1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Expr nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCXXABI.h"
14 #include "CGCall.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "ConstantEmitter.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/AST/NSAPI.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/CodeGenOptions.h"
30 #include "llvm/ADT/Hashing.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/Support/ConvertUTF.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/Path.h"
39 #include "llvm/Transforms/Utils/SanitizerStats.h"
40 
41 #include <string>
42 
43 using namespace clang;
44 using namespace CodeGen;
45 
46 //===--------------------------------------------------------------------===//
47 //                        Miscellaneous Helper Methods
48 //===--------------------------------------------------------------------===//
49 
50 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
51   unsigned addressSpace =
52       cast<llvm::PointerType>(value->getType())->getAddressSpace();
53 
54   llvm::PointerType *destType = Int8PtrTy;
55   if (addressSpace)
56     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
57 
58   if (value->getType() == destType) return value;
59   return Builder.CreateBitCast(value, destType);
60 }
61 
62 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
63 /// block.
64 Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
65                                                      CharUnits Align,
66                                                      const Twine &Name,
67                                                      llvm::Value *ArraySize) {
68   auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
69   Alloca->setAlignment(Align.getQuantity());
70   return Address(Alloca, Align);
71 }
72 
73 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
74 /// block. The alloca is casted to default address space if necessary.
75 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
76                                           const Twine &Name,
77                                           llvm::Value *ArraySize,
78                                           Address *AllocaAddr) {
79   auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
80   if (AllocaAddr)
81     *AllocaAddr = Alloca;
82   llvm::Value *V = Alloca.getPointer();
83   // Alloca always returns a pointer in alloca address space, which may
84   // be different from the type defined by the language. For example,
85   // in C++ the auto variables are in the default address space. Therefore
86   // cast alloca to the default address space when necessary.
87   if (getASTAllocaAddressSpace() != LangAS::Default) {
88     auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
89     llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
90     // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
91     // otherwise alloca is inserted at the current insertion point of the
92     // builder.
93     if (!ArraySize)
94       Builder.SetInsertPoint(AllocaInsertPt);
95     V = getTargetHooks().performAddrSpaceCast(
96         *this, V, getASTAllocaAddressSpace(), LangAS::Default,
97         Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
98   }
99 
100   return Address(V, Align);
101 }
102 
103 /// CreateTempAlloca - This creates an alloca and inserts it into the entry
104 /// block if \p ArraySize is nullptr, otherwise inserts it at the current
105 /// insertion point of the builder.
106 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
107                                                     const Twine &Name,
108                                                     llvm::Value *ArraySize) {
109   if (ArraySize)
110     return Builder.CreateAlloca(Ty, ArraySize, Name);
111   return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
112                               ArraySize, Name, AllocaInsertPt);
113 }
114 
115 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
116 /// default alignment of the corresponding LLVM type, which is *not*
117 /// guaranteed to be related in any way to the expected alignment of
118 /// an AST type that might have been lowered to Ty.
119 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
120                                                       const Twine &Name) {
121   CharUnits Align =
122     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
123   return CreateTempAlloca(Ty, Align, Name);
124 }
125 
126 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
127   assert(isa<llvm::AllocaInst>(Var.getPointer()));
128   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
129   Store->setAlignment(Var.getAlignment().getQuantity());
130   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
131   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
132 }
133 
134 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
135   CharUnits Align = getContext().getTypeAlignInChars(Ty);
136   return CreateTempAlloca(ConvertType(Ty), Align, Name);
137 }
138 
139 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
140                                        Address *Alloca) {
141   // FIXME: Should we prefer the preferred type alignment here?
142   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
143 }
144 
145 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
146                                        const Twine &Name, Address *Alloca) {
147   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
148                           /*ArraySize=*/nullptr, Alloca);
149 }
150 
151 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
152                                                   const Twine &Name) {
153   return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
154 }
155 
156 Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
157                                                   const Twine &Name) {
158   return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
159                                   Name);
160 }
161 
162 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
163 /// expression and compare the result against zero, returning an Int1Ty value.
164 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
165   PGO.setCurrentStmt(E);
166   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
167     llvm::Value *MemPtr = EmitScalarExpr(E);
168     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
169   }
170 
171   QualType BoolTy = getContext().BoolTy;
172   SourceLocation Loc = E->getExprLoc();
173   if (!E->getType()->isAnyComplexType())
174     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
175 
176   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
177                                        Loc);
178 }
179 
180 /// EmitIgnoredExpr - Emit code to compute the specified expression,
181 /// ignoring the result.
182 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
183   if (E->isRValue())
184     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
185 
186   // Just emit it as an l-value and drop the result.
187   EmitLValue(E);
188 }
189 
190 /// EmitAnyExpr - Emit code to compute the specified expression which
191 /// can have any type.  The result is returned as an RValue struct.
192 /// If this is an aggregate expression, AggSlot indicates where the
193 /// result should be returned.
194 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
195                                     AggValueSlot aggSlot,
196                                     bool ignoreResult) {
197   switch (getEvaluationKind(E->getType())) {
198   case TEK_Scalar:
199     return RValue::get(EmitScalarExpr(E, ignoreResult));
200   case TEK_Complex:
201     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
202   case TEK_Aggregate:
203     if (!ignoreResult && aggSlot.isIgnored())
204       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
205     EmitAggExpr(E, aggSlot);
206     return aggSlot.asRValue();
207   }
208   llvm_unreachable("bad evaluation kind");
209 }
210 
211 /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
212 /// always be accessible even if no aggregate location is provided.
213 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
214   AggValueSlot AggSlot = AggValueSlot::ignored();
215 
216   if (hasAggregateEvaluationKind(E->getType()))
217     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
218   return EmitAnyExpr(E, AggSlot);
219 }
220 
221 /// EmitAnyExprToMem - Evaluate an expression into a given memory
222 /// location.
223 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
224                                        Address Location,
225                                        Qualifiers Quals,
226                                        bool IsInit) {
227   // FIXME: This function should take an LValue as an argument.
228   switch (getEvaluationKind(E->getType())) {
229   case TEK_Complex:
230     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
231                               /*isInit*/ false);
232     return;
233 
234   case TEK_Aggregate: {
235     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
236                                          AggValueSlot::IsDestructed_t(IsInit),
237                                          AggValueSlot::DoesNotNeedGCBarriers,
238                                          AggValueSlot::IsAliased_t(!IsInit),
239                                          AggValueSlot::MayOverlap));
240     return;
241   }
242 
243   case TEK_Scalar: {
244     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
245     LValue LV = MakeAddrLValue(Location, E->getType());
246     EmitStoreThroughLValue(RV, LV);
247     return;
248   }
249   }
250   llvm_unreachable("bad evaluation kind");
251 }
252 
253 static void
254 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
255                      const Expr *E, Address ReferenceTemporary) {
256   // Objective-C++ ARC:
257   //   If we are binding a reference to a temporary that has ownership, we
258   //   need to perform retain/release operations on the temporary.
259   //
260   // FIXME: This should be looking at E, not M.
261   if (auto Lifetime = M->getType().getObjCLifetime()) {
262     switch (Lifetime) {
263     case Qualifiers::OCL_None:
264     case Qualifiers::OCL_ExplicitNone:
265       // Carry on to normal cleanup handling.
266       break;
267 
268     case Qualifiers::OCL_Autoreleasing:
269       // Nothing to do; cleaned up by an autorelease pool.
270       return;
271 
272     case Qualifiers::OCL_Strong:
273     case Qualifiers::OCL_Weak:
274       switch (StorageDuration Duration = M->getStorageDuration()) {
275       case SD_Static:
276         // Note: we intentionally do not register a cleanup to release
277         // the object on program termination.
278         return;
279 
280       case SD_Thread:
281         // FIXME: We should probably register a cleanup in this case.
282         return;
283 
284       case SD_Automatic:
285       case SD_FullExpression:
286         CodeGenFunction::Destroyer *Destroy;
287         CleanupKind CleanupKind;
288         if (Lifetime == Qualifiers::OCL_Strong) {
289           const ValueDecl *VD = M->getExtendingDecl();
290           bool Precise =
291               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
292           CleanupKind = CGF.getARCCleanupKind();
293           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
294                             : &CodeGenFunction::destroyARCStrongImprecise;
295         } else {
296           // __weak objects always get EH cleanups; otherwise, exceptions
297           // could cause really nasty crashes instead of mere leaks.
298           CleanupKind = NormalAndEHCleanup;
299           Destroy = &CodeGenFunction::destroyARCWeak;
300         }
301         if (Duration == SD_FullExpression)
302           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
303                           M->getType(), *Destroy,
304                           CleanupKind & EHCleanup);
305         else
306           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
307                                           M->getType(),
308                                           *Destroy, CleanupKind & EHCleanup);
309         return;
310 
311       case SD_Dynamic:
312         llvm_unreachable("temporary cannot have dynamic storage duration");
313       }
314       llvm_unreachable("unknown storage duration");
315     }
316   }
317 
318   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
319   if (const RecordType *RT =
320           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
321     // Get the destructor for the reference temporary.
322     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
323     if (!ClassDecl->hasTrivialDestructor())
324       ReferenceTemporaryDtor = ClassDecl->getDestructor();
325   }
326 
327   if (!ReferenceTemporaryDtor)
328     return;
329 
330   // Call the destructor for the temporary.
331   switch (M->getStorageDuration()) {
332   case SD_Static:
333   case SD_Thread: {
334     llvm::FunctionCallee CleanupFn;
335     llvm::Constant *CleanupArg;
336     if (E->getType()->isArrayType()) {
337       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
338           ReferenceTemporary, E->getType(),
339           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
340           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
341       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
342     } else {
343       CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
344           GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
345       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
346     }
347     CGF.CGM.getCXXABI().registerGlobalDtor(
348         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
349     break;
350   }
351 
352   case SD_FullExpression:
353     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
354                     CodeGenFunction::destroyCXXObject,
355                     CGF.getLangOpts().Exceptions);
356     break;
357 
358   case SD_Automatic:
359     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
360                                     ReferenceTemporary, E->getType(),
361                                     CodeGenFunction::destroyCXXObject,
362                                     CGF.getLangOpts().Exceptions);
363     break;
364 
365   case SD_Dynamic:
366     llvm_unreachable("temporary cannot have dynamic storage duration");
367   }
368 }
369 
370 static Address createReferenceTemporary(CodeGenFunction &CGF,
371                                         const MaterializeTemporaryExpr *M,
372                                         const Expr *Inner,
373                                         Address *Alloca = nullptr) {
374   auto &TCG = CGF.getTargetHooks();
375   switch (M->getStorageDuration()) {
376   case SD_FullExpression:
377   case SD_Automatic: {
378     // If we have a constant temporary array or record try to promote it into a
379     // constant global under the same rules a normal constant would've been
380     // promoted. This is easier on the optimizer and generally emits fewer
381     // instructions.
382     QualType Ty = Inner->getType();
383     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
384         (Ty->isArrayType() || Ty->isRecordType()) &&
385         CGF.CGM.isTypeConstant(Ty, true))
386       if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
387         if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
388           auto AS = AddrSpace.getValue();
389           auto *GV = new llvm::GlobalVariable(
390               CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
391               llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
392               llvm::GlobalValue::NotThreadLocal,
393               CGF.getContext().getTargetAddressSpace(AS));
394           CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
395           GV->setAlignment(alignment.getQuantity());
396           llvm::Constant *C = GV;
397           if (AS != LangAS::Default)
398             C = TCG.performAddrSpaceCast(
399                 CGF.CGM, GV, AS, LangAS::Default,
400                 GV->getValueType()->getPointerTo(
401                     CGF.getContext().getTargetAddressSpace(LangAS::Default)));
402           // FIXME: Should we put the new global into a COMDAT?
403           return Address(C, alignment);
404         }
405       }
406     return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
407   }
408   case SD_Thread:
409   case SD_Static:
410     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
411 
412   case SD_Dynamic:
413     llvm_unreachable("temporary can't have dynamic storage duration");
414   }
415   llvm_unreachable("unknown storage duration");
416 }
417 
418 LValue CodeGenFunction::
419 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
420   const Expr *E = M->GetTemporaryExpr();
421 
422   assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
423           !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
424          "Reference should never be pseudo-strong!");
425 
426   // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
427   // as that will cause the lifetime adjustment to be lost for ARC
428   auto ownership = M->getType().getObjCLifetime();
429   if (ownership != Qualifiers::OCL_None &&
430       ownership != Qualifiers::OCL_ExplicitNone) {
431     Address Object = createReferenceTemporary(*this, M, E);
432     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
433       Object = Address(llvm::ConstantExpr::getBitCast(Var,
434                            ConvertTypeForMem(E->getType())
435                              ->getPointerTo(Object.getAddressSpace())),
436                        Object.getAlignment());
437 
438       // createReferenceTemporary will promote the temporary to a global with a
439       // constant initializer if it can.  It can only do this to a value of
440       // ARC-manageable type if the value is global and therefore "immune" to
441       // ref-counting operations.  Therefore we have no need to emit either a
442       // dynamic initialization or a cleanup and we can just return the address
443       // of the temporary.
444       if (Var->hasInitializer())
445         return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
446 
447       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
448     }
449     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
450                                        AlignmentSource::Decl);
451 
452     switch (getEvaluationKind(E->getType())) {
453     default: llvm_unreachable("expected scalar or aggregate expression");
454     case TEK_Scalar:
455       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
456       break;
457     case TEK_Aggregate: {
458       EmitAggExpr(E, AggValueSlot::forAddr(Object,
459                                            E->getType().getQualifiers(),
460                                            AggValueSlot::IsDestructed,
461                                            AggValueSlot::DoesNotNeedGCBarriers,
462                                            AggValueSlot::IsNotAliased,
463                                            AggValueSlot::DoesNotOverlap));
464       break;
465     }
466     }
467 
468     pushTemporaryCleanup(*this, M, E, Object);
469     return RefTempDst;
470   }
471 
472   SmallVector<const Expr *, 2> CommaLHSs;
473   SmallVector<SubobjectAdjustment, 2> Adjustments;
474   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
475 
476   for (const auto &Ignored : CommaLHSs)
477     EmitIgnoredExpr(Ignored);
478 
479   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
480     if (opaque->getType()->isRecordType()) {
481       assert(Adjustments.empty());
482       return EmitOpaqueValueLValue(opaque);
483     }
484   }
485 
486   // Create and initialize the reference temporary.
487   Address Alloca = Address::invalid();
488   Address Object = createReferenceTemporary(*this, M, E, &Alloca);
489   if (auto *Var = dyn_cast<llvm::GlobalVariable>(
490           Object.getPointer()->stripPointerCasts())) {
491     Object = Address(llvm::ConstantExpr::getBitCast(
492                          cast<llvm::Constant>(Object.getPointer()),
493                          ConvertTypeForMem(E->getType())->getPointerTo()),
494                      Object.getAlignment());
495     // If the temporary is a global and has a constant initializer or is a
496     // constant temporary that we promoted to a global, we may have already
497     // initialized it.
498     if (!Var->hasInitializer()) {
499       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
500       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
501     }
502   } else {
503     switch (M->getStorageDuration()) {
504     case SD_Automatic:
505       if (auto *Size = EmitLifetimeStart(
506               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
507               Alloca.getPointer())) {
508         pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
509                                                   Alloca, Size);
510       }
511       break;
512 
513     case SD_FullExpression: {
514       if (!ShouldEmitLifetimeMarkers)
515         break;
516 
517       // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
518       // marker. Instead, start the lifetime of a conditional temporary earlier
519       // so that it's unconditional. Don't do this in ASan's use-after-scope
520       // mode so that it gets the more precise lifetime marks. If the type has
521       // a non-trivial destructor, we'll have a cleanup block for it anyway,
522       // so this typically doesn't help; skip it in that case.
523       ConditionalEvaluation *OldConditional = nullptr;
524       CGBuilderTy::InsertPoint OldIP;
525       if (isInConditionalBranch() && !E->getType().isDestructedType() &&
526           !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
527         OldConditional = OutermostConditional;
528         OutermostConditional = nullptr;
529 
530         OldIP = Builder.saveIP();
531         llvm::BasicBlock *Block = OldConditional->getStartingBlock();
532         Builder.restoreIP(CGBuilderTy::InsertPoint(
533             Block, llvm::BasicBlock::iterator(Block->back())));
534       }
535 
536       if (auto *Size = EmitLifetimeStart(
537               CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
538               Alloca.getPointer())) {
539         pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
540                                              Size);
541       }
542 
543       if (OldConditional) {
544         OutermostConditional = OldConditional;
545         Builder.restoreIP(OldIP);
546       }
547       break;
548     }
549 
550     default:
551       break;
552     }
553     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
554   }
555   pushTemporaryCleanup(*this, M, E, Object);
556 
557   // Perform derived-to-base casts and/or field accesses, to get from the
558   // temporary object we created (and, potentially, for which we extended
559   // the lifetime) to the subobject we're binding the reference to.
560   for (unsigned I = Adjustments.size(); I != 0; --I) {
561     SubobjectAdjustment &Adjustment = Adjustments[I-1];
562     switch (Adjustment.Kind) {
563     case SubobjectAdjustment::DerivedToBaseAdjustment:
564       Object =
565           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
566                                 Adjustment.DerivedToBase.BasePath->path_begin(),
567                                 Adjustment.DerivedToBase.BasePath->path_end(),
568                                 /*NullCheckValue=*/ false, E->getExprLoc());
569       break;
570 
571     case SubobjectAdjustment::FieldAdjustment: {
572       LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
573       LV = EmitLValueForField(LV, Adjustment.Field);
574       assert(LV.isSimple() &&
575              "materialized temporary field is not a simple lvalue");
576       Object = LV.getAddress();
577       break;
578     }
579 
580     case SubobjectAdjustment::MemberPointerAdjustment: {
581       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
582       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
583                                                Adjustment.Ptr.MPT);
584       break;
585     }
586     }
587   }
588 
589   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
590 }
591 
592 RValue
593 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
594   // Emit the expression as an lvalue.
595   LValue LV = EmitLValue(E);
596   assert(LV.isSimple());
597   llvm::Value *Value = LV.getPointer();
598 
599   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
600     // C++11 [dcl.ref]p5 (as amended by core issue 453):
601     //   If a glvalue to which a reference is directly bound designates neither
602     //   an existing object or function of an appropriate type nor a region of
603     //   storage of suitable size and alignment to contain an object of the
604     //   reference's type, the behavior is undefined.
605     QualType Ty = E->getType();
606     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
607   }
608 
609   return RValue::get(Value);
610 }
611 
612 
613 /// getAccessedFieldNo - Given an encoded value and a result number, return the
614 /// input field number being accessed.
615 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
616                                              const llvm::Constant *Elts) {
617   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
618       ->getZExtValue();
619 }
620 
621 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
622 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
623                                     llvm::Value *High) {
624   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
625   llvm::Value *K47 = Builder.getInt64(47);
626   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
627   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
628   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
629   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
630   return Builder.CreateMul(B1, KMul);
631 }
632 
633 bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
634   return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
635          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
636 }
637 
638 bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
639   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
640   return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
641          (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
642           TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
643           TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
644 }
645 
646 bool CodeGenFunction::sanitizePerformTypeCheck() const {
647   return SanOpts.has(SanitizerKind::Null) |
648          SanOpts.has(SanitizerKind::Alignment) |
649          SanOpts.has(SanitizerKind::ObjectSize) |
650          SanOpts.has(SanitizerKind::Vptr);
651 }
652 
653 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
654                                     llvm::Value *Ptr, QualType Ty,
655                                     CharUnits Alignment,
656                                     SanitizerSet SkippedChecks,
657                                     llvm::Value *ArraySize) {
658   if (!sanitizePerformTypeCheck())
659     return;
660 
661   // Don't check pointers outside the default address space. The null check
662   // isn't correct, the object-size check isn't supported by LLVM, and we can't
663   // communicate the addresses to the runtime handler for the vptr check.
664   if (Ptr->getType()->getPointerAddressSpace())
665     return;
666 
667   // Don't check pointers to volatile data. The behavior here is implementation-
668   // defined.
669   if (Ty.isVolatileQualified())
670     return;
671 
672   SanitizerScope SanScope(this);
673 
674   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
675   llvm::BasicBlock *Done = nullptr;
676 
677   // Quickly determine whether we have a pointer to an alloca. It's possible
678   // to skip null checks, and some alignment checks, for these pointers. This
679   // can reduce compile-time significantly.
