(Consts);
15464     return Builder.CreateBitCast(
15465         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15466   }
15467   case PPC::BI__builtin_vsx_strmb: {
15468     Value *Op0 = EmitScalarExpr(E->getArg(0));
15469     Value *Op1 = EmitScalarExpr(E->getArg(1));
15470     Value *Op2 = EmitScalarExpr(E->getArg(2));
15471     int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
15472     bool IsLE = getTarget().isLittleEndian();
15473     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15474       // Storing the whole vector, simply store it on BE and reverse bytes and
15475       // store on LE.
15476       if (Width == 16) {
15477         Value *BC = Builder.CreateBitCast(Op0, Op2->getType()->getPointerTo());
15478         Value *StVec = Op2;
15479         if (IsLE) {
15480           SmallVector<int, 16> RevMask;
15481           for (int Idx = 0; Idx < 16; Idx++)
15482             RevMask.push_back(15 - Idx);
15483           StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
15484         }
15485         return Builder.CreateStore(
15486             StVec, Address(BC, Op2->getType(), CharUnits::fromQuantity(1)));
15487       }
15488       auto *ConvTy = Int64Ty;
15489       unsigned NumElts = 0;
15490       switch (Width) {
15491       default:
15492         llvm_unreachable("width for stores must be a power of 2");
15493       case 8:
15494         ConvTy = Int64Ty;
15495         NumElts = 2;
15496         break;
15497       case 4:
15498         ConvTy = Int32Ty;
15499         NumElts = 4;
15500         break;
15501       case 2:
15502         ConvTy = Int16Ty;
15503         NumElts = 8;
15504         break;
15505       case 1:
15506         ConvTy = Int8Ty;
15507         NumElts = 16;
15508         break;
15509       }
15510       Value *Vec = Builder.CreateBitCast(
15511           Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
15512       Value *Ptr =
15513           Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
15514       Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15515       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15516       if (IsLE && Width > 1) {
15517         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15518         Elt = Builder.CreateCall(F, Elt);
15519       }
15520       return Builder.CreateStore(
15521           Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15522     };
15523     unsigned Stored = 0;
15524     unsigned RemainingBytes = NumBytes;
15525     Value *Result;
15526     if (NumBytes == 16)
15527       return StoreSubVec(16, 0, 0);
15528     if (NumBytes >= 8) {
15529       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15530       RemainingBytes -= 8;
15531       Stored += 8;
15532     }
15533     if (RemainingBytes >= 4) {
15534       Result = StoreSubVec(4, NumBytes - Stored - 4,
15535                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15536       RemainingBytes -= 4;
15537       Stored += 4;
15538     }
15539     if (RemainingBytes >= 2) {
15540       Result = StoreSubVec(2, NumBytes - Stored - 2,
15541                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15542       RemainingBytes -= 2;
15543       Stored += 2;
15544     }
15545     if (RemainingBytes)
15546       Result =
15547           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15548     return Result;
15549   }
15550   // Square root
15551   case PPC::BI__builtin_vsx_xvsqrtsp:
15552   case PPC::BI__builtin_vsx_xvsqrtdp: {
15553     llvm::Type *ResultType = ConvertType(E->getType());
15554     Value *X = EmitScalarExpr(E->getArg(0));
15555     if (Builder.getIsFPConstrained()) {
15556       llvm::Function *F = CGM.getIntrinsic(
15557           Intrinsic::experimental_constrained_sqrt, ResultType);
15558       return Builder.CreateConstrainedFPCall(F, X);
15559     } else {
15560       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15561       return Builder.CreateCall(F, X);
15562     }
15563   }
15564   // Count leading zeros
15565   case PPC::BI__builtin_altivec_vclzb:
15566   case PPC::BI__builtin_altivec_vclzh:
15567   case PPC::BI__builtin_altivec_vclzw:
15568   case PPC::BI__builtin_altivec_vclzd: {
15569     llvm::Type *ResultType = ConvertType(E->getType());
15570     Value *X = EmitScalarExpr(E->getArg(0));
15571     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15572     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15573     return Builder.CreateCall(F, {X, Undef});
15574   }
15575   case PPC::BI__builtin_altivec_vctzb:
15576   case PPC::BI__builtin_altivec_vctzh:
15577   case PPC::BI__builtin_altivec_vctzw:
15578   case PPC::BI__builtin_altivec_vctzd: {
15579     llvm::Type *ResultType = ConvertType(E->getType());
15580     Value *X = EmitScalarExpr(E->getArg(0));
15581     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15582     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15583     return Builder.CreateCall(F, {X, Undef});
15584   }
15585   case PPC::BI__builtin_altivec_vinsd:
15586   case PPC::BI__builtin_altivec_vinsw:
15587   case PPC::BI__builtin_altivec_vinsd_elt:
15588   case PPC::BI__builtin_altivec_vinsw_elt: {
15589     llvm::Type *ResultType = ConvertType(E->getType());
15590     Value *Op0 = EmitScalarExpr(E->getArg(0));
15591     Value *Op1 = EmitScalarExpr(E->getArg(1));
15592     Value *Op2 = EmitScalarExpr(E->getArg(2));
15593 
15594     bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
15595                         BuiltinID == PPC::BI__builtin_altivec_vinsd);
15596 
15597     bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
15598                     BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
15599 
15600     // The third argument must be a compile time constant.
15601     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
15602     assert(ArgCI &&
15603            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
15604 
15605     // Valid value for the third argument is dependent on the input type and
15606     // builtin called.
15607     int ValidMaxValue = 0;
15608     if (IsUnaligned)
15609       ValidMaxValue = (Is32bit) ? 12 : 8;
15610     else
15611       ValidMaxValue = (Is32bit) ? 3 : 1;
15612 
15613     // Get value of third argument.
15614     int64_t ConstArg = ArgCI->getSExtValue();
15615 
15616     // Compose range checking error message.
15617     std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
15618     RangeErrMsg += " number " + llvm::to_string(ConstArg);
15619     RangeErrMsg += " is outside of the valid range [0, ";
15620     RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
15621 
15622     // Issue error if third argument is not within the valid range.
15623     if (ConstArg < 0 || ConstArg > ValidMaxValue)
15624       CGM.Error(E->getExprLoc(), RangeErrMsg);
15625 
15626     // Input to vec_replace_elt is an element index, convert to byte index.
15627     if (!IsUnaligned) {
15628       ConstArg *= Is32bit ? 4 : 8;
15629       // Fix the constant according to endianess.
15630       if (getTarget().isLittleEndian())
15631         ConstArg = (Is32bit ? 12 : 8) - ConstArg;
15632     }
15633 
15634     ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
15635     Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
15636     // Casting input to vector int as per intrinsic definition.
15637     Op0 =
15638         Is32bit
15639             ? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
15640             : Builder.CreateBitCast(Op0,
15641                                     llvm::FixedVectorType::get(Int64Ty, 2));
15642     return Builder.CreateBitCast(
15643         Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
15644   }
15645   case PPC::BI__builtin_altivec_vpopcntb:
15646   case PPC::BI__builtin_altivec_vpopcnth:
15647   case PPC::BI__builtin_altivec_vpopcntw:
15648   case PPC::BI__builtin_altivec_vpopcntd: {
15649     llvm::Type *ResultType = ConvertType(E->getType());
15650     Value *X = EmitScalarExpr(E->getArg(0));
15651     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15652     return Builder.CreateCall(F, X);
15653   }
15654   case PPC::BI__builtin_altivec_vadduqm:
15655   case PPC::BI__builtin_altivec_vsubuqm: {
15656     Value *Op0 = EmitScalarExpr(E->getArg(0));
15657     Value *Op1 = EmitScalarExpr(E->getArg(1));
15658     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15659     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
15660     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
15661     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15662       return Builder.CreateAdd(Op0, Op1, "vadduqm");
15663     else
15664       return Builder.CreateSub(Op0, Op1, "vsubuqm");
15665   }
15666   case PPC::BI__builtin_altivec_vaddcuq_c:
15667   case PPC::BI__builtin_altivec_vsubcuq_c: {
15668     SmallVector<Value *, 2> Ops;
15669     Value *Op0 = EmitScalarExpr(E->getArg(0));
15670     Value *Op1 = EmitScalarExpr(E->getArg(1));
15671     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
15672         llvm::IntegerType::get(getLLVMContext(), 128), 1);
15673     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
15674     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
15675     ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
15676              ? Intrinsic::ppc_altivec_vaddcuq
15677              : Intrinsic::ppc_altivec_vsubcuq;
15678     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
15679   }
15680   case PPC::BI__builtin_altivec_vaddeuqm_c:
15681   case PPC::BI__builtin_altivec_vaddecuq_c:
15682   case PPC::BI__builtin_altivec_vsubeuqm_c:
15683   case PPC::BI__builtin_altivec_vsubecuq_c: {
15684     SmallVector<Value *, 3> Ops;
15685     Value *Op0 = EmitScalarExpr(E->getArg(0));
15686     Value *Op1 = EmitScalarExpr(E->getArg(1));
15687     Value *Op2 = EmitScalarExpr(E->getArg(2));
15688     llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
15689         llvm::IntegerType::get(getLLVMContext(), 128), 1);
15690     Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
15691     Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
15692     Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
15693     switch (BuiltinID) {
15694     default:
15695       llvm_unreachable("Unsupported intrinsic!");
15696     case PPC::BI__builtin_altivec_vaddeuqm_c:
15697       ID = Intrinsic::ppc_altivec_vaddeuqm;
15698       break;
15699     case PPC::BI__builtin_altivec_vaddecuq_c:
15700       ID = Intrinsic::ppc_altivec_vaddecuq;
15701       break;
15702     case PPC::BI__builtin_altivec_vsubeuqm_c:
15703       ID = Intrinsic::ppc_altivec_vsubeuqm;
15704       break;
15705     case PPC::BI__builtin_altivec_vsubecuq_c:
15706       ID = Intrinsic::ppc_altivec_vsubecuq;
15707       break;
15708     }
15709     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
15710   }
15711   // Rotate and insert under mask operation.
15712   // __rldimi(rs, is, shift, mask)
15713   // (rotl64(rs, shift) & mask) | (is & ~mask)
15714   // __rlwimi(rs, is, shift, mask)
15715   // (rotl(rs, shift) & mask) | (is & ~mask)
15716   case PPC::BI__builtin_ppc_rldimi:
15717   case PPC::BI__builtin_ppc_rlwimi: {
15718     Value *Op0 = EmitScalarExpr(E->getArg(0));
15719     Value *Op1 = EmitScalarExpr(E->getArg(1));
15720     Value *Op2 = EmitScalarExpr(E->getArg(2));
15721     Value *Op3 = EmitScalarExpr(E->getArg(3));
15722     llvm::Type *Ty = Op0->getType();
15723     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15724     if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15725       Op2 = Builder.CreateZExt(Op2, Int64Ty);
15726     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
15727     Value *X = Builder.CreateAnd(Shift, Op3);
15728     Value *Y = Builder.CreateAnd(Op1, Builder.CreateNot(Op3));
15729     return Builder.CreateOr(X, Y);
15730   }
15731   // Rotate and insert under mask operation.
15732   // __rlwnm(rs, shift, mask)
15733   // rotl(rs, shift) & mask
15734   case PPC::BI__builtin_ppc_rlwnm: {
15735     Value *Op0 = EmitScalarExpr(E->getArg(0));
15736     Value *Op1 = EmitScalarExpr(E->getArg(1));
15737     Value *Op2 = EmitScalarExpr(E->getArg(2));
15738     llvm::Type *Ty = Op0->getType();
15739     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15740     Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op1});
15741     return Builder.CreateAnd(Shift, Op2);
15742   }
15743   case PPC::BI__builtin_ppc_poppar4:
15744   case PPC::BI__builtin_ppc_poppar8: {
15745     Value *Op0 = EmitScalarExpr(E->getArg(0));
15746     llvm::Type *ArgType = Op0->getType();
15747     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15748     Value *Tmp = Builder.CreateCall(F, Op0);
15749 
15750     llvm::Type *ResultType = ConvertType(E->getType());
15751     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15752     if (Result->getType() != ResultType)
15753       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15754                                      "cast");
15755     return Result;
15756   }
15757   case PPC::BI__builtin_ppc_cmpb: {
15758     Value *Op0 = EmitScalarExpr(E->getArg(0));
15759     Value *Op1 = EmitScalarExpr(E->getArg(1));
15760     if (getTarget().getTriple().isPPC64()) {
15761       Function *F =
15762           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15763       return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
15764     }
15765     // For 32 bit, emit the code as below:
15766     // %conv = trunc i64 %a to i32
15767     // %conv1 = trunc i64 %b to i32
15768     // %shr = lshr i64 %a, 32
15769     // %conv2 = trunc i64 %shr to i32
15770     // %shr3 = lshr i64 %b, 32
15771     // %conv4 = trunc i64 %shr3 to i32
15772     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15773     // %conv5 = zext i32 %0 to i64
15774     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15775     // %conv614 = zext i32 %1 to i64
15776     // %shl = shl nuw i64 %conv614, 32
15777     // %or = or i64 %shl, %conv5
15778     // ret i64 %or
15779     Function *F =
15780         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15781     Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
15782     Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
15783     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15784     Value *ArgOneHi =
15785         Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
15786     Value *ArgTwoHi =
15787         Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
15788     Value *ResLo = Builder.CreateZExt(
15789         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15790     Value *ResHiShift = Builder.CreateZExt(
15791         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15792     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15793     return Builder.CreateOr(ResLo, ResHi);
15794   }
15795   // Copy sign
15796   case PPC::BI__builtin_vsx_xvcpsgnsp:
15797   case PPC::BI__builtin_vsx_xvcpsgndp: {
15798     llvm::Type *ResultType = ConvertType(E->getType());
15799     Value *X = EmitScalarExpr(E->getArg(0));
15800     Value *Y = EmitScalarExpr(E->getArg(1));
15801     ID = Intrinsic::copysign;
15802     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15803     return Builder.CreateCall(F, {X, Y});
15804   }
15805   // Rounding/truncation
15806   case PPC::BI__builtin_vsx_xvrspip:
15807   case PPC::BI__builtin_vsx_xvrdpip:
15808   case PPC::BI__builtin_vsx_xvrdpim:
15809   case PPC::BI__builtin_vsx_xvrspim:
15810   case PPC::BI__builtin_vsx_xvrdpi:
15811   case PPC::BI__builtin_vsx_xvrspi:
15812   case PPC::BI__builtin_vsx_xvrdpic:
15813   case PPC::BI__builtin_vsx_xvrspic:
15814   case PPC::BI__builtin_vsx_xvrdpiz:
15815   case PPC::BI__builtin_vsx_xvrspiz: {
15816     llvm::Type *ResultType = ConvertType(E->getType());
15817     Value *X = EmitScalarExpr(E->getArg(0));
15818     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15819         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15820       ID = Builder.getIsFPConstrained()
15821                ? Intrinsic::experimental_constrained_floor
15822                : Intrinsic::floor;
15823     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15824              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15825       ID = Builder.getIsFPConstrained()
15826                ? Intrinsic::experimental_constrained_round
15827                : Intrinsic::round;
15828     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15829              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15830       ID = Builder.getIsFPConstrained()
15831                ? Intrinsic::experimental_constrained_rint
15832                : Intrinsic::rint;
15833     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15834              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15835       ID = Builder.getIsFPConstrained()
15836                ? Intrinsic::experimental_constrained_ceil
15837                : Intrinsic::ceil;
15838     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15839              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15840       ID = Builder.getIsFPConstrained()
15841                ? Intrinsic::experimental_constrained_trunc
15842                : Intrinsic::trunc;
15843     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15844     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15845                                         : Builder.CreateCall(F, X);
15846   }
15847 
15848   // Absolute value
15849   case PPC::BI__builtin_vsx_xvabsdp:
15850   case PPC::BI__builtin_vsx_xvabssp: {
15851     llvm::Type *ResultType = ConvertType(E->getType());
15852     Value *X = EmitScalarExpr(E->getArg(0));
15853     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15854     return Builder.CreateCall(F, X);
15855   }
15856 
15857   // Fastmath by default
15858   case PPC::BI__builtin_ppc_recipdivf:
15859   case PPC::BI__builtin_ppc_recipdivd:
15860   case PPC::BI__builtin_ppc_rsqrtf:
15861   case PPC::BI__builtin_ppc_rsqrtd: {
15862     FastMathFlags FMF = Builder.getFastMathFlags();
15863     Builder.getFastMathFlags().setFast();
15864     llvm::Type *ResultType = ConvertType(E->getType());
15865     Value *X = EmitScalarExpr(E->getArg(0));
15866 
15867     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15868         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15869       Value *Y = EmitScalarExpr(E->getArg(1));
15870       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15871       Builder.getFastMathFlags() &= (FMF);
15872       return FDiv;
15873     }
15874     auto *One = ConstantFP::get(ResultType, 1.0);
15875     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15876     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15877     Builder.getFastMathFlags() &= (FMF);
15878     return FDiv;
15879   }
15880   case PPC::BI__builtin_ppc_alignx: {
15881     Value *Op0 = EmitScalarExpr(E->getArg(0));
15882     Value *Op1 = EmitScalarExpr(E->getArg(1));
15883     ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
15884     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15885       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15886                                      llvm::Value::MaximumAlignment);
15887 
15888     emitAlignmentAssumption(Op1, E->getArg(1),
15889                             /*The expr loc is sufficient.*/ SourceLocation(),
15890                             AlignmentCI, nullptr);
15891     return Op1;
15892   }
15893   case PPC::BI__builtin_ppc_rdlam: {
15894     Value *Op0 = EmitScalarExpr(E->getArg(0));
15895     Value *Op1 = EmitScalarExpr(E->getArg(1));
15896     Value *Op2 = EmitScalarExpr(E->getArg(2));
15897     llvm::Type *Ty = Op0->getType();
15898     Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
15899     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15900     Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
15901     return Builder.CreateAnd(Rotate, Op2);
15902   }
15903   case PPC::BI__builtin_ppc_load2r: {
15904     Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
15905     Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
15906     Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
15907     return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
15908   }
15909   // FMA variations
15910   case PPC::BI__builtin_ppc_fnmsub:
15911   case PPC::BI__builtin_ppc_fnmsubs:
15912   case PPC::BI__builtin_vsx_xvmaddadp:
15913   case PPC::BI__builtin_vsx_xvmaddasp:
15914   case PPC::BI__builtin_vsx_xvnmaddadp:
15915   case PPC::BI__builtin_vsx_xvnmaddasp:
15916   case PPC::BI__builtin_vsx_xvmsubadp:
15917   case PPC::BI__builtin_vsx_xvmsubasp:
15918   case PPC::BI__builtin_vsx_xvnmsubadp:
15919   case PPC::BI__builtin_vsx_xvnmsubasp: {
15920     llvm::Type *ResultType = ConvertType(E->getType());
15921     Value *X = EmitScalarExpr(E->getArg(0));
15922     Value *Y = EmitScalarExpr(E->getArg(1));
15923     Value *Z = EmitScalarExpr(E->getArg(2));
15924     llvm::Function *F;
15925     if (Builder.getIsFPConstrained())
15926       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15927     else
15928       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15929     switch (BuiltinID) {
15930       case PPC::BI__builtin_vsx_xvmaddadp:
15931       case PPC::BI__builtin_vsx_xvmaddasp:
15932         if (Builder.getIsFPConstrained())
15933           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15934         else
15935           return Builder.CreateCall(F, {X, Y, Z});
15936       case PPC::BI__builtin_vsx_xvnmaddadp:
15937       case PPC::BI__builtin_vsx_xvnmaddasp:
15938         if (Builder.getIsFPConstrained())
15939           return Builder.CreateFNeg(
15940               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15941         else
15942           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15943       case PPC::BI__builtin_vsx_xvmsubadp:
15944       case PPC::BI__builtin_vsx_xvmsubasp:
15945         if (Builder.getIsFPConstrained())
15946           return Builder.CreateConstrainedFPCall(
15947               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15948         else
15949           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15950       case PPC::BI__builtin_ppc_fnmsub:
15951       case PPC::BI__builtin_ppc_fnmsubs:
15952       case PPC::BI__builtin_vsx_xvnmsubadp:
15953       case PPC::BI__builtin_vsx_xvnmsubasp:
15954         if (Builder.getIsFPConstrained())
15955           return Builder.CreateFNeg(
15956               Builder.CreateConstrainedFPCall(
15957                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15958               "neg");
15959         else
15960           return Builder.CreateCall(
15961               CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
15962       }
15963     llvm_unreachable("Unknown FMA operation");
15964     return nullptr; // Suppress no-return warning
15965   }
15966 
15967   case PPC::BI__builtin_vsx_insertword: {
15968     Value *Op0 = EmitScalarExpr(E->getArg(0));
15969     Value *Op1 = EmitScalarExpr(E->getArg(1));
15970     Value *Op2 = EmitScalarExpr(E->getArg(2));
15971     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15972 
15973     // Third argument is a compile time constant int. It must be clamped to
15974     // to the range [0, 12].
