1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
84                                             bool Realign,
85                                             llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
87                                  Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByVal*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case IndirectAliased:
261     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
262        << " AadrSpace=" << getIndirectAddrSpace()
263        << " Realign=" << getIndirectRealign();
264     break;
265   case Expand:
266     OS << "Expand";
267     break;
268   case CoerceAndExpand:
269     OS << "CoerceAndExpand Type=";
270     getCoerceAndExpandType()->print(OS);
271     break;
272   }
273   OS << ")\n";
274 }
275 
276 // Dynamically round a pointer up to a multiple of the given alignment.
277 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
278                                                   llvm::Value *Ptr,
279                                                   CharUnits Align) {
280   llvm::Value *PtrAsInt = Ptr;
281   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
282   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
283   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
284         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
285   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
286            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
287   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
288                                         Ptr->getType(),
289                                         Ptr->getName() + ".aligned");
290   return PtrAsInt;
291 }
292 
293 /// Emit va_arg for a platform using the common void* representation,
294 /// where arguments are simply emitted in an array of slots on the stack.
295 ///
296 /// This version implements the core direct-value passing rules.
297 ///
298 /// \param SlotSize - The size and alignment of a stack slot.
299 ///   Each argument will be allocated to a multiple of this number of
300 ///   slots, and all the slots will be aligned to this value.
301 /// \param AllowHigherAlign - The slot alignment is not a cap;
302 ///   an argument type with an alignment greater than the slot size
303 ///   will be emitted on a higher-alignment address, potentially
304 ///   leaving one or more empty slots behind as padding.  If this
305 ///   is false, the returned address might be less-aligned than
306 ///   DirectAlign.
307 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
308                                       Address VAListAddr,
309                                       llvm::Type *DirectTy,
310                                       CharUnits DirectSize,
311                                       CharUnits DirectAlign,
312                                       CharUnits SlotSize,
313                                       bool AllowHigherAlign) {
314   // Cast the element type to i8* if necessary.  Some platforms define
315   // va_list as a struct containing an i8* instead of just an i8*.
316   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
317     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
318 
319   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
320 
321   // If the CC aligns values higher than the slot size, do so if needed.
322   Address Addr = Address::invalid();
323   if (AllowHigherAlign && DirectAlign > SlotSize) {
324     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
325                                                  DirectAlign);
326   } else {
327     Addr = Address(Ptr, SlotSize);
328   }
329 
330   // Advance the pointer past the argument, then store that back.
331   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
332   Address NextPtr =
333       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
334   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
335 
336   // If the argument is smaller than a slot, and this is a big-endian
337   // target, the argument will be right-adjusted in its slot.
338   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
339       !DirectTy->isStructTy()) {
340     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
341   }
342 
343   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
344   return Addr;
345 }
346 
347 /// Emit va_arg for a platform using the common void* representation,
348 /// where arguments are simply emitted in an array of slots on the stack.
349 ///
350 /// \param IsIndirect - Values of this type are passed indirectly.
351 /// \param ValueInfo - The size and alignment of this type, generally
352 ///   computed with getContext().getTypeInfoInChars(ValueTy).
353 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
354 ///   Each argument will be allocated to a multiple of this number of
355 ///   slots, and all the slots will be aligned to this value.
356 /// \param AllowHigherAlign - The slot alignment is not a cap;
357 ///   an argument type with an alignment greater than the slot size
358 ///   will be emitted on a higher-alignment address, potentially
359 ///   leaving one or more empty slots behind as padding.
360 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
361                                 QualType ValueTy, bool IsIndirect,
362                                 TypeInfoChars ValueInfo,
363                                 CharUnits SlotSizeAndAlign,
364                                 bool AllowHigherAlign) {
365   // The size and alignment of the value that was passed directly.
366   CharUnits DirectSize, DirectAlign;
367   if (IsIndirect) {
368     DirectSize = CGF.getPointerSize();
369     DirectAlign = CGF.getPointerAlign();
370   } else {
371     DirectSize = ValueInfo.Width;
372     DirectAlign = ValueInfo.Align;
373   }
374 
375   // Cast the address we've calculated to the right type.
376   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
377   if (IsIndirect)
378     DirectTy = DirectTy->getPointerTo(0);
379 
380   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
381                                         DirectSize, DirectAlign,
382                                         SlotSizeAndAlign,
383                                         AllowHigherAlign);
384 
385   if (IsIndirect) {
386     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.Align);
387   }
388 
389   return Addr;
390 
391 }
392 
393 static Address emitMergePHI(CodeGenFunction &CGF,
394                             Address Addr1, llvm::BasicBlock *Block1,
395                             Address Addr2, llvm::BasicBlock *Block2,
396                             const llvm::Twine &Name = "") {
397   assert(Addr1.getType() == Addr2.getType());
398   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
399   PHI->addIncoming(Addr1.getPointer(), Block1);
400   PHI->addIncoming(Addr2.getPointer(), Block2);
401   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
402   return Address(PHI, Align);
403 }
404 
405 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
406 
407 // If someone can figure out a general rule for this, that would be great.
408 // It's probably just doomed to be platform-dependent, though.
409 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
410   // Verified for:
411   //   x86-64     FreeBSD, Linux, Darwin
412   //   x86-32     FreeBSD, Linux, Darwin
413   //   PowerPC    Linux, Darwin
414   //   ARM        Darwin (*not* EABI)
415   //   AArch64    Linux
416   return 32;
417 }
418 
419 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
420                                      const FunctionNoProtoType *fnType) const {
421   // The following conventions are known to require this to be false:
422   //   x86_stdcall
423   //   MIPS
424   // For everything else, we just prefer false unless we opt out.
425   return false;
426 }
427 
428 void
429 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
430                                              llvm::SmallString<24> &Opt) const {
431   // This assumes the user is passing a library name like "rt" instead of a
432   // filename like "librt.a/so", and that they don't care whether it's static or
433   // dynamic.
434   Opt = "-l";
435   Opt += Lib;
436 }
437 
438 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
439   // OpenCL kernels are called via an explicit runtime API with arguments
440   // set with clSetKernelArg(), not as normal sub-functions.
441   // Return SPIR_KERNEL by default as the kernel calling convention to
442   // ensure the fingerprint is fixed such way that each OpenCL argument
443   // gets one matching argument in the produced kernel function argument
444   // list to enable feasible implementation of clSetKernelArg() with
445   // aggregates etc. In case we would use the default C calling conv here,
446   // clSetKernelArg() might break depending on the target-specific
447   // conventions; different targets might split structs passed as values
448   // to multiple function arguments etc.
449   return llvm::CallingConv::SPIR_KERNEL;
450 }
451 
452 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
453     llvm::PointerType *T, QualType QT) const {
454   return llvm::ConstantPointerNull::get(T);
455 }
456 
457 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
458                                                    const VarDecl *D) const {
459   assert(!CGM.getLangOpts().OpenCL &&
460          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
461          "Address space agnostic languages only");
462   return D ? D->getType().getAddressSpace() : LangAS::Default;
463 }
464 
465 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
466     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
467     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
468   // Since target may map different address spaces in AST to the same address
469   // space, an address space conversion may end up as a bitcast.
470   if (auto *C = dyn_cast<llvm::Constant>(Src))
471     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
472   // Try to preserve the source's name to make IR more readable.
473   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
474       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
475 }
476 
477 llvm::Constant *
478 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
479                                         LangAS SrcAddr, LangAS DestAddr,
480                                         llvm::Type *DestTy) const {
481   // Since target may map different address spaces in AST to the same address
482   // space, an address space conversion may end up as a bitcast.
483   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
484 }
485 
486 llvm::SyncScope::ID
487 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
488                                       SyncScope Scope,
489                                       llvm::AtomicOrdering Ordering,
490                                       llvm::LLVMContext &Ctx) const {
491   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
492 }
493 
494 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
495 
496 /// isEmptyField - Return true iff a the field is "empty", that is it
497 /// is an unnamed bit-field or an (array of) empty record(s).
498 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
499                          bool AllowArrays) {
500   if (FD->isUnnamedBitfield())
501     return true;
502 
503   QualType FT = FD->getType();
504 
505   // Constant arrays of empty records count as empty, strip them off.
506   // Constant arrays of zero length always count as empty.
507   bool WasArray = false;
508   if (AllowArrays)
509     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
510       if (AT->getSize() == 0)
511         return true;
512       FT = AT->getElementType();
513       // The [[no_unique_address]] special case below does not apply to
514       // arrays of C++ empty records, so we need to remember this fact.
515       WasArray = true;
516     }
517 
518   const RecordType *RT = FT->getAs<RecordType>();
519   if (!RT)
520     return false;
521 
522   // C++ record fields are never empty, at least in the Itanium ABI.
523   //
524   // FIXME: We should use a predicate for whether this behavior is true in the
525   // current ABI.
526   //
527   // The exception to the above rule are fields marked with the
528   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
529   // according to the Itanium ABI.  The exception applies only to records,
530   // not arrays of records, so we must also check whether we stripped off an
531   // array type above.
532   if (isa<CXXRecordDecl>(RT->getDecl()) &&
533       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
534     return false;
535 
536   return isEmptyRecord(Context, FT, AllowArrays);
537 }
538 
539 /// isEmptyRecord - Return true iff a structure contains only empty
540 /// fields. Note that a structure with a flexible array member is not
541 /// considered empty.
542 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
543   const RecordType *RT = T->getAs<RecordType>();
544   if (!RT)
545     return false;
546   const RecordDecl *RD = RT->getDecl();
547   if (RD->hasFlexibleArrayMember())
548     return false;
549 
550   // If this is a C++ record, check the bases first.
551   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
552     for (const auto &I : CXXRD->bases())
553       if (!isEmptyRecord(Context, I.getType(), true))
554         return false;
555 
556   for (const auto *I : RD->fields())
557     if (!isEmptyField(Context, I, AllowArrays))
558       return false;
559   return true;
560 }
561 
562 /// isSingleElementStruct - Determine if a structure is a "single
563 /// element struct", i.e. it has exactly one non-empty field or
564 /// exactly one field which is itself a single element
565 /// struct. Structures with flexible array members are never
566 /// considered single element structs.
567 ///
568 /// \return The field declaration for the single non-empty field, if
569 /// it exists.
570 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
571   const RecordType *RT = T->getAs<RecordType>();
572   if (!RT)
573     return nullptr;
574 
575   const RecordDecl *RD = RT->getDecl();
576   if (RD->hasFlexibleArrayMember())
577     return nullptr;
578 
579   const Type *Found = nullptr;
580 
581   // If this is a C++ record, check the bases first.
582   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
583     for (const auto &I : CXXRD->bases()) {
584       // Ignore empty records.
585       if (isEmptyRecord(Context, I.getType(), true))
586         continue;
587 
588       // If we already found an element then this isn't a single-element struct.
589       if (Found)
590         return nullptr;
591 
592       // If this is non-empty and not a single element struct, the composite
593       // cannot be a single element struct.
594       Found = isSingleElementStruct(I.getType(), Context);
595       if (!Found)
596         return nullptr;
597     }
598   }
599 
600   // Check for single element.
601   for (const auto *FD : RD->fields()) {
602     QualType FT = FD->getType();
603 
604     // Ignore empty fields.
605     if (isEmptyField(Context, FD, true))
606       continue;
607 
608     // If we already found an element then this isn't a single-element
609     // struct.
610     if (Found)
611       return nullptr;
612 
613     // Treat single element arrays as the element.
614     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
615       if (AT->getSize().getZExtValue() != 1)
616         break;
617       FT = AT->getElementType();
618     }
619 
620     if (!isAggregateTypeForABI(FT)) {
621       Found = FT.getTypePtr();
622     } else {
623       Found = isSingleElementStruct(FT, Context);
624       if (!Found)
625         return nullptr;
626     }
627   }
628 
629   // We don't consider a struct a single-element struct if it has
630   // padding beyond the element type.
631   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
632     return nullptr;
633 
634   return Found;
635 }
636 
637 namespace {
638 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
639                        const ABIArgInfo &AI) {
640   // This default implementation defers to the llvm backend's va_arg
641   // instruction. It can handle only passing arguments directly
642   // (typically only handled in the backend for primitive types), or
643   // aggregates passed indirectly by pointer (NOTE: if the "byval"
644   // flag has ABI impact in the callee, this implementation cannot
645   // work.)
646 
647   // Only a few cases are covered here at the moment -- those needed
648   // by the default abi.
649   llvm::Value *Val;
650 
651   if (AI.isIndirect()) {
652     assert(!AI.getPaddingType() &&
653            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
654     assert(
655         !AI.getIndirectRealign() &&
656         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
657 
658     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
659     CharUnits TyAlignForABI = TyInfo.Align;
660 
661     llvm::Type *BaseTy =
662         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
663     llvm::Value *Addr =
664         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
665     return Address(Addr, TyAlignForABI);
666   } else {
667     assert((AI.isDirect() || AI.isExtend()) &&
668            "Unexpected ArgInfo Kind in generic VAArg emitter!");
669 
670     assert(!AI.getInReg() &&
671            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
672     assert(!AI.getPaddingType() &&
673            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
674     assert(!AI.getDirectOffset() &&
675            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
676     assert(!AI.getCoerceToType() &&
677            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
678 
679     Address Temp = CGF.CreateMemTemp(Ty, "varet");
680     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
681     CGF.Builder.CreateStore(Val, Temp);
682     return Temp;
683   }
684 }
685 
686 /// DefaultABIInfo - The default implementation for ABI specific
687 /// details. This implementation provides information which results in
688 /// self-consistent and sensible LLVM IR generation, but does not
689 /// conform to any particular ABI.
690 class DefaultABIInfo : public ABIInfo {
691 public:
692   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
693 
694   ABIArgInfo classifyReturnType(QualType RetTy) const;
695   ABIArgInfo classifyArgumentType(QualType RetTy) const;
696 
697   void computeInfo(CGFunctionInfo &FI) const override {
698     if (!getCXXABI().classifyReturnType(FI))
699       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
700     for (auto &I : FI.arguments())
701       I.info = classifyArgumentType(I.type);
702   }
703 
704   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
705                     QualType Ty) const override {
706     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
707   }
708 };
709 
710 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
711 public:
712   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
713       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
714 };
715 
716 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
717   Ty = useFirstFieldIfTransparentUnion(Ty);
718 
719   if (isAggregateTypeForABI(Ty)) {
720     // Records with non-trivial destructors/copy-constructors should not be
721     // passed by value.
722     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
723       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
724 
725     return getNaturalAlignIndirect(Ty);
726   }
727 
728   // Treat an enum type as its underlying type.
729   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
730     Ty = EnumTy->getDecl()->getIntegerType();
731 
732   ASTContext &Context = getContext();
733   if (const auto *EIT = Ty->getAs<ExtIntType>())
734     if (EIT->getNumBits() >
735         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
736                                 ? Context.Int128Ty
737                                 : Context.LongLongTy))
738       return getNaturalAlignIndirect(Ty);
739 
740   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
741                                             : ABIArgInfo::getDirect());
742 }
743 
744 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
745   if (RetTy->isVoidType())
746     return ABIArgInfo::getIgnore();
747 
748   if (isAggregateTypeForABI(RetTy))
749     return getNaturalAlignIndirect(RetTy);
750 
751   // Treat an enum type as its underlying type.
752   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
753     RetTy = EnumTy->getDecl()->getIntegerType();
754 
755   if (const auto *EIT = RetTy->getAs<ExtIntType>())
756     if (EIT->getNumBits() >
757         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
758                                      ? getContext().Int128Ty
759                                      : getContext().LongLongTy))
760       return getNaturalAlignIndirect(RetTy);
761 
762   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
763                                                : ABIArgInfo::getDirect());
764 }
765 
766 //===----------------------------------------------------------------------===//
767 // WebAssembly ABI Implementation
768 //
769 // This is a very simple ABI that relies a lot on DefaultABIInfo.
770 //===----------------------------------------------------------------------===//
771 
772 class WebAssemblyABIInfo final : public SwiftABIInfo {
773 public:
774   enum ABIKind {
775     MVP = 0,
776     ExperimentalMV = 1,
777   };
778 
779 private:
780   DefaultABIInfo defaultInfo;
781   ABIKind Kind;
782 
783 public:
784   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
785       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
786 
787 private:
788   ABIArgInfo classifyReturnType(QualType RetTy) const;
789   ABIArgInfo classifyArgumentType(QualType Ty) const;
790 
791   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
792   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
793   // overload them.
794   void computeInfo(CGFunctionInfo &FI) const override {
795     if (!getCXXABI().classifyReturnType(FI))
796       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
797     for (auto &Arg : FI.arguments())
798       Arg.info = classifyArgumentType(Arg.type);
799   }
800 
801   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
802                     QualType Ty) const override;
803 
804   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
805                                     bool asReturnValue) const override {
806     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
807   }
808 
809   bool isSwiftErrorInRegister() const override {
810     return false;
811   }
812 };
813 
814 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
815 public:
816   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
817                                         WebAssemblyABIInfo::ABIKind K)
818       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
819 
820   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
821                            CodeGen::CodeGenModule &CGM) const override {
822     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
823     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
824       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
825         llvm::Function *Fn = cast<llvm::Function>(GV);
826         llvm::AttrBuilder B;
827         B.addAttribute("wasm-import-module", Attr->getImportModule());
828         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
829       }
830       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
831         llvm::Function *Fn = cast<llvm::Function>(GV);
832         llvm::AttrBuilder B;
833         B.addAttribute("wasm-import-name", Attr->getImportName());
834         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
835       }
836       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
837         llvm::Function *Fn = cast<llvm::Function>(GV);
838         llvm::AttrBuilder B;
839         B.addAttribute("wasm-export-name", Attr->getExportName());
840         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
841       }
842     }
843 
844     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
845       llvm::Function *Fn = cast<llvm::Function>(GV);
846       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
847         Fn->addFnAttr("no-prototype");
848     }
849   }
850 };
851 
852 /// Classify argument of given type \p Ty.
853 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
854   Ty = useFirstFieldIfTransparentUnion(Ty);
855 
856   if (isAggregateTypeForABI(Ty)) {
857     // Records with non-trivial destructors/copy-constructors should not be
858     // passed by value.
859     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
860       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
861     // Ignore empty structs/unions.
862     if (isEmptyRecord(getContext(), Ty, true))
863       return ABIArgInfo::getIgnore();
864     // Lower single-element structs to just pass a regular value. TODO: We
865     // could do reasonable-size multiple-element structs too, using getExpand(),
866     // though watch out for things like bitfields.
867     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
868       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
869     // For the experimental multivalue ABI, fully expand all other aggregates
870     if (Kind == ABIKind::ExperimentalMV) {
871       const RecordType *RT = Ty->getAs<RecordType>();
872       assert(RT);
873       bool HasBitField = false;
874       for (auto *Field : RT->getDecl()->fields()) {
875         if (Field->isBitField()) {
876           HasBitField = true;
877           break;
878         }
879       }
880       if (!HasBitField)
881         return ABIArgInfo::getExpand();
882     }
883   }
884 
885   // Otherwise just do the default thing.
886   return defaultInfo.classifyArgumentType(Ty);
887 }
888 
889 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
890   if (isAggregateTypeForABI(RetTy)) {
891     // Records with non-trivial destructors/copy-constructors should not be
892     // returned by value.
893     if (!getRecordArgABI(RetTy, getCXXABI())) {
894       // Ignore empty structs/unions.
895       if (isEmptyRecord(getContext(), RetTy, true))
896         return ABIArgInfo::getIgnore();
897       // Lower single-element structs to just return a regular value. TODO: We
898       // could do reasonable-size multiple-element structs too, using
899       // ABIArgInfo::getDirect().
900       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
901         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
902       // For the experimental multivalue ABI, return all other aggregates
903       if (Kind == ABIKind::ExperimentalMV)
904         return ABIArgInfo::getDirect();
905     }
906   }
907 
908   // Otherwise just do the default thing.
909   return defaultInfo.classifyReturnType(RetTy);
910 }
911 
912 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
913                                       QualType Ty) const {
914   bool IsIndirect = isAggregateTypeForABI(Ty) &&
915                     !isEmptyRecord(getContext(), Ty, true) &&
916                     !isSingleElementStruct(Ty, getContext());
917   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
918                           getContext().getTypeInfoInChars(Ty),
919                           CharUnits::fromQuantity(4),
920                           /*AllowHigherAlign=*/true);
921 }
922 
923 //===----------------------------------------------------------------------===//
924 // le32/PNaCl bitcode ABI Implementation
925 //
926 // This is a simplified version of the x86_32 ABI.  Arguments and return values
927 // are always passed on the stack.
928 //===----------------------------------------------------------------------===//
929 
930 class PNaClABIInfo : public ABIInfo {
931  public:
932   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
933 
934   ABIArgInfo classifyReturnType(QualType RetTy) const;
935   ABIArgInfo classifyArgumentType(QualType RetTy) const;
936 
937   void computeInfo(CGFunctionInfo &FI) const override;
938   Address EmitVAArg(CodeGenFunction &CGF,
939                     Address VAListAddr, QualType Ty) const override;
940 };
941 
942 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
943  public:
944    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
945        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
946 };
947 
948 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
949   if (!getCXXABI().classifyReturnType(FI))
950     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
951 
952   for (auto &I : FI.arguments())
953     I.info = classifyArgumentType(I.type);
954 }
955 
956 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
957                                 QualType Ty) const {
958   // The PNaCL ABI is a bit odd, in that varargs don't use normal
959   // function classification. Structs get passed directly for varargs
960   // functions, through a rewriting transform in
961   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
962   // this target to actually support a va_arg instructions with an
963   // aggregate type, unlike other targets.
964   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
965 }
966 
967 /// Classify argument of given type \p Ty.
968 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
969   if (isAggregateTypeForABI(Ty)) {
970     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
971       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
972     return getNaturalAlignIndirect(Ty);
973   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
974     // Treat an enum type as its underlying type.
975     Ty = EnumTy->getDecl()->getIntegerType();
976   } else if (Ty->isFloatingType()) {
977     // Floating-point types don't go inreg.
978     return ABIArgInfo::getDirect();
979   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
980     // Treat extended integers as integers if <=64, otherwise pass indirectly.
981     if (EIT->getNumBits() > 64)
982       return getNaturalAlignIndirect(Ty);
983     return ABIArgInfo::getDirect();
984   }
985 
986   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
987                                             : ABIArgInfo::getDirect());
988 }
989 
990 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
991   if (RetTy->isVoidType())
992     return ABIArgInfo::getIgnore();
993 
994   // In the PNaCl ABI we always return records/structures on the stack.
995   if (isAggregateTypeForABI(RetTy))
996     return getNaturalAlignIndirect(RetTy);
997 
998   // Treat extended integers as integers if <=64, otherwise pass indirectly.
999   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
1000     if (EIT->getNumBits() > 64)
1001       return getNaturalAlignIndirect(RetTy);
1002     return ABIArgInfo::getDirect();
1003   }
1004 
1005   // Treat an enum type as its underlying type.
1006   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1007     RetTy = EnumTy->getDecl()->getIntegerType();
1008 
1009   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1010                                                : ABIArgInfo::getDirect());
1011 }
1012 
1013 /// IsX86_MMXType - Return true if this is an MMX type.
1014 bool IsX86_MMXType(llvm::Type *IRType) {
1015   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1016   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1017     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1018     IRType->getScalarSizeInBits() != 64;
1019 }
1020 
1021 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1022                                           StringRef Constraint,
1023                                           llvm::Type* Ty) {
1024   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1025                      .Cases("y", "&y", "^Ym", true)
1026                      .Default(false);
1027   if (IsMMXCons && Ty->isVectorTy()) {
1028     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1029         64) {
1030       // Invalid MMX constraint
1031       return nullptr;
1032     }
1033 
1034     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1035   }
1036 
1037   // No operation needed
1038   return Ty;
1039 }
1040 
1041 /// Returns true if this type can be passed in SSE registers with the
1042 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1043 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1044   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1045     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1046       if (BT->getKind() == BuiltinType::LongDouble) {
1047         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1048             &llvm::APFloat::x87DoubleExtended())
1049           return false;
1050       }
1051       return true;
1052     }
1053   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1054     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1055     // registers specially.
1056     unsigned VecSize = Context.getTypeSize(VT);
1057     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1058       return true;
1059   }
1060   return false;
1061 }
1062 
1063 /// Returns true if this aggregate is small enough to be passed in SSE registers
1064 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1065 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1066   return NumMembers <= 4;
1067 }
1068 
1069 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1070 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1071   auto AI = ABIArgInfo::getDirect(T);
1072   AI.setInReg(true);
1073   AI.setCanBeFlattened(false);
1074   return AI;
1075 }
1076 
1077 //===----------------------------------------------------------------------===//
1078 // X86-32 ABI Implementation
1079 //===----------------------------------------------------------------------===//
1080 
1081 /// Similar to llvm::CCState, but for Clang.
1082 struct CCState {
1083   CCState(CGFunctionInfo &FI)
1084       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1085 
1086   llvm::SmallBitVector IsPreassigned;
1087   unsigned CC = CallingConv::CC_C;
1088   unsigned FreeRegs = 0;
1089   unsigned FreeSSERegs = 0;
1090 };
1091 
1092 /// X86_32ABIInfo - The X86-32 ABI information.
1093 class X86_32ABIInfo : public SwiftABIInfo {
1094   enum Class {
1095     Integer,
1096     Float
1097   };
1098 
1099   static const unsigned MinABIStackAlignInBytes = 4;
1100 
1101   bool IsDarwinVectorABI;
1102   bool IsRetSmallStructInRegABI;
1103   bool IsWin32StructABI;
1104   bool IsSoftFloatABI;
1105   bool IsMCUABI;
1106   unsigned DefaultNumRegisterParameters;
1107 
1108   static bool isRegisterSize(unsigned Size) {
1109     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1110   }
1111 
1112   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1113     // FIXME: Assumes vectorcall is in use.
1114     return isX86VectorTypeForVectorCall(getContext(), Ty);
1115   }
1116 
1117   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1118                                          uint64_t NumMembers) const override {
1119     // FIXME: Assumes vectorcall is in use.
1120     return isX86VectorCallAggregateSmallEnough(NumMembers);
1121   }
1122 
1123   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1124 
1125   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1126   /// such that the argument will be passed in memory.
1127   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1128 
1129   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1130 
1131   /// Return the alignment to use for the given type on the stack.
1132   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1133 
1134   Class classify(QualType Ty) const;
1135   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1136   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1137 
1138   /// Updates the number of available free registers, returns
1139   /// true if any registers were allocated.
1140   bool updateFreeRegs(QualType Ty, CCState &State) const;
1141 
1142   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1143                                 bool &NeedsPadding) const;
1144   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1145 
1146   bool canExpandIndirectArgument(QualType Ty) const;
1147 
1148   /// Rewrite the function info so that all memory arguments use
1149   /// inalloca.
1150   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1151 
1152   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1153                            CharUnits &StackOffset, ABIArgInfo &Info,
1154                            QualType Type) const;
1155   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1156 
1157 public:
1158 
1159   void computeInfo(CGFunctionInfo &FI) const override;
1160   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1161                     QualType Ty) const override;
1162 
1163   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1164                 bool RetSmallStructInRegABI, bool Win32StructABI,
1165                 unsigned NumRegisterParameters, bool SoftFloatABI)
1166     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1167       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1168       IsWin32StructABI(Win32StructABI),
1169       IsSoftFloatABI(SoftFloatABI),
1170       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1171       DefaultNumRegisterParameters(NumRegisterParameters) {}
1172 
1173   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1174                                     bool asReturnValue) const override {
1175     // LLVM's x86-32 lowering currently only assigns up to three
1176     // integer registers and three fp registers.  Oddly, it'll use up to
1177     // four vector registers for vectors, but those can overlap with the
1178     // scalar registers.
1179     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1180   }
1181 
1182   bool isSwiftErrorInRegister() const override {
1183     // x86-32 lowering does not support passing swifterror in a register.
1184     return false;
1185   }
1186 };
1187 
1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1189 public:
1190   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1191                           bool RetSmallStructInRegABI, bool Win32StructABI,
1192                           unsigned NumRegisterParameters, bool SoftFloatABI)
1193       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1194             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1195             NumRegisterParameters, SoftFloatABI)) {}
1196 
1197   static bool isStructReturnInRegABI(
1198       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1199 
1200   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1201                            CodeGen::CodeGenModule &CGM) const override;
1202 
1203   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1204     // Darwin uses different dwarf register numbers for EH.
1205     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1206     return 4;
1207   }
1208 
1209   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1210                                llvm::Value *Address) const override;
1211 
1212   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1213                                   StringRef Constraint,
1214                                   llvm::Type* Ty) const override {
1215     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1216   }
1217 
1218   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1219                                 std::string &Constraints,
1220                                 std::vector<llvm::Type *> &ResultRegTypes,
1221                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1222                                 std::vector<LValue> &ResultRegDests,
1223                                 std::string &AsmString,
1224                                 unsigned NumOutputs) const override;
1225 
1226   llvm::Constant *
1227   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1228     unsigned Sig = (0xeb << 0) |  // jmp rel8
1229                    (0x06 << 8) |  //           .+0x08
1230                    ('v' << 16) |
1231                    ('2' << 24);
1232     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1233   }
1234 
1235   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1236     return "movl\t%ebp, %ebp"
1237            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1238   }
1239 };
1240 
1241 }
1242 
1243 /// Rewrite input constraint references after adding some output constraints.
1244 /// In the case where there is one output and one input and we add one output,
1245 /// we need to replace all operand references greater than or equal to 1:
1246 ///     mov $0, $1
1247 ///     mov eax, $1
1248 /// The result will be:
1249 ///     mov $0, $2
1250 ///     mov eax, $2
1251 static void rewriteInputConstraintReferences(unsigned FirstIn,
1252                                              unsigned NumNewOuts,
1253                                              std::string &AsmString) {
1254   std::string Buf;
1255   llvm::raw_string_ostream OS(Buf);
1256   size_t Pos = 0;
1257   while (Pos < AsmString.size()) {
1258     size_t DollarStart = AsmString.find('$', Pos);
1259     if (DollarStart == std::string::npos)
1260       DollarStart = AsmString.size();
1261     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1262     if (DollarEnd == std::string::npos)
1263       DollarEnd = AsmString.size();
1264     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1265     Pos = DollarEnd;
1266     size_t NumDollars = DollarEnd - DollarStart;
1267     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1268       // We have an operand reference.
1269       size_t DigitStart = Pos;
1270       if (AsmString[DigitStart] == '{') {
1271         OS << '{';
1272         ++DigitStart;
1273       }
1274       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1275       if (DigitEnd == std::string::npos)
1276         DigitEnd = AsmString.size();
1277       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1278       unsigned OperandIndex;
1279       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1280         if (OperandIndex >= FirstIn)
1281           OperandIndex += NumNewOuts;
1282         OS << OperandIndex;
1283       } else {
1284         OS << OperandStr;
1285       }
1286       Pos = DigitEnd;
1287     }
1288   }
1289   AsmString = std::move(OS.str());
1290 }
1291 
1292 /// Add output constraints for EAX:EDX because they are return registers.
1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1294     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1295     std::vector<llvm::Type *> &ResultRegTypes,
1296     std::vector<llvm::Type *> &ResultTruncRegTypes,
1297     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1298     unsigned NumOutputs) const {
1299   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1300 
1301   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1302   // larger.
1303   if (!Constraints.empty())
1304     Constraints += ',';
1305   if (RetWidth <= 32) {
1306     Constraints += "={eax}";
1307     ResultRegTypes.push_back(CGF.Int32Ty);
1308   } else {
1309     // Use the 'A' constraint for EAX:EDX.
1310     Constraints += "=A";
1311     ResultRegTypes.push_back(CGF.Int64Ty);
1312   }
1313 
1314   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1315   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1316   ResultTruncRegTypes.push_back(CoerceTy);
1317 
1318   // Coerce the integer by bitcasting the return slot pointer.
1319   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1320                                                   CoerceTy->getPointerTo()));
1321   ResultRegDests.push_back(ReturnSlot);
1322 
1323   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1324 }
1325 
1326 /// shouldReturnTypeInRegister - Determine if the given type should be
1327 /// returned in a register (for the Darwin and MCU ABI).
1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1329                                                ASTContext &Context) const {
1330   uint64_t Size = Context.getTypeSize(Ty);
1331 
1332   // For i386, type must be register sized.
1333   // For the MCU ABI, it only needs to be <= 8-byte
1334   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1335    return false;
1336 
1337   if (Ty->isVectorType()) {
1338     // 64- and 128- bit vectors inside structures are not returned in
1339     // registers.
1340     if (Size == 64 || Size == 128)
1341       return false;
1342 
1343     return true;
1344   }
1345 
1346   // If this is a builtin, pointer, enum, complex type, member pointer, or
1347   // member function pointer it is ok.
1348   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1349       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1350       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1351     return true;
1352 
1353   // Arrays are treated like records.
1354   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1355     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1356 
1357   // Otherwise, it must be a record type.
1358   const RecordType *RT = Ty->getAs<RecordType>();
1359   if (!RT) return false;
1360 
1361   // FIXME: Traverse bases here too.
1362 
1363   // Structure types are passed in register if all fields would be
1364   // passed in a register.
1365   for (const auto *FD : RT->getDecl()->fields()) {
1366     // Empty fields are ignored.
1367     if (isEmptyField(Context, FD, true))
1368       continue;
1369 
1370     // Check fields recursively.
1371     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1372       return false;
1373   }
1374   return true;
1375 }
1376 
1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1378   // Treat complex types as the element type.
1379   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1380     Ty = CTy->getElementType();
1381 
1382   // Check for a type which we know has a simple scalar argument-passing
1383   // convention without any padding.  (We're specifically looking for 32
1384   // and 64-bit integer and integer-equivalents, float, and double.)
1385   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1386       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1387     return false;
1388 
1389   uint64_t Size = Context.getTypeSize(Ty);
1390   return Size == 32 || Size == 64;
1391 }
1392 
1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1394                           uint64_t &Size) {
1395   for (const auto *FD : RD->fields()) {
1396     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1397     // argument is smaller than 32-bits, expanding the struct will create
1398     // alignment padding.
1399     if (!is32Or64BitBasicType(FD->getType(), Context))
1400       return false;
1401 
1402     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1403     // how to expand them yet, and the predicate for telling if a bitfield still
1404     // counts as "basic" is more complicated than what we were doing previously.
1405     if (FD->isBitField())
1406       return false;
1407 
1408     Size += Context.getTypeSize(FD->getType());
1409   }
1410   return true;
1411 }
1412 
1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1414                                  uint64_t &Size) {
1415   // Don't do this if there are any non-empty bases.
1416   for (const CXXBaseSpecifier &Base : RD->bases()) {
1417     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1418                               Size))
1419       return false;
1420   }
1421   if (!addFieldSizes(Context, RD, Size))
1422     return false;
1423   return true;
1424 }
1425 
1426 /// Test whether an argument type which is to be passed indirectly (on the
1427 /// stack) would have the equivalent layout if it was expanded into separate
1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1429 /// optimizations.
1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1431   // We can only expand structure types.
1432   const RecordType *RT = Ty->getAs<RecordType>();
1433   if (!RT)
1434     return false;
1435   const RecordDecl *RD = RT->getDecl();
1436   uint64_t Size = 0;
1437   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1438     if (!IsWin32StructABI) {
1439       // On non-Windows, we have to conservatively match our old bitcode
1440       // prototypes in order to be ABI-compatible at the bitcode level.
1441       if (!CXXRD->isCLike())
1442         return false;
1443     } else {
1444       // Don't do this for dynamic classes.
1445       if (CXXRD->isDynamicClass())
1446         return false;
1447     }
1448     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1449       return false;
1450   } else {
1451     if (!addFieldSizes(getContext(), RD, Size))
1452       return false;
1453   }
1454 
1455   // We can do this if there was no alignment padding.
1456   return Size == getContext().getTypeSize(Ty);
1457 }
1458 
1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1460   // If the return value is indirect, then the hidden argument is consuming one
1461   // integer register.
1462   if (State.FreeRegs) {
1463     --State.FreeRegs;
1464     if (!IsMCUABI)
1465       return getNaturalAlignIndirectInReg(RetTy);
1466   }
1467   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1468 }
1469 
1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1471                                              CCState &State) const {
1472   if (RetTy->isVoidType())
1473     return ABIArgInfo::getIgnore();
1474 
1475   const Type *Base = nullptr;
1476   uint64_t NumElts = 0;
1477   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1478        State.CC == llvm::CallingConv::X86_RegCall) &&
1479       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1480     // The LLVM struct type for such an aggregate should lower properly.
1481     return ABIArgInfo::getDirect();
1482   }
1483 
1484   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1485     // On Darwin, some vectors are returned in registers.
1486     if (IsDarwinVectorABI) {
1487       uint64_t Size = getContext().getTypeSize(RetTy);
1488 
1489       // 128-bit vectors are a special case; they are returned in
1490       // registers and we need to make sure to pick a type the LLVM
1491       // backend will like.
1492       if (Size == 128)
1493         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1494             llvm::Type::getInt64Ty(getVMContext()), 2));
1495 
1496       // Always return in register if it fits in a general purpose
1497       // register, or if it is 64 bits and has a single element.
1498       if ((Size == 8 || Size == 16 || Size == 32) ||
1499           (Size == 64 && VT->getNumElements() == 1))
1500         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1501                                                             Size));
1502 
1503       return getIndirectReturnResult(RetTy, State);
1504     }
1505 
1506     return ABIArgInfo::getDirect();
1507   }
1508 
1509   if (isAggregateTypeForABI(RetTy)) {
1510     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1511       // Structures with flexible arrays are always indirect.
1512       if (RT->getDecl()->hasFlexibleArrayMember())
1513         return getIndirectReturnResult(RetTy, State);
1514     }
1515 
1516     // If specified, structs and unions are always indirect.
1517     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1518       return getIndirectReturnResult(RetTy, State);
1519 
1520     // Ignore empty structs/unions.
1521     if (isEmptyRecord(getContext(), RetTy, true))
1522       return ABIArgInfo::getIgnore();
1523 
1524     // Small structures which are register sized are generally returned
1525     // in a register.
1526     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1527       uint64_t Size = getContext().getTypeSize(RetTy);
1528 
1529       // As a special-case, if the struct is a "single-element" struct, and
1530       // the field is of type "float" or "double", return it in a
1531       // floating-point register. (MSVC does not apply this special case.)
1532       // We apply a similar transformation for pointer types to improve the
1533       // quality of the generated IR.
1534       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1535         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1536             || SeltTy->hasPointerRepresentation())
1537           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1538 
1539       // FIXME: We should be able to narrow this integer in cases with dead
1540       // padding.
1541       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1542     }
1543 
1544     return getIndirectReturnResult(RetTy, State);
1545   }
1546 
1547   // Treat an enum type as its underlying type.
1548   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1549     RetTy = EnumTy->getDecl()->getIntegerType();
1550 
1551   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1552     if (EIT->getNumBits() > 64)
1553       return getIndirectReturnResult(RetTy, State);
1554 
1555   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1556                                                : ABIArgInfo::getDirect());
1557 }
1558 
1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1560   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1561 }
1562 
1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1564   const RecordType *RT = Ty->getAs<RecordType>();
1565   if (!RT)
1566     return 0;
1567   const RecordDecl *RD = RT->getDecl();
1568 
1569   // If this is a C++ record, check the bases first.
1570   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1571     for (const auto &I : CXXRD->bases())
1572       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1573         return false;
1574 
1575   for (const auto *i : RD->fields()) {
1576     QualType FT = i->getType();
1577 
1578     if (isSIMDVectorType(Context, FT))
1579       return true;
1580 
1581     if (isRecordWithSIMDVectorType(Context, FT))
1582       return true;
1583   }
1584 
1585   return false;
1586 }
1587 
1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1589                                                  unsigned Align) const {
1590   // Otherwise, if the alignment is less than or equal to the minimum ABI
1591   // alignment, just use the default; the backend will handle this.
1592   if (Align <= MinABIStackAlignInBytes)
1593     return 0; // Use default alignment.
1594 
1595   // On non-Darwin, the stack type alignment is always 4.
1596   if (!IsDarwinVectorABI) {
1597     // Set explicit alignment, since we may need to realign the top.
