1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ semantic analysis for scope specifiers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/NestedNameSpecifier.h"
18 #include "clang/Basic/PartialDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/Template.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 
26 /// Find the current instantiation that associated with the given type.
27 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                 DeclContext *CurContext) {
29   if (T.isNull())
30     return nullptr;
31 
32   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35     if (!Record->isDependentContext() ||
36         Record->isCurrentInstantiation(CurContext))
37       return Record;
38 
39     return nullptr;
40   } else if (isa<InjectedClassNameType>(Ty))
41     return cast<InjectedClassNameType>(Ty)->getDecl();
42   else
43     return nullptr;
44 }
45 
46 /// Compute the DeclContext that is associated with the given type.
47 ///
48 /// \param T the type for which we are attempting to find a DeclContext.
49 ///
50 /// \returns the declaration context represented by the type T,
51 /// or NULL if the declaration context cannot be computed (e.g., because it is
52 /// dependent and not the current instantiation).
53 DeclContext *Sema::computeDeclContext(QualType T) {
54   if (!T->isDependentType())
55     if (const TagType *Tag = T->getAs<TagType>())
56       return Tag->getDecl();
57 
58   return ::getCurrentInstantiationOf(T, CurContext);
59 }
60 
61 /// Compute the DeclContext that is associated with the given
62 /// scope specifier.
63 ///
64 /// \param SS the C++ scope specifier as it appears in the source
65 ///
66 /// \param EnteringContext when true, we will be entering the context of
67 /// this scope specifier, so we can retrieve the declaration context of a
68 /// class template or class template partial specialization even if it is
69 /// not the current instantiation.
70 ///
71 /// \returns the declaration context represented by the scope specifier @p SS,
72 /// or NULL if the declaration context cannot be computed (e.g., because it is
73 /// dependent and not the current instantiation).
74 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75                                       bool EnteringContext) {
76   if (!SS.isSet() || SS.isInvalid())
77     return nullptr;
78 
79   NestedNameSpecifier *NNS = SS.getScopeRep();
80   if (NNS->isDependent()) {
81     // If this nested-name-specifier refers to the current
82     // instantiation, return its DeclContext.
83     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84       return Record;
85 
86     if (EnteringContext) {
87       const Type *NNSType = NNS->getAsType();
88       if (!NNSType) {
89         return nullptr;
90       }
91 
92       // Look through type alias templates, per C++0x [temp.dep.type]p1.
93       NNSType = Context.getCanonicalType(NNSType);
94       if (const TemplateSpecializationType *SpecType
95             = NNSType->getAs<TemplateSpecializationType>()) {
96         // We are entering the context of the nested name specifier, so try to
97         // match the nested name specifier to either a primary class template
98         // or a class template partial specialization.
99         if (ClassTemplateDecl *ClassTemplate
100               = dyn_cast_or_null<ClassTemplateDecl>(
101                             SpecType->getTemplateName().getAsTemplateDecl())) {
102           QualType ContextType =
103               Context.getCanonicalType(QualType(SpecType, 0));
104 
105           // FIXME: The fallback on the search of partial
106           // specialization using ContextType should be eventually removed since
107           // it doesn't handle the case of constrained template parameters
108           // correctly. Currently removing this fallback would change the
109           // diagnostic output for invalid code in a number of tests.
110           ClassTemplatePartialSpecializationDecl *PartialSpec = nullptr;
111           ArrayRef<TemplateParameterList *> TemplateParamLists =
112               SS.getTemplateParamLists();
113           if (!TemplateParamLists.empty()) {
114             unsigned Depth = ClassTemplate->getTemplateParameters()->getDepth();
115             auto L = find_if(TemplateParamLists,
116                              [Depth](TemplateParameterList *TPL) {
117                                return TPL->getDepth() == Depth;
118                              });
119             if (L != TemplateParamLists.end()) {
120               void *Pos = nullptr;
121               PartialSpec = ClassTemplate->findPartialSpecialization(
122                   SpecType->template_arguments(), *L, Pos);
123             }
124           } else {
125             PartialSpec = ClassTemplate->findPartialSpecialization(ContextType);
126           }
127 
128           if (PartialSpec) {
129             // A declaration of the partial specialization must be visible.
130             // We can always recover here, because this only happens when we're
131             // entering the context, and that can't happen in a SFINAE context.