680   auto PtrToAlloca =
681       dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
682 
683   llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
684   llvm::Value *IsNonNull = nullptr;
685   bool IsGuaranteedNonNull =
686       SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
687   bool AllowNullPointers = isNullPointerAllowed(TCK);
688   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
689       !IsGuaranteedNonNull) {
690     // The glvalue must not be an empty glvalue.
691     IsNonNull = Builder.CreateIsNotNull(Ptr);
692 
693     // The IR builder can constant-fold the null check if the pointer points to
694     // a constant.
695     IsGuaranteedNonNull = IsNonNull == True;
696 
697     // Skip the null check if the pointer is known to be non-null.
698     if (!IsGuaranteedNonNull) {
699       if (AllowNullPointers) {
700         // When performing pointer casts, it's OK if the value is null.
701         // Skip the remaining checks in that case.
702         Done = createBasicBlock("null");
703         llvm::BasicBlock *Rest = createBasicBlock("not.null");
704         Builder.CreateCondBr(IsNonNull, Rest, Done);
705         EmitBlock(Rest);
706       } else {
707         Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
708       }
709     }
710   }
711 
712   if (SanOpts.has(SanitizerKind::ObjectSize) &&
713       !SkippedChecks.has(SanitizerKind::ObjectSize) &&
714       !Ty->isIncompleteType()) {
715     uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
716     llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
717     if (ArraySize)
718       Size = Builder.CreateMul(Size, ArraySize);
719 
720     // Degenerate case: new X[0] does not need an objectsize check.
721     llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
722     if (!ConstantSize || !ConstantSize->isNullValue()) {
723       // The glvalue must refer to a large enough storage region.
724       // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
725       //        to check this.
726       // FIXME: Get object address space
727       llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
728       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
729       llvm::Value *Min = Builder.getFalse();
730       llvm::Value *NullIsUnknown = Builder.getFalse();
731       llvm::Value *Dynamic = Builder.getFalse();
732       llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
733       llvm::Value *LargeEnough = Builder.CreateICmpUGE(
734           Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
735       Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
736     }
737   }
738 
739   uint64_t AlignVal = 0;
740   llvm::Value *PtrAsInt = nullptr;
741 
742   if (SanOpts.has(SanitizerKind::Alignment) &&
743       !SkippedChecks.has(SanitizerKind::Alignment)) {
744     AlignVal = Alignment.getQuantity();
745     if (!Ty->isIncompleteType() && !AlignVal)
746       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
747 
748     // The glvalue must be suitably aligned.
749     if (AlignVal > 1 &&
750         (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
751       PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
752       llvm::Value *Align = Builder.CreateAnd(
753           PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
754       llvm::Value *Aligned =
755           Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
756       if (Aligned != True)
757         Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
758     }
759   }
760 
761   if (Checks.size() > 0) {
762     // Make sure we're not losing information. Alignment needs to be a power of
763     // 2
764     assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
765     llvm::Constant *StaticData[] = {
766         EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
767         llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
768         llvm::ConstantInt::get(Int8Ty, TCK)};
769     EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
770               PtrAsInt ? PtrAsInt : Ptr);
771   }
772 
773   // If possible, check that the vptr indicates that there is a subobject of
774   // type Ty at offset zero within this object.
775   //
776   // C++11 [basic.life]p5,6:
777   //   [For storage which does not refer to an object within its lifetime]
778   //   The program has undefined behavior if:
779   //    -- the [pointer or glvalue] is used to access a non-static data member
780   //       or call a non-static member function
781   if (SanOpts.has(SanitizerKind::Vptr) &&
782       !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
783     // Ensure that the pointer is non-null before loading it. If there is no
784     // compile-time guarantee, reuse the run-time null check or emit a new one.
785     if (!IsGuaranteedNonNull) {
786       if (!IsNonNull)
787         IsNonNull = Builder.CreateIsNotNull(Ptr);
788       if (!Done)
789         Done = createBasicBlock("vptr.null");
790       llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
791       Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
792       EmitBlock(VptrNotNull);
793     }
794 
795     // Compute a hash of the mangled name of the type.
796     //
797     // FIXME: This is not guaranteed to be deterministic! Move to a
798     //        fingerprinting mechanism once LLVM provides one. For the time
799     //        being the implementation happens to be deterministic.
800     SmallString<64> MangledName;
801     llvm::raw_svector_ostream Out(MangledName);
802     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
803                                                      Out);
804 
805     // Blacklist based on the mangled type.
806     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
807             SanitizerKind::Vptr, Out.str())) {
808       llvm::hash_code TypeHash = hash_value(Out.str());
809 
810       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
811       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
812       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
813       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
814       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
815       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
816 
817       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
818       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
819 
820       // Look the hash up in our cache.
821       const int CacheSize = 128;
822       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
823       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
824                                                      "__ubsan_vptr_type_cache");
825       llvm::Value *Slot = Builder.CreateAnd(Hash,
826                                             llvm::ConstantInt::get(IntPtrTy,
827                                                                    CacheSize-1));
828       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
829       llvm::Value *CacheVal =
830         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
831                                   getPointerAlign());
832 
833       // If the hash isn't in the cache, call a runtime handler to perform the
834       // hard work of checking whether the vptr is for an object of the right
835       // type. This will either fill in the cache and return, or produce a
836       // diagnostic.
837       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
838       llvm::Constant *StaticData[] = {
839         EmitCheckSourceLocation(Loc),
840         EmitCheckTypeDescriptor(Ty),
841         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
842         llvm::ConstantInt::get(Int8Ty, TCK)
843       };
844       llvm::Value *DynamicData[] = { Ptr, Hash };
845       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
846                 SanitizerHandler::DynamicTypeCacheMiss, StaticData,
847                 DynamicData);
848     }
849   }
850 
851   if (Done) {
852     Builder.CreateBr(Done);
853     EmitBlock(Done);
854   }
855 }
856 
857 /// Determine whether this expression refers to a flexible array member in a
858 /// struct. We disable array bounds checks for such members.
859 static bool isFlexibleArrayMemberExpr(const Expr *E) {
860   // For compatibility with existing code, we treat arrays of length 0 or
861   // 1 as flexible array members.
862   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
863   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
864     if (CAT->getSize().ugt(1))
865       return false;
866   } else if (!isa<IncompleteArrayType>(AT))
867     return false;
868 
869   E = E->IgnoreParens();
870 
871   // A flexible array member must be the last member in the class.
872   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
873     // FIXME: If the base type of the member expr is not FD->getParent(),
874     // this should not be treated as a flexible array member access.
875     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
876       RecordDecl::field_iterator FI(
877           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
878       return ++FI == FD->getParent()->field_end();
879     }
880   } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
881     return IRE->getDecl()->getNextIvar() == nullptr;
882   }
883 
884   return false;
885 }
886 
887 llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
888                                                    QualType EltTy) {
889   ASTContext &C = getContext();
890   uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
891   if (!EltSize)
892     return nullptr;
893 
894   auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
895   if (!ArrayDeclRef)
896     return nullptr;
897 
898   auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
899   if (!ParamDecl)
900     return nullptr;
901 
902   auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
903   if (!POSAttr)
904     return nullptr;
905 
906   // Don't load the size if it's a lower bound.
907   int POSType = POSAttr->getType();
908   if (POSType != 0 && POSType != 1)
909     return nullptr;
910 
911   // Find the implicit size parameter.
912   auto PassedSizeIt = SizeArguments.find(ParamDecl);
913   if (PassedSizeIt == SizeArguments.end())
914     return nullptr;
915 
916   const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
917   assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
918   Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
919   llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
920                                               C.getSizeType(), E->getExprLoc());
921   llvm::Value *SizeOfElement =
922       llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
923   return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
924 }
925 
926 /// If Base is known to point to the start of an array, return the length of
927 /// that array. Return 0 if the length cannot be determined.
928 static llvm::Value *getArrayIndexingBound(
929     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
930   // For the vector indexing extension, the bound is the number of elements.
931   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
932     IndexedType = Base->getType();
933     return CGF.Builder.getInt32(VT->getNumElements());
934   }
935 
936   Base = Base->IgnoreParens();
937 
938   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
939     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
940         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
941       IndexedType = CE->getSubExpr()->getType();
942       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
943       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
944         return CGF.Builder.getInt(CAT->getSize());
945       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
946         return CGF.getVLASize(VAT).NumElts;
947       // Ignore pass_object_size here. It's not applicable on decayed pointers.
948     }
949   }
950 
951   QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
952   if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
953     IndexedType = Base->getType();
954     return POS;
955   }
956 
957   return nullptr;
958 }
959 
960 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
961                                       llvm::Value *Index, QualType IndexType,
962                                       bool Accessed) {
963   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
964          "should not be called unless adding bounds checks");
965   SanitizerScope SanScope(this);
966 
967   QualType IndexedType;
968   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
969   if (!Bound)
970     return;
971 
972   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
973   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
974   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
975 
976   llvm::Constant *StaticData[] = {
977     EmitCheckSourceLocation(E->getExprLoc()),
978     EmitCheckTypeDescriptor(IndexedType),
979     EmitCheckTypeDescriptor(IndexType)
980   };
981   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
982                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
983   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
984             SanitizerHandler::OutOfBounds, StaticData, Index);
985 }
986 
987 
988 CodeGenFunction::ComplexPairTy CodeGenFunction::
989 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
990                          bool isInc, bool isPre) {
991   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
992 
993   llvm::Value *NextVal;
994   if (isa<llvm::IntegerType>(InVal.first->getType())) {
995     uint64_t AmountVal = isInc ? 1 : -1;
996     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
997 
998     // Add the inc/dec to the real part.
999     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1000   } else {
1001     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
1002     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1003     if (!isInc)
1004       FVal.changeSign();
1005     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1006 
1007     // Add the inc/dec to the real part.
1008     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1009   }
1010 
1011   ComplexPairTy IncVal(NextVal, InVal.second);
1012 
1013   // Store the updated result through the lvalue.
1014   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1015 
1016   // If this is a postinc, return the value read from memory, otherwise use the
1017   // updated value.
1018   return isPre ? IncVal : InVal;
1019 }
1020 
1021 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1022                                              CodeGenFunction *CGF) {
1023   // Bind VLAs in the cast type.
1024   if (CGF && E->getType()->isVariablyModifiedType())
1025     CGF->EmitVariablyModifiedType(E->getType());
1026 
1027   if (CGDebugInfo *DI = getModuleDebugInfo())
1028     DI->EmitExplicitCastType(E->getType());
1029 }
1030 
1031 //===----------------------------------------------------------------------===//
1032 //                         LValue Expression Emission
1033 //===----------------------------------------------------------------------===//
1034 
1035 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
1036 /// derive a more accurate bound on the alignment of the pointer.
1037 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
1038                                                   LValueBaseInfo *BaseInfo,
1039                                                   TBAAAccessInfo *TBAAInfo) {
1040   // We allow this with ObjC object pointers because of fragile ABIs.
1041   assert(E->getType()->isPointerType() ||
1042          E->getType()->isObjCObjectPointerType());
1043   E = E->IgnoreParens();
1044 
1045   // Casts:
1046   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1047     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1048       CGM.EmitExplicitCastExprType(ECE, this);
1049 
1050     switch (CE->getCastKind()) {
1051     // Non-converting casts (but not C's implicit conversion from void*).
1052     case CK_BitCast:
1053     case CK_NoOp:
1054     case CK_AddressSpaceConversion:
1055       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1056         if (PtrTy->getPointeeType()->isVoidType())
1057           break;
1058 
1059         LValueBaseInfo InnerBaseInfo;
1060         TBAAAccessInfo InnerTBAAInfo;
1061         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
1062                                                 &InnerBaseInfo,
1063                                                 &InnerTBAAInfo);
1064         if (BaseInfo) *BaseInfo = InnerBaseInfo;
1065         if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1066 
1067         if (isa<ExplicitCastExpr>(CE)) {
1068           LValueBaseInfo TargetTypeBaseInfo;
1069           TBAAAccessInfo TargetTypeTBAAInfo;
1070           CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
1071                                                            &TargetTypeBaseInfo,
1072                                                            &TargetTypeTBAAInfo);
1073           if (TBAAInfo)
1074             *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
1075                                                  TargetTypeTBAAInfo);
1076           // If the source l-value is opaque, honor the alignment of the
1077           // casted-to type.
1078           if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1079             if (BaseInfo)
1080               BaseInfo->mergeForCast(TargetTypeBaseInfo);
1081             Addr = Address(Addr.getPointer(), Align);
1082           }
1083         }
1084 
1085         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1086             CE->getCastKind() == CK_BitCast) {
1087           if (auto PT = E->getType()->getAs<PointerType>())
1088             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
1089                                       /*MayBeNull=*/true,
1090                                       CodeGenFunction::CFITCK_UnrelatedCast,
1091                                       CE->getBeginLoc());
1092         }
1093         return CE->getCastKind() != CK_AddressSpaceConversion
1094                    ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
1095                    : Builder.CreateAddrSpaceCast(Addr,
1096                                                  ConvertType(E->getType()));
1097       }
1098       break;
1099 
1100     // Array-to-pointer decay.
1101     case CK_ArrayToPointerDecay:
1102       return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1103 
1104     // Derived-to-base conversions.
1105     case CK_UncheckedDerivedToBase:
1106     case CK_DerivedToBase: {
1107       // TODO: Support accesses to members of base classes in TBAA. For now, we
1108       // conservatively pretend that the complete object is of the base class
1109       // type.
1110       if (TBAAInfo)
1111         *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
1112       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
1113       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1114       return GetAddressOfBaseClass(Addr, Derived,
1115                                    CE->path_begin(), CE->path_end(),
1116                                    ShouldNullCheckClassCastValue(CE),
1117                                    CE->getExprLoc());
1118     }
1119 
1120     // TODO: Is there any reason to treat base-to-derived conversions
1121     // specially?
1122     default:
1123       break;
1124     }
1125   }
1126 
1127   // Unary &.
1128   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1129     if (UO->getOpcode() == UO_AddrOf) {
1130       LValue LV = EmitLValue(UO->getSubExpr());
1131       if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1132       if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1133       return LV.getAddress();
1134     }
1135   }
1136 
1137   // TODO: conditional operators, comma.
1138 
1139   // Otherwise, use the alignment of the type.
1140   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
1141                                                    TBAAInfo);
1142   return Address(EmitScalarExpr(E), Align);
1143 }
1144 
1145 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1146   if (Ty->isVoidType())
1147     return RValue::get(nullptr);
1148 
1149   switch (getEvaluationKind(Ty)) {
1150   case TEK_Complex: {
1151     llvm::Type *EltTy =
1152       ConvertType(Ty->castAs<ComplexType>()->getElementType());
1153     llvm::Value *U = llvm::UndefValue::get(EltTy);
1154     return RValue::getComplex(std::make_pair(U, U));
1155   }
1156 
1157   // If this is a use of an undefined aggregate type, the aggregate must have an
1158   // identifiable address.  Just because the contents of the value are undefined
1159   // doesn't mean that the address can't be taken and compared.
1160   case TEK_Aggregate: {
1161     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1162     return RValue::getAggregate(DestPtr);
1163   }
1164 
1165   case TEK_Scalar:
1166     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1167   }
1168   llvm_unreachable("bad evaluation kind");
1169 }
1170 
1171 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1172                                               const char *Name) {
1173   ErrorUnsupported(E, Name);
1174   return GetUndefRValue(E->getType());
1175 }
1176 
1177 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1178                                               const char *Name) {
1179   ErrorUnsupported(E, Name);
1180   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
1181   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
1182                         E->getType());
1183 }
1184 
1185 bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1186   const Expr *Base = Obj;
1187   while (!isa<CXXThisExpr>(Base)) {
1188     // The result of a dynamic_cast can be null.
1189     if (isa<CXXDynamicCastExpr>(Base))
1190       return false;
1191 
1192     if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1193       Base = CE->getSubExpr();
1194     } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1195       Base = PE->getSubExpr();
1196     } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1197       if (UO->getOpcode() == UO_Extension)
1198         Base = UO->getSubExpr();
1199       else
1200         return false;
1201     } else {
1202       return false;
1203     }
1204   }
1205   return true;
1206 }
1207 
1208 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1209   LValue LV;
1210   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1211     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1212   else
1213     LV = EmitLValue(E);
1214   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1215     SanitizerSet SkippedChecks;
1216     if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1217       bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1218       if (IsBaseCXXThis)
1219         SkippedChecks.set(SanitizerKind::Alignment, true);
1220       if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1221         SkippedChecks.set(SanitizerKind::Null, true);
1222     }
1223     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
1224                   E->getType(), LV.getAlignment(), SkippedChecks);
1225   }
1226   return LV;
1227 }
1228 
1229 /// EmitLValue - Emit code to compute a designator that specifies the location
1230 /// of the expression.
1231 ///
1232 /// This can return one of two things: a simple address or a bitfield reference.
1233 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1234 /// an LLVM pointer type.
1235 ///
1236 /// If this returns a bitfield reference, nothing about the pointee type of the
1237 /// LLVM value is known: For example, it may not be a pointer to an integer.
1238 ///
1239 /// If this returns a normal address, and if the lvalue's C type is fixed size,
1240 /// this method guarantees that the returned pointer type will point to an LLVM
1241 /// type of the same size of the lvalue's type.  If the lvalue has a variable
1242 /// length type, this is not possible.
1243 ///
1244 LValue CodeGenFunction::EmitLValue(const Expr *E) {
1245   ApplyDebugLocation DL(*this, E);
1246   switch (E->getStmtClass()) {
1247   default: return EmitUnsupportedLValue(E, "l-value expression");
1248 
1249   case Expr::ObjCPropertyRefExprClass:
1250     llvm_unreachable("cannot emit a property reference directly");
1251 
1252   case Expr::ObjCSelectorExprClass:
1253     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1254   case Expr::ObjCIsaExprClass:
1255     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1256   case Expr::BinaryOperatorClass:
1257     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1258   case Expr::CompoundAssignOperatorClass: {
1259     QualType Ty = E->getType();
1260     if (const AtomicType *AT = Ty->getAs<AtomicType>())
1261       Ty = AT->getValueType();
1262     if (!Ty->isAnyComplexType())
1263       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1264     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1265   }
1266   case Expr::CallExprClass:
1267   case Expr::CXXMemberCallExprClass:
1268   case Expr::CXXOperatorCallExprClass:
1269   case Expr::UserDefinedLiteralClass:
1270     return EmitCallExprLValue(cast<CallExpr>(E));
1271   case Expr::VAArgExprClass:
1272     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1273   case Expr::DeclRefExprClass:
1274     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1275   case Expr::ConstantExprClass:
1276     return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
1277   case Expr::ParenExprClass:
1278     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
1279   case Expr::GenericSelectionExprClass:
1280     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
1281   case Expr::PredefinedExprClass:
1282     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1283   case Expr::StringLiteralClass:
1284     return EmitStringLiteralLValue(cast<StringLiteral>(E));
1285   case Expr::ObjCEncodeExprClass:
1286     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1287   case Expr::PseudoObjectExprClass:
1288     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1289   case Expr::InitListExprClass:
1290     return EmitInitListLValue(cast<InitListExpr>(E));
1291   case Expr::CXXTemporaryObjectExprClass:
1292   case Expr::CXXConstructExprClass:
1293     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1294   case Expr::CXXBindTemporaryExprClass:
1295     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1296   case Expr::CXXUuidofExprClass:
1297     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1298   case Expr::LambdaExprClass:
1299     return EmitAggExprToLValue(E);
1300 
1301   case Expr::ExprWithCleanupsClass: {
1302     const auto *cleanups = cast<ExprWithCleanups>(E);
1303     enterFullExpression(cleanups);
1304     RunCleanupsScope Scope(*this);
1305     LValue LV = EmitLValue(cleanups->getSubExpr());
1306     if (LV.isSimple()) {
1307       // Defend against branches out of gnu statement expressions surrounded by
1308       // cleanups.
1309       llvm::Value *V = LV.getPointer();
1310       Scope.ForceCleanup({&V});
1311       return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
1312                               getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
1313     }
1314     // FIXME: Is it possible to create an ExprWithCleanups that produces a
1315     // bitfield lvalue or some other non-simple lvalue?
