1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines analysis_warnings::[Policy,Executor].
10 // Together they are used by Sema to issue warnings based on inexpensive
11 // static analysis algorithms in libAnalysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/AnalysisBasedWarnings.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/EvaluatedExprVisitor.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/OperationKinds.h"
23 #include "clang/AST/ParentMap.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtObjC.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
29 #include "clang/Analysis/Analyses/CalledOnceCheck.h"
30 #include "clang/Analysis/Analyses/Consumed.h"
31 #include "clang/Analysis/Analyses/ReachableCode.h"
32 #include "clang/Analysis/Analyses/ThreadSafety.h"
33 #include "clang/Analysis/Analyses/UninitializedValues.h"
34 #include "clang/Analysis/Analyses/UnsafeBufferUsage.h"
35 #include "clang/Analysis/AnalysisDeclContext.h"
36 #include "clang/Analysis/CFG.h"
37 #include "clang/Analysis/CFGStmtMap.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/BitVector.h"
45 #include "llvm/ADT/MapVector.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Support/Casting.h"
50 #include <algorithm>
51 #include <deque>
52 #include <iterator>
53 #include <optional>
54 
55 using namespace clang;
56 
57 //===----------------------------------------------------------------------===//
58 // Unreachable code analysis.
59 //===----------------------------------------------------------------------===//
60 
61 namespace {
62   class UnreachableCodeHandler : public reachable_code::Callback {
63     Sema &S;
64     SourceRange PreviousSilenceableCondVal;
65 
66   public:
67     UnreachableCodeHandler(Sema &s) : S(s) {}
68 
69     void HandleUnreachable(reachable_code::UnreachableKind UK,
70                            SourceLocation L,
71                            SourceRange SilenceableCondVal,
72                            SourceRange R1,
73                            SourceRange R2) override {
74       // Avoid reporting multiple unreachable code diagnostics that are
75       // triggered by the same conditional value.
76       if (PreviousSilenceableCondVal.isValid() &&
77           SilenceableCondVal.isValid() &&
78           PreviousSilenceableCondVal == SilenceableCondVal)
79         return;
80       PreviousSilenceableCondVal = SilenceableCondVal;
81 
82       unsigned diag = diag::warn_unreachable;
83       switch (UK) {
84         case reachable_code::UK_Break:
85           diag = diag::warn_unreachable_break;
86           break;
87         case reachable_code::UK_Return:
88           diag = diag::warn_unreachable_return;
89           break;
90         case reachable_code::UK_Loop_Increment:
91           diag = diag::warn_unreachable_loop_increment;
92           break;
93         case reachable_code::UK_Other:
94           break;
95       }
96 
97       S.Diag(L, diag) << R1 << R2;
98 
99       SourceLocation Open = SilenceableCondVal.getBegin();
100       if (Open.isValid()) {
101         SourceLocation Close = SilenceableCondVal.getEnd();
102         Close = S.getLocForEndOfToken(Close);
103         if (Close.isValid()) {
104           S.Diag(Open, diag::note_unreachable_silence)
105             << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
106             << FixItHint::CreateInsertion(Close, ")");
107         }
108       }
109     }
110   };
111 } // anonymous namespace
112 
113 /// CheckUnreachable - Check for unreachable code.
114 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
115   // As a heuristic prune all diagnostics not in the main file.  Currently
116   // the majority of warnings in headers are false positives.  These
117   // are largely caused by configuration state, e.g. preprocessor
118   // defined code, etc.
119   //
120   // Note that this is also a performance optimization.  Analyzing
121   // headers many times can be expensive.
122   if (!S.getSourceManager().isInMainFile(AC.getDecl()->getBeginLoc()))
123     return;
124 
125   UnreachableCodeHandler UC(S);
126   reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
127 }
128 
129 namespace {
130 /// Warn on logical operator errors in CFGBuilder
131 class LogicalErrorHandler : public CFGCallback {
132   Sema &S;
133 
134 public:
135   LogicalErrorHandler(Sema &S) : S(S) {}
136 
137   static bool HasMacroID(const Expr *E) {
138     if (E->getExprLoc().isMacroID())
139       return true;
140 
141     // Recurse to children.
142     for (const Stmt *SubStmt : E->children())
143       if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
144         if (HasMacroID(SubExpr))
145           return true;
146 
147     return false;
148   }
149 
150   void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
151     if (HasMacroID(B))
152       return;
153 
154     SourceRange DiagRange = B->getSourceRange();
155     S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
156         << DiagRange << isAlwaysTrue;
157   }
158 
159   void compareBitwiseEquality(const BinaryOperator *B,
160                               bool isAlwaysTrue) override {
161     if (HasMacroID(B))
162       return;
163 
164     SourceRange DiagRange = B->getSourceRange();
165     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
166         << DiagRange << isAlwaysTrue;
167   }
168 
169   void compareBitwiseOr(const BinaryOperator *B) override {
170     if (HasMacroID(B))
171       return;
172 
173     SourceRange DiagRange = B->getSourceRange();
174     S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_or) << DiagRange;
175   }
176 
177   static bool hasActiveDiagnostics(DiagnosticsEngine &Diags,
178                                    SourceLocation Loc) {
179     return !Diags.isIgnored(diag::warn_tautological_overlap_comparison, Loc) ||
180            !Diags.isIgnored(diag::warn_comparison_bitwise_or, Loc);
181   }
182 };
183 } // anonymous namespace
184 
185 //===----------------------------------------------------------------------===//
186 // Check for infinite self-recursion in functions
187 //===----------------------------------------------------------------------===//
188 
189 // Returns true if the function is called anywhere within the CFGBlock.
190 // For member functions, the additional condition of being call from the
191 // this pointer is required.
192 static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
193   // Process all the Stmt's in this block to find any calls to FD.
194   for (const auto &B : Block) {
195     if (B.getKind() != CFGElement::Statement)
196       continue;
197 
198     const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
199     if (!CE || !CE->getCalleeDecl() ||
200         CE->getCalleeDecl()->getCanonicalDecl() != FD)
201       continue;
202 
203     // Skip function calls which are qualified with a templated class.
204     if (const DeclRefExpr *DRE =
205             dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
206       if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
207         if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
208             isa<TemplateSpecializationType>(NNS->getAsType())) {
209           continue;
210         }
211       }
212     }
213 
214     const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
215     if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
216         !MCE->getMethodDecl()->isVirtual())
217       return true;
218   }
219   return false;
220 }
221 
222 // Returns true if every path from the entry block passes through a call to FD.
223 static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
224   llvm::SmallPtrSet<CFGBlock *, 16> Visited;
225   llvm::SmallVector<CFGBlock *, 16> WorkList;
226   // Keep track of whether we found at least one recursive path.
227   bool foundRecursion = false;
228 
229   const unsigned ExitID = cfg->getExit().getBlockID();
230 
231   // Seed the work list with the entry block.
232   WorkList.push_back(&cfg->getEntry());
233 
234   while (!WorkList.empty()) {
235     CFGBlock *Block = WorkList.pop_back_val();
236 
237     for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
238       if (CFGBlock *SuccBlock = *I) {
239         if (!Visited.insert(SuccBlock).second)
240           continue;
241 
242         // Found a path to the exit node without a recursive call.
243         if (ExitID == SuccBlock->getBlockID())
244           return false;
245 
246         // If the successor block contains a recursive call, end analysis there.
247         if (hasRecursiveCallInPath(FD, *SuccBlock)) {
248           foundRecursion = true;
249           continue;
250         }
251 
252         WorkList.push_back(SuccBlock);
253       }
254     }
255   }
256   return foundRecursion;
257 }
258 
259 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
260                                    const Stmt *Body, AnalysisDeclContext &AC) {
261   FD = FD->getCanonicalDecl();
262 
263   // Only run on non-templated functions and non-templated members of
264   // templated classes.
265   if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
266       FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
267     return;
268 
269   CFG *cfg = AC.getCFG();
270   if (!cfg) return;
271 
272   // If the exit block is unreachable, skip processing the function.
273   if (cfg->getExit().pred_empty())
274     return;
275 
276   // Emit diagnostic if a recursive function call is detected for all paths.
277   if (checkForRecursiveFunctionCall(FD, cfg))
278     S.Diag(Body->getBeginLoc(), diag::warn_infinite_recursive_function);
279 }
280 
281 //===----------------------------------------------------------------------===//
282 // Check for throw in a non-throwing function.
283 //===----------------------------------------------------------------------===//
284 
285 /// Determine whether an exception thrown by E, unwinding from ThrowBlock,
286 /// can reach ExitBlock.
287 static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
288                          CFG *Body) {
289   SmallVector<CFGBlock *, 16> Stack;
290   llvm::BitVector Queued(Body->getNumBlockIDs());
291 
292   Stack.push_back(&ThrowBlock);
293   Queued[ThrowBlock.getBlockID()] = true;
294 
295   while (!Stack.empty()) {
296     CFGBlock &UnwindBlock = *Stack.back();
297     Stack.pop_back();
298 
299     for (auto &Succ : UnwindBlock.succs()) {
300       if (!Succ.isReachable() || Queued[Succ->getBlockID()])
301         continue;
302 
303       if (Succ->getBlockID() == Body->getExit().getBlockID())
304         return true;
305 
306       if (auto *Catch =
307               dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
308         QualType Caught = Catch->getCaughtType();
309         if (Caught.isNull() || // catch (...) catches everything
310             !E->getSubExpr() || // throw; is considered cuaght by any handler
311             S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
312           // Exception doesn't escape via this path.
313           break;
314       } else {
315         Stack.push_back(Succ);
316         Queued[Succ->getBlockID()] = true;
317       }
318     }
319   }
320 
321   return false;
322 }
323 
324 static void visitReachableThrows(
325     CFG *BodyCFG,
326     llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
327   llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
328   clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
329   for (CFGBlock *B : *BodyCFG) {
330     if (!Reachable[B->getBlockID()])
331       continue;
332     for (CFGElement &E : *B) {
333       std::optional<CFGStmt> S = E.getAs<CFGStmt>();
334       if (!S)
335         continue;
336       if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
337         Visit(Throw, *B);
338     }
339   }
340 }
341 
342 static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
343                                                  const FunctionDecl *FD) {
344   if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
345       FD->getTypeSourceInfo()) {
346     S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
347     if (S.getLangOpts().CPlusPlus11 &&
348         (isa<CXXDestructorDecl>(FD) ||
349          FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
350          FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
351       if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
352                                          getAs<FunctionProtoType>())
353         S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
354             << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
355             << FD->getExceptionSpecSourceRange();
356     } else
357       S.Diag(FD->getLocation(), diag::note_throw_in_function)
358           << FD->getExceptionSpecSourceRange();
359   }
360 }
361 
362 static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
363                                         AnalysisDeclContext &AC) {
364   CFG *BodyCFG = AC.getCFG();
365   if (!BodyCFG)
366     return;
367   if (BodyCFG->getExit().pred_empty())
368     return;
369   visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
370     if (throwEscapes(S, Throw, Block, BodyCFG))
371       EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
372   });
373 }
374 
375 static bool isNoexcept(const FunctionDecl *FD) {
376   const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
377   if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
378     return true;
379   return false;
380 }
381 
382 //===----------------------------------------------------------------------===//
383 // Check for missing return value.