132             assert(!isSFINAEContext() && "partial specialization scope "
133                                          "specifier in SFINAE context?");
134             if (PartialSpec->hasDefinition() &&
135                 !hasReachableDefinition(PartialSpec))
136               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
137                                     MissingImportKind::PartialSpecialization,
138                                     true);
139             return PartialSpec;
140           }
141 
142           // If the type of the nested name specifier is the same as the
143           // injected class name of the named class template, we're entering
144           // into that class template definition.
145           QualType Injected =
146               ClassTemplate->getInjectedClassNameSpecialization();
147           if (Context.hasSameType(Injected, ContextType))
148             return ClassTemplate->getTemplatedDecl();
149         }
150       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
151         // The nested name specifier refers to a member of a class template.
152         return RecordT->getDecl();
153       }
154     }
155 
156     return nullptr;
157   }
158 
159   switch (NNS->getKind()) {
160   case NestedNameSpecifier::Identifier:
161     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
162 
163   case NestedNameSpecifier::Namespace:
164     return NNS->getAsNamespace();
165 
166   case NestedNameSpecifier::NamespaceAlias:
167     return NNS->getAsNamespaceAlias()->getNamespace();
168 
169   case NestedNameSpecifier::TypeSpec:
170   case NestedNameSpecifier::TypeSpecWithTemplate: {
171     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
172     assert(Tag && "Non-tag type in nested-name-specifier");
173     return Tag->getDecl();
174   }
175 
176   case NestedNameSpecifier::Global:
177     return Context.getTranslationUnitDecl();
178 
179   case NestedNameSpecifier::Super:
180     return NNS->getAsRecordDecl();
181   }
182 
183   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
184 }
185 
186 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
187   if (!SS.isSet() || SS.isInvalid())
188     return false;
189 
190   return SS.getScopeRep()->isDependent();
191 }
192 
193 /// If the given nested name specifier refers to the current
194 /// instantiation, return the declaration that corresponds to that
195 /// current instantiation (C++0x [temp.dep.type]p1).
196 ///
197 /// \param NNS a dependent nested name specifier.
198 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
199   assert(getLangOpts().CPlusPlus && "Only callable in C++");
200   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
201 
202   if (!NNS->getAsType())
203     return nullptr;
204 
205   QualType T = QualType(NNS->getAsType(), 0);
206   return ::getCurrentInstantiationOf(T, CurContext);
207 }
208 
209 /// Require that the context specified by SS be complete.
210 ///
211 /// If SS refers to a type, this routine checks whether the type is
212 /// complete enough (or can be made complete enough) for name lookup
213 /// into the DeclContext. A type that is not yet completed can be
214 /// considered "complete enough" if it is a class/struct/union/enum
215 /// that is currently being defined. Or, if we have a type that names
216 /// a class template specialization that is not a complete type, we
217 /// will attempt to instantiate that class template.
218 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
219                                       DeclContext *DC) {
220   assert(DC && "given null context");
221 
222   TagDecl *tag = dyn_cast<TagDecl>(DC);
223 
224   // If this is a dependent type, then we consider it complete.
225   // FIXME: This is wrong; we should require a (visible) definition to
226   // exist in this case too.
227   if (!tag || tag->isDependentContext())
228     return false;
229 
230   // Grab the tag definition, if there is one.
231   QualType type = Context.getTypeDeclType(tag);
232   tag = type->getAsTagDecl();
233 
234   // If we're currently defining this type, then lookup into the
235   // type is okay: don't complain that it isn't complete yet.
236   if (tag->isBeingDefined())
237     return false;
238 
239   SourceLocation loc = SS.getLastQualifierNameLoc();
240   if (loc.isInvalid()) loc = SS.getRange().getBegin();
241 
242   // The type must be complete.
243   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
244                           SS.getRange())) {
245     SS.SetInvalid(SS.getRange());
246     return true;
247   }
248 
249   if (auto *EnumD = dyn_cast<EnumDecl>(tag))
250     // Fixed enum types and scoped enum instantiations are complete, but they
251     // aren't valid as scopes until we see or instantiate their definition.
252     return RequireCompleteEnumDecl(EnumD, loc, &SS);
253 
254   return false;
255 }
256 
257 /// Require that the EnumDecl is completed with its enumerators defined or
258 /// instantiated. SS, if provided, is the ScopeRef parsed.
259 ///
260 bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
261                                    CXXScopeSpec *SS) {
262   if (EnumD->isCompleteDefinition()) {
263     // If we know about the definition but it is not visible, complain.
264     NamedDecl *SuggestedDef = nullptr;
265     if (!hasReachableDefinition(EnumD, &SuggestedDef,
266                                 /*OnlyNeedComplete*/ false)) {
267       // If the user is going to see an error here, recover by making the
268       // definition visible.
