1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Builder implementation for CGRecordLayout objects.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGRecordLayout.h"
14 #include "CGCXXABI.h"
15 #include "CodeGenTypes.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 namespace {
33 /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
34 /// llvm::Type.  Some of the lowering is straightforward, some is not.  Here we
35 /// detail some of the complexities and weirdnesses here.
36 /// * LLVM does not have unions - Unions can, in theory be represented by any
37 ///   llvm::Type with correct size.  We choose a field via a specific heuristic
38 ///   and add padding if necessary.
39 /// * LLVM does not have bitfields - Bitfields are collected into contiguous
40 ///   runs and allocated as a single storage type for the run.  ASTRecordLayout
41 ///   contains enough information to determine where the runs break.  Microsoft
42 ///   and Itanium follow different rules and use different codepaths.
43 /// * It is desired that, when possible, bitfields use the appropriate iN type
44 ///   when lowered to llvm types.  For example unsigned x : 24 gets lowered to
45 ///   i24.  This isn't always possible because i24 has storage size of 32 bit
46 ///   and if it is possible to use that extra byte of padding we must use
47 ///   [i8 x 3] instead of i24.  The function clipTailPadding does this.
48 ///   C++ examples that require clipping:
49 ///   struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
50 ///   struct A { int a : 24; }; // a must be clipped because a struct like B
51 //    could exist: struct B : A { char b; }; // b goes at offset 3
52 /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
53 ///   fields.  The existing asserts suggest that LLVM assumes that *every* field
54 ///   has an underlying storage type.  Therefore empty structures containing
55 ///   zero sized subobjects such as empty records or zero sized arrays still get
56 ///   a zero sized (empty struct) storage type.
57 /// * Clang reads the complete type rather than the base type when generating
58 ///   code to access fields.  Bitfields in tail position with tail padding may
59 ///   be clipped in the base class but not the complete class (we may discover
60 ///   that the tail padding is not used in the complete class.) However,
61 ///   because LLVM reads from the complete type it can generate incorrect code
62 ///   if we do not clip the tail padding off of the bitfield in the complete
63 ///   layout.  This introduces a somewhat awkward extra unnecessary clip stage.
64 ///   The location of the clip is stored internally as a sentinel of type
65 ///   SCISSOR.  If LLVM were updated to read base types (which it probably
66 ///   should because locations of things such as VBases are bogus in the llvm
67 ///   type anyway) then we could eliminate the SCISSOR.
68 /// * Itanium allows nearly empty primary virtual bases.  These bases don't get
69 ///   get their own storage because they're laid out as part of another base
70 ///   or at the beginning of the structure.  Determining if a VBase actually
71 ///   gets storage awkwardly involves a walk of all bases.
72 /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
73 struct CGRecordLowering {
74   // MemberInfo is a helper structure that contains information about a record
75   // member.  In additional to the standard member types, there exists a
76   // sentinel member type that ensures correct rounding.
77   struct MemberInfo {
78     CharUnits Offset;
79     enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
80     llvm::Type *Data;
81     union {
82       const FieldDecl *FD;
83       const CXXRecordDecl *RD;
84     };
85     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
86                const FieldDecl *FD = nullptr)
87       : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
88     MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
89                const CXXRecordDecl *RD)
90       : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
91     // MemberInfos are sorted so we define a < operator.
92     bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
93   };
94   // The constructor.
95   CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
96   // Short helper routines.
97   /// Constructs a MemberInfo instance from an offset and llvm::Type *.
98   MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
99     return MemberInfo(Offset, MemberInfo::Field, Data);
100   }
101 
102   /// The Microsoft bitfield layout rule allocates discrete storage
103   /// units of the field's formal type and only combines adjacent
104   /// fields of the same formal type.  We want to emit a layout with
105   /// these discrete storage units instead of combining them into a
106   /// continuous run.
107   bool isDiscreteBitFieldABI() {
108     return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
109            D->isMsStruct(Context);
110   }
111 
112   /// The Itanium base layout rule allows virtual bases to overlap
113   /// other bases, which complicates layout in specific ways.
114   ///
115   /// Note specifically that the ms_struct attribute doesn't change this.