1598     return MinABIStackAlignInBytes;
1599   }
1600 
1601   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1602   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1603                       isRecordWithSIMDVectorType(getContext(), Ty)))
1604     return 16;
1605 
1606   return MinABIStackAlignInBytes;
1607 }
1608 
1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1610                                             CCState &State) const {
1611   if (!ByVal) {
1612     if (State.FreeRegs) {
1613       --State.FreeRegs; // Non-byval indirects just use one pointer.
1614       if (!IsMCUABI)
1615         return getNaturalAlignIndirectInReg(Ty);
1616     }
1617     return getNaturalAlignIndirect(Ty, false);
1618   }
1619 
1620   // Compute the byval alignment.
1621   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1622   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1623   if (StackAlign == 0)
1624     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1625 
1626   // If the stack alignment is less than the type alignment, realign the
1627   // argument.
1628   bool Realign = TypeAlign > StackAlign;
1629   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1630                                  /*ByVal=*/true, Realign);
1631 }
1632 
1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1634   const Type *T = isSingleElementStruct(Ty, getContext());
1635   if (!T)
1636     T = Ty.getTypePtr();
1637 
1638   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1639     BuiltinType::Kind K = BT->getKind();
1640     if (K == BuiltinType::Float || K == BuiltinType::Double)
1641       return Float;
1642   }
1643   return Integer;
1644 }
1645 
1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1647   if (!IsSoftFloatABI) {
1648     Class C = classify(Ty);
1649     if (C == Float)
1650       return false;
1651   }
1652 
1653   unsigned Size = getContext().getTypeSize(Ty);
1654   unsigned SizeInRegs = (Size + 31) / 32;
1655 
1656   if (SizeInRegs == 0)
1657     return false;
1658 
1659   if (!IsMCUABI) {
1660     if (SizeInRegs > State.FreeRegs) {
1661       State.FreeRegs = 0;
1662       return false;
1663     }
1664   } else {
1665     // The MCU psABI allows passing parameters in-reg even if there are
1666     // earlier parameters that are passed on the stack. Also,
1667     // it does not allow passing >8-byte structs in-register,
1668     // even if there are 3 free registers available.
1669     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1670       return false;
1671   }
1672 
1673   State.FreeRegs -= SizeInRegs;
1674   return true;
1675 }
1676 
1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1678                                              bool &InReg,
1679                                              bool &NeedsPadding) const {
1680   // On Windows, aggregates other than HFAs are never passed in registers, and
1681   // they do not consume register slots. Homogenous floating-point aggregates
1682   // (HFAs) have already been dealt with at this point.
1683   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1684     return false;
1685 
1686   NeedsPadding = false;
1687   InReg = !IsMCUABI;
1688 
1689   if (!updateFreeRegs(Ty, State))
1690     return false;
1691 
1692   if (IsMCUABI)
1693     return true;
1694 
1695   if (State.CC == llvm::CallingConv::X86_FastCall ||
1696       State.CC == llvm::CallingConv::X86_VectorCall ||
1697       State.CC == llvm::CallingConv::X86_RegCall) {
1698     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1699       NeedsPadding = true;
1700 
1701     return false;
1702   }
1703 
1704   return true;
1705 }
1706 
1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1708   if (!updateFreeRegs(Ty, State))
1709     return false;
1710 
1711   if (IsMCUABI)
1712     return false;
1713 
1714   if (State.CC == llvm::CallingConv::X86_FastCall ||
1715       State.CC == llvm::CallingConv::X86_VectorCall ||
1716       State.CC == llvm::CallingConv::X86_RegCall) {
1717     if (getContext().getTypeSize(Ty) > 32)
1718       return false;
1719 
1720     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1721         Ty->isReferenceType());
1722   }
1723 
1724   return true;
1725 }
1726 
1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1728   // Vectorcall x86 works subtly different than in x64, so the format is
1729   // a bit different than the x64 version.  First, all vector types (not HVAs)
1730   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1731   // This differs from the x64 implementation, where the first 6 by INDEX get
1732   // registers.
1733   // In the second pass over the arguments, HVAs are passed in the remaining
1734   // vector registers if possible, or indirectly by address. The address will be
1735   // passed in ECX/EDX if available. Any other arguments are passed according to
1736   // the usual fastcall rules.
1737   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1738   for (int I = 0, E = Args.size(); I < E; ++I) {
1739     const Type *Base = nullptr;
1740     uint64_t NumElts = 0;
1741     const QualType &Ty = Args[I].type;
1742     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1743         isHomogeneousAggregate(Ty, Base, NumElts)) {
1744       if (State.FreeSSERegs >= NumElts) {
1745         State.FreeSSERegs -= NumElts;
1746         Args[I].info = ABIArgInfo::getDirectInReg();
1747         State.IsPreassigned.set(I);
1748       }
1749     }
1750   }
1751 }
1752 
1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1754                                                CCState &State) const {
1755   // FIXME: Set alignment on indirect arguments.
1756   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1757   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1758   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1759 
1760   Ty = useFirstFieldIfTransparentUnion(Ty);
1761   TypeInfo TI = getContext().getTypeInfo(Ty);
1762 
1763   // Check with the C++ ABI first.
1764   const RecordType *RT = Ty->getAs<RecordType>();
1765   if (RT) {
1766     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1767     if (RAA == CGCXXABI::RAA_Indirect) {
1768       return getIndirectResult(Ty, false, State);
1769     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1770       // The field index doesn't matter, we'll fix it up later.
1771       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1772     }
1773   }
1774 
1775   // Regcall uses the concept of a homogenous vector aggregate, similar
1776   // to other targets.
1777   const Type *Base = nullptr;
1778   uint64_t NumElts = 0;
1779   if ((IsRegCall || IsVectorCall) &&
1780       isHomogeneousAggregate(Ty, Base, NumElts)) {
1781     if (State.FreeSSERegs >= NumElts) {
1782       State.FreeSSERegs -= NumElts;
1783 
1784       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1785       // does.
1786       if (IsVectorCall)
1787         return getDirectX86Hva();
1788 
1789       if (Ty->isBuiltinType() || Ty->isVectorType())
1790         return ABIArgInfo::getDirect();
1791       return ABIArgInfo::getExpand();
1792     }
1793     return getIndirectResult(Ty, /*ByVal=*/false, State);
1794   }
1795 
1796   if (isAggregateTypeForABI(Ty)) {
1797     // Structures with flexible arrays are always indirect.
1798     // FIXME: This should not be byval!
1799     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1800       return getIndirectResult(Ty, true, State);
1801 
1802     // Ignore empty structs/unions on non-Windows.
1803     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1804       return ABIArgInfo::getIgnore();
1805 
1806     llvm::LLVMContext &LLVMContext = getVMContext();
1807     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1808     bool NeedsPadding = false;
1809     bool InReg;
1810     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1811       unsigned SizeInRegs = (TI.Width + 31) / 32;
1812       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1813       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1814       if (InReg)
1815         return ABIArgInfo::getDirectInReg(Result);
1816       else
1817         return ABIArgInfo::getDirect(Result);
1818     }
1819     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1820 
1821     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1822     // added in MSVC 2015.
1823     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1824       return getIndirectResult(Ty, /*ByVal=*/false, State);
1825 
1826     // Expand small (<= 128-bit) record types when we know that the stack layout
1827     // of those arguments will match the struct. This is important because the
1828     // LLVM backend isn't smart enough to remove byval, which inhibits many
1829     // optimizations.
1830     // Don't do this for the MCU if there are still free integer registers
1831     // (see X86_64 ABI for full explanation).
1832     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1833         canExpandIndirectArgument(Ty))
1834       return ABIArgInfo::getExpandWithPadding(
1835           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1836 
1837     return getIndirectResult(Ty, true, State);
1838   }
1839 
1840   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1841     // On Windows, vectors are passed directly if registers are available, or
1842     // indirectly if not. This avoids the need to align argument memory. Pass
1843     // user-defined vector types larger than 512 bits indirectly for simplicity.
1844     if (IsWin32StructABI) {
1845       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1846         --State.FreeSSERegs;
1847         return ABIArgInfo::getDirectInReg();
1848       }
1849       return getIndirectResult(Ty, /*ByVal=*/false, State);
1850     }
1851 
1852     // On Darwin, some vectors are passed in memory, we handle this by passing
1853     // it as an i8/i16/i32/i64.
1854     if (IsDarwinVectorABI) {
1855       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1856           (TI.Width == 64 && VT->getNumElements() == 1))
1857         return ABIArgInfo::getDirect(
1858             llvm::IntegerType::get(getVMContext(), TI.Width));
1859     }
1860 
1861     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1862       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1863 
1864     return ABIArgInfo::getDirect();
1865   }
1866 
1867 
1868   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1869     Ty = EnumTy->getDecl()->getIntegerType();
1870 
1871   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1872 
1873   if (isPromotableIntegerTypeForABI(Ty)) {
1874     if (InReg)
1875       return ABIArgInfo::getExtendInReg(Ty);
1876     return ABIArgInfo::getExtend(Ty);
1877   }
1878 
1879   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1880     if (EIT->getNumBits() <= 64) {
1881       if (InReg)
1882         return ABIArgInfo::getDirectInReg();
1883       return ABIArgInfo::getDirect();
1884     }
1885     return getIndirectResult(Ty, /*ByVal=*/false, State);
1886   }
1887 
1888   if (InReg)
1889     return ABIArgInfo::getDirectInReg();
1890   return ABIArgInfo::getDirect();
1891 }
1892 
1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1894   CCState State(FI);
1895   if (IsMCUABI)
1896     State.FreeRegs = 3;
1897   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1898     State.FreeRegs = 2;
1899     State.FreeSSERegs = 3;
1900   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1901     State.FreeRegs = 2;
1902     State.FreeSSERegs = 6;
1903   } else if (FI.getHasRegParm())
1904     State.FreeRegs = FI.getRegParm();
1905   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1906     State.FreeRegs = 5;
1907     State.FreeSSERegs = 8;
1908   } else if (IsWin32StructABI) {
1909     // Since MSVC 2015, the first three SSE vectors have been passed in
1910     // registers. The rest are passed indirectly.
1911     State.FreeRegs = DefaultNumRegisterParameters;
1912     State.FreeSSERegs = 3;
1913   } else
1914     State.FreeRegs = DefaultNumRegisterParameters;
1915 
1916   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1917     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1918   } else if (FI.getReturnInfo().isIndirect()) {
1919     // The C++ ABI is not aware of register usage, so we have to check if the
1920     // return value was sret and put it in a register ourselves if appropriate.
1921     if (State.FreeRegs) {
1922       --State.FreeRegs;  // The sret parameter consumes a register.
1923       if (!IsMCUABI)
1924         FI.getReturnInfo().setInReg(true);
1925     }
1926   }
1927 
1928   // The chain argument effectively gives us another free register.
1929   if (FI.isChainCall())
1930     ++State.FreeRegs;
1931 
1932   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1933   // arguments to XMM registers as available.
1934   if (State.CC == llvm::CallingConv::X86_VectorCall)
1935     runVectorCallFirstPass(FI, State);
1936 
1937   bool UsedInAlloca = false;
1938   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1939   for (int I = 0, E = Args.size(); I < E; ++I) {
1940     // Skip arguments that have already been assigned.
1941     if (State.IsPreassigned.test(I))
1942       continue;
1943 
1944     Args[I].info = classifyArgumentType(Args[I].type, State);
1945     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1946   }
1947 
1948   // If we needed to use inalloca for any argument, do a second pass and rewrite
1949   // all the memory arguments to use inalloca.
1950   if (UsedInAlloca)
1951     rewriteWithInAlloca(FI);
1952 }
1953 
1954 void
1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1956                                    CharUnits &StackOffset, ABIArgInfo &Info,
1957                                    QualType Type) const {
1958   // Arguments are always 4-byte-aligned.
1959   CharUnits WordSize = CharUnits::fromQuantity(4);
1960   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1961 
1962   // sret pointers and indirect things will require an extra pointer
1963   // indirection, unless they are byval. Most things are byval, and will not
1964   // require this indirection.
1965   bool IsIndirect = false;
1966   if (Info.isIndirect() && !Info.getIndirectByVal())
1967     IsIndirect = true;
1968   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1969   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1970   if (IsIndirect)
1971     LLTy = LLTy->getPointerTo(0);
1972   FrameFields.push_back(LLTy);
1973   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1974 
1975   // Insert padding bytes to respect alignment.
1976   CharUnits FieldEnd = StackOffset;
1977   StackOffset = FieldEnd.alignTo(WordSize);
1978   if (StackOffset != FieldEnd) {
1979     CharUnits NumBytes = StackOffset - FieldEnd;
1980     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1981     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1982     FrameFields.push_back(Ty);
1983   }
1984 }
1985 
1986 static bool isArgInAlloca(const ABIArgInfo &Info) {
1987   // Leave ignored and inreg arguments alone.
1988   switch (Info.getKind()) {
1989   case ABIArgInfo::InAlloca:
1990     return true;
1991   case ABIArgInfo::Ignore:
1992   case ABIArgInfo::IndirectAliased:
1993     return false;
1994   case ABIArgInfo::Indirect:
1995   case ABIArgInfo::Direct:
1996   case ABIArgInfo::Extend:
1997     return !Info.getInReg();
1998   case ABIArgInfo::Expand:
1999   case ABIArgInfo::CoerceAndExpand:
2000     // These are aggregate types which are never passed in registers when
2001     // inalloca is involved.
2002     return true;
2003   }
2004   llvm_unreachable("invalid enum");
2005 }
2006 
2007 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2008   assert(IsWin32StructABI && "inalloca only supported on win32");
2009 
2010   // Build a packed struct type for all of the arguments in memory.
2011   SmallVector<llvm::Type *, 6> FrameFields;
2012 
2013   // The stack alignment is always 4.
2014   CharUnits StackAlign = CharUnits::fromQuantity(4);
2015 
2016   CharUnits StackOffset;
2017   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2018 
2019   // Put 'this' into the struct before 'sret', if necessary.
2020   bool IsThisCall =
2021       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2022   ABIArgInfo &Ret = FI.getReturnInfo();
2023   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2024       isArgInAlloca(I->info)) {
2025     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2026     ++I;
2027   }
2028 
2029   // Put the sret parameter into the inalloca struct if it's in memory.
2030   if (Ret.isIndirect() && !Ret.getInReg()) {
2031     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2032     // On Windows, the hidden sret parameter is always returned in eax.
2033     Ret.setInAllocaSRet(IsWin32StructABI);
2034   }
2035 
2036   // Skip the 'this' parameter in ecx.
2037   if (IsThisCall)
2038     ++I;
2039 
2040   // Put arguments passed in memory into the struct.
2041   for (; I != E; ++I) {
2042     if (isArgInAlloca(I->info))
2043       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2044   }
2045 
2046   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2047                                         /*isPacked=*/true),
2048                   StackAlign);
2049 }
2050 
2051 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2052                                  Address VAListAddr, QualType Ty) const {
2053 
2054   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2055 
2056   // x86-32 changes the alignment of certain arguments on the stack.
2057   //
2058   // Just messing with TypeInfo like this works because we never pass
2059   // anything indirectly.
2060   TypeInfo.Align = CharUnits::fromQuantity(
2061                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
2062 
2063   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2064                           TypeInfo, CharUnits::fromQuantity(4),
2065                           /*AllowHigherAlign*/ true);
2066 }
2067 
2068 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2069     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2070   assert(Triple.getArch() == llvm::Triple::x86);
2071 
2072   switch (Opts.getStructReturnConvention()) {
2073   case CodeGenOptions::SRCK_Default:
2074     break;
2075   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2076     return false;
2077   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2078     return true;
2079   }
2080 
2081   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2082     return true;
2083 
2084   switch (Triple.getOS()) {
2085   case llvm::Triple::DragonFly:
2086   case llvm::Triple::FreeBSD:
2087   case llvm::Triple::OpenBSD:
2088   case llvm::Triple::Win32:
2089     return true;
2090   default:
2091     return false;
2092   }
2093 }
2094 
2095 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
2096                                  CodeGen::CodeGenModule &CGM) {
2097   if (!FD->hasAttr<AnyX86InterruptAttr>())
2098     return;
2099 
2100   llvm::Function *Fn = cast<llvm::Function>(GV);
2101   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2102   if (FD->getNumParams() == 0)
2103     return;
2104 
2105   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
2106   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
2107   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
2108     Fn->getContext(), ByValTy);
2109   Fn->addParamAttr(0, NewAttr);
2110 }
2111 
2112 void X86_32TargetCodeGenInfo::setTargetAttributes(
2113     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2114   if (GV->isDeclaration())
2115     return;
2116   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2117     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2118       llvm::Function *Fn = cast<llvm::Function>(GV);
2119       Fn->addFnAttr("stackrealign");
2120     }
2121 
2122     addX86InterruptAttrs(FD, GV, CGM);
2123   }
2124 }
2125 
2126 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2127                                                CodeGen::CodeGenFunction &CGF,
2128                                                llvm::Value *Address) const {
2129   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2130 
2131   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2132 
2133   // 0-7 are the eight integer registers;  the order is different
2134   //   on Darwin (for EH), but the range is the same.
2135   // 8 is %eip.
2136   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2137 
2138   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2139     // 12-16 are st(0..4).  Not sure why we stop at 4.
2140     // These have size 16, which is sizeof(long double) on
2141     // platforms with 8-byte alignment for that type.
2142     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2143     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2144 
2145   } else {
2146     // 9 is %eflags, which doesn't get a size on Darwin for some
2147     // reason.
2148     Builder.CreateAlignedStore(
2149         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2150                                CharUnits::One());
2151 
2152     // 11-16 are st(0..5).  Not sure why we stop at 5.
2153     // These have size 12, which is sizeof(long double) on
2154     // platforms with 4-byte alignment for that type.
2155     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2156     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2157   }
2158 
2159   return false;
2160 }
2161 
2162 //===----------------------------------------------------------------------===//
2163 // X86-64 ABI Implementation
2164 //===----------------------------------------------------------------------===//
2165 
2166 
2167 namespace {
2168 /// The AVX ABI level for X86 targets.
2169 enum class X86AVXABILevel {
2170   None,
2171   AVX,
2172   AVX512
2173 };
2174 
2175 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2176 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2177   switch (AVXLevel) {
2178   case X86AVXABILevel::AVX512:
2179     return 512;
2180   case X86AVXABILevel::AVX:
2181     return 256;
2182   case X86AVXABILevel::None:
2183     return 128;
2184   }
2185   llvm_unreachable("Unknown AVXLevel");
2186 }
2187 
2188 /// X86_64ABIInfo - The X86_64 ABI information.
2189 class X86_64ABIInfo : public SwiftABIInfo {
2190   enum Class {
2191     Integer = 0,
2192     SSE,
2193     SSEUp,
2194     X87,
2195     X87Up,
2196     ComplexX87,
2197     NoClass,
2198     Memory
2199   };
2200 
2201   /// merge - Implement the X86_64 ABI merging algorithm.
2202   ///
2203   /// Merge an accumulating classification \arg Accum with a field
2204   /// classification \arg Field.
2205   ///
2206   /// \param Accum - The accumulating classification. This should
2207   /// always be either NoClass or the result of a previous merge
2208   /// call. In addition, this should never be Memory (the caller
2209   /// should just return Memory for the aggregate).
2210   static Class merge(Class Accum, Class Field);
2211 
2212   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2213   ///
2214   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2215   /// final MEMORY or SSE classes when necessary.
2216   ///
2217   /// \param AggregateSize - The size of the current aggregate in
2218   /// the classification process.
2219   ///
2220   /// \param Lo - The classification for the parts of the type
2221   /// residing in the low word of the containing object.
2222   ///
2223   /// \param Hi - The classification for the parts of the type
2224   /// residing in the higher words of the containing object.
2225   ///
2226   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2227 
2228   /// classify - Determine the x86_64 register classes in which the
2229   /// given type T should be passed.
2230   ///
2231   /// \param Lo - The classification for the parts of the type
2232   /// residing in the low word of the containing object.
2233   ///
2234   /// \param Hi - The classification for the parts of the type
2235   /// residing in the high word of the containing object.
2236   ///
2237   /// \param OffsetBase - The bit offset of this type in the
2238   /// containing object.  Some parameters are classified different
2239   /// depending on whether they straddle an eightbyte boundary.
2240   ///
2241   /// \param isNamedArg - Whether the argument in question is a "named"
2242   /// argument, as used in AMD64-ABI 3.5.7.
2243   ///
2244   /// If a word is unused its result will be NoClass; if a type should
2245   /// be passed in Memory then at least the classification of \arg Lo
2246   /// will be Memory.
2247   ///
2248   /// The \arg Lo class will be NoClass iff the argument is ignored.
2249   ///
2250   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2251   /// also be ComplexX87.
2252   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2253                 bool isNamedArg) const;
2254 
2255   llvm::Type *GetByteVectorType(QualType Ty) const;
2256   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2257                                  unsigned IROffset, QualType SourceTy,
2258                                  unsigned SourceOffset) const;
2259   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2260                                      unsigned IROffset, QualType SourceTy,
2261                                      unsigned SourceOffset) const;
2262 
2263   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2264   /// such that the argument will be returned in memory.
2265   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2266 
2267   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2268   /// such that the argument will be passed in memory.
2269   ///
2270   /// \param freeIntRegs - The number of free integer registers remaining
2271   /// available.
2272   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2273 
2274   ABIArgInfo classifyReturnType(QualType RetTy) const;
2275 
2276   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2277                                   unsigned &neededInt, unsigned &neededSSE,
2278                                   bool isNamedArg) const;
2279 
2280   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2281                                        unsigned &NeededSSE) const;
2282 
2283   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2284                                            unsigned &NeededSSE) const;
2285 
2286   bool IsIllegalVectorType(QualType Ty) const;
2287 
2288   /// The 0.98 ABI revision clarified a lot of ambiguities,
2289   /// unfortunately in ways that were not always consistent with
2290   /// certain previous compilers.  In particular, platforms which
2291   /// required strict binary compatibility with older versions of GCC
2292   /// may need to exempt themselves.
2293   bool honorsRevision0_98() const {
2294     return !getTarget().getTriple().isOSDarwin();
2295   }
2296 
2297   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2298   /// classify it as INTEGER (for compatibility with older clang compilers).
2299   bool classifyIntegerMMXAsSSE() const {
2300     // Clang <= 3.8 did not do this.
2301     if (getContext().getLangOpts().getClangABICompat() <=
2302         LangOptions::ClangABI::Ver3_8)
2303       return false;
2304 
2305     const llvm::Triple &Triple = getTarget().getTriple();
2306     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2307       return false;
2308     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2309       return false;
2310     return true;
2311   }
2312 
2313   // GCC classifies vectors of __int128 as memory.
2314   bool passInt128VectorsInMem() const {
2315     // Clang <= 9.0 did not do this.
2316     if (getContext().getLangOpts().getClangABICompat() <=
2317         LangOptions::ClangABI::Ver9)
2318       return false;
2319 
2320     const llvm::Triple &T = getTarget().getTriple();
2321     return T.isOSLinux() || T.isOSNetBSD();
2322   }
2323 
2324   X86AVXABILevel AVXLevel;
2325   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2326   // 64-bit hardware.
2327   bool Has64BitPointers;
2328 
2329 public:
2330   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2331       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2332       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2333   }
2334 
2335   bool isPassedUsingAVXType(QualType type) const {
2336     unsigned neededInt, neededSSE;
2337     // The freeIntRegs argument doesn't matter here.
2338     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2339                                            /*isNamedArg*/true);
2340     if (info.isDirect()) {
2341       llvm::Type *ty = info.getCoerceToType();
2342       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2343         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2344     }
2345     return false;
2346   }
2347 
2348   void computeInfo(CGFunctionInfo &FI) const override;
2349 
2350   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2351                     QualType Ty) const override;
2352   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2353                       QualType Ty) const override;
2354 
2355   bool has64BitPointers() const {
2356     return Has64BitPointers;
2357   }
2358 
2359   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2360                                     bool asReturnValue) const override {
2361     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2362   }
2363   bool isSwiftErrorInRegister() const override {
2364     return true;
2365   }
2366 };
2367 
2368 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2369 class WinX86_64ABIInfo : public SwiftABIInfo {
2370 public:
2371   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2372       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2373         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2374 
2375   void computeInfo(CGFunctionInfo &FI) const override;
2376 
2377   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2378                     QualType Ty) const override;
2379 
2380   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2381     // FIXME: Assumes vectorcall is in use.
2382     return isX86VectorTypeForVectorCall(getContext(), Ty);
2383   }
2384 
2385   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2386                                          uint64_t NumMembers) const override {
2387     // FIXME: Assumes vectorcall is in use.
2388     return isX86VectorCallAggregateSmallEnough(NumMembers);
2389   }
2390 
2391   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2392                                     bool asReturnValue) const override {
2393     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2394   }
2395 
2396   bool isSwiftErrorInRegister() const override {
2397     return true;
2398   }
2399 
2400 private:
2401   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2402                       bool IsVectorCall, bool IsRegCall) const;
2403   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
2404                                            const ABIArgInfo &current) const;
2405 
2406   X86AVXABILevel AVXLevel;
2407 
2408   bool IsMingw64;
2409 };
2410 
2411 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2412 public:
2413   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2414       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2415 
2416   const X86_64ABIInfo &getABIInfo() const {
2417     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2418   }
2419 
2420   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2421   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
2422   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
2423 
2424   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2425     return 7;
2426   }
2427 
2428   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2429                                llvm::Value *Address) const override {
2430     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2431 
2432     // 0-15 are the 16 integer registers.
2433     // 16 is %rip.
2434     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2435     return false;
2436   }
2437 
2438   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2439                                   StringRef Constraint,
2440                                   llvm::Type* Ty) const override {
2441     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2442   }
2443 
2444   bool isNoProtoCallVariadic(const CallArgList &args,
2445                              const FunctionNoProtoType *fnType) const override {
2446     // The default CC on x86-64 sets %al to the number of SSA
2447     // registers used, and GCC sets this when calling an unprototyped
2448     // function, so we override the default behavior.  However, don't do
2449     // that when AVX types are involved: the ABI explicitly states it is
2450     // undefined, and it doesn't work in practice because of how the ABI
2451     // defines varargs anyway.
2452     if (fnType->getCallConv() == CC_C) {
2453       bool HasAVXType = false;
2454       for (CallArgList::const_iterator
2455              it = args.begin(), ie = args.end(); it != ie; ++it) {
2456         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2457           HasAVXType = true;
2458           break;
2459         }
2460       }
2461 
2462       if (!HasAVXType)
2463         return true;
2464     }
2465 
2466     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2467   }
2468 
2469   llvm::Constant *
2470   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2471     unsigned Sig = (0xeb << 0) | // jmp rel8
2472                    (0x06 << 8) | //           .+0x08
2473                    ('v' << 16) |
2474                    ('2' << 24);
2475     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2476   }
2477 
2478   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2479                            CodeGen::CodeGenModule &CGM) const override {
2480     if (GV->isDeclaration())
2481       return;
2482     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2483       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2484         llvm::Function *Fn = cast<llvm::Function>(GV);
2485         Fn->addFnAttr("stackrealign");
2486       }
2487 
2488       addX86InterruptAttrs(FD, GV, CGM);
2489     }
2490   }
2491 
2492   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2493                             const FunctionDecl *Caller,
2494                             const FunctionDecl *Callee,
2495                             const CallArgList &Args) const override;
2496 };
2497 
2498 static void initFeatureMaps(const ASTContext &Ctx,
2499                             llvm::StringMap<bool> &CallerMap,
2500                             const FunctionDecl *Caller,
2501                             llvm::StringMap<bool> &CalleeMap,
2502                             const FunctionDecl *Callee) {
2503   if (CalleeMap.empty() && CallerMap.empty()) {
2504     // The caller is potentially nullptr in the case where the call isn't in a
2505     // function.  In this case, the getFunctionFeatureMap ensures we just get
2506     // the TU level setting (since it cannot be modified by 'target'..
2507     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2508     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2509   }
2510 }
2511 
2512 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2513                                  SourceLocation CallLoc,
2514                                  const llvm::StringMap<bool> &CallerMap,
2515                                  const llvm::StringMap<bool> &CalleeMap,
2516                                  QualType Ty, StringRef Feature,
2517                                  bool IsArgument) {
2518   bool CallerHasFeat = CallerMap.lookup(Feature);
2519   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2520   if (!CallerHasFeat && !CalleeHasFeat)
2521     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2522            << IsArgument << Ty << Feature;
2523 
2524   // Mixing calling conventions here is very clearly an error.
2525   if (!CallerHasFeat || !CalleeHasFeat)
2526     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2527            << IsArgument << Ty << Feature;
2528 
2529   // Else, both caller and callee have the required feature, so there is no need
2530   // to diagnose.
2531   return false;
2532 }
2533 
2534 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2535                           SourceLocation CallLoc,
2536                           const llvm::StringMap<bool> &CallerMap,
2537                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2538                           bool IsArgument) {
2539   uint64_t Size = Ctx.getTypeSize(Ty);
2540   if (Size > 256)
2541     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2542                                 "avx512f", IsArgument);
2543 
2544   if (Size > 128)
2545     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2546                                 IsArgument);
2547 
2548   return false;
2549 }
2550 
2551 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2552     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2553     const FunctionDecl *Callee, const CallArgList &Args) const {
2554   llvm::StringMap<bool> CallerMap;
2555   llvm::StringMap<bool> CalleeMap;
2556   unsigned ArgIndex = 0;
2557 
2558   // We need to loop through the actual call arguments rather than the the
2559   // function's parameters, in case this variadic.
2560   for (const CallArg &Arg : Args) {
2561     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2562     // additionally changes how vectors >256 in size are passed. Like GCC, we
2563     // warn when a function is called with an argument where this will change.
2564     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2565     // the caller and callee features are mismatched.
2566     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2567     // change its ABI with attribute-target after this call.
2568     if (Arg.getType()->isVectorType() &&
2569         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2570       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2571       QualType Ty = Arg.getType();
2572       // The CallArg seems to have desugared the type already, so for clearer
2573       // diagnostics, replace it with the type in the FunctionDecl if possible.
2574       if (ArgIndex < Callee->getNumParams())
2575         Ty = Callee->getParamDecl(ArgIndex)->getType();
2576 
2577       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2578                         CalleeMap, Ty, /*IsArgument*/ true))
2579         return;
2580     }
2581     ++ArgIndex;
2582   }
2583 
2584   // Check return always, as we don't have a good way of knowing in codegen
2585   // whether this value is used, tail-called, etc.
2586   if (Callee->getReturnType()->isVectorType() &&
2587       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2588     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2589     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2590                   CalleeMap, Callee->getReturnType(),
2591                   /*IsArgument*/ false);
2592   }
2593 }
2594 
2595 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2596   // If the argument does not end in .lib, automatically add the suffix.
2597   // If the argument contains a space, enclose it in quotes.
2598   // This matches the behavior of MSVC.
2599   bool Quote = (Lib.find(' ') != StringRef::npos);
2600   std::string ArgStr = Quote ? "\"" : "";
2601   ArgStr += Lib;
2602   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2603     ArgStr += ".lib";
2604   ArgStr += Quote ? "\"" : "";
2605   return ArgStr;
2606 }
2607 
2608 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2609 public:
2610   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2611         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2612         unsigned NumRegisterParameters)
2613     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2614         Win32StructABI, NumRegisterParameters, false) {}
2615 
2616   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2617                            CodeGen::CodeGenModule &CGM) const override;
2618 
2619   void getDependentLibraryOption(llvm::StringRef Lib,
2620                                  llvm::SmallString<24> &Opt) const override {
2621     Opt = "/DEFAULTLIB:";
2622     Opt += qualifyWindowsLibrary(Lib);
2623   }
2624 
2625   void getDetectMismatchOption(llvm::StringRef Name,
2626                                llvm::StringRef Value,
2627                                llvm::SmallString<32> &Opt) const override {
2628     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2629   }
2630 };
2631 
2632 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2633                                           CodeGen::CodeGenModule &CGM) {
2634   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2635 
2636     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2637       Fn->addFnAttr("stack-probe-size",
2638                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2639     if (CGM.getCodeGenOpts().NoStackArgProbe)
2640       Fn->addFnAttr("no-stack-arg-probe");
2641   }
2642 }
2643 
2644 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2645     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2646   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2647   if (GV->isDeclaration())
2648     return;
2649   addStackProbeTargetAttributes(D, GV, CGM);
2650 }
2651 
2652 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2653 public:
2654   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2655                              X86AVXABILevel AVXLevel)
2656       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2657 
2658   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2659                            CodeGen::CodeGenModule &CGM) const override;
2660 
2661   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2662     return 7;
2663   }
2664 
2665   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2666                                llvm::Value *Address) const override {
2667     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2668 
2669     // 0-15 are the 16 integer registers.
2670     // 16 is %rip.
2671     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2672     return false;
2673   }
2674 
2675   void getDependentLibraryOption(llvm::StringRef Lib,
2676                                  llvm::SmallString<24> &Opt) const override {
2677     Opt = "/DEFAULTLIB:";
2678     Opt += qualifyWindowsLibrary(Lib);
2679   }
2680 
2681   void getDetectMismatchOption(llvm::StringRef Name,
2682                                llvm::StringRef Value,
2683                                llvm::SmallString<32> &Opt) const override {
2684     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2685   }
2686 };
2687 
2688 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2689     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2690   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2691   if (GV->isDeclaration())
2692     return;
2693   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2694     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2695       llvm::Function *Fn = cast<llvm::Function>(GV);
2696       Fn->addFnAttr("stackrealign");
2697     }
2698 
2699     addX86InterruptAttrs(FD, GV, CGM);
2700   }
2701 
2702   addStackProbeTargetAttributes(D, GV, CGM);
2703 }
2704 }
2705 
2706 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2707                               Class &Hi) const {
2708   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2709   //
2710   // (a) If one of the classes is Memory, the whole argument is passed in
2711   //     memory.
2712   //
2713   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2714   //     memory.
2715   //
2716   // (c) If the size of the aggregate exceeds two eightbytes and the first
2717   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2718   //     argument is passed in memory. NOTE: This is necessary to keep the
2719   //     ABI working for processors that don't support the __m256 type.
2720   //
2721   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2722   //
2723   // Some of these are enforced by the merging logic.  Others can arise
2724   // only with unions; for example:
2725   //   union { _Complex double; unsigned; }
2726   //
2727   // Note that clauses (b) and (c) were added in 0.98.
2728   //
2729   if (Hi == Memory)
2730     Lo = Memory;
2731   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2732     Lo = Memory;
2733   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2734     Lo = Memory;
2735   if (Hi == SSEUp && Lo != SSE)
2736     Hi = SSE;
2737 }
2738 
2739 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2740   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2741   // classified recursively so that always two fields are
2742   // considered. The resulting class is calculated according to
2743   // the classes of the fields in the eightbyte:
2744   //
2745   // (a) If both classes are equal, this is the resulting class.
2746   //
2747   // (b) If one of the classes is NO_CLASS, the resulting class is
2748   // the other class.
2749   //
2750   // (c) If one of the classes is MEMORY, the result is the MEMORY
2751   // class.
2752   //
2753   // (d) If one of the classes is INTEGER, the result is the
2754   // INTEGER.
2755   //
2756   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2757   // MEMORY is used as class.
2758   //
2759   // (f) Otherwise class SSE is used.
2760 
2761   // Accum should never be memory (we should have returned) or
2762   // ComplexX87 (because this cannot be passed in a structure).
2763   assert((Accum != Memory && Accum != ComplexX87) &&
2764          "Invalid accumulated classification during merge.");
2765   if (Accum == Field || Field == NoClass)
2766     return Accum;
2767   if (Field == Memory)
2768     return Memory;
2769   if (Accum == NoClass)
2770     return Field;
2771   if (Accum == Integer || Field == Integer)
2772     return Integer;
2773   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2774       Accum == X87 || Accum == X87Up)
2775     return Memory;
2776   return SSE;
2777 }
2778 
2779 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2780                              Class &Lo, Class &Hi, bool isNamedArg) const {
2781   // FIXME: This code can be simplified by introducing a simple value class for
2782   // Class pairs with appropriate constructor methods for the various
2783   // situations.
2784 
2785   // FIXME: Some of the split computations are wrong; unaligned vectors
2786   // shouldn't be passed in registers for example, so there is no chance they
2787   // can straddle an eightbyte. Verify & simplify.
2788 
2789   Lo = Hi = NoClass;
2790 
2791   Class &Current = OffsetBase < 64 ? Lo : Hi;
2792   Current = Memory;
2793 
2794   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2795     BuiltinType::Kind k = BT->getKind();
2796 
2797     if (k == BuiltinType::Void) {
2798       Current = NoClass;
2799     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2800       Lo = Integer;
2801       Hi = Integer;
2802     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2803       Current = Integer;
2804     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2805       Current = SSE;
2806     } else if (k == BuiltinType::LongDouble) {
2807       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2808       if (LDF == &llvm::APFloat::IEEEquad()) {
2809         Lo = SSE;
2810         Hi = SSEUp;
2811       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2812         Lo = X87;
2813         Hi = X87Up;
2814       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2815         Current = SSE;
2816       } else
2817         llvm_unreachable("unexpected long double representation!");
2818     }
2819     // FIXME: _Decimal32 and _Decimal64 are SSE.
2820     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2821     return;
2822   }
2823 
2824   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2825     // Classify the underlying integer type.
2826     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2827     return;
2828   }
2829 
2830   if (Ty->hasPointerRepresentation()) {
2831     Current = Integer;
2832     return;
2833   }
2834 
2835   if (Ty->isMemberPointerType()) {
2836     if (Ty->isMemberFunctionPointerType()) {
2837       if (Has64BitPointers) {
2838         // If Has64BitPointers, this is an {i64, i64}, so classify both
2839         // Lo and Hi now.
2840         Lo = Hi = Integer;
2841       } else {
2842         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2843         // straddles an eightbyte boundary, Hi should be classified as well.
2844         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2845         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2846         if (EB_FuncPtr != EB_ThisAdj) {
2847           Lo = Hi = Integer;
2848         } else {
2849           Current = Integer;
2850         }
2851       }
2852     } else {
2853       Current = Integer;
2854     }
2855     return;
2856   }
2857 
2858   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2859     uint64_t Size = getContext().getTypeSize(VT);
2860     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2861       // gcc passes the following as integer:
2862       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2863       // 2 bytes - <2 x char>, <1 x short>
2864       // 1 byte  - <1 x char>
2865       Current = Integer;
2866 
2867       // If this type crosses an eightbyte boundary, it should be
2868       // split.
2869       uint64_t EB_Lo = (OffsetBase) / 64;
2870       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2871       if (EB_Lo != EB_Hi)
2872         Hi = Lo;
2873     } else if (Size == 64) {
2874       QualType ElementType = VT->getElementType();
2875 
2876       // gcc passes <1 x double> in memory. :(
2877       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2878         return;
2879 
2880       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2881       // pass them as integer.  For platforms where clang is the de facto
2882       // platform compiler, we must continue to use integer.
2883       if (!classifyIntegerMMXAsSSE() &&
2884           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2885            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2886            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2887            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2888         Current = Integer;
2889       else
2890         Current = SSE;
2891 
2892       // If this type crosses an eightbyte boundary, it should be
2893       // split.
2894       if (OffsetBase && OffsetBase != 64)
2895         Hi = Lo;
2896     } else if (Size == 128 ||
2897                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2898       QualType ElementType = VT->getElementType();
2899 
2900       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2901       if (passInt128VectorsInMem() && Size != 128 &&
2902           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2903            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2904         return;
2905 
2906       // Arguments of 256-bits are split into four eightbyte chunks. The
2907       // least significant one belongs to class SSE and all the others to class
2908       // SSEUP. The original Lo and Hi design considers that types can't be
2909       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2910       // This design isn't correct for 256-bits, but since there're no cases
2911       // where the upper parts would need to be inspected, avoid adding
2912       // complexity and just consider Hi to match the 64-256 part.
2913       //
2914       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2915       // registers if they are "named", i.e. not part of the "..." of a
2916       // variadic function.