15975     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
15976     assert(ArgCI &&
15977            "Third arg to xxinsertw intrinsic must be constant integer");
15978     const int64_t MaxIndex = 12;
15979     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15980 
15981     // The builtin semantics don't exactly match the xxinsertw instructions
15982     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15983     // word from the first argument, and inserts it in the second argument. The
15984     // instruction extracts the word from its second input register and inserts
15985     // it into its first input register, so swap the first and second arguments.
15986     std::swap(Op0, Op1);
15987 
15988     // Need to cast the second argument from a vector of unsigned int to a
15989     // vector of long long.
15990     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
15991 
15992     if (getTarget().isLittleEndian()) {
15993       // Reverse the double words in the vector we will extract from.
15994       Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
15995       Op0 = Builder.CreateShuffleVector(Op0, Op0, ArrayRef<int>{1, 0});
15996 
15997       // Reverse the index.
15998       Index = MaxIndex - Index;
15999     }
16000 
16001     // Intrinsic expects the first arg to be a vector of int.
16002     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16003     Op2 = ConstantInt::getSigned(Int32Ty, Index);
16004     return Builder.CreateCall(F, {Op0, Op1, Op2});
16005   }
16006 
16007   case PPC::BI__builtin_vsx_extractuword: {
16008     Value *Op0 = EmitScalarExpr(E->getArg(0));
16009     Value *Op1 = EmitScalarExpr(E->getArg(1));
16010     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
16011 
16012     // Intrinsic expects the first argument to be a vector of doublewords.
16013     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16014 
16015     // The second argument is a compile time constant int that needs to
16016     // be clamped to the range [0, 12].
16017     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
16018     assert(ArgCI &&
16019            "Second Arg to xxextractuw intrinsic must be a constant integer!");
16020     const int64_t MaxIndex = 12;
16021     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
16022 
16023     if (getTarget().isLittleEndian()) {
16024       // Reverse the index.
16025       Index = MaxIndex - Index;
16026       Op1 = ConstantInt::getSigned(Int32Ty, Index);
16027 
16028       // Emit the call, then reverse the double words of the results vector.
16029       Value *Call = Builder.CreateCall(F, {Op0, Op1});
16030 
16031       Value *ShuffleCall =
16032           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
16033       return ShuffleCall;
16034     } else {
16035       Op1 = ConstantInt::getSigned(Int32Ty, Index);
16036       return Builder.CreateCall(F, {Op0, Op1});
16037     }
16038   }
16039 
16040   case PPC::BI__builtin_vsx_xxpermdi: {
16041     Value *Op0 = EmitScalarExpr(E->getArg(0));
16042     Value *Op1 = EmitScalarExpr(E->getArg(1));
16043     Value *Op2 = EmitScalarExpr(E->getArg(2));
16044     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16045     assert(ArgCI && "Third arg must be constant integer!");
16046 
16047     unsigned Index = ArgCI->getZExtValue();
16048     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
16049     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
16050 
16051     // Account for endianness by treating this as just a shuffle. So we use the
16052     // same indices for both LE and BE in order to produce expected results in
16053     // both cases.
16054     int ElemIdx0 = (Index & 2) >> 1;
16055     int ElemIdx1 = 2 + (Index & 1);
16056 
16057     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
16058     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16059     QualType BIRetType = E->getType();
16060     auto RetTy = ConvertType(BIRetType);
16061     return Builder.CreateBitCast(ShuffleCall, RetTy);
16062   }
16063 
16064   case PPC::BI__builtin_vsx_xxsldwi: {
16065     Value *Op0 = EmitScalarExpr(E->getArg(0));
16066     Value *Op1 = EmitScalarExpr(E->getArg(1));
16067     Value *Op2 = EmitScalarExpr(E->getArg(2));
16068     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
16069     assert(ArgCI && "Third argument must be a compile time constant");
16070     unsigned Index = ArgCI->getZExtValue() & 0x3;
16071     Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
16072     Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
16073 
16074     // Create a shuffle mask
16075     int ElemIdx0;
16076     int ElemIdx1;
16077     int ElemIdx2;
16078     int ElemIdx3;
16079     if (getTarget().isLittleEndian()) {
16080       // Little endian element N comes from element 8+N-Index of the
16081       // concatenated wide vector (of course, using modulo arithmetic on
16082       // the total number of elements).
16083       ElemIdx0 = (8 - Index) % 8;
16084       ElemIdx1 = (9 - Index) % 8;
16085       ElemIdx2 = (10 - Index) % 8;
16086       ElemIdx3 = (11 - Index) % 8;
16087     } else {
16088       // Big endian ElemIdx<N> = Index + N
16089       ElemIdx0 = Index;
16090       ElemIdx1 = Index + 1;
16091       ElemIdx2 = Index + 2;
16092       ElemIdx3 = Index + 3;
16093     }
16094 
16095     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
16096     Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
16097     QualType BIRetType = E->getType();
16098     auto RetTy = ConvertType(BIRetType);
16099     return Builder.CreateBitCast(ShuffleCall, RetTy);
16100   }
16101 
16102   case PPC::BI__builtin_pack_vector_int128: {
16103     Value *Op0 = EmitScalarExpr(E->getArg(0));
16104     Value *Op1 = EmitScalarExpr(E->getArg(1));
16105     bool isLittleEndian = getTarget().isLittleEndian();
16106     Value *UndefValue =
16107         llvm::UndefValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
16108     Value *Res = Builder.CreateInsertElement(
16109         UndefValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
16110     Res = Builder.CreateInsertElement(Res, Op1,
16111                                       (uint64_t)(isLittleEndian ? 0 : 1));
16112     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
16113   }
16114 
16115   case PPC::BI__builtin_unpack_vector_int128: {
16116     Value *Op0 = EmitScalarExpr(E->getArg(0));
16117     Value *Op1 = EmitScalarExpr(E->getArg(1));
16118     ConstantInt *Index = cast<ConstantInt>(Op1);
16119     Value *Unpacked = Builder.CreateBitCast(
16120         Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
16121 
16122     if (getTarget().isLittleEndian())
16123       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
16124 
16125     return Builder.CreateExtractElement(Unpacked, Index);
16126   }
16127 
16128   case PPC::BI__builtin_ppc_sthcx: {
16129     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
16130     Value *Op0 = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
16131     Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
16132     return Builder.CreateCall(F, {Op0, Op1});
16133   }
16134 
16135   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
16136   // Some of the MMA instructions accumulate their result into an existing
16137   // accumulator whereas the others generate a new accumulator. So we need to
16138   // use custom code generation to expand a builtin call with a pointer to a
16139   // load (if the corresponding instruction accumulates its result) followed by
16140   // the call to the intrinsic and a store of the result.
16141 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
16142   case PPC::BI__builtin_##Name:
16143 #include "clang/Basic/BuiltinsPPC.def"
16144   {
16145     SmallVector<Value *, 4> Ops;
16146     for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
16147       if (E->getArg(i)->getType()->isArrayType())
16148         Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
16149       else
16150         Ops.push_back(EmitScalarExpr(E->getArg(i)));
16151     // The first argument of these two builtins is a pointer used to store their
16152     // result. However, the llvm intrinsics return their result in multiple
16153     // return values. So, here we emit code extracting these values from the
16154     // intrinsic results and storing them using that pointer.
16155     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16156         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16157         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16158       unsigned NumVecs = 2;
16159       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16160       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16161         NumVecs = 4;
16162         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16163       }
16164       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16165       Address Addr = EmitPointerWithAlignment(E->getArg(1));
16166       Value *Vec = Builder.CreateLoad(Addr);
16167       Value *Call = Builder.CreateCall(F, {Vec});
16168       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16169       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16170       for (unsigned i=0; i<NumVecs; i++) {
16171         Value *Vec = Builder.CreateExtractValue(Call, i);
16172         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16173         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16174         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16175       }
16176       return Call;
16177     }
16178     if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16179         BuiltinID == PPC::BI__builtin_mma_build_acc) {
16180       // Reverse the order of the operands for LE, so the
16181       // same builtin call can be used on both LE and BE
16182       // without the need for the programmer to swap operands.
16183       // The operands are reversed starting from the second argument,
16184       // the first operand is the pointer to the pair/accumulator
16185       // that is being built.
16186       if (getTarget().isLittleEndian())
16187         std::reverse(Ops.begin() + 1, Ops.end());
16188     }
16189     bool Accumulate;
16190     switch (BuiltinID) {
16191   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
16192     case PPC::BI__builtin_##Name: \
16193       ID = Intrinsic::ppc_##Intr; \
16194       Accumulate = Acc; \
16195       break;
16196   #include "clang/Basic/BuiltinsPPC.def"
16197     }
16198     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16199         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16200         BuiltinID == PPC::BI__builtin_mma_lxvp ||
16201         BuiltinID == PPC::BI__builtin_mma_stxvp) {
16202       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16203           BuiltinID == PPC::BI__builtin_mma_lxvp) {
16204         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16205         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16206       } else {
16207         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16208         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16209       }
16210       Ops.pop_back();
16211       llvm::Function *F = CGM.getIntrinsic(ID);
16212       return Builder.CreateCall(F, Ops, "");
16213     }
16214     SmallVector<Value*, 4> CallOps;
16215     if (Accumulate) {
16216       Address Addr = EmitPointerWithAlignment(E->getArg(0));
16217       Value *Acc = Builder.CreateLoad(Addr);
16218       CallOps.push_back(Acc);
16219     }
16220     for (unsigned i=1; i<Ops.size(); i++)
16221       CallOps.push_back(Ops[i]);
16222     llvm::Function *F = CGM.getIntrinsic(ID);
16223     Value *Call = Builder.CreateCall(F, CallOps);
16224     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16225   }
16226 
16227   case PPC::BI__builtin_ppc_compare_and_swap:
16228   case PPC::BI__builtin_ppc_compare_and_swaplp: {
16229     Address Addr = EmitPointerWithAlignment(E->getArg(0));
16230     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16231     Value *OldVal = Builder.CreateLoad(OldValAddr);
16232     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16233     LValue LV = MakeAddrLValue(Addr, AtomicTy);
16234     Value *Op2 = EmitScalarExpr(E->getArg(2));
16235     auto Pair = EmitAtomicCompareExchange(
16236         LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
16237         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16238     // Unlike c11's atomic_compare_exchange, accroding to
16239     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16240     // > In either case, the contents of the memory location specified by addr
16241     // > are copied into the memory location specified by old_val_addr.
16242     // But it hasn't specified storing to OldValAddr is atomic or not and
16243     // which order to use. Now following XL's codegen, treat it as a normal
16244     // store.
16245     Value *LoadedVal = Pair.first.getScalarVal();
16246     Builder.CreateStore(LoadedVal, OldValAddr);
16247     return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16248   }
16249   case PPC::BI__builtin_ppc_fetch_and_add:
16250   case PPC::BI__builtin_ppc_fetch_and_addlp: {
16251     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16252                                  llvm::AtomicOrdering::Monotonic);
16253   }
16254   case PPC::BI__builtin_ppc_fetch_and_and:
16255   case PPC::BI__builtin_ppc_fetch_and_andlp: {
16256     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16257                                  llvm::AtomicOrdering::Monotonic);
16258   }
16259 
16260   case PPC::BI__builtin_ppc_fetch_and_or:
16261   case PPC::BI__builtin_ppc_fetch_and_orlp: {
16262     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16263                                  llvm::AtomicOrdering::Monotonic);
16264   }
16265   case PPC::BI__builtin_ppc_fetch_and_swap:
16266   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16267     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16268                                  llvm::AtomicOrdering::Monotonic);
16269   }
16270   case PPC::BI__builtin_ppc_ldarx:
16271   case PPC::BI__builtin_ppc_lwarx:
16272   case PPC::BI__builtin_ppc_lharx:
16273   case PPC::BI__builtin_ppc_lbarx:
16274     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16275   case PPC::BI__builtin_ppc_mfspr: {
16276     Value *Op0 = EmitScalarExpr(E->getArg(0));
16277     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16278                               ? Int32Ty
16279                               : Int64Ty;
16280     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16281     return Builder.CreateCall(F, {Op0});
16282   }
16283   case PPC::BI__builtin_ppc_mtspr: {
16284     Value *Op0 = EmitScalarExpr(E->getArg(0));
16285     Value *Op1 = EmitScalarExpr(E->getArg(1));
16286     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16287                               ? Int32Ty
16288                               : Int64Ty;
16289     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16290     return Builder.CreateCall(F, {Op0, Op1});
16291   }
16292   case PPC::BI__builtin_ppc_popcntb: {
16293     Value *ArgValue = EmitScalarExpr(E->getArg(0));
16294     llvm::Type *ArgType = ArgValue->getType();
16295     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16296     return Builder.CreateCall(F, {ArgValue}, "popcntb");
16297   }
16298   case PPC::BI__builtin_ppc_mtfsf: {
16299     // The builtin takes a uint32 that needs to be cast to an
16300     // f64 to be passed to the intrinsic.