116   bool isOverlappingVBaseABI() {
117     return !Context.getTargetInfo().getCXXABI().isMicrosoft();
118   }
119 
120   /// Wraps llvm::Type::getIntNTy with some implicit arguments.
121   llvm::Type *getIntNType(uint64_t NumBits) {
122     return llvm::Type::getIntNTy(Types.getLLVMContext(),
123                                  (unsigned)llvm::alignTo(NumBits, 8));
124   }
125   /// Gets an llvm type of size NumBytes and alignment 1.
126   llvm::Type *getByteArrayType(CharUnits NumBytes) {
127     assert(!NumBytes.isZero() && "Empty byte arrays aren't allowed.");
128     llvm::Type *Type = llvm::Type::getInt8Ty(Types.getLLVMContext());
129     return NumBytes == CharUnits::One() ? Type :
130         (llvm::Type *)llvm::ArrayType::get(Type, NumBytes.getQuantity());
131   }
132   /// Gets the storage type for a field decl and handles storage
133   /// for itanium bitfields that are smaller than their declared type.
134   llvm::Type *getStorageType(const FieldDecl *FD) {
135     llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
136     if (!FD->isBitField()) return Type;
137     if (isDiscreteBitFieldABI()) return Type;
138     return getIntNType(std::min(FD->getBitWidthValue(Context),
139                              (unsigned)Context.toBits(getSize(Type))));
140   }
141   /// Gets the llvm Basesubobject type from a CXXRecordDecl.
142   llvm::Type *getStorageType(const CXXRecordDecl *RD) {
143     return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
144   }
145   CharUnits bitsToCharUnits(uint64_t BitOffset) {
146     return Context.toCharUnitsFromBits(BitOffset);
147   }
148   CharUnits getSize(llvm::Type *Type) {
149     return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
150   }
151   CharUnits getAlignment(llvm::Type *Type) {
152     return CharUnits::fromQuantity(DataLayout.getABITypeAlignment(Type));
153   }
154   bool isZeroInitializable(const FieldDecl *FD) {
155     return Types.isZeroInitializable(FD->getType());
156   }
157   bool isZeroInitializable(const RecordDecl *RD) {
158     return Types.isZeroInitializable(RD);
159   }
160   void appendPaddingBytes(CharUnits Size) {
161     if (!Size.isZero())
162       FieldTypes.push_back(getByteArrayType(Size));
163   }
164   uint64_t getFieldBitOffset(const FieldDecl *FD) {
165     return Layout.getFieldOffset(FD->getFieldIndex());
166   }
167   // Layout routines.
168   void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
169                        llvm::Type *StorageType);
170   /// Lowers an ASTRecordLayout to a llvm type.
171   void lower(bool NonVirtualBaseType);
172   void lowerUnion();
173   void accumulateFields();
174   void accumulateBitFields(RecordDecl::field_iterator Field,
175                         RecordDecl::field_iterator FieldEnd);
176   void accumulateBases();
177   void accumulateVPtrs();
178   void accumulateVBases();
179   /// Recursively searches all of the bases to find out if a vbase is
180   /// not the primary vbase of some base class.
181   bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
182   void calculateZeroInit();
183   /// Lowers bitfield storage types to I8 arrays for bitfields with tail
184   /// padding that is or can potentially be used.
185   void clipTailPadding();
186   /// Determines if we need a packed llvm struct.
187   void determinePacked(bool NVBaseType);
188   /// Inserts padding everywhere it's needed.
189   void insertPadding();
190   /// Fills out the structures that are ultimately consumed.
191   void fillOutputFields();
192   // Input memoization fields.
193   CodeGenTypes &Types;
194   const ASTContext &Context;
195   const RecordDecl *D;
196   const CXXRecordDecl *RD;
197   const ASTRecordLayout &Layout;
198   const llvm::DataLayout &DataLayout;
199   // Helpful intermediate data-structures.