1316     return LV;
1317   }
1318 
1319   case Expr::CXXDefaultArgExprClass: {
1320     auto *DAE = cast<CXXDefaultArgExpr>(E);
1321     CXXDefaultArgExprScope Scope(*this, DAE);
1322     return EmitLValue(DAE->getExpr());
1323   }
1324   case Expr::CXXDefaultInitExprClass: {
1325     auto *DIE = cast<CXXDefaultInitExpr>(E);
1326     CXXDefaultInitExprScope Scope(*this, DIE);
1327     return EmitLValue(DIE->getExpr());
1328   }
1329   case Expr::CXXTypeidExprClass:
1330     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1331 
1332   case Expr::ObjCMessageExprClass:
1333     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1334   case Expr::ObjCIvarRefExprClass:
1335     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1336   case Expr::StmtExprClass:
1337     return EmitStmtExprLValue(cast<StmtExpr>(E));
1338   case Expr::UnaryOperatorClass:
1339     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1340   case Expr::ArraySubscriptExprClass:
1341     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1342   case Expr::OMPArraySectionExprClass:
1343     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1344   case Expr::ExtVectorElementExprClass:
1345     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1346   case Expr::MemberExprClass:
1347     return EmitMemberExpr(cast<MemberExpr>(E));
1348   case Expr::CompoundLiteralExprClass:
1349     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1350   case Expr::ConditionalOperatorClass:
1351     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1352   case Expr::BinaryConditionalOperatorClass:
1353     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1354   case Expr::ChooseExprClass:
1355     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1356   case Expr::OpaqueValueExprClass:
1357     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1358   case Expr::SubstNonTypeTemplateParmExprClass:
1359     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1360   case Expr::ImplicitCastExprClass:
1361   case Expr::CStyleCastExprClass:
1362   case Expr::CXXFunctionalCastExprClass:
1363   case Expr::CXXStaticCastExprClass:
1364   case Expr::CXXDynamicCastExprClass:
1365   case Expr::CXXReinterpretCastExprClass:
1366   case Expr::CXXConstCastExprClass:
1367   case Expr::ObjCBridgedCastExprClass:
1368     return EmitCastLValue(cast<CastExpr>(E));
1369 
1370   case Expr::MaterializeTemporaryExprClass:
1371     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1372 
1373   case Expr::CoawaitExprClass:
1374     return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1375   case Expr::CoyieldExprClass:
1376     return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1377   }
1378 }
1379 
1380 /// Given an object of the given canonical type, can we safely copy a
1381 /// value out of it based on its initializer?
1382 static bool isConstantEmittableObjectType(QualType type) {
1383   assert(type.isCanonical());
1384   assert(!type->isReferenceType());
1385 
1386   // Must be const-qualified but non-volatile.
1387   Qualifiers qs = type.getLocalQualifiers();
1388   if (!qs.hasConst() || qs.hasVolatile()) return false;
1389 
1390   // Otherwise, all object types satisfy this except C++ classes with
1391   // mutable subobjects or non-trivial copy/destroy behavior.
1392   if (const auto *RT = dyn_cast<RecordType>(type))
1393     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1394       if (RD->hasMutableFields() || !RD->isTrivial())
1395         return false;
1396 
1397   return true;
1398 }
1399 
1400 /// Can we constant-emit a load of a reference to a variable of the
1401 /// given type?  This is different from predicates like
1402 /// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1403 /// in situations that don't necessarily satisfy the language's rules
1404 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1405 /// to do this with const float variables even if those variables
1406 /// aren't marked 'constexpr'.
1407 enum ConstantEmissionKind {
1408   CEK_None,
1409   CEK_AsReferenceOnly,
1410   CEK_AsValueOrReference,
1411   CEK_AsValueOnly
1412 };
1413 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1414   type = type.getCanonicalType();
1415   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1416     if (isConstantEmittableObjectType(ref->getPointeeType()))
1417       return CEK_AsValueOrReference;
1418     return CEK_AsReferenceOnly;
1419   }
1420   if (isConstantEmittableObjectType(type))
1421     return CEK_AsValueOnly;
1422   return CEK_None;
1423 }
1424 
1425 /// Try to emit a reference to the given value without producing it as
1426 /// an l-value.  This is just an optimization, but it avoids us needing
1427 /// to emit global copies of variables if they're named without triggering
1428 /// a formal use in a context where we can't emit a direct reference to them,
1429 /// for instance if a block or lambda or a member of a local class uses a
1430 /// const int variable or constexpr variable from an enclosing function.
1431 CodeGenFunction::ConstantEmission
1432 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1433   ValueDecl *value = refExpr->getDecl();
1434 
1435   // The value needs to be an enum constant or a constant variable.
1436   ConstantEmissionKind CEK;
1437   if (isa<ParmVarDecl>(value)) {
1438     CEK = CEK_None;
1439   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1440     CEK = checkVarTypeForConstantEmission(var->getType());
1441   } else if (isa<EnumConstantDecl>(value)) {
1442     CEK = CEK_AsValueOnly;
1443   } else {
1444     CEK = CEK_None;
1445   }
1446   if (CEK == CEK_None) return ConstantEmission();
1447 
1448   Expr::EvalResult result;
1449   bool resultIsReference;
1450   QualType resultType;
1451 
1452   // It's best to evaluate all the way as an r-value if that's permitted.
1453   if (CEK != CEK_AsReferenceOnly &&
1454       refExpr->EvaluateAsRValue(result, getContext())) {
1455     resultIsReference = false;
1456     resultType = refExpr->getType();
1457 
1458   // Otherwise, try to evaluate as an l-value.
1459   } else if (CEK != CEK_AsValueOnly &&
1460              refExpr->EvaluateAsLValue(result, getContext())) {
1461     resultIsReference = true;
1462     resultType = value->getType();
1463 
1464   // Failure.
1465   } else {
1466     return ConstantEmission();
1467   }
1468 
1469   // In any case, if the initializer has side-effects, abandon ship.
1470   if (result.HasSideEffects)
1471     return ConstantEmission();
1472 
1473   // Emit as a constant.
1474   auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1475                                                result.Val, resultType);
1476 
1477   // Make sure we emit a debug reference to the global variable.
1478   // This should probably fire even for
1479   if (isa<VarDecl>(value)) {
1480     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1481       EmitDeclRefExprDbgValue(refExpr, result.Val);
1482   } else {
1483     assert(isa<EnumConstantDecl>(value));
1484     EmitDeclRefExprDbgValue(refExpr, result.Val);
1485   }
1486 
1487   // If we emitted a reference constant, we need to dereference that.
1488   if (resultIsReference)
1489     return ConstantEmission::forReference(C);
1490 
1491   return ConstantEmission::forValue(C);
1492 }
1493 
1494 static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1495                                                         const MemberExpr *ME) {
1496   if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1497     // Try to emit static variable member expressions as DREs.
1498     return DeclRefExpr::Create(
1499         CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1500         /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1501         ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1502   }
1503   return nullptr;
1504 }
1505 
1506 CodeGenFunction::ConstantEmission
1507 CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1508   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1509     return tryEmitAsConstant(DRE);
1510   return ConstantEmission();
1511 }
1512 
1513 llvm::Value *CodeGenFunction::emitScalarConstant(
1514     const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1515   assert(Constant && "not a constant");
1516   if (Constant.isReference())
1517     return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1518                             E->getExprLoc())
1519         .getScalarVal();
1520   return Constant.getValue();
1521 }
1522 
1523 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1524                                                SourceLocation Loc) {
1525   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1526                           lvalue.getType(), Loc, lvalue.getBaseInfo(),
1527                           lvalue.getTBAAInfo(), lvalue.isNontemporal());
1528 }
1529 
1530 static bool hasBooleanRepresentation(QualType Ty) {
1531   if (Ty->isBooleanType())
1532     return true;
1533 
1534   if (const EnumType *ET = Ty->getAs<EnumType>())
1535     return ET->getDecl()->getIntegerType()->isBooleanType();
1536 
1537   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1538     return hasBooleanRepresentation(AT->getValueType());
1539 
1540   return false;
1541 }
1542 
1543 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1544                             llvm::APInt &Min, llvm::APInt &End,
1545                             bool StrictEnums, bool IsBool) {
1546   const EnumType *ET = Ty->getAs<EnumType>();
1547   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1548                                 ET && !ET->getDecl()->isFixed();
1549   if (!IsBool && !IsRegularCPlusPlusEnum)
1550     return false;
1551 
1552   if (IsBool) {
1553     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1554     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1555   } else {
1556     const EnumDecl *ED = ET->getDecl();
1557     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1558     unsigned Bitwidth = LTy->getScalarSizeInBits();
1559     unsigned NumNegativeBits = ED->getNumNegativeBits();
1560     unsigned NumPositiveBits = ED->getNumPositiveBits();
1561 
1562     if (NumNegativeBits) {
1563       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1564       assert(NumBits <= Bitwidth);
1565       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1566       Min = -End;
1567     } else {
1568       assert(NumPositiveBits <= Bitwidth);
1569       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1570       Min = llvm::APInt(Bitwidth, 0);
1571     }
1572   }
1573   return true;
1574 }
1575 
1576 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1577   llvm::APInt Min, End;
1578   if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1579                        hasBooleanRepresentation(Ty)))
1580     return nullptr;
1581 
1582   llvm::MDBuilder MDHelper(getLLVMContext());
1583   return MDHelper.createRange(Min, End);
1584 }
1585 
1586 bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1587                                            SourceLocation Loc) {
1588   bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1589   bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1590   if (!HasBoolCheck && !HasEnumCheck)
1591     return false;
1592 
1593   bool IsBool = hasBooleanRepresentation(Ty) ||
1594                 NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1595   bool NeedsBoolCheck = HasBoolCheck && IsBool;
1596   bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1597   if (!NeedsBoolCheck && !NeedsEnumCheck)
1598     return false;
1599 
1600   // Single-bit booleans don't need to be checked. Special-case this to avoid
1601   // a bit width mismatch when handling bitfield values. This is handled by
1602   // EmitFromMemory for the non-bitfield case.
1603   if (IsBool &&
1604       cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1605     return false;
1606 
1607   llvm::APInt Min, End;
1608   if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1609     return true;
1610 
1611   auto &Ctx = getLLVMContext();
1612   SanitizerScope SanScope(this);
1613   llvm::Value *Check;
1614   --End;
1615   if (!Min) {
1616     Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1617   } else {
1618     llvm::Value *Upper =
1619         Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1620     llvm::Value *Lower =
1621         Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1622     Check = Builder.CreateAnd(Upper, Lower);
1623   }
1624   llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1625                                   EmitCheckTypeDescriptor(Ty)};
1626   SanitizerMask Kind =
1627       NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1628   EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1629             StaticArgs, EmitCheckValue(Value));
1630   return true;
1631 }
1632 
1633 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1634                                                QualType Ty,
1635                                                SourceLocation Loc,
1636                                                LValueBaseInfo BaseInfo,
1637                                                TBAAAccessInfo TBAAInfo,
1638                                                bool isNontemporal) {
1639   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1640     // For better performance, handle vector loads differently.
1641     if (Ty->isVectorType()) {
1642       const llvm::Type *EltTy = Addr.getElementType();
1643 
1644       const auto *VTy = cast<llvm::VectorType>(EltTy);
1645 
1646       // Handle vectors of size 3 like size 4 for better performance.
1647       if (VTy->getNumElements() == 3) {
1648 
1649         // Bitcast to vec4 type.
1650         llvm::VectorType *vec4Ty =
1651             llvm::VectorType::get(VTy->getElementType(), 4);
1652         Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1653         // Now load value.
1654         llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1655 
1656         // Shuffle vector to get vec3.
1657         V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1658                                         {0, 1, 2}, "extractVec");
1659         return EmitFromMemory(V, Ty);
1660       }
1661     }
1662   }
1663 
1664   // Atomic operations have to be done on integral types.
1665   LValue AtomicLValue =
1666       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1667   if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1668     return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1669   }
1670 
1671   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1672   if (isNontemporal) {
1673     llvm::MDNode *Node = llvm::MDNode::get(
1674         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1675     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1676   }
1677 
1678   CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
1679 
1680   if (EmitScalarRangeCheck(Load, Ty, Loc)) {
1681     // In order to prevent the optimizer from throwing away the check, don't
1682     // attach range metadata to the load.
1683   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1684     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1685       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1686 
1687   return EmitFromMemory(Load, Ty);
1688 }
1689 
1690 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1691   // Bool has a different representation in memory than in registers.
1692   if (hasBooleanRepresentation(Ty)) {
1693     // This should really always be an i1, but sometimes it's already
1694     // an i8, and it's awkward to track those cases down.
1695     if (Value->getType()->isIntegerTy(1))
1696       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1697     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1698            "wrong value rep of bool");
1699   }
1700 
1701   return Value;
1702 }
1703 
1704 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1705   // Bool has a different representation in memory than in registers.
1706   if (hasBooleanRepresentation(Ty)) {
1707     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1708            "wrong value rep of bool");
1709     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1710   }
1711 
1712   return Value;
1713 }
1714 
1715 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1716                                         bool Volatile, QualType Ty,
1717                                         LValueBaseInfo BaseInfo,
1718                                         TBAAAccessInfo TBAAInfo,
1719                                         bool isInit, bool isNontemporal) {
1720   if (!CGM.getCodeGenOpts().PreserveVec3Type) {
1721     // Handle vectors differently to get better performance.
1722     if (Ty->isVectorType()) {
1723       llvm::Type *SrcTy = Value->getType();
1724       auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
1725       // Handle vec3 special.
1726       if (VecTy && VecTy->getNumElements() == 3) {
1727         // Our source is a vec3, do a shuffle vector to make it a vec4.
1728         llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1729                                   Builder.getInt32(2),
1730                                   llvm::UndefValue::get(Builder.getInt32Ty())};
1731         llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1732         Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
1733                                             MaskV, "extractVec");
1734         SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1735       }
1736       if (Addr.getElementType() != SrcTy) {
1737         Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1738       }
1739     }
1740   }
1741 
1742   Value = EmitToMemory(Value, Ty);
1743 
1744   LValue AtomicLValue =
1745       LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1746   if (Ty->isAtomicType() ||
1747       (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
1748     EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
1749     return;
1750   }
1751 
1752   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1753   if (isNontemporal) {
1754     llvm::MDNode *Node =
1755         llvm::MDNode::get(Store->getContext(),
1756                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1757     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1758   }
1759 
1760   CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
1761 }
1762 
1763 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1764                                         bool isInit) {
1765   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1766                     lvalue.getType(), lvalue.getBaseInfo(),
1767                     lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
1768 }
1769 
1770 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1771 /// method emits the address of the lvalue, then loads the result as an rvalue,
1772 /// returning the rvalue.
1773 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1774   if (LV.isObjCWeak()) {
1775     // load of a __weak object.
1776     Address AddrWeakObj = LV.getAddress();
1777     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1778                                                              AddrWeakObj));
1779   }
1780   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1781     // In MRC mode, we do a load+autorelease.
1782     if (!getLangOpts().ObjCAutoRefCount) {
1783       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1784     }
1785 
1786     // In ARC mode, we load retained and then consume the value.
1787     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1788     Object = EmitObjCConsumeObject(LV.getType(), Object);
1789     return RValue::get(Object);
1790   }
1791 
1792   if (LV.isSimple()) {
1793     assert(!LV.getType()->isFunctionType());
1794 
1795     // Everything needs a load.
1796     return RValue::get(EmitLoadOfScalar(LV, Loc));
1797   }
1798 
1799   if (LV.isVectorElt()) {
1800     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1801                                               LV.isVolatileQualified());
1802     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1803                                                     "vecext"));
1804   }
1805 
1806   // If this is a reference to a subset of the elements of a vector, either
1807   // shuffle the input or extract/insert them as appropriate.
1808   if (LV.isExtVectorElt())
1809     return EmitLoadOfExtVectorElementLValue(LV);
1810 
1811   // Global Register variables always invoke intrinsics
1812   if (LV.isGlobalReg())
1813     return EmitLoadOfGlobalRegLValue(LV);
1814 
1815   assert(LV.isBitField() && "Unknown LValue type!");
1816   return EmitLoadOfBitfieldLValue(LV, Loc);
1817 }
1818 
1819 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
1820                                                  SourceLocation Loc) {
1821   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1822 
1823   // Get the output type.
1824   llvm::Type *ResLTy = ConvertType(LV.getType());
1825 
1826   Address Ptr = LV.getBitFieldAddress();
1827   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1828 
1829   if (Info.IsSigned) {
1830     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1831     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1832     if (HighBits)
1833       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1834     if (Info.Offset + HighBits)
1835       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1836   } else {
1837     if (Info.Offset)
1838       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1839     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1840       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1841                                                               Info.Size),
1842                               "bf.clear");
1843   }
1844   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1845   EmitScalarRangeCheck(Val, LV.getType(), Loc);
1846   return RValue::get(Val);
1847 }
1848 
1849 // If this is a reference to a subset of the elements of a vector, create an
1850 // appropriate shufflevector.
1851 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1852   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1853                                         LV.isVolatileQualified());
1854 
1855   const llvm::Constant *Elts = LV.getExtVectorElts();
1856 
1857   // If the result of the expression is a non-vector type, we must be extracting
1858   // a single element.  Just codegen as an extractelement.
1859   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1860   if (!ExprVT) {
1861     unsigned InIdx = getAccessedFieldNo(0, Elts);
1862     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1863     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1864   }
1865 
1866   // Always use shuffle vector to try to retain the original program structure
1867   unsigned NumResultElts = ExprVT->getNumElements();
1868 
1869   SmallVector<llvm::Constant*, 4> Mask;
1870   for (unsigned i = 0; i != NumResultElts; ++i)
1871     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1872 
1873   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1874   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1875                                     MaskV);
1876   return RValue::get(Vec);
1877 }
1878 
1879 /// Generates lvalue for partial ext_vector access.
1880 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1881   Address VectorAddress = LV.getExtVectorAddress();
1882   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1883   QualType EQT = ExprVT->getElementType();
1884   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1885 
1886   Address CastToPointerElement =
1887     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1888                                  "conv.ptr.element");
1889 
1890   const llvm::Constant *Elts = LV.getExtVectorElts();
1891   unsigned ix = getAccessedFieldNo(0, Elts);
1892 
1893   Address VectorBasePtrPlusIx =
1894     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1895                                    "vector.elt");
1896 
1897   return VectorBasePtrPlusIx;
1898 }
1899 
1900 /// Load of global gamed gegisters are always calls to intrinsics.
1901 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1902   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1903          "Bad type for register variable");
1904   llvm::MDNode *RegName = cast<llvm::MDNode>(
1905       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1906 
1907   // We accept integer and pointer types only
1908   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1909   llvm::Type *Ty = OrigTy;
1910   if (OrigTy->isPointerTy())
1911     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1912   llvm::Type *Types[] = { Ty };
1913 
1914   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1915   llvm::Value *Call = Builder.CreateCall(
1916       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1917   if (OrigTy->isPointerTy())
1918     Call = Builder.CreateIntToPtr(Call, OrigTy);
1919   return RValue::get(Call);
1920 }
1921 
1922 
1923 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1924 /// lvalue, where both are guaranteed to the have the same type, and that type
1925 /// is 'Ty'.
1926 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1927                                              bool isInit) {
1928   if (!Dst.isSimple()) {
1929     if (Dst.isVectorElt()) {
1930       // Read/modify/write the vector, inserting the new element.
1931       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1932                                             Dst.isVolatileQualified());
1933       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1934                                         Dst.getVectorIdx(), "vecins");
1935       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1936                           Dst.isVolatileQualified());
1937       return;
1938     }
1939 
1940     // If this is an update of extended vector elements, insert them as
1941     // appropriate.
1942     if (Dst.isExtVectorElt())
1943       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1944 
1945     if (Dst.isGlobalReg())
1946       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1947 
1948     assert(Dst.isBitField() && "Unknown LValue type");
1949     return EmitStoreThroughBitfieldLValue(Src, Dst);
1950   }
1951 
1952   // There's special magic for assigning into an ARC-qualified l-value.
1953   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1954     switch (Lifetime) {
1955     case Qualifiers::OCL_None:
1956       llvm_unreachable("present but none");
1957 
1958     case Qualifiers::OCL_ExplicitNone:
1959       // nothing special
1960       break;
1961 
1962     case Qualifiers::OCL_Strong:
1963       if (isInit) {
1964         Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
1965         break;
1966       }
1967       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1968       return;
1969 
1970     case Qualifiers::OCL_Weak:
1971       if (isInit)
1972         // Initialize and then skip the primitive store.