16301     Value *Op0 = EmitScalarExpr(E->getArg(0));
16302     Value *Op1 = EmitScalarExpr(E->getArg(1));
16303     Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
16304     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16305     return Builder.CreateCall(F, {Op0, Cast}, "");
16306   }
16307 
16308   case PPC::BI__builtin_ppc_swdiv_nochk:
16309   case PPC::BI__builtin_ppc_swdivs_nochk: {
16310     Value *Op0 = EmitScalarExpr(E->getArg(0));
16311     Value *Op1 = EmitScalarExpr(E->getArg(1));
16312     FastMathFlags FMF = Builder.getFastMathFlags();
16313     Builder.getFastMathFlags().setFast();
16314     Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
16315     Builder.getFastMathFlags() &= (FMF);
16316     return FDiv;
16317   }
16318   case PPC::BI__builtin_ppc_fric:
16319     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16320                            *this, E, Intrinsic::rint,
16321                            Intrinsic::experimental_constrained_rint))
16322         .getScalarVal();
16323   case PPC::BI__builtin_ppc_frim:
16324   case PPC::BI__builtin_ppc_frims:
16325     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16326                            *this, E, Intrinsic::floor,
16327                            Intrinsic::experimental_constrained_floor))
16328         .getScalarVal();
16329   case PPC::BI__builtin_ppc_frin:
16330   case PPC::BI__builtin_ppc_frins:
16331     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16332                            *this, E, Intrinsic::round,
16333                            Intrinsic::experimental_constrained_round))
16334         .getScalarVal();
16335   case PPC::BI__builtin_ppc_frip:
16336   case PPC::BI__builtin_ppc_frips:
16337     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16338                            *this, E, Intrinsic::ceil,
16339                            Intrinsic::experimental_constrained_ceil))
16340         .getScalarVal();
16341   case PPC::BI__builtin_ppc_friz:
16342   case PPC::BI__builtin_ppc_frizs:
16343     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16344                            *this, E, Intrinsic::trunc,
16345                            Intrinsic::experimental_constrained_trunc))
16346         .getScalarVal();
16347   case PPC::BI__builtin_ppc_fsqrt:
16348   case PPC::BI__builtin_ppc_fsqrts:
16349     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16350                            *this, E, Intrinsic::sqrt,
16351                            Intrinsic::experimental_constrained_sqrt))
16352         .getScalarVal();
16353   case PPC::BI__builtin_ppc_test_data_class: {
16354     Value *Op0 = EmitScalarExpr(E->getArg(0));
16355     Value *Op1 = EmitScalarExpr(E->getArg(1));
16356     llvm::Type *ArgType = Op0->getType();
16357     unsigned IntrinsicID;
16358     if (ArgType->isDoubleTy())
16359       IntrinsicID = Intrinsic::ppc_test_data_class_d;
16360     else if (ArgType->isFloatTy())
16361       IntrinsicID = Intrinsic::ppc_test_data_class_f;
16362     else
16363       llvm_unreachable("Invalid Argument Type");
16364     return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), {Op0, Op1},
16365                               "test_data_class");
16366   }
16367   case PPC::BI__builtin_ppc_maxfe: {
16368     Value *Op0 = EmitScalarExpr(E->getArg(0));
16369     Value *Op1 = EmitScalarExpr(E->getArg(1));
16370     Value *Op2 = EmitScalarExpr(E->getArg(2));
16371     Value *Op3 = EmitScalarExpr(E->getArg(3));
16372     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
16373                               {Op0, Op1, Op2, Op3});
16374   }
16375   case PPC::BI__builtin_ppc_maxfl: {
16376     Value *Op0 = EmitScalarExpr(E->getArg(0));
16377     Value *Op1 = EmitScalarExpr(E->getArg(1));
16378     Value *Op2 = EmitScalarExpr(E->getArg(2));
16379     Value *Op3 = EmitScalarExpr(E->getArg(3));
16380     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
16381                               {Op0, Op1, Op2, Op3});
16382   }
16383   case PPC::BI__builtin_ppc_maxfs: {
16384     Value *Op0 = EmitScalarExpr(E->getArg(0));
16385     Value *Op1 = EmitScalarExpr(E->getArg(1));
16386     Value *Op2 = EmitScalarExpr(E->getArg(2));
16387     Value *Op3 = EmitScalarExpr(E->getArg(3));
16388     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
16389                               {Op0, Op1, Op2, Op3});
16390   }
16391   case PPC::BI__builtin_ppc_minfe: {
16392     Value *Op0 = EmitScalarExpr(E->getArg(0));
16393     Value *Op1 = EmitScalarExpr(E->getArg(1));
16394     Value *Op2 = EmitScalarExpr(E->getArg(2));
16395     Value *Op3 = EmitScalarExpr(E->getArg(3));
16396     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
16397                               {Op0, Op1, Op2, Op3});
16398   }
16399   case PPC::BI__builtin_ppc_minfl: {
16400     Value *Op0 = EmitScalarExpr(E->getArg(0));
16401     Value *Op1 = EmitScalarExpr(E->getArg(1));
16402     Value *Op2 = EmitScalarExpr(E->getArg(2));
16403     Value *Op3 = EmitScalarExpr(E->getArg(3));
16404     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
16405                               {Op0, Op1, Op2, Op3});
16406   }
16407   case PPC::BI__builtin_ppc_minfs: {
16408     Value *Op0 = EmitScalarExpr(E->getArg(0));
16409     Value *Op1 = EmitScalarExpr(E->getArg(1));
16410     Value *Op2 = EmitScalarExpr(E->getArg(2));
16411     Value *Op3 = EmitScalarExpr(E->getArg(3));
16412     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
16413                               {Op0, Op1, Op2, Op3});
16414   }
16415   case PPC::BI__builtin_ppc_swdiv:
16416   case PPC::BI__builtin_ppc_swdivs: {
16417     Value *Op0 = EmitScalarExpr(E->getArg(0));
16418     Value *Op1 = EmitScalarExpr(E->getArg(1));
16419     return Builder.CreateFDiv(Op0, Op1, "swdiv");
16420   }
16421   }
16422 }
16423 
16424 namespace {
16425 // If \p E is not null pointer, insert address space cast to match return
16426 // type of \p E if necessary.
16427 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16428                              const CallExpr *E = nullptr) {
16429   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16430   auto *Call = CGF.Builder.CreateCall(F);
16431   Call->addRetAttr(
16432       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16433   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16434   if (!E)
16435     return Call;
16436   QualType BuiltinRetType = E->getType();
16437   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16438   if (RetTy == Call->getType())
16439     return Call;
16440   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16441 }
16442 
16443 Value *EmitAMDGPUImplicitArgPtr(CodeGenFunction &CGF) {
16444   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_implicitarg_ptr);
16445   auto *Call = CGF.Builder.CreateCall(F);
16446   Call->addRetAttr(
16447       Attribute::getWithDereferenceableBytes(Call->getContext(), 256));
16448   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(8)));
16449   return Call;
16450 }
16451 
16452 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16453 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16454   bool IsCOV_5 = CGF.getTarget().getTargetOpts().CodeObjectVersion ==
16455                  clang::TargetOptions::COV_5;
16456   Constant *Offset;
16457   Value *DP;
16458   if (IsCOV_5) {
16459     // Indexing the implicit kernarg segment.
16460     Offset = llvm::ConstantInt::get(CGF.Int32Ty, 12 + Index * 2);
16461     DP = EmitAMDGPUImplicitArgPtr(CGF);
16462   } else {
16463     // Indexing the HSA kernel_dispatch_packet struct.
16464     Offset = llvm::ConstantInt::get(CGF.Int32Ty, 4 + Index * 2);
16465     DP = EmitAMDGPUDispatchPtr(CGF);
16466   }
16467 
16468   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16469   auto *DstTy =
16470       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16471   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16472   auto *LD = CGF.Builder.CreateLoad(
16473       Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16474   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16475   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16476       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16477   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16478   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16479       llvm::MDNode::get(CGF.getLLVMContext(), None));
16480   return LD;
16481 }
16482 
16483 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16484 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16485   const unsigned XOffset = 12;
16486   auto *DP = EmitAMDGPUDispatchPtr(CGF);
16487   // Indexing the HSA kernel_dispatch_packet struct.
16488   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16489   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16490   auto *DstTy =
16491       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16492   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16493   auto *LD = CGF.Builder.CreateLoad(
16494       Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16495   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16496                   llvm::MDNode::get(CGF.getLLVMContext(), None));
16497   return LD;
16498 }
16499 } // namespace
16500 
16501 // For processing memory ordering and memory scope arguments of various
16502 // amdgcn builtins.
16503 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
16504 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
16505 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16506 // specific SyncScopeID and writes it to \p SSID.
16507 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16508                                               llvm::AtomicOrdering &AO,
16509                                               llvm::SyncScope::ID &SSID) {
16510   if (isa<llvm::ConstantInt>(Order)) {
16511     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16512 
16513     // Map C11/C++11 memory ordering to LLVM memory ordering
16514     assert(llvm::isValidAtomicOrderingCABI(ord));
16515     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16516     case llvm::AtomicOrderingCABI::acquire:
16517     case llvm::AtomicOrderingCABI::consume:
16518       AO = llvm::AtomicOrdering::Acquire;
16519       break;
16520     case llvm::AtomicOrderingCABI::release:
16521       AO = llvm::AtomicOrdering::Release;
16522       break;
16523     case llvm::AtomicOrderingCABI::acq_rel:
16524       AO = llvm::AtomicOrdering::AcquireRelease;
16525       break;
16526     case llvm::AtomicOrderingCABI::seq_cst:
16527       AO = llvm::AtomicOrdering::SequentiallyConsistent;
16528       break;
16529     case llvm::AtomicOrderingCABI::relaxed:
16530       AO = llvm::AtomicOrdering::Monotonic;
16531       break;
16532     }
16533 
16534     StringRef scp;
16535     llvm::getConstantStringInfo(Scope, scp);
16536     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16537     return true;
16538   }
16539   return false;
16540 }
16541 
16542 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16543                                               const CallExpr *E) {
16544   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16545   llvm::SyncScope::ID SSID;
16546   switch (BuiltinID) {
16547   case AMDGPU::BI__builtin_amdgcn_div_scale:
16548   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16549     // Translate from the intrinsics's struct return to the builtin's out
16550     // argument.
16551 
16552     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16553 
16554     llvm::Value *X = EmitScalarExpr(E->getArg(0));
16555     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16556     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16557 
16558     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16559                                            X->getType());
16560 
16561     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16562 
16563     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16564     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16565 
16566     llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16567 
16568     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16569     Builder.CreateStore(FlagExt, FlagOutPtr);
16570     return Result;
16571   }
16572   case AMDGPU::BI__builtin_amdgcn_div_fmas:
16573   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16574     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16575     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16576     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16577     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16578 
16579     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16580                                       Src0->getType());
16581     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16582     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16583   }
16584 
16585   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16586     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16587   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16588     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16589   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16590   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16591     llvm::SmallVector<llvm::Value *, 6> Args;
16592     for (unsigned I = 0; I != E->getNumArgs(); ++I)
16593       Args.push_back(EmitScalarExpr(E->getArg(I)));
16594     assert(Args.size() == 5 || Args.size() == 6);
16595     if (Args.size() == 5)
16596       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16597     Function *F =
16598         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16599     return Builder.CreateCall(F, Args);
16600   }
16601   case AMDGPU::BI__builtin_amdgcn_div_fixup:
16602   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16603   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16604     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16605   case AMDGPU::BI__builtin_amdgcn_trig_preop:
16606   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16607     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16608   case AMDGPU::BI__builtin_amdgcn_rcp:
16609   case AMDGPU::BI__builtin_amdgcn_rcpf:
16610   case AMDGPU::BI__builtin_amdgcn_rcph:
16611     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16612   case AMDGPU::BI__builtin_amdgcn_sqrt:
16613   case AMDGPU::BI__builtin_amdgcn_sqrtf:
16614   case AMDGPU::BI__builtin_amdgcn_sqrth:
16615     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16616   case AMDGPU::BI__builtin_amdgcn_rsq:
16617   case AMDGPU::BI__builtin_amdgcn_rsqf:
16618   case AMDGPU::BI__builtin_amdgcn_rsqh:
16619     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16620   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16621   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16622     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16623   case AMDGPU::BI__builtin_amdgcn_sinf:
16624   case AMDGPU::BI__builtin_amdgcn_sinh:
16625     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16626   case AMDGPU::BI__builtin_amdgcn_cosf:
16627   case AMDGPU::BI__builtin_amdgcn_cosh:
16628     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16629   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16630     return EmitAMDGPUDispatchPtr(*this, E);
16631   case AMDGPU::BI__builtin_amdgcn_log_clampf:
16632     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16633   case AMDGPU::BI__builtin_amdgcn_ldexp:
16634   case AMDGPU::BI__builtin_amdgcn_ldexpf:
16635   case AMDGPU::BI__builtin_amdgcn_ldexph:
16636     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16637   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16638   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16639   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16640     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16641   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16642   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16643     Value *Src0 = EmitScalarExpr(E->getArg(0));
16644     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16645                                 { Builder.getInt32Ty(), Src0->getType() });
16646     return Builder.CreateCall(F, Src0);
16647   }
16648   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16649     Value *Src0 = EmitScalarExpr(E->getArg(0));
16650     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16651                                 { Builder.getInt16Ty(), Src0->getType() });
16652     return Builder.CreateCall(F, Src0);
16653   }
16654   case AMDGPU::BI__builtin_amdgcn_fract:
16655   case AMDGPU::BI__builtin_amdgcn_fractf:
16656   case AMDGPU::BI__builtin_amdgcn_fracth:
16657     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16658   case AMDGPU::BI__builtin_amdgcn_lerp:
16659     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16660   case AMDGPU::BI__builtin_amdgcn_ubfe:
16661     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16662   case AMDGPU::BI__builtin_amdgcn_sbfe:
16663     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16664   case AMDGPU::BI__builtin_amdgcn_uicmp:
16665   case AMDGPU::BI__builtin_amdgcn_uicmpl:
16666   case AMDGPU::BI__builtin_amdgcn_sicmp:
16667   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16668     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16669     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16670     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16671 
16672     // FIXME-GFX10: How should 32 bit mask be handled?
16673     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16674       { Builder.getInt64Ty(), Src0->getType() });
16675     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16676   }
16677   case AMDGPU::BI__builtin_amdgcn_fcmp:
16678   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16679     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16680     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16681     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16682 
16683     // FIXME-GFX10: How should 32 bit mask be handled?
16684     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16685       { Builder.getInt64Ty(), Src0->getType() });
16686     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16687   }
16688   case AMDGPU::BI__builtin_amdgcn_class:
16689   case AMDGPU::BI__builtin_amdgcn_classf:
16690   case AMDGPU::BI__builtin_amdgcn_classh:
16691     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16692   case AMDGPU::BI__builtin_amdgcn_fmed3f:
16693   case AMDGPU::BI__builtin_amdgcn_fmed3h:
16694     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16695   case AMDGPU::BI__builtin_amdgcn_ds_append:
16696   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16697     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16698       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16699     Value *Src0 = EmitScalarExpr(E->getArg(0));
16700     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16701     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16702   }
16703   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16704   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16705   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16706     Intrinsic::ID Intrin;
16707     switch (BuiltinID) {
16708     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16709       Intrin = Intrinsic::amdgcn_ds_fadd;
16710       break;
16711     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16712       Intrin = Intrinsic::amdgcn_ds_fmin;
16713       break;
16714     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16715       Intrin = Intrinsic::amdgcn_ds_fmax;
16716       break;
16717     }
16718     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16719     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16720     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16721     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16722     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16723     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16724     llvm::FunctionType *FTy = F->getFunctionType();
16725     llvm::Type *PTy = FTy->getParamType(0);
16726     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16727     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16728   }
16729   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16730   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16731   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16732   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16733   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16734   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16735   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16736   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16737   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16738   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16: {
16739     Intrinsic::ID IID;
16740     llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16741     switch (BuiltinID) {
16742     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16743       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16744       IID = Intrinsic::amdgcn_global_atomic_fadd;
16745       break;
16746     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16747       ArgTy = llvm::FixedVectorType::get(
16748           llvm::Type::getHalfTy(getLLVMContext()), 2);
16749       IID = Intrinsic::amdgcn_global_atomic_fadd;
16750       break;
16751     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16752       IID = Intrinsic::amdgcn_global_atomic_fadd;
16753       break;
16754     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16755       IID = Intrinsic::amdgcn_global_atomic_fmin;
16756       break;
16757     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16758       IID = Intrinsic::amdgcn_global_atomic_fmax;
16759       break;
16760     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16761       IID = Intrinsic::amdgcn_flat_atomic_fadd;
16762       break;
16763     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16764       IID = Intrinsic::amdgcn_flat_atomic_fmin;
16765       break;
16766     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16767       IID = Intrinsic::amdgcn_flat_atomic_fmax;
16768       break;
16769     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f32:
16770       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16771       IID = Intrinsic::amdgcn_flat_atomic_fadd;
16772       break;
16773     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2f16:
16774       ArgTy = llvm::FixedVectorType::get(
16775           llvm::Type::getHalfTy(getLLVMContext()), 2);
16776       IID = Intrinsic::amdgcn_flat_atomic_fadd;
16777       break;
16778     }
16779     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16780     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16781     llvm::Function *F =
16782         CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
16783     return Builder.CreateCall(F, {Addr, Val});
16784   }
16785   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16786   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16: {
16787     Intrinsic::ID IID;
16788     switch (BuiltinID) {
16789     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2bf16:
16790       IID = Intrinsic::amdgcn_global_atomic_fadd_v2bf16;
16791       break;
16792     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_v2bf16:
16793       IID = Intrinsic::amdgcn_flat_atomic_fadd_v2bf16;
16794       break;
16795     }
16796     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16797     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16798     llvm::Function *F = CGM.getIntrinsic(IID, {Addr->getType()});
16799     return Builder.CreateCall(F, {Addr, Val});
16800   }
16801   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16802   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
16803     Intrinsic::ID IID;
16804     llvm::Type *ArgTy;
16805     switch (BuiltinID) {
16806     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
16807       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16808       IID = Intrinsic::amdgcn_ds_fadd;
16809       break;
16810     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16811       ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16812       IID = Intrinsic::amdgcn_ds_fadd;
16813       break;
16814     }
16815     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16816     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16817     llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
16818         llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
16819     llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
16820         llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
16821     llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
16822     return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
16823   }
16824   case AMDGPU::BI__builtin_amdgcn_read_exec: {
16825     CallInst *CI = cast<CallInst>(
16826       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16827     CI->setConvergent();
16828     return CI;
16829   }
16830   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16831   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16832     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16833       "exec_lo" : "exec_hi";
16834     CallInst *CI = cast<CallInst>(
16835       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16836     CI->setConvergent();
16837     return CI;
16838   }
16839   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16840   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16841   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16842   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16843     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16844     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16845     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16846     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16847     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16848     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16849 
16850     // The builtins take these arguments as vec4 where the last element is
16851     // ignored. The intrinsic takes them as vec3.
16852     RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
16853                                             ArrayRef<int>{0, 1, 2});
16854     RayDir =
16855         Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
16856     RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
16857                                                 ArrayRef<int>{0, 1, 2});
16858 
16859     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16860                                    {NodePtr->getType(), RayDir->getType()});
16861     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16862                                   RayInverseDir, TextureDescr});
16863   }
16864 
16865   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
16866   case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
16867   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
16868   case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
16869   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
16870   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
16871   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
16872   case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
16873   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
16874   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
16875   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
16876   case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64: {
16877 
16878     // These operations perform a matrix multiplication and accumulation of
16879     // the form:
16880     //             D = A * B + C
16881     // The return type always matches the type of matrix C.
