1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cctype>
95 #include <cstddef>
96 #include <cstdint>
97 #include <functional>
98 #include <limits>
99 #include <string>
100 #include <tuple>
101 #include <utility>
102 
103 using namespace clang;
104 using namespace sema;
105 
106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
107                                                     unsigned ByteNo) const {
108   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
109                                Context.getTargetInfo());
110 }
111 
112 static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
113                                             Sema::FormatArgumentPassingKind B) {
114   return (A << 8) | B;
115 }
116 
117 /// Checks that a call expression's argument count is at least the desired
118 /// number. This is useful when doing custom type-checking on a variadic
119 /// function. Returns true on error.
120 static bool checkArgCountAtLeast(Sema &S, CallExpr *Call,
121                                  unsigned MinArgCount) {
122   unsigned ArgCount = Call->getNumArgs();
123   if (ArgCount >= MinArgCount)
124     return false;
125 
126   return S.Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
127          << 0 /*function call*/ << MinArgCount << ArgCount
128          << Call->getSourceRange();
129 }
130 
131 /// Checks that a call expression's argument count is the desired number.
132 /// This is useful when doing custom type-checking.  Returns true on error.
133 static bool checkArgCount(Sema &S, CallExpr *Call, unsigned DesiredArgCount) {
134   unsigned ArgCount = Call->getNumArgs();
135   if (ArgCount == DesiredArgCount)
136     return false;
137 
138   if (checkArgCountAtLeast(S, Call, DesiredArgCount))
139     return true;
140   assert(ArgCount > DesiredArgCount && "should have diagnosed this");
141 
142   // Highlight all the excess arguments.
143   SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
144                     Call->getArg(ArgCount - 1)->getEndLoc());
145 
146   return S.Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
147          << 0 /*function call*/ << DesiredArgCount << ArgCount
148          << Call->getArg(1)->getSourceRange();
149 }
150 
151 /// Check that the first argument to __builtin_annotation is an integer
152 /// and the second argument is a non-wide string literal.
153 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
154   if (checkArgCount(S, TheCall, 2))
155     return true;
156 
157   // First argument should be an integer.
158   Expr *ValArg = TheCall->getArg(0);
159   QualType Ty = ValArg->getType();
160   if (!Ty->isIntegerType()) {
161     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
162         << ValArg->getSourceRange();
163     return true;
164   }
165 
166   // Second argument should be a constant string.
167   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
168   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
169   if (!Literal || !Literal->isOrdinary()) {
170     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
171         << StrArg->getSourceRange();
172     return true;
173   }
174 
175   TheCall->setType(Ty);
176   return false;
177 }
178 
179 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
180   // We need at least one argument.
181   if (TheCall->getNumArgs() < 1) {
182     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
183         << 0 << 1 << TheCall->getNumArgs()
184         << TheCall->getCallee()->getSourceRange();
185     return true;
186   }
187 
188   // All arguments should be wide string literals.
189   for (Expr *Arg : TheCall->arguments()) {
190     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
191     if (!Literal || !Literal->isWide()) {
192       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
193           << Arg->getSourceRange();
194       return true;
195     }
196   }
197 
198   return false;
199 }
200 
201 /// Check that the argument to __builtin_addressof is a glvalue, and set the
202 /// result type to the corresponding pointer type.
203 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
204   if (checkArgCount(S, TheCall, 1))
205     return true;
206 
207   ExprResult Arg(TheCall->getArg(0));
208   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
209   if (ResultType.isNull())
210     return true;
211 
212   TheCall->setArg(0, Arg.get());
213   TheCall->setType(ResultType);
214   return false;
215 }
216 
217 /// Check that the argument to __builtin_function_start is a function.
218 static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
219   if (checkArgCount(S, TheCall, 1))
220     return true;
221 
222   ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
223   if (Arg.isInvalid())
224     return true;
225 
226   TheCall->setArg(0, Arg.get());
227   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
228       Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
229 
230   if (!FD) {
231     S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
232         << TheCall->getSourceRange();
233     return true;
234   }
235 
236   return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
237                                               TheCall->getBeginLoc());
238 }
239 
240 /// Check the number of arguments and set the result type to
241 /// the argument type.
242 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
243   if (checkArgCount(S, TheCall, 1))
244     return true;
245 
246   TheCall->setType(TheCall->getArg(0)->getType());
247   return false;
248 }
249 
250 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
251 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
252 /// type (but not a function pointer) and that the alignment is a power-of-two.
253 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
254   if (checkArgCount(S, TheCall, 2))
255     return true;
256 
257   clang::Expr *Source = TheCall->getArg(0);
258   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
259 
260   auto IsValidIntegerType = [](QualType Ty) {
261     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
262   };
263   QualType SrcTy = Source->getType();
264   // We should also be able to use it with arrays (but not functions!).
265   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
266     SrcTy = S.Context.getDecayedType(SrcTy);
267   }
268   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
269       SrcTy->isFunctionPointerType()) {
270     // FIXME: this is not quite the right error message since we don't allow
271     // floating point types, or member pointers.
272     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
273         << SrcTy;
274     return true;
275   }
276 
277   clang::Expr *AlignOp = TheCall->getArg(1);
278   if (!IsValidIntegerType(AlignOp->getType())) {
279     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
280         << AlignOp->getType();
281     return true;
282   }
283   Expr::EvalResult AlignResult;
284   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
285   // We can't check validity of alignment if it is value dependent.
286   if (!AlignOp->isValueDependent() &&
287       AlignOp->EvaluateAsInt(AlignResult, S.Context,
288                              Expr::SE_AllowSideEffects)) {
289     llvm::APSInt AlignValue = AlignResult.Val.getInt();
290     llvm::APSInt MaxValue(
291         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
292     if (AlignValue < 1) {
293       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
294       return true;
295     }
296     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
297       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
298           << toString(MaxValue, 10);
299       return true;
300     }
301     if (!AlignValue.isPowerOf2()) {
302       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
303       return true;
304     }
305     if (AlignValue == 1) {
306       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
307           << IsBooleanAlignBuiltin;
308     }
309   }
310 
311   ExprResult SrcArg = S.PerformCopyInitialization(
312       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
313       SourceLocation(), Source);
314   if (SrcArg.isInvalid())
315     return true;
316   TheCall->setArg(0, SrcArg.get());
317   ExprResult AlignArg =
318       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
319                                       S.Context, AlignOp->getType(), false),
320                                   SourceLocation(), AlignOp);
321   if (AlignArg.isInvalid())
322     return true;
323   TheCall->setArg(1, AlignArg.get());
324   // For align_up/align_down, the return type is the same as the (potentially
325   // decayed) argument type including qualifiers. For is_aligned(), the result
326   // is always bool.
327   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
328   return false;
329 }
330 
331 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
332                                 unsigned BuiltinID) {
333   if (checkArgCount(S, TheCall, 3))
334     return true;
335 
336   // First two arguments should be integers.
337   for (unsigned I = 0; I < 2; ++I) {
338     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
339     if (Arg.isInvalid()) return true;
340     TheCall->setArg(I, Arg.get());
341 
342     QualType Ty = Arg.get()->getType();
343     if (!Ty->isIntegerType()) {
344       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
345           << Ty << Arg.get()->getSourceRange();
346       return true;
347     }
348   }
349 
350   // Third argument should be a pointer to a non-const integer.
351   // IRGen correctly handles volatile, restrict, and address spaces, and
352   // the other qualifiers aren't possible.
353   {
354     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
355     if (Arg.isInvalid()) return true;
356     TheCall->setArg(2, Arg.get());
357 
358     QualType Ty = Arg.get()->getType();
359     const auto *PtrTy = Ty->getAs<PointerType>();
360     if (!PtrTy ||
361         !PtrTy->getPointeeType()->isIntegerType() ||
362         PtrTy->getPointeeType().isConstQualified()) {
363       S.Diag(Arg.get()->getBeginLoc(),
364              diag::err_overflow_builtin_must_be_ptr_int)
365         << Ty << Arg.get()->getSourceRange();
366       return true;
367     }
368   }
369 
370   // Disallow signed bit-precise integer args larger than 128 bits to mul
371   // function until we improve backend support.
372   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
373     for (unsigned I = 0; I < 3; ++I) {
374       const auto Arg = TheCall->getArg(I);
375       // Third argument will be a pointer.
376       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
377       if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
378           S.getASTContext().getIntWidth(Ty) > 128)
379         return S.Diag(Arg->getBeginLoc(),
380                       diag::err_overflow_builtin_bit_int_max_size)
381                << 128;
382     }
383   }
384 
385   return false;
386 }
387 
388 namespace {
389 struct BuiltinDumpStructGenerator {
390   Sema &S;
391   CallExpr *TheCall;
392   SourceLocation Loc = TheCall->getBeginLoc();
393   SmallVector<Expr *, 32> Actions;
394   DiagnosticErrorTrap ErrorTracker;
395   PrintingPolicy Policy;
396 
397   BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
398       : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
399         Policy(S.Context.getPrintingPolicy()) {
400     Policy.AnonymousTagLocations = false;
401   }
402 
403   Expr *makeOpaqueValueExpr(Expr *Inner) {
404     auto *OVE = new (S.Context)
405         OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
406                         Inner->getObjectKind(), Inner);
407     Actions.push_back(OVE);
408     return OVE;
409   }
410 
411   Expr *getStringLiteral(llvm::StringRef Str) {
412     Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
413     // Wrap the literal in parentheses to attach a source location.
414     return new (S.Context) ParenExpr(Loc, Loc, Lit);
415   }
416 
417   bool callPrintFunction(llvm::StringRef Format,
418                          llvm::ArrayRef<Expr *> Exprs = {}) {
419     SmallVector<Expr *, 8> Args;
420     assert(TheCall->getNumArgs() >= 2);
421     Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
422     Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
423     Args.push_back(getStringLiteral(Format));
424     Args.insert(Args.end(), Exprs.begin(), Exprs.end());
425 
426     // Register a note to explain why we're performing the call.
427     Sema::CodeSynthesisContext Ctx;
428     Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
429     Ctx.PointOfInstantiation = Loc;
430     Ctx.CallArgs = Args.data();
431     Ctx.NumCallArgs = Args.size();
432     S.pushCodeSynthesisContext(Ctx);
433 
434     ExprResult RealCall =
435         S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
436                         TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
437 
438     S.popCodeSynthesisContext();
439     if (!RealCall.isInvalid())
440       Actions.push_back(RealCall.get());
441     // Bail out if we've hit any errors, even if we managed to build the
442     // call. We don't want to produce more than one error.
443     return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
444   }
445 
446   Expr *getIndentString(unsigned Depth) {
447     if (!Depth)
448       return nullptr;
449 
450     llvm::SmallString<32> Indent;
451     Indent.resize(Depth * Policy.Indentation, ' ');
452     return getStringLiteral(Indent);
453   }
454 
455   Expr *getTypeString(QualType T) {
456     return getStringLiteral(T.getAsString(Policy));
457   }
458 
459   bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
460     llvm::raw_svector_ostream OS(Str);
461 
462     // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
463     // than trying to print a single character.
464     if (auto *BT = T->getAs<BuiltinType>()) {
465       switch (BT->getKind()) {
466       case BuiltinType::Bool:
467         OS << "%d";
468         return true;
469       case BuiltinType::Char_U:
470       case BuiltinType::UChar:
471         OS << "%hhu";
472         return true;
473       case BuiltinType::Char_S:
474       case BuiltinType::SChar:
475         OS << "%hhd";
476         return true;
477       default:
478         break;
479       }
480     }
481 
482     analyze_printf::PrintfSpecifier Specifier;
483     if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
484       // We were able to guess how to format this.
485       if (Specifier.getConversionSpecifier().getKind() ==
486           analyze_printf::PrintfConversionSpecifier::sArg) {
487         // Wrap double-quotes around a '%s' specifier and limit its maximum
488         // length. Ideally we'd also somehow escape special characters in the
489         // contents but printf doesn't support that.
490         // FIXME: '%s' formatting is not safe in general.
491         OS << '"';
492         Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
493         Specifier.toString(OS);
494         OS << '"';
495         // FIXME: It would be nice to include a '...' if the string doesn't fit
496         // in the length limit.
497       } else {
498         Specifier.toString(OS);
499       }
500       return true;
501     }
502 
503     if (T->isPointerType()) {
504       // Format all pointers with '%p'.
505       OS << "%p";
506       return true;
507     }
508 
509     return false;
510   }
511 
512   bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
513     Expr *IndentLit = getIndentString(Depth);
514     Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
515     if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
516                   : callPrintFunction("%s", {TypeLit}))
517       return true;
518 
519     return dumpRecordValue(RD, E, IndentLit, Depth);
520   }
521 
522   // Dump a record value. E should be a pointer or lvalue referring to an RD.
523   bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
524                        unsigned Depth) {
525     // FIXME: Decide what to do if RD is a union. At least we should probably
526     // turn off printing `const char*` members with `%s`, because that is very
527     // likely to crash if that's not the active member. Whatever we decide, we
528     // should document it.
529 
530     // Build an OpaqueValueExpr so we can refer to E more than once without
531     // triggering re-evaluation.
532     Expr *RecordArg = makeOpaqueValueExpr(E);
533     bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
534 
535     if (callPrintFunction(" {\n"))
536       return true;
537 
538     // Dump each base class, regardless of whether they're aggregates.
539     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
540       for (const auto &Base : CXXRD->bases()) {
541         QualType BaseType =
542             RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
543                            : S.Context.getLValueReferenceType(Base.getType());
544         ExprResult BasePtr = S.BuildCStyleCastExpr(
545             Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
546             RecordArg);
547         if (BasePtr.isInvalid() ||
548             dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
549                               Depth + 1))
550           return true;
551       }
552     }
553 
554     Expr *FieldIndentArg = getIndentString(Depth + 1);
555 
556     // Dump each field.
557     for (auto *D : RD->decls()) {
558       auto *IFD = dyn_cast<IndirectFieldDecl>(D);
559       auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
560       if (!FD || FD->isUnnamedBitfield() || FD->isAnonymousStructOrUnion())
561         continue;
562 
563       llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
564       llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
565                                            getTypeString(FD->getType()),
566                                            getStringLiteral(FD->getName())};
567 
568       if (FD->isBitField()) {
569         Format += ": %zu ";
570         QualType SizeT = S.Context.getSizeType();
571         llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
572                              FD->getBitWidthValue(S.Context));
573         Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
574       }
575 
576       Format += "=";
577 
578       ExprResult Field =
579           IFD ? S.BuildAnonymousStructUnionMemberReference(
580                     CXXScopeSpec(), Loc, IFD,
581                     DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
582               : S.BuildFieldReferenceExpr(
583                     RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
584                     DeclAccessPair::make(FD, AS_public),
585                     DeclarationNameInfo(FD->getDeclName(), Loc));
586       if (Field.isInvalid())
587         return true;
588 
589       auto *InnerRD = FD->getType()->getAsRecordDecl();
590       auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
591       if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
592         // Recursively print the values of members of aggregate record type.
593         if (callPrintFunction(Format, Args) ||
594             dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
595           return true;
596       } else {
597         Format += " ";
598         if (appendFormatSpecifier(FD->getType(), Format)) {
599           // We know how to print this field.
600           Args.push_back(Field.get());
601         } else {
602           // We don't know how to print this field. Print out its address
603           // with a format specifier that a smart tool will be able to
604           // recognize and treat specially.
605           Format += "*%p";
606           ExprResult FieldAddr =
607               S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
608           if (FieldAddr.isInvalid())
609             return true;
610           Args.push_back(FieldAddr.get());
611         }
612         Format += "\n";
613         if (callPrintFunction(Format, Args))
614           return true;
615       }
616     }
617 
618     return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
619                         : callPrintFunction("}\n");
620   }
621 
622   Expr *buildWrapper() {
623     auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
624                                              PseudoObjectExpr::NoResult);
625     TheCall->setType(Wrapper->getType());
626     TheCall->setValueKind(Wrapper->getValueKind());
627     return Wrapper;
628   }
629 };
630 } // namespace
631 
632 static ExprResult SemaBuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
633   if (checkArgCountAtLeast(S, TheCall, 2))
634     return ExprError();
635 
636   ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
637   if (PtrArgResult.isInvalid())
638     return ExprError();
639   TheCall->setArg(0, PtrArgResult.get());
640 
641   // First argument should be a pointer to a struct.
642   QualType PtrArgType = PtrArgResult.get()->getType();
643   if (!PtrArgType->isPointerType() ||
644       !PtrArgType->getPointeeType()->isRecordType()) {
645     S.Diag(PtrArgResult.get()->getBeginLoc(),
646            diag::err_expected_struct_pointer_argument)
647         << 1 << TheCall->getDirectCallee() << PtrArgType;
648     return ExprError();
649   }
650   const RecordDecl *RD = PtrArgType->getPointeeType()->getAsRecordDecl();
651 
652   // Second argument is a callable, but we can't fully validate it until we try
653   // calling it.
654   QualType FnArgType = TheCall->getArg(1)->getType();
655   if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
656       !FnArgType->isBlockPointerType() &&
657       !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
658     auto *BT = FnArgType->getAs<BuiltinType>();
659     switch (BT ? BT->getKind() : BuiltinType::Void) {
660     case BuiltinType::Dependent:
661     case BuiltinType::Overload:
662     case BuiltinType::BoundMember:
663     case BuiltinType::PseudoObject:
664     case BuiltinType::UnknownAny:
665     case BuiltinType::BuiltinFn:
666       // This might be a callable.
667       break;
668 
669     default:
670       S.Diag(TheCall->getArg(1)->getBeginLoc(),
671              diag::err_expected_callable_argument)
672           << 2 << TheCall->getDirectCallee() << FnArgType;
673       return ExprError();
674     }
675   }
676 
677   BuiltinDumpStructGenerator Generator(S, TheCall);
678 
679   // Wrap parentheses around the given pointer. This is not necessary for
680   // correct code generation, but it means that when we pretty-print the call
681   // arguments in our diagnostics we will produce '(&s)->n' instead of the
682   // incorrect '&s->n'.
683   Expr *PtrArg = PtrArgResult.get();
684   PtrArg = new (S.Context)
685       ParenExpr(PtrArg->getBeginLoc(),
686                 S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
687   if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
688     return ExprError();
689 
690   return Generator.buildWrapper();
691 }
692 
693 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
694   if (checkArgCount(S, BuiltinCall, 2))
695     return true;
696 
697   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
698   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
699   Expr *Call = BuiltinCall->getArg(0);
700   Expr *Chain = BuiltinCall->getArg(1);
701 
702   if (Call->getStmtClass() != Stmt::CallExprClass) {
703     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
704         << Call->getSourceRange();
705     return true;
706   }
707 
708   auto CE = cast<CallExpr>(Call);
709   if (CE->getCallee()->getType()->isBlockPointerType()) {
710     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
711         << Call->getSourceRange();
712     return true;
713   }
714 
715   const Decl *TargetDecl = CE->getCalleeDecl();
716   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
717     if (FD->getBuiltinID()) {
718       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
719           << Call->getSourceRange();
720       return true;
721     }
722 
723   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
724     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
725         << Call->getSourceRange();
726     return true;
727   }
728 
729   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
730   if (ChainResult.isInvalid())
731     return true;
732   if (!ChainResult.get()->getType()->isPointerType()) {
733     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
734         << Chain->getSourceRange();
735     return true;
736   }
737 
738   QualType ReturnTy = CE->getCallReturnType(S.Context);
739   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
740   QualType BuiltinTy = S.Context.getFunctionType(
741       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
742   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
743 
744   Builtin =
745       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
746 
747   BuiltinCall->setType(CE->getType());
748   BuiltinCall->setValueKind(CE->getValueKind());
749   BuiltinCall->setObjectKind(CE->getObjectKind());
750   BuiltinCall->setCallee(Builtin);
751   BuiltinCall->setArg(1, ChainResult.get());
752 
753   return false;
754 }
755 
756 namespace {
757 
758 class ScanfDiagnosticFormatHandler
759     : public analyze_format_string::FormatStringHandler {
760   // Accepts the argument index (relative to the first destination index) of the
761   // argument whose size we want.
762   using ComputeSizeFunction =
763       llvm::function_ref<Optional<llvm::APSInt>(unsigned)>;
764 
765   // Accepts the argument index (relative to the first destination index), the
766   // destination size, and the source size).
767   using DiagnoseFunction =
768       llvm::function_ref<void(unsigned, unsigned, unsigned)>;
769 
770   ComputeSizeFunction ComputeSizeArgument;
771   DiagnoseFunction Diagnose;
772 
773 public:
774   ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
775                                DiagnoseFunction Diagnose)
776       : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
777 
778   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
779                             const char *StartSpecifier,
780                             unsigned specifierLen) override {
781     if (!FS.consumesDataArgument())
782       return true;
783 
784     unsigned NulByte = 0;
785     switch ((FS.getConversionSpecifier().getKind())) {
786     default:
787       return true;
788     case analyze_format_string::ConversionSpecifier::sArg:
789     case analyze_format_string::ConversionSpecifier::ScanListArg:
790       NulByte = 1;
791       break;
792     case analyze_format_string::ConversionSpecifier::cArg:
793       break;
794     }
795 
796     analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
797     if (FW.getHowSpecified() !=
798         analyze_format_string::OptionalAmount::HowSpecified::Constant)
799       return true;
800 
801     unsigned SourceSize = FW.getConstantAmount() + NulByte;
802 
803     Optional<llvm::APSInt> DestSizeAPS = ComputeSizeArgument(FS.getArgIndex());
804     if (!DestSizeAPS)
805       return true;
806 
807     unsigned DestSize = DestSizeAPS->getZExtValue();
808 
809     if (DestSize < SourceSize)
810       Diagnose(FS.getArgIndex(), DestSize, SourceSize);
811 
812     return true;
813   }
814 };
815 
816 class EstimateSizeFormatHandler
817     : public analyze_format_string::FormatStringHandler {
818   size_t Size;
819 
820 public:
821   EstimateSizeFormatHandler(StringRef Format)
822       : Size(std::min(Format.find(0), Format.size()) +
823              1 /* null byte always written by sprintf */) {}
824 
825   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
826                              const char *, unsigned SpecifierLen,
827                              const TargetInfo &) override {
828 
829     const size_t FieldWidth = computeFieldWidth(FS);
830     const size_t Precision = computePrecision(FS);
831 
832     // The actual format.
833     switch (FS.getConversionSpecifier().getKind()) {
834     // Just a char.
835     case analyze_format_string::ConversionSpecifier::cArg:
836     case analyze_format_string::ConversionSpecifier::CArg:
837       Size += std::max(FieldWidth, (size_t)1);
838       break;
839     // Just an integer.
840     case analyze_format_string::ConversionSpecifier::dArg:
841     case analyze_format_string::ConversionSpecifier::DArg:
842     case analyze_format_string::ConversionSpecifier::iArg:
843     case analyze_format_string::ConversionSpecifier::oArg:
844     case analyze_format_string::ConversionSpecifier::OArg:
845     case analyze_format_string::ConversionSpecifier::uArg:
846     case analyze_format_string::ConversionSpecifier::UArg:
847     case analyze_format_string::ConversionSpecifier::xArg:
848     case analyze_format_string::ConversionSpecifier::XArg:
849       Size += std::max(FieldWidth, Precision);
850       break;
851 
852     // %g style conversion switches between %f or %e style dynamically.
853     // %f always takes less space, so default to it.
854     case analyze_format_string::ConversionSpecifier::gArg:
855     case analyze_format_string::ConversionSpecifier::GArg:
856 
857     // Floating point number in the form '[+]ddd.ddd'.
858     case analyze_format_string::ConversionSpecifier::fArg:
859     case analyze_format_string::ConversionSpecifier::FArg:
860       Size += std::max(FieldWidth, 1 /* integer part */ +
861                                        (Precision ? 1 + Precision
862                                                   : 0) /* period + decimal */);
863       break;
864 
865     // Floating point number in the form '[-]d.ddde[+-]dd'.
866     case analyze_format_string::ConversionSpecifier::eArg:
867     case analyze_format_string::ConversionSpecifier::EArg:
868       Size +=
869           std::max(FieldWidth,
870                    1 /* integer part */ +
871                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
872                        1 /* e or E letter */ + 2 /* exponent */);
873       break;
874 
875     // Floating point number in the form '[-]0xh.hhhhp±dd'.
876     case analyze_format_string::ConversionSpecifier::aArg:
877     case analyze_format_string::ConversionSpecifier::AArg:
878       Size +=
879           std::max(FieldWidth,
880                    2 /* 0x */ + 1 /* integer part */ +
881                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
882                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
883       break;
884 
885     // Just a string.
886     case analyze_format_string::ConversionSpecifier::sArg:
887     case analyze_format_string::ConversionSpecifier::SArg:
888       Size += FieldWidth;
889       break;
890 
891     // Just a pointer in the form '0xddd'.
892     case analyze_format_string::ConversionSpecifier::pArg:
893       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
894       break;
895 
896     // A plain percent.
897     case analyze_format_string::ConversionSpecifier::PercentArg:
898       Size += 1;
899       break;
900 
901     default:
902       break;
903     }
904 
905     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
906 
907     if (FS.hasAlternativeForm()) {
908       switch (FS.getConversionSpecifier().getKind()) {
909       default:
910         break;
911       // Force a leading '0'.
912       case analyze_format_string::ConversionSpecifier::oArg:
913         Size += 1;
914         break;
915       // Force a leading '0x'.
916       case analyze_format_string::ConversionSpecifier::xArg:
917       case analyze_format_string::ConversionSpecifier::XArg:
918         Size += 2;
919         break;
920       // Force a period '.' before decimal, even if precision is 0.
921       case analyze_format_string::ConversionSpecifier::aArg:
922       case analyze_format_string::ConversionSpecifier::AArg:
923       case analyze_format_string::ConversionSpecifier::eArg:
924       case analyze_format_string::ConversionSpecifier::EArg:
925       case analyze_format_string::ConversionSpecifier::fArg:
926       case analyze_format_string::ConversionSpecifier::FArg:
927       case analyze_format_string::ConversionSpecifier::gArg:
928       case analyze_format_string::ConversionSpecifier::GArg:
929         Size += (Precision ? 0 : 1);
930         break;
931       }
932     }
933     assert(SpecifierLen <= Size && "no underflow");
934     Size -= SpecifierLen;
935     return true;
936   }
937 
938   size_t getSizeLowerBound() const { return Size; }
939 
940 private:
941   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
942     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
943     size_t FieldWidth = 0;
944     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
945       FieldWidth = FW.getConstantAmount();
946     return FieldWidth;
947   }
948 
949   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
950     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
951     size_t Precision = 0;
952 
953     // See man 3 printf for default precision value based on the specifier.
954     switch (FW.getHowSpecified()) {
955     case analyze_format_string::OptionalAmount::NotSpecified:
956       switch (FS.getConversionSpecifier().getKind()) {
957       default:
958         break;
959       case analyze_format_string::ConversionSpecifier::dArg: // %d
960       case analyze_format_string::ConversionSpecifier::DArg: // %D
961       case analyze_format_string::ConversionSpecifier::iArg: // %i
962         Precision = 1;
963         break;
964       case analyze_format_string::ConversionSpecifier::oArg: // %d
965       case analyze_format_string::ConversionSpecifier::OArg: // %D
966       case analyze_format_string::ConversionSpecifier::uArg: // %d
967       case analyze_format_string::ConversionSpecifier::UArg: // %D
968       case analyze_format_string::ConversionSpecifier::xArg: // %d
969       case analyze_format_string::ConversionSpecifier::XArg: // %D
970         Precision = 1;
971         break;
972       case analyze_format_string::ConversionSpecifier::fArg: // %f
973       case analyze_format_string::ConversionSpecifier::FArg: // %F
974       case analyze_format_string::ConversionSpecifier::eArg: // %e
975       case analyze_format_string::ConversionSpecifier::EArg: // %E
976       case analyze_format_string::ConversionSpecifier::gArg: // %g
977       case analyze_format_string::ConversionSpecifier::GArg: // %G
978         Precision = 6;
979         break;
980       case analyze_format_string::ConversionSpecifier::pArg: // %d
981         Precision = 1;
982         break;
983       }
984       break;
985     case analyze_format_string::OptionalAmount::Constant:
986       Precision = FW.getConstantAmount();
987       break;
988     default:
989       break;
990     }
991     return Precision;
992   }
993 };
994 
995 } // namespace
996 
997 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
998                                                CallExpr *TheCall) {
999   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1000       isConstantEvaluated())
1001     return;
1002 
1003   bool UseDABAttr = false;
1004   const FunctionDecl *UseDecl = FD;
1005 
1006   const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1007   if (DABAttr) {
1008     UseDecl = DABAttr->getFunction();
1009     assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1010     UseDABAttr = true;
1011   }
1012 
1013   unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1014 
1015   if (!BuiltinID)
1016     return;
1017 
1018   const TargetInfo &TI = getASTContext().getTargetInfo();
1019   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1020 
1021   auto TranslateIndex = [&](unsigned Index) -> Optional<unsigned> {
1022     // If we refer to a diagnose_as_builtin attribute, we need to change the
1023     // argument index to refer to the arguments of the called function. Unless
1024     // the index is out of bounds, which presumably means it's a variadic
1025     // function.
1026     if (!UseDABAttr)
1027       return Index;
1028     unsigned DABIndices = DABAttr->argIndices_size();
1029     unsigned NewIndex = Index < DABIndices
1030                             ? DABAttr->argIndices_begin()[Index]
1031                             : Index - DABIndices + FD->getNumParams();
1032     if (NewIndex >= TheCall->getNumArgs())
1033       return llvm::None;
1034     return NewIndex;
1035   };
1036 
1037   auto ComputeExplicitObjectSizeArgument =
1038       [&](unsigned Index) -> Optional<llvm::APSInt> {
1039     Optional<unsigned> IndexOptional = TranslateIndex(Index);
1040     if (!IndexOptional)
1041       return llvm::None;
1042     unsigned NewIndex = *IndexOptional;
1043     Expr::EvalResult Result;
1044     Expr *SizeArg = TheCall->getArg(NewIndex);
1045     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1046       return llvm::None;
1047     llvm::APSInt Integer = Result.Val.getInt();
1048     Integer.setIsUnsigned(true);
1049     return Integer;
1050   };
1051 
1052   auto ComputeSizeArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
1053     // If the parameter has a pass_object_size attribute, then we should use its
1054     // (potentially) more strict checking mode. Otherwise, conservatively assume
1055     // type 0.
1056     int BOSType = 0;
1057     // This check can fail for variadic functions.
1058     if (Index < FD->getNumParams()) {
1059       if (const auto *POS =
1060               FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1061         BOSType = POS->getType();
1062     }
1063 
1064     Optional<unsigned> IndexOptional = TranslateIndex(Index);
1065     if (!IndexOptional)
1066       return llvm::None;
1067     unsigned NewIndex = *IndexOptional;
1068 
1069     const Expr *ObjArg = TheCall->getArg(NewIndex);
1070     uint64_t Result;
1071     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1072       return llvm::None;
1073 
1074     // Get the object size in the target's size_t width.
1075     return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1076   };
1077 
1078   auto ComputeStrLenArgument = [&](unsigned Index) -> Optional<llvm::APSInt> {
1079     Optional<unsigned> IndexOptional = TranslateIndex(Index);
1080     if (!IndexOptional)
1081       return llvm::None;
1082     unsigned NewIndex = *IndexOptional;
1083 
1084     const Expr *ObjArg = TheCall->getArg(NewIndex);
1085     uint64_t Result;
1086     if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1087       return llvm::None;
1088     // Add 1 for null byte.
1089     return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1090   };
1091 
1092   Optional<llvm::APSInt> SourceSize;
1093   Optional<llvm::APSInt> DestinationSize;
1094   unsigned DiagID = 0;
1095   bool IsChkVariant = false;
1096 
1097   auto GetFunctionName = [&]() {
1098     StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1099     // Skim off the details of whichever builtin was called to produce a better
1100     // diagnostic, as it's unlikely that the user wrote the __builtin
1101     // explicitly.
1102     if (IsChkVariant) {
1103       FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1104       FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1105     } else if (FunctionName.startswith("__builtin_")) {
1106       FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
1107     }
1108     return FunctionName;
1109   };
1110 
1111   switch (BuiltinID) {
1112   default:
1113     return;
1114   case Builtin::BI__builtin_strcpy:
1115   case Builtin::BIstrcpy: {
1116     DiagID = diag::warn_fortify_strlen_overflow;
1117     SourceSize = ComputeStrLenArgument(1);
1118     DestinationSize = ComputeSizeArgument(0);
1119     break;
1120   }
1121 
1122   case Builtin::BI__builtin___strcpy_chk: {
1123     DiagID = diag::warn_fortify_strlen_overflow;
1124     SourceSize = ComputeStrLenArgument(1);
1125     DestinationSize = ComputeExplicitObjectSizeArgument(2);
1126     IsChkVariant = true;
1127     break;
1128   }
1129 
1130   case Builtin::BIscanf:
1131   case Builtin::BIfscanf:
1132   case Builtin::BIsscanf: {
1133     unsigned FormatIndex = 1;
1134     unsigned DataIndex = 2;
1135     if (BuiltinID == Builtin::BIscanf) {
1136       FormatIndex = 0;
1137       DataIndex = 1;
1138     }
1139 
1140     const auto *FormatExpr =
1141         TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1142 
1143     const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1144     if (!Format)
1145       return;
1146 
1147     if (!Format->isOrdinary() && !Format->isUTF8())
1148       return;
1149 
1150     auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1151                         unsigned SourceSize) {
1152       DiagID = diag::warn_fortify_scanf_overflow;
1153       unsigned Index = ArgIndex + DataIndex;
1154       StringRef FunctionName = GetFunctionName();
1155       DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1156                           PDiag(DiagID) << FunctionName << (Index + 1)
1157                                         << DestSize << SourceSize);
1158     };
1159 
1160     StringRef FormatStrRef = Format->getString();
1161     auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1162       return ComputeSizeArgument(Index + DataIndex);
1163     };
1164     ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1165     const char *FormatBytes = FormatStrRef.data();
1166     const ConstantArrayType *T =
1167         Context.getAsConstantArrayType(Format->getType());
1168     assert(T && "String literal not of constant array type!");
1169     size_t TypeSize = T->getSize().getZExtValue();
1170 
1171     // In case there's a null byte somewhere.
1172     size_t StrLen =
1173         std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1174 
1175     analyze_format_string::ParseScanfString(H, FormatBytes,
1176                                             FormatBytes + StrLen, getLangOpts(),
1177                                             Context.getTargetInfo());
1178 
1179     // Unlike the other cases, in this one we have already issued the diagnostic
1180     // here, so no need to continue (because unlike the other cases, here the
1181     // diagnostic refers to the argument number).
1182     return;
1183   }
1184 
1185   case Builtin::BIsprintf:
1186   case Builtin::BI__builtin___sprintf_chk: {
1187     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1188     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1189 
1190     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
1191 
1192       if (!Format->isOrdinary() && !Format->isUTF8())
1193         return;
1194 
1195       StringRef FormatStrRef = Format->getString();
1196       EstimateSizeFormatHandler H(FormatStrRef);
1197       const char *FormatBytes = FormatStrRef.data();
1198       const ConstantArrayType *T =
1199           Context.getAsConstantArrayType(Format->getType());
1200       assert(T && "String literal not of constant array type!");
1201       size_t TypeSize = T->getSize().getZExtValue();
1202 
1203       // In case there's a null byte somewhere.
1204       size_t StrLen =
1205           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1206       if (!analyze_format_string::ParsePrintfString(
1207               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1208               Context.getTargetInfo(), false)) {
1209         DiagID = diag::warn_fortify_source_format_overflow;
1210         SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1211                          .extOrTrunc(SizeTypeWidth);
1212         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1213           DestinationSize = ComputeExplicitObjectSizeArgument(2);
1214           IsChkVariant = true;
1215         } else {
1216           DestinationSize = ComputeSizeArgument(0);
1217         }
1218         break;
1219       }
1220     }
1221     return;
1222   }
1223   case Builtin::BI__builtin___memcpy_chk:
1224   case Builtin::BI__builtin___memmove_chk:
1225   case Builtin::BI__builtin___memset_chk:
1226   case Builtin::BI__builtin___strlcat_chk:
1227   case Builtin::BI__builtin___strlcpy_chk:
1228   case Builtin::BI__builtin___strncat_chk:
1229   case Builtin::BI__builtin___strncpy_chk:
1230   case Builtin::BI__builtin___stpncpy_chk:
1231   case Builtin::BI__builtin___memccpy_chk:
1232   case Builtin::BI__builtin___mempcpy_chk: {
1233     DiagID = diag::warn_builtin_chk_overflow;
1234     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1235     DestinationSize =
1236         ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1237     IsChkVariant = true;
1238     break;
1239   }
1240 
1241   case Builtin::BI__builtin___snprintf_chk:
1242   case Builtin::BI__builtin___vsnprintf_chk: {
1243     DiagID = diag::warn_builtin_chk_overflow;
1244     SourceSize = ComputeExplicitObjectSizeArgument(1);
1245     DestinationSize = ComputeExplicitObjectSizeArgument(3);
1246     IsChkVariant = true;
1247     break;
1248   }
1249 
1250   case Builtin::BIstrncat:
1251   case Builtin::BI__builtin_strncat:
1252   case Builtin::BIstrncpy:
1253   case Builtin::BI__builtin_strncpy:
1254   case Builtin::BIstpncpy:
1255   case Builtin::BI__builtin_stpncpy: {
1256     // Whether these functions overflow depends on the runtime strlen of the
1257     // string, not just the buffer size, so emitting the "always overflow"
1258     // diagnostic isn't quite right. We should still diagnose passing a buffer
1259     // size larger than the destination buffer though; this is a runtime abort
1260     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1261     DiagID = diag::warn_fortify_source_size_mismatch;
1262     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1263     DestinationSize = ComputeSizeArgument(0);
1264     break;
1265   }
1266 
1267   case Builtin::BImemcpy:
1268   case Builtin::BI__builtin_memcpy:
1269   case Builtin::BImemmove:
1270   case Builtin::BI__builtin_memmove:
1271   case Builtin::BImemset:
1272   case Builtin::BI__builtin_memset:
1273   case Builtin::BImempcpy:
1274   case Builtin::BI__builtin_mempcpy: {
1275     DiagID = diag::warn_fortify_source_overflow;
1276     SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1277     DestinationSize = ComputeSizeArgument(0);
1278     break;
1279   }
1280   case Builtin::BIsnprintf:
1281   case Builtin::BI__builtin_snprintf:
1282   case Builtin::BIvsnprintf:
1283   case Builtin::BI__builtin_vsnprintf: {
1284     DiagID = diag::warn_fortify_source_size_mismatch;
1285     SourceSize = ComputeExplicitObjectSizeArgument(1);
1286     DestinationSize = ComputeSizeArgument(0);
1287     break;
1288   }
1289   }
1290 
1291   if (!SourceSize || !DestinationSize ||
1292       llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1293     return;
1294 
1295   StringRef FunctionName = GetFunctionName();
1296 
1297   SmallString<16> DestinationStr;
1298   SmallString<16> SourceStr;
1299   DestinationSize->toString(DestinationStr, /*Radix=*/10);
1300   SourceSize->toString(SourceStr, /*Radix=*/10);
1301   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1302                       PDiag(DiagID)
1303                           << FunctionName << DestinationStr << SourceStr);
1304 }
1305 
1306 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1307                                      Scope::ScopeFlags NeededScopeFlags,
1308                                      unsigned DiagID) {
1309   // Scopes aren't available during instantiation. Fortunately, builtin
1310   // functions cannot be template args so they cannot be formed through template
1311   // instantiation. Therefore checking once during the parse is sufficient.
1312   if (SemaRef.inTemplateInstantiation())
1313     return false;
1314 
1315   Scope *S = SemaRef.getCurScope();
1316   while (S && !S->isSEHExceptScope())
1317     S = S->getParent();
1318   if (!S || !(S->getFlags() & NeededScopeFlags)) {
1319     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1320     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1321         << DRE->getDecl()->getIdentifier();
1322     return true;
1323   }
1324 
1325   return false;
1326 }
1327 
1328 static inline bool isBlockPointer(Expr *Arg) {
1329   return Arg->getType()->isBlockPointerType();
1330 }
1331 
1332 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
1333 /// void*, which is a requirement of device side enqueue.
1334 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
1335   const BlockPointerType *BPT =
1336       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1337   ArrayRef<QualType> Params =
1338       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
1339   unsigned ArgCounter = 0;
1340   bool IllegalParams = false;
1341   // Iterate through the block parameters until either one is found that is not
1342   // a local void*, or the block is valid.
1343   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
1344        I != E; ++I, ++ArgCounter) {
1345     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
1346         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
1347             LangAS::opencl_local) {
1348       // Get the location of the error. If a block literal has been passed
1349       // (BlockExpr) then we can point straight to the offending argument,
1350       // else we just point to the variable reference.
1351       SourceLocation ErrorLoc;
1352       if (isa<BlockExpr>(BlockArg)) {
1353         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
1354         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
1355       } else if (isa<DeclRefExpr>(BlockArg)) {
1356         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
1357       }
1358       S.Diag(ErrorLoc,
1359              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
1360       IllegalParams = true;
1361     }
1362   }
1363 
1364   return IllegalParams;
1365 }
1366 
1367 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
1368   // OpenCL device can support extension but not the feature as extension
1369   // requires subgroup independent forward progress, but subgroup independent
1370   // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature.
1371   if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts()) &&
1372       !S.getOpenCLOptions().isSupported("__opencl_c_subgroups",
1373                                         S.getLangOpts())) {
1374     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
1375         << 1 << Call->getDirectCallee()
1376         << "cl_khr_subgroups or __opencl_c_subgroups";
1377     return true;
1378   }
1379   return false;
1380 }
1381 
1382 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
1383   if (checkArgCount(S, TheCall, 2))
1384     return true;
1385 
1386   if (checkOpenCLSubgroupExt(S, TheCall))
1387     return true;
1388 
1389   // First argument is an ndrange_t type.
1390   Expr *NDRangeArg = TheCall->getArg(0);
1391   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1392     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1393         << TheCall->getDirectCallee() << "'ndrange_t'";
1394     return true;
1395   }
1396 
1397   Expr *BlockArg = TheCall->getArg(1);
1398   if (!isBlockPointer(BlockArg)) {
1399     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1400         << TheCall->getDirectCallee() << "block";
1401     return true;
1402   }
1403   return checkOpenCLBlockArgs(S, BlockArg);
1404 }
1405 
1406 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1407 /// get_kernel_work_group_size
1408 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
1409 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1410   if (checkArgCount(S, TheCall, 1))
1411     return true;
1412 
1413   Expr *BlockArg = TheCall->getArg(0);
1414   if (!isBlockPointer(BlockArg)) {
1415     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1416         << TheCall->getDirectCallee() << "block";
1417     return true;
1418   }
1419   return checkOpenCLBlockArgs(S, BlockArg);
1420 }
1421 
1422 /// Diagnose integer type and any valid implicit conversion to it.
1423 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1424                                       const QualType &IntType);
1425 
1426 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1427                                             unsigned Start, unsigned End) {
1428   bool IllegalParams = false;
1429   for (unsigned I = Start; I <= End; ++I)
1430     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1431                                               S.Context.getSizeType());
1432   return IllegalParams;
1433 }
1434 
1435 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1436 /// 'local void*' parameter of passed block.
1437 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1438                                            Expr *BlockArg,
1439                                            unsigned NumNonVarArgs) {
1440   const BlockPointerType *BPT =
1441       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1442   unsigned NumBlockParams =
1443       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1444   unsigned TotalNumArgs = TheCall->getNumArgs();
1445 
1446   // For each argument passed to the block, a corresponding uint needs to
1447   // be passed to describe the size of the local memory.
1448   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1449     S.Diag(TheCall->getBeginLoc(),
1450            diag::err_opencl_enqueue_kernel_local_size_args);
1451     return true;
1452   }
1453 
1454   // Check that the sizes of the local memory are specified by integers.
1455   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1456                                          TotalNumArgs - 1);
1457 }
1458 
1459 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1460 /// overload formats specified in Table 6.13.17.1.
1461 /// int enqueue_kernel(queue_t queue,
1462 ///                    kernel_enqueue_flags_t flags,
1463 ///                    const ndrange_t ndrange,
1464 ///                    void (^block)(void))
1465 /// int enqueue_kernel(queue_t queue,
1466 ///                    kernel_enqueue_flags_t flags,
1467 ///                    const ndrange_t ndrange,
1468 ///                    uint num_events_in_wait_list,
1469 ///                    clk_event_t *event_wait_list,
1470 ///                    clk_event_t *event_ret,
1471 ///                    void (^block)(void))
1472 /// int enqueue_kernel(queue_t queue,
1473 ///                    kernel_enqueue_flags_t flags,
1474 ///                    const ndrange_t ndrange,
1475 ///                    void (^block)(local void*, ...),
1476 ///                    uint size0, ...)
1477 /// int enqueue_kernel(queue_t queue,
1478 ///                    kernel_enqueue_flags_t flags,
1479 ///                    const ndrange_t ndrange,
1480 ///                    uint num_events_in_wait_list,
1481 ///                    clk_event_t *event_wait_list,
1482 ///                    clk_event_t *event_ret,
1483 ///                    void (^block)(local void*, ...),
1484 ///                    uint size0, ...)
1485 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1486   unsigned NumArgs = TheCall->getNumArgs();
1487 
1488   if (NumArgs < 4) {
1489     S.Diag(TheCall->getBeginLoc(),
1490            diag::err_typecheck_call_too_few_args_at_least)
1491         << 0 << 4 << NumArgs;
1492     return true;
1493   }
1494 
1495   Expr *Arg0 = TheCall->getArg(0);
1496   Expr *Arg1 = TheCall->getArg(1);
1497   Expr *Arg2 = TheCall->getArg(2);
1498   Expr *Arg3 = TheCall->getArg(3);
1499 
1500   // First argument always needs to be a queue_t type.
1501   if (!Arg0->getType()->isQueueT()) {
1502     S.Diag(TheCall->getArg(0)->getBeginLoc(),
1503            diag::err_opencl_builtin_expected_type)
1504         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1505     return true;
1506   }
1507 
1508   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1509   if (!Arg1->getType()->isIntegerType()) {
1510     S.Diag(TheCall->getArg(1)->getBeginLoc(),
1511            diag::err_opencl_builtin_expected_type)
1512         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1513     return true;
1514   }
1515 
1516   // Third argument is always an ndrange_t type.
1517   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1518     S.Diag(TheCall->getArg(2)->getBeginLoc(),
1519            diag::err_opencl_builtin_expected_type)
1520         << TheCall->getDirectCallee() << "'ndrange_t'";
1521     return true;
1522   }
1523 
1524   // With four arguments, there is only one form that the function could be
1525   // called in: no events and no variable arguments.
1526   if (NumArgs == 4) {
1527     // check that the last argument is the right block type.
1528     if (!isBlockPointer(Arg3)) {
1529       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1530           << TheCall->getDirectCallee() << "block";
1531       return true;
1532     }
1533     // we have a block type, check the prototype
1534     const BlockPointerType *BPT =
1535         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1536     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1537       S.Diag(Arg3->getBeginLoc(),
1538              diag::err_opencl_enqueue_kernel_blocks_no_args);
1539       return true;
1540     }
1541     return false;
1542   }
1543   // we can have block + varargs.
1544   if (isBlockPointer(Arg3))
1545     return (checkOpenCLBlockArgs(S, Arg3) ||
1546             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1547   // last two cases with either exactly 7 args or 7 args and varargs.
1548   if (NumArgs >= 7) {
1549     // check common block argument.
1550     Expr *Arg6 = TheCall->getArg(6);
1551     if (!isBlockPointer(Arg6)) {
1552       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1553           << TheCall->getDirectCallee() << "block";
1554       return true;
1555     }
1556     if (checkOpenCLBlockArgs(S, Arg6))
1557       return true;
1558 
1559     // Forth argument has to be any integer type.
1560     if (!Arg3->getType()->isIntegerType()) {
1561       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1562              diag::err_opencl_builtin_expected_type)
1563           << TheCall->getDirectCallee() << "integer";
1564       return true;
1565     }
1566     // check remaining common arguments.
1567     Expr *Arg4 = TheCall->getArg(4);
1568     Expr *Arg5 = TheCall->getArg(5);
1569 
1570     // Fifth argument is always passed as a pointer to clk_event_t.
1571     if (!Arg4->isNullPointerConstant(S.Context,
1572                                      Expr::NPC_ValueDependentIsNotNull) &&
1573         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1574       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1575              diag::err_opencl_builtin_expected_type)
1576           << TheCall->getDirectCallee()
1577           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1578       return true;
1579     }
1580 
1581     // Sixth argument is always passed as a pointer to clk_event_t.
1582     if (!Arg5->isNullPointerConstant(S.Context,
1583                                      Expr::NPC_ValueDependentIsNotNull) &&
1584         !(Arg5->getType()->isPointerType() &&
1585           Arg5->getType()->getPointeeType()->isClkEventT())) {
1586       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1587              diag::err_opencl_builtin_expected_type)
1588           << TheCall->getDirectCallee()
1589           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1590       return true;
1591     }
1592 
1593     if (NumArgs == 7)
1594       return false;
1595 
1596     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1597   }
1598 
1599   // None of the specific case has been detected, give generic error
1600   S.Diag(TheCall->getBeginLoc(),
1601          diag::err_opencl_enqueue_kernel_incorrect_args);
1602   return true;
1603 }
1604 
1605 /// Returns OpenCL access qual.
1606 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1607     return D->getAttr<OpenCLAccessAttr>();
1608 }
1609 
1610 /// Returns true if pipe element type is different from the pointer.
1611 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1612   const Expr *Arg0 = Call->getArg(0);
1613   // First argument type should always be pipe.
1614   if (!Arg0->getType()->isPipeType()) {
1615     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1616         << Call->getDirectCallee() << Arg0->getSourceRange();
1617     return true;
1618   }
1619   OpenCLAccessAttr *AccessQual =
1620       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1621   // Validates the access qualifier is compatible with the call.
1622   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1623   // read_only and write_only, and assumed to be read_only if no qualifier is
1624   // specified.
1625   switch (Call->getDirectCallee()->getBuiltinID()) {
1626   case Builtin::BIread_pipe:
1627   case Builtin::BIreserve_read_pipe:
1628   case Builtin::BIcommit_read_pipe:
1629   case Builtin::BIwork_group_reserve_read_pipe:
1630   case Builtin::BIsub_group_reserve_read_pipe:
1631   case Builtin::BIwork_group_commit_read_pipe:
1632   case Builtin::BIsub_group_commit_read_pipe:
1633     if (!(!AccessQual || AccessQual->isReadOnly())) {
1634       S.Diag(Arg0->getBeginLoc(),
1635              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1636           << "read_only" << Arg0->getSourceRange();
1637       return true;
1638     }
1639     break;
1640   case Builtin::BIwrite_pipe:
1641   case Builtin::BIreserve_write_pipe:
1642   case Builtin::BIcommit_write_pipe:
1643   case Builtin::BIwork_group_reserve_write_pipe:
1644   case Builtin::BIsub_group_reserve_write_pipe:
1645   case Builtin::BIwork_group_commit_write_pipe:
1646   case Builtin::BIsub_group_commit_write_pipe:
1647     if (!(AccessQual && AccessQual->isWriteOnly())) {
1648       S.Diag(Arg0->getBeginLoc(),
1649              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1650           << "write_only" << Arg0->getSourceRange();
1651       return true;
1652     }
1653     break;
1654   default:
1655     break;
1656   }
1657   return false;
1658 }
1659 
1660 /// Returns true if pipe element type is different from the pointer.
1661 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1662   const Expr *Arg0 = Call->getArg(0);
1663   const Expr *ArgIdx = Call->getArg(Idx);
1664   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1665   const QualType EltTy = PipeTy->getElementType();
1666   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1667   // The Idx argument should be a pointer and the type of the pointer and
1668   // the type of pipe element should also be the same.
1669   if (!ArgTy ||
1670       !S.Context.hasSameType(
1671           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1672     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1673         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1674         << ArgIdx->getType() << ArgIdx->getSourceRange();
1675     return true;
1676   }
1677   return false;
1678 }
1679 
1680 // Performs semantic analysis for the read/write_pipe call.
1681 // \param S Reference to the semantic analyzer.
1682 // \param Call A pointer to the builtin call.
1683 // \return True if a semantic error has been found, false otherwise.
1684 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1685   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1686   // functions have two forms.
1687   switch (Call->getNumArgs()) {
1688   case 2:
1689     if (checkOpenCLPipeArg(S, Call))
1690       return true;
1691     // The call with 2 arguments should be
1692     // read/write_pipe(pipe T, T*).
1693     // Check packet type T.
1694     if (checkOpenCLPipePacketType(S, Call, 1))
1695       return true;
1696     break;
1697 
1698   case 4: {
1699     if (checkOpenCLPipeArg(S, Call))
1700       return true;
1701     // The call with 4 arguments should be
1702     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1703     // Check reserve_id_t.
1704     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1705       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1706           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1707           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1708       return true;
1709     }
1710 
1711     // Check the index.
1712     const Expr *Arg2 = Call->getArg(2);
1713     if (!Arg2->getType()->isIntegerType() &&
1714         !Arg2->getType()->isUnsignedIntegerType()) {
1715       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1716           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1717           << Arg2->getType() << Arg2->getSourceRange();
1718       return true;
1719     }
1720 
1721     // Check packet type T.
1722     if (checkOpenCLPipePacketType(S, Call, 3))
1723       return true;
1724   } break;
1725   default:
1726     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1727         << Call->getDirectCallee() << Call->getSourceRange();
1728     return true;
1729   }
1730 
1731   return false;
1732 }
1733 
1734 // Performs a semantic analysis on the {work_group_/sub_group_
1735 //        /_}reserve_{read/write}_pipe
1736 // \param S Reference to the semantic analyzer.
1737 // \param Call The call to the builtin function to be analyzed.
1738 // \return True if a semantic error was found, false otherwise.
1739 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1740   if (checkArgCount(S, Call, 2))
1741     return true;
1742 
1743   if (checkOpenCLPipeArg(S, Call))
1744     return true;
1745 
1746   // Check the reserve size.
1747   if (!Call->getArg(1)->getType()->isIntegerType() &&
1748       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1749     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1750         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1751         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1752     return true;
1753   }
1754 
1755   // Since return type of reserve_read/write_pipe built-in function is
1756   // reserve_id_t, which is not defined in the builtin def file , we used int
1757   // as return type and need to override the return type of these functions.
1758   Call->setType(S.Context.OCLReserveIDTy);
1759 
1760   return false;
1761 }
1762 
1763 // Performs a semantic analysis on {work_group_/sub_group_
1764 //        /_}commit_{read/write}_pipe
1765 // \param S Reference to the semantic analyzer.
1766 // \param Call The call to the builtin function to be analyzed.
1767 // \return True if a semantic error was found, false otherwise.
1768 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1769   if (checkArgCount(S, Call, 2))
1770     return true;
1771 
1772   if (checkOpenCLPipeArg(S, Call))
1773     return true;
1774 
1775   // Check reserve_id_t.
1776   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1777     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1778         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1779         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1780     return true;
1781   }
1782 
1783   return false;
1784 }
1785 
1786 // Performs a semantic analysis on the call to built-in Pipe
1787 //        Query Functions.
1788 // \param S Reference to the semantic analyzer.
1789 // \param Call The call to the builtin function to be analyzed.
1790 // \return True if a semantic error was found, false otherwise.
1791 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1792   if (checkArgCount(S, Call, 1))
1793     return true;
1794 
1795   if (!Call->getArg(0)->getType()->isPipeType()) {
1796     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1797         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1798     return true;
1799   }
1800 
1801   return false;
1802 }
1803 
1804 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1805 // Performs semantic analysis for the to_global/local/private call.