2917       //
2918       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2919       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2920       Lo = SSE;
2921       Hi = SSEUp;
2922     }
2923     return;
2924   }
2925 
2926   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2927     QualType ET = getContext().getCanonicalType(CT->getElementType());
2928 
2929     uint64_t Size = getContext().getTypeSize(Ty);
2930     if (ET->isIntegralOrEnumerationType()) {
2931       if (Size <= 64)
2932         Current = Integer;
2933       else if (Size <= 128)
2934         Lo = Hi = Integer;
2935     } else if (ET == getContext().FloatTy) {
2936       Current = SSE;
2937     } else if (ET == getContext().DoubleTy) {
2938       Lo = Hi = SSE;
2939     } else if (ET == getContext().LongDoubleTy) {
2940       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2941       if (LDF == &llvm::APFloat::IEEEquad())
2942         Current = Memory;
2943       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2944         Current = ComplexX87;
2945       else if (LDF == &llvm::APFloat::IEEEdouble())
2946         Lo = Hi = SSE;
2947       else
2948         llvm_unreachable("unexpected long double representation!");
2949     }
2950 
2951     // If this complex type crosses an eightbyte boundary then it
2952     // should be split.
2953     uint64_t EB_Real = (OffsetBase) / 64;
2954     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2955     if (Hi == NoClass && EB_Real != EB_Imag)
2956       Hi = Lo;
2957 
2958     return;
2959   }
2960 
2961   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2962     if (EITy->getNumBits() <= 64)
2963       Current = Integer;
2964     else if (EITy->getNumBits() <= 128)
2965       Lo = Hi = Integer;
2966     // Larger values need to get passed in memory.
2967     return;
2968   }
2969 
2970   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2971     // Arrays are treated like structures.
2972 
2973     uint64_t Size = getContext().getTypeSize(Ty);
2974 
2975     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2976     // than eight eightbytes, ..., it has class MEMORY.
2977     if (Size > 512)
2978       return;
2979 
2980     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2981     // fields, it has class MEMORY.
2982     //
2983     // Only need to check alignment of array base.
2984     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2985       return;
2986 
2987     // Otherwise implement simplified merge. We could be smarter about
2988     // this, but it isn't worth it and would be harder to verify.
2989     Current = NoClass;
2990     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2991     uint64_t ArraySize = AT->getSize().getZExtValue();
2992 
2993     // The only case a 256-bit wide vector could be used is when the array
2994     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2995     // to work for sizes wider than 128, early check and fallback to memory.
2996     //
2997     if (Size > 128 &&
2998         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2999       return;
3000 
3001     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
3002       Class FieldLo, FieldHi;
3003       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
3004       Lo = merge(Lo, FieldLo);
3005       Hi = merge(Hi, FieldHi);
3006       if (Lo == Memory || Hi == Memory)
3007         break;
3008     }
3009 
3010     postMerge(Size, Lo, Hi);
3011     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3012     return;
3013   }
3014 
3015   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3016     uint64_t Size = getContext().getTypeSize(Ty);
3017 
3018     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3019     // than eight eightbytes, ..., it has class MEMORY.
3020     if (Size > 512)
3021       return;
3022 
3023     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3024     // copy constructor or a non-trivial destructor, it is passed by invisible
3025     // reference.
3026     if (getRecordArgABI(RT, getCXXABI()))
3027       return;
3028 
3029     const RecordDecl *RD = RT->getDecl();
3030 
3031     // Assume variable sized types are passed in memory.
3032     if (RD->hasFlexibleArrayMember())
3033       return;
3034 
3035     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3036 
3037     // Reset Lo class, this will be recomputed.
3038     Current = NoClass;
3039 
3040     // If this is a C++ record, classify the bases first.
3041     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3042       for (const auto &I : CXXRD->bases()) {
3043         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3044                "Unexpected base class!");
3045         const auto *Base =
3046             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3047 
3048         // Classify this field.
3049         //
3050         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3051         // single eightbyte, each is classified separately. Each eightbyte gets
3052         // initialized to class NO_CLASS.
3053         Class FieldLo, FieldHi;
3054         uint64_t Offset =
3055           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3056         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3057         Lo = merge(Lo, FieldLo);
3058         Hi = merge(Hi, FieldHi);
3059         if (Lo == Memory || Hi == Memory) {
3060           postMerge(Size, Lo, Hi);
3061           return;
3062         }
3063       }
3064     }
3065 
3066     // Classify the fields one at a time, merging the results.
3067     unsigned idx = 0;
3068     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
3069                                 LangOptions::ClangABI::Ver11 ||
3070                             getContext().getTargetInfo().getTriple().isPS4();
3071     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
3072 
3073     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3074            i != e; ++i, ++idx) {
3075       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3076       bool BitField = i->isBitField();
3077 
3078       // Ignore padding bit-fields.
3079       if (BitField && i->isUnnamedBitfield())
3080         continue;
3081 
3082       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3083       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
3084       //
3085       // The only case a 256-bit or a 512-bit wide vector could be used is when
3086       // the struct contains a single 256-bit or 512-bit element. Early check
3087       // and fallback to memory.
3088       //
3089       // FIXME: Extended the Lo and Hi logic properly to work for size wider
3090       // than 128.
3091       if (Size > 128 &&
3092           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
3093            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3094         Lo = Memory;
3095         postMerge(Size, Lo, Hi);
3096         return;
3097       }
3098       // Note, skip this test for bit-fields, see below.
3099       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3100         Lo = Memory;
3101         postMerge(Size, Lo, Hi);
3102         return;
3103       }
3104 
3105       // Classify this field.
3106       //
3107       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3108       // exceeds a single eightbyte, each is classified
3109       // separately. Each eightbyte gets initialized to class
3110       // NO_CLASS.
3111       Class FieldLo, FieldHi;
3112 
3113       // Bit-fields require special handling, they do not force the
3114       // structure to be passed in memory even if unaligned, and
3115       // therefore they can straddle an eightbyte.
3116       if (BitField) {
3117         assert(!i->isUnnamedBitfield());
3118         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3119         uint64_t Size = i->getBitWidthValue(getContext());
3120 
3121         uint64_t EB_Lo = Offset / 64;
3122         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3123 
3124         if (EB_Lo) {
3125           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3126           FieldLo = NoClass;
3127           FieldHi = Integer;
3128         } else {
3129           FieldLo = Integer;
3130           FieldHi = EB_Hi ? Integer : NoClass;
3131         }
3132       } else
3133         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3134       Lo = merge(Lo, FieldLo);
3135       Hi = merge(Hi, FieldHi);
3136       if (Lo == Memory || Hi == Memory)
3137         break;
3138     }
3139 
3140     postMerge(Size, Lo, Hi);
3141   }
3142 }
3143 
3144 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3145   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3146   // place naturally.
3147   if (!isAggregateTypeForABI(Ty)) {
3148     // Treat an enum type as its underlying type.
3149     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3150       Ty = EnumTy->getDecl()->getIntegerType();
3151 
3152     if (Ty->isExtIntType())
3153       return getNaturalAlignIndirect(Ty);
3154 
3155     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3156                                               : ABIArgInfo::getDirect());
3157   }
3158 
3159   return getNaturalAlignIndirect(Ty);
3160 }
3161 
3162 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3163   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3164     uint64_t Size = getContext().getTypeSize(VecTy);
3165     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3166     if (Size <= 64 || Size > LargestVector)
3167       return true;
3168     QualType EltTy = VecTy->getElementType();
3169     if (passInt128VectorsInMem() &&
3170         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3171          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3172       return true;
3173   }
3174 
3175   return false;
3176 }
3177 
3178 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3179                                             unsigned freeIntRegs) const {
3180   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3181   // place naturally.
3182   //
3183   // This assumption is optimistic, as there could be free registers available
3184   // when we need to pass this argument in memory, and LLVM could try to pass
3185   // the argument in the free register. This does not seem to happen currently,
3186   // but this code would be much safer if we could mark the argument with
3187   // 'onstack'. See PR12193.
3188   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3189       !Ty->isExtIntType()) {
3190     // Treat an enum type as its underlying type.
3191     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3192       Ty = EnumTy->getDecl()->getIntegerType();
3193 
3194     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3195                                               : ABIArgInfo::getDirect());
3196   }
3197 
3198   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3199     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3200 
3201   // Compute the byval alignment. We specify the alignment of the byval in all
3202   // cases so that the mid-level optimizer knows the alignment of the byval.
3203   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3204 
3205   // Attempt to avoid passing indirect results using byval when possible. This
3206   // is important for good codegen.
3207   //
3208   // We do this by coercing the value into a scalar type which the backend can
3209   // handle naturally (i.e., without using byval).
3210   //
3211   // For simplicity, we currently only do this when we have exhausted all of the
3212   // free integer registers. Doing this when there are free integer registers
3213   // would require more care, as we would have to ensure that the coerced value
3214   // did not claim the unused register. That would require either reording the
3215   // arguments to the function (so that any subsequent inreg values came first),
3216   // or only doing this optimization when there were no following arguments that
3217   // might be inreg.
3218   //
3219   // We currently expect it to be rare (particularly in well written code) for
3220   // arguments to be passed on the stack when there are still free integer
3221   // registers available (this would typically imply large structs being passed
3222   // by value), so this seems like a fair tradeoff for now.
3223   //
3224   // We can revisit this if the backend grows support for 'onstack' parameter
3225   // attributes. See PR12193.
3226   if (freeIntRegs == 0) {
3227     uint64_t Size = getContext().getTypeSize(Ty);
3228 
3229     // If this type fits in an eightbyte, coerce it into the matching integral
3230     // type, which will end up on the stack (with alignment 8).
3231     if (Align == 8 && Size <= 64)
3232       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3233                                                           Size));
3234   }
3235 
3236   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3237 }
3238 
3239 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3240 /// register. Pick an LLVM IR type that will be passed as a vector register.
3241 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3242   // Wrapper structs/arrays that only contain vectors are passed just like
3243   // vectors; strip them off if present.
3244   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3245     Ty = QualType(InnerTy, 0);
3246 
3247   llvm::Type *IRType = CGT.ConvertType(Ty);
3248   if (isa<llvm::VectorType>(IRType)) {
3249     // Don't pass vXi128 vectors in their native type, the backend can't
3250     // legalize them.
3251     if (passInt128VectorsInMem() &&
3252         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3253       // Use a vXi64 vector.
3254       uint64_t Size = getContext().getTypeSize(Ty);
3255       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3256                                         Size / 64);
3257     }
3258 
3259     return IRType;
3260   }
3261 
3262   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3263     return IRType;
3264 
3265   // We couldn't find the preferred IR vector type for 'Ty'.
3266   uint64_t Size = getContext().getTypeSize(Ty);
3267   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3268 
3269 
3270   // Return a LLVM IR vector type based on the size of 'Ty'.
3271   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3272                                     Size / 64);
3273 }
3274 
3275 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3276 /// is known to either be off the end of the specified type or being in
3277 /// alignment padding.  The user type specified is known to be at most 128 bits
3278 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3279 /// classification that put one of the two halves in the INTEGER class.
3280 ///
3281 /// It is conservatively correct to return false.
3282 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3283                                   unsigned EndBit, ASTContext &Context) {
3284   // If the bytes being queried are off the end of the type, there is no user
3285   // data hiding here.  This handles analysis of builtins, vectors and other
3286   // types that don't contain interesting padding.
3287   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3288   if (TySize <= StartBit)
3289     return true;
3290 
3291   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3292     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3293     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3294 
3295     // Check each element to see if the element overlaps with the queried range.
3296     for (unsigned i = 0; i != NumElts; ++i) {
3297       // If the element is after the span we care about, then we're done..
3298       unsigned EltOffset = i*EltSize;
3299       if (EltOffset >= EndBit) break;
3300 
3301       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3302       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3303                                  EndBit-EltOffset, Context))
3304         return false;
3305     }
3306     // If it overlaps no elements, then it is safe to process as padding.
3307     return true;
3308   }
3309 
3310   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3311     const RecordDecl *RD = RT->getDecl();
3312     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3313 
3314     // If this is a C++ record, check the bases first.
3315     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3316       for (const auto &I : CXXRD->bases()) {
3317         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3318                "Unexpected base class!");
3319         const auto *Base =
3320             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3321 
3322         // If the base is after the span we care about, ignore it.
3323         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3324         if (BaseOffset >= EndBit) continue;
3325 
3326         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3327         if (!BitsContainNoUserData(I.getType(), BaseStart,
3328                                    EndBit-BaseOffset, Context))
3329           return false;
3330       }
3331     }
3332 
3333     // Verify that no field has data that overlaps the region of interest.  Yes
3334     // this could be sped up a lot by being smarter about queried fields,
3335     // however we're only looking at structs up to 16 bytes, so we don't care
3336     // much.
3337     unsigned idx = 0;
3338     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3339          i != e; ++i, ++idx) {
3340       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3341 
3342       // If we found a field after the region we care about, then we're done.
3343       if (FieldOffset >= EndBit) break;
3344 
3345       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3346       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3347                                  Context))
3348         return false;
3349     }
3350 
3351     // If nothing in this record overlapped the area of interest, then we're
3352     // clean.
3353     return true;
3354   }
3355 
3356   return false;
3357 }
3358 
3359 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3360 /// float member at the specified offset.  For example, {int,{float}} has a
3361 /// float at offset 4.  It is conservatively correct for this routine to return
3362 /// false.
3363 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3364                                   const llvm::DataLayout &TD) {
3365   // Base case if we find a float.
3366   if (IROffset == 0 && IRType->isFloatTy())
3367     return true;
3368 
3369   // If this is a struct, recurse into the field at the specified offset.
3370   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3371     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3372     unsigned Elt = SL->getElementContainingOffset(IROffset);
3373     IROffset -= SL->getElementOffset(Elt);
3374     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3375   }
3376 
3377   // If this is an array, recurse into the field at the specified offset.
3378   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3379     llvm::Type *EltTy = ATy->getElementType();
3380     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3381     IROffset -= IROffset/EltSize*EltSize;
3382     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3383   }
3384 
3385   return false;
3386 }
3387 
3388 
3389 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3390 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3391 llvm::Type *X86_64ABIInfo::
3392 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3393                    QualType SourceTy, unsigned SourceOffset) const {
3394   // The only three choices we have are either double, <2 x float>, or float. We
3395   // pass as float if the last 4 bytes is just padding.  This happens for
3396   // structs that contain 3 floats.
3397   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3398                             SourceOffset*8+64, getContext()))
3399     return llvm::Type::getFloatTy(getVMContext());
3400 
3401   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3402   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3403   // case.
3404   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3405       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3406     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3407                                       2);
3408 
3409   return llvm::Type::getDoubleTy(getVMContext());
3410 }
3411 
3412 
3413 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3414 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3415 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3416 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3417 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3418 /// etc).
3419 ///
3420 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3421 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3422 /// the 8-byte value references.  PrefType may be null.
3423 ///
3424 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3425 /// an offset into this that we're processing (which is always either 0 or 8).
3426 ///
3427 llvm::Type *X86_64ABIInfo::
3428 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3429                        QualType SourceTy, unsigned SourceOffset) const {
3430   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3431   // returning an 8-byte unit starting with it.  See if we can safely use it.
3432   if (IROffset == 0) {
3433     // Pointers and int64's always fill the 8-byte unit.
3434     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3435         IRType->isIntegerTy(64))
3436       return IRType;
3437 
3438     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3439     // goodness in the source type is just tail padding.  This is allowed to
3440     // kick in for struct {double,int} on the int, but not on
3441     // struct{double,int,int} because we wouldn't return the second int.  We
3442     // have to do this analysis on the source type because we can't depend on
3443     // unions being lowered a specific way etc.
3444     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3445         IRType->isIntegerTy(32) ||
3446         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3447       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3448           cast<llvm::IntegerType>(IRType)->getBitWidth();
3449 
3450       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3451                                 SourceOffset*8+64, getContext()))
3452         return IRType;
3453     }
3454   }
3455 
3456   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3457     // If this is a struct, recurse into the field at the specified offset.
3458     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3459     if (IROffset < SL->getSizeInBytes()) {
3460       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3461       IROffset -= SL->getElementOffset(FieldIdx);
3462 
3463       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3464                                     SourceTy, SourceOffset);
3465     }
3466   }
3467 
3468   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3469     llvm::Type *EltTy = ATy->getElementType();
3470     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3471     unsigned EltOffset = IROffset/EltSize*EltSize;
3472     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3473                                   SourceOffset);
3474   }
3475 
3476   // Okay, we don't have any better idea of what to pass, so we pass this in an
3477   // integer register that isn't too big to fit the rest of the struct.
3478   unsigned TySizeInBytes =
3479     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3480 
3481   assert(TySizeInBytes != SourceOffset && "Empty field?");
3482 
3483   // It is always safe to classify this as an integer type up to i64 that
3484   // isn't larger than the structure.
3485   return llvm::IntegerType::get(getVMContext(),
3486                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3487 }
3488 
3489 
3490 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3491 /// be used as elements of a two register pair to pass or return, return a
3492 /// first class aggregate to represent them.  For example, if the low part of
3493 /// a by-value argument should be passed as i32* and the high part as float,
3494 /// return {i32*, float}.
3495 static llvm::Type *
3496 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3497                            const llvm::DataLayout &TD) {
3498   // In order to correctly satisfy the ABI, we need to the high part to start
3499   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3500   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3501   // the second element at offset 8.  Check for this:
3502   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3503   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3504   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3505   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3506 
3507   // To handle this, we have to increase the size of the low part so that the
3508   // second element will start at an 8 byte offset.  We can't increase the size
3509   // of the second element because it might make us access off the end of the
3510   // struct.
3511   if (HiStart != 8) {
3512     // There are usually two sorts of types the ABI generation code can produce
3513     // for the low part of a pair that aren't 8 bytes in size: float or
3514     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3515     // NaCl).
3516     // Promote these to a larger type.
3517     if (Lo->isFloatTy())
3518       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3519     else {
3520       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3521              && "Invalid/unknown lo type");
3522       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3523     }
3524   }
3525 
3526   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3527 
3528   // Verify that the second element is at an 8-byte offset.
3529   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3530          "Invalid x86-64 argument pair!");
3531   return Result;
3532 }
3533 
3534 ABIArgInfo X86_64ABIInfo::
3535 classifyReturnType(QualType RetTy) const {
3536   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3537   // classification algorithm.
3538   X86_64ABIInfo::Class Lo, Hi;
3539   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3540 
3541   // Check some invariants.
3542   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3543   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3544 
3545   llvm::Type *ResType = nullptr;
3546   switch (Lo) {
3547   case NoClass:
3548     if (Hi == NoClass)
3549       return ABIArgInfo::getIgnore();
3550     // If the low part is just padding, it takes no register, leave ResType
3551     // null.
3552     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3553            "Unknown missing lo part");
3554     break;
3555 
3556   case SSEUp:
3557   case X87Up:
3558     llvm_unreachable("Invalid classification for lo word.");
3559 
3560     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3561     // hidden argument.
3562   case Memory:
3563     return getIndirectReturnResult(RetTy);
3564 
3565     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3566     // available register of the sequence %rax, %rdx is used.
3567   case Integer:
3568     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3569 
3570     // If we have a sign or zero extended integer, make sure to return Extend
3571     // so that the parameter gets the right LLVM IR attributes.
3572     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3573       // Treat an enum type as its underlying type.
3574       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3575         RetTy = EnumTy->getDecl()->getIntegerType();
3576 
3577       if (RetTy->isIntegralOrEnumerationType() &&
3578           isPromotableIntegerTypeForABI(RetTy))
3579         return ABIArgInfo::getExtend(RetTy);
3580     }
3581     break;
3582 
3583     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3584     // available SSE register of the sequence %xmm0, %xmm1 is used.
3585   case SSE:
3586     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3587     break;
3588 
3589     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3590     // returned on the X87 stack in %st0 as 80-bit x87 number.
3591   case X87:
3592     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3593     break;
3594 
3595     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3596     // part of the value is returned in %st0 and the imaginary part in
3597     // %st1.
3598   case ComplexX87:
3599     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3600     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3601                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3602     break;
3603   }
3604 
3605   llvm::Type *HighPart = nullptr;
3606   switch (Hi) {
3607     // Memory was handled previously and X87 should
3608     // never occur as a hi class.
3609   case Memory:
3610   case X87:
3611     llvm_unreachable("Invalid classification for hi word.");
3612 
3613   case ComplexX87: // Previously handled.
3614   case NoClass:
3615     break;
3616 
3617   case Integer:
3618     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3619     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3620       return ABIArgInfo::getDirect(HighPart, 8);
3621     break;
3622   case SSE:
3623     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3624     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3625       return ABIArgInfo::getDirect(HighPart, 8);
3626     break;
3627 
3628     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3629     // is passed in the next available eightbyte chunk if the last used
3630     // vector register.
3631     //
3632     // SSEUP should always be preceded by SSE, just widen.
3633   case SSEUp:
3634     assert(Lo == SSE && "Unexpected SSEUp classification.");
3635     ResType = GetByteVectorType(RetTy);
3636     break;
3637 
3638     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3639     // returned together with the previous X87 value in %st0.
3640   case X87Up:
3641     // If X87Up is preceded by X87, we don't need to do
3642     // anything. However, in some cases with unions it may not be
3643     // preceded by X87. In such situations we follow gcc and pass the
3644     // extra bits in an SSE reg.
3645     if (Lo != X87) {
3646       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3647       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3648         return ABIArgInfo::getDirect(HighPart, 8);
3649     }
3650     break;
3651   }
3652 
3653   // If a high part was specified, merge it together with the low part.  It is
3654   // known to pass in the high eightbyte of the result.  We do this by forming a
3655   // first class struct aggregate with the high and low part: {low, high}
3656   if (HighPart)
3657     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3658 
3659   return ABIArgInfo::getDirect(ResType);
3660 }
3661 
3662 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3663   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3664   bool isNamedArg)
3665   const
3666 {
3667   Ty = useFirstFieldIfTransparentUnion(Ty);
3668 
3669   X86_64ABIInfo::Class Lo, Hi;
3670   classify(Ty, 0, Lo, Hi, isNamedArg);
3671 
3672   // Check some invariants.
3673   // FIXME: Enforce these by construction.
3674   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3675   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3676 
3677   neededInt = 0;
3678   neededSSE = 0;
3679   llvm::Type *ResType = nullptr;
3680   switch (Lo) {
3681   case NoClass:
3682     if (Hi == NoClass)
3683       return ABIArgInfo::getIgnore();
3684     // If the low part is just padding, it takes no register, leave ResType
3685     // null.
3686     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3687            "Unknown missing lo part");
3688     break;
3689 
3690     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3691     // on the stack.
3692   case Memory:
3693 
3694     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3695     // COMPLEX_X87, it is passed in memory.
3696   case X87:
3697   case ComplexX87:
3698     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3699       ++neededInt;
3700     return getIndirectResult(Ty, freeIntRegs);
3701 
3702   case SSEUp:
3703   case X87Up:
3704     llvm_unreachable("Invalid classification for lo word.");
3705 
3706     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3707     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3708     // and %r9 is used.
3709   case Integer:
3710     ++neededInt;
3711 
3712     // Pick an 8-byte type based on the preferred type.
3713     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3714 
3715     // If we have a sign or zero extended integer, make sure to return Extend
3716     // so that the parameter gets the right LLVM IR attributes.
3717     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3718       // Treat an enum type as its underlying type.
3719       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3720         Ty = EnumTy->getDecl()->getIntegerType();
3721 
3722       if (Ty->isIntegralOrEnumerationType() &&
3723           isPromotableIntegerTypeForABI(Ty))
3724         return ABIArgInfo::getExtend(Ty);
3725     }
3726 
3727     break;
3728 
3729     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3730     // available SSE register is used, the registers are taken in the
3731     // order from %xmm0 to %xmm7.
3732   case SSE: {
3733     llvm::Type *IRType = CGT.ConvertType(Ty);
3734     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3735     ++neededSSE;
3736     break;
3737   }
3738   }
3739 
3740   llvm::Type *HighPart = nullptr;
3741   switch (Hi) {
3742     // Memory was handled previously, ComplexX87 and X87 should
3743     // never occur as hi classes, and X87Up must be preceded by X87,
3744     // which is passed in memory.
3745   case Memory:
3746   case X87:
3747   case ComplexX87:
3748     llvm_unreachable("Invalid classification for hi word.");
3749 
3750   case NoClass: break;
3751 
3752   case Integer:
3753     ++neededInt;
3754     // Pick an 8-byte type based on the preferred type.
3755     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3756 
3757     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3758       return ABIArgInfo::getDirect(HighPart, 8);
3759     break;
3760 
3761     // X87Up generally doesn't occur here (long double is passed in
3762     // memory), except in situations involving unions.
3763   case X87Up:
3764   case SSE:
3765     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3766 
3767     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3768       return ABIArgInfo::getDirect(HighPart, 8);
3769 
3770     ++neededSSE;
3771     break;
3772 
3773     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3774     // eightbyte is passed in the upper half of the last used SSE
3775     // register.  This only happens when 128-bit vectors are passed.
3776   case SSEUp:
3777     assert(Lo == SSE && "Unexpected SSEUp classification");
3778     ResType = GetByteVectorType(Ty);
3779     break;
3780   }
3781 
3782   // If a high part was specified, merge it together with the low part.  It is
3783   // known to pass in the high eightbyte of the result.  We do this by forming a
3784   // first class struct aggregate with the high and low part: {low, high}
3785   if (HighPart)
3786     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3787 
3788   return ABIArgInfo::getDirect(ResType);
3789 }
3790 
3791 ABIArgInfo
3792 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3793                                              unsigned &NeededSSE) const {
3794   auto RT = Ty->getAs<RecordType>();
3795   assert(RT && "classifyRegCallStructType only valid with struct types");
3796 
3797   if (RT->getDecl()->hasFlexibleArrayMember())
3798     return getIndirectReturnResult(Ty);
3799 
3800   // Sum up bases
3801   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3802     if (CXXRD->isDynamicClass()) {
3803       NeededInt = NeededSSE = 0;
3804       return getIndirectReturnResult(Ty);
3805     }
3806 
3807     for (const auto &I : CXXRD->bases())
3808       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3809               .isIndirect()) {
3810         NeededInt = NeededSSE = 0;
3811         return getIndirectReturnResult(Ty);
3812       }
3813   }
3814 
3815   // Sum up members
3816   for (const auto *FD : RT->getDecl()->fields()) {
3817     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3818       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3819               .isIndirect()) {
3820         NeededInt = NeededSSE = 0;
3821         return getIndirectReturnResult(Ty);
3822       }
3823     } else {
3824       unsigned LocalNeededInt, LocalNeededSSE;
3825       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3826                                LocalNeededSSE, true)
3827               .isIndirect()) {
3828         NeededInt = NeededSSE = 0;
3829         return getIndirectReturnResult(Ty);
3830       }
3831       NeededInt += LocalNeededInt;
3832       NeededSSE += LocalNeededSSE;
3833     }
3834   }
3835 
3836   return ABIArgInfo::getDirect();
3837 }
3838 
3839 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3840                                                     unsigned &NeededInt,
3841                                                     unsigned &NeededSSE) const {
3842 
3843   NeededInt = 0;
3844   NeededSSE = 0;
3845 
3846   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3847 }
3848 
3849 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3850 
3851   const unsigned CallingConv = FI.getCallingConvention();
3852   // It is possible to force Win64 calling convention on any x86_64 target by
3853   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3854   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3855   if (CallingConv == llvm::CallingConv::Win64) {
3856     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3857     Win64ABIInfo.computeInfo(FI);
3858     return;
3859   }
3860 
3861   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3862 
3863   // Keep track of the number of assigned registers.
3864   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3865   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3866   unsigned NeededInt, NeededSSE;
3867 
3868   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3869     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3870         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3871       FI.getReturnInfo() =
3872           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3873       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3874         FreeIntRegs -= NeededInt;
3875         FreeSSERegs -= NeededSSE;
3876       } else {
3877         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3878       }
3879     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3880                getContext().getCanonicalType(FI.getReturnType()
3881                                                  ->getAs<ComplexType>()
3882                                                  ->getElementType()) ==
3883                    getContext().LongDoubleTy)
3884       // Complex Long Double Type is passed in Memory when Regcall
3885       // calling convention is used.
3886       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3887     else
3888       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3889   }
3890 
3891   // If the return value is indirect, then the hidden argument is consuming one
3892   // integer register.
3893   if (FI.getReturnInfo().isIndirect())
3894     --FreeIntRegs;
3895 
3896   // The chain argument effectively gives us another free register.
3897   if (FI.isChainCall())
3898     ++FreeIntRegs;
3899 
3900   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3901   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3902   // get assigned (in left-to-right order) for passing as follows...
3903   unsigned ArgNo = 0;
3904   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3905        it != ie; ++it, ++ArgNo) {
3906     bool IsNamedArg = ArgNo < NumRequiredArgs;
3907 
3908     if (IsRegCall && it->type->isStructureOrClassType())
3909       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3910     else
3911       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3912                                       NeededSSE, IsNamedArg);
3913 
3914     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3915     // eightbyte of an argument, the whole argument is passed on the
3916     // stack. If registers have already been assigned for some
3917     // eightbytes of such an argument, the assignments get reverted.
3918     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3919       FreeIntRegs -= NeededInt;
3920       FreeSSERegs -= NeededSSE;
3921     } else {
3922       it->info = getIndirectResult(it->type, FreeIntRegs);
3923     }
3924   }
3925 }
3926 
3927 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3928                                          Address VAListAddr, QualType Ty) {
3929   Address overflow_arg_area_p =
3930       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3931   llvm::Value *overflow_arg_area =
3932     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3933 
3934   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3935   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3936   // It isn't stated explicitly in the standard, but in practice we use
3937   // alignment greater than 16 where necessary.
3938   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3939   if (Align > CharUnits::fromQuantity(8)) {
3940     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3941                                                       Align);
3942   }
3943 
3944   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3945   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3946   llvm::Value *Res =
3947     CGF.Builder.CreateBitCast(overflow_arg_area,
3948                               llvm::PointerType::getUnqual(LTy));
3949 
3950   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3951   // l->overflow_arg_area + sizeof(type).
3952   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3953   // an 8 byte boundary.
3954 
3955   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3956   llvm::Value *Offset =
3957       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3958   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3959                                             "overflow_arg_area.next");
3960   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3961 
3962   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3963   return Address(Res, Align);
3964 }
3965 
3966 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3967                                  QualType Ty) const {
3968   // Assume that va_list type is correct; should be pointer to LLVM type:
3969   // struct {
3970   //   i32 gp_offset;
3971   //   i32 fp_offset;
3972   //   i8* overflow_arg_area;
3973   //   i8* reg_save_area;
3974   // };
3975   unsigned neededInt, neededSSE;
3976 
3977   Ty = getContext().getCanonicalType(Ty);
3978   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3979                                        /*isNamedArg*/false);
3980 
3981   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3982   // in the registers. If not go to step 7.
3983   if (!neededInt && !neededSSE)
3984     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3985 
3986   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3987   // general purpose registers needed to pass type and num_fp to hold
3988   // the number of floating point registers needed.
3989 
3990   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3991   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3992   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3993   //
3994   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3995   // register save space).
3996 
3997   llvm::Value *InRegs = nullptr;
3998   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3999   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
4000   if (neededInt) {
4001     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
4002     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
4003     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
4004     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
4005   }
4006 
4007   if (neededSSE) {
4008     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
4009     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
4010     llvm::Value *FitsInFP =
4011       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
4012     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
4013     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
4014   }
4015 
4016   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4017   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4018   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4019   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4020 
4021   // Emit code to load the value if it was passed in registers.
4022 
4023   CGF.EmitBlock(InRegBlock);
4024 
4025   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4026   // an offset of l->gp_offset and/or l->fp_offset. This may require
4027   // copying to a temporary location in case the parameter is passed
4028   // in different register classes or requires an alignment greater
4029   // than 8 for general purpose registers and 16 for XMM registers.
4030   //
4031   // FIXME: This really results in shameful code when we end up needing to
4032   // collect arguments from different places; often what should result in a
4033   // simple assembling of a structure from scattered addresses has many more
4034   // loads than necessary. Can we clean this up?
4035   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4036   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4037       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4038 
4039   Address RegAddr = Address::invalid();
4040   if (neededInt && neededSSE) {
4041     // FIXME: Cleanup.
4042     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4043     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4044     Address Tmp = CGF.CreateMemTemp(Ty);
4045     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4046     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4047     llvm::Type *TyLo = ST->getElementType(0);
4048     llvm::Type *TyHi = ST->getElementType(1);
4049     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4050            "Unexpected ABI info for mixed regs");
4051     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4052     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4053     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4054     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4055     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4056     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4057 
4058     // Copy the first element.
4059     // FIXME: Our choice of alignment here and below is probably pessimistic.
4060     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4061         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4062         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4063     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4064 
4065     // Copy the second element.
4066     V = CGF.Builder.CreateAlignedLoad(
4067         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4068         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4069     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4070 
4071     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4072   } else if (neededInt) {
4073     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4074                       CharUnits::fromQuantity(8));
4075     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4076 
4077     // Copy to a temporary if necessary to ensure the appropriate alignment.
4078     auto TInfo = getContext().getTypeInfoInChars(Ty);
4079     uint64_t TySize = TInfo.Width.getQuantity();
4080     CharUnits TyAlign = TInfo.Align;
4081 
4082     // Copy into a temporary if the type is more aligned than the
4083     // register save area.
4084     if (TyAlign.getQuantity() > 8) {
4085       Address Tmp = CGF.CreateMemTemp(Ty);
4086       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4087       RegAddr = Tmp;
4088     }
4089 
4090   } else if (neededSSE == 1) {
4091     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4092                       CharUnits::fromQuantity(16));
4093     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4094   } else {
4095     assert(neededSSE == 2 && "Invalid number of needed registers!");
4096     // SSE registers are spaced 16 bytes apart in the register save
4097     // area, we need to collect the two eightbytes together.
4098     // The ABI isn't explicit about this, but it seems reasonable
4099     // to assume that the slots are 16-byte aligned, since the stack is
4100     // naturally 16-byte aligned and the prologue is expected to store
4101     // all the SSE registers to the RSA.
4102     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4103                                 CharUnits::fromQuantity(16));
4104     Address RegAddrHi =
4105       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4106                                              CharUnits::fromQuantity(16));
4107     llvm::Type *ST = AI.canHaveCoerceToType()
4108                          ? AI.getCoerceToType()
4109                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4110     llvm::Value *V;
4111     Address Tmp = CGF.CreateMemTemp(Ty);
4112     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4113     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4114         RegAddrLo, ST->getStructElementType(0)));
4115     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4116     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4117         RegAddrHi, ST->getStructElementType(1)));
4118     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4119 
4120     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4121   }
4122 
4123   // AMD64-ABI 3.5.7p5: Step 5. Set:
4124   // l->gp_offset = l->gp_offset + num_gp * 8
4125   // l->fp_offset = l->fp_offset + num_fp * 16.
4126   if (neededInt) {
4127     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4128     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4129                             gp_offset_p);
4130   }
4131   if (neededSSE) {
4132     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4133     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4134                             fp_offset_p);
4135   }
4136   CGF.EmitBranch(ContBlock);
4137 
4138   // Emit code to load the value if it was passed in memory.
4139 
4140   CGF.EmitBlock(InMemBlock);
4141   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4142 
4143   // Return the appropriate result.
4144 
4145   CGF.EmitBlock(ContBlock);
4146   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4147                                  "vaarg.addr");
4148   return ResAddr;
4149 }
4150 
4151 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4152                                    QualType Ty) const {
4153   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4154                           CGF.getContext().getTypeInfoInChars(Ty),
4155                           CharUnits::fromQuantity(8),
4156                           /*allowHigherAlign*/ false);
4157 }
4158 
4159 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
4160     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
4161   const Type *Base = nullptr;
4162   uint64_t NumElts = 0;
4163 
4164   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4165       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4166     FreeSSERegs -= NumElts;
4167     return getDirectX86Hva();
4168   }
4169   return current;
4170 }
4171 
4172 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4173                                       bool IsReturnType, bool IsVectorCall,
4174                                       bool IsRegCall) const {
4175 
4176   if (Ty->isVoidType())
4177     return ABIArgInfo::getIgnore();
4178 
4179   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4180     Ty = EnumTy->getDecl()->getIntegerType();
4181 
4182   TypeInfo Info = getContext().getTypeInfo(Ty);
4183   uint64_t Width = Info.Width;
4184   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4185 
4186   const RecordType *RT = Ty->getAs<RecordType>();
4187   if (RT) {
4188     if (!IsReturnType) {
4189       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4190         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4191     }
4192 
4193     if (RT->getDecl()->hasFlexibleArrayMember())
4194       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4195 
4196   }
4197 
4198   const Type *Base = nullptr;
4199   uint64_t NumElts = 0;
4200   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4201   // other targets.
4202   if ((IsVectorCall || IsRegCall) &&
4203       isHomogeneousAggregate(Ty, Base, NumElts)) {
4204     if (IsRegCall) {
4205       if (FreeSSERegs >= NumElts) {
4206         FreeSSERegs -= NumElts;
4207         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4208           return ABIArgInfo::getDirect();
4209         return ABIArgInfo::getExpand();
4210       }
4211       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4212     } else if (IsVectorCall) {
4213       if (FreeSSERegs >= NumElts &&
4214           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4215         FreeSSERegs -= NumElts;
4216         return ABIArgInfo::getDirect();
4217       } else if (IsReturnType) {
4218         return ABIArgInfo::getExpand();
4219       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4220         // HVAs are delayed and reclassified in the 2nd step.
4221         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4222       }
4223     }
4224   }
4225 
4226   if (Ty->isMemberPointerType()) {
4227     // If the member pointer is represented by an LLVM int or ptr, pass it
4228     // directly.
4229     llvm::Type *LLTy = CGT.ConvertType(Ty);
4230     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4231       return ABIArgInfo::getDirect();
4232   }
4233 
4234   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4235     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4236     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4237     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4238       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4239 
4240     // Otherwise, coerce it to a small integer.
4241     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4242   }
4243 
4244   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4245     switch (BT->getKind()) {
4246     case BuiltinType::Bool:
4247       // Bool type is always extended to the ABI, other builtin types are not
4248       // extended.
4249       return ABIArgInfo::getExtend(Ty);
4250 
4251     case BuiltinType::LongDouble:
4252       // Mingw64 GCC uses the old 80 bit extended precision floating point
4253       // unit. It passes them indirectly through memory.
4254       if (IsMingw64) {
4255         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4256         if (LDF == &llvm::APFloat::x87DoubleExtended())
4257           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4258       }
4259       break;
4260 
4261     case BuiltinType::Int128:
4262     case BuiltinType::UInt128:
4263       // If it's a parameter type, the normal ABI rule is that arguments larger
4264       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4265       // even though it isn't particularly efficient.
4266       if (!IsReturnType)
4267         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4268 
4269       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4270       // Clang matches them for compatibility.
4271       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4272           llvm::Type::getInt64Ty(getVMContext()), 2));
4273 
4274     default:
4275       break;
4276     }
4277   }
4278 
4279   if (Ty->isExtIntType()) {
4280     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4281     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4282     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4283     // anyway as long is it fits in them, so we don't have to check the power of
4284     // 2.
4285     if (Width <= 64)
4286       return ABIArgInfo::getDirect();
4287     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4288   }
4289 
4290   return ABIArgInfo::getDirect();
4291 }
4292 
4293 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4294   const unsigned CC = FI.getCallingConvention();
4295   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4296   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4297 
4298   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4299   // classification rules.
4300   if (CC == llvm::CallingConv::X86_64_SysV) {
4301     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4302     SysVABIInfo.computeInfo(FI);
4303     return;
4304   }
4305 
4306   unsigned FreeSSERegs = 0;
4307   if (IsVectorCall) {
4308     // We can use up to 4 SSE return registers with vectorcall.
4309     FreeSSERegs = 4;
4310   } else if (IsRegCall) {
4311     // RegCall gives us 16 SSE registers.
4312     FreeSSERegs = 16;
4313   }
4314 
4315   if (!getCXXABI().classifyReturnType(FI))
4316     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4317                                   IsVectorCall, IsRegCall);
4318 
4319   if (IsVectorCall) {
4320     // We can use up to 6 SSE register parameters with vectorcall.