269       bool TreatAsComplete = !isSFINAEContext();
270       diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
271                             /*Recover*/ TreatAsComplete);
272       return !TreatAsComplete;
273     }
274     return false;
275   }
276 
277   // Try to instantiate the definition, if this is a specialization of an
278   // enumeration temploid.
279   if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
280     MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
281     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
282       if (InstantiateEnum(L, EnumD, Pattern,
283                           getTemplateInstantiationArgs(EnumD),
284                           TSK_ImplicitInstantiation)) {
285         if (SS)
286           SS->SetInvalid(SS->getRange());
287         return true;
288       }
289       return false;
290     }
291   }
292 
293   if (SS) {
294     Diag(L, diag::err_incomplete_nested_name_spec)
295         << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
296     SS->SetInvalid(SS->getRange());
297   } else {
298     Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
299     Diag(EnumD->getLocation(), diag::note_declared_at);
300   }
301 
302   return true;
303 }
304 
305 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
306                                         CXXScopeSpec &SS) {
307   SS.MakeGlobal(Context, CCLoc);
308   return false;
309 }
310 
311 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
312                                     SourceLocation ColonColonLoc,
313                                     CXXScopeSpec &SS) {
314   if (getCurLambda()) {
315     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
316     return true;
317   }
318 
319   CXXRecordDecl *RD = nullptr;
320   for (Scope *S = getCurScope(); S; S = S->getParent()) {
321     if (S->isFunctionScope()) {
322       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
323         RD = MD->getParent();
324       break;
325     }
326     if (S->isClassScope()) {
327       RD = cast<CXXRecordDecl>(S->getEntity());
328       break;
329     }
330   }
331 
332   if (!RD) {
333     Diag(SuperLoc, diag::err_invalid_super_scope);
334     return true;
335   } else if (RD->getNumBases() == 0) {
336     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
337     return true;
338   }
339 
340   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
341   return false;
342 }
343 
344 /// Determines whether the given declaration is an valid acceptable
345 /// result for name lookup of a nested-name-specifier.
346 /// \param SD Declaration checked for nested-name-specifier.
347 /// \param IsExtension If not null and the declaration is accepted as an
348 /// extension, the pointed variable is assigned true.
349 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
350                                            bool *IsExtension) {
351   if (!SD)
352     return false;
353 
354   SD = SD->getUnderlyingDecl();
355 
356   // Namespace and namespace aliases are fine.
357   if (isa<NamespaceDecl>(SD))
358     return true;
359 
360   if (!isa<TypeDecl>(SD))
361     return false;
362 
363   // Determine whether we have a class (or, in C++11, an enum) or
364   // a typedef thereof. If so, build the nested-name-specifier.
365   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
366   if (T->isDependentType())
367     return true;
368   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
369     if (TD->getUnderlyingType()->isRecordType())
370       return true;
371     if (TD->getUnderlyingType()->isEnumeralType()) {
372       if (Context.getLangOpts().CPlusPlus11)
373         return true;
374       if (IsExtension)
375         *IsExtension = true;
376     }
377   } else if (isa<RecordDecl>(SD)) {
378     return true;
379   } else if (isa<EnumDecl>(SD)) {
380     if (Context.getLangOpts().CPlusPlus11)
381       return true;
382     if (IsExtension)
383       *IsExtension = true;
384   }
385 
386   return false;
387 }
388 
389 /// If the given nested-name-specifier begins with a bare identifier
390 /// (e.g., Base::), perform name lookup for that identifier as a
391 /// nested-name-specifier within the given scope, and return the result of that
392 /// name lookup.
393 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
394   if (!S || !NNS)
395     return nullptr;
396 
397   while (NNS->getPrefix())
398     NNS = NNS->getPrefix();
399 
400   if (NNS->getKind() != NestedNameSpecifier::Identifier)
401     return nullptr;
402 
403   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
404                      LookupNestedNameSpecifierName);
405   LookupName(Found, S);
406   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
407 
408   if (!Found.isSingleResult())
409     return nullptr;
410 
411   NamedDecl *Result = Found.getFoundDecl();
412   if (isAcceptableNestedNameSpecifier(Result))
413     return Result;
414 
415   return nullptr;
416 }
417 
418 namespace {
419 
420 // Callback to only accept typo corrections that can be a valid C++ member
421 // initializer: either a non-static field member or a base class.