1806 // \param S Reference to the semantic analyzer.
1807 // \param BuiltinID ID of the builtin function.
1808 // \param Call A pointer to the builtin call.
1809 // \return True if a semantic error has been found, false otherwise.
1810 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1811                                     CallExpr *Call) {
1812   if (checkArgCount(S, Call, 1))
1813     return true;
1814 
1815   auto RT = Call->getArg(0)->getType();
1816   if (!RT->isPointerType() || RT->getPointeeType()
1817       .getAddressSpace() == LangAS::opencl_constant) {
1818     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1819         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1820     return true;
1821   }
1822 
1823   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1824     S.Diag(Call->getArg(0)->getBeginLoc(),
1825            diag::warn_opencl_generic_address_space_arg)
1826         << Call->getDirectCallee()->getNameInfo().getAsString()
1827         << Call->getArg(0)->getSourceRange();
1828   }
1829 
1830   RT = RT->getPointeeType();
1831   auto Qual = RT.getQualifiers();
1832   switch (BuiltinID) {
1833   case Builtin::BIto_global:
1834     Qual.setAddressSpace(LangAS::opencl_global);
1835     break;
1836   case Builtin::BIto_local:
1837     Qual.setAddressSpace(LangAS::opencl_local);
1838     break;
1839   case Builtin::BIto_private:
1840     Qual.setAddressSpace(LangAS::opencl_private);
1841     break;
1842   default:
1843     llvm_unreachable("Invalid builtin function");
1844   }
1845   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1846       RT.getUnqualifiedType(), Qual)));
1847 
1848   return false;
1849 }
1850 
1851 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1852   if (checkArgCount(S, TheCall, 1))
1853     return ExprError();
1854 
1855   // Compute __builtin_launder's parameter type from the argument.
1856   // The parameter type is:
1857   //  * The type of the argument if it's not an array or function type,
1858   //  Otherwise,
1859   //  * The decayed argument type.
1860   QualType ParamTy = [&]() {
1861     QualType ArgTy = TheCall->getArg(0)->getType();
1862     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1863       return S.Context.getPointerType(Ty->getElementType());
1864     if (ArgTy->isFunctionType()) {
1865       return S.Context.getPointerType(ArgTy);
1866     }
1867     return ArgTy;
1868   }();
1869 
1870   TheCall->setType(ParamTy);
1871 
1872   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1873     if (!ParamTy->isPointerType())
1874       return 0;
1875     if (ParamTy->isFunctionPointerType())
1876       return 1;
1877     if (ParamTy->isVoidPointerType())
1878       return 2;
1879     return llvm::Optional<unsigned>{};
1880   }();
1881   if (DiagSelect) {
1882     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1883         << DiagSelect.value() << TheCall->getSourceRange();
1884     return ExprError();
1885   }
1886 
1887   // We either have an incomplete class type, or we have a class template
1888   // whose instantiation has not been forced. Example:
1889   //
1890   //   template <class T> struct Foo { T value; };
1891   //   Foo<int> *p = nullptr;
1892   //   auto *d = __builtin_launder(p);
1893   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1894                             diag::err_incomplete_type))
1895     return ExprError();
1896 
1897   assert(ParamTy->getPointeeType()->isObjectType() &&
1898          "Unhandled non-object pointer case");
1899 
1900   InitializedEntity Entity =
1901       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1902   ExprResult Arg =
1903       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1904   if (Arg.isInvalid())
1905     return ExprError();
1906   TheCall->setArg(0, Arg.get());
1907 
1908   return TheCall;
1909 }
1910 
1911 // Emit an error and return true if the current object format type is in the
1912 // list of unsupported types.
1913 static bool CheckBuiltinTargetNotInUnsupported(
1914     Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1915     ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
1916   llvm::Triple::ObjectFormatType CurObjFormat =
1917       S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
1918   if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
1919     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1920         << TheCall->getSourceRange();
1921     return true;
1922   }
1923   return false;
1924 }
1925 
1926 // Emit an error and return true if the current architecture is not in the list
1927 // of supported architectures.
1928 static bool
1929 CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1930                               ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1931   llvm::Triple::ArchType CurArch =
1932       S.getASTContext().getTargetInfo().getTriple().getArch();
1933   if (llvm::is_contained(SupportedArchs, CurArch))
1934     return false;
1935   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1936       << TheCall->getSourceRange();
1937   return true;
1938 }
1939 
1940 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1941                                  SourceLocation CallSiteLoc);
1942 
1943 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1944                                       CallExpr *TheCall) {
1945   switch (TI.getTriple().getArch()) {
1946   default:
1947     // Some builtins don't require additional checking, so just consider these
1948     // acceptable.
1949     return false;
1950   case llvm::Triple::arm:
1951   case llvm::Triple::armeb:
1952   case llvm::Triple::thumb:
1953   case llvm::Triple::thumbeb:
1954     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1955   case llvm::Triple::aarch64:
1956   case llvm::Triple::aarch64_32:
1957   case llvm::Triple::aarch64_be:
1958     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1959   case llvm::Triple::bpfeb:
1960   case llvm::Triple::bpfel:
1961     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1962   case llvm::Triple::hexagon:
1963     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1964   case llvm::Triple::mips:
1965   case llvm::Triple::mipsel:
1966   case llvm::Triple::mips64:
1967   case llvm::Triple::mips64el:
1968     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1969   case llvm::Triple::systemz:
1970     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1971   case llvm::Triple::x86:
1972   case llvm::Triple::x86_64:
1973     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1974   case llvm::Triple::ppc:
1975   case llvm::Triple::ppcle:
1976   case llvm::Triple::ppc64:
1977   case llvm::Triple::ppc64le:
1978     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1979   case llvm::Triple::amdgcn:
1980     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1981   case llvm::Triple::riscv32:
1982   case llvm::Triple::riscv64:
1983     return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
1984   }
1985 }
1986 
1987 ExprResult
1988 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1989                                CallExpr *TheCall) {
1990   ExprResult TheCallResult(TheCall);
1991 
1992   // Find out if any arguments are required to be integer constant expressions.
1993   unsigned ICEArguments = 0;
1994   ASTContext::GetBuiltinTypeError Error;
1995   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1996   if (Error != ASTContext::GE_None)
1997     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1998 
1999   // If any arguments are required to be ICE's, check and diagnose.
2000   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2001     // Skip arguments not required to be ICE's.
2002     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2003 
2004     llvm::APSInt Result;
2005     // If we don't have enough arguments, continue so we can issue better
2006     // diagnostic in checkArgCount(...)
2007     if (ArgNo < TheCall->getNumArgs() &&
2008         SemaBuiltinConstantArg(TheCall, ArgNo, Result))
2009       return true;
2010     ICEArguments &= ~(1 << ArgNo);
2011   }
2012 
2013   switch (BuiltinID) {
2014   case Builtin::BI__builtin___CFStringMakeConstantString:
2015     // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2016     // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2017     if (CheckBuiltinTargetNotInUnsupported(
2018             *this, BuiltinID, TheCall,
2019             {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2020       return ExprError();
2021     assert(TheCall->getNumArgs() == 1 &&
2022            "Wrong # arguments to builtin CFStringMakeConstantString");
2023     if (CheckObjCString(TheCall->getArg(0)))
2024       return ExprError();
2025     break;
2026   case Builtin::BI__builtin_ms_va_start:
2027   case Builtin::BI__builtin_stdarg_start:
2028   case Builtin::BI__builtin_va_start:
2029     if (SemaBuiltinVAStart(BuiltinID, TheCall))
2030       return ExprError();
2031     break;
2032   case Builtin::BI__va_start: {
2033     switch (Context.getTargetInfo().getTriple().getArch()) {
2034     case llvm::Triple::aarch64:
2035     case llvm::Triple::arm:
2036     case llvm::Triple::thumb:
2037       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
2038         return ExprError();
2039       break;
2040     default:
2041       if (SemaBuiltinVAStart(BuiltinID, TheCall))
2042         return ExprError();
2043       break;
2044     }
2045     break;
2046   }
2047 
2048   // The acquire, release, and no fence variants are ARM and AArch64 only.
2049   case Builtin::BI_interlockedbittestandset_acq:
2050   case Builtin::BI_interlockedbittestandset_rel:
2051   case Builtin::BI_interlockedbittestandset_nf:
2052   case Builtin::BI_interlockedbittestandreset_acq:
2053   case Builtin::BI_interlockedbittestandreset_rel:
2054   case Builtin::BI_interlockedbittestandreset_nf:
2055     if (CheckBuiltinTargetInSupported(
2056             *this, BuiltinID, TheCall,
2057             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2058       return ExprError();
2059     break;
2060 
2061   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2062   case Builtin::BI_bittest64:
2063   case Builtin::BI_bittestandcomplement64:
2064   case Builtin::BI_bittestandreset64:
2065   case Builtin::BI_bittestandset64:
2066   case Builtin::BI_interlockedbittestandreset64:
2067   case Builtin::BI_interlockedbittestandset64:
2068     if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
2069                                       {llvm::Triple::x86_64, llvm::Triple::arm,
2070                                        llvm::Triple::thumb,
2071                                        llvm::Triple::aarch64}))
2072       return ExprError();
2073     break;
2074 
2075   case Builtin::BI__builtin_isgreater:
2076   case Builtin::BI__builtin_isgreaterequal:
2077   case Builtin::BI__builtin_isless:
2078   case Builtin::BI__builtin_islessequal:
2079   case Builtin::BI__builtin_islessgreater:
2080   case Builtin::BI__builtin_isunordered:
2081     if (SemaBuiltinUnorderedCompare(TheCall))
2082       return ExprError();
2083     break;
2084   case Builtin::BI__builtin_fpclassify:
2085     if (SemaBuiltinFPClassification(TheCall, 6))
2086       return ExprError();
2087     break;
2088   case Builtin::BI__builtin_isfinite:
2089   case Builtin::BI__builtin_isinf:
2090   case Builtin::BI__builtin_isinf_sign:
2091   case Builtin::BI__builtin_isnan:
2092   case Builtin::BI__builtin_isnormal:
2093   case Builtin::BI__builtin_signbit:
2094   case Builtin::BI__builtin_signbitf:
2095   case Builtin::BI__builtin_signbitl:
2096     if (SemaBuiltinFPClassification(TheCall, 1))
2097       return ExprError();
2098     break;
2099   case Builtin::BI__builtin_shufflevector:
2100     return SemaBuiltinShuffleVector(TheCall);
2101     // TheCall will be freed by the smart pointer here, but that's fine, since
2102     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
2103   case Builtin::BI__builtin_prefetch:
2104     if (SemaBuiltinPrefetch(TheCall))
2105       return ExprError();
2106     break;
2107   case Builtin::BI__builtin_alloca_with_align:
2108   case Builtin::BI__builtin_alloca_with_align_uninitialized:
2109     if (SemaBuiltinAllocaWithAlign(TheCall))
2110       return ExprError();
2111     LLVM_FALLTHROUGH;
2112   case Builtin::BI__builtin_alloca:
2113   case Builtin::BI__builtin_alloca_uninitialized:
2114     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2115         << TheCall->getDirectCallee();
2116     break;
2117   case Builtin::BI__arithmetic_fence:
2118     if (SemaBuiltinArithmeticFence(TheCall))
2119       return ExprError();
2120     break;
2121   case Builtin::BI__assume:
2122   case Builtin::BI__builtin_assume:
2123     if (SemaBuiltinAssume(TheCall))
2124       return ExprError();
2125     break;
2126   case Builtin::BI__builtin_assume_aligned:
2127     if (SemaBuiltinAssumeAligned(TheCall))
2128       return ExprError();
2129     break;
2130   case Builtin::BI__builtin_dynamic_object_size:
2131   case Builtin::BI__builtin_object_size:
2132     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
2133       return ExprError();
2134     break;
2135   case Builtin::BI__builtin_longjmp:
2136     if (SemaBuiltinLongjmp(TheCall))
2137       return ExprError();
2138     break;
2139   case Builtin::BI__builtin_setjmp:
2140     if (SemaBuiltinSetjmp(TheCall))
2141       return ExprError();
2142     break;
2143   case Builtin::BI__builtin_classify_type:
2144     if (checkArgCount(*this, TheCall, 1)) return true;
2145     TheCall->setType(Context.IntTy);
2146     break;
2147   case Builtin::BI__builtin_complex:
2148     if (SemaBuiltinComplex(TheCall))
2149       return ExprError();
2150     break;
2151   case Builtin::BI__builtin_constant_p: {
2152     if (checkArgCount(*this, TheCall, 1)) return true;
2153     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2154     if (Arg.isInvalid()) return true;
2155     TheCall->setArg(0, Arg.get());
2156     TheCall->setType(Context.IntTy);
2157     break;
2158   }
2159   case Builtin::BI__builtin_launder:
2160     return SemaBuiltinLaunder(*this, TheCall);
2161   case Builtin::BI__sync_fetch_and_add:
2162   case Builtin::BI__sync_fetch_and_add_1:
2163   case Builtin::BI__sync_fetch_and_add_2:
2164   case Builtin::BI__sync_fetch_and_add_4:
2165   case Builtin::BI__sync_fetch_and_add_8:
2166   case Builtin::BI__sync_fetch_and_add_16:
2167   case Builtin::BI__sync_fetch_and_sub:
2168   case Builtin::BI__sync_fetch_and_sub_1:
2169   case Builtin::BI__sync_fetch_and_sub_2:
2170   case Builtin::BI__sync_fetch_and_sub_4:
2171   case Builtin::BI__sync_fetch_and_sub_8:
2172   case Builtin::BI__sync_fetch_and_sub_16:
2173   case Builtin::BI__sync_fetch_and_or:
2174   case Builtin::BI__sync_fetch_and_or_1:
2175   case Builtin::BI__sync_fetch_and_or_2:
2176   case Builtin::BI__sync_fetch_and_or_4:
2177   case Builtin::BI__sync_fetch_and_or_8:
2178   case Builtin::BI__sync_fetch_and_or_16:
2179   case Builtin::BI__sync_fetch_and_and:
2180   case Builtin::BI__sync_fetch_and_and_1:
2181   case Builtin::BI__sync_fetch_and_and_2:
2182   case Builtin::BI__sync_fetch_and_and_4:
2183   case Builtin::BI__sync_fetch_and_and_8:
2184   case Builtin::BI__sync_fetch_and_and_16:
2185   case Builtin::BI__sync_fetch_and_xor:
2186   case Builtin::BI__sync_fetch_and_xor_1:
2187   case Builtin::BI__sync_fetch_and_xor_2:
2188   case Builtin::BI__sync_fetch_and_xor_4:
2189   case Builtin::BI__sync_fetch_and_xor_8:
2190   case Builtin::BI__sync_fetch_and_xor_16:
2191   case Builtin::BI__sync_fetch_and_nand:
2192   case Builtin::BI__sync_fetch_and_nand_1:
2193   case Builtin::BI__sync_fetch_and_nand_2:
2194   case Builtin::BI__sync_fetch_and_nand_4:
2195   case Builtin::BI__sync_fetch_and_nand_8:
2196   case Builtin::BI__sync_fetch_and_nand_16:
2197   case Builtin::BI__sync_add_and_fetch:
2198   case Builtin::BI__sync_add_and_fetch_1:
2199   case Builtin::BI__sync_add_and_fetch_2:
2200   case Builtin::BI__sync_add_and_fetch_4:
2201   case Builtin::BI__sync_add_and_fetch_8:
2202   case Builtin::BI__sync_add_and_fetch_16:
2203   case Builtin::BI__sync_sub_and_fetch:
2204   case Builtin::BI__sync_sub_and_fetch_1:
2205   case Builtin::BI__sync_sub_and_fetch_2:
2206   case Builtin::BI__sync_sub_and_fetch_4:
2207   case Builtin::BI__sync_sub_and_fetch_8:
2208   case Builtin::BI__sync_sub_and_fetch_16:
2209   case Builtin::BI__sync_and_and_fetch:
2210   case Builtin::BI__sync_and_and_fetch_1:
2211   case Builtin::BI__sync_and_and_fetch_2:
2212   case Builtin::BI__sync_and_and_fetch_4:
2213   case Builtin::BI__sync_and_and_fetch_8:
2214   case Builtin::BI__sync_and_and_fetch_16:
2215   case Builtin::BI__sync_or_and_fetch:
2216   case Builtin::BI__sync_or_and_fetch_1:
2217   case Builtin::BI__sync_or_and_fetch_2:
2218   case Builtin::BI__sync_or_and_fetch_4:
2219   case Builtin::BI__sync_or_and_fetch_8:
2220   case Builtin::BI__sync_or_and_fetch_16:
2221   case Builtin::BI__sync_xor_and_fetch:
2222   case Builtin::BI__sync_xor_and_fetch_1:
2223   case Builtin::BI__sync_xor_and_fetch_2:
2224   case Builtin::BI__sync_xor_and_fetch_4:
2225   case Builtin::BI__sync_xor_and_fetch_8:
2226   case Builtin::BI__sync_xor_and_fetch_16:
2227   case Builtin::BI__sync_nand_and_fetch:
2228   case Builtin::BI__sync_nand_and_fetch_1:
2229   case Builtin::BI__sync_nand_and_fetch_2:
2230   case Builtin::BI__sync_nand_and_fetch_4:
2231   case Builtin::BI__sync_nand_and_fetch_8:
2232   case Builtin::BI__sync_nand_and_fetch_16:
2233   case Builtin::BI__sync_val_compare_and_swap:
2234   case Builtin::BI__sync_val_compare_and_swap_1:
2235   case Builtin::BI__sync_val_compare_and_swap_2:
2236   case Builtin::BI__sync_val_compare_and_swap_4:
2237   case Builtin::BI__sync_val_compare_and_swap_8:
2238   case Builtin::BI__sync_val_compare_and_swap_16:
2239   case Builtin::BI__sync_bool_compare_and_swap:
2240   case Builtin::BI__sync_bool_compare_and_swap_1:
2241   case Builtin::BI__sync_bool_compare_and_swap_2:
2242   case Builtin::BI__sync_bool_compare_and_swap_4:
2243   case Builtin::BI__sync_bool_compare_and_swap_8:
2244   case Builtin::BI__sync_bool_compare_and_swap_16:
2245   case Builtin::BI__sync_lock_test_and_set:
2246   case Builtin::BI__sync_lock_test_and_set_1:
2247   case Builtin::BI__sync_lock_test_and_set_2:
2248   case Builtin::BI__sync_lock_test_and_set_4:
2249   case Builtin::BI__sync_lock_test_and_set_8:
2250   case Builtin::BI__sync_lock_test_and_set_16:
2251   case Builtin::BI__sync_lock_release:
2252   case Builtin::BI__sync_lock_release_1:
2253   case Builtin::BI__sync_lock_release_2:
2254   case Builtin::BI__sync_lock_release_4:
2255   case Builtin::BI__sync_lock_release_8:
2256   case Builtin::BI__sync_lock_release_16:
2257   case Builtin::BI__sync_swap:
2258   case Builtin::BI__sync_swap_1:
2259   case Builtin::BI__sync_swap_2:
2260   case Builtin::BI__sync_swap_4:
2261   case Builtin::BI__sync_swap_8:
2262   case Builtin::BI__sync_swap_16:
2263     return SemaBuiltinAtomicOverloaded(TheCallResult);
2264   case Builtin::BI__sync_synchronize:
2265     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2266         << TheCall->getCallee()->getSourceRange();
2267     break;
2268   case Builtin::BI__builtin_nontemporal_load:
2269   case Builtin::BI__builtin_nontemporal_store:
2270     return SemaBuiltinNontemporalOverloaded(TheCallResult);
2271   case Builtin::BI__builtin_memcpy_inline: {
2272     clang::Expr *SizeOp = TheCall->getArg(2);
2273     // We warn about copying to or from `nullptr` pointers when `size` is
2274     // greater than 0. When `size` is value dependent we cannot evaluate its
2275     // value so we bail out.
2276     if (SizeOp->isValueDependent())
2277       break;
2278     if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2279       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2280       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2281     }
2282     break;
2283   }
2284   case Builtin::BI__builtin_memset_inline: {
2285     clang::Expr *SizeOp = TheCall->getArg(2);
2286     // We warn about filling to `nullptr` pointers when `size` is greater than
2287     // 0. When `size` is value dependent we cannot evaluate its value so we bail
2288     // out.
2289     if (SizeOp->isValueDependent())
2290       break;
2291     if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2292       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2293     break;
2294   }
2295 #define BUILTIN(ID, TYPE, ATTRS)
2296 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
2297   case Builtin::BI##ID: \
2298     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2299 #include "clang/Basic/Builtins.def"
2300   case Builtin::BI__annotation:
2301     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
2302       return ExprError();
2303     break;
2304   case Builtin::BI__builtin_annotation:
2305     if (SemaBuiltinAnnotation(*this, TheCall))
2306       return ExprError();
2307     break;
2308   case Builtin::BI__builtin_addressof:
2309     if (SemaBuiltinAddressof(*this, TheCall))
2310       return ExprError();
2311     break;
2312   case Builtin::BI__builtin_function_start:
2313     if (SemaBuiltinFunctionStart(*this, TheCall))
2314       return ExprError();
2315     break;
2316   case Builtin::BI__builtin_is_aligned:
2317   case Builtin::BI__builtin_align_up:
2318   case Builtin::BI__builtin_align_down:
2319     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
2320       return ExprError();
2321     break;
2322   case Builtin::BI__builtin_add_overflow:
2323   case Builtin::BI__builtin_sub_overflow:
2324   case Builtin::BI__builtin_mul_overflow:
2325     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
2326       return ExprError();
2327     break;
2328   case Builtin::BI__builtin_operator_new:
2329   case Builtin::BI__builtin_operator_delete: {
2330     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2331     ExprResult Res =
2332         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2333     if (Res.isInvalid())
2334       CorrectDelayedTyposInExpr(TheCallResult.get());
2335     return Res;
2336   }
2337   case Builtin::BI__builtin_dump_struct:
2338     return SemaBuiltinDumpStruct(*this, TheCall);
2339   case Builtin::BI__builtin_expect_with_probability: {
2340     // We first want to ensure we are called with 3 arguments
2341     if (checkArgCount(*this, TheCall, 3))
2342       return ExprError();
2343     // then check probability is constant float in range [0.0, 1.0]
2344     const Expr *ProbArg = TheCall->getArg(2);
2345     SmallVector<PartialDiagnosticAt, 8> Notes;
2346     Expr::EvalResult Eval;
2347     Eval.Diag = &Notes;
2348     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2349         !Eval.Val.isFloat()) {
2350       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2351           << ProbArg->getSourceRange();
2352       for (const PartialDiagnosticAt &PDiag : Notes)
2353         Diag(PDiag.first, PDiag.second);
2354       return ExprError();
2355     }
2356     llvm::APFloat Probability = Eval.Val.getFloat();
2357     bool LoseInfo = false;
2358     Probability.convert(llvm::APFloat::IEEEdouble(),
2359                         llvm::RoundingMode::Dynamic, &LoseInfo);
2360     if (!(Probability >= llvm::APFloat(0.0) &&
2361           Probability <= llvm::APFloat(1.0))) {
2362       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2363           << ProbArg->getSourceRange();
2364       return ExprError();
2365     }
2366     break;
2367   }
2368   case Builtin::BI__builtin_preserve_access_index:
2369     if (SemaBuiltinPreserveAI(*this, TheCall))
2370       return ExprError();
2371     break;
2372   case Builtin::BI__builtin_call_with_static_chain:
2373     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
2374       return ExprError();
2375     break;
2376   case Builtin::BI__exception_code:
2377   case Builtin::BI_exception_code:
2378     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2379                                  diag::err_seh___except_block))
2380       return ExprError();
2381     break;
2382   case Builtin::BI__exception_info:
2383   case Builtin::BI_exception_info:
2384     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2385                                  diag::err_seh___except_filter))
2386       return ExprError();
2387     break;
2388   case Builtin::BI__GetExceptionInfo:
2389     if (checkArgCount(*this, TheCall, 1))
2390       return ExprError();
2391 
2392     if (CheckCXXThrowOperand(
2393             TheCall->getBeginLoc(),
2394             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2395             TheCall))
2396       return ExprError();
2397 
2398     TheCall->setType(Context.VoidPtrTy);
2399     break;
2400   case Builtin::BIaddressof:
2401   case Builtin::BI__addressof:
2402   case Builtin::BIforward:
2403   case Builtin::BImove:
2404   case Builtin::BImove_if_noexcept:
2405   case Builtin::BIas_const: {
2406     // These are all expected to be of the form
2407     //   T &/&&/* f(U &/&&)
2408     // where T and U only differ in qualification.
2409     if (checkArgCount(*this, TheCall, 1))
2410       return ExprError();
2411     QualType Param = FDecl->getParamDecl(0)->getType();
2412     QualType Result = FDecl->getReturnType();
2413     bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2414                           BuiltinID == Builtin::BI__addressof;
2415     if (!(Param->isReferenceType() &&
2416           (ReturnsPointer ? Result->isAnyPointerType()
2417                           : Result->isReferenceType()) &&
2418           Context.hasSameUnqualifiedType(Param->getPointeeType(),
2419                                          Result->getPointeeType()))) {
2420       Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2421           << FDecl;
2422       return ExprError();
2423     }
2424     break;
2425   }
2426   // OpenCL v2.0, s6.13.16 - Pipe functions
2427   case Builtin::BIread_pipe:
2428   case Builtin::BIwrite_pipe:
2429     // Since those two functions are declared with var args, we need a semantic
2430     // check for the argument.
2431     if (SemaBuiltinRWPipe(*this, TheCall))
2432       return ExprError();
2433     break;
2434   case Builtin::BIreserve_read_pipe:
2435   case Builtin::BIreserve_write_pipe:
2436   case Builtin::BIwork_group_reserve_read_pipe:
2437   case Builtin::BIwork_group_reserve_write_pipe:
2438     if (SemaBuiltinReserveRWPipe(*this, TheCall))
2439       return ExprError();
2440     break;
2441   case Builtin::BIsub_group_reserve_read_pipe:
2442   case Builtin::BIsub_group_reserve_write_pipe:
2443     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2444         SemaBuiltinReserveRWPipe(*this, TheCall))
2445       return ExprError();
2446     break;
2447   case Builtin::BIcommit_read_pipe:
2448   case Builtin::BIcommit_write_pipe:
2449   case Builtin::BIwork_group_commit_read_pipe:
2450   case Builtin::BIwork_group_commit_write_pipe:
2451     if (SemaBuiltinCommitRWPipe(*this, TheCall))
2452       return ExprError();
2453     break;
2454   case Builtin::BIsub_group_commit_read_pipe:
2455   case Builtin::BIsub_group_commit_write_pipe:
2456     if (checkOpenCLSubgroupExt(*this, TheCall) ||
2457         SemaBuiltinCommitRWPipe(*this, TheCall))
2458       return ExprError();
2459     break;
2460   case Builtin::BIget_pipe_num_packets:
2461   case Builtin::BIget_pipe_max_packets:
2462     if (SemaBuiltinPipePackets(*this, TheCall))
2463       return ExprError();
2464     break;
2465   case Builtin::BIto_global:
2466   case Builtin::BIto_local:
2467   case Builtin::BIto_private:
2468     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2469       return ExprError();
2470     break;
2471   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2472   case Builtin::BIenqueue_kernel:
2473     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2474       return ExprError();
2475     break;
2476   case Builtin::BIget_kernel_work_group_size:
2477   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2478     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2479       return ExprError();
2480     break;
2481   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2482   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2483     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2484       return ExprError();
2485     break;
2486   case Builtin::BI__builtin_os_log_format:
2487     Cleanup.setExprNeedsCleanups(true);
2488     LLVM_FALLTHROUGH;
2489   case Builtin::BI__builtin_os_log_format_buffer_size:
2490     if (SemaBuiltinOSLogFormat(TheCall))
2491       return ExprError();
2492     break;
2493   case Builtin::BI__builtin_frame_address:
2494   case Builtin::BI__builtin_return_address: {
2495     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2496       return ExprError();
2497 
2498     // -Wframe-address warning if non-zero passed to builtin
2499     // return/frame address.
2500     Expr::EvalResult Result;
2501     if (!TheCall->getArg(0)->isValueDependent() &&
2502         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2503         Result.Val.getInt() != 0)
2504       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2505           << ((BuiltinID == Builtin::BI__builtin_return_address)
2506                   ? "__builtin_return_address"
2507                   : "__builtin_frame_address")
2508           << TheCall->getSourceRange();
2509     break;
2510   }
2511 
2512   // __builtin_elementwise_abs restricts the element type to signed integers or
2513   // floating point types only.
2514   case Builtin::BI__builtin_elementwise_abs: {
2515     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2516       return ExprError();
2517 
2518     QualType ArgTy = TheCall->getArg(0)->getType();
2519     QualType EltTy = ArgTy;
2520 
2521     if (auto *VecTy = EltTy->getAs<VectorType>())
2522       EltTy = VecTy->getElementType();
2523     if (EltTy->isUnsignedIntegerType()) {
2524       Diag(TheCall->getArg(0)->getBeginLoc(),
2525            diag::err_builtin_invalid_arg_type)
2526           << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2527       return ExprError();
2528     }
2529     break;
2530   }
2531 
2532   // These builtins restrict the element type to floating point
2533   // types only.
2534   case Builtin::BI__builtin_elementwise_ceil:
2535   case Builtin::BI__builtin_elementwise_floor:
2536   case Builtin::BI__builtin_elementwise_roundeven:
2537   case Builtin::BI__builtin_elementwise_trunc: {
2538     if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2539       return ExprError();
2540 
2541     QualType ArgTy = TheCall->getArg(0)->getType();
2542     QualType EltTy = ArgTy;
2543 
2544     if (auto *VecTy = EltTy->getAs<VectorType>())
2545       EltTy = VecTy->getElementType();
2546     if (!EltTy->isFloatingType()) {
2547       Diag(TheCall->getArg(0)->getBeginLoc(),
2548            diag::err_builtin_invalid_arg_type)
2549           << 1 << /* float ty*/ 5 << ArgTy;
2550 
2551       return ExprError();
2552     }
2553     break;
2554   }
2555 
2556   // These builtins restrict the element type to integer
2557   // types only.
2558   case Builtin::BI__builtin_elementwise_add_sat:
2559   case Builtin::BI__builtin_elementwise_sub_sat: {
2560     if (SemaBuiltinElementwiseMath(TheCall))
2561       return ExprError();
2562 
2563     const Expr *Arg = TheCall->getArg(0);
2564     QualType ArgTy = Arg->getType();
2565     QualType EltTy = ArgTy;
2566 
2567     if (auto *VecTy = EltTy->getAs<VectorType>())
2568       EltTy = VecTy->getElementType();
2569 
2570     if (!EltTy->isIntegerType()) {
2571       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2572           << 1 << /* integer ty */ 6 << ArgTy;
2573       return ExprError();
2574     }
2575     break;
2576   }
2577 
2578   case Builtin::BI__builtin_elementwise_min:
2579   case Builtin::BI__builtin_elementwise_max:
2580     if (SemaBuiltinElementwiseMath(TheCall))
2581       return ExprError();
2582     break;
2583   case Builtin::BI__builtin_reduce_max:
2584   case Builtin::BI__builtin_reduce_min: {
2585     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2586       return ExprError();
2587 
2588     const Expr *Arg = TheCall->getArg(0);
2589     const auto *TyA = Arg->getType()->getAs<VectorType>();
2590     if (!TyA) {
2591       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2592           << 1 << /* vector ty*/ 4 << Arg->getType();
2593       return ExprError();
2594     }
2595 
2596     TheCall->setType(TyA->getElementType());
2597     break;
2598   }
2599 
2600   // These builtins support vectors of integers only.
2601   // TODO: ADD/MUL should support floating-point types.
2602   case Builtin::BI__builtin_reduce_add:
2603   case Builtin::BI__builtin_reduce_mul:
2604   case Builtin::BI__builtin_reduce_xor:
2605   case Builtin::BI__builtin_reduce_or:
2606   case Builtin::BI__builtin_reduce_and: {
2607     if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2608       return ExprError();
2609 
2610     const Expr *Arg = TheCall->getArg(0);
2611     const auto *TyA = Arg->getType()->getAs<VectorType>();
2612     if (!TyA || !TyA->getElementType()->isIntegerType()) {
2613       Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2614           << 1  << /* vector of integers */ 6 << Arg->getType();
2615       return ExprError();
2616     }
2617     TheCall->setType(TyA->getElementType());
2618     break;
2619   }
2620 
2621   case Builtin::BI__builtin_matrix_transpose:
2622     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2623 
2624   case Builtin::BI__builtin_matrix_column_major_load:
2625     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2626 
2627   case Builtin::BI__builtin_matrix_column_major_store:
2628     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2629 
2630   case Builtin::BI__builtin_get_device_side_mangled_name: {
2631     auto Check = [](CallExpr *TheCall) {
2632       if (TheCall->getNumArgs() != 1)
2633         return false;
2634       auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2635       if (!DRE)
2636         return false;
2637       auto *D = DRE->getDecl();
2638       if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2639         return false;
2640       return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2641              D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2642     };
2643     if (!Check(TheCall)) {
2644       Diag(TheCall->getBeginLoc(),
2645            diag::err_hip_invalid_args_builtin_mangled_name);
2646       return ExprError();
2647     }
2648   }
2649   }
2650 
2651   // Since the target specific builtins for each arch overlap, only check those
2652   // of the arch we are compiling for.
2653   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2654     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2655       assert(Context.getAuxTargetInfo() &&
2656              "Aux Target Builtin, but not an aux target?");
2657 
2658       if (CheckTSBuiltinFunctionCall(
2659               *Context.getAuxTargetInfo(),
2660               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2661         return ExprError();
2662     } else {
2663       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2664                                      TheCall))
2665         return ExprError();
2666     }
2667   }
2668 
2669   return TheCallResult;
2670 }
2671 
2672 // Get the valid immediate range for the specified NEON type code.
2673 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2674   NeonTypeFlags Type(t);
2675   int IsQuad = ForceQuad ? true : Type.isQuad();
2676   switch (Type.getEltType()) {
2677   case NeonTypeFlags::Int8:
2678   case NeonTypeFlags::Poly8:
2679     return shift ? 7 : (8 << IsQuad) - 1;
2680   case NeonTypeFlags::Int16:
2681   case NeonTypeFlags::Poly16:
2682     return shift ? 15 : (4 << IsQuad) - 1;
2683   case NeonTypeFlags::Int32:
2684     return shift ? 31 : (2 << IsQuad) - 1;
2685   case NeonTypeFlags::Int64:
2686   case NeonTypeFlags::Poly64:
2687     return shift ? 63 : (1 << IsQuad) - 1;
2688   case NeonTypeFlags::Poly128:
2689     return shift ? 127 : (1 << IsQuad) - 1;
2690   case NeonTypeFlags::Float16:
2691     assert(!shift && "cannot shift float types!");
2692     return (4 << IsQuad) - 1;
2693   case NeonTypeFlags::Float32:
2694     assert(!shift && "cannot shift float types!");
2695     return (2 << IsQuad) - 1;
2696   case NeonTypeFlags::Float64:
2697     assert(!shift && "cannot shift float types!");
2698     return (1 << IsQuad) - 1;
2699   case NeonTypeFlags::BFloat16:
2700     assert(!shift && "cannot shift float types!");
2701     return (4 << IsQuad) - 1;
2702   }
2703   llvm_unreachable("Invalid NeonTypeFlag!");
2704 }
2705 
2706 /// getNeonEltType - Return the QualType corresponding to the elements of
2707 /// the vector type specified by the NeonTypeFlags.  This is used to check
2708 /// the pointer arguments for Neon load/store intrinsics.
2709 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2710                                bool IsPolyUnsigned, bool IsInt64Long) {
2711   switch (Flags.getEltType()) {
2712   case NeonTypeFlags::Int8:
2713     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2714   case NeonTypeFlags::Int16:
2715     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2716   case NeonTypeFlags::Int32:
2717     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2718   case NeonTypeFlags::Int64:
2719     if (IsInt64Long)
2720       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2721     else
2722       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2723                                 : Context.LongLongTy;
2724   case NeonTypeFlags::Poly8:
2725     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2726   case NeonTypeFlags::Poly16:
2727     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2728   case NeonTypeFlags::Poly64:
2729     if (IsInt64Long)
2730       return Context.UnsignedLongTy;
2731     else
2732       return Context.UnsignedLongLongTy;
2733   case NeonTypeFlags::Poly128:
2734     break;
2735   case NeonTypeFlags::Float16:
2736     return Context.HalfTy;
2737   case NeonTypeFlags::Float32:
2738     return Context.FloatTy;
2739   case NeonTypeFlags::Float64:
2740     return Context.DoubleTy;
2741   case NeonTypeFlags::BFloat16:
2742     return Context.BFloat16Ty;
2743   }
2744   llvm_unreachable("Invalid NeonTypeFlag!");
2745 }
2746 
2747 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2748   // Range check SVE intrinsics that take immediate values.
2749   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2750 
2751   switch (BuiltinID) {
2752   default:
2753     return false;
2754 #define GET_SVE_IMMEDIATE_CHECK
2755 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2756 #undef GET_SVE_IMMEDIATE_CHECK
2757   }
2758 
2759   // Perform all the immediate checks for this builtin call.
2760   bool HasError = false;
2761   for (auto &I : ImmChecks) {
2762     int ArgNum, CheckTy, ElementSizeInBits;
2763     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2764 
2765     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2766 
2767     // Function that checks whether the operand (ArgNum) is an immediate
2768     // that is one of the predefined values.
2769     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2770                                    int ErrDiag) -> bool {
2771       // We can't check the value of a dependent argument.
2772       Expr *Arg = TheCall->getArg(ArgNum);
2773       if (Arg->isTypeDependent() || Arg->isValueDependent())
2774         return false;
2775 
2776       // Check constant-ness first.
2777       llvm::APSInt Imm;
2778       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2779         return true;
2780 
2781       if (!CheckImm(Imm.getSExtValue()))
2782         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2783       return false;
2784     };
2785 
2786     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2787     case SVETypeFlags::ImmCheck0_31:
2788       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2789         HasError = true;
2790       break;
2791     case SVETypeFlags::ImmCheck0_13:
2792       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2793         HasError = true;
2794       break;
2795     case SVETypeFlags::ImmCheck1_16:
2796       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2797         HasError = true;
2798       break;
2799     case SVETypeFlags::ImmCheck0_7:
2800       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2801         HasError = true;
2802       break;
2803     case SVETypeFlags::ImmCheckExtract:
2804       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2805                                       (2048 / ElementSizeInBits) - 1))
2806         HasError = true;
2807       break;
2808     case SVETypeFlags::ImmCheckShiftRight:
2809       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2810         HasError = true;
2811       break;
2812     case SVETypeFlags::ImmCheckShiftRightNarrow:
2813       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2814                                       ElementSizeInBits / 2))
2815         HasError = true;
2816       break;
2817     case SVETypeFlags::ImmCheckShiftLeft:
2818       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2819                                       ElementSizeInBits - 1))
2820         HasError = true;
2821       break;
2822     case SVETypeFlags::ImmCheckLaneIndex:
2823       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2824                                       (128 / (1 * ElementSizeInBits)) - 1))
2825         HasError = true;
2826       break;
2827     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2828       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2829                                       (128 / (2 * ElementSizeInBits)) - 1))
2830         HasError = true;
2831       break;
2832     case SVETypeFlags::ImmCheckLaneIndexDot:
2833       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2834                                       (128 / (4 * ElementSizeInBits)) - 1))
2835         HasError = true;
2836       break;
2837     case SVETypeFlags::ImmCheckComplexRot90_270:
2838       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2839                               diag::err_rotation_argument_to_cadd))
2840         HasError = true;
2841       break;
2842     case SVETypeFlags::ImmCheckComplexRotAll90:
2843       if (CheckImmediateInSet(
2844               [](int64_t V) {
2845                 return V == 0 || V == 90 || V == 180 || V == 270;
2846               },
2847               diag::err_rotation_argument_to_cmla))
2848         HasError = true;
2849       break;
2850     case SVETypeFlags::ImmCheck0_1:
2851       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2852         HasError = true;
2853       break;
2854     case SVETypeFlags::ImmCheck0_2:
2855       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2856         HasError = true;
2857       break;
2858     case SVETypeFlags::ImmCheck0_3:
2859       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2860         HasError = true;
2861       break;
2862     }
2863   }
2864 
2865   return HasError;
2866 }
2867 
2868 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2869                                         unsigned BuiltinID, CallExpr *TheCall) {
2870   llvm::APSInt Result;
2871   uint64_t mask = 0;
2872   unsigned TV = 0;
2873   int PtrArgNum = -1;
2874   bool HasConstPtr = false;
2875   switch (BuiltinID) {
2876 #define GET_NEON_OVERLOAD_CHECK
2877 #include "clang/Basic/arm_neon.inc"
2878 #include "clang/Basic/arm_fp16.inc"
2879 #undef GET_NEON_OVERLOAD_CHECK
2880   }
2881 
2882   // For NEON intrinsics which are overloaded on vector element type, validate
2883   // the immediate which specifies which variant to emit.
2884   unsigned ImmArg = TheCall->getNumArgs()-1;
2885   if (mask) {
2886     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2887       return true;
2888 
2889     TV = Result.getLimitedValue(64);
2890     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2891       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2892              << TheCall->getArg(ImmArg)->getSourceRange();
2893   }
2894 
2895   if (PtrArgNum >= 0) {
2896     // Check that pointer arguments have the specified type.
2897     Expr *Arg = TheCall->getArg(PtrArgNum);
2898     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2899       Arg = ICE->getSubExpr();
2900     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2901     QualType RHSTy = RHS.get()->getType();
2902 
2903     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2904     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2905                           Arch == llvm::Triple::aarch64_32 ||
2906                           Arch == llvm::Triple::aarch64_be;
2907     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2908     QualType EltTy =
2909         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2910     if (HasConstPtr)
2911       EltTy = EltTy.withConst();
2912     QualType LHSTy = Context.getPointerType(EltTy);
2913     AssignConvertType ConvTy;
2914     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2915     if (RHS.isInvalid())
2916       return true;
2917     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2918                                  RHS.get(), AA_Assigning))
2919       return true;
2920   }
2921 
2922   // For NEON intrinsics which take an immediate value as part of the
2923   // instruction, range check them here.
2924   unsigned i = 0, l = 0, u = 0;
2925   switch (BuiltinID) {
2926   default:
2927     return false;
2928   #define GET_NEON_IMMEDIATE_CHECK
2929   #include "clang/Basic/arm_neon.inc"
2930   #include "clang/Basic/arm_fp16.inc"
2931   #undef GET_NEON_IMMEDIATE_CHECK
2932   }
2933 
2934   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2935 }
2936 
2937 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2938   switch (BuiltinID) {
2939   default:
2940     return false;
2941   #include "clang/Basic/arm_mve_builtin_sema.inc"
2942   }
2943 }
2944 
2945 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2946                                        CallExpr *TheCall) {
2947   bool Err = false;
2948   switch (BuiltinID) {
2949   default:
2950     return false;
2951 #include "clang/Basic/arm_cde_builtin_sema.inc"
2952   }
2953 
2954   if (Err)
2955     return true;
2956 
2957   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2958 }
2959 
2960 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2961                                         const Expr *CoprocArg, bool WantCDE) {
2962   if (isConstantEvaluated())
2963     return false;
2964 
2965   // We can't check the value of a dependent argument.
2966   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2967     return false;
2968 
2969   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2970   int64_t CoprocNo = CoprocNoAP.getExtValue();
2971   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2972 
2973   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2974   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2975 
2976   if (IsCDECoproc != WantCDE)
2977     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2978            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2979 
2980   return false;
2981 }
2982 
2983 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2984                                         unsigned MaxWidth) {
2985   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2986           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2987           BuiltinID == ARM::BI__builtin_arm_strex ||
2988           BuiltinID == ARM::BI__builtin_arm_stlex ||
2989           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2990           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2991           BuiltinID == AArch64::BI__builtin_arm_strex ||
2992           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2993          "unexpected ARM builtin");
2994   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2995                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2996                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2997                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2998 
2999   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3000 
3001   // Ensure that we have the proper number of arguments.
3002   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
3003     return true;
3004 
3005   // Inspect the pointer argument of the atomic builtin.  This should always be
3006   // a pointer type, whose element is an integral scalar or pointer type.
3007   // Because it is a pointer type, we don't have to worry about any implicit
3008   // casts here.
3009   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
3010   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
3011   if (PointerArgRes.isInvalid())
3012     return true;
3013   PointerArg = PointerArgRes.get();
3014 
3015   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3016   if (!pointerType) {
3017     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
3018         << PointerArg->getType() << PointerArg->getSourceRange();
3019     return true;
3020   }
3021 
3022   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
3023   // task is to insert the appropriate casts into the AST. First work out just
3024   // what the appropriate type is.
3025   QualType ValType = pointerType->getPointeeType();
3026   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
3027   if (IsLdrex)
3028     AddrType.addConst();
3029 
3030   // Issue a warning if the cast is dodgy.
3031   CastKind CastNeeded = CK_NoOp;
3032   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
3033     CastNeeded = CK_BitCast;
3034     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
3035         << PointerArg->getType() << Context.getPointerType(AddrType)
3036         << AA_Passing << PointerArg->getSourceRange();
3037   }
3038 
3039   // Finally, do the cast and replace the argument with the corrected version.
3040   AddrType = Context.getPointerType(AddrType);
3041   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
3042   if (PointerArgRes.isInvalid())
3043     return true;
3044   PointerArg = PointerArgRes.get();
3045 
3046   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
3047 
3048   // In general, we allow ints, floats and pointers to be loaded and stored.
3049   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3050       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
3051     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
3052         << PointerArg->getType() << PointerArg->getSourceRange();
3053     return true;
3054   }
3055 
3056   // But ARM doesn't have instructions to deal with 128-bit versions.
3057   if (Context.getTypeSize(ValType) > MaxWidth) {
3058     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
3059     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
3060         << PointerArg->getType() << PointerArg->getSourceRange();
3061     return true;
3062   }
3063 
3064   switch (ValType.getObjCLifetime()) {
3065   case Qualifiers::OCL_None:
3066   case Qualifiers::OCL_ExplicitNone:
3067     // okay
3068     break;
3069 
3070   case Qualifiers::OCL_Weak:
3071   case Qualifiers::OCL_Strong:
3072   case Qualifiers::OCL_Autoreleasing:
3073     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
3074         << ValType << PointerArg->getSourceRange();
3075     return true;
3076   }
3077 
3078   if (IsLdrex) {
3079     TheCall->setType(ValType);
3080     return false;
3081   }
3082 
3083   // Initialize the argument to be stored.
3084   ExprResult ValArg = TheCall->getArg(0);
3085   InitializedEntity Entity = InitializedEntity::InitializeParameter(
3086       Context, ValType, /*consume*/ false);
3087   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3088   if (ValArg.isInvalid())
3089     return true;
3090   TheCall->setArg(0, ValArg.get());
3091 
3092   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
3093   // but the custom checker bypasses all default analysis.
3094   TheCall->setType(Context.IntTy);
3095   return false;
3096 }
3097 
3098 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3099                                        CallExpr *TheCall) {
3100   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3101       BuiltinID == ARM::BI__builtin_arm_ldaex ||
3102       BuiltinID == ARM::BI__builtin_arm_strex ||
3103       BuiltinID == ARM::BI__builtin_arm_stlex) {
3104     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
3105   }
3106 
3107   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3108     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3109       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
3110   }
3111 
3112   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3113       BuiltinID == ARM::BI__builtin_arm_wsr64)
3114     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
3115 
3116   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
3117       BuiltinID == ARM::BI__builtin_arm_rsrp ||
3118       BuiltinID == ARM::BI__builtin_arm_wsr ||
3119       BuiltinID == ARM::BI__builtin_arm_wsrp)
3120     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3121 
3122   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3123     return true;
3124   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
3125     return true;
3126   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
3127     return true;
3128 
3129   // For intrinsics which take an immediate value as part of the instruction,
3130   // range check them here.
3131   // FIXME: VFP Intrinsics should error if VFP not present.
3132   switch (BuiltinID) {
3133   default: return false;
3134   case ARM::BI__builtin_arm_ssat:
3135     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
3136   case ARM::BI__builtin_arm_usat:
3137     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
3138   case ARM::BI__builtin_arm_ssat16:
3139     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3140   case ARM::BI__builtin_arm_usat16:
3141     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3142   case ARM::BI__builtin_arm_vcvtr_f:
3143   case ARM::BI__builtin_arm_vcvtr_d:
3144     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3145   case ARM::BI__builtin_arm_dmb:
3146   case ARM::BI__builtin_arm_dsb:
3147   case ARM::BI__builtin_arm_isb:
3148   case ARM::BI__builtin_arm_dbg:
3149     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
3150   case ARM::BI__builtin_arm_cdp:
3151   case ARM::BI__builtin_arm_cdp2:
3152   case ARM::BI__builtin_arm_mcr:
3153   case ARM::BI__builtin_arm_mcr2:
3154   case ARM::BI__builtin_arm_mrc:
3155   case ARM::BI__builtin_arm_mrc2:
3156   case ARM::BI__builtin_arm_mcrr:
3157   case ARM::BI__builtin_arm_mcrr2:
3158   case ARM::BI__builtin_arm_mrrc:
3159   case ARM::BI__builtin_arm_mrrc2:
3160   case ARM::BI__builtin_arm_ldc:
3161   case ARM::BI__builtin_arm_ldcl:
3162   case ARM::BI__builtin_arm_ldc2:
3163   case ARM::BI__builtin_arm_ldc2l:
3164   case ARM::BI__builtin_arm_stc:
3165   case ARM::BI__builtin_arm_stcl:
3166   case ARM::BI__builtin_arm_stc2:
3167   case ARM::BI__builtin_arm_stc2l:
3168     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
3169            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
3170                                         /*WantCDE*/ false);
3171   }
3172 }
3173 
3174 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
3175                                            unsigned BuiltinID,
3176                                            CallExpr *TheCall) {
3177   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
3178       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
3179       BuiltinID == AArch64::BI__builtin_arm_strex ||
3180       BuiltinID == AArch64::BI__builtin_arm_stlex) {
3181     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
3182   }
3183 
3184   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
3185     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3186       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
3187       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
3188       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
3189   }
3190 
3191   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
3192       BuiltinID == AArch64::BI__builtin_arm_wsr64)
3193     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3194 
3195   // Memory Tagging Extensions (MTE) Intrinsics
3196   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
3197       BuiltinID == AArch64::BI__builtin_arm_addg ||
3198       BuiltinID == AArch64::BI__builtin_arm_gmi ||
3199       BuiltinID == AArch64::BI__builtin_arm_ldg ||
3200       BuiltinID == AArch64::BI__builtin_arm_stg ||
3201       BuiltinID == AArch64::BI__builtin_arm_subp) {
3202     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
3203   }
3204 
3205   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
3206       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
3207       BuiltinID == AArch64::BI__builtin_arm_wsr ||
3208       BuiltinID == AArch64::BI__builtin_arm_wsrp)
3209     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3210 
3211   // Only check the valid encoding range. Any constant in this range would be
3212   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
3213   // an exception for incorrect registers. This matches MSVC behavior.
3214   if (BuiltinID == AArch64::BI_ReadStatusReg ||
3215       BuiltinID == AArch64::BI_WriteStatusReg)
3216     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
3217 
3218   if (BuiltinID == AArch64::BI__getReg)
3219     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3220 
3221   if (BuiltinID == AArch64::BI__break)
3222     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
3223 
3224   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3225     return true;
3226 
3227   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
3228     return true;
3229 
3230   // For intrinsics which take an immediate value as part of the instruction,
3231   // range check them here.
3232   unsigned i = 0, l = 0, u = 0;
3233   switch (BuiltinID) {
3234   default: return false;
3235   case AArch64::BI__builtin_arm_dmb:
3236   case AArch64::BI__builtin_arm_dsb:
3237   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
3238   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
3239   }
3240 
3241   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
3242 }
3243 
3244 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
3245   if (Arg->getType()->getAsPlaceholderType())
3246     return false;
3247 
3248   // The first argument needs to be a record field access.
3249   // If it is an array element access, we delay decision
3250   // to BPF backend to check whether the access is a
3251   // field access or not.
3252   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
3253           isa<MemberExpr>(Arg->IgnoreParens()) ||
3254           isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
3255 }
3256 
3257 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
3258   QualType ArgType = Arg->getType();
3259   if (ArgType->getAsPlaceholderType())
3260     return false;
3261 
3262   // for TYPE_EXISTENCE/TYPE_MATCH/TYPE_SIZEOF reloc type
3263   // format:
3264   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
3265   //   2. <type> var;
3266   //      __builtin_preserve_type_info(var, flag);
3267   if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
3268       !isa<UnaryOperator>(Arg->IgnoreParens()))
3269     return false;
3270 
3271   // Typedef type.
3272   if (ArgType->getAs<TypedefType>())
3273     return true;
3274 
3275   // Record type or Enum type.
3276   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3277   if (const auto *RT = Ty->getAs<RecordType>()) {
3278     if (!RT->getDecl()->getDeclName().isEmpty())
3279       return true;
3280   } else if (const auto *ET = Ty->getAs<EnumType>()) {
3281     if (!ET->getDecl()->getDeclName().isEmpty())
3282       return true;
3283   }
3284 
3285   return false;
3286 }
3287 
3288 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
3289   QualType ArgType = Arg->getType();
3290   if (ArgType->getAsPlaceholderType())
3291     return false;
3292 
3293   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
3294   // format:
3295   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
3296   //                                 flag);
3297   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
3298   if (!UO)
3299     return false;
3300 
3301   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
3302   if (!CE)
3303     return false;
3304   if (CE->getCastKind() != CK_IntegralToPointer &&
3305       CE->getCastKind() != CK_NullToPointer)
3306     return false;
3307 
3308   // The integer must be from an EnumConstantDecl.
3309   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
3310   if (!DR)
3311     return false;
3312 
3313   const EnumConstantDecl *Enumerator =
3314       dyn_cast<EnumConstantDecl>(DR->getDecl());
3315   if (!Enumerator)
3316     return false;
3317 
3318   // The type must be EnumType.
3319   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3320   const auto *ET = Ty->getAs<EnumType>();
3321   if (!ET)
3322     return false;
3323 
3324   // The enum value must be supported.