384 //===----------------------------------------------------------------------===//
385 
386 enum ControlFlowKind {
387   UnknownFallThrough,
388   NeverFallThrough,
389   MaybeFallThrough,
390   AlwaysFallThrough,
391   NeverFallThroughOrReturn
392 };
393 
394 /// CheckFallThrough - Check that we don't fall off the end of a
395 /// Statement that should return a value.
396 ///
397 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
398 /// MaybeFallThrough iff we might or might not fall off the end,
399 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
400 /// return.  We assume NeverFallThrough iff we never fall off the end of the
401 /// statement but we may return.  We assume that functions not marked noreturn
402 /// will return.
403 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
404   CFG *cfg = AC.getCFG();
405   if (!cfg) return UnknownFallThrough;
406 
407   // The CFG leaves in dead things, and we don't want the dead code paths to
408   // confuse us, so we mark all live things first.
409   llvm::BitVector live(cfg->getNumBlockIDs());
410   unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
411                                                           live);
412 
413   bool AddEHEdges = AC.getAddEHEdges();
414   if (!AddEHEdges && count != cfg->getNumBlockIDs())
415     // When there are things remaining dead, and we didn't add EH edges
416     // from CallExprs to the catch clauses, we have to go back and
417     // mark them as live.
418     for (const auto *B : *cfg) {
419       if (!live[B->getBlockID()]) {
420         if (B->pred_begin() == B->pred_end()) {
421           const Stmt *Term = B->getTerminatorStmt();
422           if (Term && isa<CXXTryStmt>(Term))
423             // When not adding EH edges from calls, catch clauses
424             // can otherwise seem dead.  Avoid noting them as dead.
425             count += reachable_code::ScanReachableFromBlock(B, live);
426           continue;
427         }
428       }
429     }
430 
431   // Now we know what is live, we check the live precessors of the exit block
432   // and look for fall through paths, being careful to ignore normal returns,
433   // and exceptional paths.
434   bool HasLiveReturn = false;
435   bool HasFakeEdge = false;
436   bool HasPlainEdge = false;
437   bool HasAbnormalEdge = false;
438 
439   // Ignore default cases that aren't likely to be reachable because all
440   // enums in a switch(X) have explicit case statements.
441   CFGBlock::FilterOptions FO;
442   FO.IgnoreDefaultsWithCoveredEnums = 1;
443 
444   for (CFGBlock::filtered_pred_iterator I =
445            cfg->getExit().filtered_pred_start_end(FO);
446        I.hasMore(); ++I) {
447     const CFGBlock &B = **I;
448     if (!live[B.getBlockID()])
449       continue;
450 
451     // Skip blocks which contain an element marked as no-return. They don't
452     // represent actually viable edges into the exit block, so mark them as
453     // abnormal.
454     if (B.hasNoReturnElement()) {
455       HasAbnormalEdge = true;
456       continue;
457     }
458 
459     // Destructors can appear after the 'return' in the CFG.  This is
460     // normal.  We need to look pass the destructors for the return
461     // statement (if it exists).
462     CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
463 
464     for ( ; ri != re ; ++ri)
465       if (ri->getAs<CFGStmt>())
466         break;
467 
468     // No more CFGElements in the block?
469     if (ri == re) {
470       const Stmt *Term = B.getTerminatorStmt();
471       if (Term && (isa<CXXTryStmt>(Term) || isa<ObjCAtTryStmt>(Term))) {
472         HasAbnormalEdge = true;
473         continue;
474       }
475       // A labeled empty statement, or the entry block...
476       HasPlainEdge = true;
477       continue;
478     }
479 
480     CFGStmt CS = ri->castAs<CFGStmt>();
481     const Stmt *S = CS.getStmt();
482     if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
483       HasLiveReturn = true;
484       continue;
485     }
486     if (isa<ObjCAtThrowStmt>(S)) {
487       HasFakeEdge = true;
488       continue;
489     }
490     if (isa<CXXThrowExpr>(S)) {
491       HasFakeEdge = true;
492       continue;
493     }
494     if (isa<MSAsmStmt>(S)) {
495       // TODO: Verify this is correct.
496       HasFakeEdge = true;
497       HasLiveReturn = true;
498       continue;
499     }
500     if (isa<CXXTryStmt>(S)) {
501       HasAbnormalEdge = true;
502       continue;
503     }
504     if (!llvm::is_contained(B.succs(), &cfg->getExit())) {
505       HasAbnormalEdge = true;
506       continue;
507     }
508 
509     HasPlainEdge = true;
510   }
511   if (!HasPlainEdge) {
512     if (HasLiveReturn)
513       return NeverFallThrough;
514     return NeverFallThroughOrReturn;
515   }
516   if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
517     return MaybeFallThrough;
518   // This says AlwaysFallThrough for calls to functions that are not marked
519   // noreturn, that don't return.  If people would like this warning to be more
520   // accurate, such functions should be marked as noreturn.
521   return AlwaysFallThrough;
522 }
523 
524 namespace {
525 
526 struct CheckFallThroughDiagnostics {
527   unsigned diag_MaybeFallThrough_HasNoReturn;
528   unsigned diag_MaybeFallThrough_ReturnsNonVoid;
529   unsigned diag_AlwaysFallThrough_HasNoReturn;
530   unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
531   unsigned diag_NeverFallThroughOrReturn;
532   enum { Function, Block, Lambda, Coroutine } funMode;
533   SourceLocation FuncLoc;
534 
535   static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
536     CheckFallThroughDiagnostics D;
537     D.FuncLoc = Func->getLocation();
538     D.diag_MaybeFallThrough_HasNoReturn =
539       diag::warn_falloff_noreturn_function;
540     D.diag_MaybeFallThrough_ReturnsNonVoid =
541       diag::warn_maybe_falloff_nonvoid_function;
542     D.diag_AlwaysFallThrough_HasNoReturn =
543       diag::warn_falloff_noreturn_function;
544     D.diag_AlwaysFallThrough_ReturnsNonVoid =
545       diag::warn_falloff_nonvoid_function;
546 
547     // Don't suggest that virtual functions be marked "noreturn", since they
548     // might be overridden by non-noreturn functions.
549     bool isVirtualMethod = false;
550     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
551       isVirtualMethod = Method->isVirtual();
552 
553     // Don't suggest that template instantiations be marked "noreturn"
554     bool isTemplateInstantiation = false;
555     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
556       isTemplateInstantiation = Function->isTemplateInstantiation();
557 
558     if (!isVirtualMethod && !isTemplateInstantiation)
559       D.diag_NeverFallThroughOrReturn =
560         diag::warn_suggest_noreturn_function;
561     else
562       D.diag_NeverFallThroughOrReturn = 0;
563 
564     D.funMode = Function;
565     return D;
566   }
567 
568   static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
569     CheckFallThroughDiagnostics D;
570     D.FuncLoc = Func->getLocation();
571     D.diag_MaybeFallThrough_HasNoReturn = 0;
572     D.diag_MaybeFallThrough_ReturnsNonVoid =
573         diag::warn_maybe_falloff_nonvoid_coroutine;
574     D.diag_AlwaysFallThrough_HasNoReturn = 0;
575     D.diag_AlwaysFallThrough_ReturnsNonVoid =
576         diag::warn_falloff_nonvoid_coroutine;
577     D.funMode = Coroutine;
578     return D;
579   }
580 
581   static CheckFallThroughDiagnostics MakeForBlock() {
582     CheckFallThroughDiagnostics D;
583     D.diag_MaybeFallThrough_HasNoReturn =
584       diag::err_noreturn_block_has_return_expr;
585     D.diag_MaybeFallThrough_ReturnsNonVoid =
586       diag::err_maybe_falloff_nonvoid_block;
587     D.diag_AlwaysFallThrough_HasNoReturn =
588       diag::err_noreturn_block_has_return_expr;
589     D.diag_AlwaysFallThrough_ReturnsNonVoid =
590       diag::err_falloff_nonvoid_block;
591     D.diag_NeverFallThroughOrReturn = 0;
592     D.funMode = Block;
593     return D;
594   }
595 
596   static CheckFallThroughDiagnostics MakeForLambda() {
597     CheckFallThroughDiagnostics D;
598     D.diag_MaybeFallThrough_HasNoReturn =
599       diag::err_noreturn_lambda_has_return_expr;
600     D.diag_MaybeFallThrough_ReturnsNonVoid =
601       diag::warn_maybe_falloff_nonvoid_lambda;
602     D.diag_AlwaysFallThrough_HasNoReturn =
603       diag::err_noreturn_lambda_has_return_expr;
604     D.diag_AlwaysFallThrough_ReturnsNonVoid =
605       diag::warn_falloff_nonvoid_lambda;
606     D.diag_NeverFallThroughOrReturn = 0;
607     D.funMode = Lambda;
608     return D;
609   }
610 
611   bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
612                         bool HasNoReturn) const {
613     if (funMode == Function) {
614       return (ReturnsVoid ||
615               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
616                           FuncLoc)) &&
617              (!HasNoReturn ||
618               D.isIgnored(diag::warn_noreturn_function_has_return_expr,
619                           FuncLoc)) &&
620              (!ReturnsVoid ||
621               D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
622     }
623     if (funMode == Coroutine) {
624       return (ReturnsVoid ||
625               D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
626               D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
627                           FuncLoc)) &&
628              (!HasNoReturn);
629     }
630     // For blocks / lambdas.
631     return ReturnsVoid && !HasNoReturn;
632   }
633 };
634 
635 } // anonymous namespace
636 
637 /// CheckFallThroughForBody - Check that we don't fall off the end of a
638 /// function that should return a value.  Check that we don't fall off the end
639 /// of a noreturn function.  We assume that functions and blocks not marked
640 /// noreturn will return.
641 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
642                                     QualType BlockType,
643                                     const CheckFallThroughDiagnostics &CD,
644                                     AnalysisDeclContext &AC,
645                                     sema::FunctionScopeInfo *FSI) {
646 
647   bool ReturnsVoid = false;
648   bool HasNoReturn = false;
649   bool IsCoroutine = FSI->isCoroutine();
650 
651   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
652     if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
653       ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
654     else
655       ReturnsVoid = FD->getReturnType()->isVoidType();
656     HasNoReturn = FD->isNoReturn();
657   }
658   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
659     ReturnsVoid = MD->getReturnType()->isVoidType();
660     HasNoReturn = MD->hasAttr<NoReturnAttr>();
661   }
662   else if (isa<BlockDecl>(D)) {
663     if (const FunctionType *FT =
664           BlockType->getPointeeType()->getAs<FunctionType>()) {
665       if (FT->getReturnType()->isVoidType())
666         ReturnsVoid = true;
667       if (FT->getNoReturnAttr())
668         HasNoReturn = true;
669     }
670   }
671 
672   DiagnosticsEngine &Diags = S.getDiagnostics();
673 
674   // Short circuit for compilation speed.
675   if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
676       return;
677   SourceLocation LBrace = Body->getBeginLoc(), RBrace = Body->getEndLoc();
678   auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
679     if (IsCoroutine)
680       S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
681     else
682       S.Diag(Loc, DiagID);
683   };
684 
685   // cpu_dispatch functions permit empty function bodies for ICC compatibility.
686   if (D->getAsFunction() && D->getAsFunction()->isCPUDispatchMultiVersion())
687     return;
688 
689   // Either in a function body compound statement, or a function-try-block.