200   std::vector<MemberInfo> Members;
201   // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
202   SmallVector<llvm::Type *, 16> FieldTypes;
203   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
204   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
205   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
206   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
207   bool IsZeroInitializable : 1;
208   bool IsZeroInitializableAsBase : 1;
209   bool Packed : 1;
210 private:
211   CGRecordLowering(const CGRecordLowering &) = delete;
212   void operator =(const CGRecordLowering &) = delete;
213 };
214 } // namespace {
215 
216 CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
217                                    bool Packed)
218     : Types(Types), Context(Types.getContext()), D(D),
219       RD(dyn_cast<CXXRecordDecl>(D)),
220       Layout(Types.getContext().getASTRecordLayout(D)),
221       DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
222       IsZeroInitializableAsBase(true), Packed(Packed) {}
223 
224 void CGRecordLowering::setBitFieldInfo(
225     const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
226   CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
227   Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
228   Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
229   Info.Size = FD->getBitWidthValue(Context);
230   Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
231   Info.StorageOffset = StartOffset;
232   if (Info.Size > Info.StorageSize)
233     Info.Size = Info.StorageSize;
234   // Reverse the bit offsets for big endian machines. Because we represent
235   // a bitfield as a single large integer load, we can imagine the bits
236   // counting from the most-significant-bit instead of the
237   // least-significant-bit.
238   if (DataLayout.isBigEndian())
239     Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
240 }
241 
242 void CGRecordLowering::lower(bool NVBaseType) {
243   // The lowering process implemented in this function takes a variety of
244   // carefully ordered phases.
245   // 1) Store all members (fields and bases) in a list and sort them by offset.
246   // 2) Add a 1-byte capstone member at the Size of the structure.
247   // 3) Clip bitfield storages members if their tail padding is or might be
248   //    used by another field or base.  The clipping process uses the capstone
249   //    by treating it as another object that occurs after the record.
250   // 4) Determine if the llvm-struct requires packing.  It's important that this
251   //    phase occur after clipping, because clipping changes the llvm type.
252   //    This phase reads the offset of the capstone when determining packedness
253   //    and updates the alignment of the capstone to be equal of the alignment
254   //    of the record after doing so.
255   // 5) Insert padding everywhere it is needed.  This phase requires 'Packed' to
256   //    have been computed and needs to know the alignment of the record in
257   //    order to understand if explicit tail padding is needed.
258   // 6) Remove the capstone, we don't need it anymore.
259   // 7) Determine if this record can be zero-initialized.  This phase could have
260   //    been placed anywhere after phase 1.
261   // 8) Format the complete list of members in a way that can be consumed by
262   //    CodeGenTypes::ComputeRecordLayout.
263   CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
264   if (D->isUnion())
265     return lowerUnion();
266   accumulateFields();
267   // RD implies C++.
268   if (RD) {
269     accumulateVPtrs();
270     accumulateBases();
271     if (Members.empty())
272       return appendPaddingBytes(Size);
273     if (!NVBaseType)
274       accumulateVBases();
275   }
276   llvm::stable_sort(Members);
277   Members.push_back(StorageInfo(Size, getIntNType(8)));
278   clipTailPadding();
279   determinePacked(NVBaseType);
280   insertPadding();
281   Members.pop_back();
282   calculateZeroInit();
283   fillOutputFields();
284 }
285 
286 void CGRecordLowering::lowerUnion() {
287   CharUnits LayoutSize = Layout.getSize();
288   llvm::Type *StorageType = nullptr;
289   bool SeenNamedMember = false;
290   // Iterate through the fields setting bitFieldInfo and the Fields array. Also
291   // locate the "most appropriate" storage type.  The heuristic for finding the
292   // storage type isn't necessary, the first (non-0-length-bitfield) field's
293   // type would work fine and be simpler but would be different than what we've
294   // been doing and cause lit tests to change.
295   for (const auto *Field : D->fields()) {
296     if (Field->isBitField()) {
297       if (Field->isZeroLengthBitField(Context))
298         continue;
299       llvm::Type *FieldType = getStorageType(Field);
300       if (LayoutSize < getSize(FieldType))
301         FieldType = getByteArrayType(LayoutSize);
302       setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
303     }
304     Fields[Field->getCanonicalDecl()] = 0;
305     llvm::Type *FieldType = getStorageType(Field);
306     // Compute zero-initializable status.
307     // This union might not be zero initialized: it may contain a pointer to
308     // data member which might have some exotic initialization sequence.