3325   return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
3326 }
3327 
3328 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
3329                                        CallExpr *TheCall) {
3330   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
3331           BuiltinID == BPF::BI__builtin_btf_type_id ||
3332           BuiltinID == BPF::BI__builtin_preserve_type_info ||
3333           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
3334          "unexpected BPF builtin");
3335 
3336   if (checkArgCount(*this, TheCall, 2))
3337     return true;
3338 
3339   // The second argument needs to be a constant int
3340   Expr *Arg = TheCall->getArg(1);
3341   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
3342   diag::kind kind;
3343   if (!Value) {
3344     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
3345       kind = diag::err_preserve_field_info_not_const;
3346     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
3347       kind = diag::err_btf_type_id_not_const;
3348     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
3349       kind = diag::err_preserve_type_info_not_const;
3350     else
3351       kind = diag::err_preserve_enum_value_not_const;
3352     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
3353     return true;
3354   }
3355 
3356   // The first argument
3357   Arg = TheCall->getArg(0);
3358   bool InvalidArg = false;
3359   bool ReturnUnsignedInt = true;
3360   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
3361     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
3362       InvalidArg = true;
3363       kind = diag::err_preserve_field_info_not_field;
3364     }
3365   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
3366     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
3367       InvalidArg = true;
3368       kind = diag::err_preserve_type_info_invalid;
3369     }
3370   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
3371     if (!isValidBPFPreserveEnumValueArg(Arg)) {
3372       InvalidArg = true;
3373       kind = diag::err_preserve_enum_value_invalid;
3374     }
3375     ReturnUnsignedInt = false;
3376   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
3377     ReturnUnsignedInt = false;
3378   }
3379 
3380   if (InvalidArg) {
3381     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
3382     return true;
3383   }
3384 
3385   if (ReturnUnsignedInt)
3386     TheCall->setType(Context.UnsignedIntTy);
3387   else
3388     TheCall->setType(Context.UnsignedLongTy);
3389   return false;
3390 }
3391 
3392 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3393   struct ArgInfo {
3394     uint8_t OpNum;
3395     bool IsSigned;
3396     uint8_t BitWidth;
3397     uint8_t Align;
3398   };
3399   struct BuiltinInfo {
3400     unsigned BuiltinID;
3401     ArgInfo Infos[2];
3402   };
3403 
3404   static BuiltinInfo Infos[] = {
3405     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
3406     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
3407     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
3408     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
3409     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
3410     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
3411     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
3412     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
3413     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
3414     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
3415     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
3416 
3417     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
3418     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
3419     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
3420     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
3421     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
3422     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
3423     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
3424     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
3425     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
3426     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
3427     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
3428 
3429     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
3430     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
3431     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
3432     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
3433     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
3434     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
3435     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
3436     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
3437     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
3438     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
3439     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
3440     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
3441     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
3442     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
3443     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
3444     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
3445     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
3446     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
3447     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
3448     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
3449     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
3450     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
3451     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
3452     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
3453     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
3454     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
3455     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
3456     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
3457     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
3458     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
3459     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
3460     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
3461     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
3462     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
3463     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
3464     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
3465     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
3466     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
3467     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
3468     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
3469     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
3470     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
3471     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
3472     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
3473     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
3474     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
3475     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
3476     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
3477     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
3478     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
3479     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
3480     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
3481                                                       {{ 1, false, 6,  0 }} },
3482     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
3483     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
3484     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
3485     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
3486     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
3487     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
3488     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3489                                                       {{ 1, false, 5,  0 }} },
3490     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
3491     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
3492     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
3493     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
3494     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
3495     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
3496                                                        { 2, false, 5,  0 }} },
3497     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3498                                                        { 2, false, 6,  0 }} },
3499     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3500                                                        { 3, false, 5,  0 }} },
3501     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3502                                                        { 3, false, 6,  0 }} },
3503     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3504     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3505     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3506     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3507     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3508     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3509     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3510     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3511     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3512     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3513     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3514     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3515     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3516     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3517     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3518     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3519                                                       {{ 2, false, 4,  0 },
3520                                                        { 3, false, 5,  0 }} },
3521     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3522                                                       {{ 2, false, 4,  0 },
3523                                                        { 3, false, 5,  0 }} },
3524     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3525                                                       {{ 2, false, 4,  0 },
3526                                                        { 3, false, 5,  0 }} },
3527     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3528                                                       {{ 2, false, 4,  0 },
3529                                                        { 3, false, 5,  0 }} },
3530     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3531     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3532     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3533     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3534     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3535     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3536     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3537     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3538     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3539     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3540     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3541                                                        { 2, false, 5,  0 }} },
3542     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3543                                                        { 2, false, 6,  0 }} },
3544     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3545     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3546     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3547     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3548     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3549     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3550     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3551     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3552     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3553                                                       {{ 1, false, 4,  0 }} },
3554     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3555     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3556                                                       {{ 1, false, 4,  0 }} },
3557     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3558     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3559     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3560     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3561     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3562     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3563     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3564     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3565     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3566     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3567     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3568     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3569     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3570     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3571     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
3572     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
3573     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
3574     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
3575     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
3576     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
3577                                                       {{ 3, false, 1,  0 }} },
3578     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
3579     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
3580     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
3581     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
3582                                                       {{ 3, false, 1,  0 }} },
3583     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
3584     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
3585     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
3586     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
3587                                                       {{ 3, false, 1,  0 }} },
3588   };
3589 
3590   // Use a dynamically initialized static to sort the table exactly once on
3591   // first run.
3592   static const bool SortOnce =
3593       (llvm::sort(Infos,
3594                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
3595                    return LHS.BuiltinID < RHS.BuiltinID;
3596                  }),
3597        true);
3598   (void)SortOnce;
3599 
3600   const BuiltinInfo *F = llvm::partition_point(
3601       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
3602   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
3603     return false;
3604 
3605   bool Error = false;
3606 
3607   for (const ArgInfo &A : F->Infos) {
3608     // Ignore empty ArgInfo elements.
3609     if (A.BitWidth == 0)
3610       continue;
3611 
3612     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
3613     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
3614     if (!A.Align) {
3615       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3616     } else {
3617       unsigned M = 1 << A.Align;
3618       Min *= M;
3619       Max *= M;
3620       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
3621       Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
3622     }
3623   }
3624   return Error;
3625 }
3626 
3627 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
3628                                            CallExpr *TheCall) {
3629   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
3630 }
3631 
3632 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
3633                                         unsigned BuiltinID, CallExpr *TheCall) {
3634   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
3635          CheckMipsBuiltinArgument(BuiltinID, TheCall);
3636 }
3637 
3638 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
3639                                CallExpr *TheCall) {
3640 
3641   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
3642       BuiltinID <= Mips::BI__builtin_mips_lwx) {
3643     if (!TI.hasFeature("dsp"))
3644       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
3645   }
3646 
3647   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
3648       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
3649     if (!TI.hasFeature("dspr2"))
3650       return Diag(TheCall->getBeginLoc(),
3651                   diag::err_mips_builtin_requires_dspr2);
3652   }
3653 
3654   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
3655       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
3656     if (!TI.hasFeature("msa"))
3657       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
3658   }
3659 
3660   return false;
3661 }
3662 
3663 // CheckMipsBuiltinArgument - Checks the constant value passed to the
3664 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
3665 // ordering for DSP is unspecified. MSA is ordered by the data format used
3666 // by the underlying instruction i.e., df/m, df/n and then by size.
3667 //
3668 // FIXME: The size tests here should instead be tablegen'd along with the
3669 //        definitions from include/clang/Basic/BuiltinsMips.def.
3670 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
3671 //        be too.
3672 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3673   unsigned i = 0, l = 0, u = 0, m = 0;
3674   switch (BuiltinID) {
3675   default: return false;
3676   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3677   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3678   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3679   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3680   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3681   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3682   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3683   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3684   // df/m field.
3685   // These intrinsics take an unsigned 3 bit immediate.
3686   case Mips::BI__builtin_msa_bclri_b:
3687   case Mips::BI__builtin_msa_bnegi_b:
3688   case Mips::BI__builtin_msa_bseti_b:
3689   case Mips::BI__builtin_msa_sat_s_b:
3690   case Mips::BI__builtin_msa_sat_u_b:
3691   case Mips::BI__builtin_msa_slli_b:
3692   case Mips::BI__builtin_msa_srai_b:
3693   case Mips::BI__builtin_msa_srari_b:
3694   case Mips::BI__builtin_msa_srli_b:
3695   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3696   case Mips::BI__builtin_msa_binsli_b:
3697   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3698   // These intrinsics take an unsigned 4 bit immediate.
3699   case Mips::BI__builtin_msa_bclri_h:
3700   case Mips::BI__builtin_msa_bnegi_h:
3701   case Mips::BI__builtin_msa_bseti_h:
3702   case Mips::BI__builtin_msa_sat_s_h:
3703   case Mips::BI__builtin_msa_sat_u_h:
3704   case Mips::BI__builtin_msa_slli_h:
3705   case Mips::BI__builtin_msa_srai_h:
3706   case Mips::BI__builtin_msa_srari_h:
3707   case Mips::BI__builtin_msa_srli_h:
3708   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3709   case Mips::BI__builtin_msa_binsli_h:
3710   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3711   // These intrinsics take an unsigned 5 bit immediate.
3712   // The first block of intrinsics actually have an unsigned 5 bit field,
3713   // not a df/n field.
3714   case Mips::BI__builtin_msa_cfcmsa:
3715   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3716   case Mips::BI__builtin_msa_clei_u_b:
3717   case Mips::BI__builtin_msa_clei_u_h:
3718   case Mips::BI__builtin_msa_clei_u_w:
3719   case Mips::BI__builtin_msa_clei_u_d:
3720   case Mips::BI__builtin_msa_clti_u_b:
3721   case Mips::BI__builtin_msa_clti_u_h:
3722   case Mips::BI__builtin_msa_clti_u_w:
3723   case Mips::BI__builtin_msa_clti_u_d:
3724   case Mips::BI__builtin_msa_maxi_u_b:
3725   case Mips::BI__builtin_msa_maxi_u_h:
3726   case Mips::BI__builtin_msa_maxi_u_w:
3727   case Mips::BI__builtin_msa_maxi_u_d:
3728   case Mips::BI__builtin_msa_mini_u_b:
3729   case Mips::BI__builtin_msa_mini_u_h:
3730   case Mips::BI__builtin_msa_mini_u_w:
3731   case Mips::BI__builtin_msa_mini_u_d:
3732   case Mips::BI__builtin_msa_addvi_b:
3733   case Mips::BI__builtin_msa_addvi_h:
3734   case Mips::BI__builtin_msa_addvi_w:
3735   case Mips::BI__builtin_msa_addvi_d:
3736   case Mips::BI__builtin_msa_bclri_w:
3737   case Mips::BI__builtin_msa_bnegi_w:
3738   case Mips::BI__builtin_msa_bseti_w:
3739   case Mips::BI__builtin_msa_sat_s_w:
3740   case Mips::BI__builtin_msa_sat_u_w:
3741   case Mips::BI__builtin_msa_slli_w:
3742   case Mips::BI__builtin_msa_srai_w:
3743   case Mips::BI__builtin_msa_srari_w:
3744   case Mips::BI__builtin_msa_srli_w:
3745   case Mips::BI__builtin_msa_srlri_w:
3746   case Mips::BI__builtin_msa_subvi_b:
3747   case Mips::BI__builtin_msa_subvi_h:
3748   case Mips::BI__builtin_msa_subvi_w:
3749   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3750   case Mips::BI__builtin_msa_binsli_w:
3751   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3752   // These intrinsics take an unsigned 6 bit immediate.
3753   case Mips::BI__builtin_msa_bclri_d:
3754   case Mips::BI__builtin_msa_bnegi_d:
3755   case Mips::BI__builtin_msa_bseti_d:
3756   case Mips::BI__builtin_msa_sat_s_d:
3757   case Mips::BI__builtin_msa_sat_u_d:
3758   case Mips::BI__builtin_msa_slli_d:
3759   case Mips::BI__builtin_msa_srai_d:
3760   case Mips::BI__builtin_msa_srari_d:
3761   case Mips::BI__builtin_msa_srli_d:
3762   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3763   case Mips::BI__builtin_msa_binsli_d:
3764   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3765   // These intrinsics take a signed 5 bit immediate.
3766   case Mips::BI__builtin_msa_ceqi_b:
3767   case Mips::BI__builtin_msa_ceqi_h:
3768   case Mips::BI__builtin_msa_ceqi_w:
3769   case Mips::BI__builtin_msa_ceqi_d:
3770   case Mips::BI__builtin_msa_clti_s_b:
3771   case Mips::BI__builtin_msa_clti_s_h:
3772   case Mips::BI__builtin_msa_clti_s_w:
3773   case Mips::BI__builtin_msa_clti_s_d:
3774   case Mips::BI__builtin_msa_clei_s_b:
3775   case Mips::BI__builtin_msa_clei_s_h:
3776   case Mips::BI__builtin_msa_clei_s_w:
3777   case Mips::BI__builtin_msa_clei_s_d:
3778   case Mips::BI__builtin_msa_maxi_s_b:
3779   case Mips::BI__builtin_msa_maxi_s_h:
3780   case Mips::BI__builtin_msa_maxi_s_w:
3781   case Mips::BI__builtin_msa_maxi_s_d:
3782   case Mips::BI__builtin_msa_mini_s_b:
3783   case Mips::BI__builtin_msa_mini_s_h:
3784   case Mips::BI__builtin_msa_mini_s_w:
3785   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3786   // These intrinsics take an unsigned 8 bit immediate.
3787   case Mips::BI__builtin_msa_andi_b:
3788   case Mips::BI__builtin_msa_nori_b:
3789   case Mips::BI__builtin_msa_ori_b:
3790   case Mips::BI__builtin_msa_shf_b:
3791   case Mips::BI__builtin_msa_shf_h:
3792   case Mips::BI__builtin_msa_shf_w:
3793   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3794   case Mips::BI__builtin_msa_bseli_b:
3795   case Mips::BI__builtin_msa_bmnzi_b:
3796   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3797   // df/n format
3798   // These intrinsics take an unsigned 4 bit immediate.
3799   case Mips::BI__builtin_msa_copy_s_b:
3800   case Mips::BI__builtin_msa_copy_u_b:
3801   case Mips::BI__builtin_msa_insve_b:
3802   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3803   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3804   // These intrinsics take an unsigned 3 bit immediate.
3805   case Mips::BI__builtin_msa_copy_s_h:
3806   case Mips::BI__builtin_msa_copy_u_h:
3807   case Mips::BI__builtin_msa_insve_h:
3808   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3809   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3810   // These intrinsics take an unsigned 2 bit immediate.
3811   case Mips::BI__builtin_msa_copy_s_w:
3812   case Mips::BI__builtin_msa_copy_u_w:
3813   case Mips::BI__builtin_msa_insve_w:
3814   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3815   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3816   // These intrinsics take an unsigned 1 bit immediate.
3817   case Mips::BI__builtin_msa_copy_s_d:
3818   case Mips::BI__builtin_msa_copy_u_d:
3819   case Mips::BI__builtin_msa_insve_d:
3820   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3821   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3822   // Memory offsets and immediate loads.
3823   // These intrinsics take a signed 10 bit immediate.
3824   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3825   case Mips::BI__builtin_msa_ldi_h:
3826   case Mips::BI__builtin_msa_ldi_w:
3827   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3828   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3829   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3830   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3831   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3832   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3833   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3834   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3835   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3836   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3837   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3838   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3839   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3840   }
3841 
3842   if (!m)
3843     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3844 
3845   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3846          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3847 }
3848 
3849 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3850 /// advancing the pointer over the consumed characters. The decoded type is
3851 /// returned. If the decoded type represents a constant integer with a
3852 /// constraint on its value then Mask is set to that value. The type descriptors
3853 /// used in Str are specific to PPC MMA builtins and are documented in the file
3854 /// defining the PPC builtins.
3855 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3856                                         unsigned &Mask) {
3857   bool RequireICE = false;
3858   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3859   switch (*Str++) {
3860   case 'V':
3861     return Context.getVectorType(Context.UnsignedCharTy, 16,
3862                                  VectorType::VectorKind::AltiVecVector);
3863   case 'i': {
3864     char *End;
3865     unsigned size = strtoul(Str, &End, 10);
3866     assert(End != Str && "Missing constant parameter constraint");
3867     Str = End;
3868     Mask = size;
3869     return Context.IntTy;
3870   }
3871   case 'W': {
3872     char *End;
3873     unsigned size = strtoul(Str, &End, 10);
3874     assert(End != Str && "Missing PowerPC MMA type size");
3875     Str = End;
3876     QualType Type;
3877     switch (size) {
3878   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3879     case size: Type = Context.Id##Ty; break;
3880   #include "clang/Basic/PPCTypes.def"
3881     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3882     }
3883     bool CheckVectorArgs = false;
3884     while (!CheckVectorArgs) {
3885       switch (*Str++) {
3886       case '*':
3887         Type = Context.getPointerType(Type);
3888         break;
3889       case 'C':
3890         Type = Type.withConst();
3891         break;
3892       default:
3893         CheckVectorArgs = true;
3894         --Str;
3895         break;
3896       }
3897     }
3898     return Type;
3899   }
3900   default:
3901     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3902   }
3903 }
3904 
3905 static bool isPPC_64Builtin(unsigned BuiltinID) {
3906   // These builtins only work on PPC 64bit targets.
3907   switch (BuiltinID) {
3908   case PPC::BI__builtin_divde:
3909   case PPC::BI__builtin_divdeu:
3910   case PPC::BI__builtin_bpermd:
3911   case PPC::BI__builtin_pdepd:
3912   case PPC::BI__builtin_pextd:
3913   case PPC::BI__builtin_ppc_ldarx:
3914   case PPC::BI__builtin_ppc_stdcx:
3915   case PPC::BI__builtin_ppc_tdw:
3916   case PPC::BI__builtin_ppc_trapd:
3917   case PPC::BI__builtin_ppc_cmpeqb:
3918   case PPC::BI__builtin_ppc_setb:
3919   case PPC::BI__builtin_ppc_mulhd:
3920   case PPC::BI__builtin_ppc_mulhdu:
3921   case PPC::BI__builtin_ppc_maddhd:
3922   case PPC::BI__builtin_ppc_maddhdu:
3923   case PPC::BI__builtin_ppc_maddld:
3924   case PPC::BI__builtin_ppc_load8r:
3925   case PPC::BI__builtin_ppc_store8r:
3926   case PPC::BI__builtin_ppc_insert_exp:
3927   case PPC::BI__builtin_ppc_extract_sig:
3928   case PPC::BI__builtin_ppc_addex:
3929   case PPC::BI__builtin_darn:
3930   case PPC::BI__builtin_darn_raw:
3931   case PPC::BI__builtin_ppc_compare_and_swaplp:
3932   case PPC::BI__builtin_ppc_fetch_and_addlp:
3933   case PPC::BI__builtin_ppc_fetch_and_andlp:
3934   case PPC::BI__builtin_ppc_fetch_and_orlp:
3935   case PPC::BI__builtin_ppc_fetch_and_swaplp:
3936     return true;
3937   }
3938   return false;
3939 }
3940 
3941 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall,
3942                              StringRef FeatureToCheck, unsigned DiagID,
3943                              StringRef DiagArg = "") {
3944   if (S.Context.getTargetInfo().hasFeature(FeatureToCheck))
3945     return false;
3946 
3947   if (DiagArg.empty())
3948     S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange();
3949   else
3950     S.Diag(TheCall->getBeginLoc(), DiagID)
3951         << DiagArg << TheCall->getSourceRange();
3952 
3953   return true;
3954 }
3955 
3956 /// Returns true if the argument consists of one contiguous run of 1s with any
3957 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
3958 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
3959 /// since all 1s are not contiguous.
3960 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
3961   llvm::APSInt Result;
3962   // We can't check the value of a dependent argument.
3963   Expr *Arg = TheCall->getArg(ArgNum);
3964   if (Arg->isTypeDependent() || Arg->isValueDependent())
3965     return false;
3966 
3967   // Check constant-ness first.
3968   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3969     return true;
3970 
3971   // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
3972   if (Result.isShiftedMask() || (~Result).isShiftedMask())
3973     return false;
3974 
3975   return Diag(TheCall->getBeginLoc(),
3976               diag::err_argument_not_contiguous_bit_field)
3977          << ArgNum << Arg->getSourceRange();
3978 }
3979 
3980 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3981                                        CallExpr *TheCall) {
3982   unsigned i = 0, l = 0, u = 0;
3983   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3984   llvm::APSInt Result;
3985 
3986   if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
3987     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3988            << TheCall->getSourceRange();
3989 
3990   switch (BuiltinID) {
3991   default: return false;
3992   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3993   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3994     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3995            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3996   case PPC::BI__builtin_altivec_dss:
3997     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3998   case PPC::BI__builtin_tbegin:
3999   case PPC::BI__builtin_tend:
4000     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) ||
4001            SemaFeatureCheck(*this, TheCall, "htm",
4002                             diag::err_ppc_builtin_requires_htm);
4003   case PPC::BI__builtin_tsr:
4004     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
4005            SemaFeatureCheck(*this, TheCall, "htm",
4006                             diag::err_ppc_builtin_requires_htm);
4007   case PPC::BI__builtin_tabortwc:
4008   case PPC::BI__builtin_tabortdc:
4009     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
4010            SemaFeatureCheck(*this, TheCall, "htm",
4011                             diag::err_ppc_builtin_requires_htm);
4012   case PPC::BI__builtin_tabortwci:
4013   case PPC::BI__builtin_tabortdci:
4014     return SemaFeatureCheck(*this, TheCall, "htm",
4015                             diag::err_ppc_builtin_requires_htm) ||
4016            (SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
4017             SemaBuiltinConstantArgRange(TheCall, 2, 0, 31));
4018   case PPC::BI__builtin_tabort:
4019   case PPC::BI__builtin_tcheck:
4020   case PPC::BI__builtin_treclaim:
4021   case PPC::BI__builtin_trechkpt:
4022   case PPC::BI__builtin_tendall:
4023   case PPC::BI__builtin_tresume:
4024   case PPC::BI__builtin_tsuspend:
4025   case PPC::BI__builtin_get_texasr:
4026   case PPC::BI__builtin_get_texasru:
4027   case PPC::BI__builtin_get_tfhar:
4028   case PPC::BI__builtin_get_tfiar:
4029   case PPC::BI__builtin_set_texasr:
4030   case PPC::BI__builtin_set_texasru:
4031   case PPC::BI__builtin_set_tfhar:
4032   case PPC::BI__builtin_set_tfiar:
4033   case PPC::BI__builtin_ttest:
4034     return SemaFeatureCheck(*this, TheCall, "htm",
4035                             diag::err_ppc_builtin_requires_htm);
4036   // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
4037   // __builtin_(un)pack_longdouble are available only if long double uses IBM
4038   // extended double representation.
4039   case PPC::BI__builtin_unpack_longdouble:
4040     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
4041       return true;
4042     LLVM_FALLTHROUGH;
4043   case PPC::BI__builtin_pack_longdouble:
4044     if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
4045       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
4046              << "ibmlongdouble";
4047     return false;
4048   case PPC::BI__builtin_altivec_dst:
4049   case PPC::BI__builtin_altivec_dstt:
4050   case PPC::BI__builtin_altivec_dstst:
4051   case PPC::BI__builtin_altivec_dststt:
4052     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4053   case PPC::BI__builtin_vsx_xxpermdi:
4054   case PPC::BI__builtin_vsx_xxsldwi:
4055     return SemaBuiltinVSX(TheCall);
4056   case PPC::BI__builtin_divwe:
4057   case PPC::BI__builtin_divweu:
4058   case PPC::BI__builtin_divde:
4059   case PPC::BI__builtin_divdeu:
4060     return SemaFeatureCheck(*this, TheCall, "extdiv",
4061                             diag::err_ppc_builtin_only_on_arch, "7");
4062   case PPC::BI__builtin_bpermd:
4063     return SemaFeatureCheck(*this, TheCall, "bpermd",
4064                             diag::err_ppc_builtin_only_on_arch, "7");
4065   case PPC::BI__builtin_unpack_vector_int128:
4066     return SemaFeatureCheck(*this, TheCall, "vsx",
4067                             diag::err_ppc_builtin_only_on_arch, "7") ||
4068            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4069   case PPC::BI__builtin_pack_vector_int128:
4070     return SemaFeatureCheck(*this, TheCall, "vsx",
4071                             diag::err_ppc_builtin_only_on_arch, "7");
4072   case PPC::BI__builtin_pdepd:
4073   case PPC::BI__builtin_pextd:
4074     return SemaFeatureCheck(*this, TheCall, "isa-v31-instructions",
4075                             diag::err_ppc_builtin_only_on_arch, "10");
4076   case PPC::BI__builtin_altivec_vgnb:
4077      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
4078   case PPC::BI__builtin_vsx_xxeval:
4079      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
4080   case PPC::BI__builtin_altivec_vsldbi:
4081      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4082   case PPC::BI__builtin_altivec_vsrdbi:
4083      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4084   case PPC::BI__builtin_vsx_xxpermx:
4085      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
4086   case PPC::BI__builtin_ppc_tw:
4087   case PPC::BI__builtin_ppc_tdw:
4088     return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
4089   case PPC::BI__builtin_ppc_cmpeqb:
4090   case PPC::BI__builtin_ppc_setb:
4091   case PPC::BI__builtin_ppc_maddhd:
4092   case PPC::BI__builtin_ppc_maddhdu:
4093   case PPC::BI__builtin_ppc_maddld:
4094     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4095                             diag::err_ppc_builtin_only_on_arch, "9");
4096   case PPC::BI__builtin_ppc_cmprb:
4097     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4098                             diag::err_ppc_builtin_only_on_arch, "9") ||
4099            SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
4100   // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
4101   // be a constant that represents a contiguous bit field.
4102   case PPC::BI__builtin_ppc_rlwnm:
4103     return SemaValueIsRunOfOnes(TheCall, 2);
4104   case PPC::BI__builtin_ppc_rlwimi:
4105   case PPC::BI__builtin_ppc_rldimi:
4106     return SemaBuiltinConstantArg(TheCall, 2, Result) ||
4107            SemaValueIsRunOfOnes(TheCall, 3);
4108   case PPC::BI__builtin_ppc_extract_exp:
4109   case PPC::BI__builtin_ppc_extract_sig:
4110   case PPC::BI__builtin_ppc_insert_exp:
4111     return SemaFeatureCheck(*this, TheCall, "power9-vector",
4112                             diag::err_ppc_builtin_only_on_arch, "9");
4113   case PPC::BI__builtin_ppc_addex: {
4114     if (SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4115                          diag::err_ppc_builtin_only_on_arch, "9") ||
4116         SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
4117       return true;
4118     // Output warning for reserved values 1 to 3.
4119     int ArgValue =
4120         TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
4121     if (ArgValue != 0)
4122       Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
4123           << ArgValue;
4124     return false;
4125   }
4126   case PPC::BI__builtin_ppc_mtfsb0:
4127   case PPC::BI__builtin_ppc_mtfsb1:
4128     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
4129   case PPC::BI__builtin_ppc_mtfsf:
4130     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
4131   case PPC::BI__builtin_ppc_mtfsfi:
4132     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
4133            SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4134   case PPC::BI__builtin_ppc_alignx:
4135     return SemaBuiltinConstantArgPower2(TheCall, 0);
4136   case PPC::BI__builtin_ppc_rdlam:
4137     return SemaValueIsRunOfOnes(TheCall, 2);
4138   case PPC::BI__builtin_ppc_icbt:
4139   case PPC::BI__builtin_ppc_sthcx:
4140   case PPC::BI__builtin_ppc_stbcx:
4141   case PPC::BI__builtin_ppc_lharx:
4142   case PPC::BI__builtin_ppc_lbarx:
4143     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
4144                             diag::err_ppc_builtin_only_on_arch, "8");
4145   case PPC::BI__builtin_vsx_ldrmb:
4146   case PPC::BI__builtin_vsx_strmb:
4147     return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions",
4148                             diag::err_ppc_builtin_only_on_arch, "8") ||
4149            SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
4150   case PPC::BI__builtin_altivec_vcntmbb:
4151   case PPC::BI__builtin_altivec_vcntmbh:
4152   case PPC::BI__builtin_altivec_vcntmbw:
4153   case PPC::BI__builtin_altivec_vcntmbd:
4154     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4155   case PPC::BI__builtin_darn:
4156   case PPC::BI__builtin_darn_raw:
4157   case PPC::BI__builtin_darn_32:
4158     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4159                             diag::err_ppc_builtin_only_on_arch, "9");
4160   case PPC::BI__builtin_vsx_xxgenpcvbm:
4161   case PPC::BI__builtin_vsx_xxgenpcvhm:
4162   case PPC::BI__builtin_vsx_xxgenpcvwm:
4163   case PPC::BI__builtin_vsx_xxgenpcvdm:
4164     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
4165   case PPC::BI__builtin_ppc_compare_exp_uo:
4166   case PPC::BI__builtin_ppc_compare_exp_lt:
4167   case PPC::BI__builtin_ppc_compare_exp_gt:
4168   case PPC::BI__builtin_ppc_compare_exp_eq:
4169     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4170                             diag::err_ppc_builtin_only_on_arch, "9") ||
4171            SemaFeatureCheck(*this, TheCall, "vsx",
4172                             diag::err_ppc_builtin_requires_vsx);
4173   case PPC::BI__builtin_ppc_test_data_class: {
4174     // Check if the first argument of the __builtin_ppc_test_data_class call is
4175     // valid. The argument must be either a 'float' or a 'double'.
4176     QualType ArgType = TheCall->getArg(0)->getType();
4177     if (ArgType != QualType(Context.FloatTy) &&
4178         ArgType != QualType(Context.DoubleTy))
4179       return Diag(TheCall->getBeginLoc(),
4180                   diag::err_ppc_invalid_test_data_class_type);
4181     return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions",
4182                             diag::err_ppc_builtin_only_on_arch, "9") ||
4183            SemaFeatureCheck(*this, TheCall, "vsx",
4184                             diag::err_ppc_builtin_requires_vsx) ||
4185            SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
4186   }
4187   case PPC::BI__builtin_ppc_maxfe:
4188   case PPC::BI__builtin_ppc_minfe:
4189   case PPC::BI__builtin_ppc_maxfl:
4190   case PPC::BI__builtin_ppc_minfl:
4191   case PPC::BI__builtin_ppc_maxfs:
4192   case PPC::BI__builtin_ppc_minfs: {
4193     if (Context.getTargetInfo().getTriple().isOSAIX() &&
4194         (BuiltinID == PPC::BI__builtin_ppc_maxfe ||
4195          BuiltinID == PPC::BI__builtin_ppc_minfe))
4196       return Diag(TheCall->getBeginLoc(), diag::err_target_unsupported_type)
4197              << "builtin" << true << 128 << QualType(Context.LongDoubleTy)
4198              << false << Context.getTargetInfo().getTriple().str();
4199     // Argument type should be exact.
4200     QualType ArgType = QualType(Context.LongDoubleTy);
4201     if (BuiltinID == PPC::BI__builtin_ppc_maxfl ||
4202         BuiltinID == PPC::BI__builtin_ppc_minfl)
4203       ArgType = QualType(Context.DoubleTy);
4204     else if (BuiltinID == PPC::BI__builtin_ppc_maxfs ||
4205              BuiltinID == PPC::BI__builtin_ppc_minfs)
4206       ArgType = QualType(Context.FloatTy);
4207     for (unsigned I = 0, E = TheCall->getNumArgs(); I < E; ++I)
4208       if (TheCall->getArg(I)->getType() != ArgType)
4209         return Diag(TheCall->getBeginLoc(),
4210                     diag::err_typecheck_convert_incompatible)
4211                << TheCall->getArg(I)->getType() << ArgType << 1 << 0 << 0;
4212     return false;
4213   }
4214   case PPC::BI__builtin_ppc_load8r:
4215   case PPC::BI__builtin_ppc_store8r:
4216     return SemaFeatureCheck(*this, TheCall, "isa-v206-instructions",
4217                             diag::err_ppc_builtin_only_on_arch, "7");
4218 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc)                                 \
4219   case PPC::BI__builtin_##Name:                                                \
4220     return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
4221 #include "clang/Basic/BuiltinsPPC.def"
4222   }
4223   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4224 }
4225 
4226 // Check if the given type is a non-pointer PPC MMA type. This function is used
4227 // in Sema to prevent invalid uses of restricted PPC MMA types.
4228 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
4229   if (Type->isPointerType() || Type->isArrayType())
4230     return false;
4231 
4232   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
4233 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
4234   if (false
4235 #include "clang/Basic/PPCTypes.def"
4236      ) {
4237     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
4238     return true;
4239   }
4240   return false;
4241 }
4242 
4243 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
4244                                           CallExpr *TheCall) {
4245   // position of memory order and scope arguments in the builtin
4246   unsigned OrderIndex, ScopeIndex;
4247   switch (BuiltinID) {
4248   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
4249   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
4250   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
4251   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
4252     OrderIndex = 2;
4253     ScopeIndex = 3;
4254     break;
4255   case AMDGPU::BI__builtin_amdgcn_fence:
4256     OrderIndex = 0;
4257     ScopeIndex = 1;
4258     break;
4259   default:
4260     return false;
4261   }
4262 
4263   ExprResult Arg = TheCall->getArg(OrderIndex);
4264   auto ArgExpr = Arg.get();
4265   Expr::EvalResult ArgResult;
4266 
4267   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
4268     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
4269            << ArgExpr->getType();
4270   auto Ord = ArgResult.Val.getInt().getZExtValue();
4271 
4272   // Check validity of memory ordering as per C11 / C++11's memody model.
4273   // Only fence needs check. Atomic dec/inc allow all memory orders.
4274   if (!llvm::isValidAtomicOrderingCABI(Ord))
4275     return Diag(ArgExpr->getBeginLoc(),
4276                 diag::warn_atomic_op_has_invalid_memory_order)
4277            << ArgExpr->getSourceRange();
4278   switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
4279   case llvm::AtomicOrderingCABI::relaxed:
4280   case llvm::AtomicOrderingCABI::consume:
4281     if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
4282       return Diag(ArgExpr->getBeginLoc(),
4283                   diag::warn_atomic_op_has_invalid_memory_order)
4284              << ArgExpr->getSourceRange();
4285     break;
4286   case llvm::AtomicOrderingCABI::acquire:
4287   case llvm::AtomicOrderingCABI::release:
4288   case llvm::AtomicOrderingCABI::acq_rel:
4289   case llvm::AtomicOrderingCABI::seq_cst:
4290     break;
4291   }
4292 
4293   Arg = TheCall->getArg(ScopeIndex);
4294   ArgExpr = Arg.get();
4295   Expr::EvalResult ArgResult1;
4296   // Check that sync scope is a constant literal
4297   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
4298     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
4299            << ArgExpr->getType();
4300 
4301   return false;
4302 }
4303 
4304 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
4305   llvm::APSInt Result;
4306 
4307   // We can't check the value of a dependent argument.
4308   Expr *Arg = TheCall->getArg(ArgNum);
4309   if (Arg->isTypeDependent() || Arg->isValueDependent())
4310     return false;
4311 
4312   // Check constant-ness first.
4313   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4314     return true;
4315 
4316   int64_t Val = Result.getSExtValue();
4317   if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
4318     return false;
4319 
4320   return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
4321          << Arg->getSourceRange();
4322 }
4323 
4324 static bool isRISCV32Builtin(unsigned BuiltinID) {
4325   // These builtins only work on riscv32 targets.
4326   switch (BuiltinID) {
4327   case RISCV::BI__builtin_riscv_zip_32:
4328   case RISCV::BI__builtin_riscv_unzip_32:
4329   case RISCV::BI__builtin_riscv_aes32dsi_32:
4330   case RISCV::BI__builtin_riscv_aes32dsmi_32:
4331   case RISCV::BI__builtin_riscv_aes32esi_32:
4332   case RISCV::BI__builtin_riscv_aes32esmi_32:
4333   case RISCV::BI__builtin_riscv_sha512sig0h_32:
4334   case RISCV::BI__builtin_riscv_sha512sig0l_32:
4335   case RISCV::BI__builtin_riscv_sha512sig1h_32:
4336   case RISCV::BI__builtin_riscv_sha512sig1l_32:
4337   case RISCV::BI__builtin_riscv_sha512sum0r_32:
4338   case RISCV::BI__builtin_riscv_sha512sum1r_32:
4339     return true;
4340   }
4341 
4342   return false;
4343 }
4344 
4345 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
4346                                          unsigned BuiltinID,
4347                                          CallExpr *TheCall) {
4348   // CodeGenFunction can also detect this, but this gives a better error
4349   // message.
4350   bool FeatureMissing = false;
4351   SmallVector<StringRef> ReqFeatures;
4352   StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
4353   Features.split(ReqFeatures, ',');
4354 
4355   // Check for 32-bit only builtins on a 64-bit target.
4356   const llvm::Triple &TT = TI.getTriple();
4357   if (TT.getArch() != llvm::Triple::riscv32 && isRISCV32Builtin(BuiltinID))
4358     return Diag(TheCall->getCallee()->getBeginLoc(),
4359                 diag::err_32_bit_builtin_64_bit_tgt);
4360 
4361   // Check if each required feature is included
4362   for (StringRef F : ReqFeatures) {
4363     SmallVector<StringRef> ReqOpFeatures;
4364     F.split(ReqOpFeatures, '|');
4365     bool HasFeature = false;
4366     for (StringRef OF : ReqOpFeatures) {
4367       if (TI.hasFeature(OF)) {
4368         HasFeature = true;
4369         continue;
4370       }
4371     }
4372 
4373     if (!HasFeature) {
4374       std::string FeatureStrs;
4375       for (StringRef OF : ReqOpFeatures) {
4376         // If the feature is 64bit, alter the string so it will print better in
4377         // the diagnostic.
4378         if (OF == "64bit")
4379           OF = "RV64";
4380 
4381         // Convert features like "zbr" and "experimental-zbr" to "Zbr".
4382         OF.consume_front("experimental-");
4383         std::string FeatureStr = OF.str();
4384         FeatureStr[0] = std::toupper(FeatureStr[0]);
4385         // Combine strings.
4386         FeatureStrs += FeatureStrs == "" ? "" : ", ";
4387         FeatureStrs += "'";
4388         FeatureStrs += FeatureStr;
4389         FeatureStrs += "'";
4390       }
4391       // Error message
4392       FeatureMissing = true;
4393       Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
4394           << TheCall->getSourceRange() << StringRef(FeatureStrs);
4395     }
4396   }
4397 
4398   if (FeatureMissing)
4399     return true;
4400 
4401   switch (BuiltinID) {
4402   case RISCVVector::BI__builtin_rvv_vsetvli:
4403     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
4404            CheckRISCVLMUL(TheCall, 2);
4405   case RISCVVector::BI__builtin_rvv_vsetvlimax:
4406     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
4407            CheckRISCVLMUL(TheCall, 1);
4408   case RISCVVector::BI__builtin_rvv_vget_v: {
4409     ASTContext::BuiltinVectorTypeInfo ResVecInfo =
4410         Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4411             TheCall->getType().getCanonicalType().getTypePtr()));
4412     ASTContext::BuiltinVectorTypeInfo VecInfo =
4413         Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4414             TheCall->getArg(0)->getType().getCanonicalType().getTypePtr()));
4415     unsigned MaxIndex =
4416         (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors) /
4417         (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors);
4418     return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
4419   }
4420   case RISCVVector::BI__builtin_rvv_vset_v: {
4421     ASTContext::BuiltinVectorTypeInfo ResVecInfo =
4422         Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4423             TheCall->getType().getCanonicalType().getTypePtr()));
4424     ASTContext::BuiltinVectorTypeInfo VecInfo =
4425         Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
4426             TheCall->getArg(2)->getType().getCanonicalType().getTypePtr()));
4427     unsigned MaxIndex =
4428         (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors) /
4429         (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors);
4430     return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
4431   }
4432   // Check if byteselect is in [0, 3]
4433   case RISCV::BI__builtin_riscv_aes32dsi_32:
4434   case RISCV::BI__builtin_riscv_aes32dsmi_32:
4435   case RISCV::BI__builtin_riscv_aes32esi_32:
4436   case RISCV::BI__builtin_riscv_aes32esmi_32:
4437   case RISCV::BI__builtin_riscv_sm4ks:
4438   case RISCV::BI__builtin_riscv_sm4ed:
4439     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4440   // Check if rnum is in [0, 10]
4441   case RISCV::BI__builtin_riscv_aes64ks1i_64:
4442     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 10);
4443   }
4444 
4445   return false;
4446 }
4447 
4448 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
4449                                            CallExpr *TheCall) {
4450   if (BuiltinID == SystemZ::BI__builtin_tabort) {
4451     Expr *Arg = TheCall->getArg(0);
4452     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
4453       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
4454         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
4455                << Arg->getSourceRange();
4456   }
4457 
4458   // For intrinsics which take an immediate value as part of the instruction,
4459   // range check them here.
4460   unsigned i = 0, l = 0, u = 0;
4461   switch (BuiltinID) {
4462   default: return false;
4463   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
4464   case SystemZ::BI__builtin_s390_verimb:
4465   case SystemZ::BI__builtin_s390_verimh:
4466   case SystemZ::BI__builtin_s390_verimf:
4467   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
4468   case SystemZ::BI__builtin_s390_vfaeb:
4469   case SystemZ::BI__builtin_s390_vfaeh:
4470   case SystemZ::BI__builtin_s390_vfaef:
4471   case SystemZ::BI__builtin_s390_vfaebs:
4472   case SystemZ::BI__builtin_s390_vfaehs:
4473   case SystemZ::BI__builtin_s390_vfaefs:
4474   case SystemZ::BI__builtin_s390_vfaezb:
4475   case SystemZ::BI__builtin_s390_vfaezh:
4476   case SystemZ::BI__builtin_s390_vfaezf:
4477   case SystemZ::BI__builtin_s390_vfaezbs:
4478   case SystemZ::BI__builtin_s390_vfaezhs:
4479   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
4480   case SystemZ::BI__builtin_s390_vfisb:
4481   case SystemZ::BI__builtin_s390_vfidb:
4482     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
4483            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4484   case SystemZ::BI__builtin_s390_vftcisb:
4485   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
4486   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
4487   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
4488   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
4489   case SystemZ::BI__builtin_s390_vstrcb:
4490   case SystemZ::BI__builtin_s390_vstrch:
4491   case SystemZ::BI__builtin_s390_vstrcf:
4492   case SystemZ::BI__builtin_s390_vstrczb:
4493   case SystemZ::BI__builtin_s390_vstrczh:
4494   case SystemZ::BI__builtin_s390_vstrczf:
4495   case SystemZ::BI__builtin_s390_vstrcbs:
4496   case SystemZ::BI__builtin_s390_vstrchs:
4497   case SystemZ::BI__builtin_s390_vstrcfs:
4498   case SystemZ::BI__builtin_s390_vstrczbs:
4499   case SystemZ::BI__builtin_s390_vstrczhs:
4500   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
4501   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
4502   case SystemZ::BI__builtin_s390_vfminsb:
4503   case SystemZ::BI__builtin_s390_vfmaxsb:
4504   case SystemZ::BI__builtin_s390_vfmindb:
4505   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
4506   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
4507   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
4508   case SystemZ::BI__builtin_s390_vclfnhs:
4509   case SystemZ::BI__builtin_s390_vclfnls:
4510   case SystemZ::BI__builtin_s390_vcfn:
4511   case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
4512   case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
4513   }
4514   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4515 }
4516 
4517 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
4518 /// This checks that the target supports __builtin_cpu_supports and
4519 /// that the string argument is constant and valid.
4520 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
4521                                    CallExpr *TheCall) {
4522   Expr *Arg = TheCall->getArg(0);
4523 
4524   // Check if the argument is a string literal.
4525   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4526     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4527            << Arg->getSourceRange();
4528 
4529   // Check the contents of the string.
4530   StringRef Feature =
4531       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4532   if (!TI.validateCpuSupports(Feature))
4533     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
4534            << Arg->getSourceRange();
4535   return false;
4536 }
4537 
4538 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
4539 /// This checks that the target supports __builtin_cpu_is and
4540 /// that the string argument is constant and valid.
4541 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
4542   Expr *Arg = TheCall->getArg(0);
4543 
4544   // Check if the argument is a string literal.
4545   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
4546     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
4547            << Arg->getSourceRange();
4548 
4549   // Check the contents of the string.
4550   StringRef Feature =
4551       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
4552   if (!TI.validateCpuIs(Feature))
4553     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
4554            << Arg->getSourceRange();
4555   return false;
4556 }
4557 
4558 // Check if the rounding mode is legal.
4559 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
4560   // Indicates if this instruction has rounding control or just SAE.
4561   bool HasRC = false;
4562 
4563   unsigned ArgNum = 0;
4564   switch (BuiltinID) {
4565   default:
4566     return false;
4567   case X86::BI__builtin_ia32_vcvttsd2si32:
4568   case X86::BI__builtin_ia32_vcvttsd2si64:
4569   case X86::BI__builtin_ia32_vcvttsd2usi32:
4570   case X86::BI__builtin_ia32_vcvttsd2usi64:
4571   case X86::BI__builtin_ia32_vcvttss2si32:
4572   case X86::BI__builtin_ia32_vcvttss2si64:
4573   case X86::BI__builtin_ia32_vcvttss2usi32:
4574   case X86::BI__builtin_ia32_vcvttss2usi64:
4575   case X86::BI__builtin_ia32_vcvttsh2si32:
4576   case X86::BI__builtin_ia32_vcvttsh2si64:
4577   case X86::BI__builtin_ia32_vcvttsh2usi32:
4578   case X86::BI__builtin_ia32_vcvttsh2usi64:
4579     ArgNum = 1;
4580     break;
4581   case X86::BI__builtin_ia32_maxpd512:
4582   case X86::BI__builtin_ia32_maxps512:
4583   case X86::BI__builtin_ia32_minpd512:
4584   case X86::BI__builtin_ia32_minps512:
4585   case X86::BI__builtin_ia32_maxph512:
4586   case X86::BI__builtin_ia32_minph512:
4587     ArgNum = 2;
4588     break;
4589   case X86::BI__builtin_ia32_vcvtph2pd512_mask:
4590   case X86::BI__builtin_ia32_vcvtph2psx512_mask:
4591   case X86::BI__builtin_ia32_cvtps2pd512_mask:
4592   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
4593   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
4594   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
4595   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
4596   case X86::BI__builtin_ia32_cvttps2dq512_mask:
4597   case X86::BI__builtin_ia32_cvttps2qq512_mask:
4598   case X86::BI__builtin_ia32_cvttps2udq512_mask:
4599   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
4600   case X86::BI__builtin_ia32_vcvttph2w512_mask:
4601   case X86::BI__builtin_ia32_vcvttph2uw512_mask:
4602   case X86::BI__builtin_ia32_vcvttph2dq512_mask:
4603   case X86::BI__builtin_ia32_vcvttph2udq512_mask:
4604   case X86::BI__builtin_ia32_vcvttph2qq512_mask:
4605   case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
4606   case X86::BI__builtin_ia32_exp2pd_mask:
4607   case X86::BI__builtin_ia32_exp2ps_mask:
4608   case X86::BI__builtin_ia32_getexppd512_mask:
4609   case X86::BI__builtin_ia32_getexpps512_mask:
4610   case X86::BI__builtin_ia32_getexpph512_mask:
4611   case X86::BI__builtin_ia32_rcp28pd_mask:
4612   case X86::BI__builtin_ia32_rcp28ps_mask:
4613   case X86::BI__builtin_ia32_rsqrt28pd_mask:
4614   case X86::BI__builtin_ia32_rsqrt28ps_mask:
4615   case X86::BI__builtin_ia32_vcomisd:
4616   case X86::BI__builtin_ia32_vcomiss:
4617   case X86::BI__builtin_ia32_vcomish:
4618   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
4619     ArgNum = 3;
4620     break;
4621   case X86::BI__builtin_ia32_cmppd512_mask:
4622   case X86::BI__builtin_ia32_cmpps512_mask:
4623   case X86::BI__builtin_ia32_cmpsd_mask:
4624   case X86::BI__builtin_ia32_cmpss_mask:
4625   case X86::BI__builtin_ia32_cmpsh_mask:
4626   case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
4627   case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
4628   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
4629   case X86::BI__builtin_ia32_getexpsd128_round_mask:
4630   case X86::BI__builtin_ia32_getexpss128_round_mask:
4631   case X86::BI__builtin_ia32_getexpsh128_round_mask:
4632   case X86::BI__builtin_ia32_getmantpd512_mask:
4633   case X86::BI__builtin_ia32_getmantps512_mask:
4634   case X86::BI__builtin_ia32_getmantph512_mask:
4635   case X86::BI__builtin_ia32_maxsd_round_mask:
4636   case X86::BI__builtin_ia32_maxss_round_mask:
4637   case X86::BI__builtin_ia32_maxsh_round_mask:
4638   case X86::BI__builtin_ia32_minsd_round_mask:
4639   case X86::BI__builtin_ia32_minss_round_mask:
4640   case X86::BI__builtin_ia32_minsh_round_mask:
4641   case X86::BI__builtin_ia32_rcp28sd_round_mask:
4642   case X86::BI__builtin_ia32_rcp28ss_round_mask:
4643   case X86::BI__builtin_ia32_reducepd512_mask:
4644   case X86::BI__builtin_ia32_reduceps512_mask:
4645   case X86::BI__builtin_ia32_reduceph512_mask:
4646   case X86::BI__builtin_ia32_rndscalepd_mask:
4647   case X86::BI__builtin_ia32_rndscaleps_mask:
4648   case X86::BI__builtin_ia32_rndscaleph_mask:
4649   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
4650   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
4651     ArgNum = 4;
4652     break;
4653   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4654   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4655   case X86::BI__builtin_ia32_fixupimmps512_mask:
4656   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4657   case X86::BI__builtin_ia32_fixupimmsd_mask:
4658   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4659   case X86::BI__builtin_ia32_fixupimmss_mask:
4660   case X86::BI__builtin_ia32_fixupimmss_maskz:
4661   case X86::BI__builtin_ia32_getmantsd_round_mask:
4662   case X86::BI__builtin_ia32_getmantss_round_mask:
4663   case X86::BI__builtin_ia32_getmantsh_round_mask:
4664   case X86::BI__builtin_ia32_rangepd512_mask:
4665   case X86::BI__builtin_ia32_rangeps512_mask:
4666   case X86::BI__builtin_ia32_rangesd128_round_mask:
4667   case X86::BI__builtin_ia32_rangess128_round_mask:
4668   case X86::BI__builtin_ia32_reducesd_mask:
4669   case X86::BI__builtin_ia32_reducess_mask:
4670   case X86::BI__builtin_ia32_reducesh_mask:
4671   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4672   case X86::BI__builtin_ia32_rndscaless_round_mask:
4673   case X86::BI__builtin_ia32_rndscalesh_round_mask:
4674     ArgNum = 5;
4675     break;
4676   case X86::BI__builtin_ia32_vcvtsd2si64:
4677   case X86::BI__builtin_ia32_vcvtsd2si32:
4678   case X86::BI__builtin_ia32_vcvtsd2usi32:
4679   case X86::BI__builtin_ia32_vcvtsd2usi64:
4680   case X86::BI__builtin_ia32_vcvtss2si32:
4681   case X86::BI__builtin_ia32_vcvtss2si64:
4682   case X86::BI__builtin_ia32_vcvtss2usi32:
4683   case X86::BI__builtin_ia32_vcvtss2usi64:
4684   case X86::BI__builtin_ia32_vcvtsh2si32:
4685   case X86::BI__builtin_ia32_vcvtsh2si64:
4686   case X86::BI__builtin_ia32_vcvtsh2usi32:
4687   case X86::BI__builtin_ia32_vcvtsh2usi64:
4688   case X86::BI__builtin_ia32_sqrtpd512:
4689   case X86::BI__builtin_ia32_sqrtps512:
4690   case X86::BI__builtin_ia32_sqrtph512:
4691     ArgNum = 1;
4692     HasRC = true;
4693     break;
4694   case X86::BI__builtin_ia32_addph512:
4695   case X86::BI__builtin_ia32_divph512:
4696   case X86::BI__builtin_ia32_mulph512:
4697   case X86::BI__builtin_ia32_subph512:
4698   case X86::BI__builtin_ia32_addpd512:
4699   case X86::BI__builtin_ia32_addps512:
4700   case X86::BI__builtin_ia32_divpd512:
4701   case X86::BI__builtin_ia32_divps512:
4702   case X86::BI__builtin_ia32_mulpd512:
4703   case X86::BI__builtin_ia32_mulps512:
4704   case X86::BI__builtin_ia32_subpd512:
4705   case X86::BI__builtin_ia32_subps512:
4706   case X86::BI__builtin_ia32_cvtsi2sd64:
4707   case X86::BI__builtin_ia32_cvtsi2ss32:
4708   case X86::BI__builtin_ia32_cvtsi2ss64:
4709   case X86::BI__builtin_ia32_cvtusi2sd64:
4710   case X86::BI__builtin_ia32_cvtusi2ss32:
4711   case X86::BI__builtin_ia32_cvtusi2ss64:
4712   case X86::BI__builtin_ia32_vcvtusi2sh:
4713   case X86::BI__builtin_ia32_vcvtusi642sh:
4714   case X86::BI__builtin_ia32_vcvtsi2sh:
4715   case X86::BI__builtin_ia32_vcvtsi642sh:
4716     ArgNum = 2;
4717     HasRC = true;
4718     break;
4719   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
4720   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
4721   case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
4722   case X86::BI__builtin_ia32_vcvtps2phx512_mask:
4723   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
4724   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
4725   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
4726   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
4727   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
4728   case X86::BI__builtin_ia32_cvtps2dq512_mask:
4729   case X86::BI__builtin_ia32_cvtps2qq512_mask:
4730   case X86::BI__builtin_ia32_cvtps2udq512_mask:
4731   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
4732   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
4733   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
4734   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
4735   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
4736   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
4737   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
4738   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
4739   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
4740   case X86::BI__builtin_ia32_vcvtph2w512_mask:
4741   case X86::BI__builtin_ia32_vcvtph2uw512_mask:
4742   case X86::BI__builtin_ia32_vcvtph2dq512_mask:
4743   case X86::BI__builtin_ia32_vcvtph2udq512_mask:
4744   case X86::BI__builtin_ia32_vcvtph2qq512_mask:
4745   case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
4746   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
4747   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
4748     ArgNum = 3;
4749     HasRC = true;
4750     break;
4751   case X86::BI__builtin_ia32_addsh_round_mask:
4752   case X86::BI__builtin_ia32_addss_round_mask:
4753   case X86::BI__builtin_ia32_addsd_round_mask:
4754   case X86::BI__builtin_ia32_divsh_round_mask:
4755   case X86::BI__builtin_ia32_divss_round_mask:
4756   case X86::BI__builtin_ia32_divsd_round_mask:
4757   case X86::BI__builtin_ia32_mulsh_round_mask:
4758   case X86::BI__builtin_ia32_mulss_round_mask:
4759   case X86::BI__builtin_ia32_mulsd_round_mask:
4760   case X86::BI__builtin_ia32_subsh_round_mask:
4761   case X86::BI__builtin_ia32_subss_round_mask:
4762   case X86::BI__builtin_ia32_subsd_round_mask:
4763   case X86::BI__builtin_ia32_scalefph512_mask:
4764   case X86::BI__builtin_ia32_scalefpd512_mask:
4765   case X86::BI__builtin_ia32_scalefps512_mask:
4766   case X86::BI__builtin_ia32_scalefsd_round_mask:
4767   case X86::BI__builtin_ia32_scalefss_round_mask:
4768   case X86::BI__builtin_ia32_scalefsh_round_mask:
4769   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
4770   case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
4771   case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
4772   case X86::BI__builtin_ia32_sqrtsd_round_mask:
4773   case X86::BI__builtin_ia32_sqrtss_round_mask:
4774   case X86::BI__builtin_ia32_sqrtsh_round_mask:
4775   case X86::BI__builtin_ia32_vfmaddsd3_mask:
4776   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
4777   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
4778   case X86::BI__builtin_ia32_vfmaddss3_mask:
4779   case X86::BI__builtin_ia32_vfmaddss3_maskz:
4780   case X86::BI__builtin_ia32_vfmaddss3_mask3:
4781   case X86::BI__builtin_ia32_vfmaddsh3_mask:
4782   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
4783   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
4784   case X86::BI__builtin_ia32_vfmaddpd512_mask:
4785   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
4786   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
4787   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
4788   case X86::BI__builtin_ia32_vfmaddps512_mask:
4789   case X86::BI__builtin_ia32_vfmaddps512_maskz:
4790   case X86::BI__builtin_ia32_vfmaddps512_mask3:
4791   case X86::BI__builtin_ia32_vfmsubps512_mask3:
4792   case X86::BI__builtin_ia32_vfmaddph512_mask:
4793   case X86::BI__builtin_ia32_vfmaddph512_maskz:
4794   case X86::BI__builtin_ia32_vfmaddph512_mask3:
4795   case X86::BI__builtin_ia32_vfmsubph512_mask3:
4796   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
4797   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
4798   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
4799   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
4800   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
4801   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
4802   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
4803   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
4804   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
4805   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
4806   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
4807   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
4808   case X86::BI__builtin_ia32_vfmaddcsh_mask:
4809   case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
4810   case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
4811   case X86::BI__builtin_ia32_vfmaddcph512_mask:
4812   case X86::BI__builtin_ia32_vfmaddcph512_maskz:
4813   case X86::BI__builtin_ia32_vfmaddcph512_mask3:
4814   case X86::BI__builtin_ia32_vfcmaddcsh_mask:
4815   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
4816   case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
4817   case X86::BI__builtin_ia32_vfcmaddcph512_mask:
4818   case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
4819   case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
4820   case X86::BI__builtin_ia32_vfmulcsh_mask:
4821   case X86::BI__builtin_ia32_vfmulcph512_mask:
4822   case X86::BI__builtin_ia32_vfcmulcsh_mask:
4823   case X86::BI__builtin_ia32_vfcmulcph512_mask:
4824     ArgNum = 4;
4825     HasRC = true;
4826     break;
4827   }
4828 
4829   llvm::APSInt Result;
4830 
4831   // We can't check the value of a dependent argument.