690   switch (CheckFallThrough(AC)) {
691     case UnknownFallThrough:
692       break;
693 
694     case MaybeFallThrough:
695       if (HasNoReturn)
696         EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
697       else if (!ReturnsVoid)
698         EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
699       break;
700     case AlwaysFallThrough:
701       if (HasNoReturn)
702         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
703       else if (!ReturnsVoid)
704         EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
705       break;
706     case NeverFallThroughOrReturn:
707       if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
708         if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
709           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
710         } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
711           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
712         } else {
713           S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
714         }
715       }
716       break;
717     case NeverFallThrough:
718       break;
719   }
720 }
721 
722 //===----------------------------------------------------------------------===//
723 // -Wuninitialized
724 //===----------------------------------------------------------------------===//
725 
726 namespace {
727 /// ContainsReference - A visitor class to search for references to
728 /// a particular declaration (the needle) within any evaluated component of an
729 /// expression (recursively).
730 class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
731   bool FoundReference;
732   const DeclRefExpr *Needle;
733 
734 public:
735   typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
736 
737   ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
738     : Inherited(Context), FoundReference(false), Needle(Needle) {}
739 
740   void VisitExpr(const Expr *E) {
741     // Stop evaluating if we already have a reference.
742     if (FoundReference)
743       return;
744 
745     Inherited::VisitExpr(E);
746   }
747 
748   void VisitDeclRefExpr(const DeclRefExpr *E) {
749     if (E == Needle)
750       FoundReference = true;
751     else
752       Inherited::VisitDeclRefExpr(E);
753   }
754 
755   bool doesContainReference() const { return FoundReference; }
756 };
757 } // anonymous namespace
758 
759 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
760   QualType VariableTy = VD->getType().getCanonicalType();
761   if (VariableTy->isBlockPointerType() &&
762       !VD->hasAttr<BlocksAttr>()) {
763     S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
764         << VD->getDeclName()
765         << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
766     return true;
767   }
768 
769   // Don't issue a fixit if there is already an initializer.
770   if (VD->getInit())
771     return false;
772 
773   // Don't suggest a fixit inside macros.
774   if (VD->getEndLoc().isMacroID())
775     return false;
776 
777   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
778 
779   // Suggest possible initialization (if any).
780   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
781   if (Init.empty())
782     return false;
783 
784   S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
785     << FixItHint::CreateInsertion(Loc, Init);
786   return true;
787 }
788 
789 /// Create a fixit to remove an if-like statement, on the assumption that its
790 /// condition is CondVal.
791 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
792                           const Stmt *Else, bool CondVal,
793                           FixItHint &Fixit1, FixItHint &Fixit2) {
794   if (CondVal) {
795     // If condition is always true, remove all but the 'then'.
796     Fixit1 = FixItHint::CreateRemoval(
797         CharSourceRange::getCharRange(If->getBeginLoc(), Then->getBeginLoc()));
798     if (Else) {
799       SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getEndLoc());
800       Fixit2 =
801           FixItHint::CreateRemoval(SourceRange(ElseKwLoc, Else->getEndLoc()));
802     }
803   } else {
804     // If condition is always false, remove all but the 'else'.
805     if (Else)
806       Fixit1 = FixItHint::CreateRemoval(CharSourceRange::getCharRange(
807           If->getBeginLoc(), Else->getBeginLoc()));
808     else
809       Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
810   }
811 }
812 
813 /// DiagUninitUse -- Helper function to produce a diagnostic for an
814 /// uninitialized use of a variable.
815 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
816                           bool IsCapturedByBlock) {
817   bool Diagnosed = false;
818 
819   switch (Use.getKind()) {
820   case UninitUse::Always:
821     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_var)
822         << VD->getDeclName() << IsCapturedByBlock
823         << Use.getUser()->getSourceRange();
824     return;
825 
826   case UninitUse::AfterDecl:
827   case UninitUse::AfterCall:
828     S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
829       << VD->getDeclName() << IsCapturedByBlock
830       << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
831       << const_cast<DeclContext*>(VD->getLexicalDeclContext())
832       << VD->getSourceRange();
833     S.Diag(Use.getUser()->getBeginLoc(), diag::note_uninit_var_use)
834         << IsCapturedByBlock << Use.getUser()->getSourceRange();
835     return;
836 
837   case UninitUse::Maybe:
838   case UninitUse::Sometimes:
839     // Carry on to report sometimes-uninitialized branches, if possible,
840     // or a 'may be used uninitialized' diagnostic otherwise.
841     break;
842   }
843 
844   // Diagnose each branch which leads to a sometimes-uninitialized use.
845   for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
846        I != E; ++I) {
847     assert(Use.getKind() == UninitUse::Sometimes);
848 
849     const Expr *User = Use.getUser();
850     const Stmt *Term = I->Terminator;
851 
852     // Information used when building the diagnostic.
853     unsigned DiagKind;
854     StringRef Str;
855     SourceRange Range;
856 
857     // FixIts to suppress the diagnostic by removing the dead condition.
858     // For all binary terminators, branch 0 is taken if the condition is true,
859     // and branch 1 is taken if the condition is false.
860     int RemoveDiagKind = -1;
861     const char *FixitStr =
862         S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
863                                   : (I->Output ? "1" : "0");
864     FixItHint Fixit1, Fixit2;
865 
866     switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
867     default:
868       // Don't know how to report this. Just fall back to 'may be used
869       // uninitialized'. FIXME: Can this happen?
870       continue;
871 
872     // "condition is true / condition is false".
873     case Stmt::IfStmtClass: {
874       const IfStmt *IS = cast<IfStmt>(Term);
875       DiagKind = 0;
876       Str = "if";
877       Range = IS->getCond()->getSourceRange();
878       RemoveDiagKind = 0;
879       CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
880                     I->Output, Fixit1, Fixit2);
881       break;
882     }
883     case Stmt::ConditionalOperatorClass: {
884       const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
885       DiagKind = 0;
886       Str = "?:";
887       Range = CO->getCond()->getSourceRange();
888       RemoveDiagKind = 0;
889       CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
890                     I->Output, Fixit1, Fixit2);
891       break;
892     }
893     case Stmt::BinaryOperatorClass: {
894       const BinaryOperator *BO = cast<BinaryOperator>(Term);
895       if (!BO->isLogicalOp())
896         continue;
897       DiagKind = 0;
898       Str = BO->getOpcodeStr();
899       Range = BO->getLHS()->getSourceRange();
900       RemoveDiagKind = 0;
901       if ((BO->getOpcode() == BO_LAnd && I->Output) ||
902           (BO->getOpcode() == BO_LOr && !I->Output))
903         // true && y -> y, false || y -> y.
904         Fixit1 = FixItHint::CreateRemoval(
905             SourceRange(BO->getBeginLoc(), BO->getOperatorLoc()));
906       else
907         // false && y -> false, true || y -> true.
908         Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
909       break;
910     }
911 
912     // "loop is entered / loop is exited".
913     case Stmt::WhileStmtClass:
914       DiagKind = 1;
915       Str = "while";
916       Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
917       RemoveDiagKind = 1;
918       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
919       break;
920     case Stmt::ForStmtClass:
921       DiagKind = 1;
922       Str = "for";
923       Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
924       RemoveDiagKind = 1;
925       if (I->Output)
926         Fixit1 = FixItHint::CreateRemoval(Range);
927       else
928         Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
929       break;
930     case Stmt::CXXForRangeStmtClass:
931       if (I->Output == 1) {
932         // The use occurs if a range-based for loop's body never executes.
933         // That may be impossible, and there's no syntactic fix for this,
934         // so treat it as a 'may be uninitialized' case.
935         continue;
936       }
937       DiagKind = 1;
938       Str = "for";
939       Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
940       break;
941 
942     // "condition is true / loop is exited".
943     case Stmt::DoStmtClass:
944       DiagKind = 2;
945       Str = "do";
946       Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
947       RemoveDiagKind = 1;
948       Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
949       break;
950 
951     // "switch case is taken".
952     case Stmt::CaseStmtClass:
953       DiagKind = 3;
954       Str = "case";
955       Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
956       break;
957     case Stmt::DefaultStmtClass:
958       DiagKind = 3;
959       Str = "default";
960       Range = cast<DefaultStmt>(Term)->getDefaultLoc();
961       break;
962     }
963 
964     S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
965       << VD->getDeclName() << IsCapturedByBlock << DiagKind
966       << Str << I->Output << Range;
967     S.Diag(User->getBeginLoc(), diag::note_uninit_var_use)
968         << IsCapturedByBlock << User->getSourceRange();
969     if (RemoveDiagKind != -1)
970       S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
971         << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
972 
973     Diagnosed = true;
974   }
975 
976   if (!Diagnosed)
977     S.Diag(Use.getUser()->getBeginLoc(), diag::warn_maybe_uninit_var)
978         << VD->getDeclName() << IsCapturedByBlock
979         << Use.getUser()->getSourceRange();
980 }
981 
982 /// Diagnose uninitialized const reference usages.
983 static bool DiagnoseUninitializedConstRefUse(Sema &S, const VarDecl *VD,
984                                              const UninitUse &Use) {
985   S.Diag(Use.getUser()->getBeginLoc(), diag::warn_uninit_const_reference)
986       << VD->getDeclName() << Use.getUser()->getSourceRange();
987   return true;
988 }
989 
990 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
991 /// uninitialized variable. This manages the different forms of diagnostic
992 /// emitted for particular types of uses. Returns true if the use was diagnosed
993 /// as a warning. If a particular use is one we omit warnings for, returns
994 /// false.
995 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
996                                      const UninitUse &Use,
997                                      bool alwaysReportSelfInit = false) {
998   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
999     // Inspect the initializer of the variable declaration which is
1000     // being referenced prior to its initialization. We emit
1001     // specialized diagnostics for self-initialization, and we
1002     // specifically avoid warning about self references which take the
1003     // form of:
1004     //
1005     //   int x = x;
1006     //
1007     // This is used to indicate to GCC that 'x' is intentionally left
1008     // uninitialized. Proven code paths which access 'x' in
1009     // an uninitialized state after this will still warn.
1010     if (const Expr *Initializer = VD->getInit()) {
1011       if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
1012         return false;
1013 
1014       ContainsReference CR(S.Context, DRE);
1015       CR.Visit(Initializer);
1016       if (CR.doesContainReference()) {
1017         S.Diag(DRE->getBeginLoc(), diag::warn_uninit_self_reference_in_init)
1018             << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
1019         return true;
1020       }
1021     }
1022 
1023     DiagUninitUse(S, VD, Use, false);
1024   } else {
1025     const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
1026     if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
1027       S.Diag(BE->getBeginLoc(),
1028              diag::warn_uninit_byref_blockvar_captured_by_block)
1029           << VD->getDeclName()
1030           << VD->getType().getQualifiers().hasObjCLifetime();
1031     else
1032       DiagUninitUse(S, VD, Use, true);
1033   }
1034 
1035   // Report where the variable was declared when the use wasn't within
1036   // the initializer of that declaration & we didn't already suggest
1037   // an initialization fixit.