309     // If this is the case, then we aught not to try and come up with a "better"
310     // type, it might not be very easy to come up with a Constant which
311     // correctly initializes it.
312     if (!SeenNamedMember) {
313       SeenNamedMember = Field->getIdentifier();
314       if (!SeenNamedMember)
315         if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
316           SeenNamedMember = FieldRD->findFirstNamedDataMember();
317       if (SeenNamedMember && !isZeroInitializable(Field)) {
318         IsZeroInitializable = IsZeroInitializableAsBase = false;
319         StorageType = FieldType;
320       }
321     }
322     // Because our union isn't zero initializable, we won't be getting a better
323     // storage type.
324     if (!IsZeroInitializable)
325       continue;
326     // Conditionally update our storage type if we've got a new "better" one.
327     if (!StorageType ||
328         getAlignment(FieldType) >  getAlignment(StorageType) ||
329         (getAlignment(FieldType) == getAlignment(StorageType) &&
330         getSize(FieldType) > getSize(StorageType)))
331       StorageType = FieldType;
332   }
333   // If we have no storage type just pad to the appropriate size and return.
334   if (!StorageType)
335     return appendPaddingBytes(LayoutSize);
336   // If our storage size was bigger than our required size (can happen in the
337   // case of packed bitfields on Itanium) then just use an I8 array.
338   if (LayoutSize < getSize(StorageType))
339     StorageType = getByteArrayType(LayoutSize);
340   FieldTypes.push_back(StorageType);
341   appendPaddingBytes(LayoutSize - getSize(StorageType));
342   // Set packed if we need it.
343   if (LayoutSize % getAlignment(StorageType))
344     Packed = true;
345 }
346 
347 void CGRecordLowering::accumulateFields() {
348   for (RecordDecl::field_iterator Field = D->field_begin(),
349                                   FieldEnd = D->field_end();
350     Field != FieldEnd;) {
351     if (Field->isBitField()) {
352       RecordDecl::field_iterator Start = Field;
353       // Iterate to gather the list of bitfields.
354       for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
355       accumulateBitFields(Start, Field);
356     } else if (!Field->isZeroSize(Context)) {
357       Members.push_back(MemberInfo(
358           bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
359           getStorageType(*Field), *Field));
360       ++Field;
361     } else {
362       ++Field;
363     }
364   }
365 }
366 
367 void
368 CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
369                                       RecordDecl::field_iterator FieldEnd) {
370   // Run stores the first element of the current run of bitfields.  FieldEnd is
371   // used as a special value to note that we don't have a current run.  A
372   // bitfield run is a contiguous collection of bitfields that can be stored in
373   // the same storage block.  Zero-sized bitfields and bitfields that would
374   // cross an alignment boundary break a run and start a new one.
375   RecordDecl::field_iterator Run = FieldEnd;
376   // Tail is the offset of the first bit off the end of the current run.  It's
377   // used to determine if the ASTRecordLayout is treating these two bitfields as
378   // contiguous.  StartBitOffset is offset of the beginning of the Run.
379   uint64_t StartBitOffset, Tail = 0;
380   if (isDiscreteBitFieldABI()) {
381     for (; Field != FieldEnd; ++Field) {
382       uint64_t BitOffset = getFieldBitOffset(*Field);
383       // Zero-width bitfields end runs.
384       if (Field->isZeroLengthBitField(Context)) {
385         Run = FieldEnd;
386         continue;
387       }
388       llvm::Type *Type =
389           Types.ConvertTypeForMem(Field->getType(), /*ForBitFields=*/true);
390       // If we don't have a run yet, or don't live within the previous run's
391       // allocated storage then we allocate some storage and start a new run.
392       if (Run == FieldEnd || BitOffset >= Tail) {
393         Run = Field;
394         StartBitOffset = BitOffset;
395         Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
396         // Add the storage member to the record.  This must be added to the
397         // record before the bitfield members so that it gets laid out before
398         // the bitfields it contains get laid out.
399         Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
400       }
401       // Bitfields get the offset of their storage but come afterward and remain
402       // there after a stable sort.