4832   Expr *Arg = TheCall->getArg(ArgNum);
4833   if (Arg->isTypeDependent() || Arg->isValueDependent())
4834     return false;
4835 
4836   // Check constant-ness first.
4837   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4838     return true;
4839 
4840   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
4841   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
4842   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
4843   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
4844   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
4845       Result == 8/*ROUND_NO_EXC*/ ||
4846       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
4847       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
4848     return false;
4849 
4850   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
4851          << Arg->getSourceRange();
4852 }
4853 
4854 // Check if the gather/scatter scale is legal.
4855 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
4856                                              CallExpr *TheCall) {
4857   unsigned ArgNum = 0;
4858   switch (BuiltinID) {
4859   default:
4860     return false;
4861   case X86::BI__builtin_ia32_gatherpfdpd:
4862   case X86::BI__builtin_ia32_gatherpfdps:
4863   case X86::BI__builtin_ia32_gatherpfqpd:
4864   case X86::BI__builtin_ia32_gatherpfqps:
4865   case X86::BI__builtin_ia32_scatterpfdpd:
4866   case X86::BI__builtin_ia32_scatterpfdps:
4867   case X86::BI__builtin_ia32_scatterpfqpd:
4868   case X86::BI__builtin_ia32_scatterpfqps:
4869     ArgNum = 3;
4870     break;
4871   case X86::BI__builtin_ia32_gatherd_pd:
4872   case X86::BI__builtin_ia32_gatherd_pd256:
4873   case X86::BI__builtin_ia32_gatherq_pd:
4874   case X86::BI__builtin_ia32_gatherq_pd256:
4875   case X86::BI__builtin_ia32_gatherd_ps:
4876   case X86::BI__builtin_ia32_gatherd_ps256:
4877   case X86::BI__builtin_ia32_gatherq_ps:
4878   case X86::BI__builtin_ia32_gatherq_ps256:
4879   case X86::BI__builtin_ia32_gatherd_q:
4880   case X86::BI__builtin_ia32_gatherd_q256:
4881   case X86::BI__builtin_ia32_gatherq_q:
4882   case X86::BI__builtin_ia32_gatherq_q256:
4883   case X86::BI__builtin_ia32_gatherd_d:
4884   case X86::BI__builtin_ia32_gatherd_d256:
4885   case X86::BI__builtin_ia32_gatherq_d:
4886   case X86::BI__builtin_ia32_gatherq_d256:
4887   case X86::BI__builtin_ia32_gather3div2df:
4888   case X86::BI__builtin_ia32_gather3div2di:
4889   case X86::BI__builtin_ia32_gather3div4df:
4890   case X86::BI__builtin_ia32_gather3div4di:
4891   case X86::BI__builtin_ia32_gather3div4sf:
4892   case X86::BI__builtin_ia32_gather3div4si:
4893   case X86::BI__builtin_ia32_gather3div8sf:
4894   case X86::BI__builtin_ia32_gather3div8si:
4895   case X86::BI__builtin_ia32_gather3siv2df:
4896   case X86::BI__builtin_ia32_gather3siv2di:
4897   case X86::BI__builtin_ia32_gather3siv4df:
4898   case X86::BI__builtin_ia32_gather3siv4di:
4899   case X86::BI__builtin_ia32_gather3siv4sf:
4900   case X86::BI__builtin_ia32_gather3siv4si:
4901   case X86::BI__builtin_ia32_gather3siv8sf:
4902   case X86::BI__builtin_ia32_gather3siv8si:
4903   case X86::BI__builtin_ia32_gathersiv8df:
4904   case X86::BI__builtin_ia32_gathersiv16sf:
4905   case X86::BI__builtin_ia32_gatherdiv8df:
4906   case X86::BI__builtin_ia32_gatherdiv16sf:
4907   case X86::BI__builtin_ia32_gathersiv8di:
4908   case X86::BI__builtin_ia32_gathersiv16si:
4909   case X86::BI__builtin_ia32_gatherdiv8di:
4910   case X86::BI__builtin_ia32_gatherdiv16si:
4911   case X86::BI__builtin_ia32_scatterdiv2df:
4912   case X86::BI__builtin_ia32_scatterdiv2di:
4913   case X86::BI__builtin_ia32_scatterdiv4df:
4914   case X86::BI__builtin_ia32_scatterdiv4di:
4915   case X86::BI__builtin_ia32_scatterdiv4sf:
4916   case X86::BI__builtin_ia32_scatterdiv4si:
4917   case X86::BI__builtin_ia32_scatterdiv8sf:
4918   case X86::BI__builtin_ia32_scatterdiv8si:
4919   case X86::BI__builtin_ia32_scattersiv2df:
4920   case X86::BI__builtin_ia32_scattersiv2di:
4921   case X86::BI__builtin_ia32_scattersiv4df:
4922   case X86::BI__builtin_ia32_scattersiv4di:
4923   case X86::BI__builtin_ia32_scattersiv4sf:
4924   case X86::BI__builtin_ia32_scattersiv4si:
4925   case X86::BI__builtin_ia32_scattersiv8sf:
4926   case X86::BI__builtin_ia32_scattersiv8si:
4927   case X86::BI__builtin_ia32_scattersiv8df:
4928   case X86::BI__builtin_ia32_scattersiv16sf:
4929   case X86::BI__builtin_ia32_scatterdiv8df:
4930   case X86::BI__builtin_ia32_scatterdiv16sf:
4931   case X86::BI__builtin_ia32_scattersiv8di:
4932   case X86::BI__builtin_ia32_scattersiv16si:
4933   case X86::BI__builtin_ia32_scatterdiv8di:
4934   case X86::BI__builtin_ia32_scatterdiv16si:
4935     ArgNum = 4;
4936     break;
4937   }
4938 
4939   llvm::APSInt Result;
4940 
4941   // We can't check the value of a dependent argument.
4942   Expr *Arg = TheCall->getArg(ArgNum);
4943   if (Arg->isTypeDependent() || Arg->isValueDependent())
4944     return false;
4945 
4946   // Check constant-ness first.
4947   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4948     return true;
4949 
4950   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
4951     return false;
4952 
4953   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
4954          << Arg->getSourceRange();
4955 }
4956 
4957 enum { TileRegLow = 0, TileRegHigh = 7 };
4958 
4959 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
4960                                              ArrayRef<int> ArgNums) {
4961   for (int ArgNum : ArgNums) {
4962     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
4963       return true;
4964   }
4965   return false;
4966 }
4967 
4968 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
4969                                         ArrayRef<int> ArgNums) {
4970   // Because the max number of tile register is TileRegHigh + 1, so here we use
4971   // each bit to represent the usage of them in bitset.
4972   std::bitset<TileRegHigh + 1> ArgValues;
4973   for (int ArgNum : ArgNums) {
4974     Expr *Arg = TheCall->getArg(ArgNum);
4975     if (Arg->isTypeDependent() || Arg->isValueDependent())
4976       continue;
4977 
4978     llvm::APSInt Result;
4979     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4980       return true;
4981     int ArgExtValue = Result.getExtValue();
4982     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
4983            "Incorrect tile register num.");
4984     if (ArgValues.test(ArgExtValue))
4985       return Diag(TheCall->getBeginLoc(),
4986                   diag::err_x86_builtin_tile_arg_duplicate)
4987              << TheCall->getArg(ArgNum)->getSourceRange();
4988     ArgValues.set(ArgExtValue);
4989   }
4990   return false;
4991 }
4992 
4993 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
4994                                                 ArrayRef<int> ArgNums) {
4995   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
4996          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
4997 }
4998 
4999 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
5000   switch (BuiltinID) {
5001   default:
5002     return false;
5003   case X86::BI__builtin_ia32_tileloadd64:
5004   case X86::BI__builtin_ia32_tileloaddt164:
5005   case X86::BI__builtin_ia32_tilestored64:
5006   case X86::BI__builtin_ia32_tilezero:
5007     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
5008   case X86::BI__builtin_ia32_tdpbssd:
5009   case X86::BI__builtin_ia32_tdpbsud:
5010   case X86::BI__builtin_ia32_tdpbusd:
5011   case X86::BI__builtin_ia32_tdpbuud:
5012   case X86::BI__builtin_ia32_tdpbf16ps:
5013     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
5014   }
5015 }
5016 static bool isX86_32Builtin(unsigned BuiltinID) {
5017   // These builtins only work on x86-32 targets.
5018   switch (BuiltinID) {
5019   case X86::BI__builtin_ia32_readeflags_u32:
5020   case X86::BI__builtin_ia32_writeeflags_u32:
5021     return true;
5022   }
5023 
5024   return false;
5025 }
5026 
5027 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
5028                                        CallExpr *TheCall) {
5029   if (BuiltinID == X86::BI__builtin_cpu_supports)
5030     return SemaBuiltinCpuSupports(*this, TI, TheCall);
5031 
5032   if (BuiltinID == X86::BI__builtin_cpu_is)
5033     return SemaBuiltinCpuIs(*this, TI, TheCall);
5034 
5035   // Check for 32-bit only builtins on a 64-bit target.
5036   const llvm::Triple &TT = TI.getTriple();
5037   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
5038     return Diag(TheCall->getCallee()->getBeginLoc(),
5039                 diag::err_32_bit_builtin_64_bit_tgt);
5040 
5041   // If the intrinsic has rounding or SAE make sure its valid.
5042   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
5043     return true;
5044 
5045   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
5046   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
5047     return true;
5048 
5049   // If the intrinsic has a tile arguments, make sure they are valid.
5050   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
5051     return true;
5052 
5053   // For intrinsics which take an immediate value as part of the instruction,
5054   // range check them here.
5055   int i = 0, l = 0, u = 0;
5056   switch (BuiltinID) {
5057   default:
5058     return false;
5059   case X86::BI__builtin_ia32_vec_ext_v2si:
5060   case X86::BI__builtin_ia32_vec_ext_v2di:
5061   case X86::BI__builtin_ia32_vextractf128_pd256:
5062   case X86::BI__builtin_ia32_vextractf128_ps256:
5063   case X86::BI__builtin_ia32_vextractf128_si256:
5064   case X86::BI__builtin_ia32_extract128i256:
5065   case X86::BI__builtin_ia32_extractf64x4_mask:
5066   case X86::BI__builtin_ia32_extracti64x4_mask:
5067   case X86::BI__builtin_ia32_extractf32x8_mask:
5068   case X86::BI__builtin_ia32_extracti32x8_mask:
5069   case X86::BI__builtin_ia32_extractf64x2_256_mask:
5070   case X86::BI__builtin_ia32_extracti64x2_256_mask:
5071   case X86::BI__builtin_ia32_extractf32x4_256_mask:
5072   case X86::BI__builtin_ia32_extracti32x4_256_mask:
5073     i = 1; l = 0; u = 1;
5074     break;
5075   case X86::BI__builtin_ia32_vec_set_v2di:
5076   case X86::BI__builtin_ia32_vinsertf128_pd256:
5077   case X86::BI__builtin_ia32_vinsertf128_ps256:
5078   case X86::BI__builtin_ia32_vinsertf128_si256:
5079   case X86::BI__builtin_ia32_insert128i256:
5080   case X86::BI__builtin_ia32_insertf32x8:
5081   case X86::BI__builtin_ia32_inserti32x8:
5082   case X86::BI__builtin_ia32_insertf64x4:
5083   case X86::BI__builtin_ia32_inserti64x4:
5084   case X86::BI__builtin_ia32_insertf64x2_256:
5085   case X86::BI__builtin_ia32_inserti64x2_256:
5086   case X86::BI__builtin_ia32_insertf32x4_256:
5087   case X86::BI__builtin_ia32_inserti32x4_256:
5088     i = 2; l = 0; u = 1;
5089     break;
5090   case X86::BI__builtin_ia32_vpermilpd:
5091   case X86::BI__builtin_ia32_vec_ext_v4hi:
5092   case X86::BI__builtin_ia32_vec_ext_v4si:
5093   case X86::BI__builtin_ia32_vec_ext_v4sf:
5094   case X86::BI__builtin_ia32_vec_ext_v4di:
5095   case X86::BI__builtin_ia32_extractf32x4_mask:
5096   case X86::BI__builtin_ia32_extracti32x4_mask:
5097   case X86::BI__builtin_ia32_extractf64x2_512_mask:
5098   case X86::BI__builtin_ia32_extracti64x2_512_mask:
5099     i = 1; l = 0; u = 3;
5100     break;
5101   case X86::BI_mm_prefetch:
5102   case X86::BI__builtin_ia32_vec_ext_v8hi:
5103   case X86::BI__builtin_ia32_vec_ext_v8si:
5104     i = 1; l = 0; u = 7;
5105     break;
5106   case X86::BI__builtin_ia32_sha1rnds4:
5107   case X86::BI__builtin_ia32_blendpd:
5108   case X86::BI__builtin_ia32_shufpd:
5109   case X86::BI__builtin_ia32_vec_set_v4hi:
5110   case X86::BI__builtin_ia32_vec_set_v4si:
5111   case X86::BI__builtin_ia32_vec_set_v4di:
5112   case X86::BI__builtin_ia32_shuf_f32x4_256:
5113   case X86::BI__builtin_ia32_shuf_f64x2_256:
5114   case X86::BI__builtin_ia32_shuf_i32x4_256:
5115   case X86::BI__builtin_ia32_shuf_i64x2_256:
5116   case X86::BI__builtin_ia32_insertf64x2_512:
5117   case X86::BI__builtin_ia32_inserti64x2_512:
5118   case X86::BI__builtin_ia32_insertf32x4:
5119   case X86::BI__builtin_ia32_inserti32x4:
5120     i = 2; l = 0; u = 3;
5121     break;
5122   case X86::BI__builtin_ia32_vpermil2pd:
5123   case X86::BI__builtin_ia32_vpermil2pd256:
5124   case X86::BI__builtin_ia32_vpermil2ps:
5125   case X86::BI__builtin_ia32_vpermil2ps256:
5126     i = 3; l = 0; u = 3;
5127     break;
5128   case X86::BI__builtin_ia32_cmpb128_mask:
5129   case X86::BI__builtin_ia32_cmpw128_mask:
5130   case X86::BI__builtin_ia32_cmpd128_mask:
5131   case X86::BI__builtin_ia32_cmpq128_mask:
5132   case X86::BI__builtin_ia32_cmpb256_mask:
5133   case X86::BI__builtin_ia32_cmpw256_mask:
5134   case X86::BI__builtin_ia32_cmpd256_mask:
5135   case X86::BI__builtin_ia32_cmpq256_mask:
5136   case X86::BI__builtin_ia32_cmpb512_mask:
5137   case X86::BI__builtin_ia32_cmpw512_mask:
5138   case X86::BI__builtin_ia32_cmpd512_mask:
5139   case X86::BI__builtin_ia32_cmpq512_mask:
5140   case X86::BI__builtin_ia32_ucmpb128_mask:
5141   case X86::BI__builtin_ia32_ucmpw128_mask:
5142   case X86::BI__builtin_ia32_ucmpd128_mask:
5143   case X86::BI__builtin_ia32_ucmpq128_mask:
5144   case X86::BI__builtin_ia32_ucmpb256_mask:
5145   case X86::BI__builtin_ia32_ucmpw256_mask:
5146   case X86::BI__builtin_ia32_ucmpd256_mask:
5147   case X86::BI__builtin_ia32_ucmpq256_mask:
5148   case X86::BI__builtin_ia32_ucmpb512_mask:
5149   case X86::BI__builtin_ia32_ucmpw512_mask:
5150   case X86::BI__builtin_ia32_ucmpd512_mask:
5151   case X86::BI__builtin_ia32_ucmpq512_mask:
5152   case X86::BI__builtin_ia32_vpcomub:
5153   case X86::BI__builtin_ia32_vpcomuw:
5154   case X86::BI__builtin_ia32_vpcomud:
5155   case X86::BI__builtin_ia32_vpcomuq:
5156   case X86::BI__builtin_ia32_vpcomb:
5157   case X86::BI__builtin_ia32_vpcomw:
5158   case X86::BI__builtin_ia32_vpcomd:
5159   case X86::BI__builtin_ia32_vpcomq:
5160   case X86::BI__builtin_ia32_vec_set_v8hi:
5161   case X86::BI__builtin_ia32_vec_set_v8si:
5162     i = 2; l = 0; u = 7;
5163     break;
5164   case X86::BI__builtin_ia32_vpermilpd256:
5165   case X86::BI__builtin_ia32_roundps:
5166   case X86::BI__builtin_ia32_roundpd:
5167   case X86::BI__builtin_ia32_roundps256:
5168   case X86::BI__builtin_ia32_roundpd256:
5169   case X86::BI__builtin_ia32_getmantpd128_mask:
5170   case X86::BI__builtin_ia32_getmantpd256_mask:
5171   case X86::BI__builtin_ia32_getmantps128_mask:
5172   case X86::BI__builtin_ia32_getmantps256_mask:
5173   case X86::BI__builtin_ia32_getmantpd512_mask:
5174   case X86::BI__builtin_ia32_getmantps512_mask:
5175   case X86::BI__builtin_ia32_getmantph128_mask:
5176   case X86::BI__builtin_ia32_getmantph256_mask:
5177   case X86::BI__builtin_ia32_getmantph512_mask:
5178   case X86::BI__builtin_ia32_vec_ext_v16qi:
5179   case X86::BI__builtin_ia32_vec_ext_v16hi:
5180     i = 1; l = 0; u = 15;
5181     break;
5182   case X86::BI__builtin_ia32_pblendd128:
5183   case X86::BI__builtin_ia32_blendps:
5184   case X86::BI__builtin_ia32_blendpd256:
5185   case X86::BI__builtin_ia32_shufpd256:
5186   case X86::BI__builtin_ia32_roundss:
5187   case X86::BI__builtin_ia32_roundsd:
5188   case X86::BI__builtin_ia32_rangepd128_mask:
5189   case X86::BI__builtin_ia32_rangepd256_mask:
5190   case X86::BI__builtin_ia32_rangepd512_mask:
5191   case X86::BI__builtin_ia32_rangeps128_mask:
5192   case X86::BI__builtin_ia32_rangeps256_mask:
5193   case X86::BI__builtin_ia32_rangeps512_mask:
5194   case X86::BI__builtin_ia32_getmantsd_round_mask:
5195   case X86::BI__builtin_ia32_getmantss_round_mask:
5196   case X86::BI__builtin_ia32_getmantsh_round_mask:
5197   case X86::BI__builtin_ia32_vec_set_v16qi:
5198   case X86::BI__builtin_ia32_vec_set_v16hi:
5199     i = 2; l = 0; u = 15;
5200     break;
5201   case X86::BI__builtin_ia32_vec_ext_v32qi:
5202     i = 1; l = 0; u = 31;
5203     break;
5204   case X86::BI__builtin_ia32_cmpps:
5205   case X86::BI__builtin_ia32_cmpss:
5206   case X86::BI__builtin_ia32_cmppd:
5207   case X86::BI__builtin_ia32_cmpsd:
5208   case X86::BI__builtin_ia32_cmpps256:
5209   case X86::BI__builtin_ia32_cmppd256:
5210   case X86::BI__builtin_ia32_cmpps128_mask:
5211   case X86::BI__builtin_ia32_cmppd128_mask:
5212   case X86::BI__builtin_ia32_cmpps256_mask:
5213   case X86::BI__builtin_ia32_cmppd256_mask:
5214   case X86::BI__builtin_ia32_cmpps512_mask:
5215   case X86::BI__builtin_ia32_cmppd512_mask:
5216   case X86::BI__builtin_ia32_cmpsd_mask:
5217   case X86::BI__builtin_ia32_cmpss_mask:
5218   case X86::BI__builtin_ia32_vec_set_v32qi:
5219     i = 2; l = 0; u = 31;
5220     break;
5221   case X86::BI__builtin_ia32_permdf256:
5222   case X86::BI__builtin_ia32_permdi256:
5223   case X86::BI__builtin_ia32_permdf512:
5224   case X86::BI__builtin_ia32_permdi512:
5225   case X86::BI__builtin_ia32_vpermilps:
5226   case X86::BI__builtin_ia32_vpermilps256:
5227   case X86::BI__builtin_ia32_vpermilpd512:
5228   case X86::BI__builtin_ia32_vpermilps512:
5229   case X86::BI__builtin_ia32_pshufd:
5230   case X86::BI__builtin_ia32_pshufd256:
5231   case X86::BI__builtin_ia32_pshufd512:
5232   case X86::BI__builtin_ia32_pshufhw:
5233   case X86::BI__builtin_ia32_pshufhw256:
5234   case X86::BI__builtin_ia32_pshufhw512:
5235   case X86::BI__builtin_ia32_pshuflw:
5236   case X86::BI__builtin_ia32_pshuflw256:
5237   case X86::BI__builtin_ia32_pshuflw512:
5238   case X86::BI__builtin_ia32_vcvtps2ph:
5239   case X86::BI__builtin_ia32_vcvtps2ph_mask:
5240   case X86::BI__builtin_ia32_vcvtps2ph256:
5241   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
5242   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
5243   case X86::BI__builtin_ia32_rndscaleps_128_mask:
5244   case X86::BI__builtin_ia32_rndscalepd_128_mask:
5245   case X86::BI__builtin_ia32_rndscaleps_256_mask:
5246   case X86::BI__builtin_ia32_rndscalepd_256_mask:
5247   case X86::BI__builtin_ia32_rndscaleps_mask:
5248   case X86::BI__builtin_ia32_rndscalepd_mask:
5249   case X86::BI__builtin_ia32_rndscaleph_mask:
5250   case X86::BI__builtin_ia32_reducepd128_mask:
5251   case X86::BI__builtin_ia32_reducepd256_mask:
5252   case X86::BI__builtin_ia32_reducepd512_mask:
5253   case X86::BI__builtin_ia32_reduceps128_mask:
5254   case X86::BI__builtin_ia32_reduceps256_mask:
5255   case X86::BI__builtin_ia32_reduceps512_mask:
5256   case X86::BI__builtin_ia32_reduceph128_mask:
5257   case X86::BI__builtin_ia32_reduceph256_mask:
5258   case X86::BI__builtin_ia32_reduceph512_mask:
5259   case X86::BI__builtin_ia32_prold512:
5260   case X86::BI__builtin_ia32_prolq512:
5261   case X86::BI__builtin_ia32_prold128:
5262   case X86::BI__builtin_ia32_prold256:
5263   case X86::BI__builtin_ia32_prolq128:
5264   case X86::BI__builtin_ia32_prolq256:
5265   case X86::BI__builtin_ia32_prord512:
5266   case X86::BI__builtin_ia32_prorq512:
5267   case X86::BI__builtin_ia32_prord128:
5268   case X86::BI__builtin_ia32_prord256:
5269   case X86::BI__builtin_ia32_prorq128:
5270   case X86::BI__builtin_ia32_prorq256:
5271   case X86::BI__builtin_ia32_fpclasspd128_mask:
5272   case X86::BI__builtin_ia32_fpclasspd256_mask:
5273   case X86::BI__builtin_ia32_fpclassps128_mask:
5274   case X86::BI__builtin_ia32_fpclassps256_mask:
5275   case X86::BI__builtin_ia32_fpclassps512_mask:
5276   case X86::BI__builtin_ia32_fpclasspd512_mask:
5277   case X86::BI__builtin_ia32_fpclassph128_mask:
5278   case X86::BI__builtin_ia32_fpclassph256_mask:
5279   case X86::BI__builtin_ia32_fpclassph512_mask:
5280   case X86::BI__builtin_ia32_fpclasssd_mask:
5281   case X86::BI__builtin_ia32_fpclassss_mask:
5282   case X86::BI__builtin_ia32_fpclasssh_mask:
5283   case X86::BI__builtin_ia32_pslldqi128_byteshift:
5284   case X86::BI__builtin_ia32_pslldqi256_byteshift:
5285   case X86::BI__builtin_ia32_pslldqi512_byteshift:
5286   case X86::BI__builtin_ia32_psrldqi128_byteshift:
5287   case X86::BI__builtin_ia32_psrldqi256_byteshift:
5288   case X86::BI__builtin_ia32_psrldqi512_byteshift:
5289   case X86::BI__builtin_ia32_kshiftliqi:
5290   case X86::BI__builtin_ia32_kshiftlihi:
5291   case X86::BI__builtin_ia32_kshiftlisi:
5292   case X86::BI__builtin_ia32_kshiftlidi:
5293   case X86::BI__builtin_ia32_kshiftriqi:
5294   case X86::BI__builtin_ia32_kshiftrihi:
5295   case X86::BI__builtin_ia32_kshiftrisi:
5296   case X86::BI__builtin_ia32_kshiftridi:
5297     i = 1; l = 0; u = 255;
5298     break;
5299   case X86::BI__builtin_ia32_vperm2f128_pd256:
5300   case X86::BI__builtin_ia32_vperm2f128_ps256:
5301   case X86::BI__builtin_ia32_vperm2f128_si256:
5302   case X86::BI__builtin_ia32_permti256:
5303   case X86::BI__builtin_ia32_pblendw128:
5304   case X86::BI__builtin_ia32_pblendw256:
5305   case X86::BI__builtin_ia32_blendps256:
5306   case X86::BI__builtin_ia32_pblendd256:
5307   case X86::BI__builtin_ia32_palignr128:
5308   case X86::BI__builtin_ia32_palignr256:
5309   case X86::BI__builtin_ia32_palignr512:
5310   case X86::BI__builtin_ia32_alignq512:
5311   case X86::BI__builtin_ia32_alignd512:
5312   case X86::BI__builtin_ia32_alignd128:
5313   case X86::BI__builtin_ia32_alignd256:
5314   case X86::BI__builtin_ia32_alignq128:
5315   case X86::BI__builtin_ia32_alignq256:
5316   case X86::BI__builtin_ia32_vcomisd:
5317   case X86::BI__builtin_ia32_vcomiss:
5318   case X86::BI__builtin_ia32_shuf_f32x4:
5319   case X86::BI__builtin_ia32_shuf_f64x2:
5320   case X86::BI__builtin_ia32_shuf_i32x4:
5321   case X86::BI__builtin_ia32_shuf_i64x2:
5322   case X86::BI__builtin_ia32_shufpd512:
5323   case X86::BI__builtin_ia32_shufps:
5324   case X86::BI__builtin_ia32_shufps256:
5325   case X86::BI__builtin_ia32_shufps512:
5326   case X86::BI__builtin_ia32_dbpsadbw128:
5327   case X86::BI__builtin_ia32_dbpsadbw256:
5328   case X86::BI__builtin_ia32_dbpsadbw512:
5329   case X86::BI__builtin_ia32_vpshldd128:
5330   case X86::BI__builtin_ia32_vpshldd256:
5331   case X86::BI__builtin_ia32_vpshldd512:
5332   case X86::BI__builtin_ia32_vpshldq128:
5333   case X86::BI__builtin_ia32_vpshldq256:
5334   case X86::BI__builtin_ia32_vpshldq512:
5335   case X86::BI__builtin_ia32_vpshldw128:
5336   case X86::BI__builtin_ia32_vpshldw256:
5337   case X86::BI__builtin_ia32_vpshldw512:
5338   case X86::BI__builtin_ia32_vpshrdd128:
5339   case X86::BI__builtin_ia32_vpshrdd256:
5340   case X86::BI__builtin_ia32_vpshrdd512:
5341   case X86::BI__builtin_ia32_vpshrdq128:
5342   case X86::BI__builtin_ia32_vpshrdq256:
5343   case X86::BI__builtin_ia32_vpshrdq512:
5344   case X86::BI__builtin_ia32_vpshrdw128:
5345   case X86::BI__builtin_ia32_vpshrdw256:
5346   case X86::BI__builtin_ia32_vpshrdw512:
5347     i = 2; l = 0; u = 255;
5348     break;
5349   case X86::BI__builtin_ia32_fixupimmpd512_mask:
5350   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
5351   case X86::BI__builtin_ia32_fixupimmps512_mask:
5352   case X86::BI__builtin_ia32_fixupimmps512_maskz:
5353   case X86::BI__builtin_ia32_fixupimmsd_mask:
5354   case X86::BI__builtin_ia32_fixupimmsd_maskz:
5355   case X86::BI__builtin_ia32_fixupimmss_mask:
5356   case X86::BI__builtin_ia32_fixupimmss_maskz:
5357   case X86::BI__builtin_ia32_fixupimmpd128_mask:
5358   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
5359   case X86::BI__builtin_ia32_fixupimmpd256_mask:
5360   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
5361   case X86::BI__builtin_ia32_fixupimmps128_mask:
5362   case X86::BI__builtin_ia32_fixupimmps128_maskz:
5363   case X86::BI__builtin_ia32_fixupimmps256_mask:
5364   case X86::BI__builtin_ia32_fixupimmps256_maskz:
5365   case X86::BI__builtin_ia32_pternlogd512_mask:
5366   case X86::BI__builtin_ia32_pternlogd512_maskz:
5367   case X86::BI__builtin_ia32_pternlogq512_mask:
5368   case X86::BI__builtin_ia32_pternlogq512_maskz:
5369   case X86::BI__builtin_ia32_pternlogd128_mask:
5370   case X86::BI__builtin_ia32_pternlogd128_maskz:
5371   case X86::BI__builtin_ia32_pternlogd256_mask:
5372   case X86::BI__builtin_ia32_pternlogd256_maskz:
5373   case X86::BI__builtin_ia32_pternlogq128_mask:
5374   case X86::BI__builtin_ia32_pternlogq128_maskz:
5375   case X86::BI__builtin_ia32_pternlogq256_mask:
5376   case X86::BI__builtin_ia32_pternlogq256_maskz:
5377     i = 3; l = 0; u = 255;
5378     break;
5379   case X86::BI__builtin_ia32_gatherpfdpd:
5380   case X86::BI__builtin_ia32_gatherpfdps:
5381   case X86::BI__builtin_ia32_gatherpfqpd:
5382   case X86::BI__builtin_ia32_gatherpfqps:
5383   case X86::BI__builtin_ia32_scatterpfdpd:
5384   case X86::BI__builtin_ia32_scatterpfdps:
5385   case X86::BI__builtin_ia32_scatterpfqpd:
5386   case X86::BI__builtin_ia32_scatterpfqps:
5387     i = 4; l = 2; u = 3;
5388     break;
5389   case X86::BI__builtin_ia32_reducesd_mask:
5390   case X86::BI__builtin_ia32_reducess_mask:
5391   case X86::BI__builtin_ia32_rndscalesd_round_mask:
5392   case X86::BI__builtin_ia32_rndscaless_round_mask:
5393   case X86::BI__builtin_ia32_rndscalesh_round_mask:
5394   case X86::BI__builtin_ia32_reducesh_mask:
5395     i = 4; l = 0; u = 255;
5396     break;
5397   }
5398 
5399   // Note that we don't force a hard error on the range check here, allowing
5400   // template-generated or macro-generated dead code to potentially have out-of-
5401   // range values. These need to code generate, but don't need to necessarily
5402   // make any sense. We use a warning that defaults to an error.
5403   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
5404 }
5405 
5406 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
5407 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
5408 /// Returns true when the format fits the function and the FormatStringInfo has
5409 /// been populated.
5410 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
5411                                bool IsVariadic, FormatStringInfo *FSI) {
5412   if (Format->getFirstArg() == 0)
5413     FSI->ArgPassingKind = FAPK_VAList;
5414   else if (IsVariadic)
5415     FSI->ArgPassingKind = FAPK_Variadic;
5416   else
5417     FSI->ArgPassingKind = FAPK_Fixed;
5418   FSI->FormatIdx = Format->getFormatIdx() - 1;
5419   FSI->FirstDataArg =
5420       FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
5421 
5422   // The way the format attribute works in GCC, the implicit this argument
5423   // of member functions is counted. However, it doesn't appear in our own
5424   // lists, so decrement format_idx in that case.
5425   if (IsCXXMember) {
5426     if(FSI->FormatIdx == 0)
5427       return false;
5428     --FSI->FormatIdx;
5429     if (FSI->FirstDataArg != 0)
5430       --FSI->FirstDataArg;
5431   }
5432   return true;
5433 }
5434 
5435 /// Checks if a the given expression evaluates to null.
5436 ///
5437 /// Returns true if the value evaluates to null.
5438 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
5439   // If the expression has non-null type, it doesn't evaluate to null.
5440   if (auto nullability
5441         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
5442     if (*nullability == NullabilityKind::NonNull)
5443       return false;
5444   }
5445 
5446   // As a special case, transparent unions initialized with zero are
5447   // considered null for the purposes of the nonnull attribute.
5448   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
5449     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
5450       if (const CompoundLiteralExpr *CLE =
5451           dyn_cast<CompoundLiteralExpr>(Expr))
5452         if (const InitListExpr *ILE =
5453             dyn_cast<InitListExpr>(CLE->getInitializer()))
5454           Expr = ILE->getInit(0);
5455   }
5456 
5457   bool Result;
5458   return (!Expr->isValueDependent() &&
5459           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
5460           !Result);
5461 }
5462 
5463 static void CheckNonNullArgument(Sema &S,
5464                                  const Expr *ArgExpr,
5465                                  SourceLocation CallSiteLoc) {
5466   if (CheckNonNullExpr(S, ArgExpr))
5467     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
5468                           S.PDiag(diag::warn_null_arg)
5469                               << ArgExpr->getSourceRange());
5470 }
5471 
5472 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
5473   FormatStringInfo FSI;
5474   if ((GetFormatStringType(Format) == FST_NSString) &&
5475       getFormatStringInfo(Format, false, true, &FSI)) {
5476     Idx = FSI.FormatIdx;
5477     return true;
5478   }
5479   return false;
5480 }
5481 
5482 /// Diagnose use of %s directive in an NSString which is being passed
5483 /// as formatting string to formatting method.
5484 static void
5485 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
5486                                         const NamedDecl *FDecl,
5487                                         Expr **Args,
5488                                         unsigned NumArgs) {
5489   unsigned Idx = 0;
5490   bool Format = false;
5491   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
5492   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
5493     Idx = 2;
5494     Format = true;
5495   }
5496   else
5497     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5498       if (S.GetFormatNSStringIdx(I, Idx)) {
5499         Format = true;
5500         break;
5501       }
5502     }
5503   if (!Format || NumArgs <= Idx)
5504     return;
5505   const Expr *FormatExpr = Args[Idx];
5506   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
5507     FormatExpr = CSCE->getSubExpr();
5508   const StringLiteral *FormatString;
5509   if (const ObjCStringLiteral *OSL =
5510       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
5511     FormatString = OSL->getString();
5512   else
5513     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
5514   if (!FormatString)
5515     return;
5516   if (S.FormatStringHasSArg(FormatString)) {
5517     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
5518       << "%s" << 1 << 1;
5519     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
5520       << FDecl->getDeclName();
5521   }
5522 }
5523 
5524 /// Determine whether the given type has a non-null nullability annotation.
5525 static bool isNonNullType(ASTContext &ctx, QualType type) {
5526   if (auto nullability = type->getNullability(ctx))
5527     return *nullability == NullabilityKind::NonNull;
5528 
5529   return false;
5530 }
5531 
5532 static void CheckNonNullArguments(Sema &S,
5533                                   const NamedDecl *FDecl,
5534                                   const FunctionProtoType *Proto,
5535                                   ArrayRef<const Expr *> Args,
5536                                   SourceLocation CallSiteLoc) {
5537   assert((FDecl || Proto) && "Need a function declaration or prototype");
5538 
5539   // Already checked by by constant evaluator.
5540   if (S.isConstantEvaluated())
5541     return;
5542   // Check the attributes attached to the method/function itself.
5543   llvm::SmallBitVector NonNullArgs;
5544   if (FDecl) {
5545     // Handle the nonnull attribute on the function/method declaration itself.
5546     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
5547       if (!NonNull->args_size()) {
5548         // Easy case: all pointer arguments are nonnull.
5549         for (const auto *Arg : Args)
5550           if (S.isValidPointerAttrType(Arg->getType()))
5551             CheckNonNullArgument(S, Arg, CallSiteLoc);
5552         return;
5553       }
5554 
5555       for (const ParamIdx &Idx : NonNull->args()) {
5556         unsigned IdxAST = Idx.getASTIndex();
5557         if (IdxAST >= Args.size())
5558           continue;
5559         if (NonNullArgs.empty())
5560           NonNullArgs.resize(Args.size());
5561         NonNullArgs.set(IdxAST);
5562       }
5563     }
5564   }
5565 
5566   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
5567     // Handle the nonnull attribute on the parameters of the
5568     // function/method.
5569     ArrayRef<ParmVarDecl*> parms;
5570     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
5571       parms = FD->parameters();
5572     else
5573       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
5574 
5575     unsigned ParamIndex = 0;
5576     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
5577          I != E; ++I, ++ParamIndex) {
5578       const ParmVarDecl *PVD = *I;
5579       if (PVD->hasAttr<NonNullAttr>() ||
5580           isNonNullType(S.Context, PVD->getType())) {
5581         if (NonNullArgs.empty())
5582           NonNullArgs.resize(Args.size());
5583 
5584         NonNullArgs.set(ParamIndex);
5585       }
5586     }
5587   } else {
5588     // If we have a non-function, non-method declaration but no
5589     // function prototype, try to dig out the function prototype.
5590     if (!Proto) {
5591       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
5592         QualType type = VD->getType().getNonReferenceType();
5593         if (auto pointerType = type->getAs<PointerType>())
5594           type = pointerType->getPointeeType();
5595         else if (auto blockType = type->getAs<BlockPointerType>())
5596           type = blockType->getPointeeType();
5597         // FIXME: data member pointers?
5598 
5599         // Dig out the function prototype, if there is one.
5600         Proto = type->getAs<FunctionProtoType>();
5601       }
5602     }
5603 
5604     // Fill in non-null argument information from the nullability
5605     // information on the parameter types (if we have them).
5606     if (Proto) {
5607       unsigned Index = 0;
5608       for (auto paramType : Proto->getParamTypes()) {
5609         if (isNonNullType(S.Context, paramType)) {
5610           if (NonNullArgs.empty())
5611             NonNullArgs.resize(Args.size());
5612 
5613           NonNullArgs.set(Index);
5614         }
5615 
5616         ++Index;
5617       }
5618     }
5619   }
5620 
5621   // Check for non-null arguments.
5622   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
5623        ArgIndex != ArgIndexEnd; ++ArgIndex) {
5624     if (NonNullArgs[ArgIndex])
5625       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
5626   }
5627 }
5628 
5629 // 16 byte ByVal alignment not due to a vector member is not honoured by XL
5630 // on AIX. Emit a warning here that users are generating binary incompatible
5631 // code to be safe.
5632 // Here we try to get information about the alignment of the struct member
5633 // from the struct passed to the caller function. We only warn when the struct
5634 // is passed byval, hence the series of checks and early returns if we are a not
5635 // passing a struct byval.
5636 void Sema::checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg) {
5637   const auto *ICE = dyn_cast<ImplicitCastExpr>(Arg->IgnoreParens());
5638   if (!ICE)
5639     return;
5640 
5641   const auto *DR = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
5642   if (!DR)
5643     return;
5644 
5645   const auto *PD = dyn_cast<ParmVarDecl>(DR->getDecl());
5646   if (!PD || !PD->getType()->isRecordType())
5647     return;
5648 
5649   QualType ArgType = Arg->getType();
5650   for (const FieldDecl *FD :
5651        ArgType->castAs<RecordType>()->getDecl()->fields()) {
5652     if (const auto *AA = FD->getAttr<AlignedAttr>()) {
5653       CharUnits Alignment =
5654           Context.toCharUnitsFromBits(AA->getAlignment(Context));
5655       if (Alignment.getQuantity() == 16) {
5656         Diag(FD->getLocation(), diag::warn_not_xl_compatible) << FD;
5657         Diag(Loc, diag::note_misaligned_member_used_here) << PD;
5658       }
5659     }
5660   }
5661 }
5662 
5663 /// Warn if a pointer or reference argument passed to a function points to an
5664 /// object that is less aligned than the parameter. This can happen when
5665 /// creating a typedef with a lower alignment than the original type and then
5666 /// calling functions defined in terms of the original type.
5667 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
5668                              StringRef ParamName, QualType ArgTy,
5669                              QualType ParamTy) {
5670 
5671   // If a function accepts a pointer or reference type
5672   if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
5673     return;
5674 
5675   // If the parameter is a pointer type, get the pointee type for the
5676   // argument too. If the parameter is a reference type, don't try to get
5677   // the pointee type for the argument.
5678   if (ParamTy->isPointerType())
5679     ArgTy = ArgTy->getPointeeType();
5680 
5681   // Remove reference or pointer
5682   ParamTy = ParamTy->getPointeeType();
5683 
5684   // Find expected alignment, and the actual alignment of the passed object.
5685   // getTypeAlignInChars requires complete types
5686   if (ArgTy.isNull() || ParamTy->isIncompleteType() ||
5687       ArgTy->isIncompleteType() || ParamTy->isUndeducedType() ||
5688       ArgTy->isUndeducedType())
5689     return;
5690 
5691   CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
5692   CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
5693 
5694   // If the argument is less aligned than the parameter, there is a
5695   // potential alignment issue.
5696   if (ArgAlign < ParamAlign)
5697     Diag(Loc, diag::warn_param_mismatched_alignment)
5698         << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
5699         << ParamName << (FDecl != nullptr) << FDecl;
5700 }
5701 
5702 /// Handles the checks for format strings, non-POD arguments to vararg
5703 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
5704 /// attributes.
5705 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
5706                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
5707                      bool IsMemberFunction, SourceLocation Loc,
5708                      SourceRange Range, VariadicCallType CallType) {
5709   // FIXME: We should check as much as we can in the template definition.
5710   if (CurContext->isDependentContext())
5711     return;
5712 
5713   // Printf and scanf checking.
5714   llvm::SmallBitVector CheckedVarArgs;
5715   if (FDecl) {
5716     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
5717       // Only create vector if there are format attributes.
5718       CheckedVarArgs.resize(Args.size());
5719 
5720       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
5721                            CheckedVarArgs);
5722     }
5723   }
5724 
5725   // Refuse POD arguments that weren't caught by the format string
5726   // checks above.
5727   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
5728   if (CallType != VariadicDoesNotApply &&
5729       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
5730     unsigned NumParams = Proto ? Proto->getNumParams()
5731                        : FDecl && isa<FunctionDecl>(FDecl)
5732                            ? cast<FunctionDecl>(FDecl)->getNumParams()
5733                        : FDecl && isa<ObjCMethodDecl>(FDecl)
5734                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
5735                        : 0;
5736 
5737     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
5738       // Args[ArgIdx] can be null in malformed code.
5739       if (const Expr *Arg = Args[ArgIdx]) {
5740         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
5741           checkVariadicArgument(Arg, CallType);
5742       }
5743     }
5744   }
5745 
5746   if (FDecl || Proto) {
5747     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
5748 
5749     // Type safety checking.
5750     if (FDecl) {
5751       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
5752         CheckArgumentWithTypeTag(I, Args, Loc);
5753     }
5754   }
5755 
5756   // Check that passed arguments match the alignment of original arguments.
5757   // Try to get the missing prototype from the declaration.
5758   if (!Proto && FDecl) {
5759     const auto *FT = FDecl->getFunctionType();
5760     if (isa_and_nonnull<FunctionProtoType>(FT))
5761       Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
5762   }
5763   if (Proto) {
5764     // For variadic functions, we may have more args than parameters.
5765     // For some K&R functions, we may have less args than parameters.
5766     const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
5767     for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
5768       // Args[ArgIdx] can be null in malformed code.
5769       if (const Expr *Arg = Args[ArgIdx]) {
5770         if (Arg->containsErrors())
5771           continue;
5772 
5773         if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
5774             FDecl->hasLinkage() &&
5775             FDecl->getFormalLinkage() != InternalLinkage &&
5776             CallType == VariadicDoesNotApply)
5777           checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
5778 
5779         QualType ParamTy = Proto->getParamType(ArgIdx);
5780         QualType ArgTy = Arg->getType();
5781         CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
5782                           ArgTy, ParamTy);
5783       }
5784     }
5785   }
5786 
5787   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
5788     auto *AA = FDecl->getAttr<AllocAlignAttr>();
5789     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
5790     if (!Arg->isValueDependent()) {
5791       Expr::EvalResult Align;
5792       if (Arg->EvaluateAsInt(Align, Context)) {
5793         const llvm::APSInt &I = Align.Val.getInt();
5794         if (!I.isPowerOf2())
5795           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
5796               << Arg->getSourceRange();
5797 
5798         if (I > Sema::MaximumAlignment)
5799           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
5800               << Arg->getSourceRange() << Sema::MaximumAlignment;
5801       }
5802     }
5803   }
5804 
5805   if (FD)
5806     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
5807 }
5808 
5809 /// CheckConstructorCall - Check a constructor call for correctness and safety
5810 /// properties not enforced by the C type system.
5811 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
5812                                 ArrayRef<const Expr *> Args,
5813                                 const FunctionProtoType *Proto,
5814                                 SourceLocation Loc) {
5815   VariadicCallType CallType =
5816       Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5817 
5818   auto *Ctor = cast<CXXConstructorDecl>(FDecl);
5819   CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType),
5820                     Context.getPointerType(Ctor->getThisObjectType()));
5821 
5822   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
5823             Loc, SourceRange(), CallType);
5824 }
5825 
5826 /// CheckFunctionCall - Check a direct function call for various correctness
5827 /// and safety properties not strictly enforced by the C type system.
5828 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
5829                              const FunctionProtoType *Proto) {
5830   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
5831                               isa<CXXMethodDecl>(FDecl);
5832   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
5833                           IsMemberOperatorCall;
5834   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
5835                                                   TheCall->getCallee());
5836   Expr** Args = TheCall->getArgs();
5837   unsigned NumArgs = TheCall->getNumArgs();
5838 
5839   Expr *ImplicitThis = nullptr;
5840   if (IsMemberOperatorCall) {
5841     // If this is a call to a member operator, hide the first argument
5842     // from checkCall.
5843     // FIXME: Our choice of AST representation here is less than ideal.
5844     ImplicitThis = Args[0];
5845     ++Args;
5846     --NumArgs;
5847   } else if (IsMemberFunction)
5848     ImplicitThis =
5849         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
5850 
5851   if (ImplicitThis) {
5852     // ImplicitThis may or may not be a pointer, depending on whether . or -> is
5853     // used.
5854     QualType ThisType = ImplicitThis->getType();
5855     if (!ThisType->isPointerType()) {
5856       assert(!ThisType->isReferenceType());
5857       ThisType = Context.getPointerType(ThisType);
5858     }
5859 
5860     QualType ThisTypeFromDecl =
5861         Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType());
5862 
5863     CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
5864                       ThisTypeFromDecl);
5865   }
5866 
5867   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
5868             IsMemberFunction, TheCall->getRParenLoc(),
5869             TheCall->getCallee()->getSourceRange(), CallType);
5870 
5871   IdentifierInfo *FnInfo = FDecl->getIdentifier();
5872   // None of the checks below are needed for functions that don't have
5873   // simple names (e.g., C++ conversion functions).
5874   if (!FnInfo)
5875     return false;
5876 
5877   // Enforce TCB except for builtin calls, which are always allowed.
5878   if (FDecl->getBuiltinID() == 0)
5879     CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
5880 
5881   CheckAbsoluteValueFunction(TheCall, FDecl);
5882   CheckMaxUnsignedZero(TheCall, FDecl);
5883 
5884   if (getLangOpts().ObjC)
5885     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
5886 
5887   unsigned CMId = FDecl->getMemoryFunctionKind();
5888 
5889   // Handle memory setting and copying functions.
5890   switch (CMId) {
5891   case 0:
5892     return false;
5893   case Builtin::BIstrlcpy: // fallthrough
5894   case Builtin::BIstrlcat:
5895     CheckStrlcpycatArguments(TheCall, FnInfo);
5896     break;
5897   case Builtin::BIstrncat:
5898     CheckStrncatArguments(TheCall, FnInfo);
5899     break;
5900   case Builtin::BIfree:
5901     CheckFreeArguments(TheCall);
5902     break;
5903   default:
5904     CheckMemaccessArguments(TheCall, CMId, FnInfo);
5905   }
5906 
5907   return false;
5908 }
5909 
5910 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
5911                                ArrayRef<const Expr *> Args) {
5912   VariadicCallType CallType =
5913       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
5914 
5915   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
5916             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
5917             CallType);
5918 
5919   CheckTCBEnforcement(lbrac, Method);
5920 
5921   return false;
5922 }
5923 
5924 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
5925                             const FunctionProtoType *Proto) {
5926   QualType Ty;
5927   if (const auto *V = dyn_cast<VarDecl>(NDecl))
5928     Ty = V->getType().getNonReferenceType();
5929   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
5930     Ty = F->getType().getNonReferenceType();
5931   else
5932     return false;
5933 
5934   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
5935       !Ty->isFunctionProtoType())
5936     return false;
5937 
5938   VariadicCallType CallType;
5939   if (!Proto || !Proto->isVariadic()) {
5940     CallType = VariadicDoesNotApply;
5941   } else if (Ty->isBlockPointerType()) {
5942     CallType = VariadicBlock;
5943   } else { // Ty->isFunctionPointerType()
5944     CallType = VariadicFunction;
5945   }
5946 
5947   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
5948             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5949             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5950             TheCall->getCallee()->getSourceRange(), CallType);
5951 
5952   return false;
5953 }
5954 
5955 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
5956 /// such as function pointers returned from functions.
5957 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
5958   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
5959                                                   TheCall->getCallee());
5960   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
5961             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
5962             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
5963             TheCall->getCallee()->getSourceRange(), CallType);
5964 
5965   return false;
5966 }
5967 
5968 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
5969   if (!llvm::isValidAtomicOrderingCABI(Ordering))
5970     return false;
5971 
5972   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
5973   switch (Op) {
5974   case AtomicExpr::AO__c11_atomic_init:
5975   case AtomicExpr::AO__opencl_atomic_init:
5976     llvm_unreachable("There is no ordering argument for an init");
5977 
5978   case AtomicExpr::AO__c11_atomic_load:
5979   case AtomicExpr::AO__opencl_atomic_load:
5980   case AtomicExpr::AO__hip_atomic_load:
5981   case AtomicExpr::AO__atomic_load_n:
5982   case AtomicExpr::AO__atomic_load:
5983     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
5984            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5985 
5986   case AtomicExpr::AO__c11_atomic_store:
5987   case AtomicExpr::AO__opencl_atomic_store:
5988   case AtomicExpr::AO__hip_atomic_store:
5989   case AtomicExpr::AO__atomic_store:
5990   case AtomicExpr::AO__atomic_store_n:
5991     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
5992            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
5993            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
5994 
5995   default:
5996     return true;
5997   }
5998 }
5999 
6000 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
6001                                          AtomicExpr::AtomicOp Op) {
6002   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
6003   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6004   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
6005   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
6006                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
6007                          Op);
6008 }
6009 
6010 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
6011                                  SourceLocation RParenLoc, MultiExprArg Args,
6012                                  AtomicExpr::AtomicOp Op,
6013                                  AtomicArgumentOrder ArgOrder) {
6014   // All the non-OpenCL operations take one of the following forms.
6015   // The OpenCL operations take the __c11 forms with one extra argument for
6016   // synchronization scope.
6017   enum {
6018     // C    __c11_atomic_init(A *, C)
6019     Init,
6020 
6021     // C    __c11_atomic_load(A *, int)
6022     Load,
6023 
6024     // void __atomic_load(A *, CP, int)
6025     LoadCopy,
6026 
6027     // void __atomic_store(A *, CP, int)
6028     Copy,
6029 
6030     // C    __c11_atomic_add(A *, M, int)
6031     Arithmetic,
6032 
6033     // C    __atomic_exchange_n(A *, CP, int)
6034     Xchg,
6035 
6036     // void __atomic_exchange(A *, C *, CP, int)
6037     GNUXchg,
6038 
6039     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
6040     C11CmpXchg,
6041 
6042     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
6043     GNUCmpXchg
6044   } Form = Init;
6045 
6046   const unsigned NumForm = GNUCmpXchg + 1;
6047   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
6048   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
6049   // where:
6050   //   C is an appropriate type,
6051   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
6052   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
6053   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
6054   //   the int parameters are for orderings.