1038   if (!SuggestInitializationFixit(S, VD))
1039     S.Diag(VD->getBeginLoc(), diag::note_var_declared_here)
1040         << VD->getDeclName();
1041 
1042   return true;
1043 }
1044 
1045 namespace {
1046   class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1047   public:
1048     FallthroughMapper(Sema &S)
1049       : FoundSwitchStatements(false),
1050         S(S) {
1051     }
1052 
1053     bool foundSwitchStatements() const { return FoundSwitchStatements; }
1054 
1055     void markFallthroughVisited(const AttributedStmt *Stmt) {
1056       bool Found = FallthroughStmts.erase(Stmt);
1057       assert(Found);
1058       (void)Found;
1059     }
1060 
1061     typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1062 
1063     const AttrStmts &getFallthroughStmts() const {
1064       return FallthroughStmts;
1065     }
1066 
1067     void fillReachableBlocks(CFG *Cfg) {
1068       assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
1069       std::deque<const CFGBlock *> BlockQueue;
1070 
1071       ReachableBlocks.insert(&Cfg->getEntry());
1072       BlockQueue.push_back(&Cfg->getEntry());
1073       // Mark all case blocks reachable to avoid problems with switching on
1074       // constants, covered enums, etc.
1075       // These blocks can contain fall-through annotations, and we don't want to
1076       // issue a warn_fallthrough_attr_unreachable for them.
1077       for (const auto *B : *Cfg) {
1078         const Stmt *L = B->getLabel();
1079         if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1080           BlockQueue.push_back(B);
1081       }
1082 
1083       while (!BlockQueue.empty()) {
1084         const CFGBlock *P = BlockQueue.front();
1085         BlockQueue.pop_front();
1086         for (const CFGBlock *B : P->succs()) {
1087           if (B && ReachableBlocks.insert(B).second)
1088             BlockQueue.push_back(B);
1089         }
1090       }
1091     }
1092 
1093     bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1094                                    bool IsTemplateInstantiation) {
1095       assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
1096 
1097       int UnannotatedCnt = 0;
1098       AnnotatedCnt = 0;
1099 
1100       std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1101       while (!BlockQueue.empty()) {
1102         const CFGBlock *P = BlockQueue.front();
1103         BlockQueue.pop_front();
1104         if (!P) continue;
1105 
1106         const Stmt *Term = P->getTerminatorStmt();
1107         if (Term && isa<SwitchStmt>(Term))
1108           continue; // Switch statement, good.
1109 
1110         const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1111         if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1112           continue; // Previous case label has no statements, good.
1113 
1114         const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1115         if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1116           continue; // Case label is preceded with a normal label, good.
1117 
1118         if (!ReachableBlocks.count(P)) {
1119           for (const CFGElement &Elem : llvm::reverse(*P)) {
1120             if (std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>()) {
1121             if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1122               // Don't issue a warning for an unreachable fallthrough
1123               // attribute in template instantiations as it may not be
1124               // unreachable in all instantiations of the template.
1125               if (!IsTemplateInstantiation)
1126                 S.Diag(AS->getBeginLoc(),
1127                        diag::warn_unreachable_fallthrough_attr);
1128               markFallthroughVisited(AS);
1129               ++AnnotatedCnt;
1130               break;
1131             }
1132             // Don't care about other unreachable statements.
1133             }
1134           }
1135           // If there are no unreachable statements, this may be a special
1136           // case in CFG:
1137           // case X: {
1138           //    A a;  // A has a destructor.
1139           //    break;
1140           // }
1141           // // <<<< This place is represented by a 'hanging' CFG block.
1142           // case Y:
1143           continue;
1144         }
1145 
1146         const Stmt *LastStmt = getLastStmt(*P);
1147         if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1148           markFallthroughVisited(AS);
1149           ++AnnotatedCnt;
1150           continue; // Fallthrough annotation, good.
1151         }
1152 
1153         if (!LastStmt) { // This block contains no executable statements.
1154           // Traverse its predecessors.
1155           std::copy(P->pred_begin(), P->pred_end(),
1156                     std::back_inserter(BlockQueue));
1157           continue;
1158         }
1159 
1160         ++UnannotatedCnt;
1161       }
1162       return !!UnannotatedCnt;
1163     }
1164 
1165     // RecursiveASTVisitor setup.
1166     bool shouldWalkTypesOfTypeLocs() const { return false; }
1167 
1168     bool VisitAttributedStmt(AttributedStmt *S) {
1169       if (asFallThroughAttr(S))
1170         FallthroughStmts.insert(S);
1171       return true;
1172     }
1173 
1174     bool VisitSwitchStmt(SwitchStmt *S) {
1175       FoundSwitchStatements = true;
1176       return true;
1177     }
1178 
1179     // We don't want to traverse local type declarations. We analyze their
1180     // methods separately.
1181     bool TraverseDecl(Decl *D) { return true; }
1182 
1183     // We analyze lambda bodies separately. Skip them here.
1184     bool TraverseLambdaExpr(LambdaExpr *LE) {
1185       // Traverse the captures, but not the body.
1186       for (const auto C : zip(LE->captures(), LE->capture_inits()))
1187         TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C));
1188       return true;
1189     }
1190 
1191   private:
1192 
1193     static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1194       if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1195         if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1196           return AS;
1197       }
1198       return nullptr;
1199     }
1200 
1201     static const Stmt *getLastStmt(const CFGBlock &B) {
1202       if (const Stmt *Term = B.getTerminatorStmt())
1203         return Term;
1204       for (const CFGElement &Elem : llvm::reverse(B))
1205         if (std::optional<CFGStmt> CS = Elem.getAs<CFGStmt>())
1206           return CS->getStmt();
1207       // Workaround to detect a statement thrown out by CFGBuilder:
1208       //   case X: {} case Y:
1209       //   case X: ; case Y:
1210       if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1211         if (!isa<SwitchCase>(SW->getSubStmt()))
1212           return SW->getSubStmt();
1213 
1214       return nullptr;
1215     }
1216 
1217     bool FoundSwitchStatements;
1218     AttrStmts FallthroughStmts;
1219     Sema &S;
1220     llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1221   };
1222 } // anonymous namespace
1223 
1224 static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1225                                             SourceLocation Loc) {
1226   TokenValue FallthroughTokens[] = {
1227     tok::l_square, tok::l_square,
1228     PP.getIdentifierInfo("fallthrough"),
1229     tok::r_square, tok::r_square
1230   };
1231 
1232   TokenValue ClangFallthroughTokens[] = {
1233     tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1234     tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1235     tok::r_square, tok::r_square
1236   };
1237 
1238   bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17 && !PP.getLangOpts().C2x;
1239 
1240   StringRef MacroName;
1241   if (PreferClangAttr)
1242     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1243   if (MacroName.empty())
1244     MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1245   if (MacroName.empty() && !PreferClangAttr)
1246     MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1247   if (MacroName.empty()) {
1248     if (!PreferClangAttr)
1249       MacroName = "[[fallthrough]]";
1250     else if (PP.getLangOpts().CPlusPlus)
1251       MacroName = "[[clang::fallthrough]]";
1252     else
1253       MacroName = "__attribute__((fallthrough))";
1254   }
1255   return MacroName;
1256 }
1257 
1258 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1259                                             bool PerFunction) {
1260   FallthroughMapper FM(S);
1261   FM.TraverseStmt(AC.getBody());
1262 
1263   if (!FM.foundSwitchStatements())
1264     return;
1265 
1266   if (PerFunction && FM.getFallthroughStmts().empty())
1267     return;
1268 
1269   CFG *Cfg = AC.getCFG();
1270 
1271   if (!Cfg)
1272     return;
1273 
1274   FM.fillReachableBlocks(Cfg);
1275 
1276   for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1277     const Stmt *Label = B->getLabel();
1278 
1279     if (!isa_and_nonnull<SwitchCase>(Label))
1280       continue;
1281 
1282     int AnnotatedCnt;
1283 
1284     bool IsTemplateInstantiation = false;
1285     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1286       IsTemplateInstantiation = Function->isTemplateInstantiation();
1287     if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1288                                       IsTemplateInstantiation))
1289       continue;
1290 
1291     S.Diag(Label->getBeginLoc(),
1292            PerFunction ? diag::warn_unannotated_fallthrough_per_function
1293                        : diag::warn_unannotated_fallthrough);
1294 
1295     if (!AnnotatedCnt) {
1296       SourceLocation L = Label->getBeginLoc();
1297       if (L.isMacroID())
1298         continue;
1299 
1300       const Stmt *Term = B->getTerminatorStmt();
1301       // Skip empty cases.
1302       while (B->empty() && !Term && B->succ_size() == 1) {
1303         B = *B->succ_begin();
1304         Term = B->getTerminatorStmt();
1305       }
1306       if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1307         Preprocessor &PP = S.getPreprocessor();
1308         StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1309         SmallString<64> TextToInsert(AnnotationSpelling);
1310         TextToInsert += "; ";
1311         S.Diag(L, diag::note_insert_fallthrough_fixit)
1312             << AnnotationSpelling
1313             << FixItHint::CreateInsertion(L, TextToInsert);
1314       }
1315       S.Diag(L, diag::note_insert_break_fixit)
1316           << FixItHint::CreateInsertion(L, "break; ");
1317     }
1318   }
1319 
1320   for (const auto *F : FM.getFallthroughStmts())
1321     S.Diag(F->getBeginLoc(), diag::err_fallthrough_attr_invalid_placement);
1322 }
1323 
1324 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1325                      const Stmt *S) {
1326   assert(S);
1327 
1328   do {
1329     switch (S->getStmtClass()) {
1330     case Stmt::ForStmtClass:
1331     case Stmt::WhileStmtClass:
1332     case Stmt::CXXForRangeStmtClass:
1333     case Stmt::ObjCForCollectionStmtClass:
1334       return true;
1335     case Stmt::DoStmtClass: {
1336       Expr::EvalResult Result;
1337       if (!cast<DoStmt>(S)->getCond()->EvaluateAsInt(Result, Ctx))
1338         return true;
1339       return Result.Val.getInt().getBoolValue();
1340     }
1341     default:
1342       break;
1343     }
1344   } while ((S = PM.getParent(S)));
1345 
1346   return false;
1347 }
1348 
1349 static void diagnoseRepeatedUseOfWeak(Sema &S,
1350                                       const sema::FunctionScopeInfo *CurFn,
1351                                       const Decl *D,
1352                                       const ParentMap &PM) {
1353   typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1354   typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1355   typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1356   typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1357   StmtUsesPair;
1358 
1359   ASTContext &Ctx = S.getASTContext();
1360 
1361   const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1362 
1363   // Extract all weak objects that are referenced more than once.
1364   SmallVector<StmtUsesPair, 8> UsesByStmt;
1365   for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1366        I != E; ++I) {
1367     const WeakUseVector &Uses = I->second;
1368 
1369     // Find the first read of the weak object.
1370     WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1371     for ( ; UI != UE; ++UI) {
1372       if (UI->isUnsafe())
1373         break;
1374     }
1375 
1376     // If there were only writes to this object, don't warn.
1377     if (UI == UE)
1378       continue;
1379 
1380     // If there was only one read, followed by any number of writes, and the
1381     // read is not within a loop, don't warn. Additionally, don't warn in a
1382     // loop if the base object is a local variable -- local variables are often
1383     // changed in loops.