4321     FreeSSERegs = 6;
4322   } else if (IsRegCall) {
4323     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4324     FreeSSERegs = 16;
4325   }
4326 
4327   unsigned ArgNum = 0;
4328   unsigned ZeroSSERegs = 0;
4329   for (auto &I : FI.arguments()) {
4330     // Vectorcall in x64 only permits the first 6 arguments to be passed as
4331     // XMM/YMM registers. After the sixth argument, pretend no vector
4332     // registers are left.
4333     unsigned *MaybeFreeSSERegs =
4334         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
4335     I.info =
4336         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
4337     ++ArgNum;
4338   }
4339 
4340   if (IsVectorCall) {
4341     // For vectorcall, assign aggregate HVAs to any free vector registers in a
4342     // second pass.
4343     for (auto &I : FI.arguments())
4344       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
4345   }
4346 }
4347 
4348 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4349                                     QualType Ty) const {
4350 
4351   bool IsIndirect = false;
4352 
4353   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4354   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4355   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4356     uint64_t Width = getContext().getTypeSize(Ty);
4357     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4358   }
4359 
4360   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4361                           CGF.getContext().getTypeInfoInChars(Ty),
4362                           CharUnits::fromQuantity(8),
4363                           /*allowHigherAlign*/ false);
4364 }
4365 
4366 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4367                                         llvm::Value *Address, bool Is64Bit,
4368                                         bool IsAIX) {
4369   // This is calculated from the LLVM and GCC tables and verified
4370   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4371 
4372   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4373 
4374   llvm::IntegerType *i8 = CGF.Int8Ty;
4375   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4376   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4377   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4378 
4379   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4380   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4381 
4382   // 32-63: fp0-31, the 8-byte floating-point registers
4383   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4384 
4385   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4386   // 64: mq
4387   // 65: lr
4388   // 66: ctr
4389   // 67: ap
4390   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4391 
4392   // 68-76 are various 4-byte special-purpose registers:
4393   // 68-75 cr0-7
4394   // 76: xer
4395   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4396 
4397   // 77-108: v0-31, the 16-byte vector registers
4398   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4399 
4400   // 109: vrsave
4401   // 110: vscr
4402   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4403 
4404   // AIX does not utilize the rest of the registers.
4405   if (IsAIX)
4406     return false;
4407 
4408   // 111: spe_acc
4409   // 112: spefscr
4410   // 113: sfp
4411   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4412 
4413   if (!Is64Bit)
4414     return false;
4415 
4416   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4417   // or above CPU.
4418   // 64-bit only registers:
4419   // 114: tfhar
4420   // 115: tfiar
4421   // 116: texasr
4422   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4423 
4424   return false;
4425 }
4426 
4427 // AIX
4428 namespace {
4429 /// AIXABIInfo - The AIX XCOFF ABI information.
4430 class AIXABIInfo : public ABIInfo {
4431   const bool Is64Bit;
4432   const unsigned PtrByteSize;
4433   CharUnits getParamTypeAlignment(QualType Ty) const;
4434 
4435 public:
4436   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4437       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4438 
4439   bool isPromotableTypeForABI(QualType Ty) const;
4440 
4441   ABIArgInfo classifyReturnType(QualType RetTy) const;
4442   ABIArgInfo classifyArgumentType(QualType Ty) const;
4443 
4444   void computeInfo(CGFunctionInfo &FI) const override {
4445     if (!getCXXABI().classifyReturnType(FI))
4446       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4447 
4448     for (auto &I : FI.arguments())
4449       I.info = classifyArgumentType(I.type);
4450   }
4451 
4452   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4453                     QualType Ty) const override;
4454 };
4455 
4456 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4457   const bool Is64Bit;
4458 
4459 public:
4460   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4461       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4462         Is64Bit(Is64Bit) {}
4463   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4464     return 1; // r1 is the dedicated stack pointer
4465   }
4466 
4467   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4468                                llvm::Value *Address) const override;
4469 };
4470 } // namespace
4471 
4472 // Return true if the ABI requires Ty to be passed sign- or zero-
4473 // extended to 32/64 bits.
4474 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4475   // Treat an enum type as its underlying type.
4476   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4477     Ty = EnumTy->getDecl()->getIntegerType();
4478 
4479   // Promotable integer types are required to be promoted by the ABI.
4480   if (Ty->isPromotableIntegerType())
4481     return true;
4482 
4483   if (!Is64Bit)
4484     return false;
4485 
4486   // For 64 bit mode, in addition to the usual promotable integer types, we also
4487   // need to extend all 32-bit types, since the ABI requires promotion to 64
4488   // bits.
4489   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4490     switch (BT->getKind()) {
4491     case BuiltinType::Int:
4492     case BuiltinType::UInt:
4493       return true;
4494     default:
4495       break;
4496     }
4497 
4498   return false;
4499 }
4500 
4501 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4502   if (RetTy->isAnyComplexType())
4503     return ABIArgInfo::getDirect();
4504 
4505   if (RetTy->isVectorType())
4506     return ABIArgInfo::getDirect();
4507 
4508   if (RetTy->isVoidType())
4509     return ABIArgInfo::getIgnore();
4510 
4511   if (isAggregateTypeForABI(RetTy))
4512     return getNaturalAlignIndirect(RetTy);
4513 
4514   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4515                                         : ABIArgInfo::getDirect());
4516 }
4517 
4518 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4519   Ty = useFirstFieldIfTransparentUnion(Ty);
4520 
4521   if (Ty->isAnyComplexType())
4522     return ABIArgInfo::getDirect();
4523 
4524   if (Ty->isVectorType())
4525     return ABIArgInfo::getDirect();
4526 
4527   if (isAggregateTypeForABI(Ty)) {
4528     // Records with non-trivial destructors/copy-constructors should not be
4529     // passed by value.
4530     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4531       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4532 
4533     CharUnits CCAlign = getParamTypeAlignment(Ty);
4534     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4535 
4536     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4537                                    /*Realign*/ TyAlign > CCAlign);
4538   }
4539 
4540   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4541                                      : ABIArgInfo::getDirect());
4542 }
4543 
4544 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4545   // Complex types are passed just like their elements.
4546   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4547     Ty = CTy->getElementType();
4548 
4549   if (Ty->isVectorType())
4550     return CharUnits::fromQuantity(16);
4551 
4552   // If the structure contains a vector type, the alignment is 16.
4553   if (isRecordWithSIMDVectorType(getContext(), Ty))
4554     return CharUnits::fromQuantity(16);
4555 
4556   return CharUnits::fromQuantity(PtrByteSize);
4557 }
4558 
4559 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4560                               QualType Ty) const {
4561   if (Ty->isAnyComplexType())
4562     llvm::report_fatal_error("complex type is not supported on AIX yet");
4563 
4564   if (Ty->isVectorType())
4565     llvm::report_fatal_error(
4566         "vector types are not yet supported for variadic functions on AIX");
4567 
4568   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4569   TypeInfo.Align = getParamTypeAlignment(Ty);
4570 
4571   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4572 
4573   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4574                           SlotSize, /*AllowHigher*/ true);
4575 }
4576 
4577 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4578     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4579   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4580 }
4581 
4582 // PowerPC-32
4583 namespace {
4584 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4585 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4586   bool IsSoftFloatABI;
4587   bool IsRetSmallStructInRegABI;
4588 
4589   CharUnits getParamTypeAlignment(QualType Ty) const;
4590 
4591 public:
4592   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4593                      bool RetSmallStructInRegABI)
4594       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4595         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4596 
4597   ABIArgInfo classifyReturnType(QualType RetTy) const;
4598 
4599   void computeInfo(CGFunctionInfo &FI) const override {
4600     if (!getCXXABI().classifyReturnType(FI))
4601       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4602     for (auto &I : FI.arguments())
4603       I.info = classifyArgumentType(I.type);
4604   }
4605 
4606   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4607                     QualType Ty) const override;
4608 };
4609 
4610 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4611 public:
4612   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4613                          bool RetSmallStructInRegABI)
4614       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4615             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4616 
4617   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4618                                      const CodeGenOptions &Opts);
4619 
4620   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4621     // This is recovered from gcc output.
4622     return 1; // r1 is the dedicated stack pointer
4623   }
4624 
4625   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4626                                llvm::Value *Address) const override;
4627 };
4628 }
4629 
4630 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4631   // Complex types are passed just like their elements.
4632   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4633     Ty = CTy->getElementType();
4634 
4635   if (Ty->isVectorType())
4636     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4637                                                                        : 4);
4638 
4639   // For single-element float/vector structs, we consider the whole type
4640   // to have the same alignment requirements as its single element.
4641   const Type *AlignTy = nullptr;
4642   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4643     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4644     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4645         (BT && BT->isFloatingPoint()))
4646       AlignTy = EltType;
4647   }
4648 
4649   if (AlignTy)
4650     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4651   return CharUnits::fromQuantity(4);
4652 }
4653 
4654 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4655   uint64_t Size;
4656 
4657   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4658   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4659       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4660     // System V ABI (1995), page 3-22, specified:
4661     // > A structure or union whose size is less than or equal to 8 bytes
4662     // > shall be returned in r3 and r4, as if it were first stored in the
4663     // > 8-byte aligned memory area and then the low addressed word were
4664     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4665     // > the last member of the structure or union are not defined.
4666     //
4667     // GCC for big-endian PPC32 inserts the pad before the first member,
4668     // not "beyond the last member" of the struct.  To stay compatible
4669     // with GCC, we coerce the struct to an integer of the same size.
4670     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4671     if (Size == 0)
4672       return ABIArgInfo::getIgnore();
4673     else {
4674       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4675       return ABIArgInfo::getDirect(CoerceTy);
4676     }
4677   }
4678 
4679   return DefaultABIInfo::classifyReturnType(RetTy);
4680 }
4681 
4682 // TODO: this implementation is now likely redundant with
4683 // DefaultABIInfo::EmitVAArg.
4684 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4685                                       QualType Ty) const {
4686   if (getTarget().getTriple().isOSDarwin()) {
4687     auto TI = getContext().getTypeInfoInChars(Ty);
4688     TI.Align = getParamTypeAlignment(Ty);
4689 
4690     CharUnits SlotSize = CharUnits::fromQuantity(4);
4691     return emitVoidPtrVAArg(CGF, VAList, Ty,
4692                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4693                             /*AllowHigherAlign=*/true);
4694   }
4695 
4696   const unsigned OverflowLimit = 8;
4697   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4698     // TODO: Implement this. For now ignore.
4699     (void)CTy;
4700     return Address::invalid(); // FIXME?
4701   }
4702 
4703   // struct __va_list_tag {
4704   //   unsigned char gpr;
4705   //   unsigned char fpr;
4706   //   unsigned short reserved;
4707   //   void *overflow_arg_area;
4708   //   void *reg_save_area;
4709   // };
4710 
4711   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4712   bool isInt = !Ty->isFloatingType();
4713   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4714 
4715   // All aggregates are passed indirectly?  That doesn't seem consistent
4716   // with the argument-lowering code.
4717   bool isIndirect = isAggregateTypeForABI(Ty);
4718 
4719   CGBuilderTy &Builder = CGF.Builder;
4720 
4721   // The calling convention either uses 1-2 GPRs or 1 FPR.
4722   Address NumRegsAddr = Address::invalid();
4723   if (isInt || IsSoftFloatABI) {
4724     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4725   } else {
4726     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4727   }
4728 
4729   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4730 
4731   // "Align" the register count when TY is i64.
4732   if (isI64 || (isF64 && IsSoftFloatABI)) {
4733     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4734     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4735   }
4736 
4737   llvm::Value *CC =
4738       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4739 
4740   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4741   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4742   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4743 
4744   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4745 
4746   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4747   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4748 
4749   // Case 1: consume registers.
4750   Address RegAddr = Address::invalid();
4751   {
4752     CGF.EmitBlock(UsingRegs);
4753 
4754     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4755     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4756                       CharUnits::fromQuantity(8));
4757     assert(RegAddr.getElementType() == CGF.Int8Ty);
4758 
4759     // Floating-point registers start after the general-purpose registers.
4760     if (!(isInt || IsSoftFloatABI)) {
4761       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4762                                                    CharUnits::fromQuantity(32));
4763     }
4764 
4765     // Get the address of the saved value by scaling the number of
4766     // registers we've used by the number of
4767     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4768     llvm::Value *RegOffset =
4769       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4770     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4771                                             RegAddr.getPointer(), RegOffset),
4772                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4773     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4774 
4775     // Increase the used-register count.
4776     NumRegs =
4777       Builder.CreateAdd(NumRegs,
4778                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4779     Builder.CreateStore(NumRegs, NumRegsAddr);
4780 
4781     CGF.EmitBranch(Cont);
4782   }
4783 
4784   // Case 2: consume space in the overflow area.
4785   Address MemAddr = Address::invalid();
4786   {
4787     CGF.EmitBlock(UsingOverflow);
4788 
4789     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4790 
4791     // Everything in the overflow area is rounded up to a size of at least 4.
4792     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4793 
4794     CharUnits Size;
4795     if (!isIndirect) {
4796       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4797       Size = TypeInfo.Width.alignTo(OverflowAreaAlign);
4798     } else {
4799       Size = CGF.getPointerSize();
4800     }
4801 
4802     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4803     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4804                          OverflowAreaAlign);
4805     // Round up address of argument to alignment
4806     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4807     if (Align > OverflowAreaAlign) {
4808       llvm::Value *Ptr = OverflowArea.getPointer();
4809       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4810                                                            Align);
4811     }
4812 
4813     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4814 
4815     // Increase the overflow area.
4816     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4817     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4818     CGF.EmitBranch(Cont);
4819   }
4820 
4821   CGF.EmitBlock(Cont);
4822 
4823   // Merge the cases with a phi.
4824   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4825                                 "vaarg.addr");
4826 
4827   // Load the pointer if the argument was passed indirectly.
4828   if (isIndirect) {
4829     Result = Address(Builder.CreateLoad(Result, "aggr"),
4830                      getContext().getTypeAlignInChars(Ty));
4831   }
4832 
4833   return Result;
4834 }
4835 
4836 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4837     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4838   assert(Triple.isPPC32());
4839 
4840   switch (Opts.getStructReturnConvention()) {
4841   case CodeGenOptions::SRCK_Default:
4842     break;
4843   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4844     return false;
4845   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4846     return true;
4847   }
4848 
4849   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4850     return true;
4851 
4852   return false;
4853 }
4854 
4855 bool
4856 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4857                                                 llvm::Value *Address) const {
4858   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4859                                      /*IsAIX*/ false);
4860 }
4861 
4862 // PowerPC-64
4863 
4864 namespace {
4865 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4866 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4867 public:
4868   enum ABIKind {
4869     ELFv1 = 0,
4870     ELFv2
4871   };
4872 
4873 private:
4874   static const unsigned GPRBits = 64;
4875   ABIKind Kind;
4876   bool IsSoftFloatABI;
4877 
4878 public:
4879   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind,
4880                      bool SoftFloatABI)
4881       : SwiftABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {}
4882 
4883   bool isPromotableTypeForABI(QualType Ty) const;
4884   CharUnits getParamTypeAlignment(QualType Ty) const;
4885 
4886   ABIArgInfo classifyReturnType(QualType RetTy) const;
4887   ABIArgInfo classifyArgumentType(QualType Ty) const;
4888 
4889   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4890   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4891                                          uint64_t Members) const override;
4892 
4893   // TODO: We can add more logic to computeInfo to improve performance.
4894   // Example: For aggregate arguments that fit in a register, we could
4895   // use getDirectInReg (as is done below for structs containing a single
4896   // floating-point value) to avoid pushing them to memory on function
4897   // entry.  This would require changing the logic in PPCISelLowering
4898   // when lowering the parameters in the caller and args in the callee.
4899   void computeInfo(CGFunctionInfo &FI) const override {
4900     if (!getCXXABI().classifyReturnType(FI))
4901       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4902     for (auto &I : FI.arguments()) {
4903       // We rely on the default argument classification for the most part.
4904       // One exception:  An aggregate containing a single floating-point
4905       // or vector item must be passed in a register if one is available.
4906       const Type *T = isSingleElementStruct(I.type, getContext());
4907       if (T) {
4908         const BuiltinType *BT = T->getAs<BuiltinType>();
4909         if ((T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4910             (BT && BT->isFloatingPoint())) {
4911           QualType QT(T, 0);
4912           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4913           continue;
4914         }
4915       }
4916       I.info = classifyArgumentType(I.type);
4917     }
4918   }
4919 
4920   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4921                     QualType Ty) const override;
4922 
4923   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4924                                     bool asReturnValue) const override {
4925     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4926   }
4927 
4928   bool isSwiftErrorInRegister() const override {
4929     return false;
4930   }
4931 };
4932 
4933 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4934 
4935 public:
4936   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4937                                PPC64_SVR4_ABIInfo::ABIKind Kind,
4938                                bool SoftFloatABI)
4939       : TargetCodeGenInfo(
4940             std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) {}
4941 
4942   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4943     // This is recovered from gcc output.
4944     return 1; // r1 is the dedicated stack pointer
4945   }
4946 
4947   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4948                                llvm::Value *Address) const override;
4949 };
4950 
4951 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4952 public:
4953   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4954 
4955   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4956     // This is recovered from gcc output.
4957     return 1; // r1 is the dedicated stack pointer
4958   }
4959 
4960   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4961                                llvm::Value *Address) const override;
4962 };
4963 
4964 }
4965 
4966 // Return true if the ABI requires Ty to be passed sign- or zero-
4967 // extended to 64 bits.
4968 bool
4969 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
4970   // Treat an enum type as its underlying type.
4971   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4972     Ty = EnumTy->getDecl()->getIntegerType();
4973 
4974   // Promotable integer types are required to be promoted by the ABI.
4975   if (isPromotableIntegerTypeForABI(Ty))
4976     return true;
4977 
4978   // In addition to the usual promotable integer types, we also need to
4979   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
4980   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4981     switch (BT->getKind()) {
4982     case BuiltinType::Int:
4983     case BuiltinType::UInt:
4984       return true;
4985     default:
4986       break;
4987     }
4988 
4989   if (const auto *EIT = Ty->getAs<ExtIntType>())
4990     if (EIT->getNumBits() < 64)
4991       return true;
4992 
4993   return false;
4994 }
4995 
4996 /// isAlignedParamType - Determine whether a type requires 16-byte or
4997 /// higher alignment in the parameter area.  Always returns at least 8.
4998 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4999   // Complex types are passed just like their elements.
5000   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5001     Ty = CTy->getElementType();
5002 
5003   // Only vector types of size 16 bytes need alignment (larger types are
5004   // passed via reference, smaller types are not aligned).
5005   if (Ty->isVectorType()) {
5006     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5007   } else if (Ty->isRealFloatingType() &&
5008              &getContext().getFloatTypeSemantics(Ty) ==
5009                  &llvm::APFloat::IEEEquad()) {
5010     // According to ABI document section 'Optional Save Areas': If extended
5011     // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION
5012     // format are supported, map them to a single quadword, quadword aligned.
5013     return CharUnits::fromQuantity(16);
5014   }
5015 
5016   // For single-element float/vector structs, we consider the whole type
5017   // to have the same alignment requirements as its single element.
5018   const Type *AlignAsType = nullptr;
5019   const Type *EltType = isSingleElementStruct(Ty, getContext());
5020   if (EltType) {
5021     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5022     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
5023         (BT && BT->isFloatingPoint()))
5024       AlignAsType = EltType;
5025   }
5026 
5027   // Likewise for ELFv2 homogeneous aggregates.
5028   const Type *Base = nullptr;
5029   uint64_t Members = 0;
5030   if (!AlignAsType && Kind == ELFv2 &&
5031       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5032     AlignAsType = Base;
5033 
5034   // With special case aggregates, only vector base types need alignment.
5035   if (AlignAsType) {
5036     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5037   }
5038 
5039   // Otherwise, we only need alignment for any aggregate type that
5040   // has an alignment requirement of >= 16 bytes.
5041   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5042     return CharUnits::fromQuantity(16);
5043   }
5044 
5045   return CharUnits::fromQuantity(8);
5046 }
5047 
5048 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5049 /// aggregate.  Base is set to the base element type, and Members is set
5050 /// to the number of base elements.
5051 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5052                                      uint64_t &Members) const {
5053   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5054     uint64_t NElements = AT->getSize().getZExtValue();
5055     if (NElements == 0)
5056       return false;
5057     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5058       return false;
5059     Members *= NElements;
5060   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5061     const RecordDecl *RD = RT->getDecl();
5062     if (RD->hasFlexibleArrayMember())
5063       return false;
5064 
5065     Members = 0;
5066 
5067     // If this is a C++ record, check the properties of the record such as
5068     // bases and ABI specific restrictions
5069     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5070       if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
5071         return false;
5072 
5073       for (const auto &I : CXXRD->bases()) {
5074         // Ignore empty records.
5075         if (isEmptyRecord(getContext(), I.getType(), true))
5076           continue;
5077 
5078         uint64_t FldMembers;
5079         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5080           return false;
5081 
5082         Members += FldMembers;
5083       }
5084     }
5085 
5086     for (const auto *FD : RD->fields()) {
5087       // Ignore (non-zero arrays of) empty records.
5088       QualType FT = FD->getType();
5089       while (const ConstantArrayType *AT =
5090              getContext().getAsConstantArrayType(FT)) {
5091         if (AT->getSize().getZExtValue() == 0)
5092           return false;
5093         FT = AT->getElementType();
5094       }
5095       if (isEmptyRecord(getContext(), FT, true))
5096         continue;
5097 
5098       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5099       if (getContext().getLangOpts().CPlusPlus &&
5100           FD->isZeroLengthBitField(getContext()))
5101         continue;
5102 
5103       uint64_t FldMembers;
5104       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5105         return false;
5106 
5107       Members = (RD->isUnion() ?
5108                  std::max(Members, FldMembers) : Members + FldMembers);
5109     }
5110 
5111     if (!Base)
5112       return false;
5113 
5114     // Ensure there is no padding.
5115     if (getContext().getTypeSize(Base) * Members !=
5116         getContext().getTypeSize(Ty))
5117       return false;
5118   } else {
5119     Members = 1;
5120     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5121       Members = 2;
5122       Ty = CT->getElementType();
5123     }
5124 
5125     // Most ABIs only support float, double, and some vector type widths.
5126     if (!isHomogeneousAggregateBaseType(Ty))
5127       return false;
5128 
5129     // The base type must be the same for all members.  Types that
5130     // agree in both total size and mode (float vs. vector) are
5131     // treated as being equivalent here.
5132     const Type *TyPtr = Ty.getTypePtr();
5133     if (!Base) {
5134       Base = TyPtr;
5135       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5136       // so make sure to widen it explicitly.
5137       if (const VectorType *VT = Base->getAs<VectorType>()) {
5138         QualType EltTy = VT->getElementType();
5139         unsigned NumElements =
5140             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5141         Base = getContext()
5142                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5143                    .getTypePtr();
5144       }
5145     }
5146 
5147     if (Base->isVectorType() != TyPtr->isVectorType() ||
5148         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5149       return false;
5150   }
5151   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5152 }
5153 
5154 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5155   // Homogeneous aggregates for ELFv2 must have base types of float,
5156   // double, long double, or 128-bit vectors.
5157   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5158     if (BT->getKind() == BuiltinType::Float ||
5159         BT->getKind() == BuiltinType::Double ||
5160         BT->getKind() == BuiltinType::LongDouble ||
5161         (getContext().getTargetInfo().hasFloat128Type() &&
5162           (BT->getKind() == BuiltinType::Float128))) {
5163       if (IsSoftFloatABI)
5164         return false;
5165       return true;
5166     }
5167   }
5168   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5169     if (getContext().getTypeSize(VT) == 128)
5170       return true;
5171   }
5172   return false;
5173 }
5174 
5175 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5176     const Type *Base, uint64_t Members) const {
5177   // Vector and fp128 types require one register, other floating point types
5178   // require one or two registers depending on their size.
5179   uint32_t NumRegs =
5180       ((getContext().getTargetInfo().hasFloat128Type() &&
5181           Base->isFloat128Type()) ||
5182         Base->isVectorType()) ? 1
5183                               : (getContext().getTypeSize(Base) + 63) / 64;
5184 
5185   // Homogeneous Aggregates may occupy at most 8 registers.
5186   return Members * NumRegs <= 8;
5187 }
5188 
5189 ABIArgInfo
5190 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5191   Ty = useFirstFieldIfTransparentUnion(Ty);
5192 
5193   if (Ty->isAnyComplexType())
5194     return ABIArgInfo::getDirect();
5195 
5196   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5197   // or via reference (larger than 16 bytes).
5198   if (Ty->isVectorType()) {
5199     uint64_t Size = getContext().getTypeSize(Ty);
5200     if (Size > 128)
5201       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5202     else if (Size < 128) {
5203       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5204       return ABIArgInfo::getDirect(CoerceTy);
5205     }
5206   }
5207 
5208   if (const auto *EIT = Ty->getAs<ExtIntType>())
5209     if (EIT->getNumBits() > 128)
5210       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5211 
5212   if (isAggregateTypeForABI(Ty)) {
5213     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5214       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5215 
5216     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5217     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5218 
5219     // ELFv2 homogeneous aggregates are passed as array types.
5220     const Type *Base = nullptr;
5221     uint64_t Members = 0;
5222     if (Kind == ELFv2 &&
5223         isHomogeneousAggregate(Ty, Base, Members)) {
5224       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5225       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5226       return ABIArgInfo::getDirect(CoerceTy);
5227     }
5228 
5229     // If an aggregate may end up fully in registers, we do not
5230     // use the ByVal method, but pass the aggregate as array.
5231     // This is usually beneficial since we avoid forcing the
5232     // back-end to store the argument to memory.
5233     uint64_t Bits = getContext().getTypeSize(Ty);
5234     if (Bits > 0 && Bits <= 8 * GPRBits) {
5235       llvm::Type *CoerceTy;
5236 
5237       // Types up to 8 bytes are passed as integer type (which will be
5238       // properly aligned in the argument save area doubleword).
5239       if (Bits <= GPRBits)
5240         CoerceTy =
5241             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5242       // Larger types are passed as arrays, with the base type selected
5243       // according to the required alignment in the save area.
5244       else {
5245         uint64_t RegBits = ABIAlign * 8;
5246         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5247         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5248         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5249       }
5250 
5251       return ABIArgInfo::getDirect(CoerceTy);
5252     }
5253 
5254     // All other aggregates are passed ByVal.
5255     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5256                                    /*ByVal=*/true,
5257                                    /*Realign=*/TyAlign > ABIAlign);
5258   }
5259 
5260   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5261                                      : ABIArgInfo::getDirect());
5262 }
5263 
5264 ABIArgInfo
5265 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5266   if (RetTy->isVoidType())
5267     return ABIArgInfo::getIgnore();
5268 
5269   if (RetTy->isAnyComplexType())
5270     return ABIArgInfo::getDirect();
5271 
5272   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5273   // or via reference (larger than 16 bytes).
5274   if (RetTy->isVectorType()) {
5275     uint64_t Size = getContext().getTypeSize(RetTy);
5276     if (Size > 128)
5277       return getNaturalAlignIndirect(RetTy);
5278     else if (Size < 128) {
5279       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5280       return ABIArgInfo::getDirect(CoerceTy);
5281     }
5282   }
5283 
5284   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5285     if (EIT->getNumBits() > 128)
5286       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5287 
5288   if (isAggregateTypeForABI(RetTy)) {
5289     // ELFv2 homogeneous aggregates are returned as array types.
5290     const Type *Base = nullptr;
5291     uint64_t Members = 0;
5292     if (Kind == ELFv2 &&
5293         isHomogeneousAggregate(RetTy, Base, Members)) {
5294       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5295       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5296       return ABIArgInfo::getDirect(CoerceTy);
5297     }
5298 
5299     // ELFv2 small aggregates are returned in up to two registers.
5300     uint64_t Bits = getContext().getTypeSize(RetTy);
5301     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5302       if (Bits == 0)
5303         return ABIArgInfo::getIgnore();
5304 
5305       llvm::Type *CoerceTy;
5306       if (Bits > GPRBits) {
5307         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5308         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5309       } else
5310         CoerceTy =
5311             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5312       return ABIArgInfo::getDirect(CoerceTy);
5313     }
5314 
5315     // All other aggregates are returned indirectly.
5316     return getNaturalAlignIndirect(RetTy);
5317   }
5318 
5319   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5320                                         : ABIArgInfo::getDirect());
5321 }
5322 
5323 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5324 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5325                                       QualType Ty) const {
5326   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5327   TypeInfo.Align = getParamTypeAlignment(Ty);
5328 
5329   CharUnits SlotSize = CharUnits::fromQuantity(8);
5330 
5331   // If we have a complex type and the base type is smaller than 8 bytes,
5332   // the ABI calls for the real and imaginary parts to be right-adjusted
5333   // in separate doublewords.  However, Clang expects us to produce a
5334   // pointer to a structure with the two parts packed tightly.  So generate
5335   // loads of the real and imaginary parts relative to the va_list pointer,
5336   // and store them to a temporary structure.
5337   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5338     CharUnits EltSize = TypeInfo.Width / 2;
5339     if (EltSize < SlotSize) {
5340       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5341                                             SlotSize * 2, SlotSize,
5342                                             SlotSize, /*AllowHigher*/ true);
5343 
5344       Address RealAddr = Addr;
5345       Address ImagAddr = RealAddr;
5346       if (CGF.CGM.getDataLayout().isBigEndian()) {
5347         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5348                                                           SlotSize - EltSize);
5349         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5350                                                       2 * SlotSize - EltSize);
5351       } else {
5352         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5353       }
5354 
5355       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5356       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5357       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5358       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5359       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5360 
5361       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5362       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5363                              /*init*/ true);
5364       return Temp;
5365     }
5366   }
5367 
5368   // Otherwise, just use the general rule.
5369   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5370                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5371 }
5372 
5373 bool
5374 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5375   CodeGen::CodeGenFunction &CGF,
5376   llvm::Value *Address) const {
5377   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5378                                      /*IsAIX*/ false);
5379 }
5380 
5381 bool
5382 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5383                                                 llvm::Value *Address) const {
5384   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5385                                      /*IsAIX*/ false);
5386 }
5387 
5388 //===----------------------------------------------------------------------===//
5389 // AArch64 ABI Implementation
5390 //===----------------------------------------------------------------------===//
5391 
5392 namespace {
5393 
5394 class AArch64ABIInfo : public SwiftABIInfo {
5395 public:
5396   enum ABIKind {
5397     AAPCS = 0,
5398     DarwinPCS,
5399     Win64
5400   };
5401 
5402 private:
5403   ABIKind Kind;
5404 
5405 public:
5406   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5407     : SwiftABIInfo(CGT), Kind(Kind) {}
5408 
5409 private:
5410   ABIKind getABIKind() const { return Kind; }
5411   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5412 
5413   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5414   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5415   ABIArgInfo coerceIllegalVector(QualType Ty) const;
5416   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5417   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5418                                          uint64_t Members) const override;
5419 
5420   bool isIllegalVectorType(QualType Ty) const;
5421 
5422   void computeInfo(CGFunctionInfo &FI) const override {
5423     if (!::classifyReturnType(getCXXABI(), FI, *this))
5424       FI.getReturnInfo() =
5425           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5426 
5427     for (auto &it : FI.arguments())
5428       it.info = classifyArgumentType(it.type);
5429   }
5430 
5431   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5432                           CodeGenFunction &CGF) const;
5433 
5434   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5435                          CodeGenFunction &CGF) const;
5436 
5437   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5438                     QualType Ty) const override {
5439     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5440     if (isa<llvm::ScalableVectorType>(BaseTy))
5441       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5442                                "currently not supported");
5443 
5444     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5445                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5446                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5447   }
5448 
5449   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5450                       QualType Ty) const override;
5451 
5452   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5453                                     bool asReturnValue) const override {
5454     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5455   }
5456   bool isSwiftErrorInRegister() const override {
5457     return true;
5458   }
5459 
5460   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5461                                  unsigned elts) const override;
5462 
5463   bool allowBFloatArgsAndRet() const override {
5464     return getTarget().hasBFloat16Type();
5465   }
5466 };
5467 
5468 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5469 public:
5470   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5471       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5472 
5473   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5474     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5475   }
5476 
5477   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5478     return 31;
5479   }
5480 
5481   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5482 
5483   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5484                            CodeGen::CodeGenModule &CGM) const override {
5485     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5486     if (!FD)
5487       return;
5488 
5489     const auto *TA = FD->getAttr<TargetAttr>();
5490     if (TA == nullptr)
5491       return;
5492 
5493     ParsedTargetAttr Attr = TA->parse();
5494     if (Attr.BranchProtection.empty())
5495       return;
5496 
5497     TargetInfo::BranchProtectionInfo BPI;
5498     StringRef Error;
5499     (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5500                                                    BPI, Error);
5501     assert(Error.empty());
5502 
5503     auto *Fn = cast<llvm::Function>(GV);
5504     static const char *SignReturnAddrStr[] = {"none", "non-leaf", "all"};
5505     Fn->addFnAttr("sign-return-address", SignReturnAddrStr[static_cast<int>(BPI.SignReturnAddr)]);
5506 
5507     if (BPI.SignReturnAddr != LangOptions::SignReturnAddressScopeKind::None) {
5508       Fn->addFnAttr("sign-return-address-key",
5509                     BPI.SignKey == LangOptions::SignReturnAddressKeyKind::AKey
5510                         ? "a_key"
5511                         : "b_key");
5512     }
5513 
5514     Fn->addFnAttr("branch-target-enforcement",
5515                   BPI.BranchTargetEnforcement ? "true" : "false");
5516   }
5517 };
5518 
5519 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5520 public:
5521   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5522       : AArch64TargetCodeGenInfo(CGT, K) {}
5523 
5524   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5525                            CodeGen::CodeGenModule &CGM) const override;
5526 
5527   void getDependentLibraryOption(llvm::StringRef Lib,
5528                                  llvm::SmallString<24> &Opt) const override {
5529     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5530   }
5531 
5532   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5533                                llvm::SmallString<32> &Opt) const override {
5534     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5535   }
5536 };
5537 
5538 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5539     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5540   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5541   if (GV->isDeclaration())
5542     return;
5543   addStackProbeTargetAttributes(D, GV, CGM);
5544 }
5545 }
5546 
5547 ABIArgInfo AArch64ABIInfo::coerceIllegalVector(QualType Ty) const {
5548   assert(Ty->isVectorType() && "expected vector type!");
5549 
5550   const auto *VT = Ty->castAs<VectorType>();
5551   if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) {
5552     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5553     assert(VT->getElementType()->castAs<BuiltinType>()->getKind() ==
5554                BuiltinType::UChar &&
5555            "unexpected builtin type for SVE predicate!");
5556     return ABIArgInfo::getDirect(llvm::ScalableVectorType::get(
5557         llvm::Type::getInt1Ty(getVMContext()), 16));
5558   }
5559 
5560   if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) {
5561     assert(VT->getElementType()->isBuiltinType() && "expected builtin type!");
5562 
5563     const auto *BT = VT->getElementType()->castAs<BuiltinType>();
5564     llvm::ScalableVectorType *ResType = nullptr;
5565     switch (BT->getKind()) {
5566     default:
5567       llvm_unreachable("unexpected builtin type for SVE vector!");
5568     case BuiltinType::SChar:
5569     case BuiltinType::UChar:
5570       ResType = llvm::ScalableVectorType::get(
5571           llvm::Type::getInt8Ty(getVMContext()), 16);
5572       break;
5573     case BuiltinType::Short:
5574     case BuiltinType::UShort:
5575       ResType = llvm::ScalableVectorType::get(
5576           llvm::Type::getInt16Ty(getVMContext()), 8);
5577       break;
5578     case BuiltinType::Int:
5579     case BuiltinType::UInt:
5580       ResType = llvm::ScalableVectorType::get(
5581           llvm::Type::getInt32Ty(getVMContext()), 4);
5582       break;
5583     case BuiltinType::Long:
5584     case BuiltinType::ULong:
5585       ResType = llvm::ScalableVectorType::get(
5586           llvm::Type::getInt64Ty(getVMContext()), 2);
5587       break;
5588     case BuiltinType::Half:
5589       ResType = llvm::ScalableVectorType::get(
5590           llvm::Type::getHalfTy(getVMContext()), 8);
5591       break;
5592     case BuiltinType::Float:
5593       ResType = llvm::ScalableVectorType::get(
5594           llvm::Type::getFloatTy(getVMContext()), 4);
5595       break;
5596     case BuiltinType::Double:
5597       ResType = llvm::ScalableVectorType::get(
5598           llvm::Type::getDoubleTy(getVMContext()), 2);
5599       break;
5600     case BuiltinType::BFloat16:
5601       ResType = llvm::ScalableVectorType::get(
5602           llvm::Type::getBFloatTy(getVMContext()), 8);
5603       break;
5604     }
5605     return ABIArgInfo::getDirect(ResType);
5606   }
5607 
5608   uint64_t Size = getContext().getTypeSize(Ty);
5609   // Android promotes <2 x i8> to i16, not i32
5610   if (isAndroid() && (Size <= 16)) {
5611     llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5612     return ABIArgInfo::getDirect(ResType);
5613   }
5614   if (Size <= 32) {
5615     llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5616     return ABIArgInfo::getDirect(ResType);
5617   }
5618   if (Size == 64) {
5619     auto *ResType =
5620         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5621     return ABIArgInfo::getDirect(ResType);
5622   }
5623   if (Size == 128) {
5624     auto *ResType =
5625         llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5626     return ABIArgInfo::getDirect(ResType);
5627   }
5628   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5629 }
5630 
5631 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5632   Ty = useFirstFieldIfTransparentUnion(Ty);
5633 
5634   // Handle illegal vector types here.
5635   if (isIllegalVectorType(Ty))
5636     return coerceIllegalVector(Ty);
5637 
5638   if (!isAggregateTypeForABI(Ty)) {
5639     // Treat an enum type as its underlying type.
5640     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5641       Ty = EnumTy->getDecl()->getIntegerType();
5642 
5643     if (const auto *EIT = Ty->getAs<ExtIntType>())
5644       if (EIT->getNumBits() > 128)
5645         return getNaturalAlignIndirect(Ty);
5646 
5647     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5648                 ? ABIArgInfo::getExtend(Ty)
5649                 : ABIArgInfo::getDirect());
5650   }
5651 
5652   // Structures with either a non-trivial destructor or a non-trivial
5653   // copy constructor are always indirect.
5654   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5655     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5656                                      CGCXXABI::RAA_DirectInMemory);
5657   }
5658 
5659   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5660   // elsewhere for GNU compatibility.
5661   uint64_t Size = getContext().getTypeSize(Ty);
5662   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5663   if (IsEmpty || Size == 0) {
5664     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5665       return ABIArgInfo::getIgnore();
5666 
5667     // GNU C mode. The only argument that gets ignored is an empty one with size
5668     // 0.
5669     if (IsEmpty && Size == 0)
5670       return ABIArgInfo::getIgnore();
5671     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5672   }
5673 
5674   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5675   const Type *Base = nullptr;
5676   uint64_t Members = 0;
5677   if (isHomogeneousAggregate(Ty, Base, Members)) {
5678     return ABIArgInfo::getDirect(
5679         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5680   }
5681 
5682   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5683   if (Size <= 128) {
5684     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5685     // same size and alignment.
5686     if (getTarget().isRenderScriptTarget()) {
5687       return coerceToIntArray(Ty, getContext(), getVMContext());
5688     }
5689     unsigned Alignment;
5690     if (Kind == AArch64ABIInfo::AAPCS) {
5691       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5692       Alignment = Alignment < 128 ? 64 : 128;
5693     } else {
5694       Alignment = std::max(getContext().getTypeAlign(Ty),
5695                            (unsigned)getTarget().getPointerWidth(0));
5696     }
5697     Size = llvm::alignTo(Size, Alignment);
5698 
5699     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5700     // For aggregates with 16-byte alignment, we use i128.
5701     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5702     return ABIArgInfo::getDirect(
5703         Size == Alignment ? BaseTy
5704                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5705   }
5706 
5707   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5708 }
5709 
5710 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5711                                               bool IsVariadic) const {
5712   if (RetTy->isVoidType())
5713     return ABIArgInfo::getIgnore();
5714 
5715   if (const auto *VT = RetTy->getAs<VectorType>()) {
5716     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5717         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5718       return coerceIllegalVector(RetTy);
5719   }
5720 
5721   // Large vector types should be returned via memory.