422 class NestedNameSpecifierValidatorCCC final
423     : public CorrectionCandidateCallback {
424 public:
425   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
426       : SRef(SRef) {}
427 
428   bool ValidateCandidate(const TypoCorrection &candidate) override {
429     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
430   }
431 
432   std::unique_ptr<CorrectionCandidateCallback> clone() override {
433     return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
434   }
435 
436  private:
437   Sema &SRef;
438 };
439 
440 }
441 
442 /// Build a new nested-name-specifier for "identifier::", as described
443 /// by ActOnCXXNestedNameSpecifier.
444 ///
445 /// \param S Scope in which the nested-name-specifier occurs.
446 /// \param IdInfo Parser information about an identifier in the
447 ///        nested-name-spec.
448 /// \param EnteringContext If true, enter the context specified by the
449 ///        nested-name-specifier.
450 /// \param SS Optional nested name specifier preceding the identifier.
451 /// \param ScopeLookupResult Provides the result of name lookup within the
452 ///        scope of the nested-name-specifier that was computed at template
453 ///        definition time.
454 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
455 ///        error recovery and what kind of recovery is performed.
456 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
457 ///        are allowed.  The bool value pointed by this parameter is set to
458 ///       'true' if the identifier is treated as if it was followed by ':',
459 ///        not '::'.
460 /// \param OnlyNamespace If true, only considers namespaces in lookup.
461 ///
462 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
463 /// that it contains an extra parameter \p ScopeLookupResult, which provides
464 /// the result of name lookup within the scope of the nested-name-specifier
465 /// that was computed at template definition time.
466 ///
467 /// If ErrorRecoveryLookup is true, then this call is used to improve error
468 /// recovery.  This means that it should not emit diagnostics, it should
469 /// just return true on failure.  It also means it should only return a valid
470 /// scope if it *knows* that the result is correct.  It should not return in a
471 /// dependent context, for example. Nor will it extend \p SS with the scope
472 /// specifier.
473 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
474                                        bool EnteringContext, CXXScopeSpec &SS,
475                                        NamedDecl *ScopeLookupResult,
476                                        bool ErrorRecoveryLookup,
477                                        bool *IsCorrectedToColon,
478                                        bool OnlyNamespace) {
479   if (IdInfo.Identifier->isEditorPlaceholder())
480     return true;
481   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
482                      OnlyNamespace ? LookupNamespaceName
483                                    : LookupNestedNameSpecifierName);
484   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
485 
486   // Determine where to perform name lookup
487   DeclContext *LookupCtx = nullptr;
488   bool isDependent = false;
489   if (IsCorrectedToColon)
490     *IsCorrectedToColon = false;
491   if (!ObjectType.isNull()) {
492     // This nested-name-specifier occurs in a member access expression, e.g.,
493     // x->B::f, and we are looking into the type of the object.
494     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
495     LookupCtx = computeDeclContext(ObjectType);
496     isDependent = ObjectType->isDependentType();
497   } else if (SS.isSet()) {
498     // This nested-name-specifier occurs after another nested-name-specifier,
499     // so look into the context associated with the prior nested-name-specifier.
500     LookupCtx = computeDeclContext(SS, EnteringContext);
501     isDependent = isDependentScopeSpecifier(SS);
502     Found.setContextRange(SS.getRange());
503   }
504 
505   bool ObjectTypeSearchedInScope = false;
506   if (LookupCtx) {
507     // Perform "qualified" name lookup into the declaration context we
508     // computed, which is either the type of the base of a member access
509     // expression or the declaration context associated with a prior
510     // nested-name-specifier.
511 
512     // The declaration context must be complete.
513     if (!LookupCtx->isDependentContext() &&
514         RequireCompleteDeclContext(SS, LookupCtx))
515       return true;
516 
517     LookupQualifiedName(Found, LookupCtx);
518 
519     if (!ObjectType.isNull() && Found.empty()) {
520       // C++ [basic.lookup.classref]p4:
521       //   If the id-expression in a class member access is a qualified-id of
522       //   the form
523       //
524       //        class-name-or-namespace-name::...
525       //
526       //   the class-name-or-namespace-name following the . or -> operator is
527       //   looked up both in the context of the entire postfix-expression and in
528       //   the scope of the class of the object expression. If the name is found
529       //   only in the scope of the class of the object expression, the name
530       //   shall refer to a class-name. If the name is found only in the
531       //   context of the entire postfix-expression, the name shall refer to a
532       //   class-name or namespace-name. [...]