1384     if (UI == Uses.begin()) {
1385       WeakUseVector::const_iterator UI2 = UI;
1386       for (++UI2; UI2 != UE; ++UI2)
1387         if (UI2->isUnsafe())
1388           break;
1389 
1390       if (UI2 == UE) {
1391         if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1392           continue;
1393 
1394         const WeakObjectProfileTy &Profile = I->first;
1395         if (!Profile.isExactProfile())
1396           continue;
1397 
1398         const NamedDecl *Base = Profile.getBase();
1399         if (!Base)
1400           Base = Profile.getProperty();
1401         assert(Base && "A profile always has a base or property.");
1402 
1403         if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1404           if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1405             continue;
1406       }
1407     }
1408 
1409     UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1410   }
1411 
1412   if (UsesByStmt.empty())
1413     return;
1414 
1415   // Sort by first use so that we emit the warnings in a deterministic order.
1416   SourceManager &SM = S.getSourceManager();
1417   llvm::sort(UsesByStmt,
1418              [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1419                return SM.isBeforeInTranslationUnit(LHS.first->getBeginLoc(),
1420                                                    RHS.first->getBeginLoc());
1421              });
1422 
1423   // Classify the current code body for better warning text.
1424   // This enum should stay in sync with the cases in
1425   // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1426   // FIXME: Should we use a common classification enum and the same set of
1427   // possibilities all throughout Sema?
1428   enum {
1429     Function,
1430     Method,
1431     Block,
1432     Lambda
1433   } FunctionKind;
1434 
1435   if (isa<sema::BlockScopeInfo>(CurFn))
1436     FunctionKind = Block;
1437   else if (isa<sema::LambdaScopeInfo>(CurFn))
1438     FunctionKind = Lambda;
1439   else if (isa<ObjCMethodDecl>(D))
1440     FunctionKind = Method;
1441   else
1442     FunctionKind = Function;
1443 
1444   // Iterate through the sorted problems and emit warnings for each.
1445   for (const auto &P : UsesByStmt) {
1446     const Stmt *FirstRead = P.first;
1447     const WeakObjectProfileTy &Key = P.second->first;
1448     const WeakUseVector &Uses = P.second->second;
1449 
1450     // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1451     // may not contain enough information to determine that these are different
1452     // properties. We can only be 100% sure of a repeated use in certain cases,
1453     // and we adjust the diagnostic kind accordingly so that the less certain
1454     // case can be turned off if it is too noisy.
1455     unsigned DiagKind;
1456     if (Key.isExactProfile())
1457       DiagKind = diag::warn_arc_repeated_use_of_weak;
1458     else
1459       DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1460 
1461     // Classify the weak object being accessed for better warning text.
1462     // This enum should stay in sync with the cases in
1463     // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1464     enum {
1465       Variable,
1466       Property,
1467       ImplicitProperty,
1468       Ivar
1469     } ObjectKind;
1470 
1471     const NamedDecl *KeyProp = Key.getProperty();
1472     if (isa<VarDecl>(KeyProp))
1473       ObjectKind = Variable;
1474     else if (isa<ObjCPropertyDecl>(KeyProp))
1475       ObjectKind = Property;
1476     else if (isa<ObjCMethodDecl>(KeyProp))
1477       ObjectKind = ImplicitProperty;
1478     else if (isa<ObjCIvarDecl>(KeyProp))
1479       ObjectKind = Ivar;
1480     else
1481       llvm_unreachable("Unexpected weak object kind!");
1482 
1483     // Do not warn about IBOutlet weak property receivers being set to null
1484     // since they are typically only used from the main thread.
1485     if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1486       if (Prop->hasAttr<IBOutletAttr>())
1487         continue;
1488 
1489     // Show the first time the object was read.
1490     S.Diag(FirstRead->getBeginLoc(), DiagKind)
1491         << int(ObjectKind) << KeyProp << int(FunctionKind)
1492         << FirstRead->getSourceRange();
1493 
1494     // Print all the other accesses as notes.
1495     for (const auto &Use : Uses) {
1496       if (Use.getUseExpr() == FirstRead)
1497         continue;
1498       S.Diag(Use.getUseExpr()->getBeginLoc(),
1499              diag::note_arc_weak_also_accessed_here)
1500           << Use.getUseExpr()->getSourceRange();
1501     }
1502   }
1503 }
1504 
1505 namespace clang {
1506 namespace {
1507 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1508 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1509 typedef std::list<DelayedDiag> DiagList;
1510 
1511 struct SortDiagBySourceLocation {
1512   SourceManager &SM;
1513   SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1514 
1515   bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1516     // Although this call will be slow, this is only called when outputting
1517     // multiple warnings.
1518     return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1519   }
1520 };
1521 } // anonymous namespace
1522 } // namespace clang
1523 
1524 namespace {
1525 class UninitValsDiagReporter : public UninitVariablesHandler {
1526   Sema &S;
1527   typedef SmallVector<UninitUse, 2> UsesVec;
1528   typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1529   // Prefer using MapVector to DenseMap, so that iteration order will be
1530   // the same as insertion order. This is needed to obtain a deterministic
1531   // order of diagnostics when calling flushDiagnostics().
1532   typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1533   UsesMap uses;
1534   UsesMap constRefUses;
1535 
1536 public:
1537   UninitValsDiagReporter(Sema &S) : S(S) {}
1538   ~UninitValsDiagReporter() override { flushDiagnostics(); }
1539 
1540   MappedType &getUses(UsesMap &um, const VarDecl *vd) {
1541     MappedType &V = um[vd];
1542     if (!V.getPointer())
1543       V.setPointer(new UsesVec());
1544     return V;
1545   }
1546 
1547   void handleUseOfUninitVariable(const VarDecl *vd,
1548                                  const UninitUse &use) override {
1549     getUses(uses, vd).getPointer()->push_back(use);
1550   }
1551 
1552   void handleConstRefUseOfUninitVariable(const VarDecl *vd,
1553                                          const UninitUse &use) override {
1554     getUses(constRefUses, vd).getPointer()->push_back(use);
1555   }
1556 
1557   void handleSelfInit(const VarDecl *vd) override {
1558     getUses(uses, vd).setInt(true);
1559     getUses(constRefUses, vd).setInt(true);
1560   }
1561 
1562   void flushDiagnostics() {
1563     for (const auto &P : uses) {
1564       const VarDecl *vd = P.first;
1565       const MappedType &V = P.second;
1566 
1567       UsesVec *vec = V.getPointer();
1568       bool hasSelfInit = V.getInt();
1569 
1570       // Specially handle the case where we have uses of an uninitialized
1571       // variable, but the root cause is an idiomatic self-init.  We want
1572       // to report the diagnostic at the self-init since that is the root cause.
1573       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1574         DiagnoseUninitializedUse(S, vd,
1575                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1576                                            /* isAlwaysUninit */ true),
1577                                  /* alwaysReportSelfInit */ true);
1578       else {
1579         // Sort the uses by their SourceLocations.  While not strictly
1580         // guaranteed to produce them in line/column order, this will provide
1581         // a stable ordering.
1582         llvm::sort(*vec, [](const UninitUse &a, const UninitUse &b) {
1583           // Prefer a more confident report over a less confident one.
1584           if (a.getKind() != b.getKind())
1585             return a.getKind() > b.getKind();
1586           return a.getUser()->getBeginLoc() < b.getUser()->getBeginLoc();
1587         });
1588 
1589         for (const auto &U : *vec) {
1590           // If we have self-init, downgrade all uses to 'may be uninitialized'.
1591           UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1592 
1593           if (DiagnoseUninitializedUse(S, vd, Use))
1594             // Skip further diagnostics for this variable. We try to warn only
1595             // on the first point at which a variable is used uninitialized.
1596             break;
1597         }
1598       }
1599 
1600       // Release the uses vector.
1601       delete vec;
1602     }
1603 
1604     uses.clear();
1605 
1606     // Flush all const reference uses diags.
1607     for (const auto &P : constRefUses) {
1608       const VarDecl *vd = P.first;
1609       const MappedType &V = P.second;
1610 
1611       UsesVec *vec = V.getPointer();
1612       bool hasSelfInit = V.getInt();
1613 
1614       if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1615         DiagnoseUninitializedUse(S, vd,
1616                                  UninitUse(vd->getInit()->IgnoreParenCasts(),
1617                                            /* isAlwaysUninit */ true),
1618                                  /* alwaysReportSelfInit */ true);
1619       else {
1620         for (const auto &U : *vec) {
1621           if (DiagnoseUninitializedConstRefUse(S, vd, U))
1622             break;
1623         }
1624       }
1625 
1626       // Release the uses vector.
1627       delete vec;
1628     }
1629 
1630     constRefUses.clear();
1631   }
1632 
1633 private:
1634   static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1635     return llvm::any_of(*vec, [](const UninitUse &U) {
1636       return U.getKind() == UninitUse::Always ||
1637              U.getKind() == UninitUse::AfterCall ||
1638              U.getKind() == UninitUse::AfterDecl;
1639     });
1640   }
1641 };
1642 
1643 /// Inter-procedural data for the called-once checker.
1644 class CalledOnceInterProceduralData {
1645 public:
1646   // Add the delayed warning for the given block.
1647   void addDelayedWarning(const BlockDecl *Block,
1648                          PartialDiagnosticAt &&Warning) {
1649     DelayedBlockWarnings[Block].emplace_back(std::move(Warning));
1650   }
1651   // Report all of the warnings we've gathered for the given block.
1652   void flushWarnings(const BlockDecl *Block, Sema &S) {
1653     for (const PartialDiagnosticAt &Delayed : DelayedBlockWarnings[Block])
1654       S.Diag(Delayed.first, Delayed.second);
1655 
1656     discardWarnings(Block);
1657   }
1658   // Discard all of the warnings we've gathered for the given block.