5722   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5723     return getNaturalAlignIndirect(RetTy);
5724 
5725   if (!isAggregateTypeForABI(RetTy)) {
5726     // Treat an enum type as its underlying type.
5727     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5728       RetTy = EnumTy->getDecl()->getIntegerType();
5729 
5730     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5731       if (EIT->getNumBits() > 128)
5732         return getNaturalAlignIndirect(RetTy);
5733 
5734     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5735                 ? ABIArgInfo::getExtend(RetTy)
5736                 : ABIArgInfo::getDirect());
5737   }
5738 
5739   uint64_t Size = getContext().getTypeSize(RetTy);
5740   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5741     return ABIArgInfo::getIgnore();
5742 
5743   const Type *Base = nullptr;
5744   uint64_t Members = 0;
5745   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5746       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5747         IsVariadic))
5748     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5749     return ABIArgInfo::getDirect();
5750 
5751   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5752   if (Size <= 128) {
5753     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5754     // same size and alignment.
5755     if (getTarget().isRenderScriptTarget()) {
5756       return coerceToIntArray(RetTy, getContext(), getVMContext());
5757     }
5758     unsigned Alignment = getContext().getTypeAlign(RetTy);
5759     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5760 
5761     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5762     // For aggregates with 16-byte alignment, we use i128.
5763     if (Alignment < 128 && Size == 128) {
5764       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5765       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5766     }
5767     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5768   }
5769 
5770   return getNaturalAlignIndirect(RetTy);
5771 }
5772 
5773 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5774 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5775   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5776     // Check whether VT is a fixed-length SVE vector. These types are
5777     // represented as scalable vectors in function args/return and must be
5778     // coerced from fixed vectors.
5779     if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector ||
5780         VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
5781       return true;
5782 
5783     // Check whether VT is legal.
5784     unsigned NumElements = VT->getNumElements();
5785     uint64_t Size = getContext().getTypeSize(VT);
5786     // NumElements should be power of 2.
5787     if (!llvm::isPowerOf2_32(NumElements))
5788       return true;
5789 
5790     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5791     // vectors for some reason.
5792     llvm::Triple Triple = getTarget().getTriple();
5793     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5794         Triple.isOSBinFormatMachO())
5795       return Size <= 32;
5796 
5797     return Size != 64 && (Size != 128 || NumElements == 1);
5798   }
5799   return false;
5800 }
5801 
5802 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5803                                                llvm::Type *eltTy,
5804                                                unsigned elts) const {
5805   if (!llvm::isPowerOf2_32(elts))
5806     return false;
5807   if (totalSize.getQuantity() != 8 &&
5808       (totalSize.getQuantity() != 16 || elts == 1))
5809     return false;
5810   return true;
5811 }
5812 
5813 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5814   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5815   // point type or a short-vector type. This is the same as the 32-bit ABI,
5816   // but with the difference that any floating-point type is allowed,
5817   // including __fp16.
5818   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5819     if (BT->isFloatingPoint())
5820       return true;
5821   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5822     unsigned VecSize = getContext().getTypeSize(VT);
5823     if (VecSize == 64 || VecSize == 128)
5824       return true;
5825   }
5826   return false;
5827 }
5828 
5829 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5830                                                        uint64_t Members) const {
5831   return Members <= 4;
5832 }
5833 
5834 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5835                                             QualType Ty,
5836                                             CodeGenFunction &CGF) const {
5837   ABIArgInfo AI = classifyArgumentType(Ty);
5838   bool IsIndirect = AI.isIndirect();
5839 
5840   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5841   if (IsIndirect)
5842     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5843   else if (AI.getCoerceToType())
5844     BaseTy = AI.getCoerceToType();
5845 
5846   unsigned NumRegs = 1;
5847   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5848     BaseTy = ArrTy->getElementType();
5849     NumRegs = ArrTy->getNumElements();
5850   }
5851   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5852 
5853   // The AArch64 va_list type and handling is specified in the Procedure Call
5854   // Standard, section B.4:
5855   //
5856   // struct {
5857   //   void *__stack;
5858   //   void *__gr_top;
5859   //   void *__vr_top;
5860   //   int __gr_offs;
5861   //   int __vr_offs;
5862   // };
5863 
5864   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5865   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5866   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5867   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5868 
5869   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5870   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5871 
5872   Address reg_offs_p = Address::invalid();
5873   llvm::Value *reg_offs = nullptr;
5874   int reg_top_index;
5875   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5876   if (!IsFPR) {
5877     // 3 is the field number of __gr_offs
5878     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5879     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5880     reg_top_index = 1; // field number for __gr_top
5881     RegSize = llvm::alignTo(RegSize, 8);
5882   } else {
5883     // 4 is the field number of __vr_offs.
5884     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5885     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5886     reg_top_index = 2; // field number for __vr_top
5887     RegSize = 16 * NumRegs;
5888   }
5889 
5890   //=======================================
5891   // Find out where argument was passed
5892   //=======================================
5893 
5894   // If reg_offs >= 0 we're already using the stack for this type of
5895   // argument. We don't want to keep updating reg_offs (in case it overflows,
5896   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5897   // whatever they get).
5898   llvm::Value *UsingStack = nullptr;
5899   UsingStack = CGF.Builder.CreateICmpSGE(
5900       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5901 
5902   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5903 
5904   // Otherwise, at least some kind of argument could go in these registers, the
5905   // question is whether this particular type is too big.
5906   CGF.EmitBlock(MaybeRegBlock);
5907 
5908   // Integer arguments may need to correct register alignment (for example a
5909   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5910   // align __gr_offs to calculate the potential address.
5911   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5912     int Align = TyAlign.getQuantity();
5913 
5914     reg_offs = CGF.Builder.CreateAdd(
5915         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5916         "align_regoffs");
5917     reg_offs = CGF.Builder.CreateAnd(
5918         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5919         "aligned_regoffs");
5920   }
5921 
5922   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5923   // The fact that this is done unconditionally reflects the fact that
5924   // allocating an argument to the stack also uses up all the remaining
5925   // registers of the appropriate kind.
5926   llvm::Value *NewOffset = nullptr;
5927   NewOffset = CGF.Builder.CreateAdd(
5928       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5929   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5930 
5931   // Now we're in a position to decide whether this argument really was in
5932   // registers or not.
5933   llvm::Value *InRegs = nullptr;
5934   InRegs = CGF.Builder.CreateICmpSLE(
5935       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5936 
5937   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5938 
5939   //=======================================
5940   // Argument was in registers
5941   //=======================================
5942 
5943   // Now we emit the code for if the argument was originally passed in
5944   // registers. First start the appropriate block:
5945   CGF.EmitBlock(InRegBlock);
5946 
5947   llvm::Value *reg_top = nullptr;
5948   Address reg_top_p =
5949       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5950   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5951   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5952                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5953   Address RegAddr = Address::invalid();
5954   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5955 
5956   if (IsIndirect) {
5957     // If it's been passed indirectly (actually a struct), whatever we find from
5958     // stored registers or on the stack will actually be a struct **.
5959     MemTy = llvm::PointerType::getUnqual(MemTy);
5960   }
5961 
5962   const Type *Base = nullptr;
5963   uint64_t NumMembers = 0;
5964   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5965   if (IsHFA && NumMembers > 1) {
5966     // Homogeneous aggregates passed in registers will have their elements split
5967     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5968     // qN+1, ...). We reload and store into a temporary local variable
5969     // contiguously.
5970     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5971     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5972     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5973     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5974     Address Tmp = CGF.CreateTempAlloca(HFATy,
5975                                        std::max(TyAlign, BaseTyInfo.Align));
5976 
5977     // On big-endian platforms, the value will be right-aligned in its slot.
5978     int Offset = 0;
5979     if (CGF.CGM.getDataLayout().isBigEndian() &&
5980         BaseTyInfo.Width.getQuantity() < 16)
5981       Offset = 16 - BaseTyInfo.Width.getQuantity();
5982 
5983     for (unsigned i = 0; i < NumMembers; ++i) {
5984       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5985       Address LoadAddr =
5986         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5987       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5988 
5989       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5990 
5991       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5992       CGF.Builder.CreateStore(Elem, StoreAddr);
5993     }
5994 
5995     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5996   } else {
5997     // Otherwise the object is contiguous in memory.
5998 
5999     // It might be right-aligned in its slot.
6000     CharUnits SlotSize = BaseAddr.getAlignment();
6001     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
6002         (IsHFA || !isAggregateTypeForABI(Ty)) &&
6003         TySize < SlotSize) {
6004       CharUnits Offset = SlotSize - TySize;
6005       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
6006     }
6007 
6008     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
6009   }
6010 
6011   CGF.EmitBranch(ContBlock);
6012 
6013   //=======================================
6014   // Argument was on the stack
6015   //=======================================
6016   CGF.EmitBlock(OnStackBlock);
6017 
6018   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
6019   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
6020 
6021   // Again, stack arguments may need realignment. In this case both integer and
6022   // floating-point ones might be affected.
6023   if (!IsIndirect && TyAlign.getQuantity() > 8) {
6024     int Align = TyAlign.getQuantity();
6025 
6026     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
6027 
6028     OnStackPtr = CGF.Builder.CreateAdd(
6029         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
6030         "align_stack");
6031     OnStackPtr = CGF.Builder.CreateAnd(
6032         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
6033         "align_stack");
6034 
6035     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6036   }
6037   Address OnStackAddr(OnStackPtr,
6038                       std::max(CharUnits::fromQuantity(8), TyAlign));
6039 
6040   // All stack slots are multiples of 8 bytes.
6041   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6042   CharUnits StackSize;
6043   if (IsIndirect)
6044     StackSize = StackSlotSize;
6045   else
6046     StackSize = TySize.alignTo(StackSlotSize);
6047 
6048   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6049   llvm::Value *NewStack =
6050       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6051 
6052   // Write the new value of __stack for the next call to va_arg
6053   CGF.Builder.CreateStore(NewStack, stack_p);
6054 
6055   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6056       TySize < StackSlotSize) {
6057     CharUnits Offset = StackSlotSize - TySize;
6058     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6059   }
6060 
6061   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6062 
6063   CGF.EmitBranch(ContBlock);
6064 
6065   //=======================================
6066   // Tidy up
6067   //=======================================
6068   CGF.EmitBlock(ContBlock);
6069 
6070   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6071                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6072 
6073   if (IsIndirect)
6074     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6075                    TyAlign);
6076 
6077   return ResAddr;
6078 }
6079 
6080 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6081                                         CodeGenFunction &CGF) const {
6082   // The backend's lowering doesn't support va_arg for aggregates or
6083   // illegal vector types.  Lower VAArg here for these cases and use
6084   // the LLVM va_arg instruction for everything else.
6085   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6086     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6087 
6088   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6089   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6090 
6091   // Empty records are ignored for parameter passing purposes.
6092   if (isEmptyRecord(getContext(), Ty, true)) {
6093     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6094     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6095     return Addr;
6096   }
6097 
6098   // The size of the actual thing passed, which might end up just
6099   // being a pointer for indirect types.
6100   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6101 
6102   // Arguments bigger than 16 bytes which aren't homogeneous
6103   // aggregates should be passed indirectly.
6104   bool IsIndirect = false;
6105   if (TyInfo.Width.getQuantity() > 16) {
6106     const Type *Base = nullptr;
6107     uint64_t Members = 0;
6108     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6109   }
6110 
6111   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6112                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6113 }
6114 
6115 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6116                                     QualType Ty) const {
6117   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6118                           CGF.getContext().getTypeInfoInChars(Ty),
6119                           CharUnits::fromQuantity(8),
6120                           /*allowHigherAlign*/ false);
6121 }
6122 
6123 //===----------------------------------------------------------------------===//
6124 // ARM ABI Implementation
6125 //===----------------------------------------------------------------------===//
6126 
6127 namespace {
6128 
6129 class ARMABIInfo : public SwiftABIInfo {
6130 public:
6131   enum ABIKind {
6132     APCS = 0,
6133     AAPCS = 1,
6134     AAPCS_VFP = 2,
6135     AAPCS16_VFP = 3,
6136   };
6137 
6138 private:
6139   ABIKind Kind;
6140   bool IsFloatABISoftFP;
6141 
6142 public:
6143   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6144       : SwiftABIInfo(CGT), Kind(_Kind) {
6145     setCCs();
6146     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6147         CGT.getCodeGenOpts().FloatABI == ""; // default
6148   }
6149 
6150   bool isEABI() const {
6151     switch (getTarget().getTriple().getEnvironment()) {
6152     case llvm::Triple::Android:
6153     case llvm::Triple::EABI:
6154     case llvm::Triple::EABIHF:
6155     case llvm::Triple::GNUEABI:
6156     case llvm::Triple::GNUEABIHF:
6157     case llvm::Triple::MuslEABI:
6158     case llvm::Triple::MuslEABIHF:
6159       return true;
6160     default:
6161       return false;
6162     }
6163   }
6164 
6165   bool isEABIHF() const {
6166     switch (getTarget().getTriple().getEnvironment()) {
6167     case llvm::Triple::EABIHF:
6168     case llvm::Triple::GNUEABIHF:
6169     case llvm::Triple::MuslEABIHF:
6170       return true;
6171     default:
6172       return false;
6173     }
6174   }
6175 
6176   ABIKind getABIKind() const { return Kind; }
6177 
6178   bool allowBFloatArgsAndRet() const override {
6179     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6180   }
6181 
6182 private:
6183   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6184                                 unsigned functionCallConv) const;
6185   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6186                                   unsigned functionCallConv) const;
6187   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6188                                           uint64_t Members) const;
6189   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6190   bool isIllegalVectorType(QualType Ty) const;
6191   bool containsAnyFP16Vectors(QualType Ty) const;
6192 
6193   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6194   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6195                                          uint64_t Members) const override;
6196 
6197   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6198 
6199   void computeInfo(CGFunctionInfo &FI) const override;
6200 
6201   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6202                     QualType Ty) const override;
6203 
6204   llvm::CallingConv::ID getLLVMDefaultCC() const;
6205   llvm::CallingConv::ID getABIDefaultCC() const;
6206   void setCCs();
6207 
6208   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6209                                     bool asReturnValue) const override {
6210     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6211   }
6212   bool isSwiftErrorInRegister() const override {
6213     return true;
6214   }
6215   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6216                                  unsigned elts) const override;
6217 };
6218 
6219 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6220 public:
6221   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6222       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6223 
6224   const ARMABIInfo &getABIInfo() const {
6225     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6226   }
6227 
6228   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6229     return 13;
6230   }
6231 
6232   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6233     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6234   }
6235 
6236   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6237                                llvm::Value *Address) const override {
6238     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6239 
6240     // 0-15 are the 16 integer registers.
6241     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6242     return false;
6243   }
6244 
6245   unsigned getSizeOfUnwindException() const override {
6246     if (getABIInfo().isEABI()) return 88;
6247     return TargetCodeGenInfo::getSizeOfUnwindException();
6248   }
6249 
6250   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6251                            CodeGen::CodeGenModule &CGM) const override {
6252     if (GV->isDeclaration())
6253       return;
6254     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6255     if (!FD)
6256       return;
6257 
6258     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6259     if (!Attr)
6260       return;
6261 
6262     const char *Kind;
6263     switch (Attr->getInterrupt()) {
6264     case ARMInterruptAttr::Generic: Kind = ""; break;
6265     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6266     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6267     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6268     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6269     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6270     }
6271 
6272     llvm::Function *Fn = cast<llvm::Function>(GV);
6273 
6274     Fn->addFnAttr("interrupt", Kind);
6275 
6276     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6277     if (ABI == ARMABIInfo::APCS)
6278       return;
6279 
6280     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6281     // however this is not necessarily true on taking any interrupt. Instruct
6282     // the backend to perform a realignment as part of the function prologue.
6283     llvm::AttrBuilder B;
6284     B.addStackAlignmentAttr(8);
6285     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6286   }
6287 };
6288 
6289 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6290 public:
6291   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6292       : ARMTargetCodeGenInfo(CGT, K) {}
6293 
6294   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6295                            CodeGen::CodeGenModule &CGM) const override;
6296 
6297   void getDependentLibraryOption(llvm::StringRef Lib,
6298                                  llvm::SmallString<24> &Opt) const override {
6299     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6300   }
6301 
6302   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6303                                llvm::SmallString<32> &Opt) const override {
6304     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6305   }
6306 };
6307 
6308 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6309     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6310   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6311   if (GV->isDeclaration())
6312     return;
6313   addStackProbeTargetAttributes(D, GV, CGM);
6314 }
6315 }
6316 
6317 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6318   if (!::classifyReturnType(getCXXABI(), FI, *this))
6319     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6320                                             FI.getCallingConvention());
6321 
6322   for (auto &I : FI.arguments())
6323     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6324                                   FI.getCallingConvention());
6325 
6326 
6327   // Always honor user-specified calling convention.
6328   if (FI.getCallingConvention() != llvm::CallingConv::C)
6329     return;
6330 
6331   llvm::CallingConv::ID cc = getRuntimeCC();
6332   if (cc != llvm::CallingConv::C)
6333     FI.setEffectiveCallingConvention(cc);
6334 }
6335 
6336 /// Return the default calling convention that LLVM will use.
6337 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6338   // The default calling convention that LLVM will infer.
6339   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6340     return llvm::CallingConv::ARM_AAPCS_VFP;
6341   else if (isEABI())
6342     return llvm::CallingConv::ARM_AAPCS;
6343   else
6344     return llvm::CallingConv::ARM_APCS;
6345 }
6346 
6347 /// Return the calling convention that our ABI would like us to use
6348 /// as the C calling convention.
6349 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6350   switch (getABIKind()) {
6351   case APCS: return llvm::CallingConv::ARM_APCS;
6352   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6353   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6354   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6355   }
6356   llvm_unreachable("bad ABI kind");
6357 }
6358 
6359 void ARMABIInfo::setCCs() {
6360   assert(getRuntimeCC() == llvm::CallingConv::C);
6361 
6362   // Don't muddy up the IR with a ton of explicit annotations if
6363   // they'd just match what LLVM will infer from the triple.
6364   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6365   if (abiCC != getLLVMDefaultCC())
6366     RuntimeCC = abiCC;
6367 }
6368 
6369 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6370   uint64_t Size = getContext().getTypeSize(Ty);
6371   if (Size <= 32) {
6372     llvm::Type *ResType =
6373         llvm::Type::getInt32Ty(getVMContext());
6374     return ABIArgInfo::getDirect(ResType);
6375   }
6376   if (Size == 64 || Size == 128) {
6377     auto *ResType = llvm::FixedVectorType::get(
6378         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6379     return ABIArgInfo::getDirect(ResType);
6380   }
6381   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6382 }
6383 
6384 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6385                                                     const Type *Base,
6386                                                     uint64_t Members) const {
6387   assert(Base && "Base class should be set for homogeneous aggregate");
6388   // Base can be a floating-point or a vector.
6389   if (const VectorType *VT = Base->getAs<VectorType>()) {
6390     // FP16 vectors should be converted to integer vectors
6391     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6392       uint64_t Size = getContext().getTypeSize(VT);
6393       auto *NewVecTy = llvm::FixedVectorType::get(
6394           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6395       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6396       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6397     }
6398   }
6399   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6400 }
6401 
6402 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6403                                             unsigned functionCallConv) const {
6404   // 6.1.2.1 The following argument types are VFP CPRCs:
6405   //   A single-precision floating-point type (including promoted
6406   //   half-precision types); A double-precision floating-point type;
6407   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6408   //   with a Base Type of a single- or double-precision floating-point type,
6409   //   64-bit containerized vectors or 128-bit containerized vectors with one
6410   //   to four Elements.
6411   // Variadic functions should always marshal to the base standard.
6412   bool IsAAPCS_VFP =
6413       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6414 
6415   Ty = useFirstFieldIfTransparentUnion(Ty);
6416 
6417   // Handle illegal vector types here.
6418   if (isIllegalVectorType(Ty))
6419     return coerceIllegalVector(Ty);
6420 
6421   if (!isAggregateTypeForABI(Ty)) {
6422     // Treat an enum type as its underlying type.
6423     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6424       Ty = EnumTy->getDecl()->getIntegerType();
6425     }
6426 
6427     if (const auto *EIT = Ty->getAs<ExtIntType>())
6428       if (EIT->getNumBits() > 64)
6429         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6430 
6431     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6432                                               : ABIArgInfo::getDirect());
6433   }
6434 
6435   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6436     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6437   }
6438 
6439   // Ignore empty records.
6440   if (isEmptyRecord(getContext(), Ty, true))
6441     return ABIArgInfo::getIgnore();
6442 
6443   if (IsAAPCS_VFP) {
6444     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6445     // into VFP registers.
6446     const Type *Base = nullptr;
6447     uint64_t Members = 0;
6448     if (isHomogeneousAggregate(Ty, Base, Members))
6449       return classifyHomogeneousAggregate(Ty, Base, Members);
6450   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6451     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6452     // this convention even for a variadic function: the backend will use GPRs
6453     // if needed.
6454     const Type *Base = nullptr;
6455     uint64_t Members = 0;
6456     if (isHomogeneousAggregate(Ty, Base, Members)) {
6457       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6458       llvm::Type *Ty =
6459         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6460       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6461     }
6462   }
6463 
6464   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6465       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6466     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6467     // bigger than 128-bits, they get placed in space allocated by the caller,
6468     // and a pointer is passed.
6469     return ABIArgInfo::getIndirect(
6470         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6471   }
6472 
6473   // Support byval for ARM.
6474   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6475   // most 8-byte. We realign the indirect argument if type alignment is bigger
6476   // than ABI alignment.
6477   uint64_t ABIAlign = 4;
6478   uint64_t TyAlign;
6479   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6480       getABIKind() == ARMABIInfo::AAPCS) {
6481     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6482     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6483   } else {
6484     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6485   }
6486   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6487     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6488     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6489                                    /*ByVal=*/true,
6490                                    /*Realign=*/TyAlign > ABIAlign);
6491   }
6492 
6493   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6494   // same size and alignment.
6495   if (getTarget().isRenderScriptTarget()) {
6496     return coerceToIntArray(Ty, getContext(), getVMContext());
6497   }
6498 
6499   // Otherwise, pass by coercing to a structure of the appropriate size.
6500   llvm::Type* ElemTy;
6501   unsigned SizeRegs;
6502   // FIXME: Try to match the types of the arguments more accurately where
6503   // we can.
6504   if (TyAlign <= 4) {
6505     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6506     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6507   } else {
6508     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6509     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6510   }
6511 
6512   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6513 }
6514 
6515 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6516                               llvm::LLVMContext &VMContext) {
6517   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6518   // is called integer-like if its size is less than or equal to one word, and
6519   // the offset of each of its addressable sub-fields is zero.
6520 
6521   uint64_t Size = Context.getTypeSize(Ty);
6522 
6523   // Check that the type fits in a word.
6524   if (Size > 32)
6525     return false;
6526 
6527   // FIXME: Handle vector types!
6528   if (Ty->isVectorType())
6529     return false;
6530 
6531   // Float types are never treated as "integer like".
6532   if (Ty->isRealFloatingType())
6533     return false;
6534 
6535   // If this is a builtin or pointer type then it is ok.
6536   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6537     return true;
6538 
6539   // Small complex integer types are "integer like".
6540   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6541     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6542 
6543   // Single element and zero sized arrays should be allowed, by the definition
6544   // above, but they are not.
6545 
6546   // Otherwise, it must be a record type.
6547   const RecordType *RT = Ty->getAs<RecordType>();
6548   if (!RT) return false;
6549 
6550   // Ignore records with flexible arrays.
6551   const RecordDecl *RD = RT->getDecl();
6552   if (RD->hasFlexibleArrayMember())
6553     return false;
6554 
6555   // Check that all sub-fields are at offset 0, and are themselves "integer
6556   // like".
6557   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6558 
6559   bool HadField = false;
6560   unsigned idx = 0;
6561   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6562        i != e; ++i, ++idx) {
6563     const FieldDecl *FD = *i;
6564 
6565     // Bit-fields are not addressable, we only need to verify they are "integer
6566     // like". We still have to disallow a subsequent non-bitfield, for example:
6567     //   struct { int : 0; int x }
6568     // is non-integer like according to gcc.
6569     if (FD->isBitField()) {
6570       if (!RD->isUnion())
6571         HadField = true;
6572 
6573       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6574         return false;
6575 
6576       continue;
6577     }
6578 
6579     // Check if this field is at offset 0.
6580     if (Layout.getFieldOffset(idx) != 0)
6581       return false;
6582 
6583     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6584       return false;
6585 
6586     // Only allow at most one field in a structure. This doesn't match the
6587     // wording above, but follows gcc in situations with a field following an
6588     // empty structure.
6589     if (!RD->isUnion()) {
6590       if (HadField)
6591         return false;
6592 
6593       HadField = true;
6594     }
6595   }
6596 
6597   return true;
6598 }
6599 
6600 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6601                                           unsigned functionCallConv) const {
6602 
6603   // Variadic functions should always marshal to the base standard.
6604   bool IsAAPCS_VFP =
6605       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6606 
6607   if (RetTy->isVoidType())
6608     return ABIArgInfo::getIgnore();
6609 
6610   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6611     // Large vector types should be returned via memory.
6612     if (getContext().getTypeSize(RetTy) > 128)
6613       return getNaturalAlignIndirect(RetTy);
6614     // TODO: FP16/BF16 vectors should be converted to integer vectors
6615     // This check is similar  to isIllegalVectorType - refactor?
6616     if ((!getTarget().hasLegalHalfType() &&
6617         (VT->getElementType()->isFloat16Type() ||
6618          VT->getElementType()->isHalfType())) ||
6619         (IsFloatABISoftFP &&
6620          VT->getElementType()->isBFloat16Type()))
6621       return coerceIllegalVector(RetTy);
6622   }
6623 
6624   if (!isAggregateTypeForABI(RetTy)) {
6625     // Treat an enum type as its underlying type.
6626     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6627       RetTy = EnumTy->getDecl()->getIntegerType();
6628 
6629     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6630       if (EIT->getNumBits() > 64)
6631         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6632 
6633     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6634                                                 : ABIArgInfo::getDirect();
6635   }
6636 
6637   // Are we following APCS?
6638   if (getABIKind() == APCS) {
6639     if (isEmptyRecord(getContext(), RetTy, false))
6640       return ABIArgInfo::getIgnore();
6641 
6642     // Complex types are all returned as packed integers.
6643     //
6644     // FIXME: Consider using 2 x vector types if the back end handles them
6645     // correctly.
6646     if (RetTy->isAnyComplexType())
6647       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6648           getVMContext(), getContext().getTypeSize(RetTy)));
6649 
6650     // Integer like structures are returned in r0.
6651     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6652       // Return in the smallest viable integer type.
6653       uint64_t Size = getContext().getTypeSize(RetTy);
6654       if (Size <= 8)
6655         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6656       if (Size <= 16)
6657         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6658       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6659     }
6660 
6661     // Otherwise return in memory.
6662     return getNaturalAlignIndirect(RetTy);
6663   }
6664 
6665   // Otherwise this is an AAPCS variant.
6666 
6667   if (isEmptyRecord(getContext(), RetTy, true))
6668     return ABIArgInfo::getIgnore();
6669 
6670   // Check for homogeneous aggregates with AAPCS-VFP.
6671   if (IsAAPCS_VFP) {
6672     const Type *Base = nullptr;
6673     uint64_t Members = 0;
6674     if (isHomogeneousAggregate(RetTy, Base, Members))
6675       return classifyHomogeneousAggregate(RetTy, Base, Members);
6676   }
6677 
6678   // Aggregates <= 4 bytes are returned in r0; other aggregates
6679   // are returned indirectly.
6680   uint64_t Size = getContext().getTypeSize(RetTy);
6681   if (Size <= 32) {
6682     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6683     // same size and alignment.
6684     if (getTarget().isRenderScriptTarget()) {
6685       return coerceToIntArray(RetTy, getContext(), getVMContext());
6686     }
6687     if (getDataLayout().isBigEndian())
6688       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6689       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6690 
6691     // Return in the smallest viable integer type.
6692     if (Size <= 8)
6693       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6694     if (Size <= 16)
6695       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6696     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6697   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6698     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6699     llvm::Type *CoerceTy =
6700         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6701     return ABIArgInfo::getDirect(CoerceTy);
6702   }
6703 
6704   return getNaturalAlignIndirect(RetTy);
6705 }
6706 
6707 /// isIllegalVector - check whether Ty is an illegal vector type.
6708 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6709   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6710     // On targets that don't support half, fp16 or bfloat, they are expanded
6711     // into float, and we don't want the ABI to depend on whether or not they
6712     // are supported in hardware. Thus return false to coerce vectors of these
6713     // types into integer vectors.
6714     // We do not depend on hasLegalHalfType for bfloat as it is a
6715     // separate IR type.
6716     if ((!getTarget().hasLegalHalfType() &&
6717         (VT->getElementType()->isFloat16Type() ||
6718          VT->getElementType()->isHalfType())) ||
6719         (IsFloatABISoftFP &&
6720          VT->getElementType()->isBFloat16Type()))
6721       return true;
6722     if (isAndroid()) {
6723       // Android shipped using Clang 3.1, which supported a slightly different
6724       // vector ABI. The primary differences were that 3-element vector types
6725       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6726       // accepts that legacy behavior for Android only.
6727       // Check whether VT is legal.
6728       unsigned NumElements = VT->getNumElements();
6729       // NumElements should be power of 2 or equal to 3.
6730       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6731         return true;
6732     } else {
6733       // Check whether VT is legal.
6734       unsigned NumElements = VT->getNumElements();
6735       uint64_t Size = getContext().getTypeSize(VT);
6736       // NumElements should be power of 2.
6737       if (!llvm::isPowerOf2_32(NumElements))
6738         return true;
6739       // Size should be greater than 32 bits.
6740       return Size <= 32;
6741     }
6742   }
6743   return false;
6744 }
6745 
6746 /// Return true if a type contains any 16-bit floating point vectors
6747 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6748   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6749     uint64_t NElements = AT->getSize().getZExtValue();
6750     if (NElements == 0)
6751       return false;
6752     return containsAnyFP16Vectors(AT->getElementType());
6753   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6754     const RecordDecl *RD = RT->getDecl();
6755 
6756     // If this is a C++ record, check the bases first.
6757     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6758       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6759             return containsAnyFP16Vectors(B.getType());
6760           }))
6761         return true;
6762 
6763     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6764           return FD && containsAnyFP16Vectors(FD->getType());
6765         }))
6766       return true;
6767 
6768     return false;
6769   } else {
6770     if (const VectorType *VT = Ty->getAs<VectorType>())
6771       return (VT->getElementType()->isFloat16Type() ||
6772               VT->getElementType()->isBFloat16Type() ||
6773               VT->getElementType()->isHalfType());
6774     return false;
6775   }
6776 }
6777 
6778 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6779                                            llvm::Type *eltTy,
6780                                            unsigned numElts) const {
6781   if (!llvm::isPowerOf2_32(numElts))
6782     return false;
6783   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6784   if (size > 64)
6785     return false;
6786   if (vectorSize.getQuantity() != 8 &&
6787       (vectorSize.getQuantity() != 16 || numElts == 1))
6788     return false;
6789   return true;
6790 }
6791 
6792 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6793   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6794   // double, or 64-bit or 128-bit vectors.
6795   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6796     if (BT->getKind() == BuiltinType::Float ||
6797         BT->getKind() == BuiltinType::Double ||
6798         BT->getKind() == BuiltinType::LongDouble)
6799       return true;
6800   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6801     unsigned VecSize = getContext().getTypeSize(VT);
6802     if (VecSize == 64 || VecSize == 128)
6803       return true;
6804   }
6805   return false;
6806 }
6807 
6808 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6809                                                    uint64_t Members) const {
6810   return Members <= 4;
6811 }
6812 
6813 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6814                                         bool acceptHalf) const {
6815   // Give precedence to user-specified calling conventions.
6816   if (callConvention != llvm::CallingConv::C)
6817     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6818   else
6819     return (getABIKind() == AAPCS_VFP) ||
6820            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6821 }
6822 
6823 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6824                               QualType Ty) const {
6825   CharUnits SlotSize = CharUnits::fromQuantity(4);
6826 
6827   // Empty records are ignored for parameter passing purposes.
6828   if (isEmptyRecord(getContext(), Ty, true)) {
6829     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6830     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6831     return Addr;
6832   }
6833 
6834   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6835   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6836 
6837   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6838   bool IsIndirect = false;
6839   const Type *Base = nullptr;
6840   uint64_t Members = 0;
6841   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6842     IsIndirect = true;
6843 
6844   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6845   // allocated by the caller.
6846   } else if (TySize > CharUnits::fromQuantity(16) &&
6847              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6848              !isHomogeneousAggregate(Ty, Base, Members)) {
6849     IsIndirect = true;
6850 
6851   // Otherwise, bound the type's ABI alignment.
6852   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6853   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6854   // Our callers should be prepared to handle an under-aligned address.
6855   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6856              getABIKind() == ARMABIInfo::AAPCS) {
6857     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6858     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6859   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6860     // ARMv7k allows type alignment up to 16 bytes.
6861     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6862     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6863   } else {
6864     TyAlignForABI = CharUnits::fromQuantity(4);
6865   }
6866 
6867   TypeInfoChars TyInfo(TySize, TyAlignForABI, false);
6868   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6869                           SlotSize, /*AllowHigherAlign*/ true);
6870 }
6871 
6872 //===----------------------------------------------------------------------===//
6873 // NVPTX ABI Implementation
6874 //===----------------------------------------------------------------------===//
6875 
6876 namespace {
6877 
6878 class NVPTXTargetCodeGenInfo;
6879 
6880 class NVPTXABIInfo : public ABIInfo {
6881   NVPTXTargetCodeGenInfo &CGInfo;
6882 
6883 public:
6884   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6885       : ABIInfo(CGT), CGInfo(Info) {}
6886 
6887   ABIArgInfo classifyReturnType(QualType RetTy) const;
6888   ABIArgInfo classifyArgumentType(QualType Ty) const;
6889 
6890   void computeInfo(CGFunctionInfo &FI) const override;
6891   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6892                     QualType Ty) const override;
6893   bool isUnsupportedType(QualType T) const;
6894   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6895 };
6896 
6897 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6898 public:
6899   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6900       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6901 
6902   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6903                            CodeGen::CodeGenModule &M) const override;
6904   bool shouldEmitStaticExternCAliases() const override;
6905 
6906   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6907     // On the device side, surface reference is represented as an object handle
6908     // in 64-bit integer.
6909     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6910   }
6911 
6912   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6913     // On the device side, texture reference is represented as an object handle
6914     // in 64-bit integer.
6915     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6916   }
6917 
6918   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6919                                               LValue Src) const override {
6920     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6921     return true;
6922   }
6923 
6924   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6925                                               LValue Src) const override {
6926     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6927     return true;
6928   }
6929 
6930 private:
6931   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6932   // resulting MDNode to the nvvm.annotations MDNode.
6933   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6934                               int Operand);
6935 
6936   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6937                                            LValue Src) {
6938     llvm::Value *Handle = nullptr;
6939     llvm::Constant *C =
6940         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6941     // Lookup `addrspacecast` through the constant pointer if any.
6942     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6943       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6944     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6945       // Load the handle from the specific global variable using
6946       // `nvvm.texsurf.handle.internal` intrinsic.
6947       Handle = CGF.EmitRuntimeCall(
6948           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6949                                {GV->getType()}),
6950           {GV}, "texsurf_handle");
6951     } else
6952       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6953     CGF.EmitStoreOfScalar(Handle, Dst);
6954   }
6955 };
6956 
6957 /// Checks if the type is unsupported directly by the current target.
6958 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6959   ASTContext &Context = getContext();
6960   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6961     return true;
6962   if (!Context.getTargetInfo().hasFloat128Type() &&
6963       (T->isFloat128Type() ||
6964        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6965     return true;
6966   if (const auto *EIT = T->getAs<ExtIntType>())
6967     return EIT->getNumBits() >
6968            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
6969   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6970       Context.getTypeSize(T) > 64U)
6971     return true;
6972   if (const auto *AT = T->getAsArrayTypeUnsafe())
6973     return isUnsupportedType(AT->getElementType());
6974   const auto *RT = T->getAs<RecordType>();
6975   if (!RT)
6976     return false;
6977   const RecordDecl *RD = RT->getDecl();
6978 
6979   // If this is a C++ record, check the bases first.
6980   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6981     for (const CXXBaseSpecifier &I : CXXRD->bases())
6982       if (isUnsupportedType(I.getType()))
6983         return true;
6984 
6985   for (const FieldDecl *I : RD->fields())
6986     if (isUnsupportedType(I->getType()))
6987       return true;
6988   return false;
6989 }
6990 
6991 /// Coerce the given type into an array with maximum allowed size of elements.
6992 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
6993                                                    unsigned MaxSize) const {
6994   // Alignment and Size are measured in bits.
6995   const uint64_t Size = getContext().getTypeSize(Ty);
6996   const uint64_t Alignment = getContext().getTypeAlign(Ty);
6997   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6998   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
6999   const uint64_t NumElements = (Size + Div - 1) / Div;
7000   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
7001 }
7002 
7003 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
7004   if (RetTy->isVoidType())
7005     return ABIArgInfo::getIgnore();
7006 
7007   if (getContext().getLangOpts().OpenMP &&
7008       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
7009     return coerceToIntArrayWithLimit(RetTy, 64);
7010 
7011   // note: this is different from default ABI
7012   if (!RetTy->isScalarType())
7013     return ABIArgInfo::getDirect();
7014 
7015   // Treat an enum type as its underlying type.
7016   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7017     RetTy = EnumTy->getDecl()->getIntegerType();
7018 
7019   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7020                                                : ABIArgInfo::getDirect());
7021 }
7022 
7023 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
7024   // Treat an enum type as its underlying type.
7025   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7026     Ty = EnumTy->getDecl()->getIntegerType();
7027 
7028   // Return aggregates type as indirect by value
7029   if (isAggregateTypeForABI(Ty)) {
7030     // Under CUDA device compilation, tex/surf builtin types are replaced with
7031     // object types and passed directly.
7032     if (getContext().getLangOpts().CUDAIsDevice) {
7033       if (Ty->isCUDADeviceBuiltinSurfaceType())
7034         return ABIArgInfo::getDirect(
7035             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7036       if (Ty->isCUDADeviceBuiltinTextureType())
7037         return ABIArgInfo::getDirect(
7038             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7039     }
7040     return getNaturalAlignIndirect(Ty, /* byval */ true);
7041   }
7042 
7043   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7044     if ((EIT->getNumBits() > 128) ||
7045         (!getContext().getTargetInfo().hasInt128Type() &&
7046          EIT->getNumBits() > 64))
7047       return getNaturalAlignIndirect(Ty, /* byval */ true);
7048   }
7049 
7050   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7051                                             : ABIArgInfo::getDirect());
7052 }
7053 
7054 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7055   if (!getCXXABI().classifyReturnType(FI))
7056     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7057   for (auto &I : FI.arguments())
7058     I.info = classifyArgumentType(I.type);
7059 
7060   // Always honor user-specified calling convention.
7061   if (FI.getCallingConvention() != llvm::CallingConv::C)
7062     return;
7063 
7064   FI.setEffectiveCallingConvention(getRuntimeCC());
7065 }
7066 
7067 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7068                                 QualType Ty) const {
7069   llvm_unreachable("NVPTX does not support varargs");
7070 }
7071 
7072 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7073     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7074   if (GV->isDeclaration())
7075     return;
7076   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7077   if (VD) {
7078     if (M.getLangOpts().CUDA) {
7079       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7080         addNVVMMetadata(GV, "surface", 1);
7081       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7082         addNVVMMetadata(GV, "texture", 1);
7083       return;
7084     }
7085   }
7086 
7087   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7088   if (!FD) return;
7089 
7090   llvm::Function *F = cast<llvm::Function>(GV);
7091 
7092   // Perform special handling in OpenCL mode
7093   if (M.getLangOpts().OpenCL) {
7094     // Use OpenCL function attributes to check for kernel functions
7095     // By default, all functions are device functions
7096     if (FD->hasAttr<OpenCLKernelAttr>()) {
7097       // OpenCL __kernel functions get kernel metadata
7098       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7099       addNVVMMetadata(F, "kernel", 1);
7100       // And kernel functions are not subject to inlining
7101       F->addFnAttr(llvm::Attribute::NoInline);
7102     }
7103   }
7104 
7105   // Perform special handling in CUDA mode.