6055 
6056   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
6057       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
6058       "need to update code for modified forms");
6059   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
6060                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
6061                         AtomicExpr::AO__atomic_load,
6062                 "need to update code for modified C11 atomics");
6063   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
6064                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
6065   bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
6066                Op <= AtomicExpr::AO__hip_atomic_fetch_max;
6067   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
6068                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
6069                IsOpenCL;
6070   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
6071              Op == AtomicExpr::AO__atomic_store_n ||
6072              Op == AtomicExpr::AO__atomic_exchange_n ||
6073              Op == AtomicExpr::AO__atomic_compare_exchange_n;
6074   bool IsAddSub = false;
6075 
6076   switch (Op) {
6077   case AtomicExpr::AO__c11_atomic_init:
6078   case AtomicExpr::AO__opencl_atomic_init:
6079     Form = Init;
6080     break;
6081 
6082   case AtomicExpr::AO__c11_atomic_load:
6083   case AtomicExpr::AO__opencl_atomic_load:
6084   case AtomicExpr::AO__hip_atomic_load:
6085   case AtomicExpr::AO__atomic_load_n:
6086     Form = Load;
6087     break;
6088 
6089   case AtomicExpr::AO__atomic_load:
6090     Form = LoadCopy;
6091     break;
6092 
6093   case AtomicExpr::AO__c11_atomic_store:
6094   case AtomicExpr::AO__opencl_atomic_store:
6095   case AtomicExpr::AO__hip_atomic_store:
6096   case AtomicExpr::AO__atomic_store:
6097   case AtomicExpr::AO__atomic_store_n:
6098     Form = Copy;
6099     break;
6100   case AtomicExpr::AO__hip_atomic_fetch_add:
6101   case AtomicExpr::AO__hip_atomic_fetch_min:
6102   case AtomicExpr::AO__hip_atomic_fetch_max:
6103   case AtomicExpr::AO__c11_atomic_fetch_add:
6104   case AtomicExpr::AO__c11_atomic_fetch_sub:
6105   case AtomicExpr::AO__opencl_atomic_fetch_add:
6106   case AtomicExpr::AO__opencl_atomic_fetch_sub:
6107   case AtomicExpr::AO__atomic_fetch_add:
6108   case AtomicExpr::AO__atomic_fetch_sub:
6109   case AtomicExpr::AO__atomic_add_fetch:
6110   case AtomicExpr::AO__atomic_sub_fetch:
6111     IsAddSub = true;
6112     Form = Arithmetic;
6113     break;
6114   case AtomicExpr::AO__c11_atomic_fetch_and:
6115   case AtomicExpr::AO__c11_atomic_fetch_or:
6116   case AtomicExpr::AO__c11_atomic_fetch_xor:
6117   case AtomicExpr::AO__hip_atomic_fetch_and:
6118   case AtomicExpr::AO__hip_atomic_fetch_or:
6119   case AtomicExpr::AO__hip_atomic_fetch_xor:
6120   case AtomicExpr::AO__c11_atomic_fetch_nand:
6121   case AtomicExpr::AO__opencl_atomic_fetch_and:
6122   case AtomicExpr::AO__opencl_atomic_fetch_or:
6123   case AtomicExpr::AO__opencl_atomic_fetch_xor:
6124   case AtomicExpr::AO__atomic_fetch_and:
6125   case AtomicExpr::AO__atomic_fetch_or:
6126   case AtomicExpr::AO__atomic_fetch_xor:
6127   case AtomicExpr::AO__atomic_fetch_nand:
6128   case AtomicExpr::AO__atomic_and_fetch:
6129   case AtomicExpr::AO__atomic_or_fetch:
6130   case AtomicExpr::AO__atomic_xor_fetch:
6131   case AtomicExpr::AO__atomic_nand_fetch:
6132     Form = Arithmetic;
6133     break;
6134   case AtomicExpr::AO__c11_atomic_fetch_min:
6135   case AtomicExpr::AO__c11_atomic_fetch_max:
6136   case AtomicExpr::AO__opencl_atomic_fetch_min:
6137   case AtomicExpr::AO__opencl_atomic_fetch_max:
6138   case AtomicExpr::AO__atomic_min_fetch:
6139   case AtomicExpr::AO__atomic_max_fetch:
6140   case AtomicExpr::AO__atomic_fetch_min:
6141   case AtomicExpr::AO__atomic_fetch_max:
6142     Form = Arithmetic;
6143     break;
6144 
6145   case AtomicExpr::AO__c11_atomic_exchange:
6146   case AtomicExpr::AO__hip_atomic_exchange:
6147   case AtomicExpr::AO__opencl_atomic_exchange:
6148   case AtomicExpr::AO__atomic_exchange_n:
6149     Form = Xchg;
6150     break;
6151 
6152   case AtomicExpr::AO__atomic_exchange:
6153     Form = GNUXchg;
6154     break;
6155 
6156   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
6157   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
6158   case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
6159   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
6160   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
6161   case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
6162     Form = C11CmpXchg;
6163     break;
6164 
6165   case AtomicExpr::AO__atomic_compare_exchange:
6166   case AtomicExpr::AO__atomic_compare_exchange_n:
6167     Form = GNUCmpXchg;
6168     break;
6169   }
6170 
6171   unsigned AdjustedNumArgs = NumArgs[Form];
6172   if ((IsOpenCL || IsHIP) && Op != AtomicExpr::AO__opencl_atomic_init)
6173     ++AdjustedNumArgs;
6174   // Check we have the right number of arguments.
6175   if (Args.size() < AdjustedNumArgs) {
6176     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
6177         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
6178         << ExprRange;
6179     return ExprError();
6180   } else if (Args.size() > AdjustedNumArgs) {
6181     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
6182          diag::err_typecheck_call_too_many_args)
6183         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
6184         << ExprRange;
6185     return ExprError();
6186   }
6187 
6188   // Inspect the first argument of the atomic operation.
6189   Expr *Ptr = Args[0];
6190   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
6191   if (ConvertedPtr.isInvalid())
6192     return ExprError();
6193 
6194   Ptr = ConvertedPtr.get();
6195   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
6196   if (!pointerType) {
6197     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
6198         << Ptr->getType() << Ptr->getSourceRange();
6199     return ExprError();
6200   }
6201 
6202   // For a __c11 builtin, this should be a pointer to an _Atomic type.
6203   QualType AtomTy = pointerType->getPointeeType(); // 'A'
6204   QualType ValType = AtomTy; // 'C'
6205   if (IsC11) {
6206     if (!AtomTy->isAtomicType()) {
6207       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
6208           << Ptr->getType() << Ptr->getSourceRange();
6209       return ExprError();
6210     }
6211     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
6212         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
6213       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
6214           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
6215           << Ptr->getSourceRange();
6216       return ExprError();
6217     }
6218     ValType = AtomTy->castAs<AtomicType>()->getValueType();
6219   } else if (Form != Load && Form != LoadCopy) {
6220     if (ValType.isConstQualified()) {
6221       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
6222           << Ptr->getType() << Ptr->getSourceRange();
6223       return ExprError();
6224     }
6225   }
6226 
6227   // For an arithmetic operation, the implied arithmetic must be well-formed.
6228   if (Form == Arithmetic) {
6229     // GCC does not enforce these rules for GNU atomics, but we do to help catch
6230     // trivial type errors.
6231     auto IsAllowedValueType = [&](QualType ValType) {
6232       if (ValType->isIntegerType())
6233         return true;
6234       if (ValType->isPointerType())
6235         return true;
6236       if (!ValType->isFloatingType())
6237         return false;
6238       // LLVM Parser does not allow atomicrmw with x86_fp80 type.
6239       if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
6240           &Context.getTargetInfo().getLongDoubleFormat() ==
6241               &llvm::APFloat::x87DoubleExtended())
6242         return false;
6243       return true;
6244     };
6245     if (IsAddSub && !IsAllowedValueType(ValType)) {
6246       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp)
6247           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6248       return ExprError();
6249     }
6250     if (!IsAddSub && !ValType->isIntegerType()) {
6251       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
6252           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6253       return ExprError();
6254     }
6255     if (IsC11 && ValType->isPointerType() &&
6256         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
6257                             diag::err_incomplete_type)) {
6258       return ExprError();
6259     }
6260   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
6261     // For __atomic_*_n operations, the value type must be a scalar integral or
6262     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
6263     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
6264         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
6265     return ExprError();
6266   }
6267 
6268   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
6269       !AtomTy->isScalarType()) {
6270     // For GNU atomics, require a trivially-copyable type. This is not part of
6271     // the GNU atomics specification but we enforce it for consistency with
6272     // other atomics which generally all require a trivially-copyable type. This
6273     // is because atomics just copy bits.
6274     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
6275         << Ptr->getType() << Ptr->getSourceRange();
6276     return ExprError();
6277   }
6278 
6279   switch (ValType.getObjCLifetime()) {
6280   case Qualifiers::OCL_None:
6281   case Qualifiers::OCL_ExplicitNone:
6282     // okay
6283     break;
6284 
6285   case Qualifiers::OCL_Weak:
6286   case Qualifiers::OCL_Strong:
6287   case Qualifiers::OCL_Autoreleasing:
6288     // FIXME: Can this happen? By this point, ValType should be known
6289     // to be trivially copyable.
6290     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
6291         << ValType << Ptr->getSourceRange();
6292     return ExprError();
6293   }
6294 
6295   // All atomic operations have an overload which takes a pointer to a volatile
6296   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
6297   // into the result or the other operands. Similarly atomic_load takes a
6298   // pointer to a const 'A'.
6299   ValType.removeLocalVolatile();
6300   ValType.removeLocalConst();
6301   QualType ResultType = ValType;
6302   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
6303       Form == Init)
6304     ResultType = Context.VoidTy;
6305   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
6306     ResultType = Context.BoolTy;
6307 
6308   // The type of a parameter passed 'by value'. In the GNU atomics, such
6309   // arguments are actually passed as pointers.
6310   QualType ByValType = ValType; // 'CP'
6311   bool IsPassedByAddress = false;
6312   if (!IsC11 && !IsHIP && !IsN) {
6313     ByValType = Ptr->getType();
6314     IsPassedByAddress = true;
6315   }
6316 
6317   SmallVector<Expr *, 5> APIOrderedArgs;
6318   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
6319     APIOrderedArgs.push_back(Args[0]);
6320     switch (Form) {
6321     case Init:
6322     case Load:
6323       APIOrderedArgs.push_back(Args[1]); // Val1/Order
6324       break;
6325     case LoadCopy:
6326     case Copy:
6327     case Arithmetic:
6328     case Xchg:
6329       APIOrderedArgs.push_back(Args[2]); // Val1
6330       APIOrderedArgs.push_back(Args[1]); // Order
6331       break;
6332     case GNUXchg:
6333       APIOrderedArgs.push_back(Args[2]); // Val1
6334       APIOrderedArgs.push_back(Args[3]); // Val2
6335       APIOrderedArgs.push_back(Args[1]); // Order
6336       break;
6337     case C11CmpXchg:
6338       APIOrderedArgs.push_back(Args[2]); // Val1
6339       APIOrderedArgs.push_back(Args[4]); // Val2
6340       APIOrderedArgs.push_back(Args[1]); // Order
6341       APIOrderedArgs.push_back(Args[3]); // OrderFail
6342       break;
6343     case GNUCmpXchg:
6344       APIOrderedArgs.push_back(Args[2]); // Val1
6345       APIOrderedArgs.push_back(Args[4]); // Val2
6346       APIOrderedArgs.push_back(Args[5]); // Weak
6347       APIOrderedArgs.push_back(Args[1]); // Order
6348       APIOrderedArgs.push_back(Args[3]); // OrderFail
6349       break;
6350     }
6351   } else
6352     APIOrderedArgs.append(Args.begin(), Args.end());
6353 
6354   // The first argument's non-CV pointer type is used to deduce the type of
6355   // subsequent arguments, except for:
6356   //  - weak flag (always converted to bool)
6357   //  - memory order (always converted to int)
6358   //  - scope  (always converted to int)
6359   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
6360     QualType Ty;
6361     if (i < NumVals[Form] + 1) {
6362       switch (i) {
6363       case 0:
6364         // The first argument is always a pointer. It has a fixed type.
6365         // It is always dereferenced, a nullptr is undefined.
6366         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
6367         // Nothing else to do: we already know all we want about this pointer.
6368         continue;
6369       case 1:
6370         // The second argument is the non-atomic operand. For arithmetic, this
6371         // is always passed by value, and for a compare_exchange it is always
6372         // passed by address. For the rest, GNU uses by-address and C11 uses
6373         // by-value.
6374         assert(Form != Load);
6375         if (Form == Arithmetic && ValType->isPointerType())
6376           Ty = Context.getPointerDiffType();
6377         else if (Form == Init || Form == Arithmetic)
6378           Ty = ValType;
6379         else if (Form == Copy || Form == Xchg) {
6380           if (IsPassedByAddress) {
6381             // The value pointer is always dereferenced, a nullptr is undefined.
6382             CheckNonNullArgument(*this, APIOrderedArgs[i],
6383                                  ExprRange.getBegin());
6384           }
6385           Ty = ByValType;
6386         } else {
6387           Expr *ValArg = APIOrderedArgs[i];
6388           // The value pointer is always dereferenced, a nullptr is undefined.
6389           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
6390           LangAS AS = LangAS::Default;
6391           // Keep address space of non-atomic pointer type.
6392           if (const PointerType *PtrTy =
6393                   ValArg->getType()->getAs<PointerType>()) {
6394             AS = PtrTy->getPointeeType().getAddressSpace();
6395           }
6396           Ty = Context.getPointerType(
6397               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
6398         }
6399         break;
6400       case 2:
6401         // The third argument to compare_exchange / GNU exchange is the desired
6402         // value, either by-value (for the C11 and *_n variant) or as a pointer.
6403         if (IsPassedByAddress)
6404           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
6405         Ty = ByValType;
6406         break;
6407       case 3:
6408         // The fourth argument to GNU compare_exchange is a 'weak' flag.
6409         Ty = Context.BoolTy;
6410         break;
6411       }
6412     } else {
6413       // The order(s) and scope are always converted to int.
6414       Ty = Context.IntTy;
6415     }
6416 
6417     InitializedEntity Entity =
6418         InitializedEntity::InitializeParameter(Context, Ty, false);
6419     ExprResult Arg = APIOrderedArgs[i];
6420     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6421     if (Arg.isInvalid())
6422       return true;
6423     APIOrderedArgs[i] = Arg.get();
6424   }
6425 
6426   // Permute the arguments into a 'consistent' order.
6427   SmallVector<Expr*, 5> SubExprs;
6428   SubExprs.push_back(Ptr);
6429   switch (Form) {
6430   case Init:
6431     // Note, AtomicExpr::getVal1() has a special case for this atomic.
6432     SubExprs.push_back(APIOrderedArgs[1]); // Val1
6433     break;
6434   case Load:
6435     SubExprs.push_back(APIOrderedArgs[1]); // Order
6436     break;
6437   case LoadCopy:
6438   case Copy:
6439   case Arithmetic:
6440   case Xchg:
6441     SubExprs.push_back(APIOrderedArgs[2]); // Order
6442     SubExprs.push_back(APIOrderedArgs[1]); // Val1
6443     break;
6444   case GNUXchg:
6445     // Note, AtomicExpr::getVal2() has a special case for this atomic.
6446     SubExprs.push_back(APIOrderedArgs[3]); // Order
6447     SubExprs.push_back(APIOrderedArgs[1]); // Val1
6448     SubExprs.push_back(APIOrderedArgs[2]); // Val2
6449     break;
6450   case C11CmpXchg:
6451     SubExprs.push_back(APIOrderedArgs[3]); // Order
6452     SubExprs.push_back(APIOrderedArgs[1]); // Val1
6453     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
6454     SubExprs.push_back(APIOrderedArgs[2]); // Val2
6455     break;
6456   case GNUCmpXchg:
6457     SubExprs.push_back(APIOrderedArgs[4]); // Order
6458     SubExprs.push_back(APIOrderedArgs[1]); // Val1
6459     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
6460     SubExprs.push_back(APIOrderedArgs[2]); // Val2
6461     SubExprs.push_back(APIOrderedArgs[3]); // Weak
6462     break;
6463   }
6464 
6465   if (SubExprs.size() >= 2 && Form != Init) {
6466     if (Optional<llvm::APSInt> Result =
6467             SubExprs[1]->getIntegerConstantExpr(Context))
6468       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
6469         Diag(SubExprs[1]->getBeginLoc(),
6470              diag::warn_atomic_op_has_invalid_memory_order)
6471             << SubExprs[1]->getSourceRange();
6472   }
6473 
6474   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
6475     auto *Scope = Args[Args.size() - 1];
6476     if (Optional<llvm::APSInt> Result =
6477             Scope->getIntegerConstantExpr(Context)) {
6478       if (!ScopeModel->isValid(Result->getZExtValue()))
6479         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
6480             << Scope->getSourceRange();
6481     }
6482     SubExprs.push_back(Scope);
6483   }
6484 
6485   AtomicExpr *AE = new (Context)
6486       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
6487 
6488   if ((Op == AtomicExpr::AO__c11_atomic_load ||
6489        Op == AtomicExpr::AO__c11_atomic_store ||
6490        Op == AtomicExpr::AO__opencl_atomic_load ||
6491        Op == AtomicExpr::AO__hip_atomic_load ||
6492        Op == AtomicExpr::AO__opencl_atomic_store ||
6493        Op == AtomicExpr::AO__hip_atomic_store) &&
6494       Context.AtomicUsesUnsupportedLibcall(AE))
6495     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
6496         << ((Op == AtomicExpr::AO__c11_atomic_load ||
6497              Op == AtomicExpr::AO__opencl_atomic_load ||
6498              Op == AtomicExpr::AO__hip_atomic_load)
6499                 ? 0
6500                 : 1);
6501 
6502   if (ValType->isBitIntType()) {
6503     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
6504     return ExprError();
6505   }
6506 
6507   return AE;
6508 }
6509 
6510 /// checkBuiltinArgument - Given a call to a builtin function, perform
6511 /// normal type-checking on the given argument, updating the call in
6512 /// place.  This is useful when a builtin function requires custom
6513 /// type-checking for some of its arguments but not necessarily all of
6514 /// them.
6515 ///
6516 /// Returns true on error.
6517 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
6518   FunctionDecl *Fn = E->getDirectCallee();
6519   assert(Fn && "builtin call without direct callee!");
6520 
6521   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
6522   InitializedEntity Entity =
6523     InitializedEntity::InitializeParameter(S.Context, Param);
6524 
6525   ExprResult Arg = E->getArg(ArgIndex);
6526   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
6527   if (Arg.isInvalid())
6528     return true;
6529 
6530   E->setArg(ArgIndex, Arg.get());
6531   return false;
6532 }
6533 
6534 /// We have a call to a function like __sync_fetch_and_add, which is an
6535 /// overloaded function based on the pointer type of its first argument.
6536 /// The main BuildCallExpr routines have already promoted the types of
6537 /// arguments because all of these calls are prototyped as void(...).
6538 ///
6539 /// This function goes through and does final semantic checking for these
6540 /// builtins, as well as generating any warnings.
6541 ExprResult
6542 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
6543   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
6544   Expr *Callee = TheCall->getCallee();
6545   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
6546   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6547 
6548   // Ensure that we have at least one argument to do type inference from.
6549   if (TheCall->getNumArgs() < 1) {
6550     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6551         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
6552     return ExprError();
6553   }
6554 
6555   // Inspect the first argument of the atomic builtin.  This should always be
6556   // a pointer type, whose element is an integral scalar or pointer type.
6557   // Because it is a pointer type, we don't have to worry about any implicit
6558   // casts here.
6559   // FIXME: We don't allow floating point scalars as input.
6560   Expr *FirstArg = TheCall->getArg(0);
6561   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
6562   if (FirstArgResult.isInvalid())
6563     return ExprError();
6564   FirstArg = FirstArgResult.get();
6565   TheCall->setArg(0, FirstArg);
6566 
6567   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
6568   if (!pointerType) {
6569     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
6570         << FirstArg->getType() << FirstArg->getSourceRange();
6571     return ExprError();
6572   }
6573 
6574   QualType ValType = pointerType->getPointeeType();
6575   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6576       !ValType->isBlockPointerType()) {
6577     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
6578         << FirstArg->getType() << FirstArg->getSourceRange();
6579     return ExprError();
6580   }
6581 
6582   if (ValType.isConstQualified()) {
6583     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
6584         << FirstArg->getType() << FirstArg->getSourceRange();
6585     return ExprError();
6586   }
6587 
6588   switch (ValType.getObjCLifetime()) {
6589   case Qualifiers::OCL_None:
6590   case Qualifiers::OCL_ExplicitNone:
6591     // okay
6592     break;
6593 
6594   case Qualifiers::OCL_Weak:
6595   case Qualifiers::OCL_Strong:
6596   case Qualifiers::OCL_Autoreleasing:
6597     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
6598         << ValType << FirstArg->getSourceRange();
6599     return ExprError();
6600   }
6601 
6602   // Strip any qualifiers off ValType.
6603   ValType = ValType.getUnqualifiedType();
6604 
6605   // The majority of builtins return a value, but a few have special return
6606   // types, so allow them to override appropriately below.
6607   QualType ResultType = ValType;
6608 
6609   // We need to figure out which concrete builtin this maps onto.  For example,
6610   // __sync_fetch_and_add with a 2 byte object turns into
6611   // __sync_fetch_and_add_2.
6612 #define BUILTIN_ROW(x) \
6613   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
6614     Builtin::BI##x##_8, Builtin::BI##x##_16 }
6615 
6616   static const unsigned BuiltinIndices[][5] = {
6617     BUILTIN_ROW(__sync_fetch_and_add),
6618     BUILTIN_ROW(__sync_fetch_and_sub),
6619     BUILTIN_ROW(__sync_fetch_and_or),
6620     BUILTIN_ROW(__sync_fetch_and_and),
6621     BUILTIN_ROW(__sync_fetch_and_xor),
6622     BUILTIN_ROW(__sync_fetch_and_nand),
6623 
6624     BUILTIN_ROW(__sync_add_and_fetch),
6625     BUILTIN_ROW(__sync_sub_and_fetch),
6626     BUILTIN_ROW(__sync_and_and_fetch),
6627     BUILTIN_ROW(__sync_or_and_fetch),
6628     BUILTIN_ROW(__sync_xor_and_fetch),
6629     BUILTIN_ROW(__sync_nand_and_fetch),
6630 
6631     BUILTIN_ROW(__sync_val_compare_and_swap),
6632     BUILTIN_ROW(__sync_bool_compare_and_swap),
6633     BUILTIN_ROW(__sync_lock_test_and_set),
6634     BUILTIN_ROW(__sync_lock_release),
6635     BUILTIN_ROW(__sync_swap)
6636   };
6637 #undef BUILTIN_ROW
6638 
6639   // Determine the index of the size.
6640   unsigned SizeIndex;
6641   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
6642   case 1: SizeIndex = 0; break;
6643   case 2: SizeIndex = 1; break;
6644   case 4: SizeIndex = 2; break;
6645   case 8: SizeIndex = 3; break;
6646   case 16: SizeIndex = 4; break;
6647   default:
6648     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
6649         << FirstArg->getType() << FirstArg->getSourceRange();
6650     return ExprError();
6651   }
6652 
6653   // Each of these builtins has one pointer argument, followed by some number of
6654   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
6655   // that we ignore.  Find out which row of BuiltinIndices to read from as well
6656   // as the number of fixed args.
6657   unsigned BuiltinID = FDecl->getBuiltinID();
6658   unsigned BuiltinIndex, NumFixed = 1;
6659   bool WarnAboutSemanticsChange = false;
6660   switch (BuiltinID) {
6661   default: llvm_unreachable("Unknown overloaded atomic builtin!");
6662   case Builtin::BI__sync_fetch_and_add:
6663   case Builtin::BI__sync_fetch_and_add_1:
6664   case Builtin::BI__sync_fetch_and_add_2:
6665   case Builtin::BI__sync_fetch_and_add_4:
6666   case Builtin::BI__sync_fetch_and_add_8:
6667   case Builtin::BI__sync_fetch_and_add_16:
6668     BuiltinIndex = 0;
6669     break;
6670 
6671   case Builtin::BI__sync_fetch_and_sub:
6672   case Builtin::BI__sync_fetch_and_sub_1:
6673   case Builtin::BI__sync_fetch_and_sub_2:
6674   case Builtin::BI__sync_fetch_and_sub_4:
6675   case Builtin::BI__sync_fetch_and_sub_8:
6676   case Builtin::BI__sync_fetch_and_sub_16:
6677     BuiltinIndex = 1;
6678     break;
6679 
6680   case Builtin::BI__sync_fetch_and_or:
6681   case Builtin::BI__sync_fetch_and_or_1:
6682   case Builtin::BI__sync_fetch_and_or_2:
6683   case Builtin::BI__sync_fetch_and_or_4:
6684   case Builtin::BI__sync_fetch_and_or_8:
6685   case Builtin::BI__sync_fetch_and_or_16:
6686     BuiltinIndex = 2;
6687     break;
6688 
6689   case Builtin::BI__sync_fetch_and_and:
6690   case Builtin::BI__sync_fetch_and_and_1:
6691   case Builtin::BI__sync_fetch_and_and_2:
6692   case Builtin::BI__sync_fetch_and_and_4:
6693   case Builtin::BI__sync_fetch_and_and_8:
6694   case Builtin::BI__sync_fetch_and_and_16:
6695     BuiltinIndex = 3;
6696     break;
6697 
6698   case Builtin::BI__sync_fetch_and_xor:
6699   case Builtin::BI__sync_fetch_and_xor_1:
6700   case Builtin::BI__sync_fetch_and_xor_2:
6701   case Builtin::BI__sync_fetch_and_xor_4:
6702   case Builtin::BI__sync_fetch_and_xor_8:
6703   case Builtin::BI__sync_fetch_and_xor_16:
6704     BuiltinIndex = 4;
6705     break;
6706 
6707   case Builtin::BI__sync_fetch_and_nand:
6708   case Builtin::BI__sync_fetch_and_nand_1:
6709   case Builtin::BI__sync_fetch_and_nand_2:
6710   case Builtin::BI__sync_fetch_and_nand_4:
6711   case Builtin::BI__sync_fetch_and_nand_8:
6712   case Builtin::BI__sync_fetch_and_nand_16:
6713     BuiltinIndex = 5;
6714     WarnAboutSemanticsChange = true;
6715     break;
6716 
6717   case Builtin::BI__sync_add_and_fetch:
6718   case Builtin::BI__sync_add_and_fetch_1:
6719   case Builtin::BI__sync_add_and_fetch_2:
6720   case Builtin::BI__sync_add_and_fetch_4:
6721   case Builtin::BI__sync_add_and_fetch_8:
6722   case Builtin::BI__sync_add_and_fetch_16:
6723     BuiltinIndex = 6;
6724     break;
6725 
6726   case Builtin::BI__sync_sub_and_fetch:
6727   case Builtin::BI__sync_sub_and_fetch_1:
6728   case Builtin::BI__sync_sub_and_fetch_2:
6729   case Builtin::BI__sync_sub_and_fetch_4:
6730   case Builtin::BI__sync_sub_and_fetch_8:
6731   case Builtin::BI__sync_sub_and_fetch_16:
6732     BuiltinIndex = 7;
6733     break;
6734 
6735   case Builtin::BI__sync_and_and_fetch:
6736   case Builtin::BI__sync_and_and_fetch_1:
6737   case Builtin::BI__sync_and_and_fetch_2:
6738   case Builtin::BI__sync_and_and_fetch_4:
6739   case Builtin::BI__sync_and_and_fetch_8:
6740   case Builtin::BI__sync_and_and_fetch_16:
6741     BuiltinIndex = 8;
6742     break;
6743 
6744   case Builtin::BI__sync_or_and_fetch:
6745   case Builtin::BI__sync_or_and_fetch_1:
6746   case Builtin::BI__sync_or_and_fetch_2:
6747   case Builtin::BI__sync_or_and_fetch_4:
6748   case Builtin::BI__sync_or_and_fetch_8:
6749   case Builtin::BI__sync_or_and_fetch_16:
6750     BuiltinIndex = 9;
6751     break;
6752 
6753   case Builtin::BI__sync_xor_and_fetch:
6754   case Builtin::BI__sync_xor_and_fetch_1:
6755   case Builtin::BI__sync_xor_and_fetch_2:
6756   case Builtin::BI__sync_xor_and_fetch_4:
6757   case Builtin::BI__sync_xor_and_fetch_8:
6758   case Builtin::BI__sync_xor_and_fetch_16:
6759     BuiltinIndex = 10;
6760     break;
6761 
6762   case Builtin::BI__sync_nand_and_fetch:
6763   case Builtin::BI__sync_nand_and_fetch_1:
6764   case Builtin::BI__sync_nand_and_fetch_2:
6765   case Builtin::BI__sync_nand_and_fetch_4:
6766   case Builtin::BI__sync_nand_and_fetch_8:
6767   case Builtin::BI__sync_nand_and_fetch_16:
6768     BuiltinIndex = 11;
6769     WarnAboutSemanticsChange = true;
6770     break;
6771 
6772   case Builtin::BI__sync_val_compare_and_swap:
6773   case Builtin::BI__sync_val_compare_and_swap_1:
6774   case Builtin::BI__sync_val_compare_and_swap_2:
6775   case Builtin::BI__sync_val_compare_and_swap_4:
6776   case Builtin::BI__sync_val_compare_and_swap_8:
6777   case Builtin::BI__sync_val_compare_and_swap_16:
6778     BuiltinIndex = 12;
6779     NumFixed = 2;
6780     break;
6781 
6782   case Builtin::BI__sync_bool_compare_and_swap:
6783   case Builtin::BI__sync_bool_compare_and_swap_1:
6784   case Builtin::BI__sync_bool_compare_and_swap_2:
6785   case Builtin::BI__sync_bool_compare_and_swap_4:
6786   case Builtin::BI__sync_bool_compare_and_swap_8:
6787   case Builtin::BI__sync_bool_compare_and_swap_16:
6788     BuiltinIndex = 13;
6789     NumFixed = 2;
6790     ResultType = Context.BoolTy;
6791     break;
6792 
6793   case Builtin::BI__sync_lock_test_and_set:
6794   case Builtin::BI__sync_lock_test_and_set_1:
6795   case Builtin::BI__sync_lock_test_and_set_2:
6796   case Builtin::BI__sync_lock_test_and_set_4:
6797   case Builtin::BI__sync_lock_test_and_set_8:
6798   case Builtin::BI__sync_lock_test_and_set_16:
6799     BuiltinIndex = 14;
6800     break;
6801 
6802   case Builtin::BI__sync_lock_release:
6803   case Builtin::BI__sync_lock_release_1:
6804   case Builtin::BI__sync_lock_release_2:
6805   case Builtin::BI__sync_lock_release_4:
6806   case Builtin::BI__sync_lock_release_8:
6807   case Builtin::BI__sync_lock_release_16:
6808     BuiltinIndex = 15;
6809     NumFixed = 0;
6810     ResultType = Context.VoidTy;
6811     break;
6812 
6813   case Builtin::BI__sync_swap:
6814   case Builtin::BI__sync_swap_1:
6815   case Builtin::BI__sync_swap_2:
6816   case Builtin::BI__sync_swap_4:
6817   case Builtin::BI__sync_swap_8:
6818   case Builtin::BI__sync_swap_16:
6819     BuiltinIndex = 16;
6820     break;
6821   }
6822 
6823   // Now that we know how many fixed arguments we expect, first check that we
6824   // have at least that many.
6825   if (TheCall->getNumArgs() < 1+NumFixed) {
6826     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
6827         << 0 << 1 + NumFixed << TheCall->getNumArgs()
6828         << Callee->getSourceRange();
6829     return ExprError();
6830   }
6831 
6832   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
6833       << Callee->getSourceRange();
6834 
6835   if (WarnAboutSemanticsChange) {
6836     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
6837         << Callee->getSourceRange();
6838   }
6839 
6840   // Get the decl for the concrete builtin from this, we can tell what the
6841   // concrete integer type we should convert to is.
6842   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
6843   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
6844   FunctionDecl *NewBuiltinDecl;
6845   if (NewBuiltinID == BuiltinID)
6846     NewBuiltinDecl = FDecl;
6847   else {
6848     // Perform builtin lookup to avoid redeclaring it.
6849     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
6850     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
6851     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
6852     assert(Res.getFoundDecl());
6853     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
6854     if (!NewBuiltinDecl)
6855       return ExprError();
6856   }
6857 
6858   // The first argument --- the pointer --- has a fixed type; we
6859   // deduce the types of the rest of the arguments accordingly.  Walk
6860   // the remaining arguments, converting them to the deduced value type.
6861   for (unsigned i = 0; i != NumFixed; ++i) {
6862     ExprResult Arg = TheCall->getArg(i+1);
6863 
6864     // GCC does an implicit conversion to the pointer or integer ValType.  This
6865     // can fail in some cases (1i -> int**), check for this error case now.
6866     // Initialize the argument.
6867     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6868                                                    ValType, /*consume*/ false);
6869     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6870     if (Arg.isInvalid())
6871       return ExprError();
6872 
6873     // Okay, we have something that *can* be converted to the right type.  Check
6874     // to see if there is a potentially weird extension going on here.  This can
6875     // happen when you do an atomic operation on something like an char* and
6876     // pass in 42.  The 42 gets converted to char.  This is even more strange
6877     // for things like 45.123 -> char, etc.
6878     // FIXME: Do this check.
6879     TheCall->setArg(i+1, Arg.get());
6880   }
6881 
6882   // Create a new DeclRefExpr to refer to the new decl.
6883   DeclRefExpr *NewDRE = DeclRefExpr::Create(
6884       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
6885       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
6886       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
6887 
6888   // Set the callee in the CallExpr.
6889   // FIXME: This loses syntactic information.
6890   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
6891   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
6892                                               CK_BuiltinFnToFnPtr);
6893   TheCall->setCallee(PromotedCall.get());
6894 
6895   // Change the result type of the call to match the original value type. This
6896   // is arbitrary, but the codegen for these builtins ins design to handle it
6897   // gracefully.
6898   TheCall->setType(ResultType);
6899 
6900   // Prohibit problematic uses of bit-precise integer types with atomic
6901   // builtins. The arguments would have already been converted to the first
6902   // argument's type, so only need to check the first argument.
6903   const auto *BitIntValType = ValType->getAs<BitIntType>();
6904   if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
6905     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
6906     return ExprError();
6907   }
6908 
6909   return TheCallResult;
6910 }
6911 
6912 /// SemaBuiltinNontemporalOverloaded - We have a call to
6913 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
6914 /// overloaded function based on the pointer type of its last argument.
6915 ///
6916 /// This function goes through and does final semantic checking for these
6917 /// builtins.
6918 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
6919   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
6920   DeclRefExpr *DRE =
6921       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6922   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6923   unsigned BuiltinID = FDecl->getBuiltinID();
6924   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
6925           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
6926          "Unexpected nontemporal load/store builtin!");
6927   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
6928   unsigned numArgs = isStore ? 2 : 1;
6929 
6930   // Ensure that we have the proper number of arguments.
6931   if (checkArgCount(*this, TheCall, numArgs))
6932     return ExprError();
6933 
6934   // Inspect the last argument of the nontemporal builtin.  This should always
6935   // be a pointer type, from which we imply the type of the memory access.
6936   // Because it is a pointer type, we don't have to worry about any implicit
6937   // casts here.
6938   Expr *PointerArg = TheCall->getArg(numArgs - 1);
6939   ExprResult PointerArgResult =
6940       DefaultFunctionArrayLvalueConversion(PointerArg);
6941 
6942   if (PointerArgResult.isInvalid())
6943     return ExprError();
6944   PointerArg = PointerArgResult.get();
6945   TheCall->setArg(numArgs - 1, PointerArg);
6946 
6947   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
6948   if (!pointerType) {
6949     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6950         << PointerArg->getType() << PointerArg->getSourceRange();
6951     return ExprError();
6952   }
6953 
6954   QualType ValType = pointerType->getPointeeType();
6955 
6956   // Strip any qualifiers off ValType.
6957   ValType = ValType.getUnqualifiedType();
6958   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6959       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6960       !ValType->isVectorType()) {
6961     Diag(DRE->getBeginLoc(),
6962          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6963         << PointerArg->getType() << PointerArg->getSourceRange();
6964     return ExprError();
6965   }
6966 
6967   if (!isStore) {
6968     TheCall->setType(ValType);
6969     return TheCallResult;
6970   }
6971 
6972   ExprResult ValArg = TheCall->getArg(0);
6973   InitializedEntity Entity = InitializedEntity::InitializeParameter(
6974       Context, ValType, /*consume*/ false);
6975   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6976   if (ValArg.isInvalid())
6977     return ExprError();
6978 
6979   TheCall->setArg(0, ValArg.get());
6980   TheCall->setType(Context.VoidTy);
6981   return TheCallResult;
6982 }
6983 
6984 /// CheckObjCString - Checks that the argument to the builtin
6985 /// CFString constructor is correct
6986 /// Note: It might also make sense to do the UTF-16 conversion here (would
6987 /// simplify the backend).
6988 bool Sema::CheckObjCString(Expr *Arg) {
6989   Arg = Arg->IgnoreParenCasts();
6990   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
6991 
6992   if (!Literal || !Literal->isOrdinary()) {
6993     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
6994         << Arg->getSourceRange();
6995     return true;
6996   }
6997 
6998   if (Literal->containsNonAsciiOrNull()) {
6999     StringRef String = Literal->getString();
7000     unsigned NumBytes = String.size();
7001     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
7002     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
7003     llvm::UTF16 *ToPtr = &ToBuf[0];
7004 
7005     llvm::ConversionResult Result =
7006         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
7007                                  ToPtr + NumBytes, llvm::strictConversion);
7008     // Check for conversion failure.
7009     if (Result != llvm::conversionOK)
7010       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
7011           << Arg->getSourceRange();
7012   }
7013   return false;
7014 }
7015 
7016 /// CheckObjCString - Checks that the format string argument to the os_log()
7017 /// and os_trace() functions is correct, and converts it to const char *.
7018 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
7019   Arg = Arg->IgnoreParenCasts();
7020   auto *Literal = dyn_cast<StringLiteral>(Arg);
7021   if (!Literal) {
7022     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
7023       Literal = ObjcLiteral->getString();
7024     }
7025   }
7026 
7027   if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
7028     return ExprError(
7029         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
7030         << Arg->getSourceRange());
7031   }
7032 
7033   ExprResult Result(Literal);
7034   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
7035   InitializedEntity Entity =
7036       InitializedEntity::InitializeParameter(Context, ResultTy, false);
7037   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
7038   return Result;
7039 }
7040 
7041 /// Check that the user is calling the appropriate va_start builtin for the
7042 /// target and calling convention.
7043 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
7044   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
7045   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
7046   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
7047                     TT.getArch() == llvm::Triple::aarch64_32);
7048   bool IsWindows = TT.isOSWindows();
7049   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
7050   if (IsX64 || IsAArch64) {
7051     CallingConv CC = CC_C;
7052     if (const FunctionDecl *FD = S.getCurFunctionDecl())
7053       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
7054     if (IsMSVAStart) {
7055       // Don't allow this in System V ABI functions.
7056       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
7057         return S.Diag(Fn->getBeginLoc(),
7058                       diag::err_ms_va_start_used_in_sysv_function);
7059     } else {
7060       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
7061       // On x64 Windows, don't allow this in System V ABI functions.
7062       // (Yes, that means there's no corresponding way to support variadic
7063       // System V ABI functions on Windows.)
7064       if ((IsWindows && CC == CC_X86_64SysV) ||
7065           (!IsWindows && CC == CC_Win64))
7066         return S.Diag(Fn->getBeginLoc(),
7067                       diag::err_va_start_used_in_wrong_abi_function)
7068                << !IsWindows;
7069     }
7070     return false;
7071   }
7072 
7073   if (IsMSVAStart)
7074     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
7075   return false;
7076 }
7077 
7078 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
7079                                              ParmVarDecl **LastParam = nullptr) {
7080   // Determine whether the current function, block, or obj-c method is variadic
7081   // and get its parameter list.
7082   bool IsVariadic = false;
7083   ArrayRef<ParmVarDecl *> Params;
7084   DeclContext *Caller = S.CurContext;
7085   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
7086     IsVariadic = Block->isVariadic();
7087     Params = Block->parameters();
7088   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
7089     IsVariadic = FD->isVariadic();
7090     Params = FD->parameters();
7091   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
7092     IsVariadic = MD->isVariadic();
7093     // FIXME: This isn't correct for methods (results in bogus warning).
7094     Params = MD->parameters();
7095   } else if (isa<CapturedDecl>(Caller)) {
7096     // We don't support va_start in a CapturedDecl.
7097     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
7098     return true;
7099   } else {
7100     // This must be some other declcontext that parses exprs.
7101     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
7102     return true;
7103   }
7104 
7105   if (!IsVariadic) {
7106     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
7107     return true;
7108   }
7109 
7110   if (LastParam)
7111     *LastParam = Params.empty() ? nullptr : Params.back();
7112 
7113   return false;
7114 }
7115 
7116 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
7117 /// for validity.  Emit an error and return true on failure; return false
7118 /// on success.
7119 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
7120   Expr *Fn = TheCall->getCallee();
7121 
7122   if (checkVAStartABI(*this, BuiltinID, Fn))
7123     return true;
7124 
7125   if (checkArgCount(*this, TheCall, 2))
7126     return true;
7127 
7128   // Type-check the first argument normally.
7129   if (checkBuiltinArgument(*this, TheCall, 0))
7130     return true;
7131 
7132   // Check that the current function is variadic, and get its last parameter.
7133   ParmVarDecl *LastParam;
7134   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
7135     return true;
7136 
7137   // Verify that the second argument to the builtin is the last argument of the
7138   // current function or method.
7139   bool SecondArgIsLastNamedArgument = false;
7140   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
7141 
7142   // These are valid if SecondArgIsLastNamedArgument is false after the next
7143   // block.
7144   QualType Type;
7145   SourceLocation ParamLoc;
7146   bool IsCRegister = false;
7147 
7148   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
7149     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
7150       SecondArgIsLastNamedArgument = PV == LastParam;
7151 
7152       Type = PV->getType();
7153       ParamLoc = PV->getLocation();
7154       IsCRegister =
7155           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
7156     }
7157   }
7158 
7159   if (!SecondArgIsLastNamedArgument)
7160     Diag(TheCall->getArg(1)->getBeginLoc(),
7161          diag::warn_second_arg_of_va_start_not_last_named_param);
7162   else if (IsCRegister || Type->isReferenceType() ||
7163            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
7164              // Promotable integers are UB, but enumerations need a bit of
7165              // extra checking to see what their promotable type actually is.
7166              if (!Type->isPromotableIntegerType())
7167                return false;
7168              if (!Type->isEnumeralType())
7169                return true;
7170              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
7171              return !(ED &&
7172                       Context.typesAreCompatible(ED->getPromotionType(), Type));
7173            }()) {
7174     unsigned Reason = 0;
7175     if (Type->isReferenceType())  Reason = 1;
7176     else if (IsCRegister)         Reason = 2;
7177     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
7178     Diag(ParamLoc, diag::note_parameter_type) << Type;
7179   }
7180 
7181   TheCall->setType(Context.VoidTy);
7182   return false;
7183 }
7184 
7185 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
7186   auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
7187     const LangOptions &LO = getLangOpts();
7188 
7189     if (LO.CPlusPlus)
7190       return Arg->getType()
7191                  .getCanonicalType()
7192                  .getTypePtr()
7193                  ->getPointeeType()
7194                  .withoutLocalFastQualifiers() == Context.CharTy;
7195 
7196     // In C, allow aliasing through `char *`, this is required for AArch64 at
7197     // least.
7198     return true;
7199   };
7200 
7201   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
7202   //                 const char *named_addr);
7203 
7204   Expr *Func = Call->getCallee();
7205 
7206   if (Call->getNumArgs() < 3)
7207     return Diag(Call->getEndLoc(),
7208                 diag::err_typecheck_call_too_few_args_at_least)
7209            << 0 /*function call*/ << 3 << Call->getNumArgs();
7210 
7211   // Type-check the first argument normally.
7212   if (checkBuiltinArgument(*this, Call, 0))
7213     return true;
7214 
7215   // Check that the current function is variadic.
7216   if (checkVAStartIsInVariadicFunction(*this, Func))
7217     return true;
7218 
7219   // __va_start on Windows does not validate the parameter qualifiers
7220 
7221   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
7222   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
7223 
7224   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
7225   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
7226 
7227   const QualType &ConstCharPtrTy =
7228       Context.getPointerType(Context.CharTy.withConst());
7229   if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
7230     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7231         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
7232         << 0                                      /* qualifier difference */
7233         << 3                                      /* parameter mismatch */
7234         << 2 << Arg1->getType() << ConstCharPtrTy;
7235 
7236   const QualType SizeTy = Context.getSizeType();
7237   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
7238     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
7239         << Arg2->getType() << SizeTy << 1 /* different class */
7240         << 0                              /* qualifier difference */
7241         << 3                              /* parameter mismatch */
7242         << 3 << Arg2->getType() << SizeTy;
7243 
7244   return false;
7245 }
7246 
7247 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
7248 /// friends.  This is declared to take (...), so we have to check everything.
7249 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
7250   if (checkArgCount(*this, TheCall, 2))
7251     return true;
7252 
7253   ExprResult OrigArg0 = TheCall->getArg(0);
7254   ExprResult OrigArg1 = TheCall->getArg(1);
7255 
7256   // Do standard promotions between the two arguments, returning their common
7257   // type.
7258   QualType Res = UsualArithmeticConversions(
7259       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
7260   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
7261     return true;
7262 
7263   // Make sure any conversions are pushed back into the call; this is
7264   // type safe since unordered compare builtins are declared as "_Bool
7265   // foo(...)".
7266   TheCall->setArg(0, OrigArg0.get());
7267   TheCall->setArg(1, OrigArg1.get());
7268 
7269   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
7270     return false;
7271 
7272   // If the common type isn't a real floating type, then the arguments were
7273   // invalid for this operation.
7274   if (Res.isNull() || !Res->isRealFloatingType())
7275     return Diag(OrigArg0.get()->getBeginLoc(),
7276                 diag::err_typecheck_call_invalid_ordered_compare)
7277            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
7278            << SourceRange(OrigArg0.get()->getBeginLoc(),
7279                           OrigArg1.get()->getEndLoc());
7280 
7281   return false;
7282 }
7283 
7284 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
7285 /// __builtin_isnan and friends.  This is declared to take (...), so we have
7286 /// to check everything. We expect the last argument to be a floating point
7287 /// value.
7288 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
7289   if (checkArgCount(*this, TheCall, NumArgs))
7290     return true;
7291 
7292   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
7293   // on all preceding parameters just being int.  Try all of those.
7294   for (unsigned i = 0; i < NumArgs - 1; ++i) {
7295     Expr *Arg = TheCall->getArg(i);
7296 
7297     if (Arg->isTypeDependent())
7298       return false;
7299 
7300     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
7301 
7302     if (Res.isInvalid())
7303       return true;
7304     TheCall->setArg(i, Res.get());
7305   }
7306 
7307   Expr *OrigArg = TheCall->getArg(NumArgs-1);
7308 
7309   if (OrigArg->isTypeDependent())
7310     return false;
7311 
7312   // Usual Unary Conversions will convert half to float, which we want for
7313   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
7314   // type how it is, but do normal L->Rvalue conversions.
7315   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
7316     OrigArg = UsualUnaryConversions(OrigArg).get();
7317   else
7318     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
7319   TheCall->setArg(NumArgs - 1, OrigArg);
7320 
7321   // This operation requires a non-_Complex floating-point number.
7322   if (!OrigArg->getType()->isRealFloatingType())
7323     return Diag(OrigArg->getBeginLoc(),
7324                 diag::err_typecheck_call_invalid_unary_fp)
7325            << OrigArg->getType() << OrigArg->getSourceRange();
7326 
7327   return false;
7328 }
7329 
7330 /// Perform semantic analysis for a call to __builtin_complex.
7331 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
7332   if (checkArgCount(*this, TheCall, 2))
7333     return true;
7334 
7335   bool Dependent = false;
7336   for (unsigned I = 0; I != 2; ++I) {
7337     Expr *Arg = TheCall->getArg(I);
7338     QualType T = Arg->getType();
7339     if (T->isDependentType()) {
7340       Dependent = true;
7341       continue;
7342     }
7343 
7344     // Despite supporting _Complex int, GCC requires a real floating point type
7345     // for the operands of __builtin_complex.
7346     if (!T->isRealFloatingType()) {
7347       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
7348              << Arg->getType() << Arg->getSourceRange();
7349     }
7350 
7351     ExprResult Converted = DefaultLvalueConversion(Arg);
7352     if (Converted.isInvalid())
7353       return true;
7354     TheCall->setArg(I, Converted.get());
7355   }
7356 
7357   if (Dependent) {
7358     TheCall->setType(Context.DependentTy);
7359     return false;
7360   }
7361 
7362   Expr *Real = TheCall->getArg(0);
7363   Expr *Imag = TheCall->getArg(1);
7364   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
7365     return Diag(Real->getBeginLoc(),
7366                 diag::err_typecheck_call_different_arg_types)
7367            << Real->getType() << Imag->getType()
7368            << Real->getSourceRange() << Imag->getSourceRange();
7369   }
7370 
7371   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
7372   // don't allow this builtin to form those types either.
7373   // FIXME: Should we allow these types?
7374   if (Real->getType()->isFloat16Type())
7375     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
7376            << "_Float16";
7377   if (Real->getType()->isHalfType())
7378     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
7379            << "half";
7380 
7381   TheCall->setType(Context.getComplexType(Real->getType()));
7382   return false;
7383 }
7384 
7385 // Customized Sema Checking for VSX builtins that have the following signature:
7386 // vector [...] builtinName(vector [...], vector [...], const int);
7387 // Which takes the same type of vectors (any legal vector type) for the first
7388 // two arguments and takes compile time constant for the third argument.
7389 // Example builtins are :
7390 // vector double vec_xxpermdi(vector double, vector double, int);
7391 // vector short vec_xxsldwi(vector short, vector short, int);
7392 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
7393   unsigned ExpectedNumArgs = 3;
7394   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
7395     return true;
7396 
7397   // Check the third argument is a compile time constant
7398   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
7399     return Diag(TheCall->getBeginLoc(),
7400                 diag::err_vsx_builtin_nonconstant_argument)
7401            << 3 /* argument index */ << TheCall->getDirectCallee()
7402            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
7403                           TheCall->getArg(2)->getEndLoc());
7404 
7405   QualType Arg1Ty = TheCall->getArg(0)->getType();
7406   QualType Arg2Ty = TheCall->getArg(1)->getType();
7407 
7408   // Check the type of argument 1 and argument 2 are vectors.
7409   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
7410   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
7411       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
7412     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
7413            << TheCall->getDirectCallee()
7414            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7415                           TheCall->getArg(1)->getEndLoc());
7416   }
7417 
7418   // Check the first two arguments are the same type.
7419   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
7420     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
7421            << TheCall->getDirectCallee()
7422            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7423                           TheCall->getArg(1)->getEndLoc());
7424   }
7425 
7426   // When default clang type checking is turned off and the customized type
7427   // checking is used, the returning type of the function must be explicitly
7428   // set. Otherwise it is _Bool by default.
7429   TheCall->setType(Arg1Ty);
7430 
7431   return false;
7432 }
7433 
7434 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
7435 // This is declared to take (...), so we have to check everything.
7436 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
7437   if (TheCall->getNumArgs() < 2)
7438     return ExprError(Diag(TheCall->getEndLoc(),
7439                           diag::err_typecheck_call_too_few_args_at_least)
7440                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
7441                      << TheCall->getSourceRange());
7442 
7443   // Determine which of the following types of shufflevector we're checking:
7444   // 1) unary, vector mask: (lhs, mask)
7445   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
7446   QualType resType = TheCall->getArg(0)->getType();
7447   unsigned numElements = 0;
7448 
7449   if (!TheCall->getArg(0)->isTypeDependent() &&
7450       !TheCall->getArg(1)->isTypeDependent()) {
7451     QualType LHSType = TheCall->getArg(0)->getType();
7452     QualType RHSType = TheCall->getArg(1)->getType();
7453 
7454     if (!LHSType->isVectorType() || !RHSType->isVectorType())
7455       return ExprError(
7456           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
7457           << TheCall->getDirectCallee()
7458           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7459                          TheCall->getArg(1)->getEndLoc()));
7460 
7461     numElements = LHSType->castAs<VectorType>()->getNumElements();
7462     unsigned numResElements = TheCall->getNumArgs() - 2;
7463 
7464     // Check to see if we have a call with 2 vector arguments, the unary shuffle
7465     // with mask.  If so, verify that RHS is an integer vector type with the
7466     // same number of elts as lhs.
7467     if (TheCall->getNumArgs() == 2) {
7468       if (!RHSType->hasIntegerRepresentation() ||
7469           RHSType->castAs<VectorType>()->getNumElements() != numElements)
7470         return ExprError(Diag(TheCall->getBeginLoc(),
7471                               diag::err_vec_builtin_incompatible_vector)
7472                          << TheCall->getDirectCallee()
7473                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
7474                                         TheCall->getArg(1)->getEndLoc()));
7475     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
7476       return ExprError(Diag(TheCall->getBeginLoc(),
7477                             diag::err_vec_builtin_incompatible_vector)
7478                        << TheCall->getDirectCallee()
7479                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
7480                                       TheCall->getArg(1)->getEndLoc()));
7481     } else if (numElements != numResElements) {
7482       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
7483       resType = Context.getVectorType(eltType, numResElements,
7484                                       VectorType::GenericVector);
7485     }
7486   }
7487 
7488   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
7489     if (TheCall->getArg(i)->isTypeDependent() ||
7490         TheCall->getArg(i)->isValueDependent())
7491       continue;
7492 
7493     Optional<llvm::APSInt> Result;
7494     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
7495       return ExprError(Diag(TheCall->getBeginLoc(),
7496                             diag::err_shufflevector_nonconstant_argument)
7497                        << TheCall->getArg(i)->getSourceRange());
7498 
7499     // Allow -1 which will be translated to undef in the IR.
7500     if (Result->isSigned() && Result->isAllOnes())
7501       continue;
7502 
7503     if (Result->getActiveBits() > 64 ||
7504         Result->getZExtValue() >= numElements * 2)
7505       return ExprError(Diag(TheCall->getBeginLoc(),
7506                             diag::err_shufflevector_argument_too_large)
7507                        << TheCall->getArg(i)->getSourceRange());
7508   }
7509 
7510   SmallVector<Expr*, 32> exprs;
7511 
7512   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
7513     exprs.push_back(TheCall->getArg(i));
7514     TheCall->setArg(i, nullptr);
7515   }
7516 
7517   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
7518                                          TheCall->getCallee()->getBeginLoc(),
7519                                          TheCall->getRParenLoc());
7520 }
7521 
7522 /// SemaConvertVectorExpr - Handle __builtin_convertvector
7523 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
7524                                        SourceLocation BuiltinLoc,
7525                                        SourceLocation RParenLoc) {
7526   ExprValueKind VK = VK_PRValue;
7527   ExprObjectKind OK = OK_Ordinary;
7528   QualType DstTy = TInfo->getType();
7529   QualType SrcTy = E->getType();
7530 
7531   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
7532     return ExprError(Diag(BuiltinLoc,
7533                           diag::err_convertvector_non_vector)
7534                      << E->getSourceRange());
7535   if (!DstTy->isVectorType() && !DstTy->isDependentType())
7536     return ExprError(Diag(BuiltinLoc,
7537                           diag::err_convertvector_non_vector_type));
7538 
7539   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
7540     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
7541     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
7542     if (SrcElts != DstElts)
7543       return ExprError(Diag(BuiltinLoc,
7544                             diag::err_convertvector_incompatible_vector)
7545                        << E->getSourceRange());
7546   }
7547 
7548   return new (Context)
7549       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
7550 }
7551 
7552 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
7553 // This is declared to take (const void*, ...) and can take two
7554 // optional constant int args.
7555 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
7556   unsigned NumArgs = TheCall->getNumArgs();
7557 
7558   if (NumArgs > 3)
7559     return Diag(TheCall->getEndLoc(),
7560                 diag::err_typecheck_call_too_many_args_at_most)
7561            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7562 
7563   // Argument 0 is checked for us and the remaining arguments must be
7564   // constant integers.
7565   for (unsigned i = 1; i != NumArgs; ++i)
7566     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
7567       return true;
7568 
7569   return false;
7570 }
7571 
7572 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
7573 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
7574   if (!Context.getTargetInfo().checkArithmeticFenceSupported())
7575     return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
7576            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
7577   if (checkArgCount(*this, TheCall, 1))
7578     return true;
7579   Expr *Arg = TheCall->getArg(0);
7580   if (Arg->isInstantiationDependent())
7581     return false;
7582 
7583   QualType ArgTy = Arg->getType();
7584   if (!ArgTy->hasFloatingRepresentation())
7585     return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
7586            << ArgTy;
7587   if (Arg->isLValue()) {
7588     ExprResult FirstArg = DefaultLvalueConversion(Arg);
7589     TheCall->setArg(0, FirstArg.get());
7590   }
7591   TheCall->setType(TheCall->getArg(0)->getType());
7592   return false;
7593 }
7594 
7595 /// SemaBuiltinAssume - Handle __assume (MS Extension).
7596 // __assume does not evaluate its arguments, and should warn if its argument
7597 // has side effects.
7598 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
7599   Expr *Arg = TheCall->getArg(0);
7600   if (Arg->isInstantiationDependent()) return false;
7601 
7602   if (Arg->HasSideEffects(Context))
7603     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
7604         << Arg->getSourceRange()
7605         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
7606 
7607   return false;
7608 }
7609 
7610 /// Handle __builtin_alloca_with_align. This is declared
7611 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
7612 /// than 8.
7613 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
7614   // The alignment must be a constant integer.
7615   Expr *Arg = TheCall->getArg(1);
7616 
7617   // We can't check the value of a dependent argument.