533       //
534       // Qualified name lookup into a class will not find a namespace-name,
535       // so we do not need to diagnose that case specifically. However,
536       // this qualified name lookup may find nothing. In that case, perform
537       // unqualified name lookup in the given scope (if available) or
538       // reconstruct the result from when name lookup was performed at template
539       // definition time.
540       if (S)
541         LookupName(Found, S);
542       else if (ScopeLookupResult)
543         Found.addDecl(ScopeLookupResult);
544 
545       ObjectTypeSearchedInScope = true;
546     }
547   } else if (!isDependent) {
548     // Perform unqualified name lookup in the current scope.
549     LookupName(Found, S);
550   }
551 
552   if (Found.isAmbiguous())
553     return true;
554 
555   // If we performed lookup into a dependent context and did not find anything,
556   // that's fine: just build a dependent nested-name-specifier.
557   if (Found.empty() && isDependent &&
558       !(LookupCtx && LookupCtx->isRecord() &&
559         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
560          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
561     // Don't speculate if we're just trying to improve error recovery.
562     if (ErrorRecoveryLookup)
563       return true;
564 
565     // We were not able to compute the declaration context for a dependent
566     // base object type or prior nested-name-specifier, so this
567     // nested-name-specifier refers to an unknown specialization. Just build
568     // a dependent nested-name-specifier.
569     SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
570     return false;
571   }
572 
573   if (Found.empty() && !ErrorRecoveryLookup) {
574     // If identifier is not found as class-name-or-namespace-name, but is found
575     // as other entity, don't look for typos.
576     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
577     if (LookupCtx)
578       LookupQualifiedName(R, LookupCtx);
579     else if (S && !isDependent)
580       LookupName(R, S);
581     if (!R.empty()) {
582       // Don't diagnose problems with this speculative lookup.
583       R.suppressDiagnostics();
584       // The identifier is found in ordinary lookup. If correction to colon is
585       // allowed, suggest replacement to ':'.
586       if (IsCorrectedToColon) {
587         *IsCorrectedToColon = true;
588         Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
589             << IdInfo.Identifier << getLangOpts().CPlusPlus
590             << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
591         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
592           Diag(ND->getLocation(), diag::note_declared_at);
593         return true;
594       }
595       // Replacement '::' -> ':' is not allowed, just issue respective error.
596       Diag(R.getNameLoc(), OnlyNamespace
597                                ? unsigned(diag::err_expected_namespace_name)
598                                : unsigned(diag::err_expected_class_or_namespace))
599           << IdInfo.Identifier << getLangOpts().CPlusPlus;
600       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
601         Diag(ND->getLocation(), diag::note_entity_declared_at)
602             << IdInfo.Identifier;
603       return true;
604     }
605   }
606 
607   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
608     // We haven't found anything, and we're not recovering from a
609     // different kind of error, so look for typos.
610     DeclarationName Name = Found.getLookupName();
611     Found.clear();
612     NestedNameSpecifierValidatorCCC CCC(*this);
613     if (TypoCorrection Corrected = CorrectTypo(
614             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
615             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
616       if (LookupCtx) {
617         bool DroppedSpecifier =
618             Corrected.WillReplaceSpecifier() &&
619             Name.getAsString() == Corrected.getAsString(getLangOpts());
620         if (DroppedSpecifier)
621           SS.clear();
622         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
623                                   << Name << LookupCtx << DroppedSpecifier
624                                   << SS.getRange());
625       } else
626         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
627                                   << Name);
628 
629       if (Corrected.getCorrectionSpecifier())
630         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
631                        SourceRange(Found.getNameLoc()));
632 
633       if (NamedDecl *ND = Corrected.getFoundDecl())
634         Found.addDecl(ND);
635       Found.setLookupName(Corrected.getCorrection());
636     } else {
637       Found.setLookupName(IdInfo.Identifier);
638     }
639   }
640 
641   NamedDecl *SD =
642       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
643   bool IsExtension = false;
644   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
645   if (!AcceptSpec && IsExtension) {
646     AcceptSpec = true;
647     Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
648   }
649   if (AcceptSpec) {
650     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
651         !getLangOpts().CPlusPlus11) {
652       // C++03 [basic.lookup.classref]p4:
653       //   [...] If the name is found in both contexts, the
654       //   class-name-or-namespace-name shall refer to the same entity.
655       //
656       // We already found the name in the scope of the object. Now, look
657       // into the current scope (the scope of the postfix-expression) to
658       // see if we can find the same name there. As above, if there is no
659       // scope, reconstruct the result from the template instantiation itself.
660       //
661       // Note that C++11 does *not* perform this redundant lookup.