403       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
404                                    MemberInfo::Field, nullptr, *Field));
405     }
406     return;
407   }
408 
409   // Check if OffsetInRecord (the size in bits of the current run) is better
410   // as a single field run. When OffsetInRecord has legal integer width, and
411   // its bitfield offset is naturally aligned, it is better to make the
412   // bitfield a separate storage component so as it can be accessed directly
413   // with lower cost.
414   auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
415                                       uint64_t StartBitOffset) {
416     if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
417       return false;
418     if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) ||
419         !DataLayout.fitsInLegalInteger(OffsetInRecord))
420       return false;
421     // Make sure StartBitOffset is natually aligned if it is treated as an
422     // IType integer.
423      if (StartBitOffset %
424             Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
425         0)
426       return false;
427     return true;
428   };
429 
430   // The start field is better as a single field run.
431   bool StartFieldAsSingleRun = false;
432   for (;;) {
433     // Check to see if we need to start a new run.
434     if (Run == FieldEnd) {
435       // If we're out of fields, return.
436       if (Field == FieldEnd)
437         break;
438       // Any non-zero-length bitfield can start a new run.
439       if (!Field->isZeroLengthBitField(Context)) {
440         Run = Field;
441         StartBitOffset = getFieldBitOffset(*Field);
442         Tail = StartBitOffset + Field->getBitWidthValue(Context);
443         StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
444                                                          StartBitOffset);
445       }
446       ++Field;
447       continue;
448     }
449 
450     // If the start field of a new run is better as a single run, or
451     // if current field (or consecutive fields) is better as a single run, or
452     // if current field has zero width bitfield and either
453     // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
454     // true, or
455     // if the offset of current field is inconsistent with the offset of
456     // previous field plus its offset,
457     // skip the block below and go ahead to emit the storage.
458     // Otherwise, try to add bitfields to the run.
459     if (!StartFieldAsSingleRun && Field != FieldEnd &&
460         !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
461         (!Field->isZeroLengthBitField(Context) ||
462          (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
463           !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
464         Tail == getFieldBitOffset(*Field)) {
465       Tail += Field->getBitWidthValue(Context);
466       ++Field;
467       continue;
468     }
469 
470     // We've hit a break-point in the run and need to emit a storage field.
471     llvm::Type *Type = getIntNType(Tail - StartBitOffset);
472     // Add the storage member to the record and set the bitfield info for all of
473     // the bitfields in the run.  Bitfields get the offset of their storage but
474     // come afterward and remain there after a stable sort.
475     Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
476     for (; Run != Field; ++Run)
477       Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
478                                    MemberInfo::Field, nullptr, *Run));
479     Run = FieldEnd;
480     StartFieldAsSingleRun = false;
481   }
482 }
483 
484 void CGRecordLowering::accumulateBases() {
485   // If we've got a primary virtual base, we need to add it with the bases.
486   if (Layout.isPrimaryBaseVirtual()) {
487     const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
488     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
489                                  getStorageType(BaseDecl), BaseDecl));
490   }
491   // Accumulate the non-virtual bases.
492   for (const auto &Base : RD->bases()) {
493     if (Base.isVirtual())
494       continue;
495 
496     // Bases can be zero-sized even if not technically empty if they
497     // contain only a trailing array member.
498     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
499     if (!BaseDecl->isEmpty() &&
500         !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
501       Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
502           MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
503   }
504 }
505 
506 void CGRecordLowering::accumulateVPtrs() {
507   if (Layout.hasOwnVFPtr())
508     Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
509         llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
510             getPointerTo()->getPointerTo()));
511   if (Layout.hasOwnVBPtr())
512     Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
513         llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
514 }
515 
516 void CGRecordLowering::accumulateVBases() {
517   CharUnits ScissorOffset = Layout.getNonVirtualSize();
518   // In the itanium ABI, it's possible to place a vbase at a dsize that is
519   // smaller than the nvsize.  Here we check to see if such a base is placed
520   // before the nvsize and set the scissor offset to that, instead of the
521   // nvsize.
522   if (isOverlappingVBaseABI())
523     for (const auto &Base : RD->vbases()) {
524       const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
525       if (BaseDecl->isEmpty())
526         continue;
527       // If the vbase is a primary virtual base of some base, then it doesn't
528       // get its own storage location but instead lives inside of that base.