7106   if (M.getLangOpts().CUDA) {
7107     // CUDA __global__ functions get a kernel metadata entry.  Since
7108     // __global__ functions cannot be called from the device, we do not
7109     // need to set the noinline attribute.
7110     if (FD->hasAttr<CUDAGlobalAttr>()) {
7111       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7112       addNVVMMetadata(F, "kernel", 1);
7113     }
7114     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7115       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7116       llvm::APSInt MaxThreads(32);
7117       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7118       if (MaxThreads > 0)
7119         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7120 
7121       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7122       // not specified in __launch_bounds__ or if the user specified a 0 value,
7123       // we don't have to add a PTX directive.
7124       if (Attr->getMinBlocks()) {
7125         llvm::APSInt MinBlocks(32);
7126         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7127         if (MinBlocks > 0)
7128           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7129           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7130       }
7131     }
7132   }
7133 }
7134 
7135 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7136                                              StringRef Name, int Operand) {
7137   llvm::Module *M = GV->getParent();
7138   llvm::LLVMContext &Ctx = M->getContext();
7139 
7140   // Get "nvvm.annotations" metadata node
7141   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7142 
7143   llvm::Metadata *MDVals[] = {
7144       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7145       llvm::ConstantAsMetadata::get(
7146           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7147   // Append metadata to nvvm.annotations
7148   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7149 }
7150 
7151 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7152   return false;
7153 }
7154 }
7155 
7156 //===----------------------------------------------------------------------===//
7157 // SystemZ ABI Implementation
7158 //===----------------------------------------------------------------------===//
7159 
7160 namespace {
7161 
7162 class SystemZABIInfo : public SwiftABIInfo {
7163   bool HasVector;
7164   bool IsSoftFloatABI;
7165 
7166 public:
7167   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7168     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7169 
7170   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7171   bool isCompoundType(QualType Ty) const;
7172   bool isVectorArgumentType(QualType Ty) const;
7173   bool isFPArgumentType(QualType Ty) const;
7174   QualType GetSingleElementType(QualType Ty) const;
7175 
7176   ABIArgInfo classifyReturnType(QualType RetTy) const;
7177   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7178 
7179   void computeInfo(CGFunctionInfo &FI) const override {
7180     if (!getCXXABI().classifyReturnType(FI))
7181       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7182     for (auto &I : FI.arguments())
7183       I.info = classifyArgumentType(I.type);
7184   }
7185 
7186   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7187                     QualType Ty) const override;
7188 
7189   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7190                                     bool asReturnValue) const override {
7191     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7192   }
7193   bool isSwiftErrorInRegister() const override {
7194     return false;
7195   }
7196 };
7197 
7198 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7199 public:
7200   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7201       : TargetCodeGenInfo(
7202             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7203 };
7204 
7205 }
7206 
7207 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7208   // Treat an enum type as its underlying type.
7209   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7210     Ty = EnumTy->getDecl()->getIntegerType();
7211 
7212   // Promotable integer types are required to be promoted by the ABI.
7213   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7214     return true;
7215 
7216   if (const auto *EIT = Ty->getAs<ExtIntType>())
7217     if (EIT->getNumBits() < 64)
7218       return true;
7219 
7220   // 32-bit values must also be promoted.
7221   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7222     switch (BT->getKind()) {
7223     case BuiltinType::Int:
7224     case BuiltinType::UInt:
7225       return true;
7226     default:
7227       return false;
7228     }
7229   return false;
7230 }
7231 
7232 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7233   return (Ty->isAnyComplexType() ||
7234           Ty->isVectorType() ||
7235           isAggregateTypeForABI(Ty));
7236 }
7237 
7238 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7239   return (HasVector &&
7240           Ty->isVectorType() &&
7241           getContext().getTypeSize(Ty) <= 128);
7242 }
7243 
7244 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7245   if (IsSoftFloatABI)
7246     return false;
7247 
7248   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7249     switch (BT->getKind()) {
7250     case BuiltinType::Float:
7251     case BuiltinType::Double:
7252       return true;
7253     default:
7254       return false;
7255     }
7256 
7257   return false;
7258 }
7259 
7260 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7261   const RecordType *RT = Ty->getAs<RecordType>();
7262 
7263   if (RT && RT->isStructureOrClassType()) {
7264     const RecordDecl *RD = RT->getDecl();
7265     QualType Found;
7266 
7267     // If this is a C++ record, check the bases first.
7268     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7269       for (const auto &I : CXXRD->bases()) {
7270         QualType Base = I.getType();
7271 
7272         // Empty bases don't affect things either way.
7273         if (isEmptyRecord(getContext(), Base, true))
7274           continue;
7275 
7276         if (!Found.isNull())
7277           return Ty;
7278         Found = GetSingleElementType(Base);
7279       }
7280 
7281     // Check the fields.
7282     for (const auto *FD : RD->fields()) {
7283       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7284       // Unlike isSingleElementStruct(), empty structure and array fields
7285       // do count.  So do anonymous bitfields that aren't zero-sized.
7286       if (getContext().getLangOpts().CPlusPlus &&
7287           FD->isZeroLengthBitField(getContext()))
7288         continue;
7289       // Like isSingleElementStruct(), ignore C++20 empty data members.
7290       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7291           isEmptyRecord(getContext(), FD->getType(), true))
7292         continue;
7293 
7294       // Unlike isSingleElementStruct(), arrays do not count.
7295       // Nested structures still do though.
7296       if (!Found.isNull())
7297         return Ty;
7298       Found = GetSingleElementType(FD->getType());
7299     }
7300 
7301     // Unlike isSingleElementStruct(), trailing padding is allowed.
7302     // An 8-byte aligned struct s { float f; } is passed as a double.
7303     if (!Found.isNull())
7304       return Found;
7305   }
7306 
7307   return Ty;
7308 }
7309 
7310 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7311                                   QualType Ty) const {
7312   // Assume that va_list type is correct; should be pointer to LLVM type:
7313   // struct {
7314   //   i64 __gpr;
7315   //   i64 __fpr;
7316   //   i8 *__overflow_arg_area;
7317   //   i8 *__reg_save_area;
7318   // };
7319 
7320   // Every non-vector argument occupies 8 bytes and is passed by preference
7321   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7322   // always passed on the stack.
7323   Ty = getContext().getCanonicalType(Ty);
7324   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7325   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7326   llvm::Type *DirectTy = ArgTy;
7327   ABIArgInfo AI = classifyArgumentType(Ty);
7328   bool IsIndirect = AI.isIndirect();
7329   bool InFPRs = false;
7330   bool IsVector = false;
7331   CharUnits UnpaddedSize;
7332   CharUnits DirectAlign;
7333   if (IsIndirect) {
7334     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7335     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7336   } else {
7337     if (AI.getCoerceToType())
7338       ArgTy = AI.getCoerceToType();
7339     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7340     IsVector = ArgTy->isVectorTy();
7341     UnpaddedSize = TyInfo.Width;
7342     DirectAlign = TyInfo.Align;
7343   }
7344   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7345   if (IsVector && UnpaddedSize > PaddedSize)
7346     PaddedSize = CharUnits::fromQuantity(16);
7347   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7348 
7349   CharUnits Padding = (PaddedSize - UnpaddedSize);
7350 
7351   llvm::Type *IndexTy = CGF.Int64Ty;
7352   llvm::Value *PaddedSizeV =
7353     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7354 
7355   if (IsVector) {
7356     // Work out the address of a vector argument on the stack.
7357     // Vector arguments are always passed in the high bits of a
7358     // single (8 byte) or double (16 byte) stack slot.
7359     Address OverflowArgAreaPtr =
7360         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7361     Address OverflowArgArea =
7362       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7363               TyInfo.Align);
7364     Address MemAddr =
7365       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7366 
7367     // Update overflow_arg_area_ptr pointer
7368     llvm::Value *NewOverflowArgArea =
7369       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7370                             "overflow_arg_area");
7371     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7372 
7373     return MemAddr;
7374   }
7375 
7376   assert(PaddedSize.getQuantity() == 8);
7377 
7378   unsigned MaxRegs, RegCountField, RegSaveIndex;
7379   CharUnits RegPadding;
7380   if (InFPRs) {
7381     MaxRegs = 4; // Maximum of 4 FPR arguments
7382     RegCountField = 1; // __fpr
7383     RegSaveIndex = 16; // save offset for f0
7384     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7385   } else {
7386     MaxRegs = 5; // Maximum of 5 GPR arguments
7387     RegCountField = 0; // __gpr
7388     RegSaveIndex = 2; // save offset for r2
7389     RegPadding = Padding; // values are passed in the low bits of a GPR
7390   }
7391 
7392   Address RegCountPtr =
7393       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7394   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7395   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7396   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7397                                                  "fits_in_regs");
7398 
7399   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7400   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7401   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7402   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7403 
7404   // Emit code to load the value if it was passed in registers.
7405   CGF.EmitBlock(InRegBlock);
7406 
7407   // Work out the address of an argument register.
7408   llvm::Value *ScaledRegCount =
7409     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7410   llvm::Value *RegBase =
7411     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7412                                       + RegPadding.getQuantity());
7413   llvm::Value *RegOffset =
7414     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7415   Address RegSaveAreaPtr =
7416       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7417   llvm::Value *RegSaveArea =
7418     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7419   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7420                                            "raw_reg_addr"),
7421                      PaddedSize);
7422   Address RegAddr =
7423     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7424 
7425   // Update the register count
7426   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7427   llvm::Value *NewRegCount =
7428     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7429   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7430   CGF.EmitBranch(ContBlock);
7431 
7432   // Emit code to load the value if it was passed in memory.
7433   CGF.EmitBlock(InMemBlock);
7434 
7435   // Work out the address of a stack argument.
7436   Address OverflowArgAreaPtr =
7437       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7438   Address OverflowArgArea =
7439     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7440             PaddedSize);
7441   Address RawMemAddr =
7442     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7443   Address MemAddr =
7444     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7445 
7446   // Update overflow_arg_area_ptr pointer
7447   llvm::Value *NewOverflowArgArea =
7448     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7449                           "overflow_arg_area");
7450   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7451   CGF.EmitBranch(ContBlock);
7452 
7453   // Return the appropriate result.
7454   CGF.EmitBlock(ContBlock);
7455   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7456                                  MemAddr, InMemBlock, "va_arg.addr");
7457 
7458   if (IsIndirect)
7459     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7460                       TyInfo.Align);
7461 
7462   return ResAddr;
7463 }
7464 
7465 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7466   if (RetTy->isVoidType())
7467     return ABIArgInfo::getIgnore();
7468   if (isVectorArgumentType(RetTy))
7469     return ABIArgInfo::getDirect();
7470   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7471     return getNaturalAlignIndirect(RetTy);
7472   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7473                                                : ABIArgInfo::getDirect());
7474 }
7475 
7476 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7477   // Handle the generic C++ ABI.
7478   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7479     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7480 
7481   // Integers and enums are extended to full register width.
7482   if (isPromotableIntegerTypeForABI(Ty))
7483     return ABIArgInfo::getExtend(Ty);
7484 
7485   // Handle vector types and vector-like structure types.  Note that
7486   // as opposed to float-like structure types, we do not allow any
7487   // padding for vector-like structures, so verify the sizes match.
7488   uint64_t Size = getContext().getTypeSize(Ty);
7489   QualType SingleElementTy = GetSingleElementType(Ty);
7490   if (isVectorArgumentType(SingleElementTy) &&
7491       getContext().getTypeSize(SingleElementTy) == Size)
7492     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7493 
7494   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7495   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7496     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7497 
7498   // Handle small structures.
7499   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7500     // Structures with flexible arrays have variable length, so really
7501     // fail the size test above.
7502     const RecordDecl *RD = RT->getDecl();
7503     if (RD->hasFlexibleArrayMember())
7504       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7505 
7506     // The structure is passed as an unextended integer, a float, or a double.
7507     llvm::Type *PassTy;
7508     if (isFPArgumentType(SingleElementTy)) {
7509       assert(Size == 32 || Size == 64);
7510       if (Size == 32)
7511         PassTy = llvm::Type::getFloatTy(getVMContext());
7512       else
7513         PassTy = llvm::Type::getDoubleTy(getVMContext());
7514     } else
7515       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7516     return ABIArgInfo::getDirect(PassTy);
7517   }
7518 
7519   // Non-structure compounds are passed indirectly.
7520   if (isCompoundType(Ty))
7521     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7522 
7523   return ABIArgInfo::getDirect(nullptr);
7524 }
7525 
7526 //===----------------------------------------------------------------------===//
7527 // MSP430 ABI Implementation
7528 //===----------------------------------------------------------------------===//
7529 
7530 namespace {
7531 
7532 class MSP430ABIInfo : public DefaultABIInfo {
7533   static ABIArgInfo complexArgInfo() {
7534     ABIArgInfo Info = ABIArgInfo::getDirect();
7535     Info.setCanBeFlattened(false);
7536     return Info;
7537   }
7538 
7539 public:
7540   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7541 
7542   ABIArgInfo classifyReturnType(QualType RetTy) const {
7543     if (RetTy->isAnyComplexType())
7544       return complexArgInfo();
7545 
7546     return DefaultABIInfo::classifyReturnType(RetTy);
7547   }
7548 
7549   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7550     if (RetTy->isAnyComplexType())
7551       return complexArgInfo();
7552 
7553     return DefaultABIInfo::classifyArgumentType(RetTy);
7554   }
7555 
7556   // Just copy the original implementations because
7557   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7558   void computeInfo(CGFunctionInfo &FI) const override {
7559     if (!getCXXABI().classifyReturnType(FI))
7560       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7561     for (auto &I : FI.arguments())
7562       I.info = classifyArgumentType(I.type);
7563   }
7564 
7565   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7566                     QualType Ty) const override {
7567     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7568   }
7569 };
7570 
7571 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7572 public:
7573   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7574       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7575   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7576                            CodeGen::CodeGenModule &M) const override;
7577 };
7578 
7579 }
7580 
7581 void MSP430TargetCodeGenInfo::setTargetAttributes(
7582     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7583   if (GV->isDeclaration())
7584     return;
7585   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7586     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7587     if (!InterruptAttr)
7588       return;
7589 
7590     // Handle 'interrupt' attribute:
7591     llvm::Function *F = cast<llvm::Function>(GV);
7592 
7593     // Step 1: Set ISR calling convention.
7594     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7595 
7596     // Step 2: Add attributes goodness.
7597     F->addFnAttr(llvm::Attribute::NoInline);
7598     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7599   }
7600 }
7601 
7602 //===----------------------------------------------------------------------===//
7603 // MIPS ABI Implementation.  This works for both little-endian and
7604 // big-endian variants.
7605 //===----------------------------------------------------------------------===//
7606 
7607 namespace {
7608 class MipsABIInfo : public ABIInfo {
7609   bool IsO32;
7610   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7611   void CoerceToIntArgs(uint64_t TySize,
7612                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7613   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7614   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7615   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7616 public:
7617   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7618     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7619     StackAlignInBytes(IsO32 ? 8 : 16) {}
7620 
7621   ABIArgInfo classifyReturnType(QualType RetTy) const;
7622   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7623   void computeInfo(CGFunctionInfo &FI) const override;
7624   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7625                     QualType Ty) const override;
7626   ABIArgInfo extendType(QualType Ty) const;
7627 };
7628 
7629 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7630   unsigned SizeOfUnwindException;
7631 public:
7632   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7633       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7634         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7635 
7636   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7637     return 29;
7638   }
7639 
7640   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7641                            CodeGen::CodeGenModule &CGM) const override {
7642     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7643     if (!FD) return;
7644     llvm::Function *Fn = cast<llvm::Function>(GV);
7645 
7646     if (FD->hasAttr<MipsLongCallAttr>())
7647       Fn->addFnAttr("long-call");
7648     else if (FD->hasAttr<MipsShortCallAttr>())
7649       Fn->addFnAttr("short-call");
7650 
7651     // Other attributes do not have a meaning for declarations.
7652     if (GV->isDeclaration())
7653       return;
7654 
7655     if (FD->hasAttr<Mips16Attr>()) {
7656       Fn->addFnAttr("mips16");
7657     }
7658     else if (FD->hasAttr<NoMips16Attr>()) {
7659       Fn->addFnAttr("nomips16");
7660     }
7661 
7662     if (FD->hasAttr<MicroMipsAttr>())
7663       Fn->addFnAttr("micromips");
7664     else if (FD->hasAttr<NoMicroMipsAttr>())
7665       Fn->addFnAttr("nomicromips");
7666 
7667     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7668     if (!Attr)
7669       return;
7670 
7671     const char *Kind;
7672     switch (Attr->getInterrupt()) {
7673     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7674     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7675     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7676     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7677     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7678     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7679     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7680     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7681     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7682     }
7683 
7684     Fn->addFnAttr("interrupt", Kind);
7685 
7686   }
7687 
7688   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7689                                llvm::Value *Address) const override;
7690 
7691   unsigned getSizeOfUnwindException() const override {
7692     return SizeOfUnwindException;
7693   }
7694 };
7695 }
7696 
7697 void MipsABIInfo::CoerceToIntArgs(
7698     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7699   llvm::IntegerType *IntTy =
7700     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7701 
7702   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7703   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7704     ArgList.push_back(IntTy);
7705 
7706   // If necessary, add one more integer type to ArgList.
7707   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7708 
7709   if (R)
7710     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7711 }
7712 
7713 // In N32/64, an aligned double precision floating point field is passed in
7714 // a register.
7715 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7716   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7717 
7718   if (IsO32) {
7719     CoerceToIntArgs(TySize, ArgList);
7720     return llvm::StructType::get(getVMContext(), ArgList);
7721   }
7722 
7723   if (Ty->isComplexType())
7724     return CGT.ConvertType(Ty);
7725 
7726   const RecordType *RT = Ty->getAs<RecordType>();
7727 
7728   // Unions/vectors are passed in integer registers.
7729   if (!RT || !RT->isStructureOrClassType()) {
7730     CoerceToIntArgs(TySize, ArgList);
7731     return llvm::StructType::get(getVMContext(), ArgList);
7732   }
7733 
7734   const RecordDecl *RD = RT->getDecl();
7735   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7736   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7737 
7738   uint64_t LastOffset = 0;
7739   unsigned idx = 0;
7740   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7741 
7742   // Iterate over fields in the struct/class and check if there are any aligned
7743   // double fields.
7744   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7745        i != e; ++i, ++idx) {
7746     const QualType Ty = i->getType();
7747     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7748 
7749     if (!BT || BT->getKind() != BuiltinType::Double)
7750       continue;
7751 
7752     uint64_t Offset = Layout.getFieldOffset(idx);
7753     if (Offset % 64) // Ignore doubles that are not aligned.
7754       continue;
7755 
7756     // Add ((Offset - LastOffset) / 64) args of type i64.
7757     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7758       ArgList.push_back(I64);
7759 
7760     // Add double type.
7761     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7762     LastOffset = Offset + 64;
7763   }
7764 
7765   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7766   ArgList.append(IntArgList.begin(), IntArgList.end());
7767 
7768   return llvm::StructType::get(getVMContext(), ArgList);
7769 }
7770 
7771 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7772                                         uint64_t Offset) const {
7773   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7774     return nullptr;
7775 
7776   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7777 }
7778 
7779 ABIArgInfo
7780 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7781   Ty = useFirstFieldIfTransparentUnion(Ty);
7782 
7783   uint64_t OrigOffset = Offset;
7784   uint64_t TySize = getContext().getTypeSize(Ty);
7785   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7786 
7787   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7788                    (uint64_t)StackAlignInBytes);
7789   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7790   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7791 
7792   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7793     // Ignore empty aggregates.
7794     if (TySize == 0)
7795       return ABIArgInfo::getIgnore();
7796 
7797     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7798       Offset = OrigOffset + MinABIStackAlignInBytes;
7799       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7800     }
7801 
7802     // If we have reached here, aggregates are passed directly by coercing to
7803     // another structure type. Padding is inserted if the offset of the
7804     // aggregate is unaligned.
7805     ABIArgInfo ArgInfo =
7806         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7807                               getPaddingType(OrigOffset, CurrOffset));
7808     ArgInfo.setInReg(true);
7809     return ArgInfo;
7810   }
7811 
7812   // Treat an enum type as its underlying type.
7813   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7814     Ty = EnumTy->getDecl()->getIntegerType();
7815 
7816   // Make sure we pass indirectly things that are too large.
7817   if (const auto *EIT = Ty->getAs<ExtIntType>())
7818     if (EIT->getNumBits() > 128 ||
7819         (EIT->getNumBits() > 64 &&
7820          !getContext().getTargetInfo().hasInt128Type()))
7821       return getNaturalAlignIndirect(Ty);
7822 
7823   // All integral types are promoted to the GPR width.
7824   if (Ty->isIntegralOrEnumerationType())
7825     return extendType(Ty);
7826 
7827   return ABIArgInfo::getDirect(
7828       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7829 }
7830 
7831 llvm::Type*
7832 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7833   const RecordType *RT = RetTy->getAs<RecordType>();
7834   SmallVector<llvm::Type*, 8> RTList;
7835 
7836   if (RT && RT->isStructureOrClassType()) {
7837     const RecordDecl *RD = RT->getDecl();
7838     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7839     unsigned FieldCnt = Layout.getFieldCount();
7840 
7841     // N32/64 returns struct/classes in floating point registers if the
7842     // following conditions are met:
7843     // 1. The size of the struct/class is no larger than 128-bit.
7844     // 2. The struct/class has one or two fields all of which are floating
7845     //    point types.
7846     // 3. The offset of the first field is zero (this follows what gcc does).
7847     //
7848     // Any other composite results are returned in integer registers.
7849     //
7850     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7851       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7852       for (; b != e; ++b) {
7853         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7854 
7855         if (!BT || !BT->isFloatingPoint())
7856           break;
7857 
7858         RTList.push_back(CGT.ConvertType(b->getType()));
7859       }
7860 
7861       if (b == e)
7862         return llvm::StructType::get(getVMContext(), RTList,
7863                                      RD->hasAttr<PackedAttr>());
7864 
7865       RTList.clear();
7866     }
7867   }
7868 
7869   CoerceToIntArgs(Size, RTList);
7870   return llvm::StructType::get(getVMContext(), RTList);
7871 }
7872 
7873 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7874   uint64_t Size = getContext().getTypeSize(RetTy);
7875 
7876   if (RetTy->isVoidType())
7877     return ABIArgInfo::getIgnore();
7878 
7879   // O32 doesn't treat zero-sized structs differently from other structs.
7880   // However, N32/N64 ignores zero sized return values.
7881   if (!IsO32 && Size == 0)
7882     return ABIArgInfo::getIgnore();
7883 
7884   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7885     if (Size <= 128) {
7886       if (RetTy->isAnyComplexType())
7887         return ABIArgInfo::getDirect();
7888 
7889       // O32 returns integer vectors in registers and N32/N64 returns all small
7890       // aggregates in registers.
7891       if (!IsO32 ||
7892           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7893         ABIArgInfo ArgInfo =
7894             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7895         ArgInfo.setInReg(true);
7896         return ArgInfo;
7897       }
7898     }
7899 
7900     return getNaturalAlignIndirect(RetTy);
7901   }
7902 
7903   // Treat an enum type as its underlying type.
7904   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7905     RetTy = EnumTy->getDecl()->getIntegerType();
7906 
7907   // Make sure we pass indirectly things that are too large.
7908   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7909     if (EIT->getNumBits() > 128 ||
7910         (EIT->getNumBits() > 64 &&
7911          !getContext().getTargetInfo().hasInt128Type()))
7912       return getNaturalAlignIndirect(RetTy);
7913 
7914   if (isPromotableIntegerTypeForABI(RetTy))
7915     return ABIArgInfo::getExtend(RetTy);
7916 
7917   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7918       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7919     return ABIArgInfo::getSignExtend(RetTy);
7920 
7921   return ABIArgInfo::getDirect();
7922 }
7923 
7924 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7925   ABIArgInfo &RetInfo = FI.getReturnInfo();
7926   if (!getCXXABI().classifyReturnType(FI))
7927     RetInfo = classifyReturnType(FI.getReturnType());
7928 
7929   // Check if a pointer to an aggregate is passed as a hidden argument.
7930   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7931 
7932   for (auto &I : FI.arguments())
7933     I.info = classifyArgumentType(I.type, Offset);
7934 }
7935 
7936 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7937                                QualType OrigTy) const {
7938   QualType Ty = OrigTy;
7939 
7940   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7941   // Pointers are also promoted in the same way but this only matters for N32.
7942   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7943   unsigned PtrWidth = getTarget().getPointerWidth(0);
7944   bool DidPromote = false;
7945   if ((Ty->isIntegerType() &&
7946           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7947       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7948     DidPromote = true;
7949     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7950                                             Ty->isSignedIntegerType());
7951   }
7952 
7953   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7954 
7955   // The alignment of things in the argument area is never larger than
7956   // StackAlignInBytes.
7957   TyInfo.Align =
7958     std::min(TyInfo.Align, CharUnits::fromQuantity(StackAlignInBytes));
7959 
7960   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7961   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7962 
7963   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7964                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7965 
7966 
7967   // If there was a promotion, "unpromote" into a temporary.
7968   // TODO: can we just use a pointer into a subset of the original slot?
7969   if (DidPromote) {
7970     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7971     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7972 
7973     // Truncate down to the right width.
7974     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7975                                                  : CGF.IntPtrTy);
7976     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7977     if (OrigTy->isPointerType())
7978       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7979 
7980     CGF.Builder.CreateStore(V, Temp);
7981     Addr = Temp;
7982   }
7983 
7984   return Addr;
7985 }
7986 
7987 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7988   int TySize = getContext().getTypeSize(Ty);
7989 
7990   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7991   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7992     return ABIArgInfo::getSignExtend(Ty);
7993 
7994   return ABIArgInfo::getExtend(Ty);
7995 }
7996 
7997 bool
7998 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7999                                                llvm::Value *Address) const {
8000   // This information comes from gcc's implementation, which seems to
8001   // as canonical as it gets.
8002 
8003   // Everything on MIPS is 4 bytes.  Double-precision FP registers
8004   // are aliased to pairs of single-precision FP registers.
8005   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
8006 
8007   // 0-31 are the general purpose registers, $0 - $31.
8008   // 32-63 are the floating-point registers, $f0 - $f31.
8009   // 64 and 65 are the multiply/divide registers, $hi and $lo.
8010   // 66 is the (notional, I think) register for signal-handler return.
8011   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
8012 
8013   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
8014   // They are one bit wide and ignored here.
8015 
8016   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
8017   // (coprocessor 1 is the FP unit)
8018   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
8019   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
8020   // 176-181 are the DSP accumulator registers.
8021   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
8022   return false;
8023 }
8024 
8025 //===----------------------------------------------------------------------===//
8026 // AVR ABI Implementation.
8027 //===----------------------------------------------------------------------===//
8028 
8029 namespace {
8030 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
8031 public:
8032   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
8033       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8034 
8035   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8036                            CodeGen::CodeGenModule &CGM) const override {
8037     if (GV->isDeclaration())
8038       return;
8039     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8040     if (!FD) return;
8041     auto *Fn = cast<llvm::Function>(GV);
8042 
8043     if (FD->getAttr<AVRInterruptAttr>())
8044       Fn->addFnAttr("interrupt");
8045 
8046     if (FD->getAttr<AVRSignalAttr>())
8047       Fn->addFnAttr("signal");
8048   }
8049 };
8050 }
8051 
8052 //===----------------------------------------------------------------------===//
8053 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8054 // Currently subclassed only to implement custom OpenCL C function attribute
8055 // handling.
8056 //===----------------------------------------------------------------------===//
8057 
8058 namespace {
8059 
8060 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8061 public:
8062   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8063     : DefaultTargetCodeGenInfo(CGT) {}
8064 
8065   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8066                            CodeGen::CodeGenModule &M) const override;
8067 };
8068 
8069 void TCETargetCodeGenInfo::setTargetAttributes(
8070     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8071   if (GV->isDeclaration())
8072     return;
8073   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8074   if (!FD) return;
8075 
8076   llvm::Function *F = cast<llvm::Function>(GV);
8077 
8078   if (M.getLangOpts().OpenCL) {
8079     if (FD->hasAttr<OpenCLKernelAttr>()) {
8080       // OpenCL C Kernel functions are not subject to inlining
8081       F->addFnAttr(llvm::Attribute::NoInline);
8082       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8083       if (Attr) {
8084         // Convert the reqd_work_group_size() attributes to metadata.
8085         llvm::LLVMContext &Context = F->getContext();
8086         llvm::NamedMDNode *OpenCLMetadata =
8087             M.getModule().getOrInsertNamedMetadata(
8088                 "opencl.kernel_wg_size_info");
8089 
8090         SmallVector<llvm::Metadata *, 5> Operands;
8091         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8092 
8093         Operands.push_back(
8094             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8095                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8096         Operands.push_back(
8097             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8098                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8099         Operands.push_back(
8100             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8101                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8102 
8103         // Add a boolean constant operand for "required" (true) or "hint"
8104         // (false) for implementing the work_group_size_hint attr later.
8105         // Currently always true as the hint is not yet implemented.
8106         Operands.push_back(
8107             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8108         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8109       }
8110     }
8111   }
8112 }
8113 
8114 }
8115 
8116 //===----------------------------------------------------------------------===//
8117 // Hexagon ABI Implementation
8118 //===----------------------------------------------------------------------===//
8119 
8120 namespace {
8121 
8122 class HexagonABIInfo : public DefaultABIInfo {
8123 public:
8124   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8125 
8126 private:
8127   ABIArgInfo classifyReturnType(QualType RetTy) const;
8128   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8129   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8130 
8131   void computeInfo(CGFunctionInfo &FI) const override;
8132 
8133   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8134                     QualType Ty) const override;
8135   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8136                               QualType Ty) const;
8137   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8138                               QualType Ty) const;
8139   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8140                                    QualType Ty) const;
8141 };
8142 
8143 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8144 public:
8145   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8146       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8147 
8148   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8149     return 29;
8150   }
8151 
8152   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8153                            CodeGen::CodeGenModule &GCM) const override {
8154     if (GV->isDeclaration())
8155       return;
8156     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8157     if (!FD)
8158       return;
8159   }
8160 };
8161 
8162 } // namespace
8163 
8164 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8165   unsigned RegsLeft = 6;
8166   if (!getCXXABI().classifyReturnType(FI))
8167     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8168   for (auto &I : FI.arguments())
8169     I.info = classifyArgumentType(I.type, &RegsLeft);
8170 }
8171 
8172 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8173   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8174                        " through registers");
8175 
8176   if (*RegsLeft == 0)
8177     return false;
8178 
8179   if (Size <= 32) {
8180     (*RegsLeft)--;
8181     return true;
8182   }
8183 
8184   if (2 <= (*RegsLeft & (~1U))) {
8185     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8186     return true;
8187   }
8188 
8189   // Next available register was r5 but candidate was greater than 32-bits so it
8190   // has to go on the stack. However we still consume r5
8191   if (*RegsLeft == 1)
8192     *RegsLeft = 0;
8193 
8194   return false;
8195 }
8196 
8197 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8198                                                 unsigned *RegsLeft) const {
8199   if (!isAggregateTypeForABI(Ty)) {
8200     // Treat an enum type as its underlying type.
8201     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8202       Ty = EnumTy->getDecl()->getIntegerType();
8203 
8204     uint64_t Size = getContext().getTypeSize(Ty);
8205     if (Size <= 64)
8206       HexagonAdjustRegsLeft(Size, RegsLeft);
8207 
8208     if (Size > 64 && Ty->isExtIntType())
8209       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8210 
8211     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8212                                              : ABIArgInfo::getDirect();
8213   }
8214 
8215   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8216     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8217 
8218   // Ignore empty records.
8219   if (isEmptyRecord(getContext(), Ty, true))
8220     return ABIArgInfo::getIgnore();
8221 
8222   uint64_t Size = getContext().getTypeSize(Ty);
8223   unsigned Align = getContext().getTypeAlign(Ty);
8224 
8225   if (Size > 64)
8226     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8227 
8228   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8229     Align = Size <= 32 ? 32 : 64;
8230   if (Size <= Align) {
8231     // Pass in the smallest viable integer type.
8232     if (!llvm::isPowerOf2_64(Size))
8233       Size = llvm::NextPowerOf2(Size);
8234     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8235   }
8236   return DefaultABIInfo::classifyArgumentType(Ty);
8237 }
8238 
8239 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8240   if (RetTy->isVoidType())
8241     return ABIArgInfo::getIgnore();
8242 
8243   const TargetInfo &T = CGT.getTarget();
8244   uint64_t Size = getContext().getTypeSize(RetTy);
8245 
8246   if (RetTy->getAs<VectorType>()) {
8247     // HVX vectors are returned in vector registers or register pairs.
8248     if (T.hasFeature("hvx")) {
8249       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8250       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8251       if (Size == VecSize || Size == 2*VecSize)
8252         return ABIArgInfo::getDirectInReg();
8253     }
8254     // Large vector types should be returned via memory.
8255     if (Size > 64)
8256       return getNaturalAlignIndirect(RetTy);
8257   }
8258 
8259   if (!isAggregateTypeForABI(RetTy)) {
8260     // Treat an enum type as its underlying type.
8261     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8262       RetTy = EnumTy->getDecl()->getIntegerType();
8263 
8264     if (Size > 64 && RetTy->isExtIntType())
8265       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8266 
8267     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8268                                                 : ABIArgInfo::getDirect();
8269   }
8270 
8271   if (isEmptyRecord(getContext(), RetTy, true))
8272     return ABIArgInfo::getIgnore();
8273 
8274   // Aggregates <= 8 bytes are returned in registers, other aggregates
8275   // are returned indirectly.
8276   if (Size <= 64) {
8277     // Return in the smallest viable integer type.
8278     if (!llvm::isPowerOf2_64(Size))
8279       Size = llvm::NextPowerOf2(Size);
8280     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8281   }
8282   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8283 }
8284 
8285 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8286                                             Address VAListAddr,
8287                                             QualType Ty) const {
8288   // Load the overflow area pointer.
8289   Address __overflow_area_pointer_p =
8290       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8291   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8292       __overflow_area_pointer_p, "__overflow_area_pointer");
8293 
8294   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8295   if (Align > 4) {
8296     // Alignment should be a power of 2.
8297     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8298 
8299     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8300     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8301 
8302     // Add offset to the current pointer to access the argument.
8303     __overflow_area_pointer =
8304         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8305     llvm::Value *AsInt =
8306         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8307 
8308     // Create a mask which should be "AND"ed
8309     // with (overflow_arg_area + align - 1)
8310     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8311     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8312         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8313         "__overflow_area_pointer.align");
8314   }
8315 
8316   // Get the type of the argument from memory and bitcast
8317   // overflow area pointer to the argument type.
8318   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8319   Address AddrTyped = CGF.Builder.CreateBitCast(
8320       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8321       llvm::PointerType::getUnqual(PTy));
8322 
8323   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8324   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8325 
8326   __overflow_area_pointer = CGF.Builder.CreateGEP(
8327       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8328       "__overflow_area_pointer.next");
8329   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8330 
8331   return AddrTyped;
8332 }
8333 
8334 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8335                                             Address VAListAddr,
8336                                             QualType Ty) const {
8337   // FIXME: Need to handle alignment
8338   llvm::Type *BP = CGF.Int8PtrTy;
8339   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8340   CGBuilderTy &Builder = CGF.Builder;
8341   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8342   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8343   // Handle address alignment for type alignment > 32 bits
8344   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8345   if (TyAlign > 4) {
8346     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8347     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8348     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8349     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8350     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8351   }
8352   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8353   Address AddrTyped = Builder.CreateBitCast(
8354       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8355 
8356   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8357   llvm::Value *NextAddr = Builder.CreateGEP(
8358       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8359   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8360 
8361   return AddrTyped;
8362 }
8363 
8364 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8365                                                  Address VAListAddr,
8366                                                  QualType Ty) const {
8367   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8368 
8369   if (ArgSize > 8)
8370     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8371 
8372   // Here we have check if the argument is in register area or
8373   // in overflow area.
8374   // If the saved register area pointer + argsize rounded up to alignment >
8375   // saved register area end pointer, argument is in overflow area.
8376   unsigned RegsLeft = 6;
8377   Ty = CGF.getContext().getCanonicalType(Ty);
8378   (void)classifyArgumentType(Ty, &RegsLeft);
8379 
8380   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8381   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8382   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8383   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8384 
8385   // Get rounded size of the argument.GCC does not allow vararg of
8386   // size < 4 bytes. We follow the same logic here.
8387   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8388   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8389 
8390   // Argument may be in saved register area
8391   CGF.EmitBlock(MaybeRegBlock);
8392 
8393   // Load the current saved register area pointer.
8394   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8395       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8396   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8397       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8398 
8399   // Load the saved register area end pointer.
8400   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8401       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8402   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8403       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8404 
8405   // If the size of argument is > 4 bytes, check if the stack
8406   // location is aligned to 8 bytes
8407   if (ArgAlign > 4) {
8408 
8409     llvm::Value *__current_saved_reg_area_pointer_int =
8410         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8411                                    CGF.Int32Ty);
8412 
8413     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8414         __current_saved_reg_area_pointer_int,
8415         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8416         "align_current_saved_reg_area_pointer");
8417 
8418     __current_saved_reg_area_pointer_int =
8419         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8420                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8421                               "align_current_saved_reg_area_pointer");
8422 
8423     __current_saved_reg_area_pointer =
8424         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8425                                    __current_saved_reg_area_pointer->getType(),
8426                                    "align_current_saved_reg_area_pointer");
8427   }
8428 
8429   llvm::Value *__new_saved_reg_area_pointer =
8430       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8431                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8432                             "__new_saved_reg_area_pointer");
8433 
8434   llvm::Value *UsingStack = 0;
8435   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8436                                          __saved_reg_area_end_pointer);
8437 
8438   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8439 
8440   // Argument in saved register area
8441   // Implement the block where argument is in register saved area
8442   CGF.EmitBlock(InRegBlock);
8443 
8444   llvm::Type *PTy = CGF.ConvertType(Ty);
8445   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8446       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8447 
8448   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8449                           __current_saved_reg_area_pointer_p);
8450 
8451   CGF.EmitBranch(ContBlock);
8452 
8453   // Argument in overflow area
8454   // Implement the block where the argument is in overflow area.
8455   CGF.EmitBlock(OnStackBlock);
8456 
8457   // Load the overflow area pointer
8458   Address __overflow_area_pointer_p =
8459       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8460   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8461       __overflow_area_pointer_p, "__overflow_area_pointer");
8462 
8463   // Align the overflow area pointer according to the alignment of the argument
8464   if (ArgAlign > 4) {
8465     llvm::Value *__overflow_area_pointer_int =
8466         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8467 
8468     __overflow_area_pointer_int =
8469         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8470                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8471                               "align_overflow_area_pointer");
8472 
8473     __overflow_area_pointer_int =
8474         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8475                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8476                               "align_overflow_area_pointer");
8477 
8478     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8479         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8480         "align_overflow_area_pointer");
8481   }
8482 
8483   // Get the pointer for next argument in overflow area and store it
8484   // to overflow area pointer.
8485   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8486       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8487       "__overflow_area_pointer.next");
8488 
8489   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8490                           __overflow_area_pointer_p);
8491 
8492   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8493                           __current_saved_reg_area_pointer_p);
8494 
8495   // Bitcast the overflow area pointer to the type of argument.