1973         EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
1974       else
1975         EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1976       return;
1977 
1978     case Qualifiers::OCL_Autoreleasing:
1979       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1980                                                      Src.getScalarVal()));
1981       // fall into the normal path
1982       break;
1983     }
1984   }
1985 
1986   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1987     // load of a __weak object.
1988     Address LvalueDst = Dst.getAddress();
1989     llvm::Value *src = Src.getScalarVal();
1990      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1991     return;
1992   }
1993 
1994   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1995     // load of a __strong object.
1996     Address LvalueDst = Dst.getAddress();
1997     llvm::Value *src = Src.getScalarVal();
1998     if (Dst.isObjCIvar()) {
1999       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2000       llvm::Type *ResultType = IntPtrTy;
2001       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2002       llvm::Value *RHS = dst.getPointer();
2003       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2004       llvm::Value *LHS =
2005         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2006                                "sub.ptr.lhs.cast");
2007       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2008       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2009                                               BytesBetween);
2010     } else if (Dst.isGlobalObjCRef()) {
2011       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2012                                                 Dst.isThreadLocalRef());
2013     }
2014     else
2015       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2016     return;
2017   }
2018 
2019   assert(Src.isScalar() && "Can't emit an agg store with this method");
2020   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2021 }
2022 
2023 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2024                                                      llvm::Value **Result) {
2025   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2026   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2027   Address Ptr = Dst.getBitFieldAddress();
2028 
2029   // Get the source value, truncated to the width of the bit-field.
2030   llvm::Value *SrcVal = Src.getScalarVal();
2031 
2032   // Cast the source to the storage type and shift it into place.
2033   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2034                                  /*isSigned=*/false);
2035   llvm::Value *MaskedVal = SrcVal;
2036 
2037   // See if there are other bits in the bitfield's storage we'll need to load
2038   // and mask together with source before storing.
2039   if (Info.StorageSize != Info.Size) {
2040     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
2041     llvm::Value *Val =
2042       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2043 
2044     // Mask the source value as needed.
2045     if (!hasBooleanRepresentation(Dst.getType()))
2046       SrcVal = Builder.CreateAnd(SrcVal,
2047                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
2048                                                             Info.Size),
2049                                  "bf.value");
2050     MaskedVal = SrcVal;
2051     if (Info.Offset)
2052       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
2053 
2054     // Mask out the original value.
2055     Val = Builder.CreateAnd(Val,
2056                             ~llvm::APInt::getBitsSet(Info.StorageSize,
2057                                                      Info.Offset,
2058                                                      Info.Offset + Info.Size),
2059                             "bf.clear");
2060 
2061     // Or together the unchanged values and the source value.
2062     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2063   } else {
2064     assert(Info.Offset == 0);
2065   }
2066 
2067   // Write the new value back out.
2068   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2069 
2070   // Return the new value of the bit-field, if requested.
2071   if (Result) {
2072     llvm::Value *ResultVal = MaskedVal;
2073 
2074     // Sign extend the value if needed.
2075     if (Info.IsSigned) {
2076       assert(Info.Size <= Info.StorageSize);
2077       unsigned HighBits = Info.StorageSize - Info.Size;
2078       if (HighBits) {
2079         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2080         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2081       }
2082     }
2083 
2084     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2085                                       "bf.result.cast");
2086     *Result = EmitFromMemory(ResultVal, Dst.getType());
2087   }
2088 }
2089 
2090 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2091                                                                LValue Dst) {
2092   // This access turns into a read/modify/write of the vector.  Load the input
2093   // value now.
2094   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
2095                                         Dst.isVolatileQualified());
2096   const llvm::Constant *Elts = Dst.getExtVectorElts();
2097 
2098   llvm::Value *SrcVal = Src.getScalarVal();
2099 
2100   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2101     unsigned NumSrcElts = VTy->getNumElements();
2102     unsigned NumDstElts = Vec->getType()->getVectorNumElements();
2103     if (NumDstElts == NumSrcElts) {
2104       // Use shuffle vector is the src and destination are the same number of
2105       // elements and restore the vector mask since it is on the side it will be
2106       // stored.
2107       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
2108       for (unsigned i = 0; i != NumSrcElts; ++i)
2109         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
2110 
2111       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2112       Vec = Builder.CreateShuffleVector(SrcVal,
2113                                         llvm::UndefValue::get(Vec->getType()),
2114                                         MaskV);
2115     } else if (NumDstElts > NumSrcElts) {
2116       // Extended the source vector to the same length and then shuffle it
2117       // into the destination.
2118       // FIXME: since we're shuffling with undef, can we just use the indices
2119       //        into that?  This could be simpler.
2120       SmallVector<llvm::Constant*, 4> ExtMask;
2121       for (unsigned i = 0; i != NumSrcElts; ++i)
2122         ExtMask.push_back(Builder.getInt32(i));
2123       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
2124       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
2125       llvm::Value *ExtSrcVal =
2126         Builder.CreateShuffleVector(SrcVal,
2127                                     llvm::UndefValue::get(SrcVal->getType()),
2128                                     ExtMaskV);
2129       // build identity
2130       SmallVector<llvm::Constant*, 4> Mask;
2131       for (unsigned i = 0; i != NumDstElts; ++i)
2132         Mask.push_back(Builder.getInt32(i));
2133 
2134       // When the vector size is odd and .odd or .hi is used, the last element
2135       // of the Elts constant array will be one past the size of the vector.
2136       // Ignore the last element here, if it is greater than the mask size.
2137       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2138         NumSrcElts--;
2139 
2140       // modify when what gets shuffled in
2141       for (unsigned i = 0; i != NumSrcElts; ++i)
2142         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
2143       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
2144       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
2145     } else {
2146       // We should never shorten the vector
2147       llvm_unreachable("unexpected shorten vector length");
2148     }
2149   } else {
2150     // If the Src is a scalar (not a vector) it must be updating one element.
2151     unsigned InIdx = getAccessedFieldNo(0, Elts);
2152     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2153     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2154   }
2155 
2156   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2157                       Dst.isVolatileQualified());
2158 }
2159 
2160 /// Store of global named registers are always calls to intrinsics.
2161 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2162   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2163          "Bad type for register variable");
2164   llvm::MDNode *RegName = cast<llvm::MDNode>(
2165       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2166   assert(RegName && "Register LValue is not metadata");
2167 
2168   // We accept integer and pointer types only
2169   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2170   llvm::Type *Ty = OrigTy;
2171   if (OrigTy->isPointerTy())
2172     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2173   llvm::Type *Types[] = { Ty };
2174 
2175   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2176   llvm::Value *Value = Src.getScalarVal();
2177   if (OrigTy->isPointerTy())
2178     Value = Builder.CreatePtrToInt(Value, Ty);
2179   Builder.CreateCall(
2180       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2181 }
2182 
2183 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
2184 // generating write-barries API. It is currently a global, ivar,
2185 // or neither.
2186 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2187                                  LValue &LV,
2188                                  bool IsMemberAccess=false) {
2189   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2190     return;
2191 
2192   if (isa<ObjCIvarRefExpr>(E)) {
2193     QualType ExpTy = E->getType();
2194     if (IsMemberAccess && ExpTy->isPointerType()) {
2195       // If ivar is a structure pointer, assigning to field of
2196       // this struct follows gcc's behavior and makes it a non-ivar
2197       // writer-barrier conservatively.
2198       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2199       if (ExpTy->isRecordType()) {
2200         LV.setObjCIvar(false);
2201         return;
2202       }
2203     }
2204     LV.setObjCIvar(true);
2205     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2206     LV.setBaseIvarExp(Exp->getBase());
2207     LV.setObjCArray(E->getType()->isArrayType());
2208     return;
2209   }
2210 
2211   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2212     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2213       if (VD->hasGlobalStorage()) {
2214         LV.setGlobalObjCRef(true);
2215         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2216       }
2217     }
2218     LV.setObjCArray(E->getType()->isArrayType());
2219     return;
2220   }
2221 
2222   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2223     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2224     return;
2225   }
2226 
2227   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2228     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2229     if (LV.isObjCIvar()) {
2230       // If cast is to a structure pointer, follow gcc's behavior and make it
2231       // a non-ivar write-barrier.
2232       QualType ExpTy = E->getType();
2233       if (ExpTy->isPointerType())
2234         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
2235       if (ExpTy->isRecordType())
2236         LV.setObjCIvar(false);
2237     }
2238     return;
2239   }
2240 
2241   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2242     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2243     return;
2244   }
2245 
2246   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2247     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2248     return;
2249   }
2250 
2251   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2252     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2253     return;
2254   }
2255 
2256   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2257     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2258     return;
2259   }
2260 
2261   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2262     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2263     if (LV.isObjCIvar() && !LV.isObjCArray())
2264       // Using array syntax to assigning to what an ivar points to is not
2265       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2266       LV.setObjCIvar(false);
2267     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2268       // Using array syntax to assigning to what global points to is not
2269       // same as assigning to the global itself. {id *G;} G[i] = 0;
2270       LV.setGlobalObjCRef(false);
2271     return;
2272   }
2273 
2274   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2275     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2276     // We don't know if member is an 'ivar', but this flag is looked at
2277     // only in the context of LV.isObjCIvar().
2278     LV.setObjCArray(E->getType()->isArrayType());
2279     return;
2280   }
2281 }
2282 
2283 static llvm::Value *
2284 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
2285                                 llvm::Value *V, llvm::Type *IRType,
2286                                 StringRef Name = StringRef()) {
2287   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
2288   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
2289 }
2290 
2291 static LValue EmitThreadPrivateVarDeclLValue(
2292     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2293     llvm::Type *RealVarTy, SourceLocation Loc) {
2294   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2295   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
2296   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2297 }
2298 
2299 static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2300                                            const VarDecl *VD, QualType T) {
2301   llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2302       OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2303   // Return an invalid address if variable is MT_To and unified
2304   // memory is not enabled. For all other cases: MT_Link and
2305   // MT_To with unified memory, return a valid address.
2306   if (!Res || (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2307                !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2308     return Address::invalid();
2309   assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2310           (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2311            CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2312          "Expected link clause OR to clause with unified memory enabled.");
2313   QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2314   Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2315   return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2316 }
2317 
2318 Address
2319 CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2320                                      LValueBaseInfo *PointeeBaseInfo,
2321                                      TBAAAccessInfo *PointeeTBAAInfo) {
2322   llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
2323                                             RefLVal.isVolatile());
2324   CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2325 
2326   CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
2327                                             PointeeBaseInfo, PointeeTBAAInfo,
2328                                             /* forPointeeType= */ true);
2329   return Address(Load, Align);
2330 }
2331 
2332 LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2333   LValueBaseInfo PointeeBaseInfo;
2334   TBAAAccessInfo PointeeTBAAInfo;
2335   Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2336                                             &PointeeTBAAInfo);
2337   return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2338                         PointeeBaseInfo, PointeeTBAAInfo);
2339 }
2340 
2341 Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2342                                            const PointerType *PtrTy,
2343                                            LValueBaseInfo *BaseInfo,
2344                                            TBAAAccessInfo *TBAAInfo) {
2345   llvm::Value *Addr = Builder.CreateLoad(Ptr);
2346   return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
2347                                                BaseInfo, TBAAInfo,
2348                                                /*forPointeeType=*/true));
2349 }
2350 
2351 LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2352                                                 const PointerType *PtrTy) {
2353   LValueBaseInfo BaseInfo;
2354   TBAAAccessInfo TBAAInfo;
2355   Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2356   return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2357 }
2358 
2359 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2360                                       const Expr *E, const VarDecl *VD) {
2361   QualType T = E->getType();
2362 
2363   // If it's thread_local, emit a call to its wrapper function instead.
2364   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2365       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
2366     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2367   // Check if the variable is marked as declare target with link clause in
2368   // device codegen.
2369   if (CGF.getLangOpts().OpenMPIsDevice) {
2370     Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2371     if (Addr.isValid())
2372       return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2373   }
2374 
2375   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2376   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2377   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
2378   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2379   Address Addr(V, Alignment);
2380   // Emit reference to the private copy of the variable if it is an OpenMP
2381   // threadprivate variable.
2382   if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2383       VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2384     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2385                                           E->getExprLoc());
2386   }
2387   LValue LV = VD->getType()->isReferenceType() ?
2388       CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2389                                     AlignmentSource::Decl) :
2390       CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2391   setObjCGCLValueClass(CGF.getContext(), E, LV);
2392   return LV;
2393 }
2394 
2395 static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2396                                                const FunctionDecl *FD) {
2397   if (FD->hasAttr<WeakRefAttr>()) {
2398     ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2399     return aliasee.getPointer();
2400   }
2401 
2402   llvm::Constant *V = CGM.GetAddrOfFunction(FD);
2403   if (!FD->hasPrototype()) {
2404     if (const FunctionProtoType *Proto =
2405             FD->getType()->getAs<FunctionProtoType>()) {
2406       // Ugly case: for a K&R-style definition, the type of the definition
2407       // isn't the same as the type of a use.  Correct for this with a
2408       // bitcast.
2409       QualType NoProtoType =
2410           CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
2411       NoProtoType = CGM.getContext().getPointerType(NoProtoType);
2412       V = llvm::ConstantExpr::getBitCast(V,
2413                                       CGM.getTypes().ConvertType(NoProtoType));
2414     }
2415   }
2416   return V;
2417 }
2418 
2419 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
2420                                      const Expr *E, const FunctionDecl *FD) {
2421   llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
2422   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2423   return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2424                             AlignmentSource::Decl);
2425 }
2426 
2427 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2428                                       llvm::Value *ThisValue) {
2429   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2430   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2431   return CGF.EmitLValueForField(LV, FD);
2432 }
2433 
2434 /// Named Registers are named metadata pointing to the register name
2435 /// which will be read from/written to as an argument to the intrinsic
2436 /// @llvm.read/write_register.
2437 /// So far, only the name is being passed down, but other options such as
2438 /// register type, allocation type or even optimization options could be
2439 /// passed down via the metadata node.
2440 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2441   SmallString<64> Name("llvm.named.register.");
2442   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2443   assert(Asm->getLabel().size() < 64-Name.size() &&
2444       "Register name too big");
2445   Name.append(Asm->getLabel());
2446   llvm::NamedMDNode *M =
2447     CGM.getModule().getOrInsertNamedMetadata(Name);
2448   if (M->getNumOperands() == 0) {
2449     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2450                                               Asm->getLabel());
2451     llvm::Metadata *Ops[] = {Str};
2452     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2453   }
2454 
2455   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2456 
2457   llvm::Value *Ptr =
2458     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2459   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2460 }
2461 
2462 /// Determine whether we can emit a reference to \p VD from the current
2463 /// context, despite not necessarily having seen an odr-use of the variable in
2464 /// this context.
2465 static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2466                                                const DeclRefExpr *E,
2467                                                const VarDecl *VD,
2468                                                bool IsConstant) {
2469   // For a variable declared in an enclosing scope, do not emit a spurious
2470   // reference even if we have a capture, as that will emit an unwarranted
2471   // reference to our capture state, and will likely generate worse code than
2472   // emitting a local copy.
2473   if (E->refersToEnclosingVariableOrCapture())
2474     return false;
2475 
2476   // For a local declaration declared in this function, we can always reference
2477   // it even if we don't have an odr-use.
2478   if (VD->hasLocalStorage()) {
2479     return VD->getDeclContext() ==
2480            dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2481   }
2482 
2483   // For a global declaration, we can emit a reference to it if we know
2484   // for sure that we are able to emit a definition of it.
2485   VD = VD->getDefinition(CGF.getContext());
2486   if (!VD)
2487     return false;
2488 
2489   // Don't emit a spurious reference if it might be to a variable that only
2490   // exists on a different device / target.
2491   // FIXME: This is unnecessarily broad. Check whether this would actually be a
2492   // cross-target reference.
2493   if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2494       CGF.getLangOpts().OpenCL) {
2495     return false;
2496   }
2497 
2498   // We can emit a spurious reference only if the linkage implies that we'll
2499   // be emitting a non-interposable symbol that will be retained until link
2500   // time.
2501   switch (CGF.CGM.getLLVMLinkageVarDefinition(VD, IsConstant)) {
2502   case llvm::GlobalValue::ExternalLinkage:
2503   case llvm::GlobalValue::LinkOnceODRLinkage:
2504   case llvm::GlobalValue::WeakODRLinkage:
2505   case llvm::GlobalValue::InternalLinkage:
2506   case llvm::GlobalValue::PrivateLinkage:
2507     return true;
2508   default:
2509     return false;
2510   }
2511 }
2512 
2513 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2514   const NamedDecl *ND = E->getDecl();
2515   QualType T = E->getType();
2516 
2517   assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2518          "should not emit an unevaluated operand");
2519 
2520   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2521     // Global Named registers access via intrinsics only
2522     if (VD->getStorageClass() == SC_Register &&
2523         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2524       return EmitGlobalNamedRegister(VD, CGM);
2525 
2526     // If this DeclRefExpr does not constitute an odr-use of the variable,
2527     // we're not permitted to emit a reference to it in general, and it might
2528     // not be captured if capture would be necessary for a use. Emit the
2529     // constant value directly instead.
2530     if (E->isNonOdrUse() == NOUR_Constant &&
2531         (VD->getType()->isReferenceType() ||
2532          !canEmitSpuriousReferenceToVariable(*this, E, VD, true))) {
2533       VD->getAnyInitializer(VD);
2534       llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2535           E->getLocation(), *VD->evaluateValue(), VD->getType());
2536       assert(Val && "failed to emit constant expression");
2537 
2538       Address Addr = Address::invalid();
2539       if (!VD->getType()->isReferenceType()) {
2540         // Spill the constant value to a global.
2541         Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2542                                            getContext().getDeclAlign(VD));
2543         llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2544         auto *PTy = llvm::PointerType::get(
2545             VarTy, getContext().getTargetAddressSpace(VD->getType()));
2546         if (PTy != Addr.getType())
2547           Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy);
2548       } else {
2549         // Should we be using the alignment of the constant pointer we emitted?
2550         CharUnits Alignment =
2551             getNaturalTypeAlignment(E->getType(),
2552                                     /* BaseInfo= */ nullptr,
2553                                     /* TBAAInfo= */ nullptr,
2554                                     /* forPointeeType= */ true);
2555         Addr = Address(Val, Alignment);
2556       }
2557       return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2558     }
2559 
2560     // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
2561 
2562     // Check for captured variables.
2563     if (E->refersToEnclosingVariableOrCapture()) {
2564       VD = VD->getCanonicalDecl();
2565       if (auto *FD = LambdaCaptureFields.lookup(VD))
2566         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2567       else if (CapturedStmtInfo) {
2568         auto I = LocalDeclMap.find(VD);
2569         if (I != LocalDeclMap.end()) {
2570           if (VD->getType()->isReferenceType())
2571             return EmitLoadOfReferenceLValue(I->second, VD->getType(),
2572                                              AlignmentSource::Decl);
2573           return MakeAddrLValue(I->second, T);
2574         }
2575         LValue CapLVal =
2576             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2577                                     CapturedStmtInfo->getContextValue());
2578         return MakeAddrLValue(
2579             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2580             CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
2581             CapLVal.getTBAAInfo());
2582       }
2583 
2584       assert(isa<BlockDecl>(CurCodeDecl));
2585       Address addr = GetAddrOfBlockDecl(VD);
2586       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2587     }
2588   }
2589 
2590   // FIXME: We should be able to assert this for FunctionDecls as well!
2591   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2592   // those with a valid source location.
2593   assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
2594           !E->getLocation().isValid()) &&
2595          "Should not use decl without marking it used!");
2596 
2597   if (ND->hasAttr<WeakRefAttr>()) {
2598     const auto *VD = cast<ValueDecl>(ND);
2599     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2600     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2601   }
2602 
2603   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2604     // Check if this is a global variable.
2605     if (VD->hasLinkage() || VD->isStaticDataMember())
2606       return EmitGlobalVarDeclLValue(*this, E, VD);
2607 
2608     Address addr = Address::invalid();
2609 
2610     // The variable should generally be present in the local decl map.