7618   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7619     if (const auto *UE =
7620             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
7621       if (UE->getKind() == UETT_AlignOf ||
7622           UE->getKind() == UETT_PreferredAlignOf)
7623         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
7624             << Arg->getSourceRange();
7625 
7626     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
7627 
7628     if (!Result.isPowerOf2())
7629       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7630              << Arg->getSourceRange();
7631 
7632     if (Result < Context.getCharWidth())
7633       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
7634              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
7635 
7636     if (Result > std::numeric_limits<int32_t>::max())
7637       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
7638              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
7639   }
7640 
7641   return false;
7642 }
7643 
7644 /// Handle __builtin_assume_aligned. This is declared
7645 /// as (const void*, size_t, ...) and can take one optional constant int arg.
7646 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
7647   unsigned NumArgs = TheCall->getNumArgs();
7648 
7649   if (NumArgs > 3)
7650     return Diag(TheCall->getEndLoc(),
7651                 diag::err_typecheck_call_too_many_args_at_most)
7652            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
7653 
7654   // The alignment must be a constant integer.
7655   Expr *Arg = TheCall->getArg(1);
7656 
7657   // We can't check the value of a dependent argument.
7658   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
7659     llvm::APSInt Result;
7660     if (SemaBuiltinConstantArg(TheCall, 1, Result))
7661       return true;
7662 
7663     if (!Result.isPowerOf2())
7664       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
7665              << Arg->getSourceRange();
7666 
7667     if (Result > Sema::MaximumAlignment)
7668       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
7669           << Arg->getSourceRange() << Sema::MaximumAlignment;
7670   }
7671 
7672   if (NumArgs > 2) {
7673     ExprResult Arg(TheCall->getArg(2));
7674     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
7675       Context.getSizeType(), false);
7676     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7677     if (Arg.isInvalid()) return true;
7678     TheCall->setArg(2, Arg.get());
7679   }
7680 
7681   return false;
7682 }
7683 
7684 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
7685   unsigned BuiltinID =
7686       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
7687   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
7688 
7689   unsigned NumArgs = TheCall->getNumArgs();
7690   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
7691   if (NumArgs < NumRequiredArgs) {
7692     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
7693            << 0 /* function call */ << NumRequiredArgs << NumArgs
7694            << TheCall->getSourceRange();
7695   }
7696   if (NumArgs >= NumRequiredArgs + 0x100) {
7697     return Diag(TheCall->getEndLoc(),
7698                 diag::err_typecheck_call_too_many_args_at_most)
7699            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
7700            << TheCall->getSourceRange();
7701   }
7702   unsigned i = 0;
7703 
7704   // For formatting call, check buffer arg.
7705   if (!IsSizeCall) {
7706     ExprResult Arg(TheCall->getArg(i));
7707     InitializedEntity Entity = InitializedEntity::InitializeParameter(
7708         Context, Context.VoidPtrTy, false);
7709     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
7710     if (Arg.isInvalid())
7711       return true;
7712     TheCall->setArg(i, Arg.get());
7713     i++;
7714   }
7715 
7716   // Check string literal arg.
7717   unsigned FormatIdx = i;
7718   {
7719     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
7720     if (Arg.isInvalid())
7721       return true;
7722     TheCall->setArg(i, Arg.get());
7723     i++;
7724   }
7725 
7726   // Make sure variadic args are scalar.
7727   unsigned FirstDataArg = i;
7728   while (i < NumArgs) {
7729     ExprResult Arg = DefaultVariadicArgumentPromotion(
7730         TheCall->getArg(i), VariadicFunction, nullptr);
7731     if (Arg.isInvalid())
7732       return true;
7733     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
7734     if (ArgSize.getQuantity() >= 0x100) {
7735       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
7736              << i << (int)ArgSize.getQuantity() << 0xff
7737              << TheCall->getSourceRange();
7738     }
7739     TheCall->setArg(i, Arg.get());
7740     i++;
7741   }
7742 
7743   // Check formatting specifiers. NOTE: We're only doing this for the non-size
7744   // call to avoid duplicate diagnostics.
7745   if (!IsSizeCall) {
7746     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
7747     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
7748     bool Success = CheckFormatArguments(
7749         Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
7750         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
7751         CheckedVarArgs);
7752     if (!Success)
7753       return true;
7754   }
7755 
7756   if (IsSizeCall) {
7757     TheCall->setType(Context.getSizeType());
7758   } else {
7759     TheCall->setType(Context.VoidPtrTy);
7760   }
7761   return false;
7762 }
7763 
7764 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
7765 /// TheCall is a constant expression.
7766 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
7767                                   llvm::APSInt &Result) {
7768   Expr *Arg = TheCall->getArg(ArgNum);
7769   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7770   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
7771 
7772   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
7773 
7774   Optional<llvm::APSInt> R;
7775   if (!(R = Arg->getIntegerConstantExpr(Context)))
7776     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
7777            << FDecl->getDeclName() << Arg->getSourceRange();
7778   Result = *R;
7779   return false;
7780 }
7781 
7782 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
7783 /// TheCall is a constant expression in the range [Low, High].
7784 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
7785                                        int Low, int High, bool RangeIsError) {
7786   if (isConstantEvaluated())
7787     return false;
7788   llvm::APSInt Result;
7789 
7790   // We can't check the value of a dependent argument.
7791   Expr *Arg = TheCall->getArg(ArgNum);
7792   if (Arg->isTypeDependent() || Arg->isValueDependent())
7793     return false;
7794 
7795   // Check constant-ness first.
7796   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7797     return true;
7798 
7799   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
7800     if (RangeIsError)
7801       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
7802              << toString(Result, 10) << Low << High << Arg->getSourceRange();
7803     else
7804       // Defer the warning until we know if the code will be emitted so that
7805       // dead code can ignore this.
7806       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
7807                           PDiag(diag::warn_argument_invalid_range)
7808                               << toString(Result, 10) << Low << High
7809                               << Arg->getSourceRange());
7810   }
7811 
7812   return false;
7813 }
7814 
7815 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
7816 /// TheCall is a constant expression is a multiple of Num..
7817 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
7818                                           unsigned Num) {
7819   llvm::APSInt Result;
7820 
7821   // We can't check the value of a dependent argument.
7822   Expr *Arg = TheCall->getArg(ArgNum);
7823   if (Arg->isTypeDependent() || Arg->isValueDependent())
7824     return false;
7825 
7826   // Check constant-ness first.
7827   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7828     return true;
7829 
7830   if (Result.getSExtValue() % Num != 0)
7831     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
7832            << Num << Arg->getSourceRange();
7833 
7834   return false;
7835 }
7836 
7837 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
7838 /// constant expression representing a power of 2.
7839 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
7840   llvm::APSInt Result;
7841 
7842   // We can't check the value of a dependent argument.
7843   Expr *Arg = TheCall->getArg(ArgNum);
7844   if (Arg->isTypeDependent() || Arg->isValueDependent())
7845     return false;
7846 
7847   // Check constant-ness first.
7848   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7849     return true;
7850 
7851   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
7852   // and only if x is a power of 2.
7853   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
7854     return false;
7855 
7856   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
7857          << Arg->getSourceRange();
7858 }
7859 
7860 static bool IsShiftedByte(llvm::APSInt Value) {
7861   if (Value.isNegative())
7862     return false;
7863 
7864   // Check if it's a shifted byte, by shifting it down
7865   while (true) {
7866     // If the value fits in the bottom byte, the check passes.
7867     if (Value < 0x100)
7868       return true;
7869 
7870     // Otherwise, if the value has _any_ bits in the bottom byte, the check
7871     // fails.
7872     if ((Value & 0xFF) != 0)
7873       return false;
7874 
7875     // If the bottom 8 bits are all 0, but something above that is nonzero,
7876     // then shifting the value right by 8 bits won't affect whether it's a
7877     // shifted byte or not. So do that, and go round again.
7878     Value >>= 8;
7879   }
7880 }
7881 
7882 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
7883 /// a constant expression representing an arbitrary byte value shifted left by
7884 /// a multiple of 8 bits.
7885 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
7886                                              unsigned ArgBits) {
7887   llvm::APSInt Result;
7888 
7889   // We can't check the value of a dependent argument.
7890   Expr *Arg = TheCall->getArg(ArgNum);
7891   if (Arg->isTypeDependent() || Arg->isValueDependent())
7892     return false;
7893 
7894   // Check constant-ness first.
7895   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7896     return true;
7897 
7898   // Truncate to the given size.
7899   Result = Result.getLoBits(ArgBits);
7900   Result.setIsUnsigned(true);
7901 
7902   if (IsShiftedByte(Result))
7903     return false;
7904 
7905   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
7906          << Arg->getSourceRange();
7907 }
7908 
7909 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
7910 /// TheCall is a constant expression representing either a shifted byte value,
7911 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
7912 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
7913 /// Arm MVE intrinsics.
7914 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
7915                                                    int ArgNum,
7916                                                    unsigned ArgBits) {
7917   llvm::APSInt Result;
7918 
7919   // We can't check the value of a dependent argument.
7920   Expr *Arg = TheCall->getArg(ArgNum);
7921   if (Arg->isTypeDependent() || Arg->isValueDependent())
7922     return false;
7923 
7924   // Check constant-ness first.
7925   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
7926     return true;
7927 
7928   // Truncate to the given size.
7929   Result = Result.getLoBits(ArgBits);
7930   Result.setIsUnsigned(true);
7931 
7932   // Check to see if it's in either of the required forms.
7933   if (IsShiftedByte(Result) ||
7934       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
7935     return false;
7936 
7937   return Diag(TheCall->getBeginLoc(),
7938               diag::err_argument_not_shifted_byte_or_xxff)
7939          << Arg->getSourceRange();
7940 }
7941 
7942 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
7943 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
7944   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
7945     if (checkArgCount(*this, TheCall, 2))
7946       return true;
7947     Expr *Arg0 = TheCall->getArg(0);
7948     Expr *Arg1 = TheCall->getArg(1);
7949 
7950     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7951     if (FirstArg.isInvalid())
7952       return true;
7953     QualType FirstArgType = FirstArg.get()->getType();
7954     if (!FirstArgType->isAnyPointerType())
7955       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7956                << "first" << FirstArgType << Arg0->getSourceRange();
7957     TheCall->setArg(0, FirstArg.get());
7958 
7959     ExprResult SecArg = DefaultLvalueConversion(Arg1);
7960     if (SecArg.isInvalid())
7961       return true;
7962     QualType SecArgType = SecArg.get()->getType();
7963     if (!SecArgType->isIntegerType())
7964       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
7965                << "second" << SecArgType << Arg1->getSourceRange();
7966 
7967     // Derive the return type from the pointer argument.
7968     TheCall->setType(FirstArgType);
7969     return false;
7970   }
7971 
7972   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
7973     if (checkArgCount(*this, TheCall, 2))
7974       return true;
7975 
7976     Expr *Arg0 = TheCall->getArg(0);
7977     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
7978     if (FirstArg.isInvalid())
7979       return true;
7980     QualType FirstArgType = FirstArg.get()->getType();
7981     if (!FirstArgType->isAnyPointerType())
7982       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
7983                << "first" << FirstArgType << Arg0->getSourceRange();
7984     TheCall->setArg(0, FirstArg.get());
7985 
7986     // Derive the return type from the pointer argument.
7987     TheCall->setType(FirstArgType);
7988 
7989     // Second arg must be an constant in range [0,15]
7990     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
7991   }
7992 
7993   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
7994     if (checkArgCount(*this, TheCall, 2))
7995       return true;
7996     Expr *Arg0 = TheCall->getArg(0);
7997     Expr *Arg1 = TheCall->getArg(1);
7998 
7999     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
8000     if (FirstArg.isInvalid())
8001       return true;
8002     QualType FirstArgType = FirstArg.get()->getType();
8003     if (!FirstArgType->isAnyPointerType())
8004       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
8005                << "first" << FirstArgType << Arg0->getSourceRange();
8006 
8007     QualType SecArgType = Arg1->getType();
8008     if (!SecArgType->isIntegerType())
8009       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
8010                << "second" << SecArgType << Arg1->getSourceRange();
8011     TheCall->setType(Context.IntTy);
8012     return false;
8013   }
8014 
8015   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
8016       BuiltinID == AArch64::BI__builtin_arm_stg) {
8017     if (checkArgCount(*this, TheCall, 1))
8018       return true;
8019     Expr *Arg0 = TheCall->getArg(0);
8020     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
8021     if (FirstArg.isInvalid())
8022       return true;
8023 
8024     QualType FirstArgType = FirstArg.get()->getType();
8025     if (!FirstArgType->isAnyPointerType())
8026       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
8027                << "first" << FirstArgType << Arg0->getSourceRange();
8028     TheCall->setArg(0, FirstArg.get());
8029 
8030     // Derive the return type from the pointer argument.
8031     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
8032       TheCall->setType(FirstArgType);
8033     return false;
8034   }
8035 
8036   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
8037     Expr *ArgA = TheCall->getArg(0);
8038     Expr *ArgB = TheCall->getArg(1);
8039 
8040     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
8041     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
8042 
8043     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
8044       return true;
8045 
8046     QualType ArgTypeA = ArgExprA.get()->getType();
8047     QualType ArgTypeB = ArgExprB.get()->getType();
8048 
8049     auto isNull = [&] (Expr *E) -> bool {
8050       return E->isNullPointerConstant(
8051                         Context, Expr::NPC_ValueDependentIsNotNull); };
8052 
8053     // argument should be either a pointer or null
8054     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
8055       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
8056         << "first" << ArgTypeA << ArgA->getSourceRange();
8057 
8058     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
8059       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
8060         << "second" << ArgTypeB << ArgB->getSourceRange();
8061 
8062     // Ensure Pointee types are compatible
8063     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
8064         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
8065       QualType pointeeA = ArgTypeA->getPointeeType();
8066       QualType pointeeB = ArgTypeB->getPointeeType();
8067       if (!Context.typesAreCompatible(
8068              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
8069              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
8070         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
8071           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
8072           << ArgB->getSourceRange();
8073       }
8074     }
8075 
8076     // at least one argument should be pointer type
8077     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
8078       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
8079         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
8080 
8081     if (isNull(ArgA)) // adopt type of the other pointer
8082       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
8083 
8084     if (isNull(ArgB))
8085       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
8086 
8087     TheCall->setArg(0, ArgExprA.get());
8088     TheCall->setArg(1, ArgExprB.get());
8089     TheCall->setType(Context.LongLongTy);
8090     return false;
8091   }
8092   assert(false && "Unhandled ARM MTE intrinsic");
8093   return true;
8094 }
8095 
8096 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
8097 /// TheCall is an ARM/AArch64 special register string literal.
8098 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
8099                                     int ArgNum, unsigned ExpectedFieldNum,
8100                                     bool AllowName) {
8101   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
8102                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
8103                       BuiltinID == ARM::BI__builtin_arm_rsr ||
8104                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
8105                       BuiltinID == ARM::BI__builtin_arm_wsr ||
8106                       BuiltinID == ARM::BI__builtin_arm_wsrp;
8107   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
8108                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
8109                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
8110                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
8111                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
8112                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
8113   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
8114 
8115   // We can't check the value of a dependent argument.
8116   Expr *Arg = TheCall->getArg(ArgNum);
8117   if (Arg->isTypeDependent() || Arg->isValueDependent())
8118     return false;
8119 
8120   // Check if the argument is a string literal.
8121   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
8122     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
8123            << Arg->getSourceRange();
8124 
8125   // Check the type of special register given.
8126   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
8127   SmallVector<StringRef, 6> Fields;
8128   Reg.split(Fields, ":");
8129 
8130   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
8131     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
8132            << Arg->getSourceRange();
8133 
8134   // If the string is the name of a register then we cannot check that it is
8135   // valid here but if the string is of one the forms described in ACLE then we
8136   // can check that the supplied fields are integers and within the valid
8137   // ranges.
8138   if (Fields.size() > 1) {
8139     bool FiveFields = Fields.size() == 5;
8140 
8141     bool ValidString = true;
8142     if (IsARMBuiltin) {
8143       ValidString &= Fields[0].startswith_insensitive("cp") ||
8144                      Fields[0].startswith_insensitive("p");
8145       if (ValidString)
8146         Fields[0] = Fields[0].drop_front(
8147             Fields[0].startswith_insensitive("cp") ? 2 : 1);
8148 
8149       ValidString &= Fields[2].startswith_insensitive("c");
8150       if (ValidString)
8151         Fields[2] = Fields[2].drop_front(1);
8152 
8153       if (FiveFields) {
8154         ValidString &= Fields[3].startswith_insensitive("c");
8155         if (ValidString)
8156           Fields[3] = Fields[3].drop_front(1);
8157       }
8158     }
8159 
8160     SmallVector<int, 5> Ranges;
8161     if (FiveFields)
8162       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
8163     else
8164       Ranges.append({15, 7, 15});
8165 
8166     for (unsigned i=0; i<Fields.size(); ++i) {
8167       int IntField;
8168       ValidString &= !Fields[i].getAsInteger(10, IntField);
8169       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
8170     }
8171 
8172     if (!ValidString)
8173       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
8174              << Arg->getSourceRange();
8175   } else if (IsAArch64Builtin && Fields.size() == 1) {
8176     // If the register name is one of those that appear in the condition below
8177     // and the special register builtin being used is one of the write builtins,
8178     // then we require that the argument provided for writing to the register
8179     // is an integer constant expression. This is because it will be lowered to
8180     // an MSR (immediate) instruction, so we need to know the immediate at
8181     // compile time.
8182     if (TheCall->getNumArgs() != 2)
8183       return false;
8184 
8185     std::string RegLower = Reg.lower();
8186     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
8187         RegLower != "pan" && RegLower != "uao")
8188       return false;
8189 
8190     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
8191   }
8192 
8193   return false;
8194 }
8195 
8196 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
8197 /// Emit an error and return true on failure; return false on success.
8198 /// TypeStr is a string containing the type descriptor of the value returned by
8199 /// the builtin and the descriptors of the expected type of the arguments.
8200 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
8201                                  const char *TypeStr) {
8202 
8203   assert((TypeStr[0] != '\0') &&
8204          "Invalid types in PPC MMA builtin declaration");
8205 
8206   switch (BuiltinID) {
8207   default:
8208     // This function is called in CheckPPCBuiltinFunctionCall where the
8209     // BuiltinID is guaranteed to be an MMA or pair vector memop builtin, here
8210     // we are isolating the pair vector memop builtins that can be used with mma
8211     // off so the default case is every builtin that requires mma and paired
8212     // vector memops.
8213     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
8214                          diag::err_ppc_builtin_only_on_arch, "10") ||
8215         SemaFeatureCheck(*this, TheCall, "mma",
8216                          diag::err_ppc_builtin_only_on_arch, "10"))
8217       return true;
8218     break;
8219   case PPC::BI__builtin_vsx_lxvp:
8220   case PPC::BI__builtin_vsx_stxvp:
8221   case PPC::BI__builtin_vsx_assemble_pair:
8222   case PPC::BI__builtin_vsx_disassemble_pair:
8223     if (SemaFeatureCheck(*this, TheCall, "paired-vector-memops",
8224                          diag::err_ppc_builtin_only_on_arch, "10"))
8225       return true;
8226     break;
8227   }
8228 
8229   unsigned Mask = 0;
8230   unsigned ArgNum = 0;
8231 
8232   // The first type in TypeStr is the type of the value returned by the
8233   // builtin. So we first read that type and change the type of TheCall.
8234   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8235   TheCall->setType(type);
8236 
8237   while (*TypeStr != '\0') {
8238     Mask = 0;
8239     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8240     if (ArgNum >= TheCall->getNumArgs()) {
8241       ArgNum++;
8242       break;
8243     }
8244 
8245     Expr *Arg = TheCall->getArg(ArgNum);
8246     QualType PassedType = Arg->getType();
8247     QualType StrippedRVType = PassedType.getCanonicalType();
8248 
8249     // Strip Restrict/Volatile qualifiers.
8250     if (StrippedRVType.isRestrictQualified() ||
8251         StrippedRVType.isVolatileQualified())
8252       StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
8253 
8254     // The only case where the argument type and expected type are allowed to
8255     // mismatch is if the argument type is a non-void pointer (or array) and
8256     // expected type is a void pointer.
8257     if (StrippedRVType != ExpectedType)
8258       if (!(ExpectedType->isVoidPointerType() &&
8259             (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
8260         return Diag(Arg->getBeginLoc(),
8261                     diag::err_typecheck_convert_incompatible)
8262                << PassedType << ExpectedType << 1 << 0 << 0;
8263 
8264     // If the value of the Mask is not 0, we have a constraint in the size of
8265     // the integer argument so here we ensure the argument is a constant that
8266     // is in the valid range.
8267     if (Mask != 0 &&
8268         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
8269       return true;
8270 
8271     ArgNum++;
8272   }
8273 
8274   // In case we exited early from the previous loop, there are other types to
8275   // read from TypeStr. So we need to read them all to ensure we have the right
8276   // number of arguments in TheCall and if it is not the case, to display a
8277   // better error message.
8278   while (*TypeStr != '\0') {
8279     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
8280     ArgNum++;
8281   }
8282   if (checkArgCount(*this, TheCall, ArgNum))
8283     return true;
8284 
8285   return false;
8286 }
8287 
8288 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
8289 /// This checks that the target supports __builtin_longjmp and
8290 /// that val is a constant 1.
8291 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
8292   if (!Context.getTargetInfo().hasSjLjLowering())
8293     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
8294            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
8295 
8296   Expr *Arg = TheCall->getArg(1);
8297   llvm::APSInt Result;
8298 
8299   // TODO: This is less than ideal. Overload this to take a value.
8300   if (SemaBuiltinConstantArg(TheCall, 1, Result))
8301     return true;
8302 
8303   if (Result != 1)
8304     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
8305            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
8306 
8307   return false;
8308 }
8309 
8310 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
8311 /// This checks that the target supports __builtin_setjmp.
8312 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
8313   if (!Context.getTargetInfo().hasSjLjLowering())
8314     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
8315            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
8316   return false;
8317 }
8318 
8319 namespace {
8320 
8321 class UncoveredArgHandler {
8322   enum { Unknown = -1, AllCovered = -2 };
8323 
8324   signed FirstUncoveredArg = Unknown;
8325   SmallVector<const Expr *, 4> DiagnosticExprs;
8326 
8327 public:
8328   UncoveredArgHandler() = default;
8329 
8330   bool hasUncoveredArg() const {
8331     return (FirstUncoveredArg >= 0);
8332   }
8333 
8334   unsigned getUncoveredArg() const {
8335     assert(hasUncoveredArg() && "no uncovered argument");
8336     return FirstUncoveredArg;
8337   }
8338 
8339   void setAllCovered() {
8340     // A string has been found with all arguments covered, so clear out
8341     // the diagnostics.
8342     DiagnosticExprs.clear();
8343     FirstUncoveredArg = AllCovered;
8344   }
8345 
8346   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
8347     assert(NewFirstUncoveredArg >= 0 && "Outside range");
8348 
8349     // Don't update if a previous string covers all arguments.
8350     if (FirstUncoveredArg == AllCovered)
8351       return;
8352 
8353     // UncoveredArgHandler tracks the highest uncovered argument index
8354     // and with it all the strings that match this index.
8355     if (NewFirstUncoveredArg == FirstUncoveredArg)
8356       DiagnosticExprs.push_back(StrExpr);
8357     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
8358       DiagnosticExprs.clear();
8359       DiagnosticExprs.push_back(StrExpr);
8360       FirstUncoveredArg = NewFirstUncoveredArg;
8361     }
8362   }
8363 
8364   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
8365 };
8366 
8367 enum StringLiteralCheckType {
8368   SLCT_NotALiteral,
8369   SLCT_UncheckedLiteral,
8370   SLCT_CheckedLiteral
8371 };
8372 
8373 } // namespace
8374 
8375 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
8376                                      BinaryOperatorKind BinOpKind,
8377                                      bool AddendIsRight) {
8378   unsigned BitWidth = Offset.getBitWidth();
8379   unsigned AddendBitWidth = Addend.getBitWidth();
8380   // There might be negative interim results.
8381   if (Addend.isUnsigned()) {
8382     Addend = Addend.zext(++AddendBitWidth);
8383     Addend.setIsSigned(true);
8384   }
8385   // Adjust the bit width of the APSInts.
8386   if (AddendBitWidth > BitWidth) {
8387     Offset = Offset.sext(AddendBitWidth);
8388     BitWidth = AddendBitWidth;
8389   } else if (BitWidth > AddendBitWidth) {
8390     Addend = Addend.sext(BitWidth);
8391   }
8392 
8393   bool Ov = false;
8394   llvm::APSInt ResOffset = Offset;
8395   if (BinOpKind == BO_Add)
8396     ResOffset = Offset.sadd_ov(Addend, Ov);
8397   else {
8398     assert(AddendIsRight && BinOpKind == BO_Sub &&
8399            "operator must be add or sub with addend on the right");
8400     ResOffset = Offset.ssub_ov(Addend, Ov);
8401   }
8402 
8403   // We add an offset to a pointer here so we should support an offset as big as
8404   // possible.
8405   if (Ov) {
8406     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
8407            "index (intermediate) result too big");
8408     Offset = Offset.sext(2 * BitWidth);
8409     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
8410     return;
8411   }
8412 
8413   Offset = ResOffset;
8414 }
8415 
8416 namespace {
8417 
8418 // This is a wrapper class around StringLiteral to support offsetted string
8419 // literals as format strings. It takes the offset into account when returning
8420 // the string and its length or the source locations to display notes correctly.
8421 class FormatStringLiteral {
8422   const StringLiteral *FExpr;
8423   int64_t Offset;
8424 
8425  public:
8426   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
8427       : FExpr(fexpr), Offset(Offset) {}
8428 
8429   StringRef getString() const {
8430     return FExpr->getString().drop_front(Offset);
8431   }
8432 
8433   unsigned getByteLength() const {
8434     return FExpr->getByteLength() - getCharByteWidth() * Offset;
8435   }
8436 
8437   unsigned getLength() const { return FExpr->getLength() - Offset; }
8438   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
8439 
8440   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
8441 
8442   QualType getType() const { return FExpr->getType(); }
8443 
8444   bool isAscii() const { return FExpr->isOrdinary(); }
8445   bool isWide() const { return FExpr->isWide(); }
8446   bool isUTF8() const { return FExpr->isUTF8(); }
8447   bool isUTF16() const { return FExpr->isUTF16(); }
8448   bool isUTF32() const { return FExpr->isUTF32(); }
8449   bool isPascal() const { return FExpr->isPascal(); }
8450 
8451   SourceLocation getLocationOfByte(
8452       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
8453       const TargetInfo &Target, unsigned *StartToken = nullptr,
8454       unsigned *StartTokenByteOffset = nullptr) const {
8455     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
8456                                     StartToken, StartTokenByteOffset);
8457   }
8458 
8459   SourceLocation getBeginLoc() const LLVM_READONLY {
8460     return FExpr->getBeginLoc().getLocWithOffset(Offset);
8461   }
8462 
8463   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
8464 };
8465 
8466 } // namespace
8467 
8468 static void CheckFormatString(
8469     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
8470     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
8471     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
8472     bool inFunctionCall, Sema::VariadicCallType CallType,
8473     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
8474     bool IgnoreStringsWithoutSpecifiers);
8475 
8476 // Determine if an expression is a string literal or constant string.
8477 // If this function returns false on the arguments to a function expecting a
8478 // format string, we will usually need to emit a warning.
8479 // True string literals are then checked by CheckFormatString.
8480 static StringLiteralCheckType
8481 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
8482                       Sema::FormatArgumentPassingKind APK, unsigned format_idx,
8483                       unsigned firstDataArg, Sema::FormatStringType Type,
8484                       Sema::VariadicCallType CallType, bool InFunctionCall,
8485                       llvm::SmallBitVector &CheckedVarArgs,
8486                       UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
8487                       bool IgnoreStringsWithoutSpecifiers = false) {
8488   if (S.isConstantEvaluated())
8489     return SLCT_NotALiteral;
8490 tryAgain:
8491   assert(Offset.isSigned() && "invalid offset");
8492 
8493   if (E->isTypeDependent() || E->isValueDependent())
8494     return SLCT_NotALiteral;
8495 
8496   E = E->IgnoreParenCasts();
8497 
8498   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
8499     // Technically -Wformat-nonliteral does not warn about this case.
8500     // The behavior of printf and friends in this case is implementation
8501     // dependent.  Ideally if the format string cannot be null then
8502     // it should have a 'nonnull' attribute in the function prototype.
8503     return SLCT_UncheckedLiteral;
8504 
8505   switch (E->getStmtClass()) {
8506   case Stmt::BinaryConditionalOperatorClass:
8507   case Stmt::ConditionalOperatorClass: {
8508     // The expression is a literal if both sub-expressions were, and it was
8509     // completely checked only if both sub-expressions were checked.
8510     const AbstractConditionalOperator *C =
8511         cast<AbstractConditionalOperator>(E);
8512 
8513     // Determine whether it is necessary to check both sub-expressions, for
8514     // example, because the condition expression is a constant that can be
8515     // evaluated at compile time.
8516     bool CheckLeft = true, CheckRight = true;
8517 
8518     bool Cond;
8519     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
8520                                                  S.isConstantEvaluated())) {
8521       if (Cond)
8522         CheckRight = false;
8523       else
8524         CheckLeft = false;
8525     }
8526 
8527     // We need to maintain the offsets for the right and the left hand side
8528     // separately to check if every possible indexed expression is a valid
8529     // string literal. They might have different offsets for different string
8530     // literals in the end.
8531     StringLiteralCheckType Left;
8532     if (!CheckLeft)
8533       Left = SLCT_UncheckedLiteral;
8534     else {
8535       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
8536                                    firstDataArg, Type, CallType, InFunctionCall,
8537                                    CheckedVarArgs, UncoveredArg, Offset,
8538                                    IgnoreStringsWithoutSpecifiers);
8539       if (Left == SLCT_NotALiteral || !CheckRight) {
8540         return Left;
8541       }
8542     }
8543 
8544     StringLiteralCheckType Right = checkFormatStringExpr(
8545         S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
8546         CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8547         IgnoreStringsWithoutSpecifiers);
8548 
8549     return (CheckLeft && Left < Right) ? Left : Right;
8550   }
8551 
8552   case Stmt::ImplicitCastExprClass:
8553     E = cast<ImplicitCastExpr>(E)->getSubExpr();
8554     goto tryAgain;
8555 
8556   case Stmt::OpaqueValueExprClass:
8557     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
8558       E = src;
8559       goto tryAgain;
8560     }
8561     return SLCT_NotALiteral;
8562 
8563   case Stmt::PredefinedExprClass:
8564     // While __func__, etc., are technically not string literals, they
8565     // cannot contain format specifiers and thus are not a security
8566     // liability.
8567     return SLCT_UncheckedLiteral;
8568 
8569   case Stmt::DeclRefExprClass: {
8570     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
8571 
8572     // As an exception, do not flag errors for variables binding to
8573     // const string literals.
8574     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
8575       bool isConstant = false;
8576       QualType T = DR->getType();
8577 
8578       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
8579         isConstant = AT->getElementType().isConstant(S.Context);
8580       } else if (const PointerType *PT = T->getAs<PointerType>()) {
8581         isConstant = T.isConstant(S.Context) &&
8582                      PT->getPointeeType().isConstant(S.Context);
8583       } else if (T->isObjCObjectPointerType()) {
8584         // In ObjC, there is usually no "const ObjectPointer" type,
8585         // so don't check if the pointee type is constant.
8586         isConstant = T.isConstant(S.Context);
8587       }
8588 
8589       if (isConstant) {
8590         if (const Expr *Init = VD->getAnyInitializer()) {
8591           // Look through initializers like const char c[] = { "foo" }
8592           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
8593             if (InitList->isStringLiteralInit())
8594               Init = InitList->getInit(0)->IgnoreParenImpCasts();
8595           }
8596           return checkFormatStringExpr(
8597               S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
8598               /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
8599         }
8600       }
8601 
8602       // When the format argument is an argument of this function, and this
8603       // function also has the format attribute, there are several interactions
8604       // for which there shouldn't be a warning. For instance, when calling
8605       // v*printf from a function that has the printf format attribute, we
8606       // should not emit a warning about using `fmt`, even though it's not
8607       // constant, because the arguments have already been checked for the
8608       // caller of `logmessage`:
8609       //
8610       //  __attribute__((format(printf, 1, 2)))
8611       //  void logmessage(char const *fmt, ...) {
8612       //    va_list ap;
8613       //    va_start(ap, fmt);
8614       //    vprintf(fmt, ap);  /* do not emit a warning about "fmt" */
8615       //    ...
8616       // }
8617       //
8618       // Another interaction that we need to support is calling a variadic
8619       // format function from a format function that has fixed arguments. For
8620       // instance:
8621       //
8622       //  __attribute__((format(printf, 1, 2)))
8623       //  void logstring(char const *fmt, char const *str) {
8624       //    printf(fmt, str);  /* do not emit a warning about "fmt" */
8625       //  }
8626       //
8627       // Same (and perhaps more relatably) for the variadic template case:
8628       //
8629       //  template<typename... Args>
8630       //  __attribute__((format(printf, 1, 2)))
8631       //  void log(const char *fmt, Args&&... args) {
8632       //    printf(fmt, forward<Args>(args)...);
8633       //           /* do not emit a warning about "fmt" */
8634       //  }
8635       //
8636       // Due to implementation difficulty, we only check the format, not the
8637       // format arguments, in all cases.
8638       //
8639       if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
8640         if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
8641           for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
8642             bool IsCXXMember = false;
8643             if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
8644               IsCXXMember = MD->isInstance();
8645 
8646             bool IsVariadic = false;
8647             if (const FunctionType *FnTy = D->getFunctionType())
8648               IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
8649             else if (const auto *BD = dyn_cast<BlockDecl>(D))
8650               IsVariadic = BD->isVariadic();
8651             else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
8652               IsVariadic = OMD->isVariadic();
8653 
8654             Sema::FormatStringInfo CallerFSI;
8655             if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
8656                                           &CallerFSI)) {
8657               // We also check if the formats are compatible.
8658               // We can't pass a 'scanf' string to a 'printf' function.
8659               if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
8660                   Type == S.GetFormatStringType(PVFormat)) {
8661                 // Lastly, check that argument passing kinds transition in a
8662                 // way that makes sense:
8663                 // from a caller with FAPK_VAList, allow FAPK_VAList
8664                 // from a caller with FAPK_Fixed, allow FAPK_Fixed
8665                 // from a caller with FAPK_Fixed, allow FAPK_Variadic
8666                 // from a caller with FAPK_Variadic, allow FAPK_VAList
8667                 switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
8668                 case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
8669                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
8670                 case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
8671                 case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
8672                   return SLCT_UncheckedLiteral;
8673                 }
8674               }
8675             }
8676           }
8677         }
8678       }
8679     }
8680 
8681     return SLCT_NotALiteral;
8682   }
8683 
8684   case Stmt::CallExprClass:
8685   case Stmt::CXXMemberCallExprClass: {
8686     const CallExpr *CE = cast<CallExpr>(E);
8687     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
8688       bool IsFirst = true;
8689       StringLiteralCheckType CommonResult;
8690       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
8691         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
8692         StringLiteralCheckType Result = checkFormatStringExpr(
8693             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8694             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8695             IgnoreStringsWithoutSpecifiers);
8696         if (IsFirst) {
8697           CommonResult = Result;
8698           IsFirst = false;
8699         }
8700       }
8701       if (!IsFirst)
8702         return CommonResult;
8703 
8704       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
8705         unsigned BuiltinID = FD->getBuiltinID();
8706         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
8707             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
8708           const Expr *Arg = CE->getArg(0);
8709           return checkFormatStringExpr(
8710               S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8711               InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8712               IgnoreStringsWithoutSpecifiers);
8713         }
8714       }
8715     }
8716 
8717     return SLCT_NotALiteral;
8718   }
8719   case Stmt::ObjCMessageExprClass: {
8720     const auto *ME = cast<ObjCMessageExpr>(E);
8721     if (const auto *MD = ME->getMethodDecl()) {
8722       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
8723         // As a special case heuristic, if we're using the method -[NSBundle
8724         // localizedStringForKey:value:table:], ignore any key strings that lack
8725         // format specifiers. The idea is that if the key doesn't have any
8726         // format specifiers then its probably just a key to map to the
8727         // localized strings. If it does have format specifiers though, then its
8728         // likely that the text of the key is the format string in the
8729         // programmer's language, and should be checked.
8730         const ObjCInterfaceDecl *IFace;
8731         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
8732             IFace->getIdentifier()->isStr("NSBundle") &&
8733             MD->getSelector().isKeywordSelector(
8734                 {"localizedStringForKey", "value", "table"})) {
8735           IgnoreStringsWithoutSpecifiers = true;
8736         }
8737 
8738         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
8739         return checkFormatStringExpr(
8740             S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
8741             InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
8742             IgnoreStringsWithoutSpecifiers);
8743       }
8744     }
8745 
8746     return SLCT_NotALiteral;
8747   }
8748   case Stmt::ObjCStringLiteralClass:
8749   case Stmt::StringLiteralClass: {
8750     const StringLiteral *StrE = nullptr;
8751 
8752     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
8753       StrE = ObjCFExpr->getString();
8754     else
8755       StrE = cast<StringLiteral>(E);
8756 
8757     if (StrE) {
8758       if (Offset.isNegative() || Offset > StrE->getLength()) {
8759         // TODO: It would be better to have an explicit warning for out of
8760         // bounds literals.
8761         return SLCT_NotALiteral;
8762       }
8763       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
8764       CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
8765                         InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
8766                         IgnoreStringsWithoutSpecifiers);
8767       return SLCT_CheckedLiteral;
8768     }
8769 
8770     return SLCT_NotALiteral;
8771   }
8772   case Stmt::BinaryOperatorClass: {
8773     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
8774 
8775     // A string literal + an int offset is still a string literal.
8776     if (BinOp->isAdditiveOp()) {
8777       Expr::EvalResult LResult, RResult;
8778 
8779       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
8780           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8781       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
8782           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
8783 
8784       if (LIsInt != RIsInt) {
8785         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
8786 
8787         if (LIsInt) {
8788           if (BinOpKind == BO_Add) {
8789             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
8790             E = BinOp->getRHS();
8791             goto tryAgain;
8792           }
8793         } else {
8794           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
8795           E = BinOp->getLHS();
8796           goto tryAgain;
8797         }
8798       }
8799     }
8800 
8801     return SLCT_NotALiteral;
8802   }
8803   case Stmt::UnaryOperatorClass: {
8804     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
8805     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
8806     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
8807       Expr::EvalResult IndexResult;
8808       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
8809                                        Expr::SE_NoSideEffects,
8810                                        S.isConstantEvaluated())) {
8811         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
8812                    /*RHS is int*/ true);
8813         E = ASE->getBase();
8814         goto tryAgain;
8815       }
8816     }
8817 
8818     return SLCT_NotALiteral;
8819   }
8820 
8821   default:
8822     return SLCT_NotALiteral;
8823   }
8824 }
8825 
8826 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
8827   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
8828       .Case("scanf", FST_Scanf)
8829       .Cases("printf", "printf0", FST_Printf)
8830       .Cases("NSString", "CFString", FST_NSString)
8831       .Case("strftime", FST_Strftime)
8832       .Case("strfmon", FST_Strfmon)
8833       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
8834       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
8835       .Case("os_trace", FST_OSLog)
8836       .Case("os_log", FST_OSLog)
8837       .Default(FST_Unknown);
8838 }
8839 
8840 /// CheckFormatArguments - Check calls to printf and scanf (and similar
8841 /// functions) for correct use of format strings.
8842 /// Returns true if a format string has been fully checked.
8843 bool Sema::CheckFormatArguments(const FormatAttr *Format,
8844                                 ArrayRef<const Expr *> Args, bool IsCXXMember,
8845                                 VariadicCallType CallType, SourceLocation Loc,
8846                                 SourceRange Range,
8847                                 llvm::SmallBitVector &CheckedVarArgs) {
8848   FormatStringInfo FSI;
8849   if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
8850                           &FSI))
8851     return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
8852                                 FSI.FirstDataArg, GetFormatStringType(Format),
8853                                 CallType, Loc, Range, CheckedVarArgs);
8854   return false;
8855 }
8856 
8857 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
8858                                 Sema::FormatArgumentPassingKind APK,
8859                                 unsigned format_idx, unsigned firstDataArg,
8860                                 FormatStringType Type,
8861                                 VariadicCallType CallType, SourceLocation Loc,
8862                                 SourceRange Range,
8863                                 llvm::SmallBitVector &CheckedVarArgs) {
8864   // CHECK: printf/scanf-like function is called with no format string.
8865   if (format_idx >= Args.size()) {
8866     Diag(Loc, diag::warn_missing_format_string) << Range;
8867     return false;
8868   }
8869 
8870   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
8871 
8872   // CHECK: format string is not a string literal.
8873   //
8874   // Dynamically generated format strings are difficult to
8875   // automatically vet at compile time.  Requiring that format strings
8876   // are string literals: (1) permits the checking of format strings by
8877   // the compiler and thereby (2) can practically remove the source of
8878   // many format string exploits.
8879 
8880   // Format string can be either ObjC string (e.g. @"%d") or
8881   // C string (e.g. "%d")
8882   // ObjC string uses the same format specifiers as C string, so we can use
8883   // the same format string checking logic for both ObjC and C strings.
8884   UncoveredArgHandler UncoveredArg;
8885   StringLiteralCheckType CT = checkFormatStringExpr(
8886       *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
8887       CallType,
8888       /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
8889       /*no string offset*/ llvm::APSInt(64, false) = 0);
8890 
8891   // Generate a diagnostic where an uncovered argument is detected.
8892   if (UncoveredArg.hasUncoveredArg()) {
8893     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
8894     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
8895     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
8896   }
8897 
8898   if (CT != SLCT_NotALiteral)
8899     // Literal format string found, check done!
8900     return CT == SLCT_CheckedLiteral;
8901 
8902   // Strftime is particular as it always uses a single 'time' argument,
8903   // so it is safe to pass a non-literal string.
8904   if (Type == FST_Strftime)
8905     return false;
8906 
8907   // Do not emit diag when the string param is a macro expansion and the
8908   // format is either NSString or CFString. This is a hack to prevent
8909   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
8910   // which are usually used in place of NS and CF string literals.
8911   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
8912   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
8913     return false;
8914 
8915   // If there are no arguments specified, warn with -Wformat-security, otherwise
8916   // warn only with -Wformat-nonliteral.
8917   if (Args.size() == firstDataArg) {
8918     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
8919       << OrigFormatExpr->getSourceRange();
8920     switch (Type) {
8921     default:
8922       break;
8923     case FST_Kprintf:
8924     case FST_FreeBSDKPrintf:
8925     case FST_Printf:
8926       Diag(FormatLoc, diag::note_format_security_fixit)
8927         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
8928       break;
8929     case FST_NSString:
8930       Diag(FormatLoc, diag::note_format_security_fixit)
8931         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
8932       break;
8933     }
8934   } else {
8935     Diag(FormatLoc, diag::warn_format_nonliteral)
8936       << OrigFormatExpr->getSourceRange();
8937   }
8938   return false;
8939 }
8940 
8941 namespace {
8942 
8943 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
8944 protected:
8945   Sema &S;
8946   const FormatStringLiteral *FExpr;
8947   const Expr *OrigFormatExpr;
8948   const Sema::FormatStringType FSType;
8949   const unsigned FirstDataArg;
8950   const unsigned NumDataArgs;
8951   const char *Beg; // Start of format string.
8952   const Sema::FormatArgumentPassingKind ArgPassingKind;
8953   ArrayRef<const Expr *> Args;
8954   unsigned FormatIdx;
8955   llvm::SmallBitVector CoveredArgs;
8956   bool usesPositionalArgs = false;
8957   bool atFirstArg = true;
8958   bool inFunctionCall;
8959   Sema::VariadicCallType CallType;
8960   llvm::SmallBitVector &CheckedVarArgs;
8961   UncoveredArgHandler &UncoveredArg;
8962 
8963 public:
8964   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
8965                      const Expr *origFormatExpr,
8966                      const Sema::FormatStringType type, unsigned firstDataArg,
8967                      unsigned numDataArgs, const char *beg,
8968                      Sema::FormatArgumentPassingKind APK,
8969                      ArrayRef<const Expr *> Args, unsigned formatIdx,
8970                      bool inFunctionCall, Sema::VariadicCallType callType,
8971                      llvm::SmallBitVector &CheckedVarArgs,
8972                      UncoveredArgHandler &UncoveredArg)
8973       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
8974         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
8975         ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
8976         inFunctionCall(inFunctionCall), CallType(callType),
8977         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
8978     CoveredArgs.resize(numDataArgs);
8979     CoveredArgs.reset();
8980   }
8981 
8982   void DoneProcessing();
8983 
8984   void HandleIncompleteSpecifier(const char *startSpecifier,
8985                                  unsigned specifierLen) override;
8986 
8987   void HandleInvalidLengthModifier(
8988                            const analyze_format_string::FormatSpecifier &FS,
8989                            const analyze_format_string::ConversionSpecifier &CS,
8990                            const char *startSpecifier, unsigned specifierLen,
8991                            unsigned DiagID);
8992 
8993   void HandleNonStandardLengthModifier(
8994                     const analyze_format_string::FormatSpecifier &FS,
8995                     const char *startSpecifier, unsigned specifierLen);
8996 
8997   void HandleNonStandardConversionSpecifier(
8998                     const analyze_format_string::ConversionSpecifier &CS,
8999                     const char *startSpecifier, unsigned specifierLen);
9000 
9001   void HandlePosition(const char *startPos, unsigned posLen) override;
9002 
9003   void HandleInvalidPosition(const char *startSpecifier,
9004                              unsigned specifierLen,
9005                              analyze_format_string::PositionContext p) override;
9006 
9007   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
9008 
9009   void HandleNullChar(const char *nullCharacter) override;
9010 
9011   template <typename Range>
9012   static void
9013   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
9014                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
9015                        bool IsStringLocation, Range StringRange,
9016                        ArrayRef<FixItHint> Fixit = None);
9017 
9018 protected:
9019   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
9020                                         const char *startSpec,
9021                                         unsigned specifierLen,
9022                                         const char *csStart, unsigned csLen);
9023 
9024   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
9025                                          const char *startSpec,
9026                                          unsigned specifierLen);
9027 
9028   SourceRange getFormatStringRange();
9029   CharSourceRange getSpecifierRange(const char *startSpecifier,
9030                                     unsigned specifierLen);
9031   SourceLocation getLocationOfByte(const char *x);
9032 
9033   const Expr *getDataArg(unsigned i) const;
9034 
9035   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
9036                     const analyze_format_string::ConversionSpecifier &CS,
9037                     const char *startSpecifier, unsigned specifierLen,
9038                     unsigned argIndex);
9039 
9040   template <typename Range>
9041   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
9042                             bool IsStringLocation, Range StringRange,
9043                             ArrayRef<FixItHint> Fixit = None);
9044 };
9045 
9046 } // namespace
9047 
9048 SourceRange CheckFormatHandler::getFormatStringRange() {
9049   return OrigFormatExpr->getSourceRange();
9050 }
9051 
9052 CharSourceRange CheckFormatHandler::
9053 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
9054   SourceLocation Start = getLocationOfByte(startSpecifier);
9055   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
9056 
9057   // Advance the end SourceLocation by one due to half-open ranges.
9058   End = End.getLocWithOffset(1);
9059 
9060   return CharSourceRange::getCharRange(Start, End);
9061 }
9062 
9063 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
9064   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
9065                                   S.getLangOpts(), S.Context.getTargetInfo());
9066 }
9067 
9068 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
9069                                                    unsigned specifierLen){
9070   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
9071                        getLocationOfByte(startSpecifier),
9072                        /*IsStringLocation*/true,
9073                        getSpecifierRange(startSpecifier, specifierLen));
9074 }
9075 
9076 void CheckFormatHandler::HandleInvalidLengthModifier(
9077     const analyze_format_string::FormatSpecifier &FS,
9078     const analyze_format_string::ConversionSpecifier &CS,
9079     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
9080   using namespace analyze_format_string;
9081 
9082   const LengthModifier &LM = FS.getLengthModifier();
9083   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
9084 
9085   // See if we know how to fix this length modifier.
9086   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
9087   if (FixedLM) {
9088     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
9089                          getLocationOfByte(LM.getStart()),
9090                          /*IsStringLocation*/true,
9091                          getSpecifierRange(startSpecifier, specifierLen));
9092 
9093     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
9094       << FixedLM->toString()
9095       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
9096 
9097   } else {
9098     FixItHint Hint;
9099     if (DiagID == diag::warn_format_nonsensical_length)
9100       Hint = FixItHint::CreateRemoval(LMRange);
9101 
9102     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
9103                          getLocationOfByte(LM.getStart()),
9104                          /*IsStringLocation*/true,
9105                          getSpecifierRange(startSpecifier, specifierLen),
9106                          Hint);
9107   }
9108 }
9109 
9110 void CheckFormatHandler::HandleNonStandardLengthModifier(
9111     const analyze_format_string::FormatSpecifier &FS,
9112     const char *startSpecifier, unsigned specifierLen) {
9113   using namespace analyze_format_string;
9114 
9115   const LengthModifier &LM = FS.getLengthModifier();
9116   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
9117 
9118   // See if we know how to fix this length modifier.
9119   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
9120   if (FixedLM) {
9121     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9122                            << LM.toString() << 0,
9123                          getLocationOfByte(LM.getStart()),
9124                          /*IsStringLocation*/true,
9125                          getSpecifierRange(startSpecifier, specifierLen));
9126 
9127     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
9128       << FixedLM->toString()
9129       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
9130 
9131   } else {
9132     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9133                            << LM.toString() << 0,
9134                          getLocationOfByte(LM.getStart()),
9135                          /*IsStringLocation*/true,
9136                          getSpecifierRange(startSpecifier, specifierLen));
9137   }
9138 }
9139 
9140 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
9141     const analyze_format_string::ConversionSpecifier &CS,
9142     const char *startSpecifier, unsigned specifierLen) {
9143   using namespace analyze_format_string;
9144 
9145   // See if we know how to fix this conversion specifier.
9146   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
9147   if (FixedCS) {
9148     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9149                           << CS.toString() << /*conversion specifier*/1,
9150                          getLocationOfByte(CS.getStart()),
9151                          /*IsStringLocation*/true,
9152                          getSpecifierRange(startSpecifier, specifierLen));
9153 
9154     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
9155     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
9156       << FixedCS->toString()
9157       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
9158   } else {
9159     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
9160                           << CS.toString() << /*conversion specifier*/1,
9161                          getLocationOfByte(CS.getStart()),
9162                          /*IsStringLocation*/true,
9163                          getSpecifierRange(startSpecifier, specifierLen));
9164   }
9165 }
9166 
9167 void CheckFormatHandler::HandlePosition(const char *startPos,
9168                                         unsigned posLen) {
9169   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
9170                                getLocationOfByte(startPos),
9171                                /*IsStringLocation*/true,
9172                                getSpecifierRange(startPos, posLen));
9173 }
9174 
9175 void
9176 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
9177                                      analyze_format_string::PositionContext p) {
9178   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
9179                          << (unsigned) p,
9180                        getLocationOfByte(startPos), /*IsStringLocation*/true,
9181                        getSpecifierRange(startPos, posLen));
9182 }
9183 
9184 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
9185                                             unsigned posLen) {
9186   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
9187                                getLocationOfByte(startPos),
9188                                /*IsStringLocation*/true,
9189                                getSpecifierRange(startPos, posLen));
9190 }
9191 
9192 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
9193   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
9194     // The presence of a null character is likely an error.
9195     EmitFormatDiagnostic(
9196       S.PDiag(diag::warn_printf_format_string_contains_null_char),
9197       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
9198       getFormatStringRange());
9199   }
9200 }
9201 
9202 // Note that this may return NULL if there was an error parsing or building
9203 // one of the argument expressions.
9204 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
9205   return Args[FirstDataArg + i];
9206 }
9207 
9208 void CheckFormatHandler::DoneProcessing() {
9209   // Does the number of data arguments exceed the number of
9210   // format conversions in the format string?
9211   if (ArgPassingKind != Sema::FAPK_VAList) {
9212     // Find any arguments that weren't covered.
9213     CoveredArgs.flip();
9214     signed notCoveredArg = CoveredArgs.find_first();
9215     if (notCoveredArg >= 0) {
9216       assert((unsigned)notCoveredArg < NumDataArgs);
9217       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
9218     } else {
9219       UncoveredArg.setAllCovered();
9220     }
9221   }
9222 }
9223 
9224 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
9225                                    const Expr *ArgExpr) {
9226   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
9227          "Invalid state");
9228 
9229   if (!ArgExpr)
9230     return;
9231 
9232   SourceLocation Loc = ArgExpr->getBeginLoc();
9233 
9234   if (S.getSourceManager().isInSystemMacro(Loc))
9235     return;
9236 
9237   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
9238   for (auto E : DiagnosticExprs)
9239     PDiag << E->getSourceRange();
9240 
9241   CheckFormatHandler::EmitFormatDiagnostic(
9242                                   S, IsFunctionCall, DiagnosticExprs[0],
9243                                   PDiag, Loc, /*IsStringLocation*/false,
9244                                   DiagnosticExprs[0]->getSourceRange());
9245 }
9246 
9247 bool
9248 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
9249                                                      SourceLocation Loc,
9250                                                      const char *startSpec,
9251                                                      unsigned specifierLen,
9252                                                      const char *csStart,
9253                                                      unsigned csLen) {
9254   bool keepGoing = true;
9255   if (argIndex < NumDataArgs) {
9256     // Consider the argument coverered, even though the specifier doesn't
9257     // make sense.
9258     CoveredArgs.set(argIndex);
9259   }
9260   else {
9261     // If argIndex exceeds the number of data arguments we
9262     // don't issue a warning because that is just a cascade of warnings (and
9263     // they may have intended '%%' anyway). We don't want to continue processing
9264     // the format string after this point, however, as we will like just get
9265     // gibberish when trying to match arguments.
9266     keepGoing = false;
9267   }
9268 
9269   StringRef Specifier(csStart, csLen);
9270 
9271   // If the specifier in non-printable, it could be the first byte of a UTF-8
9272   // sequence. In that case, print the UTF-8 code point. If not, print the byte
9273   // hex value.
9274   std::string CodePointStr;
9275   if (!llvm::sys::locale::isPrint(*csStart)) {
9276     llvm::UTF32 CodePoint;
9277     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
9278     const llvm::UTF8 *E =
9279         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
9280     llvm::ConversionResult Result =
9281         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
9282 
9283     if (Result != llvm::conversionOK) {
9284       unsigned char FirstChar = *csStart;
9285       CodePoint = (llvm::UTF32)FirstChar;
9286     }
9287 
9288     llvm::raw_string_ostream OS(CodePointStr);
9289     if (CodePoint < 256)
9290       OS << "\\x" << llvm::format("%02x", CodePoint);
9291     else if (CodePoint <= 0xFFFF)
9292       OS << "\\u" << llvm::format("%04x", CodePoint);
9293     else
9294       OS << "\\U" << llvm::format("%08x", CodePoint);
9295     OS.flush();
9296     Specifier = CodePointStr;
9297   }
9298 
9299   EmitFormatDiagnostic(
9300       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
9301       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
9302 
9303   return keepGoing;
9304 }
9305 
9306 void
9307 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
9308                                                       const char *startSpec,
9309                                                       unsigned specifierLen) {
9310   EmitFormatDiagnostic(
9311     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
9312     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
9313 }
9314 
9315 bool
9316 CheckFormatHandler::CheckNumArgs(
9317   const analyze_format_string::FormatSpecifier &FS,
9318   const analyze_format_string::ConversionSpecifier &CS,
9319   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
9320 
9321   if (argIndex >= NumDataArgs) {
9322     PartialDiagnostic PDiag = FS.usesPositionalArg()
9323       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
9324            << (argIndex+1) << NumDataArgs)
9325       : S.PDiag(diag::warn_printf_insufficient_data_args);
9326     EmitFormatDiagnostic(
9327       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
9328       getSpecifierRange(startSpecifier, specifierLen));
9329 
9330     // Since more arguments than conversion tokens are given, by extension
9331     // all arguments are covered, so mark this as so.