529       if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
530         continue;
531       ScissorOffset = std::min(ScissorOffset,
532                                Layout.getVBaseClassOffset(BaseDecl));
533     }
534   Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
535                                RD));
536   for (const auto &Base : RD->vbases()) {
537     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
538     if (BaseDecl->isEmpty())
539       continue;
540     CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
541     // If the vbase is a primary virtual base of some base, then it doesn't
542     // get its own storage location but instead lives inside of that base.
543     if (isOverlappingVBaseABI() &&
544         Context.isNearlyEmpty(BaseDecl) &&
545         !hasOwnStorage(RD, BaseDecl)) {
546       Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
547                                    BaseDecl));
548       continue;
549     }
550     // If we've got a vtordisp, add it as a storage type.
551     if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
552       Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
553                                     getIntNType(32)));
554     Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
555                                  getStorageType(BaseDecl), BaseDecl));
556   }
557 }
558 
559 bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
560                                      const CXXRecordDecl *Query) {
561   const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
562   if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
563     return false;
564   for (const auto &Base : Decl->bases())
565     if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
566       return false;
567   return true;
568 }
569 
570 void CGRecordLowering::calculateZeroInit() {
571   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
572                                                MemberEnd = Members.end();
573        IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
574     if (Member->Kind == MemberInfo::Field) {
575       if (!Member->FD || isZeroInitializable(Member->FD))
576         continue;
577       IsZeroInitializable = IsZeroInitializableAsBase = false;
578     } else if (Member->Kind == MemberInfo::Base ||
579                Member->Kind == MemberInfo::VBase) {
580       if (isZeroInitializable(Member->RD))
581         continue;
582       IsZeroInitializable = false;
583       if (Member->Kind == MemberInfo::Base)
584         IsZeroInitializableAsBase = false;
585     }
586   }
587 }
588 
589 void CGRecordLowering::clipTailPadding() {
590   std::vector<MemberInfo>::iterator Prior = Members.begin();
591   CharUnits Tail = getSize(Prior->Data);
592   for (std::vector<MemberInfo>::iterator Member = Prior + 1,
593                                          MemberEnd = Members.end();
594        Member != MemberEnd; ++Member) {
595     // Only members with data and the scissor can cut into tail padding.
596     if (!Member->Data && Member->Kind != MemberInfo::Scissor)
597       continue;
598     if (Member->Offset < Tail) {
599       assert(Prior->Kind == MemberInfo::Field &&
600              "Only storage fields have tail padding!");
601       if (!Prior->FD || Prior->FD->isBitField())
602         Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
603             cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
604       else {
605         assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
606                "should not have reused this field's tail padding");
607         Prior->Data = getByteArrayType(
608             Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).first);
609       }
610     }
611     if (Member->Data)
612       Prior = Member;
613     Tail = Prior->Offset + getSize(Prior->Data);
614   }
615 }
616 
617 void CGRecordLowering::determinePacked(bool NVBaseType) {
618   if (Packed)
619     return;
620   CharUnits Alignment = CharUnits::One();
621   CharUnits NVAlignment = CharUnits::One();
622   CharUnits NVSize =
623       !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
624   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
625                                                MemberEnd = Members.end();
626        Member != MemberEnd; ++Member) {
627     if (!Member->Data)
628       continue;
629     // If any member falls at an offset that it not a multiple of its alignment,
630     // then the entire record must be packed.
631     if (Member->Offset % getAlignment(Member->Data))
632       Packed = true;
633     if (Member->Offset < NVSize)
634       NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
635     Alignment = std::max(Alignment, getAlignment(Member->Data));
636   }
637   // If the size of the record (the capstone's offset) is not a multiple of the
638   // record's alignment, it must be packed.
639   if (Members.back().Offset % Alignment)
640     Packed = true;
641   // If the non-virtual sub-object is not a multiple of the non-virtual
642   // sub-object's alignment, it must be packed.  We cannot have a packed
643   // non-virtual sub-object and an unpacked complete object or vise versa.
644   if (NVSize % NVAlignment)
645     Packed = true;
646   // Update the alignment of the sentinel.