8496   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8497   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8498       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8499 
8500   CGF.EmitBranch(ContBlock);
8501 
8502   // Get the correct pointer to load the variable argument
8503   // Implement the ContBlock
8504   CGF.EmitBlock(ContBlock);
8505 
8506   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8507   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8508   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8509   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8510 
8511   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8512 }
8513 
8514 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8515                                   QualType Ty) const {
8516 
8517   if (getTarget().getTriple().isMusl())
8518     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8519 
8520   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8521 }
8522 
8523 //===----------------------------------------------------------------------===//
8524 // Lanai ABI Implementation
8525 //===----------------------------------------------------------------------===//
8526 
8527 namespace {
8528 class LanaiABIInfo : public DefaultABIInfo {
8529 public:
8530   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8531 
8532   bool shouldUseInReg(QualType Ty, CCState &State) const;
8533 
8534   void computeInfo(CGFunctionInfo &FI) const override {
8535     CCState State(FI);
8536     // Lanai uses 4 registers to pass arguments unless the function has the
8537     // regparm attribute set.
8538     if (FI.getHasRegParm()) {
8539       State.FreeRegs = FI.getRegParm();
8540     } else {
8541       State.FreeRegs = 4;
8542     }
8543 
8544     if (!getCXXABI().classifyReturnType(FI))
8545       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8546     for (auto &I : FI.arguments())
8547       I.info = classifyArgumentType(I.type, State);
8548   }
8549 
8550   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8551   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8552 };
8553 } // end anonymous namespace
8554 
8555 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8556   unsigned Size = getContext().getTypeSize(Ty);
8557   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8558 
8559   if (SizeInRegs == 0)
8560     return false;
8561 
8562   if (SizeInRegs > State.FreeRegs) {
8563     State.FreeRegs = 0;
8564     return false;
8565   }
8566 
8567   State.FreeRegs -= SizeInRegs;
8568 
8569   return true;
8570 }
8571 
8572 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8573                                            CCState &State) const {
8574   if (!ByVal) {
8575     if (State.FreeRegs) {
8576       --State.FreeRegs; // Non-byval indirects just use one pointer.
8577       return getNaturalAlignIndirectInReg(Ty);
8578     }
8579     return getNaturalAlignIndirect(Ty, false);
8580   }
8581 
8582   // Compute the byval alignment.
8583   const unsigned MinABIStackAlignInBytes = 4;
8584   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8585   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8586                                  /*Realign=*/TypeAlign >
8587                                      MinABIStackAlignInBytes);
8588 }
8589 
8590 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8591                                               CCState &State) const {
8592   // Check with the C++ ABI first.
8593   const RecordType *RT = Ty->getAs<RecordType>();
8594   if (RT) {
8595     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8596     if (RAA == CGCXXABI::RAA_Indirect) {
8597       return getIndirectResult(Ty, /*ByVal=*/false, State);
8598     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8599       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8600     }
8601   }
8602 
8603   if (isAggregateTypeForABI(Ty)) {
8604     // Structures with flexible arrays are always indirect.
8605     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8606       return getIndirectResult(Ty, /*ByVal=*/true, State);
8607 
8608     // Ignore empty structs/unions.
8609     if (isEmptyRecord(getContext(), Ty, true))
8610       return ABIArgInfo::getIgnore();
8611 
8612     llvm::LLVMContext &LLVMContext = getVMContext();
8613     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8614     if (SizeInRegs <= State.FreeRegs) {
8615       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8616       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8617       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8618       State.FreeRegs -= SizeInRegs;
8619       return ABIArgInfo::getDirectInReg(Result);
8620     } else {
8621       State.FreeRegs = 0;
8622     }
8623     return getIndirectResult(Ty, true, State);
8624   }
8625 
8626   // Treat an enum type as its underlying type.
8627   if (const auto *EnumTy = Ty->getAs<EnumType>())
8628     Ty = EnumTy->getDecl()->getIntegerType();
8629 
8630   bool InReg = shouldUseInReg(Ty, State);
8631 
8632   // Don't pass >64 bit integers in registers.
8633   if (const auto *EIT = Ty->getAs<ExtIntType>())
8634     if (EIT->getNumBits() > 64)
8635       return getIndirectResult(Ty, /*ByVal=*/true, State);
8636 
8637   if (isPromotableIntegerTypeForABI(Ty)) {
8638     if (InReg)
8639       return ABIArgInfo::getDirectInReg();
8640     return ABIArgInfo::getExtend(Ty);
8641   }
8642   if (InReg)
8643     return ABIArgInfo::getDirectInReg();
8644   return ABIArgInfo::getDirect();
8645 }
8646 
8647 namespace {
8648 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8649 public:
8650   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8651       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8652 };
8653 }
8654 
8655 //===----------------------------------------------------------------------===//
8656 // AMDGPU ABI Implementation
8657 //===----------------------------------------------------------------------===//
8658 
8659 namespace {
8660 
8661 class AMDGPUABIInfo final : public DefaultABIInfo {
8662 private:
8663   static const unsigned MaxNumRegsForArgsRet = 16;
8664 
8665   unsigned numRegsForType(QualType Ty) const;
8666 
8667   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8668   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8669                                          uint64_t Members) const override;
8670 
8671   // Coerce HIP scalar pointer arguments from generic pointers to global ones.
8672   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8673                                        unsigned ToAS) const {
8674     // Single value types.
8675     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8676       return llvm::PointerType::get(
8677           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8678     return Ty;
8679   }
8680 
8681 public:
8682   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8683     DefaultABIInfo(CGT) {}
8684 
8685   ABIArgInfo classifyReturnType(QualType RetTy) const;
8686   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8687   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8688 
8689   void computeInfo(CGFunctionInfo &FI) const override;
8690   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8691                     QualType Ty) const override;
8692 };
8693 
8694 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8695   return true;
8696 }
8697 
8698 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8699   const Type *Base, uint64_t Members) const {
8700   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8701 
8702   // Homogeneous Aggregates may occupy at most 16 registers.
8703   return Members * NumRegs <= MaxNumRegsForArgsRet;
8704 }
8705 
8706 /// Estimate number of registers the type will use when passed in registers.
8707 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8708   unsigned NumRegs = 0;
8709 
8710   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8711     // Compute from the number of elements. The reported size is based on the
8712     // in-memory size, which includes the padding 4th element for 3-vectors.
8713     QualType EltTy = VT->getElementType();
8714     unsigned EltSize = getContext().getTypeSize(EltTy);
8715 
8716     // 16-bit element vectors should be passed as packed.
8717     if (EltSize == 16)
8718       return (VT->getNumElements() + 1) / 2;
8719 
8720     unsigned EltNumRegs = (EltSize + 31) / 32;
8721     return EltNumRegs * VT->getNumElements();
8722   }
8723 
8724   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8725     const RecordDecl *RD = RT->getDecl();
8726     assert(!RD->hasFlexibleArrayMember());
8727 
8728     for (const FieldDecl *Field : RD->fields()) {
8729       QualType FieldTy = Field->getType();
8730       NumRegs += numRegsForType(FieldTy);
8731     }
8732 
8733     return NumRegs;
8734   }
8735 
8736   return (getContext().getTypeSize(Ty) + 31) / 32;
8737 }
8738 
8739 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8740   llvm::CallingConv::ID CC = FI.getCallingConvention();
8741 
8742   if (!getCXXABI().classifyReturnType(FI))
8743     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8744 
8745   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8746   for (auto &Arg : FI.arguments()) {
8747     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8748       Arg.info = classifyKernelArgumentType(Arg.type);
8749     } else {
8750       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8751     }
8752   }
8753 }
8754 
8755 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8756                                  QualType Ty) const {
8757   llvm_unreachable("AMDGPU does not support varargs");
8758 }
8759 
8760 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8761   if (isAggregateTypeForABI(RetTy)) {
8762     // Records with non-trivial destructors/copy-constructors should not be
8763     // returned by value.
8764     if (!getRecordArgABI(RetTy, getCXXABI())) {
8765       // Ignore empty structs/unions.
8766       if (isEmptyRecord(getContext(), RetTy, true))
8767         return ABIArgInfo::getIgnore();
8768 
8769       // Lower single-element structs to just return a regular value.
8770       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8771         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8772 
8773       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8774         const RecordDecl *RD = RT->getDecl();
8775         if (RD->hasFlexibleArrayMember())
8776           return DefaultABIInfo::classifyReturnType(RetTy);
8777       }
8778 
8779       // Pack aggregates <= 4 bytes into single VGPR or pair.
8780       uint64_t Size = getContext().getTypeSize(RetTy);
8781       if (Size <= 16)
8782         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8783 
8784       if (Size <= 32)
8785         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8786 
8787       if (Size <= 64) {
8788         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8789         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8790       }
8791 
8792       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8793         return ABIArgInfo::getDirect();
8794     }
8795   }
8796 
8797   // Otherwise just do the default thing.
8798   return DefaultABIInfo::classifyReturnType(RetTy);
8799 }
8800 
8801 /// For kernels all parameters are really passed in a special buffer. It doesn't
8802 /// make sense to pass anything byval, so everything must be direct.
8803 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8804   Ty = useFirstFieldIfTransparentUnion(Ty);
8805 
8806   // TODO: Can we omit empty structs?
8807 
8808   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8809     Ty = QualType(SeltTy, 0);
8810 
8811   llvm::Type *OrigLTy = CGT.ConvertType(Ty);
8812   llvm::Type *LTy = OrigLTy;
8813   if (getContext().getLangOpts().HIP) {
8814     LTy = coerceKernelArgumentType(
8815         OrigLTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8816         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8817   }
8818 
8819   // FIXME: Should also use this for OpenCL, but it requires addressing the
8820   // problem of kernels being called.
8821   //
8822   // FIXME: This doesn't apply the optimization of coercing pointers in structs
8823   // to global address space when using byref. This would require implementing a
8824   // new kind of coercion of the in-memory type when for indirect arguments.
8825   if (!getContext().getLangOpts().OpenCL && LTy == OrigLTy &&
8826       isAggregateTypeForABI(Ty)) {
8827     return ABIArgInfo::getIndirectAliased(
8828         getContext().getTypeAlignInChars(Ty),
8829         getContext().getTargetAddressSpace(LangAS::opencl_constant),
8830         false /*Realign*/, nullptr /*Padding*/);
8831   }
8832 
8833   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8834   // individual elements, which confuses the Clover OpenCL backend; therefore we
8835   // have to set it to false here. Other args of getDirect() are just defaults.
8836   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8837 }
8838 
8839 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8840                                                unsigned &NumRegsLeft) const {
8841   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8842 
8843   Ty = useFirstFieldIfTransparentUnion(Ty);
8844 
8845   if (isAggregateTypeForABI(Ty)) {
8846     // Records with non-trivial destructors/copy-constructors should not be
8847     // passed by value.
8848     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8849       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8850 
8851     // Ignore empty structs/unions.
8852     if (isEmptyRecord(getContext(), Ty, true))
8853       return ABIArgInfo::getIgnore();
8854 
8855     // Lower single-element structs to just pass a regular value. TODO: We
8856     // could do reasonable-size multiple-element structs too, using getExpand(),
8857     // though watch out for things like bitfields.
8858     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8859       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8860 
8861     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8862       const RecordDecl *RD = RT->getDecl();
8863       if (RD->hasFlexibleArrayMember())
8864         return DefaultABIInfo::classifyArgumentType(Ty);
8865     }
8866 
8867     // Pack aggregates <= 8 bytes into single VGPR or pair.
8868     uint64_t Size = getContext().getTypeSize(Ty);
8869     if (Size <= 64) {
8870       unsigned NumRegs = (Size + 31) / 32;
8871       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8872 
8873       if (Size <= 16)
8874         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8875 
8876       if (Size <= 32)
8877         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8878 
8879       // XXX: Should this be i64 instead, and should the limit increase?
8880       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8881       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8882     }
8883 
8884     if (NumRegsLeft > 0) {
8885       unsigned NumRegs = numRegsForType(Ty);
8886       if (NumRegsLeft >= NumRegs) {
8887         NumRegsLeft -= NumRegs;
8888         return ABIArgInfo::getDirect();
8889       }
8890     }
8891   }
8892 
8893   // Otherwise just do the default thing.
8894   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8895   if (!ArgInfo.isIndirect()) {
8896     unsigned NumRegs = numRegsForType(Ty);
8897     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8898   }
8899 
8900   return ArgInfo;
8901 }
8902 
8903 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8904 public:
8905   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8906       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8907   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8908                            CodeGen::CodeGenModule &M) const override;
8909   unsigned getOpenCLKernelCallingConv() const override;
8910 
8911   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8912       llvm::PointerType *T, QualType QT) const override;
8913 
8914   LangAS getASTAllocaAddressSpace() const override {
8915     return getLangASFromTargetAS(
8916         getABIInfo().getDataLayout().getAllocaAddrSpace());
8917   }
8918   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8919                                   const VarDecl *D) const override;
8920   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8921                                          SyncScope Scope,
8922                                          llvm::AtomicOrdering Ordering,
8923                                          llvm::LLVMContext &Ctx) const override;
8924   llvm::Function *
8925   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8926                             llvm::Function *BlockInvokeFunc,
8927                             llvm::Value *BlockLiteral) const override;
8928   bool shouldEmitStaticExternCAliases() const override;
8929   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8930 };
8931 }
8932 
8933 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8934                                               llvm::GlobalValue *GV) {
8935   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8936     return false;
8937 
8938   return D->hasAttr<OpenCLKernelAttr>() ||
8939          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8940          (isa<VarDecl>(D) &&
8941           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8942            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8943            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8944 }
8945 
8946 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8947     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8948   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8949     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8950     GV->setDSOLocal(true);
8951   }
8952 
8953   if (GV->isDeclaration())
8954     return;
8955   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8956   if (!FD)
8957     return;
8958 
8959   llvm::Function *F = cast<llvm::Function>(GV);
8960 
8961   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8962     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8963 
8964 
8965   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8966                               FD->hasAttr<OpenCLKernelAttr>();
8967   const bool IsHIPKernel = M.getLangOpts().HIP &&
8968                            FD->hasAttr<CUDAGlobalAttr>();
8969   if ((IsOpenCLKernel || IsHIPKernel) &&
8970       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8971     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8972 
8973   if (IsHIPKernel)
8974     F->addFnAttr("uniform-work-group-size", "true");
8975 
8976 
8977   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8978   if (ReqdWGS || FlatWGS) {
8979     unsigned Min = 0;
8980     unsigned Max = 0;
8981     if (FlatWGS) {
8982       Min = FlatWGS->getMin()
8983                 ->EvaluateKnownConstInt(M.getContext())
8984                 .getExtValue();
8985       Max = FlatWGS->getMax()
8986                 ->EvaluateKnownConstInt(M.getContext())
8987                 .getExtValue();
8988     }
8989     if (ReqdWGS && Min == 0 && Max == 0)
8990       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8991 
8992     if (Min != 0) {
8993       assert(Min <= Max && "Min must be less than or equal Max");
8994 
8995       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8996       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8997     } else
8998       assert(Max == 0 && "Max must be zero");
8999   } else if (IsOpenCLKernel || IsHIPKernel) {
9000     // By default, restrict the maximum size to a value specified by
9001     // --gpu-max-threads-per-block=n or its default value.
9002     std::string AttrVal =
9003         std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock);
9004     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
9005   }
9006 
9007   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
9008     unsigned Min =
9009         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
9010     unsigned Max = Attr->getMax() ? Attr->getMax()
9011                                         ->EvaluateKnownConstInt(M.getContext())
9012                                         .getExtValue()
9013                                   : 0;
9014 
9015     if (Min != 0) {
9016       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9017 
9018       std::string AttrVal = llvm::utostr(Min);
9019       if (Max != 0)
9020         AttrVal = AttrVal + "," + llvm::utostr(Max);
9021       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9022     } else
9023       assert(Max == 0 && "Max must be zero");
9024   }
9025 
9026   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9027     unsigned NumSGPR = Attr->getNumSGPR();
9028 
9029     if (NumSGPR != 0)
9030       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9031   }
9032 
9033   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9034     uint32_t NumVGPR = Attr->getNumVGPR();
9035 
9036     if (NumVGPR != 0)
9037       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9038   }
9039 
9040   if (M.getContext().getTargetInfo().allowAMDGPUUnsafeFPAtomics())
9041     F->addFnAttr("amdgpu-unsafe-fp-atomics", "true");
9042 }
9043 
9044 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9045   return llvm::CallingConv::AMDGPU_KERNEL;
9046 }
9047 
9048 // Currently LLVM assumes null pointers always have value 0,
9049 // which results in incorrectly transformed IR. Therefore, instead of
9050 // emitting null pointers in private and local address spaces, a null
9051 // pointer in generic address space is emitted which is casted to a
9052 // pointer in local or private address space.
9053 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9054     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9055     QualType QT) const {
9056   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9057     return llvm::ConstantPointerNull::get(PT);
9058 
9059   auto &Ctx = CGM.getContext();
9060   auto NPT = llvm::PointerType::get(PT->getElementType(),
9061       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9062   return llvm::ConstantExpr::getAddrSpaceCast(
9063       llvm::ConstantPointerNull::get(NPT), PT);
9064 }
9065 
9066 LangAS
9067 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9068                                                   const VarDecl *D) const {
9069   assert(!CGM.getLangOpts().OpenCL &&
9070          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9071          "Address space agnostic languages only");
9072   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9073       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9074   if (!D)
9075     return DefaultGlobalAS;
9076 
9077   LangAS AddrSpace = D->getType().getAddressSpace();
9078   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9079   if (AddrSpace != LangAS::Default)
9080     return AddrSpace;
9081 
9082   if (CGM.isTypeConstant(D->getType(), false)) {
9083     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9084       return ConstAS.getValue();
9085   }
9086   return DefaultGlobalAS;
9087 }
9088 
9089 llvm::SyncScope::ID
9090 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9091                                             SyncScope Scope,
9092                                             llvm::AtomicOrdering Ordering,
9093                                             llvm::LLVMContext &Ctx) const {
9094   std::string Name;
9095   switch (Scope) {
9096   case SyncScope::OpenCLWorkGroup:
9097     Name = "workgroup";
9098     break;
9099   case SyncScope::OpenCLDevice:
9100     Name = "agent";
9101     break;
9102   case SyncScope::OpenCLAllSVMDevices:
9103     Name = "";
9104     break;
9105   case SyncScope::OpenCLSubGroup:
9106     Name = "wavefront";
9107   }
9108 
9109   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9110     if (!Name.empty())
9111       Name = Twine(Twine(Name) + Twine("-")).str();
9112 
9113     Name = Twine(Twine(Name) + Twine("one-as")).str();
9114   }
9115 
9116   return Ctx.getOrInsertSyncScopeID(Name);
9117 }
9118 
9119 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9120   return false;
9121 }
9122 
9123 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9124     const FunctionType *&FT) const {
9125   FT = getABIInfo().getContext().adjustFunctionType(
9126       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9127 }
9128 
9129 //===----------------------------------------------------------------------===//
9130 // SPARC v8 ABI Implementation.
9131 // Based on the SPARC Compliance Definition version 2.4.1.
9132 //
9133 // Ensures that complex values are passed in registers.
9134 //
9135 namespace {
9136 class SparcV8ABIInfo : public DefaultABIInfo {
9137 public:
9138   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9139 
9140 private:
9141   ABIArgInfo classifyReturnType(QualType RetTy) const;
9142   void computeInfo(CGFunctionInfo &FI) const override;
9143 };
9144 } // end anonymous namespace
9145 
9146 
9147 ABIArgInfo
9148 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9149   if (Ty->isAnyComplexType()) {
9150     return ABIArgInfo::getDirect();
9151   }
9152   else {
9153     return DefaultABIInfo::classifyReturnType(Ty);
9154   }
9155 }
9156 
9157 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9158 
9159   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9160   for (auto &Arg : FI.arguments())
9161     Arg.info = classifyArgumentType(Arg.type);
9162 }
9163 
9164 namespace {
9165 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9166 public:
9167   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9168       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9169 };
9170 } // end anonymous namespace
9171 
9172 //===----------------------------------------------------------------------===//
9173 // SPARC v9 ABI Implementation.
9174 // Based on the SPARC Compliance Definition version 2.4.1.
9175 //
9176 // Function arguments a mapped to a nominal "parameter array" and promoted to
9177 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9178 // the array, structs larger than 16 bytes are passed indirectly.
9179 //
9180 // One case requires special care:
9181 //
9182 //   struct mixed {
9183 //     int i;
9184 //     float f;
9185 //   };
9186 //
9187 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9188 // parameter array, but the int is passed in an integer register, and the float
9189 // is passed in a floating point register. This is represented as two arguments
9190 // with the LLVM IR inreg attribute:
9191 //
9192 //   declare void f(i32 inreg %i, float inreg %f)
9193 //
9194 // The code generator will only allocate 4 bytes from the parameter array for
9195 // the inreg arguments. All other arguments are allocated a multiple of 8
9196 // bytes.
9197 //
9198 namespace {
9199 class SparcV9ABIInfo : public ABIInfo {
9200 public:
9201   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9202 
9203 private:
9204   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9205   void computeInfo(CGFunctionInfo &FI) const override;
9206   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9207                     QualType Ty) const override;
9208 
9209   // Coercion type builder for structs passed in registers. The coercion type
9210   // serves two purposes:
9211   //
9212   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9213   //    in registers.
9214   // 2. Expose aligned floating point elements as first-level elements, so the
9215   //    code generator knows to pass them in floating point registers.
9216   //
9217   // We also compute the InReg flag which indicates that the struct contains
9218   // aligned 32-bit floats.
9219   //
9220   struct CoerceBuilder {
9221     llvm::LLVMContext &Context;
9222     const llvm::DataLayout &DL;
9223     SmallVector<llvm::Type*, 8> Elems;
9224     uint64_t Size;
9225     bool InReg;
9226 
9227     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9228       : Context(c), DL(dl), Size(0), InReg(false) {}
9229 
9230     // Pad Elems with integers until Size is ToSize.
9231     void pad(uint64_t ToSize) {
9232       assert(ToSize >= Size && "Cannot remove elements");
9233       if (ToSize == Size)
9234         return;
9235 
9236       // Finish the current 64-bit word.
9237       uint64_t Aligned = llvm::alignTo(Size, 64);
9238       if (Aligned > Size && Aligned <= ToSize) {
9239         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9240         Size = Aligned;
9241       }
9242 
9243       // Add whole 64-bit words.
9244       while (Size + 64 <= ToSize) {
9245         Elems.push_back(llvm::Type::getInt64Ty(Context));
9246         Size += 64;
9247       }
9248 
9249       // Final in-word padding.
9250       if (Size < ToSize) {
9251         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9252         Size = ToSize;
9253       }
9254     }
9255 
9256     // Add a floating point element at Offset.
9257     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9258       // Unaligned floats are treated as integers.
9259       if (Offset % Bits)
9260         return;
9261       // The InReg flag is only required if there are any floats < 64 bits.
9262       if (Bits < 64)
9263         InReg = true;
9264       pad(Offset);
9265       Elems.push_back(Ty);
9266       Size = Offset + Bits;
9267     }
9268 
9269     // Add a struct type to the coercion type, starting at Offset (in bits).
9270     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9271       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9272       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9273         llvm::Type *ElemTy = StrTy->getElementType(i);
9274         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9275         switch (ElemTy->getTypeID()) {
9276         case llvm::Type::StructTyID:
9277           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9278           break;
9279         case llvm::Type::FloatTyID:
9280           addFloat(ElemOffset, ElemTy, 32);
9281           break;
9282         case llvm::Type::DoubleTyID:
9283           addFloat(ElemOffset, ElemTy, 64);
9284           break;
9285         case llvm::Type::FP128TyID:
9286           addFloat(ElemOffset, ElemTy, 128);
9287           break;
9288         case llvm::Type::PointerTyID:
9289           if (ElemOffset % 64 == 0) {
9290             pad(ElemOffset);
9291             Elems.push_back(ElemTy);
9292             Size += 64;
9293           }
9294           break;
9295         default:
9296           break;
9297         }
9298       }
9299     }
9300 
9301     // Check if Ty is a usable substitute for the coercion type.
9302     bool isUsableType(llvm::StructType *Ty) const {
9303       return llvm::makeArrayRef(Elems) == Ty->elements();
9304     }
9305 
9306     // Get the coercion type as a literal struct type.
9307     llvm::Type *getType() const {
9308       if (Elems.size() == 1)
9309         return Elems.front();
9310       else
9311         return llvm::StructType::get(Context, Elems);
9312     }
9313   };
9314 };
9315 } // end anonymous namespace
9316 
9317 ABIArgInfo
9318 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9319   if (Ty->isVoidType())
9320     return ABIArgInfo::getIgnore();
9321 
9322   uint64_t Size = getContext().getTypeSize(Ty);
9323 
9324   // Anything too big to fit in registers is passed with an explicit indirect
9325   // pointer / sret pointer.
9326   if (Size > SizeLimit)
9327     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9328 
9329   // Treat an enum type as its underlying type.
9330   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9331     Ty = EnumTy->getDecl()->getIntegerType();
9332 
9333   // Integer types smaller than a register are extended.
9334   if (Size < 64 && Ty->isIntegerType())
9335     return ABIArgInfo::getExtend(Ty);
9336 
9337   if (const auto *EIT = Ty->getAs<ExtIntType>())
9338     if (EIT->getNumBits() < 64)
9339       return ABIArgInfo::getExtend(Ty);
9340 
9341   // Other non-aggregates go in registers.
9342   if (!isAggregateTypeForABI(Ty))
9343     return ABIArgInfo::getDirect();
9344 
9345   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9346   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9347   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9348     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9349 
9350   // This is a small aggregate type that should be passed in registers.
9351   // Build a coercion type from the LLVM struct type.
9352   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9353   if (!StrTy)
9354     return ABIArgInfo::getDirect();
9355 
9356   CoerceBuilder CB(getVMContext(), getDataLayout());
9357   CB.addStruct(0, StrTy);
9358   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9359 
9360   // Try to use the original type for coercion.
9361   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9362 
9363   if (CB.InReg)
9364     return ABIArgInfo::getDirectInReg(CoerceTy);
9365   else
9366     return ABIArgInfo::getDirect(CoerceTy);
9367 }
9368 
9369 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9370                                   QualType Ty) const {
9371   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9372   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9373   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9374     AI.setCoerceToType(ArgTy);
9375 
9376   CharUnits SlotSize = CharUnits::fromQuantity(8);
9377 
9378   CGBuilderTy &Builder = CGF.Builder;
9379   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9380   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9381 
9382   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9383 
9384   Address ArgAddr = Address::invalid();
9385   CharUnits Stride;
9386   switch (AI.getKind()) {
9387   case ABIArgInfo::Expand:
9388   case ABIArgInfo::CoerceAndExpand:
9389   case ABIArgInfo::InAlloca:
9390     llvm_unreachable("Unsupported ABI kind for va_arg");
9391 
9392   case ABIArgInfo::Extend: {
9393     Stride = SlotSize;
9394     CharUnits Offset = SlotSize - TypeInfo.Width;
9395     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9396     break;
9397   }
9398 
9399   case ABIArgInfo::Direct: {
9400     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9401     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9402     ArgAddr = Addr;
9403     break;
9404   }
9405 
9406   case ABIArgInfo::Indirect:
9407   case ABIArgInfo::IndirectAliased:
9408     Stride = SlotSize;
9409     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9410     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9411                       TypeInfo.Align);
9412     break;
9413 
9414   case ABIArgInfo::Ignore:
9415     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.Align);
9416   }
9417 
9418   // Update VAList.
9419   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9420   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9421 
9422   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9423 }
9424 
9425 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9426   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9427   for (auto &I : FI.arguments())
9428     I.info = classifyType(I.type, 16 * 8);
9429 }
9430 
9431 namespace {
9432 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9433 public:
9434   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9435       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9436 
9437   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9438     return 14;
9439   }
9440 
9441   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9442                                llvm::Value *Address) const override;
9443 };
9444 } // end anonymous namespace
9445 
9446 bool
9447 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9448                                                 llvm::Value *Address) const {
9449   // This is calculated from the LLVM and GCC tables and verified
9450   // against gcc output.  AFAIK all ABIs use the same encoding.
9451 
9452   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9453 
9454   llvm::IntegerType *i8 = CGF.Int8Ty;
9455   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9456   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9457 
9458   // 0-31: the 8-byte general-purpose registers
9459   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9460 
9461   // 32-63: f0-31, the 4-byte floating-point registers
9462   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9463 
9464   //   Y   = 64
9465   //   PSR = 65
9466   //   WIM = 66
9467   //   TBR = 67
9468   //   PC  = 68
9469   //   NPC = 69
9470   //   FSR = 70
9471   //   CSR = 71
9472   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9473 
9474   // 72-87: d0-15, the 8-byte floating-point registers
9475   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9476 
9477   return false;
9478 }
9479 
9480 // ARC ABI implementation.
9481 namespace {
9482 
9483 class ARCABIInfo : public DefaultABIInfo {
9484 public:
9485   using DefaultABIInfo::DefaultABIInfo;
9486 
9487 private:
9488   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9489                     QualType Ty) const override;
9490 
9491   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9492     if (!State.FreeRegs)
9493       return;
9494     if (Info.isIndirect() && Info.getInReg())
9495       State.FreeRegs--;
9496     else if (Info.isDirect() && Info.getInReg()) {
9497       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9498       if (sz < State.FreeRegs)
9499         State.FreeRegs -= sz;
9500       else
9501         State.FreeRegs = 0;
9502     }
9503   }
9504 
9505   void computeInfo(CGFunctionInfo &FI) const override {
9506     CCState State(FI);
9507     // ARC uses 8 registers to pass arguments.
9508     State.FreeRegs = 8;
9509 
9510     if (!getCXXABI().classifyReturnType(FI))
9511       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9512     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9513     for (auto &I : FI.arguments()) {
9514       I.info = classifyArgumentType(I.type, State.FreeRegs);
9515       updateState(I.info, I.type, State);
9516     }
9517   }
9518 
9519   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9520   ABIArgInfo getIndirectByValue(QualType Ty) const;
9521   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9522   ABIArgInfo classifyReturnType(QualType RetTy) const;
9523 };
9524 
9525 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9526 public:
9527   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9528       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9529 };
9530 
9531 
9532 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9533   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9534                        getNaturalAlignIndirect(Ty, false);
9535 }
9536 
9537 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9538   // Compute the byval alignment.
9539   const unsigned MinABIStackAlignInBytes = 4;
9540   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9541   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9542                                  TypeAlign > MinABIStackAlignInBytes);
9543 }
9544 
9545 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9546                               QualType Ty) const {
9547   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9548                           getContext().getTypeInfoInChars(Ty),
9549                           CharUnits::fromQuantity(4), true);
9550 }
9551 
9552 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9553                                             uint8_t FreeRegs) const {
9554   // Handle the generic C++ ABI.
9555   const RecordType *RT = Ty->getAs<RecordType>();
9556   if (RT) {
9557     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9558     if (RAA == CGCXXABI::RAA_Indirect)
9559       return getIndirectByRef(Ty, FreeRegs > 0);
9560 
9561     if (RAA == CGCXXABI::RAA_DirectInMemory)
9562       return getIndirectByValue(Ty);
9563   }
9564 
9565   // Treat an enum type as its underlying type.
9566   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9567     Ty = EnumTy->getDecl()->getIntegerType();
9568 
9569   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9570 
9571   if (isAggregateTypeForABI(Ty)) {
9572     // Structures with flexible arrays are always indirect.
9573     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9574       return getIndirectByValue(Ty);
9575 
9576     // Ignore empty structs/unions.
9577     if (isEmptyRecord(getContext(), Ty, true))
9578       return ABIArgInfo::getIgnore();
9579 
9580     llvm::LLVMContext &LLVMContext = getVMContext();
9581 
9582     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9583     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9584     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9585 
9586     return FreeRegs >= SizeInRegs ?
9587         ABIArgInfo::getDirectInReg(Result) :
9588         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9589   }
9590 
9591   if (const auto *EIT = Ty->getAs<ExtIntType>())
9592     if (EIT->getNumBits() > 64)
9593       return getIndirectByValue(Ty);
9594 
9595   return isPromotableIntegerTypeForABI(Ty)
9596              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9597                                        : ABIArgInfo::getExtend(Ty))
9598              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9599                                        : ABIArgInfo::getDirect());
9600 }
9601 
9602 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9603   if (RetTy->isAnyComplexType())
9604     return ABIArgInfo::getDirectInReg();
9605 
9606   // Arguments of size > 4 registers are indirect.
9607   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9608   if (RetSize > 4)
9609     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9610 
9611   return DefaultABIInfo::classifyReturnType(RetTy);
9612 }
9613 
9614 } // End anonymous namespace.
9615 
9616 //===----------------------------------------------------------------------===//
9617 // XCore ABI Implementation
9618 //===----------------------------------------------------------------------===//
9619 
9620 namespace {
9621 
9622 /// A SmallStringEnc instance is used to build up the TypeString by passing
9623 /// it by reference between functions that append to it.
9624 typedef llvm::SmallString<128> SmallStringEnc;
9625 
9626 /// TypeStringCache caches the meta encodings of Types.
9627 ///
9628 /// The reason for caching TypeStrings is two fold:
9629 ///   1. To cache a type's encoding for later uses;
9630 ///   2. As a means to break recursive member type inclusion.
9631 ///
9632 /// A cache Entry can have a Status of:
9633 ///   NonRecursive:   The type encoding is not recursive;
9634 ///   Recursive:      The type encoding is recursive;
9635 ///   Incomplete:     An incomplete TypeString;
9636 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9637 ///                   Recursive type encoding.
9638 ///
9639 /// A NonRecursive entry will have all of its sub-members expanded as fully
9640 /// as possible. Whilst it may contain types which are recursive, the type
9641 /// itself is not recursive and thus its encoding may be safely used whenever
9642 /// the type is encountered.
9643 ///
9644 /// A Recursive entry will have all of its sub-members expanded as fully as
9645 /// possible. The type itself is recursive and it may contain other types which
9646 /// are recursive. The Recursive encoding must not be used during the expansion
9647 /// of a recursive type's recursive branch. For simplicity the code uses
9648 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9649 ///
9650 /// An Incomplete entry is always a RecordType and only encodes its
9651 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9652 /// are placed into the cache during type expansion as a means to identify and
9653 /// handle recursive inclusion of types as sub-members. If there is recursion
9654 /// the entry becomes IncompleteUsed.
9655 ///
9656 /// During the expansion of a RecordType's members:
9657 ///
9658 ///   If the cache contains a NonRecursive encoding for the member type, the
9659 ///   cached encoding is used;
9660 ///
9661 ///   If the cache contains a Recursive encoding for the member type, the
9662 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9663 ///
9664 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9665 ///   cache to break potential recursive inclusion of itself as a sub-member;
9666 ///
9667 ///   Once a member RecordType has been expanded, its temporary incomplete
9668 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9669 ///   it is swapped back in;
9670 ///
9671 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9672 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9673 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9674 ///
9675 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9676 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9677 ///   Else the member is part of a recursive type and thus the recursion has
9678 ///   been exited too soon for the encoding to be correct for the member.
9679 ///
9680 class TypeStringCache {
9681   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9682   struct Entry {
9683     std::string Str;     // The encoded TypeString for the type.
9684     enum Status State;   // Information about the encoding in 'Str'.
9685     std::string Swapped; // A temporary place holder for a Recursive encoding
9686                          // during the expansion of RecordType's members.
9687   };
9688   std::map<const IdentifierInfo *, struct Entry> Map;
9689   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9690   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9691 public:
9692   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9693   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9694   bool removeIncomplete(const IdentifierInfo *ID);
9695   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9696                      bool IsRecursive);
9697   StringRef lookupStr(const IdentifierInfo *ID);
9698 };
9699 
9700 /// TypeString encodings for enum & union fields must be order.
9701 /// FieldEncoding is a helper for this ordering process.
9702 class FieldEncoding {
9703   bool HasName;
9704   std::string Enc;
9705 public:
9706   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9707   StringRef str() { return Enc; }
9708   bool operator<(const FieldEncoding &rhs) const {
9709     if (HasName != rhs.HasName) return HasName;
9710     return Enc < rhs.Enc;
9711   }
9712 };
9713 
9714 class XCoreABIInfo : public DefaultABIInfo {
9715 public:
9716   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9717   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9718                     QualType Ty) const override;
9719 };
9720 
9721 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9722   mutable TypeStringCache TSC;
9723   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9724                     const CodeGen::CodeGenModule &M) const;
9725 
9726 public:
9727   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9728       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9729   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9730                           const llvm::MapVector<GlobalDecl, StringRef>
9731                               &MangledDeclNames) const override;
9732 };
9733 
9734 } // End anonymous namespace.
9735 
9736 // TODO: this implementation is likely now redundant with the default
9737 // EmitVAArg.
9738 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9739                                 QualType Ty) const {
9740   CGBuilderTy &Builder = CGF.Builder;
9741 
9742   // Get the VAList.
9743   CharUnits SlotSize = CharUnits::fromQuantity(4);
9744   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9745 
9746   // Handle the argument.
9747   ABIArgInfo AI = classifyArgumentType(Ty);
9748   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9749   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9750   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9751     AI.setCoerceToType(ArgTy);
9752   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9753 
9754   Address Val = Address::invalid();
9755   CharUnits ArgSize = CharUnits::Zero();
9756   switch (AI.getKind()) {
9757   case ABIArgInfo::Expand:
9758   case ABIArgInfo::CoerceAndExpand:
9759   case ABIArgInfo::InAlloca:
9760     llvm_unreachable("Unsupported ABI kind for va_arg");
9761   case ABIArgInfo::Ignore:
9762     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9763     ArgSize = CharUnits::Zero();
9764     break;
9765   case ABIArgInfo::Extend:
9766   case ABIArgInfo::Direct:
9767     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9768     ArgSize = CharUnits::fromQuantity(
9769                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9770     ArgSize = ArgSize.alignTo(SlotSize);
9771     break;
9772   case ABIArgInfo::Indirect:
9773   case ABIArgInfo::IndirectAliased:
9774     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9775     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9776     ArgSize = SlotSize;
9777     break;
9778   }
9779 
9780   // Increment the VAList.
9781   if (!ArgSize.isZero()) {
9782     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9783     Builder.CreateStore(APN.getPointer(), VAListAddr);
9784   }
9785 
9786   return Val;
9787 }
9788 
9789 /// During the expansion of a RecordType, an incomplete TypeString is placed
9790 /// into the cache as a means to identify and break recursion.
9791 /// If there is a Recursive encoding in the cache, it is swapped out and will
9792 /// be reinserted by removeIncomplete().
9793 /// All other types of encoding should have been used rather than arriving here.
9794 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9795                                     std::string StubEnc) {
9796   if (!ID)
9797     return;
9798   Entry &E = Map[ID];
9799   assert( (E.Str.empty() || E.State == Recursive) &&
9800          "Incorrectly use of addIncomplete");
9801   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9802   E.Swapped.swap(E.Str); // swap out the Recursive
9803   E.Str.swap(StubEnc);
9804   E.State = Incomplete;
9805   ++IncompleteCount;
9806 }
9807 
9808 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9809 /// must be removed from the cache.
9810 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9811 /// Returns true if the RecordType was defined recursively.
9812 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9813   if (!ID)
9814     return false;
9815   auto I = Map.find(ID);
9816   assert(I != Map.end() && "Entry not present");
9817   Entry &E = I->second;
9818   assert( (E.State == Incomplete ||
9819            E.State == IncompleteUsed) &&
9820          "Entry must be an incomplete type");
9821   bool IsRecursive = false;
9822   if (E.State == IncompleteUsed) {
9823     // We made use of our Incomplete encoding, thus we are recursive.
9824     IsRecursive = true;
9825     --IncompleteUsedCount;
9826   }
9827   if (E.Swapped.empty())
9828     Map.erase(I);
9829   else {
9830     // Swap the Recursive back.
9831     E.Swapped.swap(E.Str);
9832     E.Swapped.clear();
9833     E.State = Recursive;
9834   }
9835   --IncompleteCount;
9836   return IsRecursive;
9837 }
9838 
9839 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9840 /// Recursive (viz: all sub-members were expanded as fully as possible).
9841 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9842                                     bool IsRecursive) {
9843   if (!ID || IncompleteUsedCount)
9844     return; // No key or it is is an incomplete sub-type so don't add.
9845   Entry &E = Map[ID];
9846   if (IsRecursive && !E.Str.empty()) {
9847     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9848            "This is not the same Recursive entry");
9849     // The parent container was not recursive after all, so we could have used
9850     // this Recursive sub-member entry after all, but we assumed the worse when
9851     // we started viz: IncompleteCount!=0.