662       NamedDecl *OuterDecl;
663       if (S) {
664         LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
665                                 LookupNestedNameSpecifierName);
666         LookupName(FoundOuter, S);
667         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
668       } else
669         OuterDecl = ScopeLookupResult;
670 
671       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
672           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
673           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
674            !Context.hasSameType(
675                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
676                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
677         if (ErrorRecoveryLookup)
678           return true;
679 
680          Diag(IdInfo.IdentifierLoc,
681               diag::err_nested_name_member_ref_lookup_ambiguous)
682            << IdInfo.Identifier;
683          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
684            << ObjectType;
685          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
686 
687          // Fall through so that we'll pick the name we found in the object
688          // type, since that's probably what the user wanted anyway.
689        }
690     }
691 
692     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
693       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
694 
695     // If we're just performing this lookup for error-recovery purposes,
696     // don't extend the nested-name-specifier. Just return now.
697     if (ErrorRecoveryLookup)
698       return false;
699 
700     // The use of a nested name specifier may trigger deprecation warnings.
701     DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
702 
703     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
704       SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
705       return false;
706     }
707 
708     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
709       SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
710       return false;
711     }
712 
713     QualType T =
714         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
715 
716     if (T->isEnumeralType())
717       Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
718 
719     TypeLocBuilder TLB;
720     if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
721       T = Context.getUsingType(USD, T);
722       TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
723     } else if (isa<InjectedClassNameType>(T)) {
724       InjectedClassNameTypeLoc InjectedTL
725         = TLB.push<InjectedClassNameTypeLoc>(T);
726       InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
727     } else if (isa<RecordType>(T)) {
728       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
729       RecordTL.setNameLoc(IdInfo.IdentifierLoc);
730     } else if (isa<TypedefType>(T)) {
731       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
732       TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
733     } else if (isa<EnumType>(T)) {
734       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
735       EnumTL.setNameLoc(IdInfo.IdentifierLoc);
736     } else if (isa<TemplateTypeParmType>(T)) {
737       TemplateTypeParmTypeLoc TemplateTypeTL
738         = TLB.push<TemplateTypeParmTypeLoc>(T);
739       TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
740     } else if (isa<UnresolvedUsingType>(T)) {
741       UnresolvedUsingTypeLoc UnresolvedTL
742         = TLB.push<UnresolvedUsingTypeLoc>(T);
743       UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
744     } else if (isa<SubstTemplateTypeParmType>(T)) {
745       SubstTemplateTypeParmTypeLoc TL
746         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
747       TL.setNameLoc(IdInfo.IdentifierLoc);
748     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
749       SubstTemplateTypeParmPackTypeLoc TL
750         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
751       TL.setNameLoc(IdInfo.IdentifierLoc);
752     } else {
753       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
754     }
755 
756     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
757               IdInfo.CCLoc);
758     return false;
759   }
760 
761   // Otherwise, we have an error case.  If we don't want diagnostics, just
762   // return an error now.
763   if (ErrorRecoveryLookup)
764     return true;
765 
766   // If we didn't find anything during our lookup, try again with
767   // ordinary name lookup, which can help us produce better error
768   // messages.
769   if (Found.empty()) {
770     Found.clear(LookupOrdinaryName);
771     LookupName(Found, S);
772   }
773 
774   // In Microsoft mode, if we are within a templated function and we can't
775   // resolve Identifier, then extend the SS with Identifier. This will have
776   // the effect of resolving Identifier during template instantiation.
777   // The goal is to be able to resolve a function call whose
778   // nested-name-specifier is located inside a dependent base class.