16882     unsigned ArgForMatchingRetType;
16883     unsigned BuiltinWMMAOp;
16884 
16885     switch (BuiltinID) {
16886     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w32:
16887     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_f16_w64:
16888       ArgForMatchingRetType = 2;
16889       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_f16;
16890       break;
16891     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32:
16892     case AMDGPU::BI__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64:
16893       ArgForMatchingRetType = 2;
16894       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f32_16x16x16_bf16;
16895       break;
16896     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w32:
16897     case AMDGPU::BI__builtin_amdgcn_wmma_f16_16x16x16_f16_w64:
16898       ArgForMatchingRetType = 2;
16899       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_f16_16x16x16_f16;
16900       break;
16901     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32:
16902     case AMDGPU::BI__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64:
16903       ArgForMatchingRetType = 2;
16904       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_bf16_16x16x16_bf16;
16905       break;
16906     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32:
16907     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64:
16908       ArgForMatchingRetType = 4;
16909       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu8;
16910       break;
16911     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w32:
16912     case AMDGPU::BI__builtin_amdgcn_wmma_i32_16x16x16_iu4_w64:
16913       ArgForMatchingRetType = 4;
16914       BuiltinWMMAOp = Intrinsic::amdgcn_wmma_i32_16x16x16_iu4;
16915       break;
16916     }
16917 
16918     SmallVector<Value *, 6> Args;
16919     for (int i = 0, e = E->getNumArgs(); i != e; ++i)
16920       Args.push_back(EmitScalarExpr(E->getArg(i)));
16921 
16922     Function *F = CGM.getIntrinsic(BuiltinWMMAOp,
16923                                    {Args[ArgForMatchingRetType]->getType()});
16924 
16925     return Builder.CreateCall(F, Args);
16926   }
16927 
16928   // amdgcn workitem
16929   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16930     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16931   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16932     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16933   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16934     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16935 
16936   // amdgcn workgroup size
16937   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16938     return EmitAMDGPUWorkGroupSize(*this, 0);
16939   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16940     return EmitAMDGPUWorkGroupSize(*this, 1);
16941   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16942     return EmitAMDGPUWorkGroupSize(*this, 2);
16943 
16944   // amdgcn grid size
16945   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16946     return EmitAMDGPUGridSize(*this, 0);
16947   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16948     return EmitAMDGPUGridSize(*this, 1);
16949   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16950     return EmitAMDGPUGridSize(*this, 2);
16951 
16952   // r600 intrinsics
16953   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16954   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16955     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16956   case AMDGPU::BI__builtin_r600_read_tidig_x:
16957     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16958   case AMDGPU::BI__builtin_r600_read_tidig_y:
16959     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16960   case AMDGPU::BI__builtin_r600_read_tidig_z:
16961     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16962   case AMDGPU::BI__builtin_amdgcn_alignbit: {
16963     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16964     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16965     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16966     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16967     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16968   }
16969 
16970   case AMDGPU::BI__builtin_amdgcn_fence: {
16971     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
16972                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
16973       return Builder.CreateFence(AO, SSID);
16974     LLVM_FALLTHROUGH;
16975   }
16976   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16977   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16978   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16979   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16980     unsigned BuiltinAtomicOp;
16981     llvm::Type *ResultType = ConvertType(E->getType());
16982 
16983     switch (BuiltinID) {
16984     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16985     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16986       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16987       break;
16988     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16989     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16990       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16991       break;
16992     }
16993 
16994     Value *Ptr = EmitScalarExpr(E->getArg(0));
16995     Value *Val = EmitScalarExpr(E->getArg(1));
16996 
16997     llvm::Function *F =
16998         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
16999 
17000     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
17001                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
17002 
17003       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
17004       // scope as unsigned values
17005       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
17006       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
17007 
17008       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
17009       bool Volatile =
17010           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
17011       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
17012 
17013       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
17014     }
17015     LLVM_FALLTHROUGH;
17016   }
17017   default:
17018     return nullptr;
17019   }
17020 }
17021 
17022 /// Handle a SystemZ function in which the final argument is a pointer
17023 /// to an int that receives the post-instruction CC value.  At the LLVM level
17024 /// this is represented as a function that returns a {result, cc} pair.
17025 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
17026                                          unsigned IntrinsicID,
17027                                          const CallExpr *E) {
17028   unsigned NumArgs = E->getNumArgs() - 1;
17029   SmallVector<Value *, 8> Args(NumArgs);
17030   for (unsigned I = 0; I < NumArgs; ++I)
17031     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
17032   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
17033   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
17034   Value *Call = CGF.Builder.CreateCall(F, Args);
17035   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
17036   CGF.Builder.CreateStore(CC, CCPtr);
17037   return CGF.Builder.CreateExtractValue(Call, 0);
17038 }
17039 
17040 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
17041                                                const CallExpr *E) {
17042   switch (BuiltinID) {
17043   case SystemZ::BI__builtin_tbegin: {
17044     Value *TDB = EmitScalarExpr(E->getArg(0));
17045     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17046     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
17047     return Builder.CreateCall(F, {TDB, Control});
17048   }
17049   case SystemZ::BI__builtin_tbegin_nofloat: {
17050     Value *TDB = EmitScalarExpr(E->getArg(0));
17051     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
17052     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
17053     return Builder.CreateCall(F, {TDB, Control});
17054   }
17055   case SystemZ::BI__builtin_tbeginc: {
17056     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
17057     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
17058     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
17059     return Builder.CreateCall(F, {TDB, Control});
17060   }
17061   case SystemZ::BI__builtin_tabort: {
17062     Value *Data = EmitScalarExpr(E->getArg(0));
17063     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
17064     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
17065   }
17066   case SystemZ::BI__builtin_non_tx_store: {
17067     Value *Address = EmitScalarExpr(E->getArg(0));
17068     Value *Data = EmitScalarExpr(E->getArg(1));
17069     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
17070     return Builder.CreateCall(F, {Data, Address});
17071   }
17072 
17073   // Vector builtins.  Note that most vector builtins are mapped automatically
17074   // to target-specific LLVM intrinsics.  The ones handled specially here can
17075   // be represented via standard LLVM IR, which is preferable to enable common
17076   // LLVM optimizations.
17077 
17078   case SystemZ::BI__builtin_s390_vpopctb:
17079   case SystemZ::BI__builtin_s390_vpopcth:
17080   case SystemZ::BI__builtin_s390_vpopctf:
17081   case SystemZ::BI__builtin_s390_vpopctg: {
17082     llvm::Type *ResultType = ConvertType(E->getType());
17083     Value *X = EmitScalarExpr(E->getArg(0));
17084     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
17085     return Builder.CreateCall(F, X);
17086   }
17087 
17088   case SystemZ::BI__builtin_s390_vclzb:
17089   case SystemZ::BI__builtin_s390_vclzh:
17090   case SystemZ::BI__builtin_s390_vclzf:
17091   case SystemZ::BI__builtin_s390_vclzg: {
17092     llvm::Type *ResultType = ConvertType(E->getType());
17093     Value *X = EmitScalarExpr(E->getArg(0));
17094     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17095     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
17096     return Builder.CreateCall(F, {X, Undef});
17097   }
17098 
17099   case SystemZ::BI__builtin_s390_vctzb:
17100   case SystemZ::BI__builtin_s390_vctzh:
17101   case SystemZ::BI__builtin_s390_vctzf:
17102   case SystemZ::BI__builtin_s390_vctzg: {
17103     llvm::Type *ResultType = ConvertType(E->getType());
17104     Value *X = EmitScalarExpr(E->getArg(0));
17105     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
17106     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
17107     return Builder.CreateCall(F, {X, Undef});
17108   }
17109 
17110   case SystemZ::BI__builtin_s390_vfsqsb:
17111   case SystemZ::BI__builtin_s390_vfsqdb: {
17112     llvm::Type *ResultType = ConvertType(E->getType());
17113     Value *X = EmitScalarExpr(E->getArg(0));
17114     if (Builder.getIsFPConstrained()) {
17115       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
17116       return Builder.CreateConstrainedFPCall(F, { X });
17117     } else {
17118       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
17119       return Builder.CreateCall(F, X);
17120     }
17121   }
17122   case SystemZ::BI__builtin_s390_vfmasb:
17123   case SystemZ::BI__builtin_s390_vfmadb: {
17124     llvm::Type *ResultType = ConvertType(E->getType());
17125     Value *X = EmitScalarExpr(E->getArg(0));
17126     Value *Y = EmitScalarExpr(E->getArg(1));
17127     Value *Z = EmitScalarExpr(E->getArg(2));
17128     if (Builder.getIsFPConstrained()) {
17129       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17130       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
17131     } else {
17132       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17133       return Builder.CreateCall(F, {X, Y, Z});
17134     }
17135   }
17136   case SystemZ::BI__builtin_s390_vfmssb:
17137   case SystemZ::BI__builtin_s390_vfmsdb: {
17138     llvm::Type *ResultType = ConvertType(E->getType());
17139     Value *X = EmitScalarExpr(E->getArg(0));
17140     Value *Y = EmitScalarExpr(E->getArg(1));
17141     Value *Z = EmitScalarExpr(E->getArg(2));
17142     if (Builder.getIsFPConstrained()) {
17143       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17144       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17145     } else {
17146       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17147       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
17148     }
17149   }
17150   case SystemZ::BI__builtin_s390_vfnmasb:
17151   case SystemZ::BI__builtin_s390_vfnmadb: {
17152     llvm::Type *ResultType = ConvertType(E->getType());
17153     Value *X = EmitScalarExpr(E->getArg(0));
17154     Value *Y = EmitScalarExpr(E->getArg(1));
17155     Value *Z = EmitScalarExpr(E->getArg(2));
17156     if (Builder.getIsFPConstrained()) {
17157       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17158       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
17159     } else {
17160       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17161       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
17162     }
17163   }
17164   case SystemZ::BI__builtin_s390_vfnmssb:
17165   case SystemZ::BI__builtin_s390_vfnmsdb: {
17166     llvm::Type *ResultType = ConvertType(E->getType());
17167     Value *X = EmitScalarExpr(E->getArg(0));
17168     Value *Y = EmitScalarExpr(E->getArg(1));
17169     Value *Z = EmitScalarExpr(E->getArg(2));
17170     if (Builder.getIsFPConstrained()) {
17171       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
17172       Value *NegZ = Builder.CreateFNeg(Z, "sub");
17173       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
17174     } else {
17175       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
17176       Value *NegZ = Builder.CreateFNeg(Z, "neg");
17177       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
17178     }
17179   }
17180   case SystemZ::BI__builtin_s390_vflpsb:
17181   case SystemZ::BI__builtin_s390_vflpdb: {
17182     llvm::Type *ResultType = ConvertType(E->getType());
17183     Value *X = EmitScalarExpr(E->getArg(0));
17184     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17185     return Builder.CreateCall(F, X);
17186   }
17187   case SystemZ::BI__builtin_s390_vflnsb:
17188   case SystemZ::BI__builtin_s390_vflndb: {
17189     llvm::Type *ResultType = ConvertType(E->getType());
17190     Value *X = EmitScalarExpr(E->getArg(0));
17191     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
17192     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
17193   }
17194   case SystemZ::BI__builtin_s390_vfisb:
17195   case SystemZ::BI__builtin_s390_vfidb: {
17196     llvm::Type *ResultType = ConvertType(E->getType());
17197     Value *X = EmitScalarExpr(E->getArg(0));
17198     // Constant-fold the M4 and M5 mask arguments.
17199     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
17200     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17201     // Check whether this instance can be represented via a LLVM standard
17202     // intrinsic.  We only support some combinations of M4 and M5.
17203     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17204     Intrinsic::ID CI;
17205     switch (M4.getZExtValue()) {
17206     default: break;
17207     case 0:  // IEEE-inexact exception allowed
17208       switch (M5.getZExtValue()) {
17209       default: break;
17210       case 0: ID = Intrinsic::rint;
17211               CI = Intrinsic::experimental_constrained_rint; break;
17212       }
17213       break;
17214     case 4:  // IEEE-inexact exception suppressed
17215       switch (M5.getZExtValue()) {
17216       default: break;
17217       case 0: ID = Intrinsic::nearbyint;
17218               CI = Intrinsic::experimental_constrained_nearbyint; break;
17219       case 1: ID = Intrinsic::round;
17220               CI = Intrinsic::experimental_constrained_round; break;
17221       case 5: ID = Intrinsic::trunc;
17222               CI = Intrinsic::experimental_constrained_trunc; break;
17223       case 6: ID = Intrinsic::ceil;
17224               CI = Intrinsic::experimental_constrained_ceil; break;
17225       case 7: ID = Intrinsic::floor;
17226               CI = Intrinsic::experimental_constrained_floor; break;
17227       }
17228       break;
17229     }
17230     if (ID != Intrinsic::not_intrinsic) {
17231       if (Builder.getIsFPConstrained()) {
17232         Function *F = CGM.getIntrinsic(CI, ResultType);
17233         return Builder.CreateConstrainedFPCall(F, X);
17234       } else {
17235         Function *F = CGM.getIntrinsic(ID, ResultType);
17236         return Builder.CreateCall(F, X);
17237       }
17238     }
17239     switch (BuiltinID) { // FIXME: constrained version?
17240       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
17241       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
17242       default: llvm_unreachable("Unknown BuiltinID");
17243     }
17244     Function *F = CGM.getIntrinsic(ID);
17245     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17246     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
17247     return Builder.CreateCall(F, {X, M4Value, M5Value});
17248   }
17249   case SystemZ::BI__builtin_s390_vfmaxsb:
17250   case SystemZ::BI__builtin_s390_vfmaxdb: {
17251     llvm::Type *ResultType = ConvertType(E->getType());
17252     Value *X = EmitScalarExpr(E->getArg(0));
17253     Value *Y = EmitScalarExpr(E->getArg(1));
17254     // Constant-fold the M4 mask argument.
17255     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17256     // Check whether this instance can be represented via a LLVM standard
17257     // intrinsic.  We only support some values of M4.
17258     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17259     Intrinsic::ID CI;
17260     switch (M4.getZExtValue()) {
17261     default: break;
17262     case 4: ID = Intrinsic::maxnum;
17263             CI = Intrinsic::experimental_constrained_maxnum; break;
17264     }
17265     if (ID != Intrinsic::not_intrinsic) {
17266       if (Builder.getIsFPConstrained()) {
17267         Function *F = CGM.getIntrinsic(CI, ResultType);
17268         return Builder.CreateConstrainedFPCall(F, {X, Y});
17269       } else {
17270         Function *F = CGM.getIntrinsic(ID, ResultType);
17271         return Builder.CreateCall(F, {X, Y});
17272       }
17273     }
17274     switch (BuiltinID) {
17275       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
17276       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
17277       default: llvm_unreachable("Unknown BuiltinID");
17278     }
17279     Function *F = CGM.getIntrinsic(ID);
17280     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17281     return Builder.CreateCall(F, {X, Y, M4Value});
17282   }
17283   case SystemZ::BI__builtin_s390_vfminsb:
17284   case SystemZ::BI__builtin_s390_vfmindb: {
17285     llvm::Type *ResultType = ConvertType(E->getType());
17286     Value *X = EmitScalarExpr(E->getArg(0));
17287     Value *Y = EmitScalarExpr(E->getArg(1));
17288     // Constant-fold the M4 mask argument.
17289     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
17290     // Check whether this instance can be represented via a LLVM standard
17291     // intrinsic.  We only support some values of M4.
17292     Intrinsic::ID ID = Intrinsic::not_intrinsic;
17293     Intrinsic::ID CI;
17294     switch (M4.getZExtValue()) {
17295     default: break;
17296     case 4: ID = Intrinsic::minnum;
17297             CI = Intrinsic::experimental_constrained_minnum; break;
17298     }
17299     if (ID != Intrinsic::not_intrinsic) {
17300       if (Builder.getIsFPConstrained()) {
17301         Function *F = CGM.getIntrinsic(CI, ResultType);
17302         return Builder.CreateConstrainedFPCall(F, {X, Y});
17303       } else {
17304         Function *F = CGM.getIntrinsic(ID, ResultType);
17305         return Builder.CreateCall(F, {X, Y});
17306       }
17307     }
17308     switch (BuiltinID) {
17309       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
17310       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
17311       default: llvm_unreachable("Unknown BuiltinID");
17312     }
17313     Function *F = CGM.getIntrinsic(ID);
17314     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17315     return Builder.CreateCall(F, {X, Y, M4Value});
17316   }
17317 
17318   case SystemZ::BI__builtin_s390_vlbrh:
17319   case SystemZ::BI__builtin_s390_vlbrf:
17320   case SystemZ::BI__builtin_s390_vlbrg: {
17321     llvm::Type *ResultType = ConvertType(E->getType());
17322     Value *X = EmitScalarExpr(E->getArg(0));
17323     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17324     return Builder.CreateCall(F, X);
17325   }
17326 
17327   // Vector intrinsics that output the post-instruction CC value.