1659   void discardWarnings(const BlockDecl *Block) {
1660     DelayedBlockWarnings.erase(Block);
1661   }
1662 
1663 private:
1664   using DelayedDiagnostics = SmallVector<PartialDiagnosticAt, 2>;
1665   llvm::DenseMap<const BlockDecl *, DelayedDiagnostics> DelayedBlockWarnings;
1666 };
1667 
1668 class CalledOnceCheckReporter : public CalledOnceCheckHandler {
1669 public:
1670   CalledOnceCheckReporter(Sema &S, CalledOnceInterProceduralData &Data)
1671       : S(S), Data(Data) {}
1672   void handleDoubleCall(const ParmVarDecl *Parameter, const Expr *Call,
1673                         const Expr *PrevCall, bool IsCompletionHandler,
1674                         bool Poised) override {
1675     auto DiagToReport = IsCompletionHandler
1676                             ? diag::warn_completion_handler_called_twice
1677                             : diag::warn_called_once_gets_called_twice;
1678     S.Diag(Call->getBeginLoc(), DiagToReport) << Parameter;
1679     S.Diag(PrevCall->getBeginLoc(), diag::note_called_once_gets_called_twice)
1680         << Poised;
1681   }
1682 
1683   void handleNeverCalled(const ParmVarDecl *Parameter,
1684                          bool IsCompletionHandler) override {
1685     auto DiagToReport = IsCompletionHandler
1686                             ? diag::warn_completion_handler_never_called
1687                             : diag::warn_called_once_never_called;
1688     S.Diag(Parameter->getBeginLoc(), DiagToReport)
1689         << Parameter << /* Captured */ false;
1690   }
1691 
1692   void handleNeverCalled(const ParmVarDecl *Parameter, const Decl *Function,
1693                          const Stmt *Where, NeverCalledReason Reason,
1694                          bool IsCalledDirectly,
1695                          bool IsCompletionHandler) override {
1696     auto DiagToReport = IsCompletionHandler
1697                             ? diag::warn_completion_handler_never_called_when
1698                             : diag::warn_called_once_never_called_when;
1699     PartialDiagnosticAt Warning(Where->getBeginLoc(), S.PDiag(DiagToReport)
1700                                                           << Parameter
1701                                                           << IsCalledDirectly
1702                                                           << (unsigned)Reason);
1703 
1704     if (const auto *Block = dyn_cast<BlockDecl>(Function)) {
1705       // We shouldn't report these warnings on blocks immediately
1706       Data.addDelayedWarning(Block, std::move(Warning));
1707     } else {
1708       S.Diag(Warning.first, Warning.second);
1709     }
1710   }
1711 
1712   void handleCapturedNeverCalled(const ParmVarDecl *Parameter,
1713                                  const Decl *Where,
1714                                  bool IsCompletionHandler) override {
1715     auto DiagToReport = IsCompletionHandler
1716                             ? diag::warn_completion_handler_never_called
1717                             : diag::warn_called_once_never_called;
1718     S.Diag(Where->getBeginLoc(), DiagToReport)
1719         << Parameter << /* Captured */ true;
1720   }
1721 
1722   void
1723   handleBlockThatIsGuaranteedToBeCalledOnce(const BlockDecl *Block) override {
1724     Data.flushWarnings(Block, S);
1725   }
1726 
1727   void handleBlockWithNoGuarantees(const BlockDecl *Block) override {
1728     Data.discardWarnings(Block);
1729   }
1730 
1731 private:
1732   Sema &S;
1733   CalledOnceInterProceduralData &Data;
1734 };
1735 
1736 constexpr unsigned CalledOnceWarnings[] = {
1737     diag::warn_called_once_never_called,
1738     diag::warn_called_once_never_called_when,
1739     diag::warn_called_once_gets_called_twice};
1740 
1741 constexpr unsigned CompletionHandlerWarnings[]{
1742     diag::warn_completion_handler_never_called,
1743     diag::warn_completion_handler_never_called_when,
1744     diag::warn_completion_handler_called_twice};
1745 
1746 bool shouldAnalyzeCalledOnceImpl(llvm::ArrayRef<unsigned> DiagIDs,
1747                                  const DiagnosticsEngine &Diags,
1748                                  SourceLocation At) {
1749   return llvm::any_of(DiagIDs, [&Diags, At](unsigned DiagID) {
1750     return !Diags.isIgnored(DiagID, At);
1751   });
1752 }
1753 
1754 bool shouldAnalyzeCalledOnceConventions(const DiagnosticsEngine &Diags,
1755                                         SourceLocation At) {
1756   return shouldAnalyzeCalledOnceImpl(CompletionHandlerWarnings, Diags, At);
1757 }
1758 
1759 bool shouldAnalyzeCalledOnceParameters(const DiagnosticsEngine &Diags,
1760                                        SourceLocation At) {
1761   return shouldAnalyzeCalledOnceImpl(CalledOnceWarnings, Diags, At) ||
1762          shouldAnalyzeCalledOnceConventions(Diags, At);
1763 }
1764 } // anonymous namespace
1765 
1766 //===----------------------------------------------------------------------===//
1767 // -Wthread-safety
1768 //===----------------------------------------------------------------------===//
1769 namespace clang {
1770 namespace threadSafety {
1771 namespace {
1772 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1773   Sema &S;
1774   DiagList Warnings;
1775   SourceLocation FunLocation, FunEndLocation;
1776 
1777   const FunctionDecl *CurrentFunction;
1778   bool Verbose;
1779 
1780   OptionalNotes getNotes() const {
1781     if (Verbose && CurrentFunction) {
1782       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1783                                 S.PDiag(diag::note_thread_warning_in_fun)
1784                                     << CurrentFunction);
1785       return OptionalNotes(1, FNote);
1786     }
1787     return OptionalNotes();
1788   }
1789 
1790   OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1791     OptionalNotes ONS(1, Note);
1792     if (Verbose && CurrentFunction) {
1793       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1794                                 S.PDiag(diag::note_thread_warning_in_fun)
1795                                     << CurrentFunction);
1796       ONS.push_back(std::move(FNote));
1797     }
1798     return ONS;
1799   }
1800 
1801   OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1802                          const PartialDiagnosticAt &Note2) const {
1803     OptionalNotes ONS;
1804     ONS.push_back(Note1);
1805     ONS.push_back(Note2);
1806     if (Verbose && CurrentFunction) {
1807       PartialDiagnosticAt FNote(CurrentFunction->getBody()->getBeginLoc(),
1808                                 S.PDiag(diag::note_thread_warning_in_fun)
1809                                     << CurrentFunction);
1810       ONS.push_back(std::move(FNote));
1811     }
1812     return ONS;
1813   }
1814 
1815   OptionalNotes makeLockedHereNote(SourceLocation LocLocked, StringRef Kind) {
1816     return LocLocked.isValid()
1817                ? getNotes(PartialDiagnosticAt(
1818                      LocLocked, S.PDiag(diag::note_locked_here) << Kind))
1819                : getNotes();
1820   }
1821 
1822   OptionalNotes makeUnlockedHereNote(SourceLocation LocUnlocked,
1823                                      StringRef Kind) {
1824     return LocUnlocked.isValid()
1825                ? getNotes(PartialDiagnosticAt(
1826                      LocUnlocked, S.PDiag(diag::note_unlocked_here) << Kind))
1827                : getNotes();
1828   }
1829 
1830  public:
1831   ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1832     : S(S), FunLocation(FL), FunEndLocation(FEL),
1833       CurrentFunction(nullptr), Verbose(false) {}
1834 
1835   void setVerbose(bool b) { Verbose = b; }
1836 
1837   /// Emit all buffered diagnostics in order of sourcelocation.
1838   /// We need to output diagnostics produced while iterating through
1839   /// the lockset in deterministic order, so this function orders diagnostics
1840   /// and outputs them.
1841   void emitDiagnostics() {
1842     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1843     for (const auto &Diag : Warnings) {
1844       S.Diag(Diag.first.first, Diag.first.second);
1845       for (const auto &Note : Diag.second)
1846         S.Diag(Note.first, Note.second);
1847     }
1848   }
1849 
1850   void handleInvalidLockExp(SourceLocation Loc) override {
1851     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1852                                          << Loc);
1853     Warnings.emplace_back(std::move(Warning), getNotes());
1854   }
1855 
1856   void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc,
1857                              SourceLocation LocPreviousUnlock) override {
1858     if (Loc.isInvalid())
1859       Loc = FunLocation;
1860     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_but_no_lock)
1861                                          << Kind << LockName);
1862     Warnings.emplace_back(std::move(Warning),
1863                           makeUnlockedHereNote(LocPreviousUnlock, Kind));
1864   }
1865 
1866   void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1867                                  LockKind Expected, LockKind Received,
1868                                  SourceLocation LocLocked,
1869                                  SourceLocation LocUnlock) override {
1870     if (LocUnlock.isInvalid())
1871       LocUnlock = FunLocation;
1872     PartialDiagnosticAt Warning(
1873         LocUnlock, S.PDiag(diag::warn_unlock_kind_mismatch)
1874                        << Kind << LockName << Received << Expected);
1875     Warnings.emplace_back(std::move(Warning),
1876                           makeLockedHereNote(LocLocked, Kind));
1877   }
1878 
1879   void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked,
1880                         SourceLocation LocDoubleLock) override {
1881     if (LocDoubleLock.isInvalid())
1882       LocDoubleLock = FunLocation;
1883     PartialDiagnosticAt Warning(LocDoubleLock, S.PDiag(diag::warn_double_lock)
1884                                                    << Kind << LockName);
1885     Warnings.emplace_back(std::move(Warning),
1886                           makeLockedHereNote(LocLocked, Kind));
1887   }
1888 
1889   void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1890                                  SourceLocation LocLocked,
1891                                  SourceLocation LocEndOfScope,
1892                                  LockErrorKind LEK) override {
1893     unsigned DiagID = 0;
1894     switch (LEK) {
1895       case LEK_LockedSomePredecessors:
1896         DiagID = diag::warn_lock_some_predecessors;
1897         break;
1898       case LEK_LockedSomeLoopIterations:
1899         DiagID = diag::warn_expecting_lock_held_on_loop;
1900         break;
1901       case LEK_LockedAtEndOfFunction:
1902         DiagID = diag::warn_no_unlock;
1903         break;
1904       case LEK_NotLockedAtEndOfFunction:
1905         DiagID = diag::warn_expecting_locked;
1906         break;
1907     }
1908     if (LocEndOfScope.isInvalid())
1909       LocEndOfScope = FunEndLocation;
1910 
1911     PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1912                                                                << LockName);
1913     Warnings.emplace_back(std::move(Warning),
1914                           makeLockedHereNote(LocLocked, Kind));
1915   }
1916 
1917   void handleExclusiveAndShared(StringRef Kind, Name LockName,
1918                                 SourceLocation Loc1,
1919                                 SourceLocation Loc2) override {
1920     PartialDiagnosticAt Warning(Loc1,
1921                                 S.PDiag(diag::warn_lock_exclusive_and_shared)
1922                                     << Kind << LockName);
1923     PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1924                                        << Kind << LockName);
1925     Warnings.emplace_back(std::move(Warning), getNotes(Note));
1926   }
1927 
1928   void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK,
1929                          AccessKind AK, SourceLocation Loc) override {
1930     assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1931            "Only works for variables");
1932     unsigned DiagID = POK == POK_VarAccess?