779   // Example:
780   //
781   // class C {
782   // public:
783   //    static void foo2() {  }
784   // };
785   // template <class T> class A { public: typedef C D; };
786   //
787   // template <class T> class B : public A<T> {
788   // public:
789   //   void foo() { D::foo2(); }
790   // };
791   if (getLangOpts().MSVCCompat) {
792     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
793     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
794       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
795       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
796         Diag(IdInfo.IdentifierLoc,
797              diag::ext_undeclared_unqual_id_with_dependent_base)
798             << IdInfo.Identifier << ContainingClass;
799         SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
800                   IdInfo.CCLoc);
801         return false;
802       }
803     }
804   }
805 
806   if (!Found.empty()) {
807     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
808       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
809           << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
810     } else if (Found.getAsSingle<TemplateDecl>()) {
811       ParsedType SuggestedType;
812       DiagnoseUnknownTypeName(IdInfo.Identifier, IdInfo.IdentifierLoc, S, &SS,
813                               SuggestedType);
814     } else {
815       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
816           << IdInfo.Identifier << getLangOpts().CPlusPlus;
817       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
818         Diag(ND->getLocation(), diag::note_entity_declared_at)
819             << IdInfo.Identifier;
820     }
821   } else if (SS.isSet())
822     Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
823         << LookupCtx << SS.getRange();
824   else
825     Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
826         << IdInfo.Identifier;
827 
828   return true;
829 }
830 
831 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
832                                        bool EnteringContext, CXXScopeSpec &SS,
833                                        bool *IsCorrectedToColon,
834                                        bool OnlyNamespace) {
835   if (SS.isInvalid())
836     return true;
837 
838   return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
839                                      /*ScopeLookupResult=*/nullptr, false,
840                                      IsCorrectedToColon, OnlyNamespace);
841 }
842 
843 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
844                                                const DeclSpec &DS,
845                                                SourceLocation ColonColonLoc) {
846   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
847     return true;
848 
849   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
850 
851   QualType T = BuildDecltypeType(DS.getRepAsExpr());
852   if (T.isNull())
853     return true;
854 
855   if (!T->isDependentType() && !T->getAs<TagType>()) {
856     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
857       << T << getLangOpts().CPlusPlus;
858     return true;
859   }
860 
861   TypeLocBuilder TLB;
862   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
863   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
864   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
865   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
866             ColonColonLoc);
867   return false;
868 }
869 
870 /// IsInvalidUnlessNestedName - This method is used for error recovery
871 /// purposes to determine whether the specified identifier is only valid as
872 /// a nested name specifier, for example a namespace name.  It is
873 /// conservatively correct to always return false from this method.
874 ///
875 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
876 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
877                                      NestedNameSpecInfo &IdInfo,
878                                      bool EnteringContext) {
879   if (SS.isInvalid())
880     return false;
881 
882   return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
883                                       /*ScopeLookupResult=*/nullptr, true);
884 }
885 
886 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
887                                        CXXScopeSpec &SS,
888                                        SourceLocation TemplateKWLoc,
889                                        TemplateTy OpaqueTemplate,
890                                        SourceLocation TemplateNameLoc,
891                                        SourceLocation LAngleLoc,
892                                        ASTTemplateArgsPtr TemplateArgsIn,
893                                        SourceLocation RAngleLoc,
894                                        SourceLocation CCLoc,
895                                        bool EnteringContext) {
896   if (SS.isInvalid())
897     return true;
898 
899   TemplateName Template = OpaqueTemplate.get();
900 
901   // Translate the parser's template argument list in our AST format.
902   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
903   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
904 
905   DependentTemplateName *DTN = Template.getAsDependentTemplateName();
906   if (DTN && DTN->isIdentifier()) {
907     // Handle a dependent template specialization for which we cannot resolve
908     // the template name.
909     assert(DTN->getQualifier() == SS.getScopeRep());
910     QualType T = Context.getDependentTemplateSpecializationType(
911         ETK_None, DTN->getQualifier(), DTN->getIdentifier(),
912         TemplateArgs.arguments());
913 
914     // Create source-location information for this type.
915     TypeLocBuilder Builder;
916     DependentTemplateSpecializationTypeLoc SpecTL
917       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
918     SpecTL.setElaboratedKeywordLoc(SourceLocation());
919     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
920     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
921     SpecTL.setTemplateNameLoc(TemplateNameLoc);
922     SpecTL.setLAngleLoc(LAngleLoc);
923     SpecTL.setRAngleLoc(RAngleLoc);
924     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
925       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
926 
927     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
928               CCLoc);
929     return false;
930   }
931 
932   // If we assumed an undeclared identifier was a template name, try to
933   // typo-correct it now.
934   if (Template.getAsAssumedTemplateName() &&
935       resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
936     return true;
937 
938   TemplateDecl *TD = Template.getAsTemplateDecl();
939   if (Template.getAsOverloadedTemplate() || DTN ||
940       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
941     SourceRange R(TemplateNameLoc, RAngleLoc);
942     if (SS.getRange().isValid())
943       R.setBegin(SS.getRange().getBegin());
944 
945     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
946       << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
947     NoteAllFoundTemplates(Template);
948     return true;
949   }
950 
951   // We were able to resolve the template name to an actual template.
952   // Build an appropriate nested-name-specifier.
953   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
954   if (T.isNull())
955     return true;
956 
957   // Alias template specializations can produce types which are not valid
958   // nested name specifiers.