17328 
17329 #define INTRINSIC_WITH_CC(NAME) \
17330     case SystemZ::BI__builtin_##NAME: \
17331       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17332 
17333   INTRINSIC_WITH_CC(s390_vpkshs);
17334   INTRINSIC_WITH_CC(s390_vpksfs);
17335   INTRINSIC_WITH_CC(s390_vpksgs);
17336 
17337   INTRINSIC_WITH_CC(s390_vpklshs);
17338   INTRINSIC_WITH_CC(s390_vpklsfs);
17339   INTRINSIC_WITH_CC(s390_vpklsgs);
17340 
17341   INTRINSIC_WITH_CC(s390_vceqbs);
17342   INTRINSIC_WITH_CC(s390_vceqhs);
17343   INTRINSIC_WITH_CC(s390_vceqfs);
17344   INTRINSIC_WITH_CC(s390_vceqgs);
17345 
17346   INTRINSIC_WITH_CC(s390_vchbs);
17347   INTRINSIC_WITH_CC(s390_vchhs);
17348   INTRINSIC_WITH_CC(s390_vchfs);
17349   INTRINSIC_WITH_CC(s390_vchgs);
17350 
17351   INTRINSIC_WITH_CC(s390_vchlbs);
17352   INTRINSIC_WITH_CC(s390_vchlhs);
17353   INTRINSIC_WITH_CC(s390_vchlfs);
17354   INTRINSIC_WITH_CC(s390_vchlgs);
17355 
17356   INTRINSIC_WITH_CC(s390_vfaebs);
17357   INTRINSIC_WITH_CC(s390_vfaehs);
17358   INTRINSIC_WITH_CC(s390_vfaefs);
17359 
17360   INTRINSIC_WITH_CC(s390_vfaezbs);
17361   INTRINSIC_WITH_CC(s390_vfaezhs);
17362   INTRINSIC_WITH_CC(s390_vfaezfs);
17363 
17364   INTRINSIC_WITH_CC(s390_vfeebs);
17365   INTRINSIC_WITH_CC(s390_vfeehs);
17366   INTRINSIC_WITH_CC(s390_vfeefs);
17367 
17368   INTRINSIC_WITH_CC(s390_vfeezbs);
17369   INTRINSIC_WITH_CC(s390_vfeezhs);
17370   INTRINSIC_WITH_CC(s390_vfeezfs);
17371 
17372   INTRINSIC_WITH_CC(s390_vfenebs);
17373   INTRINSIC_WITH_CC(s390_vfenehs);
17374   INTRINSIC_WITH_CC(s390_vfenefs);
17375 
17376   INTRINSIC_WITH_CC(s390_vfenezbs);
17377   INTRINSIC_WITH_CC(s390_vfenezhs);
17378   INTRINSIC_WITH_CC(s390_vfenezfs);
17379 
17380   INTRINSIC_WITH_CC(s390_vistrbs);
17381   INTRINSIC_WITH_CC(s390_vistrhs);
17382   INTRINSIC_WITH_CC(s390_vistrfs);
17383 
17384   INTRINSIC_WITH_CC(s390_vstrcbs);
17385   INTRINSIC_WITH_CC(s390_vstrchs);
17386   INTRINSIC_WITH_CC(s390_vstrcfs);
17387 
17388   INTRINSIC_WITH_CC(s390_vstrczbs);
17389   INTRINSIC_WITH_CC(s390_vstrczhs);
17390   INTRINSIC_WITH_CC(s390_vstrczfs);
17391 
17392   INTRINSIC_WITH_CC(s390_vfcesbs);
17393   INTRINSIC_WITH_CC(s390_vfcedbs);
17394   INTRINSIC_WITH_CC(s390_vfchsbs);
17395   INTRINSIC_WITH_CC(s390_vfchdbs);
17396   INTRINSIC_WITH_CC(s390_vfchesbs);
17397   INTRINSIC_WITH_CC(s390_vfchedbs);
17398 
17399   INTRINSIC_WITH_CC(s390_vftcisb);
17400   INTRINSIC_WITH_CC(s390_vftcidb);
17401 
17402   INTRINSIC_WITH_CC(s390_vstrsb);
17403   INTRINSIC_WITH_CC(s390_vstrsh);
17404   INTRINSIC_WITH_CC(s390_vstrsf);
17405 
17406   INTRINSIC_WITH_CC(s390_vstrszb);
17407   INTRINSIC_WITH_CC(s390_vstrszh);
17408   INTRINSIC_WITH_CC(s390_vstrszf);
17409 
17410 #undef INTRINSIC_WITH_CC
17411 
17412   default:
17413     return nullptr;
17414   }
17415 }
17416 
17417 namespace {
17418 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17419 struct NVPTXMmaLdstInfo {
17420   unsigned NumResults;  // Number of elements to load/store
17421   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17422   unsigned IID_col;
17423   unsigned IID_row;
17424 };
17425 
17426 #define MMA_INTR(geom_op_type, layout) \
17427   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17428 #define MMA_LDST(n, geom_op_type)                                              \
17429   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17430 
17431 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17432   switch (BuiltinID) {
17433   // FP MMA loads
17434   case NVPTX::BI__hmma_m16n16k16_ld_a:
17435     return MMA_LDST(8, m16n16k16_load_a_f16);
17436   case NVPTX::BI__hmma_m16n16k16_ld_b:
17437     return MMA_LDST(8, m16n16k16_load_b_f16);
17438   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17439     return MMA_LDST(4, m16n16k16_load_c_f16);
17440   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17441     return MMA_LDST(8, m16n16k16_load_c_f32);
17442   case NVPTX::BI__hmma_m32n8k16_ld_a:
17443     return MMA_LDST(8, m32n8k16_load_a_f16);
17444   case NVPTX::BI__hmma_m32n8k16_ld_b:
17445     return MMA_LDST(8, m32n8k16_load_b_f16);
17446   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17447     return MMA_LDST(4, m32n8k16_load_c_f16);
17448   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17449     return MMA_LDST(8, m32n8k16_load_c_f32);
17450   case NVPTX::BI__hmma_m8n32k16_ld_a:
17451     return MMA_LDST(8, m8n32k16_load_a_f16);
17452   case NVPTX::BI__hmma_m8n32k16_ld_b:
17453     return MMA_LDST(8, m8n32k16_load_b_f16);
17454   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17455     return MMA_LDST(4, m8n32k16_load_c_f16);
17456   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17457     return MMA_LDST(8, m8n32k16_load_c_f32);
17458 
17459   // Integer MMA loads
17460   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17461     return MMA_LDST(2, m16n16k16_load_a_s8);
17462   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17463     return MMA_LDST(2, m16n16k16_load_a_u8);
17464   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17465     return MMA_LDST(2, m16n16k16_load_b_s8);
17466   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17467     return MMA_LDST(2, m16n16k16_load_b_u8);
17468   case NVPTX::BI__imma_m16n16k16_ld_c:
17469     return MMA_LDST(8, m16n16k16_load_c_s32);
17470   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17471     return MMA_LDST(4, m32n8k16_load_a_s8);
17472   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17473     return MMA_LDST(4, m32n8k16_load_a_u8);
17474   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17475     return MMA_LDST(1, m32n8k16_load_b_s8);
17476   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17477     return MMA_LDST(1, m32n8k16_load_b_u8);
17478   case NVPTX::BI__imma_m32n8k16_ld_c:
17479     return MMA_LDST(8, m32n8k16_load_c_s32);
17480   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17481     return MMA_LDST(1, m8n32k16_load_a_s8);
17482   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17483     return MMA_LDST(1, m8n32k16_load_a_u8);
17484   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17485     return MMA_LDST(4, m8n32k16_load_b_s8);
17486   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17487     return MMA_LDST(4, m8n32k16_load_b_u8);
17488   case NVPTX::BI__imma_m8n32k16_ld_c:
17489     return MMA_LDST(8, m8n32k16_load_c_s32);
17490 
17491   // Sub-integer MMA loads.
17492   // Only row/col layout is supported by A/B fragments.
17493   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17494     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17495   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17496     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17497   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17498     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17499   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17500     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17501   case NVPTX::BI__imma_m8n8k32_ld_c:
17502     return MMA_LDST(2, m8n8k32_load_c_s32);
17503   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17504     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17505   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17506     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17507   case NVPTX::BI__bmma_m8n8k128_ld_c:
17508     return MMA_LDST(2, m8n8k128_load_c_s32);
17509 
17510   // Double MMA loads
17511   case NVPTX::BI__dmma_m8n8k4_ld_a:
17512     return MMA_LDST(1, m8n8k4_load_a_f64);
17513   case NVPTX::BI__dmma_m8n8k4_ld_b:
17514     return MMA_LDST(1, m8n8k4_load_b_f64);
17515   case NVPTX::BI__dmma_m8n8k4_ld_c:
17516     return MMA_LDST(2, m8n8k4_load_c_f64);
17517 
17518   // Alternate float MMA loads
17519   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17520     return MMA_LDST(4, m16n16k16_load_a_bf16);
17521   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17522     return MMA_LDST(4, m16n16k16_load_b_bf16);
17523   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17524     return MMA_LDST(2, m8n32k16_load_a_bf16);
17525   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17526     return MMA_LDST(8, m8n32k16_load_b_bf16);
17527   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17528     return MMA_LDST(8, m32n8k16_load_a_bf16);
17529   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17530     return MMA_LDST(2, m32n8k16_load_b_bf16);
17531   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17532     return MMA_LDST(4, m16n16k8_load_a_tf32);
17533   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17534     return MMA_LDST(4, m16n16k8_load_b_tf32);
17535   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17536     return MMA_LDST(8, m16n16k8_load_c_f32);
17537 
17538   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
17539   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17540   // use fragment C for both loads and stores.
17541   // FP MMA stores.
17542   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17543     return MMA_LDST(4, m16n16k16_store_d_f16);
17544   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17545     return MMA_LDST(8, m16n16k16_store_d_f32);
17546   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17547     return MMA_LDST(4, m32n8k16_store_d_f16);
17548   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17549     return MMA_LDST(8, m32n8k16_store_d_f32);
17550   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17551     return MMA_LDST(4, m8n32k16_store_d_f16);
17552   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17553     return MMA_LDST(8, m8n32k16_store_d_f32);
17554 
17555   // Integer and sub-integer MMA stores.
17556   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17557   // name, integer loads/stores use LLVM's i32.
17558   case NVPTX::BI__imma_m16n16k16_st_c_i32:
17559     return MMA_LDST(8, m16n16k16_store_d_s32);
17560   case NVPTX::BI__imma_m32n8k16_st_c_i32:
17561     return MMA_LDST(8, m32n8k16_store_d_s32);
17562   case NVPTX::BI__imma_m8n32k16_st_c_i32:
17563     return MMA_LDST(8, m8n32k16_store_d_s32);
17564   case NVPTX::BI__imma_m8n8k32_st_c_i32:
17565     return MMA_LDST(2, m8n8k32_store_d_s32);
17566   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17567     return MMA_LDST(2, m8n8k128_store_d_s32);
17568 
17569   // Double MMA store
17570   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17571     return MMA_LDST(2, m8n8k4_store_d_f64);
17572 
17573   // Alternate float MMA store
17574   case NVPTX::BI__mma_m16n16k8_st_c_f32:
17575     return MMA_LDST(8, m16n16k8_store_d_f32);
17576 
17577   default:
17578     llvm_unreachable("Unknown MMA builtin");
17579   }
17580 }
17581 #undef MMA_LDST
17582 #undef MMA_INTR
17583 
17584 
17585 struct NVPTXMmaInfo {
17586   unsigned NumEltsA;
17587   unsigned NumEltsB;
17588   unsigned NumEltsC;
17589   unsigned NumEltsD;
17590 
17591   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17592   // over 'col' for layout. The index of non-satf variants is expected to match
17593   // the undocumented layout constants used by CUDA's mma.hpp.
17594   std::array<unsigned, 8> Variants;
17595 
17596   unsigned getMMAIntrinsic(int Layout, bool Satf) {
17597     unsigned Index = Layout + 4 * Satf;
17598     if (Index >= Variants.size())
17599       return 0;
17600     return Variants[Index];
17601   }
17602 };
17603 
17604   // Returns an intrinsic that matches Layout and Satf for valid combinations of
17605   // Layout and Satf, 0 otherwise.
17606 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17607   // clang-format off
17608 #define MMA_VARIANTS(geom, type)                                    \
17609       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
17610       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17611       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
17612       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17613 #define MMA_SATF_VARIANTS(geom, type)                               \
17614       MMA_VARIANTS(geom, type),                                     \
17615       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17616       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17617       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17618       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17619 // Sub-integer MMA only supports row.col layout.
17620 #define MMA_VARIANTS_I4(geom, type) \
17621       0, \
17622       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17623       0, \
17624       0, \
17625       0, \
17626       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17627       0, \
17628       0
17629 // b1 MMA does not support .satfinite.
17630 #define MMA_VARIANTS_B1_XOR(geom, type) \
17631       0, \
17632       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
17633       0, \
17634       0, \
17635       0, \
17636       0, \
17637       0, \
17638       0
17639 #define MMA_VARIANTS_B1_AND(geom, type) \
17640       0, \
17641       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
17642       0, \
17643       0, \
17644       0, \
17645       0, \
17646       0, \
17647       0
17648   // clang-format on
17649   switch (BuiltinID) {
17650   // FP MMA
17651   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
17652   // NumEltsN of return value are ordered as A,B,C,D.
17653   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17654     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
17655   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17656     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
17657   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17658     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
17659   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17660     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
17661   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17662     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
17663   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17664     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
17665   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17666     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
17667   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17668     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
17669   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17670     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
17671   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17672     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17673   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17674     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17675   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17676     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17677 
17678   // Integer MMA
17679   case NVPTX::BI__imma_m16n16k16_mma_s8:
17680     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17681   case NVPTX::BI__imma_m16n16k16_mma_u8:
17682     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17683   case NVPTX::BI__imma_m32n8k16_mma_s8:
17684     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17685   case NVPTX::BI__imma_m32n8k16_mma_u8:
17686     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17687   case NVPTX::BI__imma_m8n32k16_mma_s8:
17688     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17689   case NVPTX::BI__imma_m8n32k16_mma_u8:
17690     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17691 
17692   // Sub-integer MMA
17693   case NVPTX::BI__imma_m8n8k32_mma_s4:
17694     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17695   case NVPTX::BI__imma_m8n8k32_mma_u4:
17696     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17697   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17698     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17699   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17700     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17701 
17702   // Double MMA
17703   case NVPTX::BI__dmma_m8n8k4_mma_f64:
17704     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17705 
17706   // Alternate FP MMA
17707   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17708     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17709   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17710     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17711   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17712     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17713   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17714     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17715   default:
17716     llvm_unreachable("Unexpected builtin ID.");
17717   }
17718 #undef MMA_VARIANTS
17719 #undef MMA_SATF_VARIANTS
17720 #undef MMA_VARIANTS_I4
17721 #undef MMA_VARIANTS_B1_AND
17722 #undef MMA_VARIANTS_B1_XOR
17723 }
17724 
17725 } // namespace
17726 
17727 Value *
17728 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17729   auto MakeLdg = [&](unsigned IntrinsicID) {
17730     Value *Ptr = EmitScalarExpr(E->getArg(0));
17731     QualType ArgType = E->getArg(0)->getType();
17732     clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(ArgType);
17733     llvm::Type *ElemTy = ConvertTypeForMem(ArgType->getPointeeType());
17734     return Builder.CreateCall(
17735         CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17736         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17737   };
17738   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17739     Value *Ptr = EmitScalarExpr(E->getArg(0));
17740     llvm::Type *ElemTy =
17741         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17742     return Builder.CreateCall(
17743         CGM.getIntrinsic(IntrinsicID, {ElemTy, Ptr->getType()}),
17744         {Ptr, EmitScalarExpr(E->getArg(1))});
17745   };
17746   switch (BuiltinID) {
17747   case NVPTX::BI__nvvm_atom_add_gen_i:
17748   case NVPTX::BI__nvvm_atom_add_gen_l:
17749   case NVPTX::BI__nvvm_atom_add_gen_ll:
17750     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17751 
17752   case NVPTX::BI__nvvm_atom_sub_gen_i:
17753   case NVPTX::BI__nvvm_atom_sub_gen_l:
17754   case NVPTX::BI__nvvm_atom_sub_gen_ll:
17755     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17756 
17757   case NVPTX::BI__nvvm_atom_and_gen_i:
17758   case NVPTX::BI__nvvm_atom_and_gen_l:
17759   case NVPTX::BI__nvvm_atom_and_gen_ll:
17760     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17761 
17762   case NVPTX::BI__nvvm_atom_or_gen_i:
17763   case NVPTX::BI__nvvm_atom_or_gen_l:
17764   case NVPTX::BI__nvvm_atom_or_gen_ll:
17765     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17766 
17767   case NVPTX::BI__nvvm_atom_xor_gen_i:
17768   case NVPTX::BI__nvvm_atom_xor_gen_l:
17769   case NVPTX::BI__nvvm_atom_xor_gen_ll:
17770     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17771 
17772   case NVPTX::BI__nvvm_atom_xchg_gen_i:
17773   case NVPTX::BI__nvvm_atom_xchg_gen_l:
17774   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17775     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17776 
17777   case NVPTX::BI__nvvm_atom_max_gen_i:
17778   case NVPTX::BI__nvvm_atom_max_gen_l:
17779   case NVPTX::BI__nvvm_atom_max_gen_ll:
17780     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17781 
17782   case NVPTX::BI__nvvm_atom_max_gen_ui:
17783   case NVPTX::BI__nvvm_atom_max_gen_ul:
17784   case NVPTX::BI__nvvm_atom_max_gen_ull:
17785     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17786 
17787   case NVPTX::BI__nvvm_atom_min_gen_i:
17788   case NVPTX::BI__nvvm_atom_min_gen_l:
17789   case NVPTX::BI__nvvm_atom_min_gen_ll:
17790     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17791 
17792   case NVPTX::BI__nvvm_atom_min_gen_ui:
17793   case NVPTX::BI__nvvm_atom_min_gen_ul:
17794   case NVPTX::BI__nvvm_atom_min_gen_ull:
17795     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17796 
17797   case NVPTX::BI__nvvm_atom_cas_gen_i:
17798   case NVPTX::BI__nvvm_atom_cas_gen_l:
17799   case NVPTX::BI__nvvm_atom_cas_gen_ll:
17800     // __nvvm_atom_cas_gen_* should return the old value rather than the
17801     // success flag.
17802     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17803 
17804   case NVPTX::BI__nvvm_atom_add_gen_f:
17805   case NVPTX::BI__nvvm_atom_add_gen_d: {
17806     Value *Ptr = EmitScalarExpr(E->getArg(0));
17807     Value *Val = EmitScalarExpr(E->getArg(1));
17808     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17809                                    AtomicOrdering::SequentiallyConsistent);
17810   }
17811 
17812   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17813     Value *Ptr = EmitScalarExpr(E->getArg(0));
17814     Value *Val = EmitScalarExpr(E->getArg(1));
17815     Function *FnALI32 =
17816         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17817     return Builder.CreateCall(FnALI32, {Ptr, Val});
17818   }
17819 
17820   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17821     Value *Ptr = EmitScalarExpr(E->getArg(0));
17822     Value *Val = EmitScalarExpr(E->getArg(1));
17823     Function *FnALD32 =
17824         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17825     return Builder.CreateCall(FnALD32, {Ptr, Val});
17826   }
17827 
17828   case NVPTX::BI__nvvm_ldg_c:
17829   case NVPTX::BI__nvvm_ldg_c2:
17830   case NVPTX::BI__nvvm_ldg_c4:
17831   case NVPTX::BI__nvvm_ldg_s:
17832   case NVPTX::BI__nvvm_ldg_s2:
17833   case NVPTX::BI__nvvm_ldg_s4:
17834   case NVPTX::BI__nvvm_ldg_i:
17835   case NVPTX::BI__nvvm_ldg_i2:
17836   case NVPTX::BI__nvvm_ldg_i4:
17837   case NVPTX::BI__nvvm_ldg_l:
17838   case NVPTX::BI__nvvm_ldg_ll:
17839   case NVPTX::BI__nvvm_ldg_ll2:
17840   case NVPTX::BI__nvvm_ldg_uc:
17841   case NVPTX::BI__nvvm_ldg_uc2:
17842   case NVPTX::BI__nvvm_ldg_uc4:
17843   case NVPTX::BI__nvvm_ldg_us:
17844   case NVPTX::BI__nvvm_ldg_us2:
17845   case NVPTX::BI__nvvm_ldg_us4:
17846   case NVPTX::BI__nvvm_ldg_ui:
17847   case NVPTX::BI__nvvm_ldg_ui2:
17848   case NVPTX::BI__nvvm_ldg_ui4:
17849   case NVPTX::BI__nvvm_ldg_ul:
17850   case NVPTX::BI__nvvm_ldg_ull:
17851   case NVPTX::BI__nvvm_ldg_ull2:
17852     // PTX Interoperability section 2.2: "For a vector with an even number of
17853     // elements, its alignment is set to number of elements times the alignment
17854     // of its member: n*alignof(t)."