1933                         diag::warn_variable_requires_any_lock:
1934                         diag::warn_var_deref_requires_any_lock;
1935     PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1936       << D << getLockKindFromAccessKind(AK));
1937     Warnings.emplace_back(std::move(Warning), getNotes());
1938   }
1939 
1940   void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1941                           ProtectedOperationKind POK, Name LockName,
1942                           LockKind LK, SourceLocation Loc,
1943                           Name *PossibleMatch) override {
1944     unsigned DiagID = 0;
1945     if (PossibleMatch) {
1946       switch (POK) {
1947         case POK_VarAccess:
1948           DiagID = diag::warn_variable_requires_lock_precise;
1949           break;
1950         case POK_VarDereference:
1951           DiagID = diag::warn_var_deref_requires_lock_precise;
1952           break;
1953         case POK_FunctionCall:
1954           DiagID = diag::warn_fun_requires_lock_precise;
1955           break;
1956         case POK_PassByRef:
1957           DiagID = diag::warn_guarded_pass_by_reference;
1958           break;
1959         case POK_PtPassByRef:
1960           DiagID = diag::warn_pt_guarded_pass_by_reference;
1961           break;
1962       }
1963       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1964                                                        << D
1965                                                        << LockName << LK);
1966       PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1967                                         << *PossibleMatch);
1968       if (Verbose && POK == POK_VarAccess) {
1969         PartialDiagnosticAt VNote(D->getLocation(),
1970                                   S.PDiag(diag::note_guarded_by_declared_here)
1971                                       << D->getDeclName());
1972         Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1973       } else
1974         Warnings.emplace_back(std::move(Warning), getNotes(Note));
1975     } else {
1976       switch (POK) {
1977         case POK_VarAccess:
1978           DiagID = diag::warn_variable_requires_lock;
1979           break;
1980         case POK_VarDereference:
1981           DiagID = diag::warn_var_deref_requires_lock;
1982           break;
1983         case POK_FunctionCall:
1984           DiagID = diag::warn_fun_requires_lock;
1985           break;
1986         case POK_PassByRef:
1987           DiagID = diag::warn_guarded_pass_by_reference;
1988           break;
1989         case POK_PtPassByRef:
1990           DiagID = diag::warn_pt_guarded_pass_by_reference;
1991           break;
1992       }
1993       PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1994                                                        << D
1995                                                        << LockName << LK);
1996       if (Verbose && POK == POK_VarAccess) {
1997         PartialDiagnosticAt Note(D->getLocation(),
1998                                  S.PDiag(diag::note_guarded_by_declared_here));
1999         Warnings.emplace_back(std::move(Warning), getNotes(Note));
2000       } else
2001         Warnings.emplace_back(std::move(Warning), getNotes());
2002     }
2003   }
2004 
2005   void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
2006                              SourceLocation Loc) override {
2007     PartialDiagnosticAt Warning(Loc,
2008         S.PDiag(diag::warn_acquire_requires_negative_cap)
2009         << Kind << LockName << Neg);
2010     Warnings.emplace_back(std::move(Warning), getNotes());
2011   }
2012 
2013   void handleNegativeNotHeld(const NamedDecl *D, Name LockName,
2014                              SourceLocation Loc) override {
2015     PartialDiagnosticAt Warning(
2016         Loc, S.PDiag(diag::warn_fun_requires_negative_cap) << D << LockName);
2017     Warnings.emplace_back(std::move(Warning), getNotes());
2018   }
2019 
2020   void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
2021                              SourceLocation Loc) override {
2022     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
2023                                          << Kind << FunName << LockName);
2024     Warnings.emplace_back(std::move(Warning), getNotes());
2025   }
2026 
2027   void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
2028                                 SourceLocation Loc) override {
2029     PartialDiagnosticAt Warning(Loc,
2030       S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
2031     Warnings.emplace_back(std::move(Warning), getNotes());
2032   }
2033 
2034   void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
2035     PartialDiagnosticAt Warning(Loc,
2036       S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
2037     Warnings.emplace_back(std::move(Warning), getNotes());
2038   }
2039 
2040   void enterFunction(const FunctionDecl* FD) override {
2041     CurrentFunction = FD;
2042   }
2043 
2044   void leaveFunction(const FunctionDecl* FD) override {
2045     CurrentFunction = nullptr;
2046   }
2047 };
2048 } // anonymous namespace
2049 } // namespace threadSafety
2050 } // namespace clang
2051 
2052 //===----------------------------------------------------------------------===//
2053 // -Wconsumed
2054 //===----------------------------------------------------------------------===//
2055 
2056 namespace clang {
2057 namespace consumed {
2058 namespace {
2059 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
2060 
2061   Sema &S;
2062   DiagList Warnings;
2063 
2064 public:
2065 
2066   ConsumedWarningsHandler(Sema &S) : S(S) {}
2067 
2068   void emitDiagnostics() override {
2069     Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
2070     for (const auto &Diag : Warnings) {
2071       S.Diag(Diag.first.first, Diag.first.second);
2072       for (const auto &Note : Diag.second)
2073         S.Diag(Note.first, Note.second);
2074     }
2075   }
2076 
2077   void warnLoopStateMismatch(SourceLocation Loc,
2078                              StringRef VariableName) override {
2079     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
2080       VariableName);
2081 
2082     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2083   }
2084 
2085   void warnParamReturnTypestateMismatch(SourceLocation Loc,
2086                                         StringRef VariableName,
2087                                         StringRef ExpectedState,
2088                                         StringRef ObservedState) override {
2089 
2090     PartialDiagnosticAt Warning(Loc, S.PDiag(
2091       diag::warn_param_return_typestate_mismatch) << VariableName <<
2092         ExpectedState << ObservedState);
2093 
2094     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2095   }
2096 
2097   void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
2098                                   StringRef ObservedState) override {
2099 
2100     PartialDiagnosticAt Warning(Loc, S.PDiag(
2101       diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
2102 
2103     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2104   }
2105 
2106   void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
2107                                               StringRef TypeName) override {
2108     PartialDiagnosticAt Warning(Loc, S.PDiag(
2109       diag::warn_return_typestate_for_unconsumable_type) << TypeName);
2110 
2111     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2112   }
2113 
2114   void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
2115                                    StringRef ObservedState) override {
2116 
2117     PartialDiagnosticAt Warning(Loc, S.PDiag(
2118       diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
2119 
2120     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2121   }
2122 
2123   void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
2124                                    SourceLocation Loc) override {
2125 
2126     PartialDiagnosticAt Warning(Loc, S.PDiag(
2127       diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
2128 
2129     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2130   }
2131 
2132   void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
2133                              StringRef State, SourceLocation Loc) override {
2134 
2135     PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
2136                                 MethodName << VariableName << State);
2137 
2138     Warnings.emplace_back(std::move(Warning), OptionalNotes());
2139   }
2140 };
2141 } // anonymous namespace
2142 } // namespace consumed
2143 } // namespace clang
2144 
2145 //===----------------------------------------------------------------------===//
2146 // Unsafe buffer usage analysis.
2147 //===----------------------------------------------------------------------===//
2148 
2149 namespace {
2150 class UnsafeBufferUsageReporter : public UnsafeBufferUsageHandler {
2151   Sema &S;
2152 
2153 public:
2154   UnsafeBufferUsageReporter(Sema &S) : S(S) {}
2155 
2156   void handleUnsafeOperation(const Stmt *Operation,
2157                              bool IsRelatedToDecl) override {
2158     SourceLocation Loc;
2159     SourceRange Range;
2160     unsigned MsgParam = 0;
2161     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Operation)) {
2162       Loc = ASE->getBase()->getExprLoc();
2163       Range = ASE->getBase()->getSourceRange();
2164       MsgParam = 2;
2165     } else if (const auto *BO = dyn_cast<BinaryOperator>(Operation)) {
2166       BinaryOperator::Opcode Op = BO->getOpcode();
2167       if (Op == BO_Add || Op == BO_AddAssign || Op == BO_Sub ||
2168           Op == BO_SubAssign) {
2169         if (BO->getRHS()->getType()->isIntegerType()) {
2170           Loc = BO->getLHS()->getExprLoc();
2171           Range = BO->getLHS()->getSourceRange();
2172         } else {
2173           Loc = BO->getRHS()->getExprLoc();
2174           Range = BO->getRHS()->getSourceRange();
2175         }
2176         MsgParam = 1;
2177       }
2178     } else if (const auto *UO = dyn_cast<UnaryOperator>(Operation)) {
2179       UnaryOperator::Opcode Op = UO->getOpcode();
2180       if (Op == UO_PreInc || Op == UO_PreDec || Op == UO_PostInc ||
2181           Op == UO_PostDec) {
2182         Loc = UO->getSubExpr()->getExprLoc();
2183         Range = UO->getSubExpr()->getSourceRange();
2184         MsgParam = 1;
2185       }
2186     } else {
2187       Loc = Operation->getBeginLoc();
2188       Range = Operation->getSourceRange();
2189     }
2190     if (IsRelatedToDecl)
2191       S.Diag(Loc, diag::note_unsafe_buffer_operation) << MsgParam << Range;
2192     else
2193       S.Diag(Loc, diag::warn_unsafe_buffer_operation) << MsgParam << Range;
2194   }
2195 
2196   // FIXME: rename to handleUnsafeVariable
2197   void handleFixableVariable(const VarDecl *Variable,
2198                              FixItList &&Fixes) override {
2199     const auto &D =
2200         S.Diag(Variable->getLocation(), diag::warn_unsafe_buffer_variable);
2201     D << Variable;
2202     D << (Variable->getType()->isPointerType() ? 0 : 1);
2203     D << Variable->getSourceRange();
2204     for (const auto &F : Fixes)
2205       D << F;
2206   }
2207 };
2208 } // namespace
2209 
2210 //===----------------------------------------------------------------------===//
2211 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
2212 //  warnings on a function, method, or block.
2213 //===----------------------------------------------------------------------===//
2214 
2215 sema::AnalysisBasedWarnings::Policy::Policy() {
2216   enableCheckFallThrough = 1;
2217   enableCheckUnreachable = 0;
2218   enableThreadSafetyAnalysis = 0;
2219   enableConsumedAnalysis = 0;
2220 }
2221 
2222 /// InterProceduralData aims to be a storage of whatever data should be passed
2223 /// between analyses of different functions.
2224 ///
2225 /// At the moment, its primary goal is to make the information gathered during
2226 /// the analysis of the blocks available during the analysis of the enclosing
2227 /// function.  This is important due to the fact that blocks are analyzed before
2228 /// the enclosed function is even parsed fully, so it is not viable to access
2229 /// anything in the outer scope while analyzing the block.  On the other hand,
2230 /// re-building CFG for blocks and re-analyzing them when we do have all the
2231 /// information (i.e. during the analysis of the enclosing function) seems to be
2232 /// ill-designed.
2233 class sema::AnalysisBasedWarnings::InterProceduralData {
2234 public:
2235   // It is important to analyze blocks within functions because it's a very
2236   // common pattern to capture completion handler parameters by blocks.
2237   CalledOnceInterProceduralData CalledOnceData;
2238 };
2239 
2240 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
2241   return (unsigned)!D.isIgnored(diag, SourceLocation());
2242 }
2243 
2244 sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
2245     : S(s), IPData(std::make_unique<InterProceduralData>()),
2246       NumFunctionsAnalyzed(0), NumFunctionsWithBadCFGs(0), NumCFGBlocks(0),
2247       MaxCFGBlocksPerFunction(0), NumUninitAnalysisFunctions(0),
2248       NumUninitAnalysisVariables(0), MaxUninitAnalysisVariablesPerFunction(0),
2249       NumUninitAnalysisBlockVisits(0),
2250       MaxUninitAnalysisBlockVisitsPerFunction(0) {
2251 
2252   using namespace diag;
2253   DiagnosticsEngine &D = S.getDiagnostics();
2254 
2255   DefaultPolicy.enableCheckUnreachable =
2256       isEnabled(D, warn_unreachable) || isEnabled(D, warn_unreachable_break) ||
2257       isEnabled(D, warn_unreachable_return) ||
2258       isEnabled(D, warn_unreachable_loop_increment);
2259 
2260   DefaultPolicy.enableThreadSafetyAnalysis = isEnabled(D, warn_double_lock);
2261 
2262   DefaultPolicy.enableConsumedAnalysis =
2263       isEnabled(D, warn_use_in_invalid_state);
2264 }
2265 
2266 // We need this here for unique_ptr with forward declared class.
2267 sema::AnalysisBasedWarnings::~AnalysisBasedWarnings() = default;
2268 
2269 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
2270   for (const auto &D : fscope->PossiblyUnreachableDiags)
2271     S.Diag(D.Loc, D.PD);
2272 }
2273 
2274 void clang::sema::AnalysisBasedWarnings::IssueWarnings(
2275     sema::AnalysisBasedWarnings::Policy P, sema::FunctionScopeInfo *fscope,
2276     const Decl *D, QualType BlockType) {
2277 
2278   // We avoid doing analysis-based warnings when there are errors for
2279   // two reasons:
2280   // (1) The CFGs often can't be constructed (if the body is invalid), so
2281   //     don't bother trying.