2611     auto iter = LocalDeclMap.find(VD);
2612     if (iter != LocalDeclMap.end()) {
2613       addr = iter->second;
2614 
2615     // Otherwise, it might be static local we haven't emitted yet for
2616     // some reason; most likely, because it's in an outer function.
2617     } else if (VD->isStaticLocal()) {
2618       addr = Address(CGM.getOrCreateStaticVarDecl(
2619           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)),
2620                      getContext().getDeclAlign(VD));
2621 
2622     // No other cases for now.
2623     } else {
2624       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2625     }
2626 
2627 
2628     // Check for OpenMP threadprivate variables.
2629     if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
2630         VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2631       return EmitThreadPrivateVarDeclLValue(
2632           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2633           E->getExprLoc());
2634     }
2635 
2636     // Drill into block byref variables.
2637     bool isBlockByref = VD->isEscapingByref();
2638     if (isBlockByref) {
2639       addr = emitBlockByrefAddress(addr, VD);
2640     }
2641 
2642     // Drill into reference types.
2643     LValue LV = VD->getType()->isReferenceType() ?
2644         EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
2645         MakeAddrLValue(addr, T, AlignmentSource::Decl);
2646 
2647     bool isLocalStorage = VD->hasLocalStorage();
2648 
2649     bool NonGCable = isLocalStorage &&
2650                      !VD->getType()->isReferenceType() &&
2651                      !isBlockByref;
2652     if (NonGCable) {
2653       LV.getQuals().removeObjCGCAttr();
2654       LV.setNonGC(true);
2655     }
2656 
2657     bool isImpreciseLifetime =
2658       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2659     if (isImpreciseLifetime)
2660       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2661     setObjCGCLValueClass(getContext(), E, LV);
2662     return LV;
2663   }
2664 
2665   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2666     return EmitFunctionDeclLValue(*this, E, FD);
2667 
2668   // FIXME: While we're emitting a binding from an enclosing scope, all other
2669   // DeclRefExprs we see should be implicitly treated as if they also refer to
2670   // an enclosing scope.
2671   if (const auto *BD = dyn_cast<BindingDecl>(ND))
2672     return EmitLValue(BD->getBinding());
2673 
2674   llvm_unreachable("Unhandled DeclRefExpr");
2675 }
2676 
2677 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2678   // __extension__ doesn't affect lvalue-ness.
2679   if (E->getOpcode() == UO_Extension)
2680     return EmitLValue(E->getSubExpr());
2681 
2682   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2683   switch (E->getOpcode()) {
2684   default: llvm_unreachable("Unknown unary operator lvalue!");
2685   case UO_Deref: {
2686     QualType T = E->getSubExpr()->getType()->getPointeeType();
2687     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2688 
2689     LValueBaseInfo BaseInfo;
2690     TBAAAccessInfo TBAAInfo;
2691     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
2692                                             &TBAAInfo);
2693     LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
2694     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2695 
2696     // We should not generate __weak write barrier on indirect reference
2697     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2698     // But, we continue to generate __strong write barrier on indirect write
2699     // into a pointer to object.
2700     if (getLangOpts().ObjC &&
2701         getLangOpts().getGC() != LangOptions::NonGC &&
2702         LV.isObjCWeak())
2703       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2704     return LV;
2705   }
2706   case UO_Real:
2707   case UO_Imag: {
2708     LValue LV = EmitLValue(E->getSubExpr());
2709     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2710 
2711     // __real is valid on scalars.  This is a faster way of testing that.
2712     // __imag can only produce an rvalue on scalars.
2713     if (E->getOpcode() == UO_Real &&
2714         !LV.getAddress().getElementType()->isStructTy()) {
2715       assert(E->getSubExpr()->getType()->isArithmeticType());
2716       return LV;
2717     }
2718 
2719     QualType T = ExprTy->castAs<ComplexType>()->getElementType();
2720 
2721     Address Component =
2722       (E->getOpcode() == UO_Real
2723          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2724          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2725     LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
2726                                    CGM.getTBAAInfoForSubobject(LV, T));
2727     ElemLV.getQuals().addQualifiers(LV.getQuals());
2728     return ElemLV;
2729   }
2730   case UO_PreInc:
2731   case UO_PreDec: {
2732     LValue LV = EmitLValue(E->getSubExpr());
2733     bool isInc = E->getOpcode() == UO_PreInc;
2734 
2735     if (E->getType()->isAnyComplexType())
2736       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2737     else
2738       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2739     return LV;
2740   }
2741   }
2742 }
2743 
2744 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2745   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2746                         E->getType(), AlignmentSource::Decl);
2747 }
2748 
2749 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2750   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2751                         E->getType(), AlignmentSource::Decl);
2752 }
2753 
2754 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2755   auto SL = E->getFunctionName();
2756   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2757   StringRef FnName = CurFn->getName();
2758   if (FnName.startswith("\01"))
2759     FnName = FnName.substr(1);
2760   StringRef NameItems[] = {
2761       PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
2762   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2763   if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
2764     std::string Name = SL->getString();
2765     if (!Name.empty()) {
2766       unsigned Discriminator =
2767           CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
2768       if (Discriminator)
2769         Name += "_" + Twine(Discriminator + 1).str();
2770       auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
2771       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2772     } else {
2773       auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2774       return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2775     }
2776   }
2777   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2778   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2779 }
2780 
2781 /// Emit a type description suitable for use by a runtime sanitizer library. The
2782 /// format of a type descriptor is
2783 ///
2784 /// \code
2785 ///   { i16 TypeKind, i16 TypeInfo }
2786 /// \endcode
2787 ///
2788 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2789 /// integer, 1 for a floating point value, and -1 for anything else.
2790 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2791   // Only emit each type's descriptor once.
2792   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2793     return C;
2794 
2795   uint16_t TypeKind = -1;
2796   uint16_t TypeInfo = 0;
2797 
2798   if (T->isIntegerType()) {
2799     TypeKind = 0;
2800     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2801                (T->isSignedIntegerType() ? 1 : 0);
2802   } else if (T->isFloatingType()) {
2803     TypeKind = 1;
2804     TypeInfo = getContext().getTypeSize(T);
2805   }
2806 
2807   // Format the type name as if for a diagnostic, including quotes and
2808   // optionally an 'aka'.
2809   SmallString<32> Buffer;
2810   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2811                                     (intptr_t)T.getAsOpaquePtr(),
2812                                     StringRef(), StringRef(), None, Buffer,
2813                                     None);
2814 
2815   llvm::Constant *Components[] = {
2816     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2817     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2818   };
2819   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2820 
2821   auto *GV = new llvm::GlobalVariable(
2822       CGM.getModule(), Descriptor->getType(),
2823       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2824   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2825   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2826 
2827   // Remember the descriptor for this type.
2828   CGM.setTypeDescriptorInMap(T, GV);
2829 
2830   return GV;
2831 }
2832 
2833 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2834   llvm::Type *TargetTy = IntPtrTy;
2835 
2836   if (V->getType() == TargetTy)
2837     return V;
2838 
2839   // Floating-point types which fit into intptr_t are bitcast to integers
2840   // and then passed directly (after zero-extension, if necessary).
2841   if (V->getType()->isFloatingPointTy()) {
2842     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2843     if (Bits <= TargetTy->getIntegerBitWidth())
2844       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2845                                                          Bits));
2846   }
2847 
2848   // Integers which fit in intptr_t are zero-extended and passed directly.
2849   if (V->getType()->isIntegerTy() &&
2850       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2851     return Builder.CreateZExt(V, TargetTy);
2852 
2853   // Pointers are passed directly, everything else is passed by address.
2854   if (!V->getType()->isPointerTy()) {
2855     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2856     Builder.CreateStore(V, Ptr);
2857     V = Ptr.getPointer();
2858   }
2859   return Builder.CreatePtrToInt(V, TargetTy);
2860 }
2861 
2862 /// Emit a representation of a SourceLocation for passing to a handler
2863 /// in a sanitizer runtime library. The format for this data is:
2864 /// \code
2865 ///   struct SourceLocation {
2866 ///     const char *Filename;
2867 ///     int32_t Line, Column;
2868 ///   };
2869 /// \endcode
2870 /// For an invalid SourceLocation, the Filename pointer is null.
2871 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2872   llvm::Constant *Filename;
2873   int Line, Column;
2874 
2875   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2876   if (PLoc.isValid()) {
2877     StringRef FilenameString = PLoc.getFilename();
2878 
2879     int PathComponentsToStrip =
2880         CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
2881     if (PathComponentsToStrip < 0) {
2882       assert(PathComponentsToStrip != INT_MIN);
2883       int PathComponentsToKeep = -PathComponentsToStrip;
2884       auto I = llvm::sys::path::rbegin(FilenameString);
2885       auto E = llvm::sys::path::rend(FilenameString);
2886       while (I != E && --PathComponentsToKeep)
2887         ++I;
2888 
2889       FilenameString = FilenameString.substr(I - E);
2890     } else if (PathComponentsToStrip > 0) {
2891       auto I = llvm::sys::path::begin(FilenameString);
2892       auto E = llvm::sys::path::end(FilenameString);
2893       while (I != E && PathComponentsToStrip--)
2894         ++I;
2895 
2896       if (I != E)
2897         FilenameString =
2898             FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
2899       else
2900         FilenameString = llvm::sys::path::filename(FilenameString);
2901     }
2902 
2903     auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
2904     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2905                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2906     Filename = FilenameGV.getPointer();
2907     Line = PLoc.getLine();
2908     Column = PLoc.getColumn();
2909   } else {
2910     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2911     Line = Column = 0;
2912   }
2913 
2914   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2915                             Builder.getInt32(Column)};
2916 
2917   return llvm::ConstantStruct::getAnon(Data);
2918 }
2919 
2920 namespace {
2921 /// Specify under what conditions this check can be recovered
2922 enum class CheckRecoverableKind {
2923   /// Always terminate program execution if this check fails.
2924   Unrecoverable,
2925   /// Check supports recovering, runtime has both fatal (noreturn) and
2926   /// non-fatal handlers for this check.
2927   Recoverable,
2928   /// Runtime conditionally aborts, always need to support recovery.
2929   AlwaysRecoverable
2930 };
2931 }
2932 
2933 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2934   assert(Kind.countPopulation() == 1);
2935   if (Kind == SanitizerKind::Function || Kind == SanitizerKind::Vptr)
2936     return CheckRecoverableKind::AlwaysRecoverable;
2937   else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
2938     return CheckRecoverableKind::Unrecoverable;
2939   else
2940     return CheckRecoverableKind::Recoverable;
2941 }
2942 
2943 namespace {
2944 struct SanitizerHandlerInfo {
2945   char const *const Name;
2946   unsigned Version;
2947 };
2948 }
2949 
2950 const SanitizerHandlerInfo SanitizerHandlers[] = {
2951 #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
2952     LIST_SANITIZER_CHECKS
2953 #undef SANITIZER_CHECK
2954 };
2955 
2956 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2957                                  llvm::FunctionType *FnType,
2958                                  ArrayRef<llvm::Value *> FnArgs,
2959                                  SanitizerHandler CheckHandler,
2960                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2961                                  llvm::BasicBlock *ContBB) {
2962   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2963   Optional<ApplyDebugLocation> DL;
2964   if (!CGF.Builder.getCurrentDebugLocation()) {
2965     // Ensure that the call has at least an artificial debug location.
2966     DL.emplace(CGF, SourceLocation());
2967   }
2968   bool NeedsAbortSuffix =
2969       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2970   bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
2971   const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
2972   const StringRef CheckName = CheckInfo.Name;
2973   std::string FnName = "__ubsan_handle_" + CheckName.str();
2974   if (CheckInfo.Version && !MinimalRuntime)
2975     FnName += "_v" + llvm::utostr(CheckInfo.Version);
2976   if (MinimalRuntime)
2977     FnName += "_minimal";
2978   if (NeedsAbortSuffix)
2979     FnName += "_abort";
2980   bool MayReturn =
2981       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2982 
2983   llvm::AttrBuilder B;
2984   if (!MayReturn) {
2985     B.addAttribute(llvm::Attribute::NoReturn)
2986         .addAttribute(llvm::Attribute::NoUnwind);
2987   }
2988   B.addAttribute(llvm::Attribute::UWTable);
2989 
2990   llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
2991       FnType, FnName,
2992       llvm::AttributeList::get(CGF.getLLVMContext(),
2993                                llvm::AttributeList::FunctionIndex, B),
2994       /*Local=*/true);
2995   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2996   if (!MayReturn) {
2997     HandlerCall->setDoesNotReturn();
2998     CGF.Builder.CreateUnreachable();
2999   } else {
3000     CGF.Builder.CreateBr(ContBB);
3001   }
3002 }
3003 
3004 void CodeGenFunction::EmitCheck(
3005     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3006     SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3007     ArrayRef<llvm::Value *> DynamicArgs) {
3008   assert(IsSanitizerScope);
3009   assert(Checked.size() > 0);
3010   assert(CheckHandler >= 0 &&
3011          size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
3012   const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3013 
3014   llvm::Value *FatalCond = nullptr;
3015   llvm::Value *RecoverableCond = nullptr;
3016   llvm::Value *TrapCond = nullptr;
3017   for (int i = 0, n = Checked.size(); i < n; ++i) {
3018     llvm::Value *Check = Checked[i].first;
3019     // -fsanitize-trap= overrides -fsanitize-recover=.
3020     llvm::Value *&Cond =
3021         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3022             ? TrapCond
3023             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3024                   ? RecoverableCond
3025                   : FatalCond;
3026     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3027   }
3028 
3029   if (TrapCond)
3030     EmitTrapCheck(TrapCond);
3031   if (!FatalCond && !RecoverableCond)
3032     return;
3033 
3034   llvm::Value *JointCond;
3035   if (FatalCond && RecoverableCond)
3036     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3037   else
3038     JointCond = FatalCond ? FatalCond : RecoverableCond;
3039   assert(JointCond);
3040 
3041   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3042   assert(SanOpts.has(Checked[0].second));
3043 #ifndef NDEBUG
3044   for (int i = 1, n = Checked.size(); i < n; ++i) {
3045     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3046            "All recoverable kinds in a single check must be same!");
3047     assert(SanOpts.has(Checked[i].second));
3048   }
3049 #endif
3050 
3051   llvm::BasicBlock *Cont = createBasicBlock("cont");
3052   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3053   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3054   // Give hint that we very much don't expect to execute the handler
3055   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3056   llvm::MDBuilder MDHelper(getLLVMContext());
3057   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3058   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3059   EmitBlock(Handlers);
3060 
3061   // Handler functions take an i8* pointing to the (handler-specific) static
3062   // information block, followed by a sequence of intptr_t arguments
3063   // representing operand values.
3064   SmallVector<llvm::Value *, 4> Args;
3065   SmallVector<llvm::Type *, 4> ArgTypes;
3066   if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3067     Args.reserve(DynamicArgs.size() + 1);
3068     ArgTypes.reserve(DynamicArgs.size() + 1);
3069 
3070     // Emit handler arguments and create handler function type.
3071     if (!StaticArgs.empty()) {
3072       llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3073       auto *InfoPtr =
3074           new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3075                                    llvm::GlobalVariable::PrivateLinkage, Info);
3076       InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3077       CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3078       Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
3079       ArgTypes.push_back(Int8PtrTy);
3080     }
3081 
3082     for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3083       Args.push_back(EmitCheckValue(DynamicArgs[i]));
3084       ArgTypes.push_back(IntPtrTy);
3085     }
3086   }
3087 
3088   llvm::FunctionType *FnType =
3089     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3090 
3091   if (!FatalCond || !RecoverableCond) {
3092     // Simple case: we need to generate a single handler call, either
3093     // fatal, or non-fatal.
3094     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3095                          (FatalCond != nullptr), Cont);
3096   } else {
3097     // Emit two handler calls: first one for set of unrecoverable checks,
3098     // another one for recoverable.
3099     llvm::BasicBlock *NonFatalHandlerBB =
3100         createBasicBlock("non_fatal." + CheckName);
3101     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3102     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3103     EmitBlock(FatalHandlerBB);
3104     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3105                          NonFatalHandlerBB);
3106     EmitBlock(NonFatalHandlerBB);
3107     emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3108                          Cont);
3109   }
3110 
3111   EmitBlock(Cont);
3112 }
3113 
3114 void CodeGenFunction::EmitCfiSlowPathCheck(
3115     SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3116     llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3117   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3118 
3119   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3120   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3121 
3122   llvm::MDBuilder MDHelper(getLLVMContext());
3123   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3124   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3125 
3126   EmitBlock(CheckBB);
3127 
3128   bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3129 
3130   llvm::CallInst *CheckCall;
3131   llvm::FunctionCallee SlowPathFn;
3132   if (WithDiag) {
3133     llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3134     auto *InfoPtr =
3135         new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3136                                  llvm::GlobalVariable::PrivateLinkage, Info);
3137     InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3138     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3139 
3140     SlowPathFn = CGM.getModule().getOrInsertFunction(
3141         "__cfi_slowpath_diag",
3142         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3143                                 false));
3144     CheckCall = Builder.CreateCall(
3145         SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
3146   } else {
3147     SlowPathFn = CGM.getModule().getOrInsertFunction(
3148         "__cfi_slowpath",
3149         llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3150     CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3151   }
3152 
3153   CGM.setDSOLocal(
3154       cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3155   CheckCall->setDoesNotThrow();
3156 
3157   EmitBlock(Cont);
3158 }
3159 
3160 // Emit a stub for __cfi_check function so that the linker knows about this
3161 // symbol in LTO mode.
3162 void CodeGenFunction::EmitCfiCheckStub() {
3163   llvm::Module *M = &CGM.getModule();
3164   auto &Ctx = M->getContext();
3165   llvm::Function *F = llvm::Function::Create(
3166       llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3167       llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3168   CGM.setDSOLocal(F);
3169   llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3170   // FIXME: consider emitting an intrinsic call like
3171   // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
3172   // which can be lowered in CrossDSOCFI pass to the actual contents of
3173   // __cfi_check. This would allow inlining of __cfi_check calls.
3174   llvm::CallInst::Create(
3175       llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
3176   llvm::ReturnInst::Create(Ctx, nullptr, BB);
3177 }
3178 
3179 // This function is basically a switch over the CFI failure kind, which is
3180 // extracted from CFICheckFailData (1st function argument). Each case is either
3181 // llvm.trap or a call to one of the two runtime handlers, based on
3182 // -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3183 // failure kind) traps, but this should really never happen.  CFICheckFailData
3184 // can be nullptr if the calling module has -fsanitize-trap behavior for this
3185 // check kind; in this case __cfi_check_fail traps as well.
3186 void CodeGenFunction::EmitCfiCheckFail() {
3187   SanitizerScope SanScope(this);
3188   FunctionArgList Args;
3189   ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3190                             ImplicitParamDecl::Other);
3191   ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3192                             ImplicitParamDecl::Other);
3193   Args.push_back(&ArgData);
3194   Args.push_back(&ArgAddr);
3195 
3196   const CGFunctionInfo &FI =
3197     CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3198 
3199   llvm::Function *F = llvm::Function::Create(
3200       llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3201       llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3202   F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3203 
3204   StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3205                 SourceLocation());
3206 
3207   // This function should not be affected by blacklist. This function does
3208   // not have a source location, but "src:*" would still apply. Revert any
3209   // changes to SanOpts made in StartFunction.
3210   SanOpts = CGM.getLangOpts().Sanitize;
3211 
3212   llvm::Value *Data =
3213       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3214                        CGM.getContext().VoidPtrTy, ArgData.getLocation());
3215   llvm::Value *Addr =
3216       EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3217                        CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3218 
3219   // Data == nullptr means the calling module has trap behaviour for this check.