17855     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17856   case NVPTX::BI__nvvm_ldg_f:
17857   case NVPTX::BI__nvvm_ldg_f2:
17858   case NVPTX::BI__nvvm_ldg_f4:
17859   case NVPTX::BI__nvvm_ldg_d:
17860   case NVPTX::BI__nvvm_ldg_d2:
17861     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17862 
17863   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17864   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17865   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17866     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17867   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17868   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17869   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17870     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17871   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17872   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17873     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17874   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17875   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17876     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17877   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17878   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17879   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17880     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17881   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17882   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17883   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17884     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17885   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17886   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17887   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17888   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17889   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17890   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17891     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17892   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17893   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17894   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17895   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17896   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17897   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17898     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17899   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17900   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17901   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17902   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17903   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17904   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17905     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17906   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17907   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17908   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17909   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17910   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17911   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17912     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17913   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17914     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17915   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17916     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17917   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17918     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17919   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17920     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17921   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17922   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17923   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17924     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17925   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17926   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17927   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17928     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17929   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17930   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17931   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17932     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17933   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17934   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17935   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17936     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17937   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17938   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17939   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17940     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17941   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17942   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17943   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17944     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17945   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17946   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17947   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17948     Value *Ptr = EmitScalarExpr(E->getArg(0));
17949     llvm::Type *ElemTy =
17950         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17951     return Builder.CreateCall(
17952         CGM.getIntrinsic(
17953             Intrinsic::nvvm_atomic_cas_gen_i_cta, {ElemTy, Ptr->getType()}),
17954         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17955   }
17956   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17957   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17958   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17959     Value *Ptr = EmitScalarExpr(E->getArg(0));
17960     llvm::Type *ElemTy =
17961         ConvertTypeForMem(E->getArg(0)->getType()->getPointeeType());
17962     return Builder.CreateCall(
17963         CGM.getIntrinsic(
17964             Intrinsic::nvvm_atomic_cas_gen_i_sys, {ElemTy, Ptr->getType()}),
17965         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17966   }
17967   case NVPTX::BI__nvvm_match_all_sync_i32p:
17968   case NVPTX::BI__nvvm_match_all_sync_i64p: {
17969     Value *Mask = EmitScalarExpr(E->getArg(0));
17970     Value *Val = EmitScalarExpr(E->getArg(1));
17971     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17972     Value *ResultPair = Builder.CreateCall(
17973         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17974                              ? Intrinsic::nvvm_match_all_sync_i32p
17975                              : Intrinsic::nvvm_match_all_sync_i64p),
17976         {Mask, Val});
17977     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17978                                      PredOutPtr.getElementType());
17979     Builder.CreateStore(Pred, PredOutPtr);
17980     return Builder.CreateExtractValue(ResultPair, 0);
17981   }
17982 
17983   // FP MMA loads
17984   case NVPTX::BI__hmma_m16n16k16_ld_a:
17985   case NVPTX::BI__hmma_m16n16k16_ld_b:
17986   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17987   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17988   case NVPTX::BI__hmma_m32n8k16_ld_a:
17989   case NVPTX::BI__hmma_m32n8k16_ld_b:
17990   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17991   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17992   case NVPTX::BI__hmma_m8n32k16_ld_a:
17993   case NVPTX::BI__hmma_m8n32k16_ld_b:
17994   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17995   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17996   // Integer MMA loads.
17997   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17998   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17999   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
18000   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
18001   case NVPTX::BI__imma_m16n16k16_ld_c:
18002   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
18003   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
18004   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
18005   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
18006   case NVPTX::BI__imma_m32n8k16_ld_c:
18007   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
18008   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
18009   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
18010   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
18011   case NVPTX::BI__imma_m8n32k16_ld_c:
18012   // Sub-integer MMA loads.
18013   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
18014   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
18015   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
18016   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
18017   case NVPTX::BI__imma_m8n8k32_ld_c:
18018   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
18019   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
18020   case NVPTX::BI__bmma_m8n8k128_ld_c:
18021   // Double MMA loads.
18022   case NVPTX::BI__dmma_m8n8k4_ld_a:
18023   case NVPTX::BI__dmma_m8n8k4_ld_b:
18024   case NVPTX::BI__dmma_m8n8k4_ld_c:
18025   // Alternate float MMA loads.
18026   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
18027   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
18028   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
18029   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
18030   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
18031   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
18032   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
18033   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
18034   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
18035     Address Dst = EmitPointerWithAlignment(E->getArg(0));
18036     Value *Src = EmitScalarExpr(E->getArg(1));
18037     Value *Ldm = EmitScalarExpr(E->getArg(2));
18038     Optional<llvm::APSInt> isColMajorArg =
18039         E->getArg(3)->getIntegerConstantExpr(getContext());
18040     if (!isColMajorArg)
18041       return nullptr;
18042     bool isColMajor = isColMajorArg->getSExtValue();
18043     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18044     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18045     if (IID == 0)
18046       return nullptr;
18047 
18048     Value *Result =
18049         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
18050 
18051     // Save returned values.
18052     assert(II.NumResults);
18053     if (II.NumResults == 1) {
18054       Builder.CreateAlignedStore(Result, Dst.getPointer(),
18055                                  CharUnits::fromQuantity(4));
18056     } else {
18057       for (unsigned i = 0; i < II.NumResults; ++i) {
18058         Builder.CreateAlignedStore(
18059             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
18060                                   Dst.getElementType()),
18061             Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18062                               llvm::ConstantInt::get(IntTy, i)),
18063             CharUnits::fromQuantity(4));
18064       }
18065     }
18066     return Result;
18067   }
18068 
18069   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
18070   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
18071   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
18072   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
18073   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
18074   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
18075   case NVPTX::BI__imma_m16n16k16_st_c_i32:
18076   case NVPTX::BI__imma_m32n8k16_st_c_i32:
18077   case NVPTX::BI__imma_m8n32k16_st_c_i32:
18078   case NVPTX::BI__imma_m8n8k32_st_c_i32:
18079   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
18080   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
18081   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
18082     Value *Dst = EmitScalarExpr(E->getArg(0));
18083     Address Src = EmitPointerWithAlignment(E->getArg(1));
18084     Value *Ldm = EmitScalarExpr(E->getArg(2));
18085     Optional<llvm::APSInt> isColMajorArg =
18086         E->getArg(3)->getIntegerConstantExpr(getContext());
18087     if (!isColMajorArg)
18088       return nullptr;
18089     bool isColMajor = isColMajorArg->getSExtValue();
18090     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
18091     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
18092     if (IID == 0)
18093       return nullptr;
18094     Function *Intrinsic =
18095         CGM.getIntrinsic(IID, Dst->getType());
18096     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
18097     SmallVector<Value *, 10> Values = {Dst};
18098     for (unsigned i = 0; i < II.NumResults; ++i) {
18099       Value *V = Builder.CreateAlignedLoad(
18100           Src.getElementType(),
18101           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
18102                             llvm::ConstantInt::get(IntTy, i)),
18103           CharUnits::fromQuantity(4));
18104       Values.push_back(Builder.CreateBitCast(V, ParamType));
18105     }
18106     Values.push_back(Ldm);
18107     Value *Result = Builder.CreateCall(Intrinsic, Values);
18108     return Result;
18109   }
18110 
18111   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
18112   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
18113   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
18114   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
18115   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
18116   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
18117   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
18118   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
18119   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
18120   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
18121   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
18122   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
18123   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
18124   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
18125   case NVPTX::BI__imma_m16n16k16_mma_s8:
18126   case NVPTX::BI__imma_m16n16k16_mma_u8:
18127   case NVPTX::BI__imma_m32n8k16_mma_s8:
18128   case NVPTX::BI__imma_m32n8k16_mma_u8:
18129   case NVPTX::BI__imma_m8n32k16_mma_s8:
18130   case NVPTX::BI__imma_m8n32k16_mma_u8:
18131   case NVPTX::BI__imma_m8n8k32_mma_s4:
18132   case NVPTX::BI__imma_m8n8k32_mma_u4:
18133   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
18134   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
18135   case NVPTX::BI__dmma_m8n8k4_mma_f64:
18136   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
18137   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
18138   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
18139   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
18140     Address Dst = EmitPointerWithAlignment(E->getArg(0));
18141     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
18142     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
18143     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
18144     Optional<llvm::APSInt> LayoutArg =
18145         E->getArg(4)->getIntegerConstantExpr(getContext());
18146     if (!LayoutArg)
18147       return nullptr;
18148     int Layout = LayoutArg->getSExtValue();
18149     if (Layout < 0 || Layout > 3)
18150       return nullptr;
18151     llvm::APSInt SatfArg;
18152     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
18153         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
18154       SatfArg = 0;  // .b1 does not have satf argument.
18155     else if (Optional<llvm::APSInt> OptSatfArg =
18156                  E->getArg(5)->getIntegerConstantExpr(getContext()))
18157       SatfArg = *OptSatfArg;
18158     else
18159       return nullptr;
18160     bool Satf = SatfArg.getSExtValue();
18161     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
18162     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
18163     if (IID == 0)  // Unsupported combination of Layout/Satf.
18164       return nullptr;
18165 
18166     SmallVector<Value *, 24> Values;
18167     Function *Intrinsic = CGM.getIntrinsic(IID);
18168     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
18169     // Load A
18170     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
18171       Value *V = Builder.CreateAlignedLoad(
18172           SrcA.getElementType(),
18173           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
18174                             llvm::ConstantInt::get(IntTy, i)),
18175           CharUnits::fromQuantity(4));
18176       Values.push_back(Builder.CreateBitCast(V, AType));
18177     }
18178     // Load B
18179     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
18180     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
18181       Value *V = Builder.CreateAlignedLoad(
18182           SrcB.getElementType(),
18183           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
18184                             llvm::ConstantInt::get(IntTy, i)),
18185           CharUnits::fromQuantity(4));
18186       Values.push_back(Builder.CreateBitCast(V, BType));
18187     }
18188     // Load C
18189     llvm::Type *CType =
18190         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
18191     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
18192       Value *V = Builder.CreateAlignedLoad(
18193           SrcC.getElementType(),
18194           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
18195                             llvm::ConstantInt::get(IntTy, i)),
18196           CharUnits::fromQuantity(4));
18197       Values.push_back(Builder.CreateBitCast(V, CType));
18198     }
18199     Value *Result = Builder.CreateCall(Intrinsic, Values);
18200     llvm::Type *DType = Dst.getElementType();
18201     for (unsigned i = 0; i < MI.NumEltsD; ++i)
18202       Builder.CreateAlignedStore(
18203           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
18204           Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
18205                             llvm::ConstantInt::get(IntTy, i)),
18206           CharUnits::fromQuantity(4));
18207     return Result;
18208   }
18209   default:
18210     return nullptr;
18211   }
18212 }
18213 
18214 namespace {
18215 struct BuiltinAlignArgs {
18216   llvm::Value *Src = nullptr;
18217   llvm::Type *SrcType = nullptr;
18218   llvm::Value *Alignment = nullptr;
18219   llvm::Value *Mask = nullptr;
18220   llvm::IntegerType *IntType = nullptr;
18221 
18222   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
18223     QualType AstType = E->getArg(0)->getType();
18224     if (AstType->isArrayType())
18225       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
18226     else
18227       Src = CGF.EmitScalarExpr(E->getArg(0));
18228     SrcType = Src->getType();
18229     if (SrcType->isPointerTy()) {
18230       IntType = IntegerType::get(
18231           CGF.getLLVMContext(),
18232           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
18233     } else {
18234       assert(SrcType->isIntegerTy());
18235       IntType = cast<llvm::IntegerType>(SrcType);
18236     }
18237     Alignment = CGF.EmitScalarExpr(E->getArg(1));
18238     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
18239     auto *One = llvm::ConstantInt::get(IntType, 1);
18240     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
18241   }
18242 };
18243 } // namespace
18244 
18245 /// Generate (x & (y-1)) == 0.
18246 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
18247   BuiltinAlignArgs Args(E, *this);
18248   llvm::Value *SrcAddress = Args.Src;
18249   if (Args.SrcType->isPointerTy())
18250     SrcAddress =
18251         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
18252   return RValue::get(Builder.CreateICmpEQ(
18253       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
18254       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
18255 }
18256 
18257 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
18258 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
18259 /// llvm.ptrmask intrinsic (with a GEP before in the align_up case).
18260 /// TODO: actually use ptrmask once most optimization passes know about it.
18261 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
18262   BuiltinAlignArgs Args(E, *this);
18263   llvm::Value *SrcAddr = Args.Src;
18264   if (Args.Src->getType()->isPointerTy())
18265     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
18266   llvm::Value *SrcForMask = SrcAddr;
18267   if (AlignUp) {
18268     // When aligning up we have to first add the mask to ensure we go over the
18269     // next alignment value and then align down to the next valid multiple.
18270     // By adding the mask, we ensure that align_up on an already aligned
18271     // value will not change the value.
18272     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
18273   }
18274   // Invert the mask to only clear the lower bits.
18275   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
18276   llvm::Value *Result =
18277       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
18278   if (Args.Src->getType()->isPointerTy()) {
18279     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
18280     // Result = Builder.CreateIntrinsic(
18281     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
18282     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
18283     Result->setName("aligned_intptr");
18284     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
18285     // The result must point to the same underlying allocation. This means we
18286     // can use an inbounds GEP to enable better optimization.
18287     Value *Base = EmitCastToVoidPtr(Args.Src);
18288     if (getLangOpts().isSignedOverflowDefined())
18289       Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
18290     else
18291       Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
18292                                       /*SignedIndices=*/true,
18293                                       /*isSubtraction=*/!AlignUp,
18294                                       E->getExprLoc(), "aligned_result");
18295     Result = Builder.CreatePointerCast(Result, Args.SrcType);
18296     // Emit an alignment assumption to ensure that the new alignment is
18297     // propagated to loads/stores, etc.