9332     UncoveredArg.setAllCovered();
9333     return false;
9334   }
9335   return true;
9336 }
9337 
9338 template<typename Range>
9339 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
9340                                               SourceLocation Loc,
9341                                               bool IsStringLocation,
9342                                               Range StringRange,
9343                                               ArrayRef<FixItHint> FixIt) {
9344   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
9345                        Loc, IsStringLocation, StringRange, FixIt);
9346 }
9347 
9348 /// If the format string is not within the function call, emit a note
9349 /// so that the function call and string are in diagnostic messages.
9350 ///
9351 /// \param InFunctionCall if true, the format string is within the function
9352 /// call and only one diagnostic message will be produced.  Otherwise, an
9353 /// extra note will be emitted pointing to location of the format string.
9354 ///
9355 /// \param ArgumentExpr the expression that is passed as the format string
9356 /// argument in the function call.  Used for getting locations when two
9357 /// diagnostics are emitted.
9358 ///
9359 /// \param PDiag the callee should already have provided any strings for the
9360 /// diagnostic message.  This function only adds locations and fixits
9361 /// to diagnostics.
9362 ///
9363 /// \param Loc primary location for diagnostic.  If two diagnostics are
9364 /// required, one will be at Loc and a new SourceLocation will be created for
9365 /// the other one.
9366 ///
9367 /// \param IsStringLocation if true, Loc points to the format string should be
9368 /// used for the note.  Otherwise, Loc points to the argument list and will
9369 /// be used with PDiag.
9370 ///
9371 /// \param StringRange some or all of the string to highlight.  This is
9372 /// templated so it can accept either a CharSourceRange or a SourceRange.
9373 ///
9374 /// \param FixIt optional fix it hint for the format string.
9375 template <typename Range>
9376 void CheckFormatHandler::EmitFormatDiagnostic(
9377     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
9378     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
9379     Range StringRange, ArrayRef<FixItHint> FixIt) {
9380   if (InFunctionCall) {
9381     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
9382     D << StringRange;
9383     D << FixIt;
9384   } else {
9385     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
9386       << ArgumentExpr->getSourceRange();
9387 
9388     const Sema::SemaDiagnosticBuilder &Note =
9389       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
9390              diag::note_format_string_defined);
9391 
9392     Note << StringRange;
9393     Note << FixIt;
9394   }
9395 }
9396 
9397 //===--- CHECK: Printf format string checking ------------------------------===//
9398 
9399 namespace {
9400 
9401 class CheckPrintfHandler : public CheckFormatHandler {
9402 public:
9403   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
9404                      const Expr *origFormatExpr,
9405                      const Sema::FormatStringType type, unsigned firstDataArg,
9406                      unsigned numDataArgs, bool isObjC, const char *beg,
9407                      Sema::FormatArgumentPassingKind APK,
9408                      ArrayRef<const Expr *> Args, unsigned formatIdx,
9409                      bool inFunctionCall, Sema::VariadicCallType CallType,
9410                      llvm::SmallBitVector &CheckedVarArgs,
9411                      UncoveredArgHandler &UncoveredArg)
9412       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
9413                            numDataArgs, beg, APK, Args, formatIdx,
9414                            inFunctionCall, CallType, CheckedVarArgs,
9415                            UncoveredArg) {}
9416 
9417   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
9418 
9419   /// Returns true if '%@' specifiers are allowed in the format string.
9420   bool allowsObjCArg() const {
9421     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
9422            FSType == Sema::FST_OSTrace;
9423   }
9424 
9425   bool HandleInvalidPrintfConversionSpecifier(
9426                                       const analyze_printf::PrintfSpecifier &FS,
9427                                       const char *startSpecifier,
9428                                       unsigned specifierLen) override;
9429 
9430   void handleInvalidMaskType(StringRef MaskType) override;
9431 
9432   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
9433                              const char *startSpecifier, unsigned specifierLen,
9434                              const TargetInfo &Target) override;
9435   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
9436                        const char *StartSpecifier,
9437                        unsigned SpecifierLen,
9438                        const Expr *E);
9439 
9440   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
9441                     const char *startSpecifier, unsigned specifierLen);
9442   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
9443                            const analyze_printf::OptionalAmount &Amt,
9444                            unsigned type,
9445                            const char *startSpecifier, unsigned specifierLen);
9446   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9447                   const analyze_printf::OptionalFlag &flag,
9448                   const char *startSpecifier, unsigned specifierLen);
9449   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
9450                          const analyze_printf::OptionalFlag &ignoredFlag,
9451                          const analyze_printf::OptionalFlag &flag,
9452                          const char *startSpecifier, unsigned specifierLen);
9453   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
9454                            const Expr *E);
9455 
9456   void HandleEmptyObjCModifierFlag(const char *startFlag,
9457                                    unsigned flagLen) override;
9458 
9459   void HandleInvalidObjCModifierFlag(const char *startFlag,
9460                                             unsigned flagLen) override;
9461 
9462   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
9463                                            const char *flagsEnd,
9464                                            const char *conversionPosition)
9465                                              override;
9466 };
9467 
9468 } // namespace
9469 
9470 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
9471                                       const analyze_printf::PrintfSpecifier &FS,
9472                                       const char *startSpecifier,
9473                                       unsigned specifierLen) {
9474   const analyze_printf::PrintfConversionSpecifier &CS =
9475     FS.getConversionSpecifier();
9476 
9477   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
9478                                           getLocationOfByte(CS.getStart()),
9479                                           startSpecifier, specifierLen,
9480                                           CS.getStart(), CS.getLength());
9481 }
9482 
9483 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
9484   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
9485 }
9486 
9487 bool CheckPrintfHandler::HandleAmount(
9488     const analyze_format_string::OptionalAmount &Amt, unsigned k,
9489     const char *startSpecifier, unsigned specifierLen) {
9490   if (Amt.hasDataArgument()) {
9491     if (ArgPassingKind != Sema::FAPK_VAList) {
9492       unsigned argIndex = Amt.getArgIndex();
9493       if (argIndex >= NumDataArgs) {
9494         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
9495                                  << k,
9496                              getLocationOfByte(Amt.getStart()),
9497                              /*IsStringLocation*/ true,
9498                              getSpecifierRange(startSpecifier, specifierLen));
9499         // Don't do any more checking.  We will just emit
9500         // spurious errors.
9501         return false;
9502       }
9503 
9504       // Type check the data argument.  It should be an 'int'.
9505       // Although not in conformance with C99, we also allow the argument to be
9506       // an 'unsigned int' as that is a reasonably safe case.  GCC also
9507       // doesn't emit a warning for that case.
9508       CoveredArgs.set(argIndex);
9509       const Expr *Arg = getDataArg(argIndex);
9510       if (!Arg)
9511         return false;
9512 
9513       QualType T = Arg->getType();
9514 
9515       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
9516       assert(AT.isValid());
9517 
9518       if (!AT.matchesType(S.Context, T)) {
9519         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
9520                                << k << AT.getRepresentativeTypeName(S.Context)
9521                                << T << Arg->getSourceRange(),
9522                              getLocationOfByte(Amt.getStart()),
9523                              /*IsStringLocation*/true,
9524                              getSpecifierRange(startSpecifier, specifierLen));
9525         // Don't do any more checking.  We will just emit
9526         // spurious errors.
9527         return false;
9528       }
9529     }
9530   }
9531   return true;
9532 }
9533 
9534 void CheckPrintfHandler::HandleInvalidAmount(
9535                                       const analyze_printf::PrintfSpecifier &FS,
9536                                       const analyze_printf::OptionalAmount &Amt,
9537                                       unsigned type,
9538                                       const char *startSpecifier,
9539                                       unsigned specifierLen) {
9540   const analyze_printf::PrintfConversionSpecifier &CS =
9541     FS.getConversionSpecifier();
9542 
9543   FixItHint fixit =
9544     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
9545       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
9546                                  Amt.getConstantLength()))
9547       : FixItHint();
9548 
9549   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
9550                          << type << CS.toString(),
9551                        getLocationOfByte(Amt.getStart()),
9552                        /*IsStringLocation*/true,
9553                        getSpecifierRange(startSpecifier, specifierLen),
9554                        fixit);
9555 }
9556 
9557 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
9558                                     const analyze_printf::OptionalFlag &flag,
9559                                     const char *startSpecifier,
9560                                     unsigned specifierLen) {
9561   // Warn about pointless flag with a fixit removal.
9562   const analyze_printf::PrintfConversionSpecifier &CS =
9563     FS.getConversionSpecifier();
9564   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
9565                          << flag.toString() << CS.toString(),
9566                        getLocationOfByte(flag.getPosition()),
9567                        /*IsStringLocation*/true,
9568                        getSpecifierRange(startSpecifier, specifierLen),
9569                        FixItHint::CreateRemoval(
9570                          getSpecifierRange(flag.getPosition(), 1)));
9571 }
9572 
9573 void CheckPrintfHandler::HandleIgnoredFlag(
9574                                 const analyze_printf::PrintfSpecifier &FS,
9575                                 const analyze_printf::OptionalFlag &ignoredFlag,
9576                                 const analyze_printf::OptionalFlag &flag,
9577                                 const char *startSpecifier,
9578                                 unsigned specifierLen) {
9579   // Warn about ignored flag with a fixit removal.
9580   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
9581                          << ignoredFlag.toString() << flag.toString(),
9582                        getLocationOfByte(ignoredFlag.getPosition()),
9583                        /*IsStringLocation*/true,
9584                        getSpecifierRange(startSpecifier, specifierLen),
9585                        FixItHint::CreateRemoval(
9586                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
9587 }
9588 
9589 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
9590                                                      unsigned flagLen) {
9591   // Warn about an empty flag.
9592   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
9593                        getLocationOfByte(startFlag),
9594                        /*IsStringLocation*/true,
9595                        getSpecifierRange(startFlag, flagLen));
9596 }
9597 
9598 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
9599                                                        unsigned flagLen) {
9600   // Warn about an invalid flag.
9601   auto Range = getSpecifierRange(startFlag, flagLen);
9602   StringRef flag(startFlag, flagLen);
9603   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
9604                       getLocationOfByte(startFlag),
9605                       /*IsStringLocation*/true,
9606                       Range, FixItHint::CreateRemoval(Range));
9607 }
9608 
9609 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
9610     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
9611     // Warn about using '[...]' without a '@' conversion.
9612     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
9613     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
9614     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
9615                          getLocationOfByte(conversionPosition),
9616                          /*IsStringLocation*/true,
9617                          Range, FixItHint::CreateRemoval(Range));
9618 }
9619 
9620 // Determines if the specified is a C++ class or struct containing
9621 // a member with the specified name and kind (e.g. a CXXMethodDecl named
9622 // "c_str()").
9623 template<typename MemberKind>
9624 static llvm::SmallPtrSet<MemberKind*, 1>
9625 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
9626   const RecordType *RT = Ty->getAs<RecordType>();
9627   llvm::SmallPtrSet<MemberKind*, 1> Results;
9628 
9629   if (!RT)
9630     return Results;
9631   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
9632   if (!RD || !RD->getDefinition())
9633     return Results;
9634 
9635   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
9636                  Sema::LookupMemberName);
9637   R.suppressDiagnostics();
9638 
9639   // We just need to include all members of the right kind turned up by the
9640   // filter, at this point.
9641   if (S.LookupQualifiedName(R, RT->getDecl()))
9642     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
9643       NamedDecl *decl = (*I)->getUnderlyingDecl();
9644       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
9645         Results.insert(FK);
9646     }
9647   return Results;
9648 }
9649 
9650 /// Check if we could call '.c_str()' on an object.
9651 ///
9652 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
9653 /// allow the call, or if it would be ambiguous).
9654 bool Sema::hasCStrMethod(const Expr *E) {
9655   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9656 
9657   MethodSet Results =
9658       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
9659   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9660        MI != ME; ++MI)
9661     if ((*MI)->getMinRequiredArguments() == 0)
9662       return true;
9663   return false;
9664 }
9665 
9666 // Check if a (w)string was passed when a (w)char* was needed, and offer a
9667 // better diagnostic if so. AT is assumed to be valid.
9668 // Returns true when a c_str() conversion method is found.
9669 bool CheckPrintfHandler::checkForCStrMembers(
9670     const analyze_printf::ArgType &AT, const Expr *E) {
9671   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
9672 
9673   MethodSet Results =
9674       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
9675 
9676   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
9677        MI != ME; ++MI) {
9678     const CXXMethodDecl *Method = *MI;
9679     if (Method->getMinRequiredArguments() == 0 &&
9680         AT.matchesType(S.Context, Method->getReturnType())) {
9681       // FIXME: Suggest parens if the expression needs them.
9682       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
9683       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
9684           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
9685       return true;
9686     }
9687   }
9688 
9689   return false;
9690 }
9691 
9692 bool CheckPrintfHandler::HandlePrintfSpecifier(
9693     const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
9694     unsigned specifierLen, const TargetInfo &Target) {
9695   using namespace analyze_format_string;
9696   using namespace analyze_printf;
9697 
9698   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
9699 
9700   if (FS.consumesDataArgument()) {
9701     if (atFirstArg) {
9702         atFirstArg = false;
9703         usesPositionalArgs = FS.usesPositionalArg();
9704     }
9705     else if (usesPositionalArgs != FS.usesPositionalArg()) {
9706       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
9707                                         startSpecifier, specifierLen);
9708       return false;
9709     }
9710   }
9711 
9712   // First check if the field width, precision, and conversion specifier
9713   // have matching data arguments.
9714   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
9715                     startSpecifier, specifierLen)) {
9716     return false;
9717   }
9718 
9719   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
9720                     startSpecifier, specifierLen)) {
9721     return false;
9722   }
9723 
9724   if (!CS.consumesDataArgument()) {
9725     // FIXME: Technically specifying a precision or field width here
9726     // makes no sense.  Worth issuing a warning at some point.
9727     return true;
9728   }
9729 
9730   // Consume the argument.
9731   unsigned argIndex = FS.getArgIndex();
9732   if (argIndex < NumDataArgs) {
9733     // The check to see if the argIndex is valid will come later.
9734     // We set the bit here because we may exit early from this
9735     // function if we encounter some other error.
9736     CoveredArgs.set(argIndex);
9737   }
9738 
9739   // FreeBSD kernel extensions.
9740   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
9741       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
9742     // We need at least two arguments.
9743     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
9744       return false;
9745 
9746     // Claim the second argument.
9747     CoveredArgs.set(argIndex + 1);
9748 
9749     // Type check the first argument (int for %b, pointer for %D)
9750     const Expr *Ex = getDataArg(argIndex);
9751     const analyze_printf::ArgType &AT =
9752       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
9753         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
9754     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
9755       EmitFormatDiagnostic(
9756           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9757               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
9758               << false << Ex->getSourceRange(),
9759           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9760           getSpecifierRange(startSpecifier, specifierLen));
9761 
9762     // Type check the second argument (char * for both %b and %D)
9763     Ex = getDataArg(argIndex + 1);
9764     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
9765     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
9766       EmitFormatDiagnostic(
9767           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
9768               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
9769               << false << Ex->getSourceRange(),
9770           Ex->getBeginLoc(), /*IsStringLocation*/ false,
9771           getSpecifierRange(startSpecifier, specifierLen));
9772 
9773      return true;
9774   }
9775 
9776   // Check for using an Objective-C specific conversion specifier
9777   // in a non-ObjC literal.
9778   if (!allowsObjCArg() && CS.isObjCArg()) {
9779     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9780                                                   specifierLen);
9781   }
9782 
9783   // %P can only be used with os_log.
9784   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
9785     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9786                                                   specifierLen);
9787   }
9788 
9789   // %n is not allowed with os_log.
9790   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
9791     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
9792                          getLocationOfByte(CS.getStart()),
9793                          /*IsStringLocation*/ false,
9794                          getSpecifierRange(startSpecifier, specifierLen));
9795 
9796     return true;
9797   }
9798 
9799   // Only scalars are allowed for os_trace.
9800   if (FSType == Sema::FST_OSTrace &&
9801       (CS.getKind() == ConversionSpecifier::PArg ||
9802        CS.getKind() == ConversionSpecifier::sArg ||
9803        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
9804     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
9805                                                   specifierLen);
9806   }
9807 
9808   // Check for use of public/private annotation outside of os_log().
9809   if (FSType != Sema::FST_OSLog) {
9810     if (FS.isPublic().isSet()) {
9811       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9812                                << "public",
9813                            getLocationOfByte(FS.isPublic().getPosition()),
9814                            /*IsStringLocation*/ false,
9815                            getSpecifierRange(startSpecifier, specifierLen));
9816     }
9817     if (FS.isPrivate().isSet()) {
9818       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
9819                                << "private",
9820                            getLocationOfByte(FS.isPrivate().getPosition()),
9821                            /*IsStringLocation*/ false,
9822                            getSpecifierRange(startSpecifier, specifierLen));
9823     }
9824   }
9825 
9826   const llvm::Triple &Triple = Target.getTriple();
9827   if (CS.getKind() == ConversionSpecifier::nArg &&
9828       (Triple.isAndroid() || Triple.isOSFuchsia())) {
9829     EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
9830                          getLocationOfByte(CS.getStart()),
9831                          /*IsStringLocation*/ false,
9832                          getSpecifierRange(startSpecifier, specifierLen));
9833   }
9834 
9835   // Check for invalid use of field width
9836   if (!FS.hasValidFieldWidth()) {
9837     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
9838         startSpecifier, specifierLen);
9839   }
9840 
9841   // Check for invalid use of precision
9842   if (!FS.hasValidPrecision()) {
9843     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
9844         startSpecifier, specifierLen);
9845   }
9846 
9847   // Precision is mandatory for %P specifier.
9848   if (CS.getKind() == ConversionSpecifier::PArg &&
9849       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
9850     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
9851                          getLocationOfByte(startSpecifier),
9852                          /*IsStringLocation*/ false,
9853                          getSpecifierRange(startSpecifier, specifierLen));
9854   }
9855 
9856   // Check each flag does not conflict with any other component.
9857   if (!FS.hasValidThousandsGroupingPrefix())
9858     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
9859   if (!FS.hasValidLeadingZeros())
9860     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
9861   if (!FS.hasValidPlusPrefix())
9862     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
9863   if (!FS.hasValidSpacePrefix())
9864     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
9865   if (!FS.hasValidAlternativeForm())
9866     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
9867   if (!FS.hasValidLeftJustified())
9868     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
9869 
9870   // Check that flags are not ignored by another flag
9871   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
9872     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
9873         startSpecifier, specifierLen);
9874   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
9875     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
9876             startSpecifier, specifierLen);
9877 
9878   // Check the length modifier is valid with the given conversion specifier.
9879   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
9880                                  S.getLangOpts()))
9881     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9882                                 diag::warn_format_nonsensical_length);
9883   else if (!FS.hasStandardLengthModifier())
9884     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
9885   else if (!FS.hasStandardLengthConversionCombination())
9886     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
9887                                 diag::warn_format_non_standard_conversion_spec);
9888 
9889   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
9890     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
9891 
9892   // The remaining checks depend on the data arguments.
9893   if (ArgPassingKind == Sema::FAPK_VAList)
9894     return true;
9895 
9896   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
9897     return false;
9898 
9899   const Expr *Arg = getDataArg(argIndex);
9900   if (!Arg)
9901     return true;
9902 
9903   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
9904 }
9905 
9906 static bool requiresParensToAddCast(const Expr *E) {
9907   // FIXME: We should have a general way to reason about operator
9908   // precedence and whether parens are actually needed here.
9909   // Take care of a few common cases where they aren't.
9910   const Expr *Inside = E->IgnoreImpCasts();
9911   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
9912     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
9913 
9914   switch (Inside->getStmtClass()) {
9915   case Stmt::ArraySubscriptExprClass:
9916   case Stmt::CallExprClass:
9917   case Stmt::CharacterLiteralClass:
9918   case Stmt::CXXBoolLiteralExprClass:
9919   case Stmt::DeclRefExprClass:
9920   case Stmt::FloatingLiteralClass:
9921   case Stmt::IntegerLiteralClass:
9922   case Stmt::MemberExprClass:
9923   case Stmt::ObjCArrayLiteralClass:
9924   case Stmt::ObjCBoolLiteralExprClass:
9925   case Stmt::ObjCBoxedExprClass:
9926   case Stmt::ObjCDictionaryLiteralClass:
9927   case Stmt::ObjCEncodeExprClass:
9928   case Stmt::ObjCIvarRefExprClass:
9929   case Stmt::ObjCMessageExprClass:
9930   case Stmt::ObjCPropertyRefExprClass:
9931   case Stmt::ObjCStringLiteralClass:
9932   case Stmt::ObjCSubscriptRefExprClass:
9933   case Stmt::ParenExprClass:
9934   case Stmt::StringLiteralClass:
9935   case Stmt::UnaryOperatorClass:
9936     return false;
9937   default:
9938     return true;
9939   }
9940 }
9941 
9942 static std::pair<QualType, StringRef>
9943 shouldNotPrintDirectly(const ASTContext &Context,
9944                        QualType IntendedTy,
9945                        const Expr *E) {
9946   // Use a 'while' to peel off layers of typedefs.
9947   QualType TyTy = IntendedTy;
9948   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
9949     StringRef Name = UserTy->getDecl()->getName();
9950     QualType CastTy = llvm::StringSwitch<QualType>(Name)
9951       .Case("CFIndex", Context.getNSIntegerType())
9952       .Case("NSInteger", Context.getNSIntegerType())
9953       .Case("NSUInteger", Context.getNSUIntegerType())
9954       .Case("SInt32", Context.IntTy)
9955       .Case("UInt32", Context.UnsignedIntTy)
9956       .Default(QualType());
9957 
9958     if (!CastTy.isNull())
9959       return std::make_pair(CastTy, Name);
9960 
9961     TyTy = UserTy->desugar();
9962   }
9963 
9964   // Strip parens if necessary.
9965   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
9966     return shouldNotPrintDirectly(Context,
9967                                   PE->getSubExpr()->getType(),
9968                                   PE->getSubExpr());
9969 
9970   // If this is a conditional expression, then its result type is constructed
9971   // via usual arithmetic conversions and thus there might be no necessary
9972   // typedef sugar there.  Recurse to operands to check for NSInteger &
9973   // Co. usage condition.
9974   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
9975     QualType TrueTy, FalseTy;
9976     StringRef TrueName, FalseName;
9977 
9978     std::tie(TrueTy, TrueName) =
9979       shouldNotPrintDirectly(Context,
9980                              CO->getTrueExpr()->getType(),
9981                              CO->getTrueExpr());
9982     std::tie(FalseTy, FalseName) =
9983       shouldNotPrintDirectly(Context,
9984                              CO->getFalseExpr()->getType(),
9985                              CO->getFalseExpr());
9986 
9987     if (TrueTy == FalseTy)
9988       return std::make_pair(TrueTy, TrueName);
9989     else if (TrueTy.isNull())
9990       return std::make_pair(FalseTy, FalseName);
9991     else if (FalseTy.isNull())
9992       return std::make_pair(TrueTy, TrueName);
9993   }
9994 
9995   return std::make_pair(QualType(), StringRef());
9996 }
9997 
9998 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
9999 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
10000 /// type do not count.
10001 static bool
10002 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
10003   QualType From = ICE->getSubExpr()->getType();
10004   QualType To = ICE->getType();
10005   // It's an integer promotion if the destination type is the promoted
10006   // source type.
10007   if (ICE->getCastKind() == CK_IntegralCast &&
10008       From->isPromotableIntegerType() &&
10009       S.Context.getPromotedIntegerType(From) == To)
10010     return true;
10011   // Look through vector types, since we do default argument promotion for
10012   // those in OpenCL.
10013   if (const auto *VecTy = From->getAs<ExtVectorType>())
10014     From = VecTy->getElementType();
10015   if (const auto *VecTy = To->getAs<ExtVectorType>())
10016     To = VecTy->getElementType();
10017   // It's a floating promotion if the source type is a lower rank.
10018   return ICE->getCastKind() == CK_FloatingCast &&
10019          S.Context.getFloatingTypeOrder(From, To) < 0;
10020 }
10021 
10022 bool
10023 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
10024                                     const char *StartSpecifier,
10025                                     unsigned SpecifierLen,
10026                                     const Expr *E) {
10027   using namespace analyze_format_string;
10028   using namespace analyze_printf;
10029 
10030   // Now type check the data expression that matches the
10031   // format specifier.
10032   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
10033   if (!AT.isValid())
10034     return true;
10035 
10036   QualType ExprTy = E->getType();
10037   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
10038     ExprTy = TET->getUnderlyingExpr()->getType();
10039   }
10040 
10041   // When using the format attribute in C++, you can receive a function or an
10042   // array that will necessarily decay to a pointer when passed to the final
10043   // format consumer. Apply decay before type comparison.
10044   if (ExprTy->canDecayToPointerType())
10045     ExprTy = S.Context.getDecayedType(ExprTy);
10046 
10047   // Diagnose attempts to print a boolean value as a character. Unlike other
10048   // -Wformat diagnostics, this is fine from a type perspective, but it still
10049   // doesn't make sense.
10050   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
10051       E->isKnownToHaveBooleanValue()) {
10052     const CharSourceRange &CSR =
10053         getSpecifierRange(StartSpecifier, SpecifierLen);
10054     SmallString<4> FSString;
10055     llvm::raw_svector_ostream os(FSString);
10056     FS.toString(os);
10057     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
10058                              << FSString,
10059                          E->getExprLoc(), false, CSR);
10060     return true;
10061   }
10062 
10063   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
10064   if (Match == analyze_printf::ArgType::Match)
10065     return true;
10066 
10067   // Look through argument promotions for our error message's reported type.
10068   // This includes the integral and floating promotions, but excludes array
10069   // and function pointer decay (seeing that an argument intended to be a
10070   // string has type 'char [6]' is probably more confusing than 'char *') and
10071   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
10072   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
10073     if (isArithmeticArgumentPromotion(S, ICE)) {
10074       E = ICE->getSubExpr();
10075       ExprTy = E->getType();
10076 
10077       // Check if we didn't match because of an implicit cast from a 'char'
10078       // or 'short' to an 'int'.  This is done because printf is a varargs
10079       // function.
10080       if (ICE->getType() == S.Context.IntTy ||
10081           ICE->getType() == S.Context.UnsignedIntTy) {
10082         // All further checking is done on the subexpression
10083         const analyze_printf::ArgType::MatchKind ImplicitMatch =
10084             AT.matchesType(S.Context, ExprTy);
10085         if (ImplicitMatch == analyze_printf::ArgType::Match)
10086           return true;
10087         if (ImplicitMatch == ArgType::NoMatchPedantic ||
10088             ImplicitMatch == ArgType::NoMatchTypeConfusion)
10089           Match = ImplicitMatch;
10090       }
10091     }
10092   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
10093     // Special case for 'a', which has type 'int' in C.
10094     // Note, however, that we do /not/ want to treat multibyte constants like
10095     // 'MooV' as characters! This form is deprecated but still exists. In
10096     // addition, don't treat expressions as of type 'char' if one byte length
10097     // modifier is provided.
10098     if (ExprTy == S.Context.IntTy &&
10099         FS.getLengthModifier().getKind() != LengthModifier::AsChar)
10100       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
10101         ExprTy = S.Context.CharTy;
10102   }
10103 
10104   // Look through enums to their underlying type.
10105   bool IsEnum = false;
10106   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
10107     ExprTy = EnumTy->getDecl()->getIntegerType();
10108     IsEnum = true;
10109   }
10110 
10111   // %C in an Objective-C context prints a unichar, not a wchar_t.
10112   // If the argument is an integer of some kind, believe the %C and suggest
10113   // a cast instead of changing the conversion specifier.
10114   QualType IntendedTy = ExprTy;
10115   if (isObjCContext() &&
10116       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
10117     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
10118         !ExprTy->isCharType()) {
10119       // 'unichar' is defined as a typedef of unsigned short, but we should
10120       // prefer using the typedef if it is visible.
10121       IntendedTy = S.Context.UnsignedShortTy;
10122 
10123       // While we are here, check if the value is an IntegerLiteral that happens
10124       // to be within the valid range.
10125       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
10126         const llvm::APInt &V = IL->getValue();
10127         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
10128           return true;
10129       }
10130 
10131       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
10132                           Sema::LookupOrdinaryName);
10133       if (S.LookupName(Result, S.getCurScope())) {
10134         NamedDecl *ND = Result.getFoundDecl();
10135         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
10136           if (TD->getUnderlyingType() == IntendedTy)
10137             IntendedTy = S.Context.getTypedefType(TD);
10138       }
10139     }
10140   }
10141 
10142   // Special-case some of Darwin's platform-independence types by suggesting
10143   // casts to primitive types that are known to be large enough.
10144   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
10145   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
10146     QualType CastTy;
10147     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
10148     if (!CastTy.isNull()) {
10149       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
10150       // (long in ASTContext). Only complain to pedants.
10151       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
10152           (AT.isSizeT() || AT.isPtrdiffT()) &&
10153           AT.matchesType(S.Context, CastTy))
10154         Match = ArgType::NoMatchPedantic;
10155       IntendedTy = CastTy;
10156       ShouldNotPrintDirectly = true;
10157     }
10158   }
10159 
10160   // We may be able to offer a FixItHint if it is a supported type.
10161   PrintfSpecifier fixedFS = FS;
10162   bool Success =
10163       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
10164 
10165   if (Success) {
10166     // Get the fix string from the fixed format specifier
10167     SmallString<16> buf;
10168     llvm::raw_svector_ostream os(buf);
10169     fixedFS.toString(os);
10170 
10171     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
10172 
10173     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
10174       unsigned Diag;
10175       switch (Match) {
10176       case ArgType::Match: llvm_unreachable("expected non-matching");
10177       case ArgType::NoMatchPedantic:
10178         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
10179         break;
10180       case ArgType::NoMatchTypeConfusion:
10181         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
10182         break;
10183       case ArgType::NoMatch:
10184         Diag = diag::warn_format_conversion_argument_type_mismatch;
10185         break;
10186       }
10187 
10188       // In this case, the specifier is wrong and should be changed to match
10189       // the argument.
10190       EmitFormatDiagnostic(S.PDiag(Diag)
10191                                << AT.getRepresentativeTypeName(S.Context)
10192                                << IntendedTy << IsEnum << E->getSourceRange(),
10193                            E->getBeginLoc(),
10194                            /*IsStringLocation*/ false, SpecRange,
10195                            FixItHint::CreateReplacement(SpecRange, os.str()));
10196     } else {
10197       // The canonical type for formatting this value is different from the
10198       // actual type of the expression. (This occurs, for example, with Darwin's
10199       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
10200       // should be printed as 'long' for 64-bit compatibility.)
10201       // Rather than emitting a normal format/argument mismatch, we want to
10202       // add a cast to the recommended type (and correct the format string
10203       // if necessary).
10204       SmallString<16> CastBuf;
10205       llvm::raw_svector_ostream CastFix(CastBuf);
10206       CastFix << "(";
10207       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
10208       CastFix << ")";
10209 
10210       SmallVector<FixItHint,4> Hints;
10211       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
10212         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
10213 
10214       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
10215         // If there's already a cast present, just replace it.
10216         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
10217         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
10218 
10219       } else if (!requiresParensToAddCast(E)) {
10220         // If the expression has high enough precedence,
10221         // just write the C-style cast.
10222         Hints.push_back(
10223             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
10224       } else {
10225         // Otherwise, add parens around the expression as well as the cast.
10226         CastFix << "(";
10227         Hints.push_back(
10228             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
10229 
10230         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
10231         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
10232       }
10233 
10234       if (ShouldNotPrintDirectly) {
10235         // The expression has a type that should not be printed directly.
10236         // We extract the name from the typedef because we don't want to show
10237         // the underlying type in the diagnostic.
10238         StringRef Name;
10239         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
10240           Name = TypedefTy->getDecl()->getName();
10241         else
10242           Name = CastTyName;
10243         unsigned Diag = Match == ArgType::NoMatchPedantic
10244                             ? diag::warn_format_argument_needs_cast_pedantic
10245                             : diag::warn_format_argument_needs_cast;
10246         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
10247                                            << E->getSourceRange(),
10248                              E->getBeginLoc(), /*IsStringLocation=*/false,
10249                              SpecRange, Hints);
10250       } else {
10251         // In this case, the expression could be printed using a different
10252         // specifier, but we've decided that the specifier is probably correct
10253         // and we should cast instead. Just use the normal warning message.
10254         EmitFormatDiagnostic(
10255             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
10256                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
10257                 << E->getSourceRange(),
10258             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
10259       }
10260     }
10261   } else {
10262     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
10263                                                    SpecifierLen);
10264     // Since the warning for passing non-POD types to variadic functions
10265     // was deferred until now, we emit a warning for non-POD
10266     // arguments here.
10267     bool EmitTypeMismatch = false;
10268     switch (S.isValidVarArgType(ExprTy)) {
10269     case Sema::VAK_Valid:
10270     case Sema::VAK_ValidInCXX11: {
10271       unsigned Diag;
10272       switch (Match) {
10273       case ArgType::Match: llvm_unreachable("expected non-matching");
10274       case ArgType::NoMatchPedantic:
10275         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
10276         break;
10277       case ArgType::NoMatchTypeConfusion:
10278         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
10279         break;
10280       case ArgType::NoMatch:
10281         Diag = diag::warn_format_conversion_argument_type_mismatch;
10282         break;
10283       }
10284 
10285       EmitFormatDiagnostic(
10286           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
10287                         << IsEnum << CSR << E->getSourceRange(),
10288           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10289       break;
10290     }
10291     case Sema::VAK_Undefined:
10292     case Sema::VAK_MSVCUndefined:
10293       if (CallType == Sema::VariadicDoesNotApply) {
10294         EmitTypeMismatch = true;
10295       } else {
10296         EmitFormatDiagnostic(
10297             S.PDiag(diag::warn_non_pod_vararg_with_format_string)
10298                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
10299                 << AT.getRepresentativeTypeName(S.Context) << CSR
10300                 << E->getSourceRange(),
10301             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10302         checkForCStrMembers(AT, E);
10303       }
10304       break;
10305 
10306     case Sema::VAK_Invalid:
10307       if (CallType == Sema::VariadicDoesNotApply)
10308         EmitTypeMismatch = true;
10309       else if (ExprTy->isObjCObjectType())
10310         EmitFormatDiagnostic(
10311             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
10312                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
10313                 << AT.getRepresentativeTypeName(S.Context) << CSR
10314                 << E->getSourceRange(),
10315             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
10316       else
10317         // FIXME: If this is an initializer list, suggest removing the braces
10318         // or inserting a cast to the target type.
10319         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
10320             << isa<InitListExpr>(E) << ExprTy << CallType
10321             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
10322       break;
10323     }
10324 
10325     if (EmitTypeMismatch) {
10326       // The function is not variadic, so we do not generate warnings about
10327       // being allowed to pass that object as a variadic argument. Instead,
10328       // since there are inherently no printf specifiers for types which cannot
10329       // be passed as variadic arguments, emit a plain old specifier mismatch
10330       // argument.
10331       EmitFormatDiagnostic(
10332           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
10333               << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
10334               << E->getSourceRange(),
10335           E->getBeginLoc(), false, CSR);
10336     }
10337 
10338     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
10339            "format string specifier index out of range");
10340     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
10341   }
10342 
10343   return true;
10344 }
10345 
10346 //===--- CHECK: Scanf format string checking ------------------------------===//
10347 
10348 namespace {
10349 
10350 class CheckScanfHandler : public CheckFormatHandler {
10351 public:
10352   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
10353                     const Expr *origFormatExpr, Sema::FormatStringType type,
10354                     unsigned firstDataArg, unsigned numDataArgs,
10355                     const char *beg, Sema::FormatArgumentPassingKind APK,
10356                     ArrayRef<const Expr *> Args, unsigned formatIdx,
10357                     bool inFunctionCall, Sema::VariadicCallType CallType,
10358                     llvm::SmallBitVector &CheckedVarArgs,
10359                     UncoveredArgHandler &UncoveredArg)
10360       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
10361                            numDataArgs, beg, APK, Args, formatIdx,
10362                            inFunctionCall, CallType, CheckedVarArgs,
10363                            UncoveredArg) {}
10364 
10365   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
10366                             const char *startSpecifier,
10367                             unsigned specifierLen) override;
10368 
10369   bool HandleInvalidScanfConversionSpecifier(
10370           const analyze_scanf::ScanfSpecifier &FS,
10371           const char *startSpecifier,
10372           unsigned specifierLen) override;
10373 
10374   void HandleIncompleteScanList(const char *start, const char *end) override;
10375 };
10376 
10377 } // namespace
10378 
10379 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
10380                                                  const char *end) {
10381   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
10382                        getLocationOfByte(end), /*IsStringLocation*/true,
10383                        getSpecifierRange(start, end - start));
10384 }
10385 
10386 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
10387                                         const analyze_scanf::ScanfSpecifier &FS,
10388                                         const char *startSpecifier,
10389                                         unsigned specifierLen) {
10390   const analyze_scanf::ScanfConversionSpecifier &CS =
10391     FS.getConversionSpecifier();
10392 
10393   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
10394                                           getLocationOfByte(CS.getStart()),
10395                                           startSpecifier, specifierLen,
10396                                           CS.getStart(), CS.getLength());
10397 }
10398 
10399 bool CheckScanfHandler::HandleScanfSpecifier(
10400                                        const analyze_scanf::ScanfSpecifier &FS,
10401                                        const char *startSpecifier,
10402                                        unsigned specifierLen) {
10403   using namespace analyze_scanf;
10404   using namespace analyze_format_string;
10405 
10406   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
10407 
10408   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
10409   // be used to decide if we are using positional arguments consistently.
10410   if (FS.consumesDataArgument()) {
10411     if (atFirstArg) {
10412       atFirstArg = false;
10413       usesPositionalArgs = FS.usesPositionalArg();
10414     }
10415     else if (usesPositionalArgs != FS.usesPositionalArg()) {
10416       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
10417                                         startSpecifier, specifierLen);
10418       return false;
10419     }
10420   }
10421 
10422   // Check if the field with is non-zero.
10423   const OptionalAmount &Amt = FS.getFieldWidth();
10424   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
10425     if (Amt.getConstantAmount() == 0) {
10426       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
10427                                                    Amt.getConstantLength());
10428       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
10429                            getLocationOfByte(Amt.getStart()),
10430                            /*IsStringLocation*/true, R,
10431                            FixItHint::CreateRemoval(R));
10432     }
10433   }
10434 
10435   if (!FS.consumesDataArgument()) {
10436     // FIXME: Technically specifying a precision or field width here
10437     // makes no sense.  Worth issuing a warning at some point.
10438     return true;
10439   }
10440 
10441   // Consume the argument.
10442   unsigned argIndex = FS.getArgIndex();
10443   if (argIndex < NumDataArgs) {
10444       // The check to see if the argIndex is valid will come later.
10445       // We set the bit here because we may exit early from this
10446       // function if we encounter some other error.
10447     CoveredArgs.set(argIndex);
10448   }
10449 
10450   // Check the length modifier is valid with the given conversion specifier.
10451   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
10452                                  S.getLangOpts()))
10453     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
10454                                 diag::warn_format_nonsensical_length);
10455   else if (!FS.hasStandardLengthModifier())
10456     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
10457   else if (!FS.hasStandardLengthConversionCombination())
10458     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
10459                                 diag::warn_format_non_standard_conversion_spec);
10460 
10461   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
10462     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
10463 
10464   // The remaining checks depend on the data arguments.
10465   if (ArgPassingKind == Sema::FAPK_VAList)
10466     return true;
10467 
10468   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
10469     return false;
10470 
10471   // Check that the argument type matches the format specifier.
10472   const Expr *Ex = getDataArg(argIndex);
10473   if (!Ex)
10474     return true;
10475 
10476   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
10477 
10478   if (!AT.isValid()) {
10479     return true;
10480   }
10481 
10482   analyze_format_string::ArgType::MatchKind Match =
10483       AT.matchesType(S.Context, Ex->getType());
10484   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
10485   if (Match == analyze_format_string::ArgType::Match)
10486     return true;
10487 
10488   ScanfSpecifier fixedFS = FS;
10489   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
10490                                  S.getLangOpts(), S.Context);
10491 
10492   unsigned Diag =
10493       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
10494                : diag::warn_format_conversion_argument_type_mismatch;
10495 
10496   if (Success) {
10497     // Get the fix string from the fixed format specifier.
10498     SmallString<128> buf;
10499     llvm::raw_svector_ostream os(buf);
10500     fixedFS.toString(os);
10501 
10502     EmitFormatDiagnostic(
10503         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
10504                       << Ex->getType() << false << Ex->getSourceRange(),
10505         Ex->getBeginLoc(),
10506         /*IsStringLocation*/ false,
10507         getSpecifierRange(startSpecifier, specifierLen),
10508         FixItHint::CreateReplacement(
10509             getSpecifierRange(startSpecifier, specifierLen), os.str()));
10510   } else {
10511     EmitFormatDiagnostic(S.PDiag(Diag)
10512                              << AT.getRepresentativeTypeName(S.Context)
10513                              << Ex->getType() << false << Ex->getSourceRange(),
10514                          Ex->getBeginLoc(),
10515                          /*IsStringLocation*/ false,
10516                          getSpecifierRange(startSpecifier, specifierLen));
10517   }
10518 
10519   return true;
10520 }
10521 
10522 static void CheckFormatString(
10523     Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
10524     ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
10525     unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
10526     bool inFunctionCall, Sema::VariadicCallType CallType,
10527     llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
10528     bool IgnoreStringsWithoutSpecifiers) {
10529   // CHECK: is the format string a wide literal?
10530   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
10531     CheckFormatHandler::EmitFormatDiagnostic(
10532         S, inFunctionCall, Args[format_idx],
10533         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
10534         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10535     return;
10536   }
10537 
10538   // Str - The format string.  NOTE: this is NOT null-terminated!
10539   StringRef StrRef = FExpr->getString();
10540   const char *Str = StrRef.data();
10541   // Account for cases where the string literal is truncated in a declaration.
10542   const ConstantArrayType *T =
10543     S.Context.getAsConstantArrayType(FExpr->getType());
10544   assert(T && "String literal not of constant array type!");
10545   size_t TypeSize = T->getSize().getZExtValue();
10546   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10547   const unsigned numDataArgs = Args.size() - firstDataArg;
10548 
10549   if (IgnoreStringsWithoutSpecifiers &&
10550       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
10551           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10552     return;
10553 
10554   // Emit a warning if the string literal is truncated and does not contain an
10555   // embedded null character.
10556   if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
10557     CheckFormatHandler::EmitFormatDiagnostic(
10558         S, inFunctionCall, Args[format_idx],
10559         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
10560         FExpr->getBeginLoc(),
10561         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
10562     return;
10563   }
10564 
10565   // CHECK: empty format string?
10566   if (StrLen == 0 && numDataArgs > 0) {
10567     CheckFormatHandler::EmitFormatDiagnostic(
10568         S, inFunctionCall, Args[format_idx],
10569         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
10570         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
10571     return;
10572   }
10573 
10574   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
10575       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
10576       Type == Sema::FST_OSTrace) {
10577     CheckPrintfHandler H(
10578         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
10579         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
10580         Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
10581         UncoveredArg);
10582 
10583     if (!analyze_format_string::ParsePrintfString(
10584             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
10585             Type == Sema::FST_FreeBSDKPrintf))
10586       H.DoneProcessing();
10587   } else if (Type == Sema::FST_Scanf) {
10588     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
10589                         numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
10590                         CallType, CheckedVarArgs, UncoveredArg);
10591 
10592     if (!analyze_format_string::ParseScanfString(
10593             H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
10594       H.DoneProcessing();
10595   } // TODO: handle other formats
10596 }
10597 
10598 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
10599   // Str - The format string.  NOTE: this is NOT null-terminated!
10600   StringRef StrRef = FExpr->getString();
10601   const char *Str = StrRef.data();
10602   // Account for cases where the string literal is truncated in a declaration.
10603   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
10604   assert(T && "String literal not of constant array type!");
10605   size_t TypeSize = T->getSize().getZExtValue();
10606   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
10607   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
10608                                                          getLangOpts(),
10609                                                          Context.getTargetInfo());
10610 }
10611 
10612 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
10613 
10614 // Returns the related absolute value function that is larger, of 0 if one
10615 // does not exist.
10616 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
10617   switch (AbsFunction) {
10618   default:
10619     return 0;
10620 
10621   case Builtin::BI__builtin_abs:
10622     return Builtin::BI__builtin_labs;
10623   case Builtin::BI__builtin_labs:
10624     return Builtin::BI__builtin_llabs;
10625   case Builtin::BI__builtin_llabs:
10626     return 0;
10627 
10628   case Builtin::BI__builtin_fabsf:
10629     return Builtin::BI__builtin_fabs;
10630   case Builtin::BI__builtin_fabs:
10631     return Builtin::BI__builtin_fabsl;
10632   case Builtin::BI__builtin_fabsl:
10633     return 0;
10634 
10635   case Builtin::BI__builtin_cabsf:
10636     return Builtin::BI__builtin_cabs;
10637   case Builtin::BI__builtin_cabs:
10638     return Builtin::BI__builtin_cabsl;
10639   case Builtin::BI__builtin_cabsl:
10640     return 0;
10641 
10642   case Builtin::BIabs:
10643     return Builtin::BIlabs;
10644   case Builtin::BIlabs:
10645     return Builtin::BIllabs;
10646   case Builtin::BIllabs:
10647     return 0;
10648 
10649   case Builtin::BIfabsf:
10650     return Builtin::BIfabs;
10651   case Builtin::BIfabs:
10652     return Builtin::BIfabsl;
10653   case Builtin::BIfabsl:
10654     return 0;
10655 
10656   case Builtin::BIcabsf:
10657    return Builtin::BIcabs;
10658   case Builtin::BIcabs:
10659     return Builtin::BIcabsl;
10660   case Builtin::BIcabsl:
10661     return 0;
10662   }
10663 }
10664 
10665 // Returns the argument type of the absolute value function.
10666 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
10667                                              unsigned AbsType) {
10668   if (AbsType == 0)
10669     return QualType();
10670 
10671   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
10672   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
10673   if (Error != ASTContext::GE_None)
10674     return QualType();
10675 
10676   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
10677   if (!FT)
10678     return QualType();
10679 
10680   if (FT->getNumParams() != 1)
10681     return QualType();
10682 
10683   return FT->getParamType(0);
10684 }
10685 
10686 // Returns the best absolute value function, or zero, based on type and
10687 // current absolute value function.
10688 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
10689                                    unsigned AbsFunctionKind) {
10690   unsigned BestKind = 0;
10691   uint64_t ArgSize = Context.getTypeSize(ArgType);
10692   for (unsigned Kind = AbsFunctionKind; Kind != 0;
10693        Kind = getLargerAbsoluteValueFunction(Kind)) {
10694     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
10695     if (Context.getTypeSize(ParamType) >= ArgSize) {
10696       if (BestKind == 0)
10697         BestKind = Kind;
10698       else if (Context.hasSameType(ParamType, ArgType)) {
10699         BestKind = Kind;
10700         break;
10701       }
10702     }
10703   }
10704   return BestKind;
10705 }
10706 
10707 enum AbsoluteValueKind {
10708   AVK_Integer,
10709   AVK_Floating,
10710   AVK_Complex
10711 };
10712 
10713 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
10714   if (T->isIntegralOrEnumerationType())
10715     return AVK_Integer;
10716   if (T->isRealFloatingType())
10717     return AVK_Floating;
10718   if (T->isAnyComplexType())
10719     return AVK_Complex;
10720 
10721   llvm_unreachable("Type not integer, floating, or complex");
10722 }
10723 
10724 // Changes the absolute value function to a different type.  Preserves whether
10725 // the function is a builtin.
10726 static unsigned changeAbsFunction(unsigned AbsKind,
10727                                   AbsoluteValueKind ValueKind) {
10728   switch (ValueKind) {
10729   case AVK_Integer:
10730     switch (AbsKind) {
10731     default:
10732       return 0;
10733     case Builtin::BI__builtin_fabsf:
10734     case Builtin::BI__builtin_fabs:
10735     case Builtin::BI__builtin_fabsl:
10736     case Builtin::BI__builtin_cabsf:
10737     case Builtin::BI__builtin_cabs:
10738     case Builtin::BI__builtin_cabsl:
10739       return Builtin::BI__builtin_abs;
10740     case Builtin::BIfabsf:
10741     case Builtin::BIfabs:
10742     case Builtin::BIfabsl:
10743     case Builtin::BIcabsf:
10744     case Builtin::BIcabs:
10745     case Builtin::BIcabsl:
10746       return Builtin::BIabs;
10747     }
10748   case AVK_Floating:
10749     switch (AbsKind) {
10750     default:
10751       return 0;
10752     case Builtin::BI__builtin_abs:
10753     case Builtin::BI__builtin_labs:
10754     case Builtin::BI__builtin_llabs:
10755     case Builtin::BI__builtin_cabsf:
10756     case Builtin::BI__builtin_cabs:
10757     case Builtin::BI__builtin_cabsl:
10758       return Builtin::BI__builtin_fabsf;
10759     case Builtin::BIabs:
10760     case Builtin::BIlabs:
10761     case Builtin::BIllabs:
10762     case Builtin::BIcabsf:
10763     case Builtin::BIcabs:
10764     case Builtin::BIcabsl:
10765       return Builtin::BIfabsf;
10766     }
10767   case AVK_Complex:
10768     switch (AbsKind) {
10769     default:
10770       return 0;
10771     case Builtin::BI__builtin_abs:
10772     case Builtin::BI__builtin_labs:
10773     case Builtin::BI__builtin_llabs:
10774     case Builtin::BI__builtin_fabsf:
10775     case Builtin::BI__builtin_fabs:
10776     case Builtin::BI__builtin_fabsl:
10777       return Builtin::BI__builtin_cabsf;
10778     case Builtin::BIabs:
10779     case Builtin::BIlabs:
10780     case Builtin::BIllabs:
10781     case Builtin::BIfabsf:
10782     case Builtin::BIfabs:
10783     case Builtin::BIfabsl:
10784       return Builtin::BIcabsf;
10785     }
10786   }
10787   llvm_unreachable("Unable to convert function");
10788 }
10789 
10790 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
10791   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
10792   if (!FnInfo)
10793     return 0;
10794 
10795   switch (FDecl->getBuiltinID()) {
10796   default:
10797     return 0;
10798   case Builtin::BI__builtin_abs:
10799   case Builtin::BI__builtin_fabs:
10800   case Builtin::BI__builtin_fabsf:
10801   case Builtin::BI__builtin_fabsl:
10802   case Builtin::BI__builtin_labs:
10803   case Builtin::BI__builtin_llabs:
10804   case Builtin::BI__builtin_cabs:
10805   case Builtin::BI__builtin_cabsf:
10806   case Builtin::BI__builtin_cabsl:
10807   case Builtin::BIabs:
10808   case Builtin::BIlabs:
10809   case Builtin::BIllabs:
10810   case Builtin::BIfabs:
10811   case Builtin::BIfabsf:
10812   case Builtin::BIfabsl:
10813   case Builtin::BIcabs:
10814   case Builtin::BIcabsf:
10815   case Builtin::BIcabsl:
10816     return FDecl->getBuiltinID();
10817   }
10818   llvm_unreachable("Unknown Builtin type");
10819 }
10820 
10821 // If the replacement is valid, emit a note with replacement function.
10822 // Additionally, suggest including the proper header if not already included.
10823 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
10824                             unsigned AbsKind, QualType ArgType) {
10825   bool EmitHeaderHint = true;
10826   const char *HeaderName = nullptr;
10827   const char *FunctionName = nullptr;
10828   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
10829     FunctionName = "std::abs";
10830     if (ArgType->isIntegralOrEnumerationType()) {
10831       HeaderName = "cstdlib";
10832     } else if (ArgType->isRealFloatingType()) {
10833       HeaderName = "cmath";
10834     } else {
10835       llvm_unreachable("Invalid Type");
10836     }
10837 
10838     // Lookup all std::abs
10839     if (NamespaceDecl *Std = S.getStdNamespace()) {
10840       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
10841       R.suppressDiagnostics();
10842       S.LookupQualifiedName(R, Std);
10843 
10844       for (const auto *I : R) {
10845         const FunctionDecl *FDecl = nullptr;
10846         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
10847           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
10848         } else {
10849           FDecl = dyn_cast<FunctionDecl>(I);
10850         }
10851         if (!FDecl)
10852           continue;
10853 
10854         // Found std::abs(), check that they are the right ones.
10855         if (FDecl->getNumParams() != 1)
10856           continue;
10857 
10858         // Check that the parameter type can handle the argument.
10859         QualType ParamType = FDecl->getParamDecl(0)->getType();
10860         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
10861             S.Context.getTypeSize(ArgType) <=
10862                 S.Context.getTypeSize(ParamType)) {
10863           // Found a function, don't need the header hint.
10864           EmitHeaderHint = false;
10865           break;
10866         }
10867       }
10868     }
10869   } else {
10870     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
10871     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
10872 
10873     if (HeaderName) {
10874       DeclarationName DN(&S.Context.Idents.get(FunctionName));
10875       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
10876       R.suppressDiagnostics();
10877       S.LookupName(R, S.getCurScope());
10878 
10879       if (R.isSingleResult()) {
10880         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
10881         if (FD && FD->getBuiltinID() == AbsKind) {
10882           EmitHeaderHint = false;
10883         } else {
10884           return;
10885         }
10886       } else if (!R.empty()) {
10887         return;
10888       }
10889     }
10890   }
10891 
10892   S.Diag(Loc, diag::note_replace_abs_function)
10893       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
10894 
10895   if (!HeaderName)
10896     return;
10897 
10898   if (!EmitHeaderHint)
10899     return;
10900 
10901   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
10902                                                     << FunctionName;
10903 }
10904 
10905 template <std::size_t StrLen>
10906 static bool IsStdFunction(const FunctionDecl *FDecl,
10907                           const char (&Str)[StrLen]) {
10908   if (!FDecl)
10909     return false;
10910   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
10911     return false;
10912   if (!FDecl->isInStdNamespace())
10913     return false;
10914 
10915   return true;
10916 }
10917 
10918 // Warn when using the wrong abs() function.
10919 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
10920                                       const FunctionDecl *FDecl) {
10921   if (Call->getNumArgs() != 1)
10922     return;
10923 
10924   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
10925   bool IsStdAbs = IsStdFunction(FDecl, "abs");
10926   if (AbsKind == 0 && !IsStdAbs)
10927     return;
10928 
10929   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
10930   QualType ParamType = Call->getArg(0)->getType();
10931 
10932   // Unsigned types cannot be negative.  Suggest removing the absolute value
10933   // function call.
10934   if (ArgType->isUnsignedIntegerType()) {
10935     const char *FunctionName =
10936         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
10937     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
10938     Diag(Call->getExprLoc(), diag::note_remove_abs)
10939         << FunctionName
10940         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
10941     return;
10942   }
10943 
10944   // Taking the absolute value of a pointer is very suspicious, they probably
10945   // wanted to index into an array, dereference a pointer, call a function, etc.
10946   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
10947     unsigned DiagType = 0;
10948     if (ArgType->isFunctionType())
10949       DiagType = 1;
10950     else if (ArgType->isArrayType())
10951       DiagType = 2;
10952 
10953     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
10954     return;
10955   }
10956 
10957   // std::abs has overloads which prevent most of the absolute value problems
10958   // from occurring.
10959   if (IsStdAbs)
10960     return;
10961 
10962   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
10963   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
10964 
10965   // The argument and parameter are the same kind.  Check if they are the right
10966   // size.