2282   // (2) The code already has problems; running the analysis just takes more
2283   //     time.
2284   DiagnosticsEngine &Diags = S.getDiagnostics();
2285 
2286   // Do not do any analysis if we are going to just ignore them.
2287   if (Diags.getIgnoreAllWarnings() ||
2288       (Diags.getSuppressSystemWarnings() &&
2289        S.SourceMgr.isInSystemHeader(D->getLocation())))
2290     return;
2291 
2292   // For code in dependent contexts, we'll do this at instantiation time.
2293   if (cast<DeclContext>(D)->isDependentContext())
2294     return;
2295 
2296   if (S.hasUncompilableErrorOccurred()) {
2297     // Flush out any possibly unreachable diagnostics.
2298     flushDiagnostics(S, fscope);
2299     return;
2300   }
2301 
2302   const Stmt *Body = D->getBody();
2303   assert(Body);
2304 
2305   // Construct the analysis context with the specified CFG build options.
2306   AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2307 
2308   // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2309   // explosion for destructors that can result and the compile time hit.
2310   AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2311   AC.getCFGBuildOptions().AddEHEdges = false;
2312   AC.getCFGBuildOptions().AddInitializers = true;
2313   AC.getCFGBuildOptions().AddImplicitDtors = true;
2314   AC.getCFGBuildOptions().AddTemporaryDtors = true;
2315   AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2316   AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2317 
2318   // Force that certain expressions appear as CFGElements in the CFG.  This
2319   // is used to speed up various analyses.
2320   // FIXME: This isn't the right factoring.  This is here for initial
2321   // prototyping, but we need a way for analyses to say what expressions they
2322   // expect to always be CFGElements and then fill in the BuildOptions
2323   // appropriately.  This is essentially a layering violation.
2324   if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2325       P.enableConsumedAnalysis) {
2326     // Unreachable code analysis and thread safety require a linearized CFG.
2327     AC.getCFGBuildOptions().setAllAlwaysAdd();
2328   }
2329   else {
2330     AC.getCFGBuildOptions()
2331       .setAlwaysAdd(Stmt::BinaryOperatorClass)
2332       .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2333       .setAlwaysAdd(Stmt::BlockExprClass)
2334       .setAlwaysAdd(Stmt::CStyleCastExprClass)
2335       .setAlwaysAdd(Stmt::DeclRefExprClass)
2336       .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2337       .setAlwaysAdd(Stmt::UnaryOperatorClass);
2338   }
2339 
2340   // Install the logical handler.
2341   std::optional<LogicalErrorHandler> LEH;
2342   if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2343     LEH.emplace(S);
2344     AC.getCFGBuildOptions().Observer = &*LEH;
2345   }
2346 
2347   // Emit delayed diagnostics.
2348   if (!fscope->PossiblyUnreachableDiags.empty()) {
2349     bool analyzed = false;
2350 
2351     // Register the expressions with the CFGBuilder.
2352     for (const auto &D : fscope->PossiblyUnreachableDiags) {
2353       for (const Stmt *S : D.Stmts)
2354         AC.registerForcedBlockExpression(S);
2355     }
2356 
2357     if (AC.getCFG()) {
2358       analyzed = true;
2359       for (const auto &D : fscope->PossiblyUnreachableDiags) {
2360         bool AllReachable = true;
2361         for (const Stmt *S : D.Stmts) {
2362           const CFGBlock *block = AC.getBlockForRegisteredExpression(S);
2363           CFGReverseBlockReachabilityAnalysis *cra =
2364               AC.getCFGReachablityAnalysis();
2365           // FIXME: We should be able to assert that block is non-null, but
2366           // the CFG analysis can skip potentially-evaluated expressions in
2367           // edge cases; see test/Sema/vla-2.c.
2368           if (block && cra) {
2369             // Can this block be reached from the entrance?
2370             if (!cra->isReachable(&AC.getCFG()->getEntry(), block)) {
2371               AllReachable = false;
2372               break;
2373             }
2374           }
2375           // If we cannot map to a basic block, assume the statement is
2376           // reachable.
2377         }
2378 
2379         if (AllReachable)
2380           S.Diag(D.Loc, D.PD);
2381       }
2382     }
2383 
2384     if (!analyzed)
2385       flushDiagnostics(S, fscope);
2386   }
2387 
2388   // Warning: check missing 'return'
2389   if (P.enableCheckFallThrough) {
2390     const CheckFallThroughDiagnostics &CD =
2391         (isa<BlockDecl>(D)
2392              ? CheckFallThroughDiagnostics::MakeForBlock()
2393              : (isa<CXXMethodDecl>(D) &&
2394                 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2395                 cast<CXXMethodDecl>(D)->getParent()->isLambda())
2396                    ? CheckFallThroughDiagnostics::MakeForLambda()
2397                    : (fscope->isCoroutine()
2398                           ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2399                           : CheckFallThroughDiagnostics::MakeForFunction(D)));
2400     CheckFallThroughForBody(S, D, Body, BlockType, CD, AC, fscope);
2401   }
2402 
2403   // Warning: check for unreachable code
2404   if (P.enableCheckUnreachable) {
2405     // Only check for unreachable code on non-template instantiations.
2406     // Different template instantiations can effectively change the control-flow
2407     // and it is very difficult to prove that a snippet of code in a template
2408     // is unreachable for all instantiations.
2409     bool isTemplateInstantiation = false;
2410     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2411       isTemplateInstantiation = Function->isTemplateInstantiation();
2412     if (!isTemplateInstantiation)
2413       CheckUnreachable(S, AC);
2414   }
2415 
2416   // Check for thread safety violations
2417   if (P.enableThreadSafetyAnalysis) {
2418     SourceLocation FL = AC.getDecl()->getLocation();
2419     SourceLocation FEL = AC.getDecl()->getEndLoc();
2420     threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2421     if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getBeginLoc()))
2422       Reporter.setIssueBetaWarnings(true);
2423     if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getBeginLoc()))
2424       Reporter.setVerbose(true);
2425 
2426     threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2427                                           &S.ThreadSafetyDeclCache);
2428     Reporter.emitDiagnostics();
2429   }
2430 
2431   // Check for violations of consumed properties.
2432   if (P.enableConsumedAnalysis) {
2433     consumed::ConsumedWarningsHandler WarningHandler(S);
2434     consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2435     Analyzer.run(AC);
2436   }
2437 
2438   if (!Diags.isIgnored(diag::warn_uninit_var, D->getBeginLoc()) ||
2439       !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getBeginLoc()) ||
2440       !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getBeginLoc()) ||
2441       !Diags.isIgnored(diag::warn_uninit_const_reference, D->getBeginLoc())) {
2442     if (CFG *cfg = AC.getCFG()) {
2443       UninitValsDiagReporter reporter(S);
2444       UninitVariablesAnalysisStats stats;
2445       std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2446       runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2447                                         reporter, stats);
2448 
2449       if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2450         ++NumUninitAnalysisFunctions;
2451         NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2452         NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2453         MaxUninitAnalysisVariablesPerFunction =
2454             std::max(MaxUninitAnalysisVariablesPerFunction,
2455                      stats.NumVariablesAnalyzed);
2456         MaxUninitAnalysisBlockVisitsPerFunction =
2457             std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2458                      stats.NumBlockVisits);
2459       }
2460     }
2461   }
2462 
2463   // Check for violations of "called once" parameter properties.
2464   if (S.getLangOpts().ObjC && !S.getLangOpts().CPlusPlus &&
2465       shouldAnalyzeCalledOnceParameters(Diags, D->getBeginLoc())) {
2466     if (AC.getCFG()) {
2467       CalledOnceCheckReporter Reporter(S, IPData->CalledOnceData);
2468       checkCalledOnceParameters(
2469           AC, Reporter,
2470           shouldAnalyzeCalledOnceConventions(Diags, D->getBeginLoc()));
2471     }
2472   }
2473 
2474   bool FallThroughDiagFull =
2475       !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getBeginLoc());
2476   bool FallThroughDiagPerFunction = !Diags.isIgnored(
2477       diag::warn_unannotated_fallthrough_per_function, D->getBeginLoc());
2478   if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2479       fscope->HasFallthroughStmt) {
2480     DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2481   }
2482 
2483   if (S.getLangOpts().ObjCWeak &&
2484       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getBeginLoc()))
2485     diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2486 
2487 
2488   // Check for infinite self-recursion in functions
2489   if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2490                        D->getBeginLoc())) {
2491     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2492       checkRecursiveFunction(S, FD, Body, AC);
2493     }
2494   }
2495 
2496   // Check for throw out of non-throwing function.
2497   if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getBeginLoc()))
2498     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2499       if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2500         checkThrowInNonThrowingFunc(S, FD, AC);
2501 
2502   // Emit unsafe buffer usage warnings and fixits.
2503   if (!Diags.isIgnored(diag::warn_unsafe_buffer_operation, D->getBeginLoc()) ||
2504       !Diags.isIgnored(diag::warn_unsafe_buffer_variable, D->getBeginLoc())) {
2505     UnsafeBufferUsageReporter R(S);
2506     checkUnsafeBufferUsage(D, R);
2507   }
2508 
2509   // If none of the previous checks caused a CFG build, trigger one here
2510   // for the logical error handler.
2511   if (LogicalErrorHandler::hasActiveDiagnostics(Diags, D->getBeginLoc())) {
2512     AC.getCFG();
2513   }
2514 
2515   // Collect statistics about the CFG if it was built.
2516   if (S.CollectStats && AC.isCFGBuilt()) {
2517     ++NumFunctionsAnalyzed;
2518     if (CFG *cfg = AC.getCFG()) {
2519       // If we successfully built a CFG for this context, record some more
2520       // detail information about it.
2521       NumCFGBlocks += cfg->getNumBlockIDs();
2522       MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2523                                          cfg->getNumBlockIDs());
2524     } else {
2525       ++NumFunctionsWithBadCFGs;
2526     }
2527   }
2528 }
2529 
2530 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2531   llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2532 
2533   unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2534   unsigned AvgCFGBlocksPerFunction =
2535       !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2536   llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2537                << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2538                << "  " << NumCFGBlocks << " CFG blocks built.\n"
2539                << "  " << AvgCFGBlocksPerFunction
2540                << " average CFG blocks per function.\n"
2541                << "  " << MaxCFGBlocksPerFunction
2542                << " max CFG blocks per function.\n";
2543 
2544   unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2545       : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2546   unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2547       : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2548   llvm::errs() << NumUninitAnalysisFunctions
2549                << " functions analyzed for uninitialiazed variables\n"
2550                << "  " << NumUninitAnalysisVariables << " variables analyzed.\n"
2551                << "  " << AvgUninitVariablesPerFunction
2552                << " average variables per function.\n"
2553                << "  " << MaxUninitAnalysisVariablesPerFunction
2554                << " max variables per function.\n"
2555                << "  " << NumUninitAnalysisBlockVisits << " block visits.\n"
2556                << "  " << AvgUninitBlockVisitsPerFunction
2557                << " average block visits per function.\n"
2558                << "  " << MaxUninitAnalysisBlockVisitsPerFunction
2559                << " max block visits per function.\n";
2560 }
2561