18298     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
18299   }
18300   assert(Result->getType() == Args.SrcType);
18301   return RValue::get(Result);
18302 }
18303 
18304 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
18305                                                    const CallExpr *E) {
18306   switch (BuiltinID) {
18307   case WebAssembly::BI__builtin_wasm_memory_size: {
18308     llvm::Type *ResultType = ConvertType(E->getType());
18309     Value *I = EmitScalarExpr(E->getArg(0));
18310     Function *Callee =
18311         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
18312     return Builder.CreateCall(Callee, I);
18313   }
18314   case WebAssembly::BI__builtin_wasm_memory_grow: {
18315     llvm::Type *ResultType = ConvertType(E->getType());
18316     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18317                      EmitScalarExpr(E->getArg(1))};
18318     Function *Callee =
18319         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18320     return Builder.CreateCall(Callee, Args);
18321   }
18322   case WebAssembly::BI__builtin_wasm_tls_size: {
18323     llvm::Type *ResultType = ConvertType(E->getType());
18324     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18325     return Builder.CreateCall(Callee);
18326   }
18327   case WebAssembly::BI__builtin_wasm_tls_align: {
18328     llvm::Type *ResultType = ConvertType(E->getType());
18329     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18330     return Builder.CreateCall(Callee);
18331   }
18332   case WebAssembly::BI__builtin_wasm_tls_base: {
18333     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18334     return Builder.CreateCall(Callee);
18335   }
18336   case WebAssembly::BI__builtin_wasm_throw: {
18337     Value *Tag = EmitScalarExpr(E->getArg(0));
18338     Value *Obj = EmitScalarExpr(E->getArg(1));
18339     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18340     return Builder.CreateCall(Callee, {Tag, Obj});
18341   }
18342   case WebAssembly::BI__builtin_wasm_rethrow: {
18343     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18344     return Builder.CreateCall(Callee);
18345   }
18346   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18347     Value *Addr = EmitScalarExpr(E->getArg(0));
18348     Value *Expected = EmitScalarExpr(E->getArg(1));
18349     Value *Timeout = EmitScalarExpr(E->getArg(2));
18350     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18351     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18352   }
18353   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18354     Value *Addr = EmitScalarExpr(E->getArg(0));
18355     Value *Expected = EmitScalarExpr(E->getArg(1));
18356     Value *Timeout = EmitScalarExpr(E->getArg(2));
18357     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18358     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18359   }
18360   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18361     Value *Addr = EmitScalarExpr(E->getArg(0));
18362     Value *Count = EmitScalarExpr(E->getArg(1));
18363     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18364     return Builder.CreateCall(Callee, {Addr, Count});
18365   }
18366   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
18367   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
18368   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
18369   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
18370     Value *Src = EmitScalarExpr(E->getArg(0));
18371     llvm::Type *ResT = ConvertType(E->getType());
18372     Function *Callee =
18373         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
18374     return Builder.CreateCall(Callee, {Src});
18375   }
18376   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
18377   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
18378   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
18379   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
18380     Value *Src = EmitScalarExpr(E->getArg(0));
18381     llvm::Type *ResT = ConvertType(E->getType());
18382     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
18383                                         {ResT, Src->getType()});
18384     return Builder.CreateCall(Callee, {Src});
18385   }
18386   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
18387   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
18388   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
18389   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
18390   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
18391     Value *Src = EmitScalarExpr(E->getArg(0));
18392     llvm::Type *ResT = ConvertType(E->getType());
18393     Function *Callee =
18394         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
18395     return Builder.CreateCall(Callee, {Src});
18396   }
18397   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
18398   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
18399   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
18400   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
18401   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
18402     Value *Src = EmitScalarExpr(E->getArg(0));
18403     llvm::Type *ResT = ConvertType(E->getType());
18404     Function *Callee =
18405         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
18406     return Builder.CreateCall(Callee, {Src});
18407   }
18408   case WebAssembly::BI__builtin_wasm_min_f32:
18409   case WebAssembly::BI__builtin_wasm_min_f64:
18410   case WebAssembly::BI__builtin_wasm_min_f32x4:
18411   case WebAssembly::BI__builtin_wasm_min_f64x2: {
18412     Value *LHS = EmitScalarExpr(E->getArg(0));
18413     Value *RHS = EmitScalarExpr(E->getArg(1));
18414     Function *Callee =
18415         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
18416     return Builder.CreateCall(Callee, {LHS, RHS});
18417   }
18418   case WebAssembly::BI__builtin_wasm_max_f32:
18419   case WebAssembly::BI__builtin_wasm_max_f64:
18420   case WebAssembly::BI__builtin_wasm_max_f32x4:
18421   case WebAssembly::BI__builtin_wasm_max_f64x2: {
18422     Value *LHS = EmitScalarExpr(E->getArg(0));
18423     Value *RHS = EmitScalarExpr(E->getArg(1));
18424     Function *Callee =
18425         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
18426     return Builder.CreateCall(Callee, {LHS, RHS});
18427   }
18428   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
18429   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
18430     Value *LHS = EmitScalarExpr(E->getArg(0));
18431     Value *RHS = EmitScalarExpr(E->getArg(1));
18432     Function *Callee =
18433         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
18434     return Builder.CreateCall(Callee, {LHS, RHS});
18435   }
18436   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
18437   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
18438     Value *LHS = EmitScalarExpr(E->getArg(0));
18439     Value *RHS = EmitScalarExpr(E->getArg(1));
18440     Function *Callee =
18441         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
18442     return Builder.CreateCall(Callee, {LHS, RHS});
18443   }
18444   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18445   case WebAssembly::BI__builtin_wasm_floor_f32x4:
18446   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18447   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18448   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18449   case WebAssembly::BI__builtin_wasm_floor_f64x2:
18450   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18451   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
18452     unsigned IntNo;
18453     switch (BuiltinID) {
18454     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18455     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18456       IntNo = Intrinsic::ceil;
18457       break;
18458     case WebAssembly::BI__builtin_wasm_floor_f32x4:
18459     case WebAssembly::BI__builtin_wasm_floor_f64x2:
18460       IntNo = Intrinsic::floor;
18461       break;
18462     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18463     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18464       IntNo = Intrinsic::trunc;
18465       break;
18466     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18467     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
18468       IntNo = Intrinsic::nearbyint;
18469       break;
18470     default:
18471       llvm_unreachable("unexpected builtin ID");
18472     }
18473     Value *Value = EmitScalarExpr(E->getArg(0));
18474     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18475     return Builder.CreateCall(Callee, Value);
18476   }
18477   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
18478     Value *Src = EmitScalarExpr(E->getArg(0));
18479     Value *Indices = EmitScalarExpr(E->getArg(1));
18480     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
18481     return Builder.CreateCall(Callee, {Src, Indices});
18482   }
18483   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18484   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18485   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18486   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18487   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18488   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18489   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18490   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
18491     unsigned IntNo;
18492     switch (BuiltinID) {
18493     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18494     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18495       IntNo = Intrinsic::sadd_sat;
18496       break;
18497     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18498     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18499       IntNo = Intrinsic::uadd_sat;
18500       break;
18501     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18502     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18503       IntNo = Intrinsic::wasm_sub_sat_signed;
18504       break;
18505     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18506     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18507       IntNo = Intrinsic::wasm_sub_sat_unsigned;
18508       break;
18509     default:
18510       llvm_unreachable("unexpected builtin ID");
18511     }
18512     Value *LHS = EmitScalarExpr(E->getArg(0));
18513     Value *RHS = EmitScalarExpr(E->getArg(1));
18514     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18515     return Builder.CreateCall(Callee, {LHS, RHS});
18516   }
18517   case WebAssembly::BI__builtin_wasm_abs_i8x16:
18518   case WebAssembly::BI__builtin_wasm_abs_i16x8:
18519   case WebAssembly::BI__builtin_wasm_abs_i32x4:
18520   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18521     Value *Vec = EmitScalarExpr(E->getArg(0));
18522     Value *Neg = Builder.CreateNeg(Vec, "neg");
18523     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18524     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18525     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18526   }
18527   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18528   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18529   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18530   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18531   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18532   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18533   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18534   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18535   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18536   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18537   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18538   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18539     Value *LHS = EmitScalarExpr(E->getArg(0));
18540     Value *RHS = EmitScalarExpr(E->getArg(1));
18541     Value *ICmp;
18542     switch (BuiltinID) {
18543     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18544     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18545     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18546       ICmp = Builder.CreateICmpSLT(LHS, RHS);
18547       break;
18548     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18549     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18550     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18551       ICmp = Builder.CreateICmpULT(LHS, RHS);
18552       break;
18553     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18554     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18555     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18556       ICmp = Builder.CreateICmpSGT(LHS, RHS);
18557       break;
18558     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18559     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18560     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18561       ICmp = Builder.CreateICmpUGT(LHS, RHS);
18562       break;
18563     default:
18564       llvm_unreachable("unexpected builtin ID");
18565     }
18566     return Builder.CreateSelect(ICmp, LHS, RHS);
18567   }
18568   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18569   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18570     Value *LHS = EmitScalarExpr(E->getArg(0));
18571     Value *RHS = EmitScalarExpr(E->getArg(1));
18572     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18573                                         ConvertType(E->getType()));
18574     return Builder.CreateCall(Callee, {LHS, RHS});
18575   }
18576   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18577     Value *LHS = EmitScalarExpr(E->getArg(0));
18578     Value *RHS = EmitScalarExpr(E->getArg(1));
18579     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18580     return Builder.CreateCall(Callee, {LHS, RHS});
18581   }
18582   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18583   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18584   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18585   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18586     Value *Vec = EmitScalarExpr(E->getArg(0));
18587     unsigned IntNo;
18588     switch (BuiltinID) {
18589     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18590     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18591       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18592       break;
18593     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18594     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18595       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18596       break;
18597     default:
18598       llvm_unreachable("unexptected builtin ID");
18599     }
18600 
18601     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18602     return Builder.CreateCall(Callee, Vec);
18603   }
18604   case WebAssembly::BI__builtin_wasm_bitselect: {
18605     Value *V1 = EmitScalarExpr(E->getArg(0));
18606     Value *V2 = EmitScalarExpr(E->getArg(1));
18607     Value *C = EmitScalarExpr(E->getArg(2));
18608     Function *Callee =
18609         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18610     return Builder.CreateCall(Callee, {V1, V2, C});
18611   }
18612   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18613     Value *LHS = EmitScalarExpr(E->getArg(0));
18614     Value *RHS = EmitScalarExpr(E->getArg(1));
18615     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18616     return Builder.CreateCall(Callee, {LHS, RHS});
18617   }
18618   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18619     Value *Vec = EmitScalarExpr(E->getArg(0));
18620     Function *Callee =
18621         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18622     return Builder.CreateCall(Callee, {Vec});
18623   }
18624   case WebAssembly::BI__builtin_wasm_any_true_v128:
18625   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18626   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18627   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18628   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18629     unsigned IntNo;
18630     switch (BuiltinID) {
18631     case WebAssembly::BI__builtin_wasm_any_true_v128:
18632       IntNo = Intrinsic::wasm_anytrue;
18633       break;
18634     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18635     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18636     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18637     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18638       IntNo = Intrinsic::wasm_alltrue;
18639       break;
18640     default:
18641       llvm_unreachable("unexpected builtin ID");
18642     }
18643     Value *Vec = EmitScalarExpr(E->getArg(0));
18644     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18645     return Builder.CreateCall(Callee, {Vec});
18646   }
18647   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18648   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18649   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18650   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
18651     Value *Vec = EmitScalarExpr(E->getArg(0));
18652     Function *Callee =
18653         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
18654     return Builder.CreateCall(Callee, {Vec});
18655   }
18656   case WebAssembly::BI__builtin_wasm_abs_f32x4:
18657   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
18658     Value *Vec = EmitScalarExpr(E->getArg(0));
18659     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
18660     return Builder.CreateCall(Callee, {Vec});
18661   }
18662   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
18663   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
18664     Value *Vec = EmitScalarExpr(E->getArg(0));
18665     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
18666     return Builder.CreateCall(Callee, {Vec});
18667   }
18668   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18669   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18670   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18671   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
18672     Value *Low = EmitScalarExpr(E->getArg(0));
18673     Value *High = EmitScalarExpr(E->getArg(1));
18674     unsigned IntNo;
18675     switch (BuiltinID) {
18676     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18677     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18678       IntNo = Intrinsic::wasm_narrow_signed;
18679       break;
18680     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18681     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
18682       IntNo = Intrinsic::wasm_narrow_unsigned;
18683       break;
18684     default:
18685       llvm_unreachable("unexpected builtin ID");
18686     }
18687     Function *Callee =
18688         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
18689     return Builder.CreateCall(Callee, {Low, High});
18690   }
18691   case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18692   case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4: {
18693     Value *Vec = EmitScalarExpr(E->getArg(0));
18694     unsigned IntNo;
18695     switch (BuiltinID) {
18696     case WebAssembly::BI__builtin_wasm_trunc_sat_s_zero_f64x2_i32x4:
18697       IntNo = Intrinsic::fptosi_sat;
18698       break;
18699     case WebAssembly::BI__builtin_wasm_trunc_sat_u_zero_f64x2_i32x4:
18700       IntNo = Intrinsic::fptoui_sat;
18701       break;
18702     default:
18703       llvm_unreachable("unexpected builtin ID");
18704     }
18705     llvm::Type *SrcT = Vec->getType();
18706     llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
18707     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18708     Value *Trunc = Builder.CreateCall(Callee, Vec);
18709     Value *Splat = Constant::getNullValue(TruncT);
18710     return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
18711   }
18712   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18713     Value *Ops[18];
18714     size_t OpIdx = 0;
18715     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18716     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18717     while (OpIdx < 18) {
18718       Optional<llvm::APSInt> LaneConst =
18719           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18720       assert(LaneConst && "Constant arg isn't actually constant?");
18721       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18722     }
18723     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18724     return Builder.CreateCall(Callee, Ops);
18725   }
18726   case WebAssembly::BI__builtin_wasm_fma_f32x4:
18727   case WebAssembly::BI__builtin_wasm_fms_f32x4:
18728   case WebAssembly::BI__builtin_wasm_fma_f64x2:
18729   case WebAssembly::BI__builtin_wasm_fms_f64x2: {
18730     Value *A = EmitScalarExpr(E->getArg(0));
18731     Value *B = EmitScalarExpr(E->getArg(1));
18732     Value *C = EmitScalarExpr(E->getArg(2));
18733     unsigned IntNo;
18734     switch (BuiltinID) {
18735     case WebAssembly::BI__builtin_wasm_fma_f32x4:
18736     case WebAssembly::BI__builtin_wasm_fma_f64x2:
18737       IntNo = Intrinsic::wasm_fma;
18738       break;
18739     case WebAssembly::BI__builtin_wasm_fms_f32x4:
18740     case WebAssembly::BI__builtin_wasm_fms_f64x2:
18741       IntNo = Intrinsic::wasm_fms;
18742       break;
18743     default:
18744       llvm_unreachable("unexpected builtin ID");
18745     }
18746     Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
18747     return Builder.CreateCall(Callee, {A, B, C});
18748   }
18749   case WebAssembly::BI__builtin_wasm_laneselect_i8x16:
18750   case WebAssembly::BI__builtin_wasm_laneselect_i16x8:
18751   case WebAssembly::BI__builtin_wasm_laneselect_i32x4:
18752   case WebAssembly::BI__builtin_wasm_laneselect_i64x2: {
18753     Value *A = EmitScalarExpr(E->getArg(0));
18754     Value *B = EmitScalarExpr(E->getArg(1));
18755     Value *C = EmitScalarExpr(E->getArg(2));
18756     Function *Callee =
18757         CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType());
18758     return Builder.CreateCall(Callee, {A, B, C});
18759   }
18760   case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
18761     Value *Src = EmitScalarExpr(E->getArg(0));
18762     Value *Indices = EmitScalarExpr(E->getArg(1));
18763     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
18764     return Builder.CreateCall(Callee, {Src, Indices});
18765   }
18766   case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18767   case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18768   case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18769   case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
18770     Value *LHS = EmitScalarExpr(E->getArg(0));
18771     Value *RHS = EmitScalarExpr(E->getArg(1));
18772     unsigned IntNo;
18773     switch (BuiltinID) {
18774     case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18775     case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18776       IntNo = Intrinsic::wasm_relaxed_min;
18777       break;
18778     case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18779     case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
18780       IntNo = Intrinsic::wasm_relaxed_max;
18781       break;
18782     default:
18783       llvm_unreachable("unexpected builtin ID");
18784     }
18785     Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
18786     return Builder.CreateCall(Callee, {LHS, RHS});
18787   }
18788   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18789   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18790   case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18791   case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2: {
18792     Value *Vec = EmitScalarExpr(E->getArg(0));
18793     unsigned IntNo;
18794     switch (BuiltinID) {
18795     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18796       IntNo = Intrinsic::wasm_relaxed_trunc_signed;
18797       break;
18798     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18799       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
18800       break;
18801     case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_zero_i32x4_f64x2:
18802       IntNo = Intrinsic::wasm_relaxed_trunc_signed_zero;
18803       break;
18804     case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_zero_i32x4_f64x2:
18805       IntNo = Intrinsic::wasm_relaxed_trunc_unsigned_zero;
18806       break;
18807     default:
18808       llvm_unreachable("unexpected builtin ID");
18809     }
18810     Function *Callee = CGM.getIntrinsic(IntNo);
18811     return Builder.CreateCall(Callee, {Vec});
18812   }
18813   case WebAssembly::BI__builtin_wasm_relaxed_q15mulr_s_i16x8: {
18814     Value *LHS = EmitScalarExpr(E->getArg(0));
18815     Value *RHS = EmitScalarExpr(E->getArg(1));
18816     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_q15mulr_signed);
18817     return Builder.CreateCall(Callee, {LHS, RHS});
18818   }
18819   case WebAssembly::BI__builtin_wasm_dot_i8x16_i7x16_s_i16x8: {
18820     Value *LHS = EmitScalarExpr(E->getArg(0));
18821     Value *RHS = EmitScalarExpr(E->getArg(1));
18822     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot_i8x16_i7x16_signed);
18823     return Builder.CreateCall(Callee, {LHS, RHS});
18824   }
18825   case WebAssembly::BI__builtin_wasm_dot_i8x16_i7x16_add_s_i32x4: {
18826     Value *LHS = EmitScalarExpr(E->getArg(0));
18827     Value *RHS = EmitScalarExpr(E->getArg(1));
18828     Value *Acc = EmitScalarExpr(E->getArg(2));
18829     Function *Callee =
18830         CGM.getIntrinsic(Intrinsic::wasm_dot_i8x16_i7x16_add_signed);
18831     return Builder.CreateCall(Callee, {LHS, RHS, Acc});
18832   }
18833   default:
18834     return nullptr;
18835   }
18836 }
18837 
18838 static std::pair<Intrinsic::ID, unsigned>
18839 getIntrinsicForHexagonNonClangBuiltin(unsigned BuiltinID) {
18840   struct Info {
18841     unsigned BuiltinID;
18842     Intrinsic::ID IntrinsicID;
18843     unsigned VecLen;
18844   };
18845   Info Infos[] = {
18846 #define CUSTOM_BUILTIN_MAPPING(x,s) \
18847   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18848     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18849     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18850     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18851     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18852     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18853     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18854     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18855     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18856     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18857     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18858     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18859     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18860     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18861     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18862     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18863     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18864     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18865     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18866     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18867     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18868     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18869     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18870     // Legacy builtins that take a vector in place of a vector predicate.
18871     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18872     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18873     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18874     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18875     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18876     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18877     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18878     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18879 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18880 #undef CUSTOM_BUILTIN_MAPPING
18881   };
18882 
18883   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18884   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18885   (void)SortOnce;
18886 
18887   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18888                                    Info{BuiltinID, 0, 0}, CmpInfo);
18889   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18890     return {Intrinsic::not_intrinsic, 0};
18891 
18892   return {F->IntrinsicID, F->VecLen};
18893 }
18894 
18895 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18896                                                const CallExpr *E) {
18897   Intrinsic::ID ID;
18898   unsigned VecLen;
18899   std::tie(ID, VecLen) = getIntrinsicForHexagonNonClangBuiltin(BuiltinID);
18900 
18901   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18902     // The base pointer is passed by address, so it needs to be loaded.
18903     Address A = EmitPointerWithAlignment(E->getArg(0));
18904     Address BP = Address(Builder.CreateBitCast(
18905         A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
18906     llvm::Value *Base = Builder.CreateLoad(BP);
18907     // The treatment of both loads and stores is the same: the arguments for
18908     // the builtin are the same as the arguments for the intrinsic.
18909     // Load:
18910     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18911     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
18912     // Store:
18913     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18914     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
18915     SmallVector<llvm::Value*,5> Ops = { Base };
18916     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18917       Ops.push_back(EmitScalarExpr(E->getArg(i)));
18918 
18919     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18920     // The load intrinsics generate two results (Value, NewBase), stores
18921     // generate one (NewBase). The new base address needs to be stored.
18922     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18923                                   : Result;
18924     llvm::Value *LV = Builder.CreateBitCast(
18925         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18926     Address Dest = EmitPointerWithAlignment(E->getArg(0));
18927     llvm::Value *RetVal =
18928         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18929     if (IsLoad)
18930       RetVal = Builder.CreateExtractValue(Result, 0);
18931     return RetVal;
18932   };
18933 
18934   // Handle the conversion of bit-reverse load intrinsics to bit code.
18935   // The intrinsic call after this function only reads from memory and the
18936   // write to memory is dealt by the store instruction.
18937   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18938     // The intrinsic generates one result, which is the new value for the base
18939     // pointer. It needs to be returned. The result of the load instruction is
18940     // passed to intrinsic by address, so the value needs to be stored.
18941     llvm::Value *BaseAddress =
18942         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18943 
18944     // Expressions like &(*pt++) will be incremented per evaluation.
18945     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18946     // per call.
18947     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18948     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18949                        Int8Ty, DestAddr.getAlignment());
18950     llvm::Value *DestAddress = DestAddr.getPointer();
18951 
18952     // Operands are Base, Dest, Modifier.
18953     // The intrinsic format in LLVM IR is defined as
18954     // { ValueType, i8* } (i8*, i32).
18955     llvm::Value *Result = Builder.CreateCall(
18956         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18957 
18958     // The value needs to be stored as the variable is passed by reference.
18959     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18960 
18961     // The store needs to be truncated to fit the destination type.
18962     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18963     // to be handled with stores of respective destination type.