647   if (!Packed)
648     Members.back().Data = getIntNType(Context.toBits(Alignment));
649 }
650 
651 void CGRecordLowering::insertPadding() {
652   std::vector<std::pair<CharUnits, CharUnits> > Padding;
653   CharUnits Size = CharUnits::Zero();
654   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
655                                                MemberEnd = Members.end();
656        Member != MemberEnd; ++Member) {
657     if (!Member->Data)
658       continue;
659     CharUnits Offset = Member->Offset;
660     assert(Offset >= Size);
661     // Insert padding if we need to.
662     if (Offset !=
663         Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
664       Padding.push_back(std::make_pair(Size, Offset - Size));
665     Size = Offset + getSize(Member->Data);
666   }
667   if (Padding.empty())
668     return;
669   // Add the padding to the Members list and sort it.
670   for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
671         Pad = Padding.begin(), PadEnd = Padding.end();
672         Pad != PadEnd; ++Pad)
673     Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
674   llvm::stable_sort(Members);
675 }
676 
677 void CGRecordLowering::fillOutputFields() {
678   for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
679                                                MemberEnd = Members.end();
680        Member != MemberEnd; ++Member) {
681     if (Member->Data)
682       FieldTypes.push_back(Member->Data);
683     if (Member->Kind == MemberInfo::Field) {
684       if (Member->FD)
685         Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
686       // A field without storage must be a bitfield.
687       if (!Member->Data)
688         setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
689     } else if (Member->Kind == MemberInfo::Base)
690       NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
691     else if (Member->Kind == MemberInfo::VBase)
692       VirtualBases[Member->RD] = FieldTypes.size() - 1;
693   }
694 }
695 
696 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
697                                         const FieldDecl *FD,
698                                         uint64_t Offset, uint64_t Size,
699                                         uint64_t StorageSize,
700                                         CharUnits StorageOffset) {
701   // This function is vestigial from CGRecordLayoutBuilder days but is still
702   // used in GCObjCRuntime.cpp.  That usage has a "fixme" attached to it that
703   // when addressed will allow for the removal of this function.
704   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
705   CharUnits TypeSizeInBytes =
706     CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
707   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
708 
709   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
710 
711   if (Size > TypeSizeInBits) {
712     // We have a wide bit-field. The extra bits are only used for padding, so
713     // if we have a bitfield of type T, with size N:
714     //
715     // T t : N;
716     //
717     // We can just assume that it's:
718     //
719     // T t : sizeof(T);
720     //
721     Size = TypeSizeInBits;
722   }
723 
724   // Reverse the bit offsets for big endian machines. Because we represent
725   // a bitfield as a single large integer load, we can imagine the bits
726   // counting from the most-significant-bit instead of the
727   // least-significant-bit.
728   if (Types.getDataLayout().isBigEndian()) {
729     Offset = StorageSize - (Offset + Size);
730   }
731 
732   return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
733 }
734 
735 std::unique_ptr<CGRecordLayout>
736 CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) {
737   CGRecordLowering Builder(*this, D, /*Packed=*/false);
738 
739   Builder.lower(/*NonVirtualBaseType=*/false);
740 
741   // If we're in C++, compute the base subobject type.
742   llvm::StructType *BaseTy = nullptr;
743   if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
744     BaseTy = Ty;
745     if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
746       CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
747       BaseBuilder.lower(/*NonVirtualBaseType=*/true);
748       BaseTy = llvm::StructType::create(
749           getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
750       addRecordTypeName(D, BaseTy, ".base");
751       // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
752       // on both of them with the same index.
753       assert(Builder.Packed == BaseBuilder.Packed &&
754              "Non-virtual and complete types must agree on packedness");
755     }
756   }
757 
758   // Fill in the struct *after* computing the base type.  Filling in the body
759   // signifies that the type is no longer opaque and record layout is complete,
760   // but we may need to recursively layout D while laying D out as a base type.
761   Ty->setBody(Builder.FieldTypes, Builder.Packed);
762 
763   auto RL = std::make_unique<CGRecordLayout>(
764       Ty, BaseTy, (bool)Builder.IsZeroInitializable,
765       (bool)Builder.IsZeroInitializableAsBase);
766 
767   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
768   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
769 
770   // Add all the field numbers.
771   RL->FieldInfo.swap(Builder.Fields);
772 
773   // Add bitfield info.