9852     return;
9853   }
9854   assert(E.Str.empty() && "Entry already present");
9855   E.Str = Str.str();
9856   E.State = IsRecursive? Recursive : NonRecursive;
9857 }
9858 
9859 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9860 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9861 /// encoding is Recursive, return an empty StringRef.
9862 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9863   if (!ID)
9864     return StringRef();   // We have no key.
9865   auto I = Map.find(ID);
9866   if (I == Map.end())
9867     return StringRef();   // We have no encoding.
9868   Entry &E = I->second;
9869   if (E.State == Recursive && IncompleteCount)
9870     return StringRef();   // We don't use Recursive encodings for member types.
9871 
9872   if (E.State == Incomplete) {
9873     // The incomplete type is being used to break out of recursion.
9874     E.State = IncompleteUsed;
9875     ++IncompleteUsedCount;
9876   }
9877   return E.Str;
9878 }
9879 
9880 /// The XCore ABI includes a type information section that communicates symbol
9881 /// type information to the linker. The linker uses this information to verify
9882 /// safety/correctness of things such as array bound and pointers et al.
9883 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9884 /// This type information (TypeString) is emitted into meta data for all global
9885 /// symbols: definitions, declarations, functions & variables.
9886 ///
9887 /// The TypeString carries type, qualifier, name, size & value details.
9888 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9889 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9890 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9891 ///
9892 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9893                           const CodeGen::CodeGenModule &CGM,
9894                           TypeStringCache &TSC);
9895 
9896 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9897 void XCoreTargetCodeGenInfo::emitTargetMD(
9898     const Decl *D, llvm::GlobalValue *GV,
9899     const CodeGen::CodeGenModule &CGM) const {
9900   SmallStringEnc Enc;
9901   if (getTypeString(Enc, D, CGM, TSC)) {
9902     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9903     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9904                                 llvm::MDString::get(Ctx, Enc.str())};
9905     llvm::NamedMDNode *MD =
9906       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9907     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9908   }
9909 }
9910 
9911 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9912     CodeGen::CodeGenModule &CGM,
9913     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9914   // Warning, new MangledDeclNames may be appended within this loop.
9915   // We rely on MapVector insertions adding new elements to the end
9916   // of the container.
9917   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9918     auto Val = *(MangledDeclNames.begin() + I);
9919     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9920     if (GV) {
9921       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9922       emitTargetMD(D, GV, CGM);
9923     }
9924   }
9925 }
9926 //===----------------------------------------------------------------------===//
9927 // SPIR ABI Implementation
9928 //===----------------------------------------------------------------------===//
9929 
9930 namespace {
9931 class SPIRABIInfo : public DefaultABIInfo {
9932 public:
9933   SPIRABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) { setCCs(); }
9934 
9935 private:
9936   void setCCs();
9937 };
9938 } // end anonymous namespace
9939 namespace {
9940 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9941 public:
9942   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9943       : TargetCodeGenInfo(std::make_unique<SPIRABIInfo>(CGT)) {}
9944   unsigned getOpenCLKernelCallingConv() const override;
9945 };
9946 
9947 } // End anonymous namespace.
9948 void SPIRABIInfo::setCCs() {
9949   assert(getRuntimeCC() == llvm::CallingConv::C);
9950   RuntimeCC = llvm::CallingConv::SPIR_FUNC;
9951 }
9952 
9953 namespace clang {
9954 namespace CodeGen {
9955 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9956   DefaultABIInfo SPIRABI(CGM.getTypes());
9957   SPIRABI.computeInfo(FI);
9958 }
9959 }
9960 }
9961 
9962 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9963   return llvm::CallingConv::SPIR_KERNEL;
9964 }
9965 
9966 static bool appendType(SmallStringEnc &Enc, QualType QType,
9967                        const CodeGen::CodeGenModule &CGM,
9968                        TypeStringCache &TSC);
9969 
9970 /// Helper function for appendRecordType().
9971 /// Builds a SmallVector containing the encoded field types in declaration
9972 /// order.
9973 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9974                              const RecordDecl *RD,
9975                              const CodeGen::CodeGenModule &CGM,
9976                              TypeStringCache &TSC) {
9977   for (const auto *Field : RD->fields()) {
9978     SmallStringEnc Enc;
9979     Enc += "m(";
9980     Enc += Field->getName();
9981     Enc += "){";
9982     if (Field->isBitField()) {
9983       Enc += "b(";
9984       llvm::raw_svector_ostream OS(Enc);
9985       OS << Field->getBitWidthValue(CGM.getContext());
9986       Enc += ':';
9987     }
9988     if (!appendType(Enc, Field->getType(), CGM, TSC))
9989       return false;
9990     if (Field->isBitField())
9991       Enc += ')';
9992     Enc += '}';
9993     FE.emplace_back(!Field->getName().empty(), Enc);
9994   }
9995   return true;
9996 }
9997 
9998 /// Appends structure and union types to Enc and adds encoding to cache.
9999 /// Recursively calls appendType (via extractFieldType) for each field.
10000 /// Union types have their fields ordered according to the ABI.
10001 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
10002                              const CodeGen::CodeGenModule &CGM,
10003                              TypeStringCache &TSC, const IdentifierInfo *ID) {
10004   // Append the cached TypeString if we have one.
10005   StringRef TypeString = TSC.lookupStr(ID);
10006   if (!TypeString.empty()) {
10007     Enc += TypeString;
10008     return true;
10009   }
10010 
10011   // Start to emit an incomplete TypeString.
10012   size_t Start = Enc.size();
10013   Enc += (RT->isUnionType()? 'u' : 's');
10014   Enc += '(';
10015   if (ID)
10016     Enc += ID->getName();
10017   Enc += "){";
10018 
10019   // We collect all encoded fields and order as necessary.
10020   bool IsRecursive = false;
10021   const RecordDecl *RD = RT->getDecl()->getDefinition();
10022   if (RD && !RD->field_empty()) {
10023     // An incomplete TypeString stub is placed in the cache for this RecordType
10024     // so that recursive calls to this RecordType will use it whilst building a
10025     // complete TypeString for this RecordType.
10026     SmallVector<FieldEncoding, 16> FE;
10027     std::string StubEnc(Enc.substr(Start).str());
10028     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
10029     TSC.addIncomplete(ID, std::move(StubEnc));
10030     if (!extractFieldType(FE, RD, CGM, TSC)) {
10031       (void) TSC.removeIncomplete(ID);
10032       return false;
10033     }
10034     IsRecursive = TSC.removeIncomplete(ID);
10035     // The ABI requires unions to be sorted but not structures.
10036     // See FieldEncoding::operator< for sort algorithm.
10037     if (RT->isUnionType())
10038       llvm::sort(FE);
10039     // We can now complete the TypeString.
10040     unsigned E = FE.size();
10041     for (unsigned I = 0; I != E; ++I) {
10042       if (I)
10043         Enc += ',';
10044       Enc += FE[I].str();
10045     }
10046   }
10047   Enc += '}';
10048   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10049   return true;
10050 }
10051 
10052 /// Appends enum types to Enc and adds the encoding to the cache.
10053 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10054                            TypeStringCache &TSC,
10055                            const IdentifierInfo *ID) {
10056   // Append the cached TypeString if we have one.
10057   StringRef TypeString = TSC.lookupStr(ID);
10058   if (!TypeString.empty()) {
10059     Enc += TypeString;
10060     return true;
10061   }
10062 
10063   size_t Start = Enc.size();
10064   Enc += "e(";
10065   if (ID)
10066     Enc += ID->getName();
10067   Enc += "){";
10068 
10069   // We collect all encoded enumerations and order them alphanumerically.
10070   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10071     SmallVector<FieldEncoding, 16> FE;
10072     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10073          ++I) {
10074       SmallStringEnc EnumEnc;
10075       EnumEnc += "m(";
10076       EnumEnc += I->getName();
10077       EnumEnc += "){";
10078       I->getInitVal().toString(EnumEnc);
10079       EnumEnc += '}';
10080       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10081     }
10082     llvm::sort(FE);
10083     unsigned E = FE.size();
10084     for (unsigned I = 0; I != E; ++I) {
10085       if (I)
10086         Enc += ',';
10087       Enc += FE[I].str();
10088     }
10089   }
10090   Enc += '}';
10091   TSC.addIfComplete(ID, Enc.substr(Start), false);
10092   return true;
10093 }
10094 
10095 /// Appends type's qualifier to Enc.
10096 /// This is done prior to appending the type's encoding.
10097 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10098   // Qualifiers are emitted in alphabetical order.
10099   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10100   int Lookup = 0;
10101   if (QT.isConstQualified())
10102     Lookup += 1<<0;
10103   if (QT.isRestrictQualified())
10104     Lookup += 1<<1;
10105   if (QT.isVolatileQualified())
10106     Lookup += 1<<2;
10107   Enc += Table[Lookup];
10108 }
10109 
10110 /// Appends built-in types to Enc.
10111 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10112   const char *EncType;
10113   switch (BT->getKind()) {
10114     case BuiltinType::Void:
10115       EncType = "0";
10116       break;
10117     case BuiltinType::Bool:
10118       EncType = "b";
10119       break;
10120     case BuiltinType::Char_U:
10121       EncType = "uc";
10122       break;
10123     case BuiltinType::UChar:
10124       EncType = "uc";
10125       break;
10126     case BuiltinType::SChar:
10127       EncType = "sc";
10128       break;
10129     case BuiltinType::UShort:
10130       EncType = "us";
10131       break;
10132     case BuiltinType::Short:
10133       EncType = "ss";
10134       break;
10135     case BuiltinType::UInt:
10136       EncType = "ui";
10137       break;
10138     case BuiltinType::Int:
10139       EncType = "si";
10140       break;
10141     case BuiltinType::ULong:
10142       EncType = "ul";
10143       break;
10144     case BuiltinType::Long:
10145       EncType = "sl";
10146       break;
10147     case BuiltinType::ULongLong:
10148       EncType = "ull";
10149       break;
10150     case BuiltinType::LongLong:
10151       EncType = "sll";
10152       break;
10153     case BuiltinType::Float:
10154       EncType = "ft";
10155       break;
10156     case BuiltinType::Double:
10157       EncType = "d";
10158       break;
10159     case BuiltinType::LongDouble:
10160       EncType = "ld";
10161       break;
10162     default:
10163       return false;
10164   }
10165   Enc += EncType;
10166   return true;
10167 }
10168 
10169 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10170 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10171                               const CodeGen::CodeGenModule &CGM,
10172                               TypeStringCache &TSC) {
10173   Enc += "p(";
10174   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10175     return false;
10176   Enc += ')';
10177   return true;
10178 }
10179 
10180 /// Appends array encoding to Enc before calling appendType for the element.
10181 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10182                             const ArrayType *AT,
10183                             const CodeGen::CodeGenModule &CGM,
10184                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10185   if (AT->getSizeModifier() != ArrayType::Normal)
10186     return false;
10187   Enc += "a(";
10188   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10189     CAT->getSize().toStringUnsigned(Enc);
10190   else
10191     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10192   Enc += ':';
10193   // The Qualifiers should be attached to the type rather than the array.
10194   appendQualifier(Enc, QT);
10195   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10196     return false;
10197   Enc += ')';
10198   return true;
10199 }
10200 
10201 /// Appends a function encoding to Enc, calling appendType for the return type
10202 /// and the arguments.
10203 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10204                              const CodeGen::CodeGenModule &CGM,
10205                              TypeStringCache &TSC) {
10206   Enc += "f{";
10207   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10208     return false;
10209   Enc += "}(";
10210   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10211     // N.B. we are only interested in the adjusted param types.
10212     auto I = FPT->param_type_begin();
10213     auto E = FPT->param_type_end();
10214     if (I != E) {
10215       do {
10216         if (!appendType(Enc, *I, CGM, TSC))
10217           return false;
10218         ++I;
10219         if (I != E)
10220           Enc += ',';
10221       } while (I != E);
10222       if (FPT->isVariadic())
10223         Enc += ",va";
10224     } else {
10225       if (FPT->isVariadic())
10226         Enc += "va";
10227       else
10228         Enc += '0';
10229     }
10230   }
10231   Enc += ')';
10232   return true;
10233 }
10234 
10235 /// Handles the type's qualifier before dispatching a call to handle specific
10236 /// type encodings.
10237 static bool appendType(SmallStringEnc &Enc, QualType QType,
10238                        const CodeGen::CodeGenModule &CGM,
10239                        TypeStringCache &TSC) {
10240 
10241   QualType QT = QType.getCanonicalType();
10242 
10243   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10244     // The Qualifiers should be attached to the type rather than the array.
10245     // Thus we don't call appendQualifier() here.
10246     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10247 
10248   appendQualifier(Enc, QT);
10249 
10250   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10251     return appendBuiltinType(Enc, BT);
10252 
10253   if (const PointerType *PT = QT->getAs<PointerType>())
10254     return appendPointerType(Enc, PT, CGM, TSC);
10255 
10256   if (const EnumType *ET = QT->getAs<EnumType>())
10257     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10258 
10259   if (const RecordType *RT = QT->getAsStructureType())
10260     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10261 
10262   if (const RecordType *RT = QT->getAsUnionType())
10263     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10264 
10265   if (const FunctionType *FT = QT->getAs<FunctionType>())
10266     return appendFunctionType(Enc, FT, CGM, TSC);
10267 
10268   return false;
10269 }
10270 
10271 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10272                           const CodeGen::CodeGenModule &CGM,
10273                           TypeStringCache &TSC) {
10274   if (!D)
10275     return false;
10276 
10277   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10278     if (FD->getLanguageLinkage() != CLanguageLinkage)
10279       return false;
10280     return appendType(Enc, FD->getType(), CGM, TSC);
10281   }
10282 
10283   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10284     if (VD->getLanguageLinkage() != CLanguageLinkage)
10285       return false;
10286     QualType QT = VD->getType().getCanonicalType();
10287     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10288       // Global ArrayTypes are given a size of '*' if the size is unknown.
10289       // The Qualifiers should be attached to the type rather than the array.
10290       // Thus we don't call appendQualifier() here.
10291       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10292     }
10293     return appendType(Enc, QT, CGM, TSC);
10294   }
10295   return false;
10296 }
10297 
10298 //===----------------------------------------------------------------------===//
10299 // RISCV ABI Implementation
10300 //===----------------------------------------------------------------------===//
10301 
10302 namespace {
10303 class RISCVABIInfo : public DefaultABIInfo {
10304 private:
10305   // Size of the integer ('x') registers in bits.
10306   unsigned XLen;
10307   // Size of the floating point ('f') registers in bits. Note that the target
10308   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10309   // with soft float ABI has FLen==0).
10310   unsigned FLen;
10311   static const int NumArgGPRs = 8;
10312   static const int NumArgFPRs = 8;
10313   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10314                                       llvm::Type *&Field1Ty,
10315                                       CharUnits &Field1Off,
10316                                       llvm::Type *&Field2Ty,
10317                                       CharUnits &Field2Off) const;
10318 
10319 public:
10320   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10321       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10322 
10323   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10324   // non-virtual, but computeInfo is virtual, so we overload it.
10325   void computeInfo(CGFunctionInfo &FI) const override;
10326 
10327   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10328                                   int &ArgFPRsLeft) const;
10329   ABIArgInfo classifyReturnType(QualType RetTy) const;
10330 
10331   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10332                     QualType Ty) const override;
10333 
10334   ABIArgInfo extendType(QualType Ty) const;
10335 
10336   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10337                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10338                                 CharUnits &Field2Off, int &NeededArgGPRs,
10339                                 int &NeededArgFPRs) const;
10340   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10341                                                CharUnits Field1Off,
10342                                                llvm::Type *Field2Ty,
10343                                                CharUnits Field2Off) const;
10344 };
10345 } // end anonymous namespace
10346 
10347 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10348   QualType RetTy = FI.getReturnType();
10349   if (!getCXXABI().classifyReturnType(FI))
10350     FI.getReturnInfo() = classifyReturnType(RetTy);
10351 
10352   // IsRetIndirect is true if classifyArgumentType indicated the value should
10353   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10354   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10355   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10356   // list and pass indirectly on RV32.
10357   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10358   if (!IsRetIndirect && RetTy->isScalarType() &&
10359       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10360     if (RetTy->isComplexType() && FLen) {
10361       QualType EltTy = RetTy->castAs<ComplexType>()->getElementType();
10362       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10363     } else {
10364       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10365       IsRetIndirect = true;
10366     }
10367   }
10368 
10369   // We must track the number of GPRs used in order to conform to the RISC-V
10370   // ABI, as integer scalars passed in registers should have signext/zeroext
10371   // when promoted, but are anyext if passed on the stack. As GPR usage is
10372   // different for variadic arguments, we must also track whether we are
10373   // examining a vararg or not.
10374   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10375   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10376   int NumFixedArgs = FI.getNumRequiredArgs();
10377 
10378   int ArgNum = 0;
10379   for (auto &ArgInfo : FI.arguments()) {
10380     bool IsFixed = ArgNum < NumFixedArgs;
10381     ArgInfo.info =
10382         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10383     ArgNum++;
10384   }
10385 }
10386 
10387 // Returns true if the struct is a potential candidate for the floating point
10388 // calling convention. If this function returns true, the caller is
10389 // responsible for checking that if there is only a single field then that
10390 // field is a float.
10391 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10392                                                   llvm::Type *&Field1Ty,
10393                                                   CharUnits &Field1Off,
10394                                                   llvm::Type *&Field2Ty,
10395                                                   CharUnits &Field2Off) const {
10396   bool IsInt = Ty->isIntegralOrEnumerationType();
10397   bool IsFloat = Ty->isRealFloatingType();
10398 
10399   if (IsInt || IsFloat) {
10400     uint64_t Size = getContext().getTypeSize(Ty);
10401     if (IsInt && Size > XLen)
10402       return false;
10403     // Can't be eligible if larger than the FP registers. Half precision isn't
10404     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10405     // default to the integer ABI in that case.
10406     if (IsFloat && (Size > FLen || Size < 32))
10407       return false;
10408     // Can't be eligible if an integer type was already found (int+int pairs
10409     // are not eligible).
10410     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10411       return false;
10412     if (!Field1Ty) {
10413       Field1Ty = CGT.ConvertType(Ty);
10414       Field1Off = CurOff;
10415       return true;
10416     }
10417     if (!Field2Ty) {
10418       Field2Ty = CGT.ConvertType(Ty);
10419       Field2Off = CurOff;
10420       return true;
10421     }
10422     return false;
10423   }
10424 
10425   if (auto CTy = Ty->getAs<ComplexType>()) {
10426     if (Field1Ty)
10427       return false;
10428     QualType EltTy = CTy->getElementType();
10429     if (getContext().getTypeSize(EltTy) > FLen)
10430       return false;
10431     Field1Ty = CGT.ConvertType(EltTy);
10432     Field1Off = CurOff;
10433     Field2Ty = Field1Ty;
10434     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10435     return true;
10436   }
10437 
10438   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10439     uint64_t ArraySize = ATy->getSize().getZExtValue();
10440     QualType EltTy = ATy->getElementType();
10441     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10442     for (uint64_t i = 0; i < ArraySize; ++i) {
10443       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10444                                                 Field1Off, Field2Ty, Field2Off);
10445       if (!Ret)
10446         return false;
10447       CurOff += EltSize;
10448     }
10449     return true;
10450   }
10451 
10452   if (const auto *RTy = Ty->getAs<RecordType>()) {
10453     // Structures with either a non-trivial destructor or a non-trivial
10454     // copy constructor are not eligible for the FP calling convention.
10455     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10456       return false;
10457     if (isEmptyRecord(getContext(), Ty, true))
10458       return true;
10459     const RecordDecl *RD = RTy->getDecl();
10460     // Unions aren't eligible unless they're empty (which is caught above).
10461     if (RD->isUnion())
10462       return false;
10463     int ZeroWidthBitFieldCount = 0;
10464     for (const FieldDecl *FD : RD->fields()) {
10465       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10466       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10467       QualType QTy = FD->getType();
10468       if (FD->isBitField()) {
10469         unsigned BitWidth = FD->getBitWidthValue(getContext());
10470         // Allow a bitfield with a type greater than XLen as long as the
10471         // bitwidth is XLen or less.
10472         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10473           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10474         if (BitWidth == 0) {
10475           ZeroWidthBitFieldCount++;
10476           continue;
10477         }
10478       }
10479 
10480       bool Ret = detectFPCCEligibleStructHelper(
10481           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10482           Field1Ty, Field1Off, Field2Ty, Field2Off);
10483       if (!Ret)
10484         return false;
10485 
10486       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10487       // or int+fp structs, but are ignored for a struct with an fp field and
10488       // any number of zero-width bitfields.
10489       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10490         return false;
10491     }
10492     return Field1Ty != nullptr;
10493   }
10494 
10495   return false;
10496 }
10497 
10498 // Determine if a struct is eligible for passing according to the floating
10499 // point calling convention (i.e., when flattened it contains a single fp
10500 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10501 // NeededArgGPRs are incremented appropriately.
10502 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10503                                             CharUnits &Field1Off,
10504                                             llvm::Type *&Field2Ty,
10505                                             CharUnits &Field2Off,
10506                                             int &NeededArgGPRs,
10507                                             int &NeededArgFPRs) const {
10508   Field1Ty = nullptr;
10509   Field2Ty = nullptr;
10510   NeededArgGPRs = 0;
10511   NeededArgFPRs = 0;
10512   bool IsCandidate = detectFPCCEligibleStructHelper(
10513       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10514   // Not really a candidate if we have a single int but no float.
10515   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10516     return false;
10517   if (!IsCandidate)
10518     return false;
10519   if (Field1Ty && Field1Ty->isFloatingPointTy())
10520     NeededArgFPRs++;
10521   else if (Field1Ty)
10522     NeededArgGPRs++;
10523   if (Field2Ty && Field2Ty->isFloatingPointTy())
10524     NeededArgFPRs++;
10525   else if (Field2Ty)
10526     NeededArgGPRs++;
10527   return true;
10528 }
10529 
10530 // Call getCoerceAndExpand for the two-element flattened struct described by
10531 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10532 // appropriate coerceToType and unpaddedCoerceToType.
10533 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10534     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10535     CharUnits Field2Off) const {
10536   SmallVector<llvm::Type *, 3> CoerceElts;
10537   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10538   if (!Field1Off.isZero())
10539     CoerceElts.push_back(llvm::ArrayType::get(
10540         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10541 
10542   CoerceElts.push_back(Field1Ty);
10543   UnpaddedCoerceElts.push_back(Field1Ty);
10544 
10545   if (!Field2Ty) {
10546     return ABIArgInfo::getCoerceAndExpand(
10547         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10548         UnpaddedCoerceElts[0]);
10549   }
10550 
10551   CharUnits Field2Align =
10552       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10553   CharUnits Field1End = Field1Off +
10554       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10555   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10556 
10557   CharUnits Padding = CharUnits::Zero();
10558   if (Field2Off > Field2OffNoPadNoPack)
10559     Padding = Field2Off - Field2OffNoPadNoPack;
10560   else if (Field2Off != Field2Align && Field2Off > Field1End)
10561     Padding = Field2Off - Field1End;
10562 
10563   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10564 
10565   if (!Padding.isZero())
10566     CoerceElts.push_back(llvm::ArrayType::get(
10567         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10568 
10569   CoerceElts.push_back(Field2Ty);
10570   UnpaddedCoerceElts.push_back(Field2Ty);
10571 
10572   auto CoerceToType =
10573       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10574   auto UnpaddedCoerceToType =
10575       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10576 
10577   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10578 }
10579 
10580 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10581                                               int &ArgGPRsLeft,
10582                                               int &ArgFPRsLeft) const {
10583   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10584   Ty = useFirstFieldIfTransparentUnion(Ty);
10585 
10586   // Structures with either a non-trivial destructor or a non-trivial
10587   // copy constructor are always passed indirectly.
10588   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10589     if (ArgGPRsLeft)
10590       ArgGPRsLeft -= 1;
10591     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10592                                            CGCXXABI::RAA_DirectInMemory);
10593   }
10594 
10595   // Ignore empty structs/unions.
10596   if (isEmptyRecord(getContext(), Ty, true))
10597     return ABIArgInfo::getIgnore();
10598 
10599   uint64_t Size = getContext().getTypeSize(Ty);
10600 
10601   // Pass floating point values via FPRs if possible.
10602   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10603       FLen >= Size && ArgFPRsLeft) {
10604     ArgFPRsLeft--;
10605     return ABIArgInfo::getDirect();
10606   }
10607 
10608   // Complex types for the hard float ABI must be passed direct rather than
10609   // using CoerceAndExpand.
10610   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10611     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10612     if (getContext().getTypeSize(EltTy) <= FLen) {
10613       ArgFPRsLeft -= 2;
10614       return ABIArgInfo::getDirect();
10615     }
10616   }
10617 
10618   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10619     llvm::Type *Field1Ty = nullptr;
10620     llvm::Type *Field2Ty = nullptr;
10621     CharUnits Field1Off = CharUnits::Zero();
10622     CharUnits Field2Off = CharUnits::Zero();
10623     int NeededArgGPRs;
10624     int NeededArgFPRs;
10625     bool IsCandidate =
10626         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10627                                  NeededArgGPRs, NeededArgFPRs);
10628     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10629         NeededArgFPRs <= ArgFPRsLeft) {
10630       ArgGPRsLeft -= NeededArgGPRs;
10631       ArgFPRsLeft -= NeededArgFPRs;
10632       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10633                                                Field2Off);
10634     }
10635   }
10636 
10637   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10638   bool MustUseStack = false;
10639   // Determine the number of GPRs needed to pass the current argument
10640   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10641   // register pairs, so may consume 3 registers.
10642   int NeededArgGPRs = 1;
10643   if (!IsFixed && NeededAlign == 2 * XLen)
10644     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10645   else if (Size > XLen && Size <= 2 * XLen)
10646     NeededArgGPRs = 2;
10647 
10648   if (NeededArgGPRs > ArgGPRsLeft) {
10649     MustUseStack = true;
10650     NeededArgGPRs = ArgGPRsLeft;
10651   }
10652 
10653   ArgGPRsLeft -= NeededArgGPRs;
10654 
10655   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10656     // Treat an enum type as its underlying type.
10657     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10658       Ty = EnumTy->getDecl()->getIntegerType();
10659 
10660     // All integral types are promoted to XLen width, unless passed on the
10661     // stack.
10662     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10663       return extendType(Ty);
10664     }
10665 
10666     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10667       if (EIT->getNumBits() < XLen && !MustUseStack)
10668         return extendType(Ty);
10669       if (EIT->getNumBits() > 128 ||
10670           (!getContext().getTargetInfo().hasInt128Type() &&
10671            EIT->getNumBits() > 64))
10672         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10673     }
10674 
10675     return ABIArgInfo::getDirect();
10676   }
10677 
10678   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10679   // so coerce to integers.
10680   if (Size <= 2 * XLen) {
10681     unsigned Alignment = getContext().getTypeAlign(Ty);
10682 
10683     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10684     // required, and a 2-element XLen array if only XLen alignment is required.
10685     if (Size <= XLen) {
10686       return ABIArgInfo::getDirect(
10687           llvm::IntegerType::get(getVMContext(), XLen));
10688     } else if (Alignment == 2 * XLen) {
10689       return ABIArgInfo::getDirect(
10690           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10691     } else {
10692       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10693           llvm::IntegerType::get(getVMContext(), XLen), 2));
10694     }
10695   }
10696   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10697 }
10698 
10699 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10700   if (RetTy->isVoidType())
10701     return ABIArgInfo::getIgnore();
10702 
10703   int ArgGPRsLeft = 2;
10704   int ArgFPRsLeft = FLen ? 2 : 0;
10705 
10706   // The rules for return and argument types are the same, so defer to
10707   // classifyArgumentType.
10708   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10709                               ArgFPRsLeft);
10710 }
10711 
10712 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10713                                 QualType Ty) const {
10714   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10715 
10716   // Empty records are ignored for parameter passing purposes.
10717   if (isEmptyRecord(getContext(), Ty, true)) {
10718     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10719     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10720     return Addr;
10721   }
10722 
10723   auto TInfo = getContext().getTypeInfoInChars(Ty);
10724 
10725   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10726   bool IsIndirect = TInfo.Width > 2 * SlotSize;
10727 
10728   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo,
10729                           SlotSize, /*AllowHigherAlign=*/true);
10730 }
10731 
10732 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10733   int TySize = getContext().getTypeSize(Ty);
10734   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10735   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10736     return ABIArgInfo::getSignExtend(Ty);
10737   return ABIArgInfo::getExtend(Ty);
10738 }
10739 
10740 namespace {
10741 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10742 public:
10743   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10744                          unsigned FLen)
10745       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10746 
10747   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10748                            CodeGen::CodeGenModule &CGM) const override {
10749     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10750     if (!FD) return;
10751 
10752     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10753     if (!Attr)
10754       return;
10755 
10756     const char *Kind;
10757     switch (Attr->getInterrupt()) {
10758     case RISCVInterruptAttr::user: Kind = "user"; break;
10759     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10760     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10761     }
10762 
10763     auto *Fn = cast<llvm::Function>(GV);
10764 
10765     Fn->addFnAttr("interrupt", Kind);
10766   }
10767 };
10768 } // namespace
10769 
10770 //===----------------------------------------------------------------------===//
10771 // VE ABI Implementation.
10772 //
10773 namespace {
10774 class VEABIInfo : public DefaultABIInfo {
10775 public:
10776   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10777 
10778 private:
10779   ABIArgInfo classifyReturnType(QualType RetTy) const;
10780   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10781   void computeInfo(CGFunctionInfo &FI) const override;
10782 };
10783 } // end anonymous namespace
10784 
10785 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10786   if (Ty->isAnyComplexType())
10787     return ABIArgInfo::getDirect();
10788   uint64_t Size = getContext().getTypeSize(Ty);
10789   if (Size < 64 && Ty->isIntegerType())
10790     return ABIArgInfo::getExtend(Ty);
10791   return DefaultABIInfo::classifyReturnType(Ty);
10792 }
10793 
10794 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10795   if (Ty->isAnyComplexType())
10796     return ABIArgInfo::getDirect();
10797   uint64_t Size = getContext().getTypeSize(Ty);
10798   if (Size < 64 && Ty->isIntegerType())
10799     return ABIArgInfo::getExtend(Ty);
10800   return DefaultABIInfo::classifyArgumentType(Ty);
10801 }
10802 
10803 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10804   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10805   for (auto &Arg : FI.arguments())
10806     Arg.info = classifyArgumentType(Arg.type);
10807 }
10808 
10809 namespace {
10810 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10811 public:
10812   VETargetCodeGenInfo(CodeGenTypes &CGT)
10813       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10814   // VE ABI requires the arguments of variadic and prototype-less functions
10815   // are passed in both registers and memory.
10816   bool isNoProtoCallVariadic(const CallArgList &args,
10817                              const FunctionNoProtoType *fnType) const override {
10818     return true;
10819   }
10820 };
10821 } // end anonymous namespace
10822 
10823 //===----------------------------------------------------------------------===//
10824 // Driver code
10825 //===----------------------------------------------------------------------===//
10826 
10827 bool CodeGenModule::supportsCOMDAT() const {
10828   return getTriple().supportsCOMDAT();
10829 }
10830 
10831 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10832   if (TheTargetCodeGenInfo)
10833     return *TheTargetCodeGenInfo;
10834 
10835   // Helper to set the unique_ptr while still keeping the return value.
10836   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10837     this->TheTargetCodeGenInfo.reset(P);
10838     return *P;
10839   };
10840 
10841   const llvm::Triple &Triple = getTarget().getTriple();
10842   switch (Triple.getArch()) {
10843   default:
10844     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10845 
10846   case llvm::Triple::le32:
10847     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10848   case llvm::Triple::mips:
10849   case llvm::Triple::mipsel:
10850     if (Triple.getOS() == llvm::Triple::NaCl)
10851       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10852     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10853 
10854   case llvm::Triple::mips64:
10855   case llvm::Triple::mips64el:
10856     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10857 
10858   case llvm::Triple::avr:
10859     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10860 
10861   case llvm::Triple::aarch64:
10862   case llvm::Triple::aarch64_32:
10863   case llvm::Triple::aarch64_be: {
10864     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10865     if (getTarget().getABI() == "darwinpcs")
10866       Kind = AArch64ABIInfo::DarwinPCS;
10867     else if (Triple.isOSWindows())
10868       return SetCGInfo(
10869           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10870 
10871     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10872   }
10873 
10874   case llvm::Triple::wasm32:
10875   case llvm::Triple::wasm64: {
10876     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10877     if (getTarget().getABI() == "experimental-mv")
10878       Kind = WebAssemblyABIInfo::ExperimentalMV;
10879     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10880   }
10881 
10882   case llvm::Triple::arm:
10883   case llvm::Triple::armeb:
10884   case llvm::Triple::thumb:
10885   case llvm::Triple::thumbeb: {
10886     if (Triple.getOS() == llvm::Triple::Win32) {
10887       return SetCGInfo(
10888           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10889     }
10890 
10891     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10892     StringRef ABIStr = getTarget().getABI();
10893     if (ABIStr == "apcs-gnu")
10894       Kind = ARMABIInfo::APCS;
10895     else if (ABIStr == "aapcs16")
10896       Kind = ARMABIInfo::AAPCS16_VFP;
10897     else if (CodeGenOpts.FloatABI == "hard" ||
10898              (CodeGenOpts.FloatABI != "soft" &&
10899               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10900                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10901                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10902       Kind = ARMABIInfo::AAPCS_VFP;
10903 
10904     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10905   }
10906 
10907   case llvm::Triple::ppc: {
10908     if (Triple.isOSAIX())
10909       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10910 
10911     bool IsSoftFloat =
10912         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10913     bool RetSmallStructInRegABI =
10914         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10915     return SetCGInfo(
10916         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10917   }
10918   case llvm::Triple::ppcle: {
10919     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10920     bool RetSmallStructInRegABI =
10921         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10922     return SetCGInfo(
10923         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10924   }
10925   case llvm::Triple::ppc64:
10926     if (Triple.isOSAIX())
10927       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10928 
10929     if (Triple.isOSBinFormatELF()) {
10930       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10931       if (getTarget().getABI() == "elfv2")
10932         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10933       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10934 
10935       return SetCGInfo(
10936           new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
10937     }
10938     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10939   case llvm::Triple::ppc64le: {
10940     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10941     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10942     if (getTarget().getABI() == "elfv1")
10943       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10944     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10945 
10946     return SetCGInfo(
10947         new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, IsSoftFloat));
10948   }
10949 
10950   case llvm::Triple::nvptx:
10951   case llvm::Triple::nvptx64:
10952     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10953 
10954   case llvm::Triple::msp430:
10955     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10956 
10957   case llvm::Triple::riscv32:
10958   case llvm::Triple::riscv64: {
10959     StringRef ABIStr = getTarget().getABI();
10960     unsigned XLen = getTarget().getPointerWidth(0);
10961     unsigned ABIFLen = 0;
10962     if (ABIStr.endswith("f"))
10963       ABIFLen = 32;
10964     else if (ABIStr.endswith("d"))
10965       ABIFLen = 64;
10966     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10967   }
10968 
10969   case llvm::Triple::systemz: {
10970     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10971     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10972     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10973   }
10974 
10975   case llvm::Triple::tce:
10976   case llvm::Triple::tcele:
10977     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10978 
10979   case llvm::Triple::x86: {
10980     bool IsDarwinVectorABI = Triple.isOSDarwin();
10981     bool RetSmallStructInRegABI =
10982         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10983     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10984 
10985     if (Triple.getOS() == llvm::Triple::Win32) {
10986       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10987           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10988           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10989     } else {
10990       return SetCGInfo(new X86_32TargetCodeGenInfo(
10991           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10992           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10993           CodeGenOpts.FloatABI == "soft"));
10994     }
10995   }
10996 
10997   case llvm::Triple::x86_64: {
10998     StringRef ABI = getTarget().getABI();
10999     X86AVXABILevel AVXLevel =
11000         (ABI == "avx512"
11001              ? X86AVXABILevel::AVX512
11002              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
11003 
11004     switch (Triple.getOS()) {
11005     case llvm::Triple::Win32:
11006       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
11007     default:
11008       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
11009     }
11010   }
11011   case llvm::Triple::hexagon:
11012     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
11013   case llvm::Triple::lanai:
11014     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
11015   case llvm::Triple::r600:
11016     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11017   case llvm::Triple::amdgcn:
11018     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
11019   case llvm::Triple::sparc:
11020     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
11021   case llvm::Triple::sparcv9:
11022     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
11023   case llvm::Triple::xcore:
11024     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
11025   case llvm::Triple::arc:
11026     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
11027   case llvm::Triple::spir:
11028   case llvm::Triple::spir64:
11029     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
11030   case llvm::Triple::ve:
11031     return SetCGInfo(new VETargetCodeGenInfo(Types));
11032   }
11033 }
11034 
11035 /// Create an OpenCL kernel for an enqueued block.
11036 ///
11037 /// The kernel has the same function type as the block invoke function. Its
11038 /// name is the name of the block invoke function postfixed with "_kernel".
11039 /// It simply calls the block invoke function then returns.
11040 llvm::Function *
11041 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11042                                              llvm::Function *Invoke,
11043                                              llvm::Value *BlockLiteral) const {
11044   auto *InvokeFT = Invoke->getFunctionType();
11045   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11046   for (auto &P : InvokeFT->params())
11047     ArgTys.push_back(P);
11048   auto &C = CGF.getLLVMContext();
11049   std::string Name = Invoke->getName().str() + "_kernel";
11050   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11051   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11052                                    &CGF.CGM.getModule());
11053   auto IP = CGF.Builder.saveIP();
11054   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11055   auto &Builder = CGF.Builder;
11056   Builder.SetInsertPoint(BB);
11057   llvm::SmallVector<llvm::Value *, 2> Args;
11058   for (auto &A : F->args())
11059     Args.push_back(&A);
11060   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11061   call->setCallingConv(Invoke->getCallingConv());
11062   Builder.CreateRetVoid();
11063   Builder.restoreIP(IP);
11064   return F;
11065 }
11066 
11067 /// Create an OpenCL kernel for an enqueued block.
11068 ///
11069 /// The type of the first argument (the block literal) is the struct type
11070 /// of the block literal instead of a pointer type. The first argument
11071 /// (block literal) is passed directly by value to the kernel. The kernel
11072 /// allocates the same type of struct on stack and stores the block literal
11073 /// to it and passes its pointer to the block invoke function. The kernel
11074 /// has "enqueued-block" function attribute and kernel argument metadata.
11075 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11076     CodeGenFunction &CGF, llvm::Function *Invoke,
11077     llvm::Value *BlockLiteral) const {
11078   auto &Builder = CGF.Builder;
11079   auto &C = CGF.getLLVMContext();
11080 
11081   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11082   auto *InvokeFT = Invoke->getFunctionType();
11083   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11084   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11085   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11086   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11087   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11088   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11089   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11090 
11091   ArgTys.push_back(BlockTy);
11092   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11093   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11094   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11095   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11096   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11097   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11098   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11099     ArgTys.push_back(InvokeFT->getParamType(I));
11100     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11101     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11102     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11103     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11104     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11105     ArgNames.push_back(
11106         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11107   }
11108   std::string Name = Invoke->getName().str() + "_kernel";
11109   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11110   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11111                                    &CGF.CGM.getModule());
11112   F->addFnAttr("enqueued-block");
11113   auto IP = CGF.Builder.saveIP();
11114   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11115   Builder.SetInsertPoint(BB);
11116   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11117   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11118   BlockPtr->setAlignment(BlockAlign);
11119   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11120   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11121   llvm::SmallVector<llvm::Value *, 2> Args;
11122   Args.push_back(Cast);
11123   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11124     Args.push_back(I);
11125   llvm::CallInst *call = Builder.CreateCall(Invoke, Args);
11126   call->setCallingConv(Invoke->getCallingConv());
11127   Builder.CreateRetVoid();
11128   Builder.restoreIP(IP);
11129 
11130   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11131   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11132   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11133   F->setMetadata("kernel_arg_base_type",
11134                  llvm::MDNode::get(C, ArgBaseTypeNames));
11135   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11136   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11137     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11138 
11139   return F;
11140 }
11141