18964     DestVal = Builder.CreateTrunc(DestVal, DestTy);
18965 
18966     llvm::Value *DestForStore =
18967         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18968     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18969     // The updated value of the base pointer is returned.
18970     return Builder.CreateExtractValue(Result, 1);
18971   };
18972 
18973   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18974     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18975                                      : Intrinsic::hexagon_V6_vandvrt;
18976     return Builder.CreateCall(CGM.getIntrinsic(ID),
18977                               {Vec, Builder.getInt32(-1)});
18978   };
18979   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18980     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18981                                      : Intrinsic::hexagon_V6_vandqrt;
18982     return Builder.CreateCall(CGM.getIntrinsic(ID),
18983                               {Pred, Builder.getInt32(-1)});
18984   };
18985 
18986   switch (BuiltinID) {
18987   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18988   // and the corresponding C/C++ builtins use loads/stores to update
18989   // the predicate.
18990   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18991   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18992   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18993   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18994     // Get the type from the 0-th argument.
18995     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18996     Address PredAddr = Builder.CreateElementBitCast(
18997         EmitPointerWithAlignment(E->getArg(2)), VecType);
18998     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18999     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
19000         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
19001 
19002     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
19003     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
19004         PredAddr.getAlignment());
19005     return Builder.CreateExtractValue(Result, 0);
19006   }
19007 
19008   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
19009   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
19010   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
19011   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
19012   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
19013   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
19014   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
19015   case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
19016     SmallVector<llvm::Value*,4> Ops;
19017     const Expr *PredOp = E->getArg(0);
19018     // There will be an implicit cast to a boolean vector. Strip it.
19019     if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
19020       if (Cast->getCastKind() == CK_BitCast)
19021         PredOp = Cast->getSubExpr();
19022       Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
19023     }
19024     for (int i = 1, e = E->getNumArgs(); i != e; ++i)
19025       Ops.push_back(EmitScalarExpr(E->getArg(i)));
19026     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
19027   }
19028 
19029   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
19030   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
19031   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
19032   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
19033   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
19034   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
19035   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
19036   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
19037   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
19038   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
19039   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
19040   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
19041     return MakeCircOp(ID, /*IsLoad=*/true);
19042   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
19043   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
19044   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
19045   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
19046   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
19047   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
19048   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
19049   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
19050   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
19051   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
19052     return MakeCircOp(ID, /*IsLoad=*/false);
19053   case Hexagon::BI__builtin_brev_ldub:
19054     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
19055   case Hexagon::BI__builtin_brev_ldb:
19056     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
19057   case Hexagon::BI__builtin_brev_lduh:
19058     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
19059   case Hexagon::BI__builtin_brev_ldh:
19060     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
19061   case Hexagon::BI__builtin_brev_ldw:
19062     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
19063   case Hexagon::BI__builtin_brev_ldd:
19064     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
19065   } // switch
19066 
19067   return nullptr;
19068 }
19069 
19070 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
19071                                              const CallExpr *E,
19072                                              ReturnValueSlot ReturnValue) {
19073   SmallVector<Value *, 4> Ops;
19074   llvm::Type *ResultType = ConvertType(E->getType());
19075 
19076   // Find out if any arguments are required to be integer constant expressions.
19077   unsigned ICEArguments = 0;
19078   ASTContext::GetBuiltinTypeError Error;
19079   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
19080   if (Error == ASTContext::GE_Missing_type) {
19081     // Vector intrinsics don't have a type string.
19082     assert(BuiltinID >= clang::RISCV::FirstRVVBuiltin &&
19083            BuiltinID <= clang::RISCV::LastRVVBuiltin);
19084     ICEArguments = 0;
19085     if (BuiltinID == RISCVVector::BI__builtin_rvv_vget_v ||
19086         BuiltinID == RISCVVector::BI__builtin_rvv_vset_v)
19087       ICEArguments = 1 << 1;
19088   } else {
19089     assert(Error == ASTContext::GE_None && "Unexpected error");
19090   }
19091 
19092   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
19093     // If this is a normal argument, just emit it as a scalar.
19094     if ((ICEArguments & (1 << i)) == 0) {
19095       Ops.push_back(EmitScalarExpr(E->getArg(i)));
19096       continue;
19097     }
19098 
19099     // If this is required to be a constant, constant fold it so that we know
19100     // that the generated intrinsic gets a ConstantInt.
19101     Ops.push_back(llvm::ConstantInt::get(
19102         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
19103   }
19104 
19105   Intrinsic::ID ID = Intrinsic::not_intrinsic;
19106   unsigned NF = 1;
19107   constexpr unsigned TAIL_UNDISTURBED = 0;
19108 
19109   // Required for overloaded intrinsics.
19110   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
19111   switch (BuiltinID) {
19112   default: llvm_unreachable("unexpected builtin ID");
19113   case RISCV::BI__builtin_riscv_orc_b_32:
19114   case RISCV::BI__builtin_riscv_orc_b_64:
19115   case RISCV::BI__builtin_riscv_clz_32:
19116   case RISCV::BI__builtin_riscv_clz_64:
19117   case RISCV::BI__builtin_riscv_ctz_32:
19118   case RISCV::BI__builtin_riscv_ctz_64:
19119   case RISCV::BI__builtin_riscv_clmul:
19120   case RISCV::BI__builtin_riscv_clmulh:
19121   case RISCV::BI__builtin_riscv_clmulr:
19122   case RISCV::BI__builtin_riscv_bcompress_32:
19123   case RISCV::BI__builtin_riscv_bcompress_64:
19124   case RISCV::BI__builtin_riscv_bdecompress_32:
19125   case RISCV::BI__builtin_riscv_bdecompress_64:
19126   case RISCV::BI__builtin_riscv_bfp_32:
19127   case RISCV::BI__builtin_riscv_bfp_64:
19128   case RISCV::BI__builtin_riscv_grev_32:
19129   case RISCV::BI__builtin_riscv_grev_64:
19130   case RISCV::BI__builtin_riscv_gorc_32:
19131   case RISCV::BI__builtin_riscv_gorc_64:
19132   case RISCV::BI__builtin_riscv_shfl_32:
19133   case RISCV::BI__builtin_riscv_shfl_64:
19134   case RISCV::BI__builtin_riscv_unshfl_32:
19135   case RISCV::BI__builtin_riscv_unshfl_64:
19136   case RISCV::BI__builtin_riscv_xperm4:
19137   case RISCV::BI__builtin_riscv_xperm8:
19138   case RISCV::BI__builtin_riscv_xperm_n:
19139   case RISCV::BI__builtin_riscv_xperm_b:
19140   case RISCV::BI__builtin_riscv_xperm_h:
19141   case RISCV::BI__builtin_riscv_xperm_w:
19142   case RISCV::BI__builtin_riscv_crc32_b:
19143   case RISCV::BI__builtin_riscv_crc32_h:
19144   case RISCV::BI__builtin_riscv_crc32_w:
19145   case RISCV::BI__builtin_riscv_crc32_d:
19146   case RISCV::BI__builtin_riscv_crc32c_b:
19147   case RISCV::BI__builtin_riscv_crc32c_h:
19148   case RISCV::BI__builtin_riscv_crc32c_w:
19149   case RISCV::BI__builtin_riscv_crc32c_d:
19150   case RISCV::BI__builtin_riscv_fsl_32:
19151   case RISCV::BI__builtin_riscv_fsr_32:
19152   case RISCV::BI__builtin_riscv_fsl_64:
19153   case RISCV::BI__builtin_riscv_fsr_64:
19154   case RISCV::BI__builtin_riscv_brev8:
19155   case RISCV::BI__builtin_riscv_zip_32:
19156   case RISCV::BI__builtin_riscv_unzip_32: {
19157     switch (BuiltinID) {
19158     default: llvm_unreachable("unexpected builtin ID");
19159     // Zbb
19160     case RISCV::BI__builtin_riscv_orc_b_32:
19161     case RISCV::BI__builtin_riscv_orc_b_64:
19162       ID = Intrinsic::riscv_orc_b;
19163       break;
19164     case RISCV::BI__builtin_riscv_clz_32:
19165     case RISCV::BI__builtin_riscv_clz_64: {
19166       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
19167       return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19168     }
19169     case RISCV::BI__builtin_riscv_ctz_32:
19170     case RISCV::BI__builtin_riscv_ctz_64: {
19171       Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
19172       return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
19173     }
19174 
19175     // Zbc
19176     case RISCV::BI__builtin_riscv_clmul:
19177       ID = Intrinsic::riscv_clmul;
19178       break;
19179     case RISCV::BI__builtin_riscv_clmulh:
19180       ID = Intrinsic::riscv_clmulh;
19181       break;
19182     case RISCV::BI__builtin_riscv_clmulr:
19183       ID = Intrinsic::riscv_clmulr;
19184       break;
19185 
19186     // Zbe
19187     case RISCV::BI__builtin_riscv_bcompress_32:
19188     case RISCV::BI__builtin_riscv_bcompress_64:
19189       ID = Intrinsic::riscv_bcompress;
19190       break;
19191     case RISCV::BI__builtin_riscv_bdecompress_32:
19192     case RISCV::BI__builtin_riscv_bdecompress_64:
19193       ID = Intrinsic::riscv_bdecompress;
19194       break;
19195 
19196     // Zbf
19197     case RISCV::BI__builtin_riscv_bfp_32:
19198     case RISCV::BI__builtin_riscv_bfp_64:
19199       ID = Intrinsic::riscv_bfp;
19200       break;
19201 
19202     // Zbp
19203     case RISCV::BI__builtin_riscv_grev_32:
19204     case RISCV::BI__builtin_riscv_grev_64:
19205       ID = Intrinsic::riscv_grev;
19206       break;
19207     case RISCV::BI__builtin_riscv_gorc_32:
19208     case RISCV::BI__builtin_riscv_gorc_64:
19209       ID = Intrinsic::riscv_gorc;
19210       break;
19211     case RISCV::BI__builtin_riscv_shfl_32:
19212     case RISCV::BI__builtin_riscv_shfl_64:
19213       ID = Intrinsic::riscv_shfl;
19214       break;
19215     case RISCV::BI__builtin_riscv_unshfl_32:
19216     case RISCV::BI__builtin_riscv_unshfl_64:
19217       ID = Intrinsic::riscv_unshfl;
19218       break;
19219     case RISCV::BI__builtin_riscv_xperm_n:
19220       ID = Intrinsic::riscv_xperm_n;
19221       break;
19222     case RISCV::BI__builtin_riscv_xperm_b:
19223       ID = Intrinsic::riscv_xperm_b;
19224       break;
19225     case RISCV::BI__builtin_riscv_xperm_h:
19226       ID = Intrinsic::riscv_xperm_h;
19227       break;
19228     case RISCV::BI__builtin_riscv_xperm_w:
19229       ID = Intrinsic::riscv_xperm_w;
19230       break;
19231 
19232     // Zbr
19233     case RISCV::BI__builtin_riscv_crc32_b:
19234       ID = Intrinsic::riscv_crc32_b;
19235       break;
19236     case RISCV::BI__builtin_riscv_crc32_h:
19237       ID = Intrinsic::riscv_crc32_h;
19238       break;
19239     case RISCV::BI__builtin_riscv_crc32_w:
19240       ID = Intrinsic::riscv_crc32_w;
19241       break;
19242     case RISCV::BI__builtin_riscv_crc32_d:
19243       ID = Intrinsic::riscv_crc32_d;
19244       break;
19245     case RISCV::BI__builtin_riscv_crc32c_b:
19246       ID = Intrinsic::riscv_crc32c_b;
19247       break;
19248     case RISCV::BI__builtin_riscv_crc32c_h:
19249       ID = Intrinsic::riscv_crc32c_h;
19250       break;
19251     case RISCV::BI__builtin_riscv_crc32c_w:
19252       ID = Intrinsic::riscv_crc32c_w;
19253       break;
19254     case RISCV::BI__builtin_riscv_crc32c_d:
19255       ID = Intrinsic::riscv_crc32c_d;
19256       break;
19257 
19258     // Zbt
19259     case RISCV::BI__builtin_riscv_fsl_32:
19260     case RISCV::BI__builtin_riscv_fsl_64:
19261       ID = Intrinsic::riscv_fsl;
19262       break;
19263     case RISCV::BI__builtin_riscv_fsr_32:
19264     case RISCV::BI__builtin_riscv_fsr_64:
19265       ID = Intrinsic::riscv_fsr;
19266       break;
19267 
19268     // Zbkx
19269     case RISCV::BI__builtin_riscv_xperm8:
19270       ID = Intrinsic::riscv_xperm8;
19271       break;
19272     case RISCV::BI__builtin_riscv_xperm4:
19273       ID = Intrinsic::riscv_xperm4;
19274       break;
19275 
19276     // Zbkb
19277     case RISCV::BI__builtin_riscv_brev8:
19278       ID = Intrinsic::riscv_brev8;
19279       break;
19280     case RISCV::BI__builtin_riscv_zip_32:
19281       ID = Intrinsic::riscv_zip;
19282       break;
19283     case RISCV::BI__builtin_riscv_unzip_32:
19284       ID = Intrinsic::riscv_unzip;
19285       break;
19286     }
19287 
19288     IntrinsicTypes = {ResultType};
19289     break;
19290   }
19291 
19292   // Zk builtins
19293 
19294   // Zknd
19295   case RISCV::BI__builtin_riscv_aes32dsi_32:
19296     ID = Intrinsic::riscv_aes32dsi;
19297     break;
19298   case RISCV::BI__builtin_riscv_aes32dsmi_32:
19299     ID = Intrinsic::riscv_aes32dsmi;
19300     break;
19301   case RISCV::BI__builtin_riscv_aes64ds_64:
19302     ID = Intrinsic::riscv_aes64ds;
19303     break;
19304   case RISCV::BI__builtin_riscv_aes64dsm_64:
19305     ID = Intrinsic::riscv_aes64dsm;
19306     break;
19307   case RISCV::BI__builtin_riscv_aes64im_64:
19308     ID = Intrinsic::riscv_aes64im;
19309     break;
19310 
19311   // Zkne
19312   case RISCV::BI__builtin_riscv_aes32esi_32:
19313     ID = Intrinsic::riscv_aes32esi;
19314     break;
19315   case RISCV::BI__builtin_riscv_aes32esmi_32:
19316     ID = Intrinsic::riscv_aes32esmi;
19317     break;
19318   case RISCV::BI__builtin_riscv_aes64es_64:
19319     ID = Intrinsic::riscv_aes64es;
19320     break;
19321   case RISCV::BI__builtin_riscv_aes64esm_64:
19322     ID = Intrinsic::riscv_aes64esm;
19323     break;
19324 
19325   // Zknd & Zkne
19326   case RISCV::BI__builtin_riscv_aes64ks1i_64:
19327     ID = Intrinsic::riscv_aes64ks1i;
19328     break;
19329   case RISCV::BI__builtin_riscv_aes64ks2_64:
19330     ID = Intrinsic::riscv_aes64ks2;
19331     break;
19332 
19333   // Zknh
19334   case RISCV::BI__builtin_riscv_sha256sig0:
19335     ID = Intrinsic::riscv_sha256sig0;
19336     IntrinsicTypes = {ResultType};
19337     break;
19338   case RISCV::BI__builtin_riscv_sha256sig1:
19339     ID = Intrinsic::riscv_sha256sig1;
19340     IntrinsicTypes = {ResultType};
19341     break;
19342   case RISCV::BI__builtin_riscv_sha256sum0:
19343     ID = Intrinsic::riscv_sha256sum0;
19344     IntrinsicTypes = {ResultType};
19345     break;
19346   case RISCV::BI__builtin_riscv_sha256sum1:
19347     ID = Intrinsic::riscv_sha256sum1;
19348     IntrinsicTypes = {ResultType};
19349     break;
19350   case RISCV::BI__builtin_riscv_sha512sig0_64:
19351     ID = Intrinsic::riscv_sha512sig0;
19352     break;
19353   case RISCV::BI__builtin_riscv_sha512sig0h_32:
19354     ID = Intrinsic::riscv_sha512sig0h;
19355     break;
19356   case RISCV::BI__builtin_riscv_sha512sig0l_32:
19357     ID = Intrinsic::riscv_sha512sig0l;
19358     break;
19359   case RISCV::BI__builtin_riscv_sha512sig1_64:
19360     ID = Intrinsic::riscv_sha512sig1;
19361     break;
19362   case RISCV::BI__builtin_riscv_sha512sig1h_32:
19363     ID = Intrinsic::riscv_sha512sig1h;
19364     break;
19365   case RISCV::BI__builtin_riscv_sha512sig1l_32:
19366     ID = Intrinsic::riscv_sha512sig1l;
19367     break;
19368   case RISCV::BI__builtin_riscv_sha512sum0_64:
19369     ID = Intrinsic::riscv_sha512sum0;
19370     break;
19371   case RISCV::BI__builtin_riscv_sha512sum0r_32:
19372     ID = Intrinsic::riscv_sha512sum0r;
19373     break;
19374   case RISCV::BI__builtin_riscv_sha512sum1_64:
19375     ID = Intrinsic::riscv_sha512sum1;
19376     break;
19377   case RISCV::BI__builtin_riscv_sha512sum1r_32:
19378     ID = Intrinsic::riscv_sha512sum1r;
19379     break;
19380 
19381   // Zksed
19382   case RISCV::BI__builtin_riscv_sm4ks:
19383     ID = Intrinsic::riscv_sm4ks;
19384     IntrinsicTypes = {ResultType};
19385     break;
19386   case RISCV::BI__builtin_riscv_sm4ed:
19387     ID = Intrinsic::riscv_sm4ed;
19388     IntrinsicTypes = {ResultType};
19389     break;
19390 
19391   // Zksh
19392   case RISCV::BI__builtin_riscv_sm3p0:
19393     ID = Intrinsic::riscv_sm3p0;
19394     IntrinsicTypes = {ResultType};
19395     break;
19396   case RISCV::BI__builtin_riscv_sm3p1:
19397     ID = Intrinsic::riscv_sm3p1;
19398     IntrinsicTypes = {ResultType};
19399     break;
19400 
19401   // Vector builtins are handled from here.
19402 #include "clang/Basic/riscv_vector_builtin_cg.inc"
19403   }
19404 
19405   assert(ID != Intrinsic::not_intrinsic);
19406 
19407   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
19408   return Builder.CreateCall(F, Ops, "");
19409 }
19410