3220   llvm::Value *DataIsNotNullPtr =
3221       Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3222   EmitTrapCheck(DataIsNotNullPtr);
3223 
3224   llvm::StructType *SourceLocationTy =
3225       llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3226   llvm::StructType *CfiCheckFailDataTy =
3227       llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3228 
3229   llvm::Value *V = Builder.CreateConstGEP2_32(
3230       CfiCheckFailDataTy,
3231       Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3232       0);
3233   Address CheckKindAddr(V, getIntAlign());
3234   llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3235 
3236   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3237       CGM.getLLVMContext(),
3238       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3239   llvm::Value *ValidVtable = Builder.CreateZExt(
3240       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3241                          {Addr, AllVtables}),
3242       IntPtrTy);
3243 
3244   const std::pair<int, SanitizerMask> CheckKinds[] = {
3245       {CFITCK_VCall, SanitizerKind::CFIVCall},
3246       {CFITCK_NVCall, SanitizerKind::CFINVCall},
3247       {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3248       {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3249       {CFITCK_ICall, SanitizerKind::CFIICall}};
3250 
3251   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3252   for (auto CheckKindMaskPair : CheckKinds) {
3253     int Kind = CheckKindMaskPair.first;
3254     SanitizerMask Mask = CheckKindMaskPair.second;
3255     llvm::Value *Cond =
3256         Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3257     if (CGM.getLangOpts().Sanitize.has(Mask))
3258       EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3259                 {Data, Addr, ValidVtable});
3260     else
3261       EmitTrapCheck(Cond);
3262   }
3263 
3264   FinishFunction();
3265   // The only reference to this function will be created during LTO link.
3266   // Make sure it survives until then.
3267   CGM.addUsedGlobal(F);
3268 }
3269 
3270 void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3271   if (SanOpts.has(SanitizerKind::Unreachable)) {
3272     SanitizerScope SanScope(this);
3273     EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3274                              SanitizerKind::Unreachable),
3275               SanitizerHandler::BuiltinUnreachable,
3276               EmitCheckSourceLocation(Loc), None);
3277   }
3278   Builder.CreateUnreachable();
3279 }
3280 
3281 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
3282   llvm::BasicBlock *Cont = createBasicBlock("cont");
3283 
3284   // If we're optimizing, collapse all calls to trap down to just one per
3285   // function to save on code size.
3286   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
3287     TrapBB = createBasicBlock("trap");
3288     Builder.CreateCondBr(Checked, Cont, TrapBB);
3289     EmitBlock(TrapBB);
3290     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
3291     TrapCall->setDoesNotReturn();
3292     TrapCall->setDoesNotThrow();
3293     Builder.CreateUnreachable();
3294   } else {
3295     Builder.CreateCondBr(Checked, Cont, TrapBB);
3296   }
3297 
3298   EmitBlock(Cont);
3299 }
3300 
3301 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3302   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
3303 
3304   if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3305     auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3306                                   CGM.getCodeGenOpts().TrapFuncName);
3307     TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
3308   }
3309 
3310   return TrapCall;
3311 }
3312 
3313 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3314                                                  LValueBaseInfo *BaseInfo,
3315                                                  TBAAAccessInfo *TBAAInfo) {
3316   assert(E->getType()->isArrayType() &&
3317          "Array to pointer decay must have array source type!");
3318 
3319   // Expressions of array type can't be bitfields or vector elements.
3320   LValue LV = EmitLValue(E);
3321   Address Addr = LV.getAddress();
3322 
3323   // If the array type was an incomplete type, we need to make sure
3324   // the decay ends up being the right type.
3325   llvm::Type *NewTy = ConvertType(E->getType());
3326   Addr = Builder.CreateElementBitCast(Addr, NewTy);
3327 
3328   // Note that VLA pointers are always decayed, so we don't need to do
3329   // anything here.
3330   if (!E->getType()->isVariableArrayType()) {
3331     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3332            "Expected pointer to array");
3333     Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3334   }
3335 
3336   // The result of this decay conversion points to an array element within the
3337   // base lvalue. However, since TBAA currently does not support representing
3338   // accesses to elements of member arrays, we conservatively represent accesses
3339   // to the pointee object as if it had no any base lvalue specified.
3340   // TODO: Support TBAA for member arrays.
3341   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3342   if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3343   if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3344 
3345   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
3346 }
3347 
3348 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3349 /// array to pointer, return the array subexpression.
3350 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3351   // If this isn't just an array->pointer decay, bail out.
3352   const auto *CE = dyn_cast<CastExpr>(E);
3353   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3354     return nullptr;
3355 
3356   // If this is a decay from variable width array, bail out.
3357   const Expr *SubExpr = CE->getSubExpr();
3358   if (SubExpr->getType()->isVariableArrayType())
3359     return nullptr;
3360 
3361   return SubExpr;
3362 }
3363 
3364 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3365                                           llvm::Value *ptr,
3366                                           ArrayRef<llvm::Value*> indices,
3367                                           bool inbounds,
3368                                           bool signedIndices,
3369                                           SourceLocation loc,
3370                                     const llvm::Twine &name = "arrayidx") {
3371   if (inbounds) {
3372     return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
3373                                       CodeGenFunction::NotSubtraction, loc,
3374                                       name);
3375   } else {
3376     return CGF.Builder.CreateGEP(ptr, indices, name);
3377   }
3378 }
3379 
3380 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3381                                       llvm::Value *idx,
3382                                       CharUnits eltSize) {
3383   // If we have a constant index, we can use the exact offset of the
3384   // element we're accessing.
3385   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3386     CharUnits offset = constantIdx->getZExtValue() * eltSize;
3387     return arrayAlign.alignmentAtOffset(offset);
3388 
3389   // Otherwise, use the worst-case alignment for any element.
3390   } else {
3391     return arrayAlign.alignmentOfArrayElement(eltSize);
3392   }
3393 }
3394 
3395 static QualType getFixedSizeElementType(const ASTContext &ctx,
3396                                         const VariableArrayType *vla) {
3397   QualType eltType;
3398   do {
3399     eltType = vla->getElementType();
3400   } while ((vla = ctx.getAsVariableArrayType(eltType)));
3401   return eltType;
3402 }
3403 
3404 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
3405                                      ArrayRef<llvm::Value *> indices,
3406                                      QualType eltType, bool inbounds,
3407                                      bool signedIndices, SourceLocation loc,
3408                                      const llvm::Twine &name = "arrayidx") {
3409   // All the indices except that last must be zero.
3410 #ifndef NDEBUG
3411   for (auto idx : indices.drop_back())
3412     assert(isa<llvm::ConstantInt>(idx) &&
3413            cast<llvm::ConstantInt>(idx)->isZero());
3414 #endif
3415 
3416   // Determine the element size of the statically-sized base.  This is
3417   // the thing that the indices are expressed in terms of.
3418   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
3419     eltType = getFixedSizeElementType(CGF.getContext(), vla);
3420   }
3421 
3422   // We can use that to compute the best alignment of the element.
3423   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
3424   CharUnits eltAlign =
3425     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
3426 
3427   llvm::Value *eltPtr;
3428   auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
3429   if (!CGF.IsInPreservedAIRegion || !LastIndex) {
3430     eltPtr = emitArraySubscriptGEP(
3431         CGF, addr.getPointer(), indices, inbounds, signedIndices,
3432         loc, name);
3433   } else {
3434     // Remember the original array subscript for bpf target
3435     unsigned idx = LastIndex->getZExtValue();
3436     eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getPointer(),
3437                                                         indices.size() - 1,
3438                                                         idx);
3439   }
3440 
3441   return Address(eltPtr, eltAlign);
3442 }
3443 
3444 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
3445                                                bool Accessed) {
3446   // The index must always be an integer, which is not an aggregate.  Emit it
3447   // in lexical order (this complexity is, sadly, required by C++17).
3448   llvm::Value *IdxPre =
3449       (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
3450   bool SignedIndices = false;
3451   auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
3452     auto *Idx = IdxPre;
3453     if (E->getLHS() != E->getIdx()) {
3454       assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
3455       Idx = EmitScalarExpr(E->getIdx());
3456     }
3457 
3458     QualType IdxTy = E->getIdx()->getType();
3459     bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
3460     SignedIndices |= IdxSigned;
3461 
3462     if (SanOpts.has(SanitizerKind::ArrayBounds))
3463       EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
3464 
3465     // Extend or truncate the index type to 32 or 64-bits.
3466     if (Promote && Idx->getType() != IntPtrTy)
3467       Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
3468 
3469     return Idx;
3470   };
3471   IdxPre = nullptr;
3472 
3473   // If the base is a vector type, then we are forming a vector element lvalue
3474   // with this subscript.
3475   if (E->getBase()->getType()->isVectorType() &&
3476       !isa<ExtVectorElementExpr>(E->getBase())) {
3477     // Emit the vector as an lvalue to get its address.
3478     LValue LHS = EmitLValue(E->getBase());
3479     auto *Idx = EmitIdxAfterBase(/*Promote*/false);
3480     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
3481     return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
3482                                  LHS.getBaseInfo(), TBAAAccessInfo());
3483   }
3484 
3485   // All the other cases basically behave like simple offsetting.
3486 
3487   // Handle the extvector case we ignored above.
3488   if (isa<ExtVectorElementExpr>(E->getBase())) {
3489     LValue LV = EmitLValue(E->getBase());
3490     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3491     Address Addr = EmitExtVectorElementLValue(LV);
3492 
3493     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
3494     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
3495                                  SignedIndices, E->getExprLoc());
3496     return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
3497                           CGM.getTBAAInfoForSubobject(LV, EltType));
3498   }
3499 
3500   LValueBaseInfo EltBaseInfo;
3501   TBAAAccessInfo EltTBAAInfo;
3502   Address Addr = Address::invalid();
3503   if (const VariableArrayType *vla =
3504            getContext().getAsVariableArrayType(E->getType())) {
3505     // The base must be a pointer, which is not an aggregate.  Emit
3506     // it.  It needs to be emitted first in case it's what captures
3507     // the VLA bounds.
3508     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3509     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3510 
3511     // The element count here is the total number of non-VLA elements.
3512     llvm::Value *numElements = getVLASize(vla).NumElts;
3513 
3514     // Effectively, the multiply by the VLA size is part of the GEP.
3515     // GEP indexes are signed, and scaling an index isn't permitted to
3516     // signed-overflow, so we use the same semantics for our explicit
3517     // multiply.  We suppress this if overflow is not undefined behavior.
3518     if (getLangOpts().isSignedOverflowDefined()) {
3519       Idx = Builder.CreateMul(Idx, numElements);
3520     } else {
3521       Idx = Builder.CreateNSWMul(Idx, numElements);
3522     }
3523 
3524     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
3525                                  !getLangOpts().isSignedOverflowDefined(),
3526                                  SignedIndices, E->getExprLoc());
3527 
3528   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
3529     // Indexing over an interface, as in "NSString *P; P[4];"
3530 
3531     // Emit the base pointer.
3532     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3533     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3534 
3535     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
3536     llvm::Value *InterfaceSizeVal =
3537         llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
3538 
3539     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
3540 
3541     // We don't necessarily build correct LLVM struct types for ObjC
3542     // interfaces, so we can't rely on GEP to do this scaling
3543     // correctly, so we need to cast to i8*.  FIXME: is this actually
3544     // true?  A lot of other things in the fragile ABI would break...
3545     llvm::Type *OrigBaseTy = Addr.getType();
3546     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
3547 
3548     // Do the GEP.
3549     CharUnits EltAlign =
3550       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
3551     llvm::Value *EltPtr =
3552         emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
3553                               SignedIndices, E->getExprLoc());
3554     Addr = Address(EltPtr, EltAlign);
3555 
3556     // Cast back.
3557     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
3558   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3559     // If this is A[i] where A is an array, the frontend will have decayed the
3560     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3561     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3562     // "gep x, i" here.  Emit one "gep A, 0, i".
3563     assert(Array->getType()->isArrayType() &&
3564            "Array to pointer decay must have array source type!");
3565     LValue ArrayLV;
3566     // For simple multidimensional array indexing, set the 'accessed' flag for
3567     // better bounds-checking of the base expression.
3568     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3569       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3570     else
3571       ArrayLV = EmitLValue(Array);
3572     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3573 
3574     // Propagate the alignment from the array itself to the result.
3575     Addr = emitArraySubscriptGEP(
3576         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3577         E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
3578         E->getExprLoc());
3579     EltBaseInfo = ArrayLV.getBaseInfo();
3580     EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
3581   } else {
3582     // The base must be a pointer; emit it with an estimate of its alignment.
3583     Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
3584     auto *Idx = EmitIdxAfterBase(/*Promote*/true);
3585     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
3586                                  !getLangOpts().isSignedOverflowDefined(),
3587                                  SignedIndices, E->getExprLoc());
3588   }
3589 
3590   LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
3591 
3592   if (getLangOpts().ObjC &&
3593       getLangOpts().getGC() != LangOptions::NonGC) {
3594     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3595     setObjCGCLValueClass(getContext(), E, LV);
3596   }
3597   return LV;
3598 }
3599 
3600 static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
3601                                        LValueBaseInfo &BaseInfo,
3602                                        TBAAAccessInfo &TBAAInfo,
3603                                        QualType BaseTy, QualType ElTy,
3604                                        bool IsLowerBound) {
3605   LValue BaseLVal;
3606   if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
3607     BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
3608     if (BaseTy->isArrayType()) {
3609       Address Addr = BaseLVal.getAddress();
3610       BaseInfo = BaseLVal.getBaseInfo();
3611 
3612       // If the array type was an incomplete type, we need to make sure
3613       // the decay ends up being the right type.
3614       llvm::Type *NewTy = CGF.ConvertType(BaseTy);
3615       Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
3616 
3617       // Note that VLA pointers are always decayed, so we don't need to do
3618       // anything here.
3619       if (!BaseTy->isVariableArrayType()) {
3620         assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3621                "Expected pointer to array");
3622         Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3623       }
3624 
3625       return CGF.Builder.CreateElementBitCast(Addr,
3626                                               CGF.ConvertTypeForMem(ElTy));
3627     }
3628     LValueBaseInfo TypeBaseInfo;
3629     TBAAAccessInfo TypeTBAAInfo;
3630     CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
3631                                                   &TypeTBAAInfo);
3632     BaseInfo.mergeForCast(TypeBaseInfo);
3633     TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
3634     return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
3635   }
3636   return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
3637 }
3638 
3639 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
3640                                                 bool IsLowerBound) {
3641   QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
3642   QualType ResultExprTy;
3643   if (auto *AT = getContext().getAsArrayType(BaseTy))
3644     ResultExprTy = AT->getElementType();
3645   else
3646     ResultExprTy = BaseTy->getPointeeType();
3647   llvm::Value *Idx = nullptr;
3648   if (IsLowerBound || E->getColonLoc().isInvalid()) {
3649     // Requesting lower bound or upper bound, but without provided length and
3650     // without ':' symbol for the default length -> length = 1.
3651     // Idx = LowerBound ?: 0;
3652     if (auto *LowerBound = E->getLowerBound()) {
3653       Idx = Builder.CreateIntCast(
3654           EmitScalarExpr(LowerBound), IntPtrTy,
3655           LowerBound->getType()->hasSignedIntegerRepresentation());
3656     } else
3657       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
3658   } else {
3659     // Try to emit length or lower bound as constant. If this is possible, 1
3660     // is subtracted from constant length or lower bound. Otherwise, emit LLVM
3661     // IR (LB + Len) - 1.
3662     auto &C = CGM.getContext();
3663     auto *Length = E->getLength();
3664     llvm::APSInt ConstLength;
3665     if (Length) {
3666       // Idx = LowerBound + Length - 1;
3667       if (Length->isIntegerConstantExpr(ConstLength, C)) {
3668         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3669         Length = nullptr;
3670       }
3671       auto *LowerBound = E->getLowerBound();
3672       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
3673       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
3674         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
3675         LowerBound = nullptr;
3676       }
3677       if (!Length)
3678         --ConstLength;
3679       else if (!LowerBound)
3680         --ConstLowerBound;
3681 
3682       if (Length || LowerBound) {
3683         auto *LowerBoundVal =
3684             LowerBound
3685                 ? Builder.CreateIntCast(
3686                       EmitScalarExpr(LowerBound), IntPtrTy,
3687                       LowerBound->getType()->hasSignedIntegerRepresentation())
3688                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
3689         auto *LengthVal =
3690             Length
3691                 ? Builder.CreateIntCast(
3692                       EmitScalarExpr(Length), IntPtrTy,
3693                       Length->getType()->hasSignedIntegerRepresentation())
3694                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
3695         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
3696                                 /*HasNUW=*/false,
3697                                 !getLangOpts().isSignedOverflowDefined());
3698         if (Length && LowerBound) {
3699           Idx = Builder.CreateSub(
3700               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
3701               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3702         }
3703       } else
3704         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
3705     } else {
3706       // Idx = ArraySize - 1;
3707       QualType ArrayTy = BaseTy->isPointerType()
3708                              ? E->getBase()->IgnoreParenImpCasts()->getType()
3709                              : BaseTy;
3710       if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
3711         Length = VAT->getSizeExpr();
3712         if (Length->isIntegerConstantExpr(ConstLength, C))
3713           Length = nullptr;
3714       } else {
3715         auto *CAT = C.getAsConstantArrayType(ArrayTy);
3716         ConstLength = CAT->getSize();
3717       }
3718       if (Length) {
3719         auto *LengthVal = Builder.CreateIntCast(
3720             EmitScalarExpr(Length), IntPtrTy,
3721             Length->getType()->hasSignedIntegerRepresentation());
3722         Idx = Builder.CreateSub(
3723             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
3724             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
3725       } else {
3726         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
3727         --ConstLength;
3728         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
3729       }
3730     }
3731   }
3732   assert(Idx);
3733 
3734   Address EltPtr = Address::invalid();
3735   LValueBaseInfo BaseInfo;
3736   TBAAAccessInfo TBAAInfo;
3737   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
3738     // The base must be a pointer, which is not an aggregate.  Emit
3739     // it.  It needs to be emitted first in case it's what captures
3740     // the VLA bounds.
3741     Address Base =
3742         emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
3743                                 BaseTy, VLA->getElementType(), IsLowerBound);
3744     // The element count here is the total number of non-VLA elements.
3745     llvm::Value *NumElements = getVLASize(VLA).NumElts;
3746 
3747     // Effectively, the multiply by the VLA size is part of the GEP.
3748     // GEP indexes are signed, and scaling an index isn't permitted to
3749     // signed-overflow, so we use the same semantics for our explicit
3750     // multiply.  We suppress this if overflow is not undefined behavior.
3751     if (getLangOpts().isSignedOverflowDefined())
3752       Idx = Builder.CreateMul(Idx, NumElements);
3753     else
3754       Idx = Builder.CreateNSWMul(Idx, NumElements);
3755     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
3756                                    !getLangOpts().isSignedOverflowDefined(),
3757                                    /*signedIndices=*/false, E->getExprLoc());
3758   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
3759     // If this is A[i] where A is an array, the frontend will have decayed the
3760     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
3761     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
3762     // "gep x, i" here.  Emit one "gep A, 0, i".
3763     assert(Array->getType()->isArrayType() &&
3764            "Array to pointer decay must have array source type!");
3765     LValue ArrayLV;
3766     // For simple multidimensional array indexing, set the 'accessed' flag for
3767     // better bounds-checking of the base expression.
3768     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
3769       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
3770     else
3771       ArrayLV = EmitLValue(Array);
3772 
3773     // Propagate the alignment from the array itself to the result.
3774     EltPtr = emitArraySubscriptGEP(
3775         *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
3776         ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
3777         /*signedIndices=*/false, E->getExprLoc());
3778     BaseInfo = ArrayLV.getBaseInfo();
3779     TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
3780   } else {
3781     Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
3782                                            TBAAInfo, BaseTy, ResultExprTy,
3783                                            IsLowerBound);
3784     EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
3785                                    !getLangOpts().isSignedOverflowDefined(),
3786                                    /*signedIndices=*/false, E->getExprLoc());
3787   }
3788 
3789   return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
3790 }
3791 
3792 LValue CodeGenFunction::
3793 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
3794   // Emit the base vector as an l-value.
3795   LValue Base;
3796 
3797   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
3798   if (E->isArrow()) {
3799     // If it is a pointer to a vector, emit the address and form an lvalue with
3800     // it.
3801     LValueBaseInfo BaseInfo;
3802     TBAAAccessInfo TBAAInfo;
3803     Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
3804     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
3805     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
3806     Base.getQuals().removeObjCGCAttr();
3807   } else if (E->getBase()->isGLValue()) {
3808     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
3809     // emit the base as an lvalue.
3810     assert(E->getBase()->getType()->isVectorType());
3811     Base = EmitLValue(E->getBase());
3812   } else {
3813     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
3814     assert(E->getBase()->getType()->isVectorType() &&
3815            "Result must be a vector");
3816     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3817 
3818     // Store the vector to memory (because LValue wants an address).