959   if (!T->isDependentType() && !T->getAs<TagType>()) {
960     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
961     NoteAllFoundTemplates(Template);
962     return true;
963   }
964 
965   // Provide source-location information for the template specialization type.
966   TypeLocBuilder Builder;
967   TemplateSpecializationTypeLoc SpecTL
968     = Builder.push<TemplateSpecializationTypeLoc>(T);
969   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
970   SpecTL.setTemplateNameLoc(TemplateNameLoc);
971   SpecTL.setLAngleLoc(LAngleLoc);
972   SpecTL.setRAngleLoc(RAngleLoc);
973   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
974     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
975 
976 
977   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
978             CCLoc);
979   return false;
980 }
981 
982 namespace {
983   /// A structure that stores a nested-name-specifier annotation,
984   /// including both the nested-name-specifier
985   struct NestedNameSpecifierAnnotation {
986     NestedNameSpecifier *NNS;
987   };
988 }
989 
990 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
991   if (SS.isEmpty() || SS.isInvalid())
992     return nullptr;
993 
994   void *Mem = Context.Allocate(
995       (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
996       alignof(NestedNameSpecifierAnnotation));
997   NestedNameSpecifierAnnotation *Annotation
998     = new (Mem) NestedNameSpecifierAnnotation;
999   Annotation->NNS = SS.getScopeRep();
1000   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1001   return Annotation;
1002 }
1003 
1004 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1005                                                 SourceRange AnnotationRange,
1006                                                 CXXScopeSpec &SS) {
1007   if (!AnnotationPtr) {
1008     SS.SetInvalid(AnnotationRange);
1009     return;
1010   }
1011 
1012   NestedNameSpecifierAnnotation *Annotation
1013     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1014   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1015 }
1016 
1017 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1018   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1019 
1020   // Don't enter a declarator context when the current context is an Objective-C
1021   // declaration.
1022   if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1023     return false;
1024 
1025   NestedNameSpecifier *Qualifier = SS.getScopeRep();
1026 
1027   // There are only two places a well-formed program may qualify a
1028   // declarator: first, when defining a namespace or class member
1029   // out-of-line, and second, when naming an explicitly-qualified
1030   // friend function.  The latter case is governed by
1031   // C++03 [basic.lookup.unqual]p10:
1032   //   In a friend declaration naming a member function, a name used
1033   //   in the function declarator and not part of a template-argument
1034   //   in a template-id is first looked up in the scope of the member
1035   //   function's class. If it is not found, or if the name is part of
1036   //   a template-argument in a template-id, the look up is as
1037   //   described for unqualified names in the definition of the class
1038   //   granting friendship.
1039   // i.e. we don't push a scope unless it's a class member.
1040 
1041   switch (Qualifier->getKind()) {
1042   case NestedNameSpecifier::Global:
1043   case NestedNameSpecifier::Namespace:
1044   case NestedNameSpecifier::NamespaceAlias:
1045     // These are always namespace scopes.  We never want to enter a
1046     // namespace scope from anything but a file context.
1047     return CurContext->getRedeclContext()->isFileContext();
1048 
1049   case NestedNameSpecifier::Identifier:
1050   case NestedNameSpecifier::TypeSpec:
1051   case NestedNameSpecifier::TypeSpecWithTemplate:
1052   case NestedNameSpecifier::Super:
1053     // These are never namespace scopes.
1054     return true;
1055   }
1056 
1057   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1058 }
1059 
1060 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1061 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1062 /// After this method is called, according to [C++ 3.4.3p3], names should be
1063 /// looked up in the declarator-id's scope, until the declarator is parsed and
1064 /// ActOnCXXExitDeclaratorScope is called.
1065 /// The 'SS' should be a non-empty valid CXXScopeSpec.
1066 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1067   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1068 
1069   if (SS.isInvalid()) return true;
1070 
1071   DeclContext *DC = computeDeclContext(SS, true);
1072   if (!DC) return true;
1073 
1074   // Before we enter a declarator's context, we need to make sure that
1075   // it is a complete declaration context.
1076   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1077     return true;
1078 
1079   EnterDeclaratorContext(S, DC);
1080 
1081   // Rebuild the nested name specifier for the new scope.
1082   if (DC->isDependentContext())
1083     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1084 
1085   return false;
1086 }
1087 
1088 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1089 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1090 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1091 /// Used to indicate that names should revert to being looked up in the
1092 /// defining scope.
1093 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1094   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1095   if (SS.isInvalid())
1096     return;
1097   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1098          "exiting declarator scope we never really entered");
1099   ExitDeclaratorContext(S);
1100 }
1101