774   RL->BitFields.swap(Builder.BitFields);
775 
776   // Dump the layout, if requested.
777   if (getContext().getLangOpts().DumpRecordLayouts) {
778     llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
779     llvm::outs() << "Record: ";
780     D->dump(llvm::outs());
781     llvm::outs() << "\nLayout: ";
782     RL->print(llvm::outs());
783   }
784 
785 #ifndef NDEBUG
786   // Verify that the computed LLVM struct size matches the AST layout size.
787   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
788 
789   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
790   assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
791          "Type size mismatch!");
792 
793   if (BaseTy) {
794     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
795 
796     uint64_t AlignedNonVirtualTypeSizeInBits =
797       getContext().toBits(NonVirtualSize);
798 
799     assert(AlignedNonVirtualTypeSizeInBits ==
800            getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
801            "Type size mismatch!");
802   }
803 
804   // Verify that the LLVM and AST field offsets agree.
805   llvm::StructType *ST = RL->getLLVMType();
806   const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
807 
808   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
809   RecordDecl::field_iterator it = D->field_begin();
810   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
811     const FieldDecl *FD = *it;
812 
813     // Ignore zero-sized fields.
814     if (FD->isZeroSize(getContext()))
815       continue;
816 
817     // For non-bit-fields, just check that the LLVM struct offset matches the
818     // AST offset.
819     if (!FD->isBitField()) {
820       unsigned FieldNo = RL->getLLVMFieldNo(FD);
821       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
822              "Invalid field offset!");
823       continue;
824     }
825 
826     // Ignore unnamed bit-fields.
827     if (!FD->getDeclName())
828       continue;
829 
830     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
831     llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
832 
833     // Unions have overlapping elements dictating their layout, but for
834     // non-unions we can verify that this section of the layout is the exact
835     // expected size.
836     if (D->isUnion()) {
837       // For unions we verify that the start is zero and the size
838       // is in-bounds. However, on BE systems, the offset may be non-zero, but
839       // the size + offset should match the storage size in that case as it
840       // "starts" at the back.
841       if (getDataLayout().isBigEndian())
842         assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
843                Info.StorageSize &&
844                "Big endian union bitfield does not end at the back");
845       else
846         assert(Info.Offset == 0 &&
847                "Little endian union bitfield with a non-zero offset");
848       assert(Info.StorageSize <= SL->getSizeInBits() &&
849              "Union not large enough for bitfield storage");
850     } else {
851       assert(Info.StorageSize ==
852              getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
853              "Storage size does not match the element type size");
854     }
855     assert(Info.Size > 0 && "Empty bitfield!");
856     assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
857            "Bitfield outside of its allocated storage");
858   }
859 #endif
860 
861   return RL;
862 }
863 
864 void CGRecordLayout::print(raw_ostream &OS) const {
865   OS << "<CGRecordLayout\n";
866   OS << "  LLVMType:" << *CompleteObjectType << "\n";
867   if (BaseSubobjectType)
868     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
869   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
870   OS << "  BitFields:[\n";
871 
872   // Print bit-field infos in declaration order.
873   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
874   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
875          it = BitFields.begin(), ie = BitFields.end();
876        it != ie; ++it) {
877     const RecordDecl *RD = it->first->getParent();
878     unsigned Index = 0;
879     for (RecordDecl::field_iterator
880            it2 = RD->field_begin(); *it2 != it->first; ++it2)
881       ++Index;
882     BFIs.push_back(std::make_pair(Index, &it->second));
883   }
884   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
885   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
886     OS.indent(4);
887     BFIs[i].second->print(OS);
888     OS << "\n";
889   }
890 
891   OS << "]>\n";
892 }
893 
894 LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
895   print(llvm::errs());
896 }
897 
898 void CGBitFieldInfo::print(raw_ostream &OS) const {
899   OS << "<CGBitFieldInfo"
900      << " Offset:" << Offset
901      << " Size:" << Size
902      << " IsSigned:" << IsSigned
903      << " StorageSize:" << StorageSize
904      << " StorageOffset:" << StorageOffset.getQuantity() << ">";
905 }
906 
907 LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
908   print(llvm::errs());
909 }
910