3819     Address VecMem = CreateMemTemp(E->getBase()->getType());
3820     Builder.CreateStore(Vec, VecMem);
3821     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3822                           AlignmentSource::Decl);
3823   }
3824 
3825   QualType type =
3826     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3827 
3828   // Encode the element access list into a vector of unsigned indices.
3829   SmallVector<uint32_t, 4> Indices;
3830   E->getEncodedElementAccess(Indices);
3831 
3832   if (Base.isSimple()) {
3833     llvm::Constant *CV =
3834         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3835     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3836                                     Base.getBaseInfo(), TBAAAccessInfo());
3837   }
3838   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3839 
3840   llvm::Constant *BaseElts = Base.getExtVectorElts();
3841   SmallVector<llvm::Constant *, 4> CElts;
3842 
3843   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3844     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3845   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3846   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3847                                   Base.getBaseInfo(), TBAAAccessInfo());
3848 }
3849 
3850 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3851   if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
3852     EmitIgnoredExpr(E->getBase());
3853     return EmitDeclRefLValue(DRE);
3854   }
3855 
3856   Expr *BaseExpr = E->getBase();
3857   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3858   LValue BaseLV;
3859   if (E->isArrow()) {
3860     LValueBaseInfo BaseInfo;
3861     TBAAAccessInfo TBAAInfo;
3862     Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
3863     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3864     SanitizerSet SkippedChecks;
3865     bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
3866     if (IsBaseCXXThis)
3867       SkippedChecks.set(SanitizerKind::Alignment, true);
3868     if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
3869       SkippedChecks.set(SanitizerKind::Null, true);
3870     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
3871                   /*Alignment=*/CharUnits::Zero(), SkippedChecks);
3872     BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
3873   } else
3874     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3875 
3876   NamedDecl *ND = E->getMemberDecl();
3877   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3878     LValue LV = EmitLValueForField(BaseLV, Field);
3879     setObjCGCLValueClass(getContext(), E, LV);
3880     return LV;
3881   }
3882 
3883   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3884     return EmitFunctionDeclLValue(*this, E, FD);
3885 
3886   llvm_unreachable("Unhandled member declaration!");
3887 }
3888 
3889 /// Given that we are currently emitting a lambda, emit an l-value for
3890 /// one of its members.
3891 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3892   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3893   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3894   QualType LambdaTagType =
3895     getContext().getTagDeclType(Field->getParent());
3896   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3897   return EmitLValueForField(LambdaLV, Field);
3898 }
3899 
3900 /// Get the field index in the debug info. The debug info structure/union
3901 /// will ignore the unnamed bitfields.
3902 unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
3903                                              unsigned FieldIndex) {
3904   unsigned I = 0, Skipped = 0;
3905 
3906   for (auto F : Rec->getDefinition()->fields()) {
3907     if (I == FieldIndex)
3908       break;
3909     if (F->isUnnamedBitfield())
3910       Skipped++;
3911     I++;
3912   }
3913 
3914   return FieldIndex - Skipped;
3915 }
3916 
3917 /// Get the address of a zero-sized field within a record. The resulting
3918 /// address doesn't necessarily have the right type.
3919 static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
3920                                        const FieldDecl *Field) {
3921   CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
3922       CGF.getContext().getFieldOffset(Field));
3923   if (Offset.isZero())
3924     return Base;
3925   Base = CGF.Builder.CreateElementBitCast(Base, CGF.Int8Ty);
3926   return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
3927 }
3928 
3929 /// Drill down to the storage of a field without walking into
3930 /// reference types.
3931 ///
3932 /// The resulting address doesn't necessarily have the right type.
3933 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3934                                       const FieldDecl *field) {
3935   if (field->isZeroSize(CGF.getContext()))
3936     return emitAddrOfZeroSizeField(CGF, base, field);
3937 
3938   const RecordDecl *rec = field->getParent();
3939 
3940   unsigned idx =
3941     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3942 
3943   return CGF.Builder.CreateStructGEP(base, idx, field->getName());
3944 }
3945 
3946 static Address emitPreserveStructAccess(CodeGenFunction &CGF, Address base,
3947                                         const FieldDecl *field) {
3948   const RecordDecl *rec = field->getParent();
3949   llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateRecordType(
3950       CGF.getContext().getRecordType(rec), rec->getLocation());
3951 
3952   unsigned idx =
3953       CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3954 
3955   return CGF.Builder.CreatePreserveStructAccessIndex(
3956       base, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
3957 }
3958 
3959 static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
3960   const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
3961   if (!RD)
3962     return false;
3963 
3964   if (RD->isDynamicClass())
3965     return true;
3966 
3967   for (const auto &Base : RD->bases())
3968     if (hasAnyVptr(Base.getType(), Context))
3969       return true;
3970 
3971   for (const FieldDecl *Field : RD->fields())
3972     if (hasAnyVptr(Field->getType(), Context))
3973       return true;
3974 
3975   return false;
3976 }
3977 
3978 LValue CodeGenFunction::EmitLValueForField(LValue base,
3979                                            const FieldDecl *field) {
3980   LValueBaseInfo BaseInfo = base.getBaseInfo();
3981 
3982   if (field->isBitField()) {
3983     const CGRecordLayout &RL =
3984       CGM.getTypes().getCGRecordLayout(field->getParent());
3985     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3986     Address Addr = base.getAddress();
3987     unsigned Idx = RL.getLLVMFieldNo(field);
3988     if (Idx != 0)
3989       // For structs, we GEP to the field that the record layout suggests.
3990       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
3991     // Get the access type.
3992     llvm::Type *FieldIntTy =
3993       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3994     if (Addr.getElementType() != FieldIntTy)
3995       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3996 
3997     QualType fieldType =
3998       field->getType().withCVRQualifiers(base.getVRQualifiers());
3999     // TODO: Support TBAA for bit fields.
4000     LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4001     return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4002                                 TBAAAccessInfo());
4003   }
4004 
4005   // Fields of may-alias structures are may-alias themselves.
4006   // FIXME: this should get propagated down through anonymous structs
4007   // and unions.
4008   QualType FieldType = field->getType();
4009   const RecordDecl *rec = field->getParent();
4010   AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4011   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4012   TBAAAccessInfo FieldTBAAInfo;
4013   if (base.getTBAAInfo().isMayAlias() ||
4014           rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4015     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4016   } else if (rec->isUnion()) {
4017     // TODO: Support TBAA for unions.
4018     FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4019   } else {
4020     // If no base type been assigned for the base access, then try to generate
4021     // one for this base lvalue.
4022     FieldTBAAInfo = base.getTBAAInfo();
4023     if (!FieldTBAAInfo.BaseType) {
4024         FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4025         assert(!FieldTBAAInfo.Offset &&
4026                "Nonzero offset for an access with no base type!");
4027     }
4028 
4029     // Adjust offset to be relative to the base type.
4030     const ASTRecordLayout &Layout =
4031         getContext().getASTRecordLayout(field->getParent());
4032     unsigned CharWidth = getContext().getCharWidth();
4033     if (FieldTBAAInfo.BaseType)
4034       FieldTBAAInfo.Offset +=
4035           Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4036 
4037     // Update the final access type and size.
4038     FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4039     FieldTBAAInfo.Size =
4040         getContext().getTypeSizeInChars(FieldType).getQuantity();
4041   }
4042 
4043   Address addr = base.getAddress();
4044   if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4045     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4046         ClassDef->isDynamicClass()) {
4047       // Getting to any field of dynamic object requires stripping dynamic
4048       // information provided by invariant.group.  This is because accessing
4049       // fields may leak the real address of dynamic object, which could result
4050       // in miscompilation when leaked pointer would be compared.
4051       auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4052       addr = Address(stripped, addr.getAlignment());
4053     }
4054   }
4055 
4056   unsigned RecordCVR = base.getVRQualifiers();
4057   if (rec->isUnion()) {
4058     // For unions, there is no pointer adjustment.
4059     assert(!FieldType->isReferenceType() && "union has reference member");
4060     if (CGM.getCodeGenOpts().StrictVTablePointers &&
4061         hasAnyVptr(FieldType, getContext()))
4062       // Because unions can easily skip invariant.barriers, we need to add
4063       // a barrier every time CXXRecord field with vptr is referenced.
4064       addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
4065                      addr.getAlignment());
4066 
4067     if (IsInPreservedAIRegion) {
4068       // Remember the original union field index
4069       llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4070           getContext().getRecordType(rec), rec->getLocation());
4071       addr = Address(
4072           Builder.CreatePreserveUnionAccessIndex(
4073               addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4074           addr.getAlignment());
4075     }
4076   } else {
4077 
4078     if (!IsInPreservedAIRegion)
4079       // For structs, we GEP to the field that the record layout suggests.
4080       addr = emitAddrOfFieldStorage(*this, addr, field);
4081     else
4082       // Remember the original struct field index
4083       addr = emitPreserveStructAccess(*this, addr, field);
4084 
4085     // If this is a reference field, load the reference right now.
4086     if (FieldType->isReferenceType()) {
4087       LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
4088                                       FieldTBAAInfo);
4089       if (RecordCVR & Qualifiers::Volatile)
4090         RefLVal.getQuals().addVolatile();
4091       addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4092 
4093       // Qualifiers on the struct don't apply to the referencee.
4094       RecordCVR = 0;
4095       FieldType = FieldType->getPointeeType();
4096     }
4097   }
4098 
4099   // Make sure that the address is pointing to the right type.  This is critical
4100   // for both unions and structs.  A union needs a bitcast, a struct element
4101   // will need a bitcast if the LLVM type laid out doesn't match the desired
4102   // type.
4103   addr = Builder.CreateElementBitCast(
4104       addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
4105 
4106   if (field->hasAttr<AnnotateAttr>())
4107     addr = EmitFieldAnnotations(field, addr);
4108 
4109   LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4110   LV.getQuals().addCVRQualifiers(RecordCVR);
4111 
4112   // __weak attribute on a field is ignored.
4113   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4114     LV.getQuals().removeObjCGCAttr();
4115 
4116   return LV;
4117 }
4118 
4119 LValue
4120 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4121                                                   const FieldDecl *Field) {
4122   QualType FieldType = Field->getType();
4123 
4124   if (!FieldType->isReferenceType())
4125     return EmitLValueForField(Base, Field);
4126 
4127   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
4128 
4129   // Make sure that the address is pointing to the right type.
4130   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4131   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
4132 
4133   // TODO: Generate TBAA information that describes this access as a structure
4134   // member access and not just an access to an object of the field's type. This
4135   // should be similar to what we do in EmitLValueForField().
4136   LValueBaseInfo BaseInfo = Base.getBaseInfo();
4137   AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4138   LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4139   return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4140                         CGM.getTBAAInfoForSubobject(Base, FieldType));
4141 }
4142 
4143 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4144   if (E->isFileScope()) {
4145     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4146     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4147   }
4148   if (E->getType()->isVariablyModifiedType())
4149     // make sure to emit the VLA size.
4150     EmitVariablyModifiedType(E->getType());
4151 
4152   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4153   const Expr *InitExpr = E->getInitializer();
4154   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4155 
4156   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4157                    /*Init*/ true);
4158 
4159   return Result;
4160 }
4161 
4162 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4163   if (!E->isGLValue())
4164     // Initializing an aggregate temporary in C++11: T{...}.
4165     return EmitAggExprToLValue(E);
4166 
4167   // An lvalue initializer list must be initializing a reference.
4168   assert(E->isTransparent() && "non-transparent glvalue init list");
4169   return EmitLValue(E->getInit(0));
4170 }
4171 
4172 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
4173 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4174 /// LValue is returned and the current block has been terminated.
4175 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4176                                                     const Expr *Operand) {
4177   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4178     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4179     return None;
4180   }
4181 
4182   return CGF.EmitLValue(Operand);
4183 }
4184 
4185 LValue CodeGenFunction::
4186 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
4187   if (!expr->isGLValue()) {
4188     // ?: here should be an aggregate.
4189     assert(hasAggregateEvaluationKind(expr->getType()) &&
4190            "Unexpected conditional operator!");
4191     return EmitAggExprToLValue(expr);
4192   }
4193 
4194   OpaqueValueMapping binding(*this, expr);
4195 
4196   const Expr *condExpr = expr->getCond();
4197   bool CondExprBool;
4198   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4199     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
4200     if (!CondExprBool) std::swap(live, dead);
4201 
4202     if (!ContainsLabel(dead)) {
4203       // If the true case is live, we need to track its region.
4204       if (CondExprBool)
4205         incrementProfileCounter(expr);
4206       return EmitLValue(live);
4207     }
4208   }
4209 
4210   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
4211   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
4212   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
4213 
4214   ConditionalEvaluation eval(*this);
4215   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
4216 
4217   // Any temporaries created here are conditional.
4218   EmitBlock(lhsBlock);
4219   incrementProfileCounter(expr);
4220   eval.begin(*this);
4221   Optional<LValue> lhs =
4222       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
4223   eval.end(*this);
4224 
4225   if (lhs && !lhs->isSimple())
4226     return EmitUnsupportedLValue(expr, "conditional operator");
4227 
4228   lhsBlock = Builder.GetInsertBlock();
4229   if (lhs)
4230     Builder.CreateBr(contBlock);
4231 
4232   // Any temporaries created here are conditional.
4233   EmitBlock(rhsBlock);
4234   eval.begin(*this);
4235   Optional<LValue> rhs =
4236       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
4237   eval.end(*this);
4238   if (rhs && !rhs->isSimple())
4239     return EmitUnsupportedLValue(expr, "conditional operator");
4240   rhsBlock = Builder.GetInsertBlock();
4241 
4242   EmitBlock(contBlock);
4243 
4244   if (lhs && rhs) {
4245     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
4246                                            2, "cond-lvalue");
4247     phi->addIncoming(lhs->getPointer(), lhsBlock);
4248     phi->addIncoming(rhs->getPointer(), rhsBlock);
4249     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
4250     AlignmentSource alignSource =
4251       std::max(lhs->getBaseInfo().getAlignmentSource(),
4252                rhs->getBaseInfo().getAlignmentSource());
4253     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
4254         lhs->getTBAAInfo(), rhs->getTBAAInfo());
4255     return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
4256                           TBAAInfo);
4257   } else {
4258     assert((lhs || rhs) &&
4259            "both operands of glvalue conditional are throw-expressions?");
4260     return lhs ? *lhs : *rhs;
4261   }
4262 }
4263 
4264 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
4265 /// type. If the cast is to a reference, we can have the usual lvalue result,
4266 /// otherwise if a cast is needed by the code generator in an lvalue context,
4267 /// then it must mean that we need the address of an aggregate in order to
4268 /// access one of its members.  This can happen for all the reasons that casts
4269 /// are permitted with aggregate result, including noop aggregate casts, and
4270 /// cast from scalar to union.
4271 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
4272   switch (E->getCastKind()) {
4273   case CK_ToVoid:
4274   case CK_BitCast:
4275   case CK_LValueToRValueBitCast:
4276   case CK_ArrayToPointerDecay:
4277   case CK_FunctionToPointerDecay:
4278   case CK_NullToMemberPointer:
4279   case CK_NullToPointer:
4280   case CK_IntegralToPointer:
4281   case CK_PointerToIntegral:
4282   case CK_PointerToBoolean:
4283   case CK_VectorSplat:
4284   case CK_IntegralCast:
4285   case CK_BooleanToSignedIntegral:
4286   case CK_IntegralToBoolean:
4287   case CK_IntegralToFloating:
4288   case CK_FloatingToIntegral:
4289   case CK_FloatingToBoolean:
4290   case CK_FloatingCast:
4291   case CK_FloatingRealToComplex:
4292   case CK_FloatingComplexToReal:
4293   case CK_FloatingComplexToBoolean:
4294   case CK_FloatingComplexCast:
4295   case CK_FloatingComplexToIntegralComplex:
4296   case CK_IntegralRealToComplex:
4297   case CK_IntegralComplexToReal:
4298   case CK_IntegralComplexToBoolean:
4299   case CK_IntegralComplexCast:
4300   case CK_IntegralComplexToFloatingComplex:
4301   case CK_DerivedToBaseMemberPointer:
4302   case CK_BaseToDerivedMemberPointer:
4303   case CK_MemberPointerToBoolean:
4304   case CK_ReinterpretMemberPointer:
4305   case CK_AnyPointerToBlockPointerCast:
4306   case CK_ARCProduceObject:
4307   case CK_ARCConsumeObject:
4308   case CK_ARCReclaimReturnedObject:
4309   case CK_ARCExtendBlockObject:
4310   case CK_CopyAndAutoreleaseBlockObject:
4311   case CK_IntToOCLSampler:
4312   case CK_FixedPointCast:
4313   case CK_FixedPointToBoolean:
4314   case CK_FixedPointToIntegral:
4315   case CK_IntegralToFixedPoint:
4316     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
4317 
4318   case CK_Dependent:
4319     llvm_unreachable("dependent cast kind in IR gen!");
4320 
4321   case CK_BuiltinFnToFnPtr:
4322     llvm_unreachable("builtin functions are handled elsewhere");
4323 
4324   // These are never l-values; just use the aggregate emission code.
4325   case CK_NonAtomicToAtomic:
4326   case CK_AtomicToNonAtomic:
4327     return EmitAggExprToLValue(E);
4328 
4329   case CK_Dynamic: {
4330     LValue LV = EmitLValue(E->getSubExpr());
4331     Address V = LV.getAddress();
4332     const auto *DCE = cast<CXXDynamicCastExpr>(E);
4333     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
4334   }
4335 
4336   case CK_ConstructorConversion:
4337   case CK_UserDefinedConversion:
4338   case CK_CPointerToObjCPointerCast:
4339   case CK_BlockPointerToObjCPointerCast:
4340   case CK_NoOp:
4341   case CK_LValueToRValue:
4342     return EmitLValue(E->getSubExpr());
4343 
4344   case CK_UncheckedDerivedToBase:
4345   case CK_DerivedToBase: {
4346     const RecordType *DerivedClassTy =
4347       E->getSubExpr()->getType()->getAs<RecordType>();
4348     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4349 
4350     LValue LV = EmitLValue(E->getSubExpr());
4351     Address This = LV.getAddress();
4352 
4353     // Perform the derived-to-base conversion
4354     Address Base = GetAddressOfBaseClass(
4355         This, DerivedClassDecl, E->path_begin(), E->path_end(),
4356         /*NullCheckValue=*/false, E->getExprLoc());
4357 
4358     // TODO: Support accesses to members of base classes in TBAA. For now, we
4359     // conservatively pretend that the complete object is of the base class
4360     // type.
4361     return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
4362                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4363   }
4364   case CK_ToUnion:
4365     return EmitAggExprToLValue(E);
4366   case CK_BaseToDerived: {
4367     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
4368     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
4369 
4370     LValue LV = EmitLValue(E->getSubExpr());
4371 
4372     // Perform the base-to-derived conversion
4373     Address Derived =
4374       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
4375                                E->path_begin(), E->path_end(),
4376                                /*NullCheckValue=*/false);
4377 
4378     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
4379     // performed and the object is not of the derived type.
4380     if (sanitizePerformTypeCheck())
4381       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
4382                     Derived.getPointer(), E->getType());
4383 
4384     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
4385       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
4386                                 /*MayBeNull=*/false, CFITCK_DerivedCast,
4387                                 E->getBeginLoc());
4388 
4389     return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
4390                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4391   }
4392   case CK_LValueBitCast: {
4393     // This must be a reinterpret_cast (or c-style equivalent).
4394     const auto *CE = cast<ExplicitCastExpr>(E);
4395 
4396     CGM.EmitExplicitCastExprType(CE, this);
4397     LValue LV = EmitLValue(E->getSubExpr());
4398     Address V = Builder.CreateBitCast(LV.getAddress(),
4399                                       ConvertType(CE->getTypeAsWritten()));
4400 
4401     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
4402       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
4403                                 /*MayBeNull=*/false, CFITCK_UnrelatedCast,
4404                                 E->getBeginLoc());
4405 
4406     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4407                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4408   }
4409   case CK_AddressSpaceConversion: {
4410     LValue LV = EmitLValue(E->getSubExpr());
4411     QualType DestTy = getContext().getPointerType(E->getType());
4412     llvm::Value *V = getTargetHooks().performAddrSpaceCast(
4413         *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
4414         E->getType().getAddressSpace(), ConvertType(DestTy));
4415     return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
4416                           E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
4417   }
4418   case CK_ObjCObjectLValueCast: {
4419     LValue LV = EmitLValue(E->getSubExpr());
4420     Address V = Builder.CreateElementBitCast(LV.getAddress(),
4421                                              ConvertType(E->getType()));
4422     return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
4423                           CGM.getTBAAInfoForSubobject(LV, E->getType()));
4424   }
4425   case CK_ZeroToOCLOpaqueType:
4426     llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
4427   }
4428 
4429   llvm_unreachable("Unhandled lvalue cast kind?");
4430 }
4431 
4432 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
4433   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
4434   return getOrCreateOpaqueLValueMapping(e);
4435 }
4436 
4437 LValue
4438 CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
4439   assert(OpaqueValueMapping::shouldBindAsLValue(e));
4440 
4441   llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
4442       it = OpaqueLValues.find(e);
4443 
4444   if (it != OpaqueLValues.end())
4445     return it->second;
4446 
4447   assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
4448   return EmitLValue(e->getSourceExpr());
4449 }
4450 
4451 RValue
4452 CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
4453   assert(!OpaqueValueMapping::shouldBindAsLValue(e));
4454 
4455   llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
4456       it = OpaqueRValues.find(e);
4457 
4458   if (it != OpaqueRValues.end())
4459     return it->second;
4460 
4461   assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
4462   return EmitAnyExpr(e->getSourceExpr());
4463 }
4464 
4465 RValue CodeGenFunction::EmitRValueForField(LValue LV,
4466                                            const FieldDecl *FD,
4467                                            SourceLocation Loc) {
4468   QualType FT = FD->getType();
4469   LValue FieldLV = EmitLValueForField(LV, FD);
4470   switch (getEvaluationKind(FT)) {
4471   case TEK_Complex:
4472     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
4473   case TEK_Aggregate:
4474     return FieldLV.asAggregateRValue();
4475   case TEK_Scalar:
4476     // This routine is used to load fields one-by-one to perform a copy, so
4477     // don't load reference fields.
4478     if (FD->getType()->isReferenceType())
4479       return RValue::get(FieldLV.getPointer());
4480     return EmitLoadOfLValue(FieldLV, Loc);
4481   }
4482   llvm_unreachable("bad evaluation kind");
4483 }
4484 
4485 //===--------------------------------------------------------------------===//
4486 //                             Expression Emission
4487 //===--------------------------------------------------------------------===//
4488 
4489 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
4490                                      ReturnValueSlot ReturnValue) {
4491   // Builtins never have block type.
4492   if (E->getCallee()->getType()->isBlockPointerType())
4493     return EmitBlockCallExpr(E, ReturnValue);
4494 
4495   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
4496     return EmitCXXMemberCallExpr(CE, ReturnValue);
4497 
4498   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
4499     return EmitCUDAKernelCallExpr(CE, ReturnValue);
4500 
4501   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
4502     if (const CXXMethodDecl *MD =
4503           dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
4504       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
4505 
4506   CGCallee callee = EmitCallee(E->getCallee());
4507 
4508   if (callee.isBuiltin()) {
4509     return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
4510                            E, ReturnValue);
4511   }
4512 
4513   if (callee.isPseudoDestructor()) {
4514     return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
4515   }
4516 
4517   return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
4518 }
4519 
4520 /// Emit a CallExpr without considering whether it might be a subclass.
4521 RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
4522                                            ReturnValueSlot ReturnValue) {
4523   CGCallee Callee = EmitCallee(E->getCallee());
4524   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
4525 }
4526 
4527 static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
4528   if (auto builtinID = FD->getBuiltinID()) {
4529     return CGCallee::forBuiltin(builtinID, FD);
4530   }
4531 
4532   llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
4533   return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
4534 }
4535 
4536 CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
4537   E = E->IgnoreParens();
4538 
4539   // Look through function-to-pointer decay.
4540   if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
4541     if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
4542         ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
4543       return EmitCallee(ICE->getSubExpr());
4544     }
4545 
4546   // Resolve direct calls.
4547   } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
4548     if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
4549       return EmitDirectCallee(*this, FD);
4550     }
4551   } else if (auto ME = dyn_cast<MemberExpr>(E)) {
4552     if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
4553       EmitIgnoredExpr(ME->getBase());
4554       return EmitDirectCallee(*this, FD);
4555     }
4556 
4557   // Look through template substitutions.
4558   } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
4559     return EmitCallee(NTTP->getReplacement());
4560 
4561   // Treat pseudo-destructor calls differently.
4562   } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
4563     return CGCallee::forPseudoDestructor(PDE);
4564   }
4565 
4566   // Otherwise, we have an indirect reference.
4567   llvm::Value *calleePtr;
4568   QualType functionType;
4569   if (auto ptrType = E->getType()->getAs<PointerType>()) {
4570     calleePtr = EmitScalarExpr(E);
4571     functionType = ptrType->getPointeeType();
4572   } else {
4573     functionType = E->getType();
4574     calleePtr = EmitLValue(E).getPointer();
4575   }
4576   assert(functionType->isFunctionType());
4577 
4578   GlobalDecl GD;
4579   if (const auto *VD =
4580           dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
4581     GD = GlobalDecl(VD);
4582 
4583   CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
4584   CGCallee callee(calleeInfo, calleePtr);
4585   return callee;
4586 }
4587 
4588 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
4589   // Comma expressions just emit their LHS then their RHS as an l-value.
4590   if (E->getOpcode() == BO_Comma) {
4591     EmitIgnoredExpr(E->getLHS());
4592     EnsureInsertPoint();
4593     return EmitLValue(E->getRHS());
4594   }
4595 
4596   if (E->getOpcode() == BO_PtrMemD ||
4597       E->getOpcode() == BO_PtrMemI)
4598     return EmitPointerToDataMemberBinaryExpr(E);
4599 
4600   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
4601 
4602   // Note that in all of these cases, __block variables need the RHS
4603   // evaluated first just in case the variable gets moved by the RHS.
4604 
4605   switch (getEvaluationKind(E->getType())) {
4606   case TEK_Scalar: {
4607     switch (E->getLHS()->getType().getObjCLifetime()) {
4608     case Qualifiers::OCL_Strong:
4609       return EmitARCStoreStrong(E, /*ignored*/ false).first;
4610 
4611     case Qualifiers::OCL_Autoreleasing:
4612       return EmitARCStoreAutoreleasing(E).first;
4613 
4614     // No reason to do any of these differently.
4615     case Qualifiers::OCL_None:
4616     case Qualifiers::OCL_ExplicitNone:
4617     case Qualifiers::OCL_Weak:
4618       break;
4619     }
4620 
4621     RValue RV = EmitAnyExpr(E->getRHS());
4622     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
4623     if (RV.isScalar())
4624       EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
4625     EmitStoreThroughLValue(RV, LV);
4626     return LV;
4627   }
4628 
4629   case TEK_Complex:
4630     return EmitComplexAssignmentLValue(E);
4631 
4632   case TEK_Aggregate:
4633     return EmitAggExprToLValue(E);
4634   }
4635   llvm_unreachable("bad evaluation kind");
4636 }
4637 
4638 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
4639   RValue RV = EmitCallExpr(E);
4640 
4641   if (!RV.isScalar())
4642     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4643                           AlignmentSource::Decl);
4644 
4645   assert(E->getCallReturnType(getContext())->isReferenceType() &&
4646          "Can't have a scalar return unless the return type is a "
4647          "reference type!");
4648 
4649   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4650 }
4651 
4652 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
4653   // FIXME: This shouldn't require another copy.
4654   return EmitAggExprToLValue(E);
4655 }
4656 
4657 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
4658   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
4659          && "binding l-value to type which needs a temporary");
4660   AggValueSlot Slot = CreateAggTemp(E->getType());
4661   EmitCXXConstructExpr(E, Slot);
4662   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4663 }
4664 
4665 LValue
4666 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
4667   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
4668 }
4669 
4670 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
4671   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
4672                                       ConvertType(E->getType()));
4673 }
4674 
4675 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
4676   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
4677                         AlignmentSource::Decl);
4678 }
4679 
4680 LValue
4681 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
4682   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
4683   Slot.setExternallyDestructed();
4684   EmitAggExpr(E->getSubExpr(), Slot);
4685   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
4686   return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
4687 }
4688 
4689 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
4690   RValue RV = EmitObjCMessageExpr(E);
4691 
4692   if (!RV.isScalar())
4693     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4694                           AlignmentSource::Decl);
4695 
4696   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
4697          "Can't have a scalar return unless the return type is a "
4698          "reference type!");
4699 
4700   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
4701 }
4702 
4703 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
4704   Address V =
4705     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
4706   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
4707 }
4708 
4709 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4710                                              const ObjCIvarDecl *Ivar) {
4711   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
4712 }
4713 
4714 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
4715                                           llvm::Value *BaseValue,
4716                                           const ObjCIvarDecl *Ivar,
4717                                           unsigned CVRQualifiers) {
4718   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
4719                                                    Ivar, CVRQualifiers);
4720 }
4721 
4722 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
4723   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
4724   llvm::Value *BaseValue = nullptr;
4725   const Expr *BaseExpr = E->getBase();
4726   Qualifiers BaseQuals;
4727   QualType ObjectTy;
4728   if (E->isArrow()) {
4729     BaseValue = EmitScalarExpr(BaseExpr);
4730     ObjectTy = BaseExpr->getType()->getPointeeType();
4731     BaseQuals = ObjectTy.getQualifiers();
4732   } else {
4733     LValue BaseLV = EmitLValue(BaseExpr);
4734     BaseValue = BaseLV.getPointer();
4735     ObjectTy = BaseExpr->getType();
4736     BaseQuals = ObjectTy.getQualifiers();
4737   }
4738 
4739   LValue LV =
4740     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
4741                       BaseQuals.getCVRQualifiers());
4742   setObjCGCLValueClass(getContext(), E, LV);
4743   return LV;
4744 }
4745 
4746 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
4747   // Can only get l-value for message expression returning aggregate type
4748   RValue RV = EmitAnyExprToTemp(E);
4749   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
4750                         AlignmentSource::Decl);
4751 }
4752 
4753 RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
4754                                  const CallExpr *E, ReturnValueSlot ReturnValue,
4755                                  llvm::Value *Chain) {
4756   // Get the actual function type. The callee type will always be a pointer to
4757   // function type or a block pointer type.
4758   assert(CalleeType->isFunctionPointerType() &&
4759          "Call must have function pointer type!");
4760 
4761   const Decl *TargetDecl =
4762       OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
4763 
4764   CalleeType = getContext().getCanonicalType(CalleeType);
4765 
4766   auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
4767 
4768   CGCallee Callee = OrigCallee;
4769 
4770   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
4771       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4772     if (llvm::Constant *PrefixSig =
4773             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
4774       SanitizerScope SanScope(this);
4775       // Remove any (C++17) exception specifications, to allow calling e.g. a
4776       // noexcept function through a non-noexcept pointer.
4777       auto ProtoTy =
4778         getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
4779       llvm::Constant *FTRTTIConst =
4780           CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
4781       llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
4782       llvm::StructType *PrefixStructTy = llvm::StructType::get(
4783           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
4784 
4785       llvm::Value *CalleePtr = Callee.getFunctionPointer();
4786 
4787       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
4788           CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
4789       llvm::Value *CalleeSigPtr =
4790           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
4791       llvm::Value *CalleeSig =
4792           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
4793       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
4794 
4795       llvm::BasicBlock *Cont = createBasicBlock("cont");
4796       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
4797       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
4798 
4799       EmitBlock(TypeCheck);
4800       llvm::Value *CalleeRTTIPtr =
4801           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
4802       llvm::Value *CalleeRTTIEncoded =
4803           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
4804       llvm::Value *CalleeRTTI =
4805           DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
4806       llvm::Value *CalleeRTTIMatch =
4807           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
4808       llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
4809                                       EmitCheckTypeDescriptor(CalleeType)};
4810       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
4811                 SanitizerHandler::FunctionTypeMismatch, StaticData,
4812                 {CalleePtr, CalleeRTTI, FTRTTIConst});
4813 
4814       Builder.CreateBr(Cont);
4815       EmitBlock(Cont);
4816     }
4817   }
4818 
4819   const auto *FnType = cast<FunctionType>(PointeeType);
4820 
4821   // If we are checking indirect calls and this call is indirect, check that the
4822   // function pointer is a member of the bit set for the function type.
4823   if (SanOpts.has(SanitizerKind::CFIICall) &&
4824       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
4825     SanitizerScope SanScope(this);
4826     EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
4827 
4828     llvm::Metadata *MD;
4829     if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
4830       MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
4831     else
4832       MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
4833 
4834     llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
4835 
4836     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4837     llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
4838     llvm::Value *TypeTest = Builder.CreateCall(
4839         CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
4840 
4841     auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
4842     llvm::Constant *StaticData[] = {
4843         llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
4844         EmitCheckSourceLocation(E->getBeginLoc()),
4845         EmitCheckTypeDescriptor(QualType(FnType, 0)),
4846     };
4847     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
4848       EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
4849                            CastedCallee, StaticData);
4850     } else {
4851       EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
4852                 SanitizerHandler::CFICheckFail, StaticData,
4853                 {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
4854     }
4855   }
4856 
4857   CallArgList Args;
4858   if (Chain)
4859     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
4860              CGM.getContext().VoidPtrTy);
4861 
4862   // C++17 requires that we evaluate arguments to a call using assignment syntax
4863   // right-to-left, and that we evaluate arguments to certain other operators
4864   // left-to-right. Note that we allow this to override the order dictated by
4865   // the calling convention on the MS ABI, which means that parameter
4866   // destruction order is not necessarily reverse construction order.
4867   // FIXME: Revisit this based on C++ committee response to unimplementability.
4868   EvaluationOrder Order = EvaluationOrder::Default;
4869   if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
4870     if (OCE->isAssignmentOp())
4871       Order = EvaluationOrder::ForceRightToLeft;
4872     else {
4873       switch (OCE->getOperator()) {
4874       case OO_LessLess:
4875       case OO_GreaterGreater:
4876       case OO_AmpAmp:
4877       case OO_PipePipe:
4878       case OO_Comma:
4879       case OO_ArrowStar:
4880         Order = EvaluationOrder::ForceLeftToRight;
4881         break;
4882       default:
4883         break;
4884       }
4885     }
4886   }
4887 
4888   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
4889                E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
4890 
4891   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
4892       Args, FnType, /*ChainCall=*/Chain);
4893 
4894   // C99 6.5.2.2p6:
4895   //   If the expression that denotes the called function has a type
4896   //   that does not include a prototype, [the default argument
4897   //   promotions are performed]. If the number of arguments does not
4898   //   equal the number of parameters, the behavior is undefined. If
4899   //   the function is defined with a type that includes a prototype,
4900   //   and either the prototype ends with an ellipsis (, ...) or the
4901   //   types of the arguments after promotion are not compatible with
4902   //   the types of the parameters, the behavior is undefined. If the
4903   //   function is defined with a type that does not include a
4904   //   prototype, and the types of the arguments after promotion are
4905   //   not compatible with those of the parameters after promotion,
4906   //   the behavior is undefined [except in some trivial cases].
4907   // That is, in the general case, we should assume that a call
4908   // through an unprototyped function type works like a *non-variadic*
4909   // call.  The way we make this work is to cast to the exact type
4910   // of the promoted arguments.
4911   //
4912   // Chain calls use this same code path to add the invisible chain parameter
4913   // to the function type.
4914   if (isa<FunctionNoProtoType>(FnType) || Chain) {
4915     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
4916     CalleeTy = CalleeTy->getPointerTo();
4917 
4918     llvm::Value *CalleePtr = Callee.getFunctionPointer();
4919     CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
4920     Callee.setFunctionPointer(CalleePtr);
4921   }
4922 
4923   llvm::CallBase *CallOrInvoke = nullptr;
4924   RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
4925                          E->getExprLoc());
4926 
4927   // Generate function declaration DISuprogram in order to be used
4928   // in debug info about call sites.
4929   if (CGDebugInfo *DI = getDebugInfo()) {
4930     if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4931       DI->EmitFuncDeclForCallSite(CallOrInvoke, QualType(FnType, 0),
4932                                   CalleeDecl);
4933   }
4934 
4935   return Call;
4936 }
4937 
4938 LValue CodeGenFunction::
4939 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
4940   Address BaseAddr = Address::invalid();
4941   if (E->getOpcode() == BO_PtrMemI) {
4942     BaseAddr = EmitPointerWithAlignment(E->getLHS());
4943   } else {
4944     BaseAddr = EmitLValue(E->getLHS()).getAddress();
4945   }
4946 
4947   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
4948 
4949   const MemberPointerType *MPT
4950     = E->getRHS()->getType()->getAs<MemberPointerType>();
4951 
4952   LValueBaseInfo BaseInfo;
4953   TBAAAccessInfo TBAAInfo;
4954   Address MemberAddr =
4955     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
4956                                     &TBAAInfo);
4957 
4958   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
4959 }
4960 
4961 /// Given the address of a temporary variable, produce an r-value of
4962 /// its type.
4963 RValue CodeGenFunction::convertTempToRValue(Address addr,
4964                                             QualType type,
4965                                             SourceLocation loc) {
4966   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
4967   switch (getEvaluationKind(type)) {
4968   case TEK_Complex:
4969     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
4970   case TEK_Aggregate:
4971     return lvalue.asAggregateRValue();
4972   case TEK_Scalar:
4973     return RValue::get(EmitLoadOfScalar(lvalue, loc));
4974   }
4975   llvm_unreachable("bad evaluation kind");
4976 }
4977 
4978 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
4979   assert(Val->getType()->isFPOrFPVectorTy());
4980   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
4981     return;
4982 
4983   llvm::MDBuilder MDHelper(getLLVMContext());
4984   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
4985 
4986   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
4987 }
4988 
4989 namespace {
4990   struct LValueOrRValue {
4991     LValue LV;
4992     RValue RV;
4993   };
4994 }
4995 
4996 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
4997                                            const PseudoObjectExpr *E,
4998                                            bool forLValue,
4999                                            AggValueSlot slot) {
5000   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
5001 
5002   // Find the result expression, if any.
5003   const Expr *resultExpr = E->getResultExpr();
5004   LValueOrRValue result;
5005 
5006   for (PseudoObjectExpr::const_semantics_iterator
5007          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
5008     const Expr *semantic = *i;
5009 
5010     // If this semantic expression is an opaque value, bind it
5011     // to the result of its source expression.
5012     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
5013       // Skip unique OVEs.
5014       if (ov->isUnique()) {
5015         assert(ov != resultExpr &&
5016                "A unique OVE cannot be used as the result expression");
5017         continue;
5018       }
5019 
5020       // If this is the result expression, we may need to evaluate
5021       // directly into the slot.
5022       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
5023       OVMA opaqueData;
5024       if (ov == resultExpr && ov->isRValue() && !forLValue &&
5025           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
5026         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
5027         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
5028                                        AlignmentSource::Decl);
5029         opaqueData = OVMA::bind(CGF, ov, LV);
5030         result.RV = slot.asRValue();
5031 
5032       // Otherwise, emit as normal.
5033       } else {
5034         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
5035 
5036         // If this is the result, also evaluate the result now.
5037         if (ov == resultExpr) {
5038           if (forLValue)
5039             result.LV = CGF.EmitLValue(ov);
5040           else
5041             result.RV = CGF.EmitAnyExpr(ov, slot);
5042         }
5043       }
5044 
5045       opaques.push_back(opaqueData);
5046 
5047     // Otherwise, if the expression is the result, evaluate it
5048     // and remember the result.
5049     } else if (semantic == resultExpr) {
5050       if (forLValue)
5051         result.LV = CGF.EmitLValue(semantic);
5052       else
5053         result.RV = CGF.EmitAnyExpr(semantic, slot);
5054 
5055     // Otherwise, evaluate the expression in an ignored context.
5056     } else {
5057       CGF.EmitIgnoredExpr(semantic);
5058     }
5059   }
5060 
5061   // Unbind all the opaques now.
5062   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
5063     opaques[i].unbind(CGF);
5064 
5065   return result;
5066 }
5067 
5068 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
5069                                                AggValueSlot slot) {
5070   return emitPseudoObjectExpr(*this, E, false, slot).RV;
5071 }
5072 
5073 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
5074   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
5075 }
5076