10967   if (ArgValueKind == ParamValueKind) {
10968     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
10969       return;
10970 
10971     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
10972     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
10973         << FDecl << ArgType << ParamType;
10974 
10975     if (NewAbsKind == 0)
10976       return;
10977 
10978     emitReplacement(*this, Call->getExprLoc(),
10979                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10980     return;
10981   }
10982 
10983   // ArgValueKind != ParamValueKind
10984   // The wrong type of absolute value function was used.  Attempt to find the
10985   // proper one.
10986   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
10987   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
10988   if (NewAbsKind == 0)
10989     return;
10990 
10991   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
10992       << FDecl << ParamValueKind << ArgValueKind;
10993 
10994   emitReplacement(*this, Call->getExprLoc(),
10995                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
10996 }
10997 
10998 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
10999 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
11000                                 const FunctionDecl *FDecl) {
11001   if (!Call || !FDecl) return;
11002 
11003   // Ignore template specializations and macros.
11004   if (inTemplateInstantiation()) return;
11005   if (Call->getExprLoc().isMacroID()) return;
11006 
11007   // Only care about the one template argument, two function parameter std::max
11008   if (Call->getNumArgs() != 2) return;
11009   if (!IsStdFunction(FDecl, "max")) return;
11010   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
11011   if (!ArgList) return;
11012   if (ArgList->size() != 1) return;
11013 
11014   // Check that template type argument is unsigned integer.
11015   const auto& TA = ArgList->get(0);
11016   if (TA.getKind() != TemplateArgument::Type) return;
11017   QualType ArgType = TA.getAsType();
11018   if (!ArgType->isUnsignedIntegerType()) return;
11019 
11020   // See if either argument is a literal zero.
11021   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
11022     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
11023     if (!MTE) return false;
11024     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
11025     if (!Num) return false;
11026     if (Num->getValue() != 0) return false;
11027     return true;
11028   };
11029 
11030   const Expr *FirstArg = Call->getArg(0);
11031   const Expr *SecondArg = Call->getArg(1);
11032   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
11033   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
11034 
11035   // Only warn when exactly one argument is zero.
11036   if (IsFirstArgZero == IsSecondArgZero) return;
11037 
11038   SourceRange FirstRange = FirstArg->getSourceRange();
11039   SourceRange SecondRange = SecondArg->getSourceRange();
11040 
11041   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
11042 
11043   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
11044       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
11045 
11046   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
11047   SourceRange RemovalRange;
11048   if (IsFirstArgZero) {
11049     RemovalRange = SourceRange(FirstRange.getBegin(),
11050                                SecondRange.getBegin().getLocWithOffset(-1));
11051   } else {
11052     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
11053                                SecondRange.getEnd());
11054   }
11055 
11056   Diag(Call->getExprLoc(), diag::note_remove_max_call)
11057         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
11058         << FixItHint::CreateRemoval(RemovalRange);
11059 }
11060 
11061 //===--- CHECK: Standard memory functions ---------------------------------===//
11062 
11063 /// Takes the expression passed to the size_t parameter of functions
11064 /// such as memcmp, strncat, etc and warns if it's a comparison.
11065 ///
11066 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
11067 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
11068                                            IdentifierInfo *FnName,
11069                                            SourceLocation FnLoc,
11070                                            SourceLocation RParenLoc) {
11071   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
11072   if (!Size)
11073     return false;
11074 
11075   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
11076   if (!Size->isComparisonOp() && !Size->isLogicalOp())
11077     return false;
11078 
11079   SourceRange SizeRange = Size->getSourceRange();
11080   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
11081       << SizeRange << FnName;
11082   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
11083       << FnName
11084       << FixItHint::CreateInsertion(
11085              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
11086       << FixItHint::CreateRemoval(RParenLoc);
11087   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
11088       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
11089       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
11090                                     ")");
11091 
11092   return true;
11093 }
11094 
11095 /// Determine whether the given type is or contains a dynamic class type
11096 /// (e.g., whether it has a vtable).
11097 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
11098                                                      bool &IsContained) {
11099   // Look through array types while ignoring qualifiers.
11100   const Type *Ty = T->getBaseElementTypeUnsafe();
11101   IsContained = false;
11102 
11103   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
11104   RD = RD ? RD->getDefinition() : nullptr;
11105   if (!RD || RD->isInvalidDecl())
11106     return nullptr;
11107 
11108   if (RD->isDynamicClass())
11109     return RD;
11110 
11111   // Check all the fields.  If any bases were dynamic, the class is dynamic.
11112   // It's impossible for a class to transitively contain itself by value, so
11113   // infinite recursion is impossible.
11114   for (auto *FD : RD->fields()) {
11115     bool SubContained;
11116     if (const CXXRecordDecl *ContainedRD =
11117             getContainedDynamicClass(FD->getType(), SubContained)) {
11118       IsContained = true;
11119       return ContainedRD;
11120     }
11121   }
11122 
11123   return nullptr;
11124 }
11125 
11126 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
11127   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
11128     if (Unary->getKind() == UETT_SizeOf)
11129       return Unary;
11130   return nullptr;
11131 }
11132 
11133 /// If E is a sizeof expression, returns its argument expression,
11134 /// otherwise returns NULL.
11135 static const Expr *getSizeOfExprArg(const Expr *E) {
11136   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
11137     if (!SizeOf->isArgumentType())
11138       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
11139   return nullptr;
11140 }
11141 
11142 /// If E is a sizeof expression, returns its argument type.
11143 static QualType getSizeOfArgType(const Expr *E) {
11144   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
11145     return SizeOf->getTypeOfArgument();
11146   return QualType();
11147 }
11148 
11149 namespace {
11150 
11151 struct SearchNonTrivialToInitializeField
11152     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
11153   using Super =
11154       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
11155 
11156   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
11157 
11158   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
11159                      SourceLocation SL) {
11160     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
11161       asDerived().visitArray(PDIK, AT, SL);
11162       return;
11163     }
11164 
11165     Super::visitWithKind(PDIK, FT, SL);
11166   }
11167 
11168   void visitARCStrong(QualType FT, SourceLocation SL) {
11169     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
11170   }
11171   void visitARCWeak(QualType FT, SourceLocation SL) {
11172     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
11173   }
11174   void visitStruct(QualType FT, SourceLocation SL) {
11175     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
11176       visit(FD->getType(), FD->getLocation());
11177   }
11178   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
11179                   const ArrayType *AT, SourceLocation SL) {
11180     visit(getContext().getBaseElementType(AT), SL);
11181   }
11182   void visitTrivial(QualType FT, SourceLocation SL) {}
11183 
11184   static void diag(QualType RT, const Expr *E, Sema &S) {
11185     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
11186   }
11187 
11188   ASTContext &getContext() { return S.getASTContext(); }
11189 
11190   const Expr *E;
11191   Sema &S;
11192 };
11193 
11194 struct SearchNonTrivialToCopyField
11195     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
11196   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
11197 
11198   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
11199 
11200   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
11201                      SourceLocation SL) {
11202     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
11203       asDerived().visitArray(PCK, AT, SL);
11204       return;
11205     }
11206 
11207     Super::visitWithKind(PCK, FT, SL);
11208   }
11209 
11210   void visitARCStrong(QualType FT, SourceLocation SL) {
11211     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
11212   }
11213   void visitARCWeak(QualType FT, SourceLocation SL) {
11214     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
11215   }
11216   void visitStruct(QualType FT, SourceLocation SL) {
11217     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
11218       visit(FD->getType(), FD->getLocation());
11219   }
11220   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
11221                   SourceLocation SL) {
11222     visit(getContext().getBaseElementType(AT), SL);
11223   }
11224   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
11225                 SourceLocation SL) {}
11226   void visitTrivial(QualType FT, SourceLocation SL) {}
11227   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
11228 
11229   static void diag(QualType RT, const Expr *E, Sema &S) {
11230     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
11231   }
11232 
11233   ASTContext &getContext() { return S.getASTContext(); }
11234 
11235   const Expr *E;
11236   Sema &S;
11237 };
11238 
11239 }
11240 
11241 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
11242 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
11243   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
11244 
11245   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
11246     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
11247       return false;
11248 
11249     return doesExprLikelyComputeSize(BO->getLHS()) ||
11250            doesExprLikelyComputeSize(BO->getRHS());
11251   }
11252 
11253   return getAsSizeOfExpr(SizeofExpr) != nullptr;
11254 }
11255 
11256 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
11257 ///
11258 /// \code
11259 ///   #define MACRO 0
11260 ///   foo(MACRO);
11261 ///   foo(0);
11262 /// \endcode
11263 ///
11264 /// This should return true for the first call to foo, but not for the second
11265 /// (regardless of whether foo is a macro or function).
11266 static bool isArgumentExpandedFromMacro(SourceManager &SM,
11267                                         SourceLocation CallLoc,
11268                                         SourceLocation ArgLoc) {
11269   if (!CallLoc.isMacroID())
11270     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
11271 
11272   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
11273          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
11274 }
11275 
11276 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
11277 /// last two arguments transposed.
11278 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
11279   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
11280     return;
11281 
11282   const Expr *SizeArg =
11283     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
11284 
11285   auto isLiteralZero = [](const Expr *E) {
11286     return (isa<IntegerLiteral>(E) &&
11287             cast<IntegerLiteral>(E)->getValue() == 0) ||
11288            (isa<CharacterLiteral>(E) &&
11289             cast<CharacterLiteral>(E)->getValue() == 0);
11290   };
11291 
11292   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
11293   SourceLocation CallLoc = Call->getRParenLoc();
11294   SourceManager &SM = S.getSourceManager();
11295   if (isLiteralZero(SizeArg) &&
11296       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
11297 
11298     SourceLocation DiagLoc = SizeArg->getExprLoc();
11299 
11300     // Some platforms #define bzero to __builtin_memset. See if this is the
11301     // case, and if so, emit a better diagnostic.
11302     if (BId == Builtin::BIbzero ||
11303         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
11304                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
11305       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
11306       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
11307     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
11308       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
11309       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
11310     }
11311     return;
11312   }
11313 
11314   // If the second argument to a memset is a sizeof expression and the third
11315   // isn't, this is also likely an error. This should catch
11316   // 'memset(buf, sizeof(buf), 0xff)'.
11317   if (BId == Builtin::BImemset &&
11318       doesExprLikelyComputeSize(Call->getArg(1)) &&
11319       !doesExprLikelyComputeSize(Call->getArg(2))) {
11320     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
11321     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
11322     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
11323     return;
11324   }
11325 }
11326 
11327 /// Check for dangerous or invalid arguments to memset().
11328 ///
11329 /// This issues warnings on known problematic, dangerous or unspecified
11330 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
11331 /// function calls.
11332 ///
11333 /// \param Call The call expression to diagnose.
11334 void Sema::CheckMemaccessArguments(const CallExpr *Call,
11335                                    unsigned BId,
11336                                    IdentifierInfo *FnName) {
11337   assert(BId != 0);
11338 
11339   // It is possible to have a non-standard definition of memset.  Validate
11340   // we have enough arguments, and if not, abort further checking.
11341   unsigned ExpectedNumArgs =
11342       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
11343   if (Call->getNumArgs() < ExpectedNumArgs)
11344     return;
11345 
11346   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
11347                       BId == Builtin::BIstrndup ? 1 : 2);
11348   unsigned LenArg =
11349       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
11350   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
11351 
11352   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
11353                                      Call->getBeginLoc(), Call->getRParenLoc()))
11354     return;
11355 
11356   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
11357   CheckMemaccessSize(*this, BId, Call);
11358 
11359   // We have special checking when the length is a sizeof expression.
11360   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
11361   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
11362   llvm::FoldingSetNodeID SizeOfArgID;
11363 
11364   // Although widely used, 'bzero' is not a standard function. Be more strict
11365   // with the argument types before allowing diagnostics and only allow the
11366   // form bzero(ptr, sizeof(...)).
11367   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
11368   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
11369     return;
11370 
11371   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
11372     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
11373     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
11374 
11375     QualType DestTy = Dest->getType();
11376     QualType PointeeTy;
11377     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
11378       PointeeTy = DestPtrTy->getPointeeType();
11379 
11380       // Never warn about void type pointers. This can be used to suppress
11381       // false positives.
11382       if (PointeeTy->isVoidType())
11383         continue;
11384 
11385       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
11386       // actually comparing the expressions for equality. Because computing the
11387       // expression IDs can be expensive, we only do this if the diagnostic is
11388       // enabled.
11389       if (SizeOfArg &&
11390           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
11391                            SizeOfArg->getExprLoc())) {
11392         // We only compute IDs for expressions if the warning is enabled, and
11393         // cache the sizeof arg's ID.
11394         if (SizeOfArgID == llvm::FoldingSetNodeID())
11395           SizeOfArg->Profile(SizeOfArgID, Context, true);
11396         llvm::FoldingSetNodeID DestID;
11397         Dest->Profile(DestID, Context, true);
11398         if (DestID == SizeOfArgID) {
11399           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
11400           //       over sizeof(src) as well.
11401           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
11402           StringRef ReadableName = FnName->getName();
11403 
11404           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
11405             if (UnaryOp->getOpcode() == UO_AddrOf)
11406               ActionIdx = 1; // If its an address-of operator, just remove it.
11407           if (!PointeeTy->isIncompleteType() &&
11408               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
11409             ActionIdx = 2; // If the pointee's size is sizeof(char),
11410                            // suggest an explicit length.
11411 
11412           // If the function is defined as a builtin macro, do not show macro
11413           // expansion.
11414           SourceLocation SL = SizeOfArg->getExprLoc();
11415           SourceRange DSR = Dest->getSourceRange();
11416           SourceRange SSR = SizeOfArg->getSourceRange();
11417           SourceManager &SM = getSourceManager();
11418 
11419           if (SM.isMacroArgExpansion(SL)) {
11420             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
11421             SL = SM.getSpellingLoc(SL);
11422             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
11423                              SM.getSpellingLoc(DSR.getEnd()));
11424             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
11425                              SM.getSpellingLoc(SSR.getEnd()));
11426           }
11427 
11428           DiagRuntimeBehavior(SL, SizeOfArg,
11429                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
11430                                 << ReadableName
11431                                 << PointeeTy
11432                                 << DestTy
11433                                 << DSR
11434                                 << SSR);
11435           DiagRuntimeBehavior(SL, SizeOfArg,
11436                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
11437                                 << ActionIdx
11438                                 << SSR);
11439 
11440           break;
11441         }
11442       }
11443 
11444       // Also check for cases where the sizeof argument is the exact same
11445       // type as the memory argument, and where it points to a user-defined
11446       // record type.
11447       if (SizeOfArgTy != QualType()) {
11448         if (PointeeTy->isRecordType() &&
11449             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
11450           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
11451                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
11452                                 << FnName << SizeOfArgTy << ArgIdx
11453                                 << PointeeTy << Dest->getSourceRange()
11454                                 << LenExpr->getSourceRange());
11455           break;
11456         }
11457       }
11458     } else if (DestTy->isArrayType()) {
11459       PointeeTy = DestTy;
11460     }
11461 
11462     if (PointeeTy == QualType())
11463       continue;
11464 
11465     // Always complain about dynamic classes.
11466     bool IsContained;
11467     if (const CXXRecordDecl *ContainedRD =
11468             getContainedDynamicClass(PointeeTy, IsContained)) {
11469 
11470       unsigned OperationType = 0;
11471       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
11472       // "overwritten" if we're warning about the destination for any call
11473       // but memcmp; otherwise a verb appropriate to the call.
11474       if (ArgIdx != 0 || IsCmp) {
11475         if (BId == Builtin::BImemcpy)
11476           OperationType = 1;
11477         else if(BId == Builtin::BImemmove)
11478           OperationType = 2;
11479         else if (IsCmp)
11480           OperationType = 3;
11481       }
11482 
11483       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11484                           PDiag(diag::warn_dyn_class_memaccess)
11485                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
11486                               << IsContained << ContainedRD << OperationType
11487                               << Call->getCallee()->getSourceRange());
11488     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
11489              BId != Builtin::BImemset)
11490       DiagRuntimeBehavior(
11491         Dest->getExprLoc(), Dest,
11492         PDiag(diag::warn_arc_object_memaccess)
11493           << ArgIdx << FnName << PointeeTy
11494           << Call->getCallee()->getSourceRange());
11495     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
11496       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
11497           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
11498         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11499                             PDiag(diag::warn_cstruct_memaccess)
11500                                 << ArgIdx << FnName << PointeeTy << 0);
11501         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
11502       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
11503                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
11504         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
11505                             PDiag(diag::warn_cstruct_memaccess)
11506                                 << ArgIdx << FnName << PointeeTy << 1);
11507         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
11508       } else {
11509         continue;
11510       }
11511     } else
11512       continue;
11513 
11514     DiagRuntimeBehavior(
11515       Dest->getExprLoc(), Dest,
11516       PDiag(diag::note_bad_memaccess_silence)
11517         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
11518     break;
11519   }
11520 }
11521 
11522 // A little helper routine: ignore addition and subtraction of integer literals.
11523 // This intentionally does not ignore all integer constant expressions because
11524 // we don't want to remove sizeof().
11525 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
11526   Ex = Ex->IgnoreParenCasts();
11527 
11528   while (true) {
11529     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
11530     if (!BO || !BO->isAdditiveOp())
11531       break;
11532 
11533     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
11534     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
11535 
11536     if (isa<IntegerLiteral>(RHS))
11537       Ex = LHS;
11538     else if (isa<IntegerLiteral>(LHS))
11539       Ex = RHS;
11540     else
11541       break;
11542   }
11543 
11544   return Ex;
11545 }
11546 
11547 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
11548                                                       ASTContext &Context) {
11549   // Only handle constant-sized or VLAs, but not flexible members.
11550   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
11551     // Only issue the FIXIT for arrays of size > 1.
11552     if (CAT->getSize().getSExtValue() <= 1)
11553       return false;
11554   } else if (!Ty->isVariableArrayType()) {
11555     return false;
11556   }
11557   return true;
11558 }
11559 
11560 // Warn if the user has made the 'size' argument to strlcpy or strlcat
11561 // be the size of the source, instead of the destination.
11562 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
11563                                     IdentifierInfo *FnName) {
11564 
11565   // Don't crash if the user has the wrong number of arguments
11566   unsigned NumArgs = Call->getNumArgs();
11567   if ((NumArgs != 3) && (NumArgs != 4))
11568     return;
11569 
11570   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
11571   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
11572   const Expr *CompareWithSrc = nullptr;
11573 
11574   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
11575                                      Call->getBeginLoc(), Call->getRParenLoc()))
11576     return;
11577 
11578   // Look for 'strlcpy(dst, x, sizeof(x))'
11579   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
11580     CompareWithSrc = Ex;
11581   else {
11582     // Look for 'strlcpy(dst, x, strlen(x))'
11583     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
11584       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
11585           SizeCall->getNumArgs() == 1)
11586         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
11587     }
11588   }
11589 
11590   if (!CompareWithSrc)
11591     return;
11592 
11593   // Determine if the argument to sizeof/strlen is equal to the source
11594   // argument.  In principle there's all kinds of things you could do
11595   // here, for instance creating an == expression and evaluating it with
11596   // EvaluateAsBooleanCondition, but this uses a more direct technique:
11597   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
11598   if (!SrcArgDRE)
11599     return;
11600 
11601   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
11602   if (!CompareWithSrcDRE ||
11603       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
11604     return;
11605 
11606   const Expr *OriginalSizeArg = Call->getArg(2);
11607   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
11608       << OriginalSizeArg->getSourceRange() << FnName;
11609 
11610   // Output a FIXIT hint if the destination is an array (rather than a
11611   // pointer to an array).  This could be enhanced to handle some
11612   // pointers if we know the actual size, like if DstArg is 'array+2'
11613   // we could say 'sizeof(array)-2'.
11614   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
11615   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
11616     return;
11617 
11618   SmallString<128> sizeString;
11619   llvm::raw_svector_ostream OS(sizeString);
11620   OS << "sizeof(";
11621   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11622   OS << ")";
11623 
11624   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
11625       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
11626                                       OS.str());
11627 }
11628 
11629 /// Check if two expressions refer to the same declaration.
11630 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
11631   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
11632     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
11633       return D1->getDecl() == D2->getDecl();
11634   return false;
11635 }
11636 
11637 static const Expr *getStrlenExprArg(const Expr *E) {
11638   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11639     const FunctionDecl *FD = CE->getDirectCallee();
11640     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
11641       return nullptr;
11642     return CE->getArg(0)->IgnoreParenCasts();
11643   }
11644   return nullptr;
11645 }
11646 
11647 // Warn on anti-patterns as the 'size' argument to strncat.
11648 // The correct size argument should look like following:
11649 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
11650 void Sema::CheckStrncatArguments(const CallExpr *CE,
11651                                  IdentifierInfo *FnName) {
11652   // Don't crash if the user has the wrong number of arguments.
11653   if (CE->getNumArgs() < 3)
11654     return;
11655   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
11656   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
11657   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
11658 
11659   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
11660                                      CE->getRParenLoc()))
11661     return;
11662 
11663   // Identify common expressions, which are wrongly used as the size argument
11664   // to strncat and may lead to buffer overflows.
11665   unsigned PatternType = 0;
11666   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
11667     // - sizeof(dst)
11668     if (referToTheSameDecl(SizeOfArg, DstArg))
11669       PatternType = 1;
11670     // - sizeof(src)
11671     else if (referToTheSameDecl(SizeOfArg, SrcArg))
11672       PatternType = 2;
11673   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
11674     if (BE->getOpcode() == BO_Sub) {
11675       const Expr *L = BE->getLHS()->IgnoreParenCasts();
11676       const Expr *R = BE->getRHS()->IgnoreParenCasts();
11677       // - sizeof(dst) - strlen(dst)
11678       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
11679           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
11680         PatternType = 1;
11681       // - sizeof(src) - (anything)
11682       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
11683         PatternType = 2;
11684     }
11685   }
11686 
11687   if (PatternType == 0)
11688     return;
11689 
11690   // Generate the diagnostic.
11691   SourceLocation SL = LenArg->getBeginLoc();
11692   SourceRange SR = LenArg->getSourceRange();
11693   SourceManager &SM = getSourceManager();
11694 
11695   // If the function is defined as a builtin macro, do not show macro expansion.
11696   if (SM.isMacroArgExpansion(SL)) {
11697     SL = SM.getSpellingLoc(SL);
11698     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
11699                      SM.getSpellingLoc(SR.getEnd()));
11700   }
11701 
11702   // Check if the destination is an array (rather than a pointer to an array).
11703   QualType DstTy = DstArg->getType();
11704   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
11705                                                                     Context);
11706   if (!isKnownSizeArray) {
11707     if (PatternType == 1)
11708       Diag(SL, diag::warn_strncat_wrong_size) << SR;
11709     else
11710       Diag(SL, diag::warn_strncat_src_size) << SR;
11711     return;
11712   }
11713 
11714   if (PatternType == 1)
11715     Diag(SL, diag::warn_strncat_large_size) << SR;
11716   else
11717     Diag(SL, diag::warn_strncat_src_size) << SR;
11718 
11719   SmallString<128> sizeString;
11720   llvm::raw_svector_ostream OS(sizeString);
11721   OS << "sizeof(";
11722   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11723   OS << ") - ";
11724   OS << "strlen(";
11725   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
11726   OS << ") - 1";
11727 
11728   Diag(SL, diag::note_strncat_wrong_size)
11729     << FixItHint::CreateReplacement(SR, OS.str());
11730 }
11731 
11732 namespace {
11733 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
11734                                 const UnaryOperator *UnaryExpr, const Decl *D) {
11735   if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
11736     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
11737         << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
11738     return;
11739   }
11740 }
11741 
11742 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
11743                                  const UnaryOperator *UnaryExpr) {
11744   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
11745     const Decl *D = Lvalue->getDecl();
11746     if (isa<DeclaratorDecl>(D))
11747       if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
11748         return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
11749   }
11750 
11751   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
11752     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
11753                                       Lvalue->getMemberDecl());
11754 }
11755 
11756 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
11757                             const UnaryOperator *UnaryExpr) {
11758   const auto *Lambda = dyn_cast<LambdaExpr>(
11759       UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
11760   if (!Lambda)
11761     return;
11762 
11763   S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
11764       << CalleeName << 2 /*object: lambda expression*/;
11765 }
11766 
11767 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
11768                                   const DeclRefExpr *Lvalue) {
11769   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
11770   if (Var == nullptr)
11771     return;
11772 
11773   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
11774       << CalleeName << 0 /*object: */ << Var;
11775 }
11776 
11777 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
11778                             const CastExpr *Cast) {
11779   SmallString<128> SizeString;
11780   llvm::raw_svector_ostream OS(SizeString);
11781 
11782   clang::CastKind Kind = Cast->getCastKind();
11783   if (Kind == clang::CK_BitCast &&
11784       !Cast->getSubExpr()->getType()->isFunctionPointerType())
11785     return;
11786   if (Kind == clang::CK_IntegralToPointer &&
11787       !isa<IntegerLiteral>(
11788           Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
11789     return;
11790 
11791   switch (Cast->getCastKind()) {
11792   case clang::CK_BitCast:
11793   case clang::CK_IntegralToPointer:
11794   case clang::CK_FunctionToPointerDecay:
11795     OS << '\'';
11796     Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
11797     OS << '\'';
11798     break;
11799   default:
11800     return;
11801   }
11802 
11803   S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
11804       << CalleeName << 0 /*object: */ << OS.str();
11805 }
11806 } // namespace
11807 
11808 /// Alerts the user that they are attempting to free a non-malloc'd object.
11809 void Sema::CheckFreeArguments(const CallExpr *E) {
11810   const std::string CalleeName =
11811       cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11812 
11813   { // Prefer something that doesn't involve a cast to make things simpler.
11814     const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
11815     if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
11816       switch (UnaryExpr->getOpcode()) {
11817       case UnaryOperator::Opcode::UO_AddrOf:
11818         return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
11819       case UnaryOperator::Opcode::UO_Plus:
11820         return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
11821       default:
11822         break;
11823       }
11824 
11825     if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
11826       if (Lvalue->getType()->isArrayType())
11827         return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
11828 
11829     if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
11830       Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
11831           << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
11832       return;
11833     }
11834 
11835     if (isa<BlockExpr>(Arg)) {
11836       Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
11837           << CalleeName << 1 /*object: block*/;
11838       return;
11839     }
11840   }
11841   // Maybe the cast was important, check after the other cases.
11842   if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
11843     return CheckFreeArgumentsCast(*this, CalleeName, Cast);
11844 }
11845 
11846 void
11847 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
11848                          SourceLocation ReturnLoc,
11849                          bool isObjCMethod,
11850                          const AttrVec *Attrs,
11851                          const FunctionDecl *FD) {
11852   // Check if the return value is null but should not be.
11853   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
11854        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
11855       CheckNonNullExpr(*this, RetValExp))
11856     Diag(ReturnLoc, diag::warn_null_ret)
11857       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
11858 
11859   // C++11 [basic.stc.dynamic.allocation]p4:
11860   //   If an allocation function declared with a non-throwing
11861   //   exception-specification fails to allocate storage, it shall return
11862   //   a null pointer. Any other allocation function that fails to allocate
11863   //   storage shall indicate failure only by throwing an exception [...]
11864   if (FD) {
11865     OverloadedOperatorKind Op = FD->getOverloadedOperator();
11866     if (Op == OO_New || Op == OO_Array_New) {
11867       const FunctionProtoType *Proto
11868         = FD->getType()->castAs<FunctionProtoType>();
11869       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
11870           CheckNonNullExpr(*this, RetValExp))
11871         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
11872           << FD << getLangOpts().CPlusPlus11;
11873     }
11874   }
11875 
11876   // PPC MMA non-pointer types are not allowed as return type. Checking the type
11877   // here prevent the user from using a PPC MMA type as trailing return type.
11878   if (Context.getTargetInfo().getTriple().isPPC64())
11879     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
11880 }
11881 
11882 /// Check for comparisons of floating-point values using == and !=. Issue a
11883 /// warning if the comparison is not likely to do what the programmer intended.
11884 void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
11885                                 BinaryOperatorKind Opcode) {
11886   if (!BinaryOperator::isEqualityOp(Opcode))
11887     return;
11888 
11889   // Match and capture subexpressions such as "(float) X == 0.1".
11890   FloatingLiteral *FPLiteral;
11891   CastExpr *FPCast;
11892   auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
11893     FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
11894     FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
11895     return FPLiteral && FPCast;
11896   };
11897 
11898   if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
11899     auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
11900     auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
11901     if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
11902         TargetTy->isFloatingPoint()) {
11903       bool Lossy;
11904       llvm::APFloat TargetC = FPLiteral->getValue();
11905       TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
11906                       llvm::APFloat::rmNearestTiesToEven, &Lossy);
11907       if (Lossy) {
11908         // If the literal cannot be represented in the source type, then a
11909         // check for == is always false and check for != is always true.
11910         Diag(Loc, diag::warn_float_compare_literal)
11911             << (Opcode == BO_EQ) << QualType(SourceTy, 0)
11912             << LHS->getSourceRange() << RHS->getSourceRange();
11913         return;
11914       }
11915     }
11916   }
11917 
11918   // Match a more general floating-point equality comparison (-Wfloat-equal).
11919   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
11920   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
11921 
11922   // Special case: check for x == x (which is OK).
11923   // Do not emit warnings for such cases.
11924   if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
11925     if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
11926       if (DRL->getDecl() == DRR->getDecl())
11927         return;
11928 
11929   // Special case: check for comparisons against literals that can be exactly
11930   //  represented by APFloat.  In such cases, do not emit a warning.  This
11931   //  is a heuristic: often comparison against such literals are used to
11932   //  detect if a value in a variable has not changed.  This clearly can
11933   //  lead to false negatives.
11934   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
11935     if (FLL->isExact())
11936       return;
11937   } else
11938     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
11939       if (FLR->isExact())
11940         return;
11941 
11942   // Check for comparisons with builtin types.
11943   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
11944     if (CL->getBuiltinCallee())
11945       return;
11946 
11947   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
11948     if (CR->getBuiltinCallee())
11949       return;
11950 
11951   // Emit the diagnostic.
11952   Diag(Loc, diag::warn_floatingpoint_eq)
11953     << LHS->getSourceRange() << RHS->getSourceRange();
11954 }
11955 
11956 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
11957 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
11958 
11959 namespace {
11960 
11961 /// Structure recording the 'active' range of an integer-valued
11962 /// expression.
11963 struct IntRange {
11964   /// The number of bits active in the int. Note that this includes exactly one
11965   /// sign bit if !NonNegative.
11966   unsigned Width;
11967 
11968   /// True if the int is known not to have negative values. If so, all leading
11969   /// bits before Width are known zero, otherwise they are known to be the
11970   /// same as the MSB within Width.
11971   bool NonNegative;
11972 
11973   IntRange(unsigned Width, bool NonNegative)
11974       : Width(Width), NonNegative(NonNegative) {}
11975 
11976   /// Number of bits excluding the sign bit.
11977   unsigned valueBits() const {
11978     return NonNegative ? Width : Width - 1;
11979   }
11980 
11981   /// Returns the range of the bool type.
11982   static IntRange forBoolType() {
11983     return IntRange(1, true);
11984   }
11985 
11986   /// Returns the range of an opaque value of the given integral type.
11987   static IntRange forValueOfType(ASTContext &C, QualType T) {
11988     return forValueOfCanonicalType(C,
11989                           T->getCanonicalTypeInternal().getTypePtr());
11990   }
11991 
11992   /// Returns the range of an opaque value of a canonical integral type.
11993   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
11994     assert(T->isCanonicalUnqualified());
11995 
11996     if (const VectorType *VT = dyn_cast<VectorType>(T))
11997       T = VT->getElementType().getTypePtr();
11998     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
11999       T = CT->getElementType().getTypePtr();
12000     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
12001       T = AT->getValueType().getTypePtr();
12002 
12003     if (!C.getLangOpts().CPlusPlus) {
12004       // For enum types in C code, use the underlying datatype.
12005       if (const EnumType *ET = dyn_cast<EnumType>(T))
12006         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
12007     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
12008       // For enum types in C++, use the known bit width of the enumerators.
12009       EnumDecl *Enum = ET->getDecl();
12010       // In C++11, enums can have a fixed underlying type. Use this type to
12011       // compute the range.
12012       if (Enum->isFixed()) {
12013         return IntRange(C.getIntWidth(QualType(T, 0)),
12014                         !ET->isSignedIntegerOrEnumerationType());
12015       }
12016 
12017       unsigned NumPositive = Enum->getNumPositiveBits();
12018       unsigned NumNegative = Enum->getNumNegativeBits();
12019 
12020       if (NumNegative == 0)
12021         return IntRange(NumPositive, true/*NonNegative*/);
12022       else
12023         return IntRange(std::max(NumPositive + 1, NumNegative),
12024                         false/*NonNegative*/);
12025     }
12026 
12027     if (const auto *EIT = dyn_cast<BitIntType>(T))
12028       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
12029 
12030     const BuiltinType *BT = cast<BuiltinType>(T);
12031     assert(BT->isInteger());
12032 
12033     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
12034   }
12035 
12036   /// Returns the "target" range of a canonical integral type, i.e.
12037   /// the range of values expressible in the type.
12038   ///
12039   /// This matches forValueOfCanonicalType except that enums have the
12040   /// full range of their type, not the range of their enumerators.
12041   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
12042     assert(T->isCanonicalUnqualified());
12043 
12044     if (const VectorType *VT = dyn_cast<VectorType>(T))
12045       T = VT->getElementType().getTypePtr();
12046     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
12047       T = CT->getElementType().getTypePtr();
12048     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
12049       T = AT->getValueType().getTypePtr();
12050     if (const EnumType *ET = dyn_cast<EnumType>(T))
12051       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
12052 
12053     if (const auto *EIT = dyn_cast<BitIntType>(T))
12054       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
12055 
12056     const BuiltinType *BT = cast<BuiltinType>(T);
12057     assert(BT->isInteger());
12058 
12059     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
12060   }
12061 
12062   /// Returns the supremum of two ranges: i.e. their conservative merge.
12063   static IntRange join(IntRange L, IntRange R) {
12064     bool Unsigned = L.NonNegative && R.NonNegative;
12065     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
12066                     L.NonNegative && R.NonNegative);
12067   }
12068 
12069   /// Return the range of a bitwise-AND of the two ranges.
12070   static IntRange bit_and(IntRange L, IntRange R) {
12071     unsigned Bits = std::max(L.Width, R.Width);
12072     bool NonNegative = false;
12073     if (L.NonNegative) {
12074       Bits = std::min(Bits, L.Width);
12075       NonNegative = true;
12076     }
12077     if (R.NonNegative) {
12078       Bits = std::min(Bits, R.Width);
12079       NonNegative = true;
12080     }
12081     return IntRange(Bits, NonNegative);
12082   }
12083 
12084   /// Return the range of a sum of the two ranges.
12085   static IntRange sum(IntRange L, IntRange R) {
12086     bool Unsigned = L.NonNegative && R.NonNegative;
12087     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
12088                     Unsigned);
12089   }
12090 
12091   /// Return the range of a difference of the two ranges.
12092   static IntRange difference(IntRange L, IntRange R) {
12093     // We need a 1-bit-wider range if:
12094     //   1) LHS can be negative: least value can be reduced.
12095     //   2) RHS can be negative: greatest value can be increased.
12096     bool CanWiden = !L.NonNegative || !R.NonNegative;
12097     bool Unsigned = L.NonNegative && R.Width == 0;
12098     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
12099                         !Unsigned,
12100                     Unsigned);
12101   }
12102 
12103   /// Return the range of a product of the two ranges.
12104   static IntRange product(IntRange L, IntRange R) {
12105     // If both LHS and RHS can be negative, we can form
12106     //   -2^L * -2^R = 2^(L + R)
12107     // which requires L + R + 1 value bits to represent.
12108     bool CanWiden = !L.NonNegative && !R.NonNegative;
12109     bool Unsigned = L.NonNegative && R.NonNegative;
12110     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
12111                     Unsigned);
12112   }
12113 
12114   /// Return the range of a remainder operation between the two ranges.
12115   static IntRange rem(IntRange L, IntRange R) {
12116     // The result of a remainder can't be larger than the result of
12117     // either side. The sign of the result is the sign of the LHS.
12118     bool Unsigned = L.NonNegative;
12119     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
12120                     Unsigned);
12121   }
12122 };
12123 
12124 } // namespace
12125 
12126 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
12127                               unsigned MaxWidth) {
12128   if (value.isSigned() && value.isNegative())
12129     return IntRange(value.getMinSignedBits(), false);
12130 
12131   if (value.getBitWidth() > MaxWidth)
12132     value = value.trunc(MaxWidth);
12133 
12134   // isNonNegative() just checks the sign bit without considering
12135   // signedness.
12136   return IntRange(value.getActiveBits(), true);
12137 }
12138 
12139 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
12140                               unsigned MaxWidth) {
12141   if (result.isInt())
12142     return GetValueRange(C, result.getInt(), MaxWidth);
12143 
12144   if (result.isVector()) {
12145     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
12146     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
12147       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
12148       R = IntRange::join(R, El);
12149     }
12150     return R;
12151   }
12152 
12153   if (result.isComplexInt()) {
12154     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
12155     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
12156     return IntRange::join(R, I);
12157   }
12158 
12159   // This can happen with lossless casts to intptr_t of "based" lvalues.
12160   // Assume it might use arbitrary bits.
12161   // FIXME: The only reason we need to pass the type in here is to get
12162   // the sign right on this one case.  It would be nice if APValue
12163   // preserved this.
12164   assert(result.isLValue() || result.isAddrLabelDiff());
12165   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
12166 }
12167 
12168 static QualType GetExprType(const Expr *E) {
12169   QualType Ty = E->getType();
12170   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
12171     Ty = AtomicRHS->getValueType();
12172   return Ty;
12173 }
12174 
12175 /// Pseudo-evaluate the given integer expression, estimating the
12176 /// range of values it might take.
12177 ///
12178 /// \param MaxWidth The width to which the value will be truncated.
12179 /// \param Approximate If \c true, return a likely range for the result: in
12180 ///        particular, assume that arithmetic on narrower types doesn't leave
12181 ///        those types. If \c false, return a range including all possible
12182 ///        result values.
12183 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
12184                              bool InConstantContext, bool Approximate) {
12185   E = E->IgnoreParens();
12186 
12187   // Try a full evaluation first.
12188   Expr::EvalResult result;
12189   if (E->EvaluateAsRValue(result, C, InConstantContext))
12190     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
12191 
12192   // I think we only want to look through implicit casts here; if the
12193   // user has an explicit widening cast, we should treat the value as
12194   // being of the new, wider type.
12195   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
12196     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
12197       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
12198                           Approximate);
12199 
12200     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
12201 
12202     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
12203                          CE->getCastKind() == CK_BooleanToSignedIntegral;
12204 
12205     // Assume that non-integer casts can span the full range of the type.
12206     if (!isIntegerCast)
12207       return OutputTypeRange;
12208 
12209     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
12210                                      std::min(MaxWidth, OutputTypeRange.Width),
12211                                      InConstantContext, Approximate);
12212 
12213     // Bail out if the subexpr's range is as wide as the cast type.
12214     if (SubRange.Width >= OutputTypeRange.Width)
12215       return OutputTypeRange;
12216 
12217     // Otherwise, we take the smaller width, and we're non-negative if
12218     // either the output type or the subexpr is.
12219     return IntRange(SubRange.Width,
12220                     SubRange.NonNegative || OutputTypeRange.NonNegative);
12221   }
12222 
12223   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
12224     // If we can fold the condition, just take that operand.
12225     bool CondResult;
12226     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
12227       return GetExprRange(C,
12228                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
12229                           MaxWidth, InConstantContext, Approximate);
12230 
12231     // Otherwise, conservatively merge.
12232     // GetExprRange requires an integer expression, but a throw expression
12233     // results in a void type.
12234     Expr *E = CO->getTrueExpr();
12235     IntRange L = E->getType()->isVoidType()
12236                      ? IntRange{0, true}
12237                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
12238     E = CO->getFalseExpr();
12239     IntRange R = E->getType()->isVoidType()
12240                      ? IntRange{0, true}
12241                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
12242     return IntRange::join(L, R);
12243   }
12244 
12245   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
12246     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
12247 
12248     switch (BO->getOpcode()) {
12249     case BO_Cmp:
12250       llvm_unreachable("builtin <=> should have class type");
12251 
12252     // Boolean-valued operations are single-bit and positive.
12253     case BO_LAnd:
12254     case BO_LOr:
12255     case BO_LT:
12256     case BO_GT:
12257     case BO_LE:
12258     case BO_GE:
12259     case BO_EQ:
12260     case BO_NE:
12261       return IntRange::forBoolType();
12262 
12263     // The type of the assignments is the type of the LHS, so the RHS
12264     // is not necessarily the same type.
12265     case BO_MulAssign:
12266     case BO_DivAssign:
12267     case BO_RemAssign:
12268     case BO_AddAssign:
12269     case BO_SubAssign:
12270     case BO_XorAssign:
12271     case BO_OrAssign:
12272       // TODO: bitfields?
12273       return IntRange::forValueOfType(C, GetExprType(E));
12274 
12275     // Simple assignments just pass through the RHS, which will have
12276     // been coerced to the LHS type.
12277     case BO_Assign:
12278       // TODO: bitfields?
12279       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
12280                           Approximate);
12281 
12282     // Operations with opaque sources are black-listed.
12283     case BO_PtrMemD:
12284     case BO_PtrMemI:
12285       return IntRange::forValueOfType(C, GetExprType(E));
12286 
12287     // Bitwise-and uses the *infinum* of the two source ranges.
12288     case BO_And:
12289     case BO_AndAssign:
12290       Combine = IntRange::bit_and;
12291       break;
12292 
12293     // Left shift gets black-listed based on a judgement call.
12294     case BO_Shl:
12295       // ...except that we want to treat '1 << (blah)' as logically
12296       // positive.  It's an important idiom.
12297       if (IntegerLiteral *I
12298             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
12299         if (I->getValue() == 1) {
12300           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
12301           return IntRange(R.Width, /*NonNegative*/ true);
12302         }
12303       }
12304       LLVM_FALLTHROUGH;
12305 
12306     case BO_ShlAssign:
12307       return IntRange::forValueOfType(C, GetExprType(E));
12308 
12309     // Right shift by a constant can narrow its left argument.
12310     case BO_Shr:
12311     case BO_ShrAssign: {
12312       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
12313                                 Approximate);
12314 
12315       // If the shift amount is a positive constant, drop the width by
12316       // that much.
12317       if (Optional<llvm::APSInt> shift =
12318               BO->getRHS()->getIntegerConstantExpr(C)) {
12319         if (shift->isNonNegative()) {
12320           unsigned zext = shift->getZExtValue();
12321           if (zext >= L.Width)
12322             L.Width = (L.NonNegative ? 0 : 1);
12323           else
12324             L.Width -= zext;
12325         }
12326       }
12327 
12328       return L;
12329     }
12330 
12331     // Comma acts as its right operand.
12332     case BO_Comma:
12333       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
12334                           Approximate);
12335 
12336     case BO_Add:
12337       if (!Approximate)
12338         Combine = IntRange::sum;
12339       break;
12340 
12341     case BO_Sub:
12342       if (BO->getLHS()->getType()->isPointerType())
12343         return IntRange::forValueOfType(C, GetExprType(E));
12344       if (!Approximate)
12345         Combine = IntRange::difference;
12346       break;
12347 
12348     case BO_Mul:
12349       if (!Approximate)
12350         Combine = IntRange::product;
12351       break;
12352 
12353     // The width of a division result is mostly determined by the size
12354     // of the LHS.
12355     case BO_Div: {
12356       // Don't 'pre-truncate' the operands.
12357       unsigned opWidth = C.getIntWidth(GetExprType(E));
12358       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
12359                                 Approximate);
12360 
12361       // If the divisor is constant, use that.
12362       if (Optional<llvm::APSInt> divisor =
12363               BO->getRHS()->getIntegerConstantExpr(C)) {
12364         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
12365         if (log2 >= L.Width)
12366           L.Width = (L.NonNegative ? 0 : 1);
12367         else
12368           L.Width = std::min(L.Width - log2, MaxWidth);
12369         return L;
12370       }
12371 
12372       // Otherwise, just use the LHS's width.
12373       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
12374       // could be -1.
12375       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
12376                                 Approximate);
12377       return IntRange(L.Width, L.NonNegative && R.NonNegative);
12378     }
12379 
12380     case BO_Rem:
12381       Combine = IntRange::rem;
12382       break;
12383 
12384     // The default behavior is okay for these.
12385     case BO_Xor:
12386     case BO_Or:
12387       break;
12388     }
12389 
12390     // Combine the two ranges, but limit the result to the type in which we
12391     // performed the computation.
12392     QualType T = GetExprType(E);
12393     unsigned opWidth = C.getIntWidth(T);
12394     IntRange L =
12395         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
12396     IntRange R =
12397         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
12398     IntRange C = Combine(L, R);
12399     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
12400     C.Width = std::min(C.Width, MaxWidth);
12401     return C;
12402   }
12403 
12404   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
12405     switch (UO->getOpcode()) {
12406     // Boolean-valued operations are white-listed.
12407     case UO_LNot:
12408       return IntRange::forBoolType();
12409 
12410     // Operations with opaque sources are black-listed.
12411     case UO_Deref:
12412     case UO_AddrOf: // should be impossible
12413       return IntRange::forValueOfType(C, GetExprType(E));
12414 
12415     default:
12416       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
12417                           Approximate);
12418     }
12419   }
12420 
12421   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12422     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
12423                         Approximate);
12424 
12425   if (const auto *BitField = E->getSourceBitField())
12426     return IntRange(BitField->getBitWidthValue(C),
12427                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
12428 
12429   return IntRange::forValueOfType(C, GetExprType(E));
12430 }
12431 
12432 static IntRange GetExprRange(ASTContext &C, const Expr *E,
12433                              bool InConstantContext, bool Approximate) {
12434   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
12435                       Approximate);
12436 }
12437 
12438 /// Checks whether the given value, which currently has the given
12439 /// source semantics, has the same value when coerced through the
12440 /// target semantics.
12441 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
12442                                  const llvm::fltSemantics &Src,
12443                                  const llvm::fltSemantics &Tgt) {
12444   llvm::APFloat truncated = value;
12445 
12446   bool ignored;
12447   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
12448   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
12449 
12450   return truncated.bitwiseIsEqual(value);
12451 }
12452 
12453 /// Checks whether the given value, which currently has the given
12454 /// source semantics, has the same value when coerced through the
12455 /// target semantics.
12456 ///
12457 /// The value might be a vector of floats (or a complex number).
12458 static bool IsSameFloatAfterCast(const APValue &value,
12459                                  const llvm::fltSemantics &Src,
12460                                  const llvm::fltSemantics &Tgt) {
12461   if (value.isFloat())
12462     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
12463 
12464   if (value.isVector()) {
12465     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
12466       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
12467         return false;
12468     return true;
12469   }
12470 
12471   assert(value.isComplexFloat());
12472   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
12473           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
12474 }
12475 
12476 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
12477                                        bool IsListInit = false);
12478 
12479 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
12480   // Suppress cases where we are comparing against an enum constant.
12481   if (const DeclRefExpr *DR =
12482       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
12483     if (isa<EnumConstantDecl>(DR->getDecl()))
12484       return true;
12485 
12486   // Suppress cases where the value is expanded from a macro, unless that macro
12487   // is how a language represents a boolean literal. This is the case in both C
12488   // and Objective-C.
12489   SourceLocation BeginLoc = E->getBeginLoc();
12490   if (BeginLoc.isMacroID()) {
12491     StringRef MacroName = Lexer::getImmediateMacroName(
12492         BeginLoc, S.getSourceManager(), S.getLangOpts());
12493     return MacroName != "YES" && MacroName != "NO" &&
12494            MacroName != "true" && MacroName != "false";
12495   }
12496 
12497   return false;
12498 }
12499 
12500 static bool isKnownToHaveUnsignedValue(Expr *E) {
12501   return E->getType()->isIntegerType() &&
12502          (!E->getType()->isSignedIntegerType() ||
12503           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
12504 }
12505 
12506 namespace {
12507 /// The promoted range of values of a type. In general this has the
12508 /// following structure:
12509 ///
12510 ///     |-----------| . . . |-----------|
12511 ///     ^           ^       ^           ^
12512 ///    Min       HoleMin  HoleMax      Max
12513 ///
12514 /// ... where there is only a hole if a signed type is promoted to unsigned
12515 /// (in which case Min and Max are the smallest and largest representable
12516 /// values).
12517 struct PromotedRange {
12518   // Min, or HoleMax if there is a hole.
12519   llvm::APSInt PromotedMin;
12520   // Max, or HoleMin if there is a hole.
12521   llvm::APSInt PromotedMax;
12522 
12523   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
12524     if (R.Width == 0)
12525       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
12526     else if (R.Width >= BitWidth && !Unsigned) {
12527       // Promotion made the type *narrower*. This happens when promoting
12528       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
12529       // Treat all values of 'signed int' as being in range for now.
12530       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
12531       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
12532     } else {
12533       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
12534                         .extOrTrunc(BitWidth);
12535       PromotedMin.setIsUnsigned(Unsigned);
12536 
12537       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
12538                         .extOrTrunc(BitWidth);
12539       PromotedMax.setIsUnsigned(Unsigned);
12540     }
12541   }
12542 
12543   // Determine whether this range is contiguous (has no hole).
12544   bool isContiguous() const { return PromotedMin <= PromotedMax; }
12545 
12546   // Where a constant value is within the range.
12547   enum ComparisonResult {
12548     LT = 0x1,
12549     LE = 0x2,
12550     GT = 0x4,
12551     GE = 0x8,
12552     EQ = 0x10,
12553     NE = 0x20,
12554     InRangeFlag = 0x40,
12555 
12556     Less = LE | LT | NE,
12557     Min = LE | InRangeFlag,
12558     InRange = InRangeFlag,
12559     Max = GE | InRangeFlag,
12560     Greater = GE | GT | NE,
12561 
12562     OnlyValue = LE | GE | EQ | InRangeFlag,
12563     InHole = NE
12564   };
12565 
12566   ComparisonResult compare(const llvm::APSInt &Value) const {
12567     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
12568            Value.isUnsigned() == PromotedMin.isUnsigned());
12569     if (!isContiguous()) {
12570       assert(Value.isUnsigned() && "discontiguous range for signed compare");
12571       if (Value.isMinValue()) return Min;
12572       if (Value.isMaxValue()) return Max;
12573       if (Value >= PromotedMin) return InRange;
12574       if (Value <= PromotedMax) return InRange;
12575       return InHole;
12576     }
12577 
12578     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
12579     case -1: return Less;
12580     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
12581     case 1:
12582       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
12583       case -1: return InRange;
12584       case 0: return Max;
12585       case 1: return Greater;
12586       }
12587     }
12588 
12589     llvm_unreachable("impossible compare result");
12590   }
12591 
12592   static llvm::Optional<StringRef>
12593   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
12594     if (Op == BO_Cmp) {
12595       ComparisonResult LTFlag = LT, GTFlag = GT;
12596       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
12597 
12598       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
12599       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
12600       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
12601       return llvm::None;
12602     }
12603 
12604     ComparisonResult TrueFlag, FalseFlag;
12605     if (Op == BO_EQ) {
12606       TrueFlag = EQ;
12607       FalseFlag = NE;
12608     } else if (Op == BO_NE) {
12609       TrueFlag = NE;
12610       FalseFlag = EQ;
12611     } else {
12612       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
12613         TrueFlag = LT;
12614         FalseFlag = GE;
12615       } else {
12616         TrueFlag = GT;
12617         FalseFlag = LE;
12618       }
12619       if (Op == BO_GE || Op == BO_LE)
12620         std::swap(TrueFlag, FalseFlag);
12621     }
12622     if (R & TrueFlag)
12623       return StringRef("true");
12624     if (R & FalseFlag)
12625       return StringRef("false");
12626     return llvm::None;
12627   }
12628 };
12629 }
12630 
12631 static bool HasEnumType(Expr *E) {
12632   // Strip off implicit integral promotions.
12633   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12634     if (ICE->getCastKind() != CK_IntegralCast &&
12635         ICE->getCastKind() != CK_NoOp)
12636       break;
12637     E = ICE->getSubExpr();
12638   }
12639 
12640   return E->getType()->isEnumeralType();
12641 }
12642 
12643 static int classifyConstantValue(Expr *Constant) {
12644   // The values of this enumeration are used in the diagnostics
12645   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
12646   enum ConstantValueKind {
12647     Miscellaneous = 0,
12648     LiteralTrue,
12649     LiteralFalse
12650   };
12651   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
12652     return BL->getValue() ? ConstantValueKind::LiteralTrue
12653                           : ConstantValueKind::LiteralFalse;
12654   return ConstantValueKind::Miscellaneous;
12655 }
12656 
12657 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
12658                                         Expr *Constant, Expr *Other,
12659                                         const llvm::APSInt &Value,
12660                                         bool RhsConstant) {
12661   if (S.inTemplateInstantiation())
12662     return false;
12663 
12664   Expr *OriginalOther = Other;
12665 
12666   Constant = Constant->IgnoreParenImpCasts();
12667   Other = Other->IgnoreParenImpCasts();
12668 
12669   // Suppress warnings on tautological comparisons between values of the same
12670   // enumeration type. There are only two ways we could warn on this:
12671   //  - If the constant is outside the range of representable values of
12672   //    the enumeration. In such a case, we should warn about the cast
12673   //    to enumeration type, not about the comparison.
12674   //  - If the constant is the maximum / minimum in-range value. For an
12675   //    enumeratin type, such comparisons can be meaningful and useful.
12676   if (Constant->getType()->isEnumeralType() &&
12677       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
12678     return false;
12679 
12680   IntRange OtherValueRange = GetExprRange(
12681       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
12682 
12683   QualType OtherT = Other->getType();
12684   if (const auto *AT = OtherT->getAs<AtomicType>())
12685     OtherT = AT->getValueType();
12686   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
12687 
12688   // Special case for ObjC BOOL on targets where its a typedef for a signed char
12689   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
12690   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
12691                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
12692                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
12693 
12694   // Whether we're treating Other as being a bool because of the form of
12695   // expression despite it having another type (typically 'int' in C).
12696   bool OtherIsBooleanDespiteType =
12697       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
12698   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
12699     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
12700 
12701   // Check if all values in the range of possible values of this expression
12702   // lead to the same comparison outcome.
12703   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
12704                                         Value.isUnsigned());
12705   auto Cmp = OtherPromotedValueRange.compare(Value);
12706   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
12707   if (!Result)
12708     return false;
12709 
12710   // Also consider the range determined by the type alone. This allows us to
12711   // classify the warning under the proper diagnostic group.
12712   bool TautologicalTypeCompare = false;
12713   {
12714     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
12715                                          Value.isUnsigned());
12716     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
12717     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
12718                                                        RhsConstant)) {
12719       TautologicalTypeCompare = true;
12720       Cmp = TypeCmp;
12721       Result = TypeResult;
12722     }
12723   }
12724 
12725   // Don't warn if the non-constant operand actually always evaluates to the
12726   // same value.
12727   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
12728     return false;
12729 
12730   // Suppress the diagnostic for an in-range comparison if the constant comes
12731   // from a macro or enumerator. We don't want to diagnose
12732   //
12733   //   some_long_value <= INT_MAX
12734   //
12735   // when sizeof(int) == sizeof(long).
12736   bool InRange = Cmp & PromotedRange::InRangeFlag;
12737   if (InRange && IsEnumConstOrFromMacro(S, Constant))
12738     return false;
12739 
12740   // A comparison of an unsigned bit-field against 0 is really a type problem,
12741   // even though at the type level the bit-field might promote to 'signed int'.
12742   if (Other->refersToBitField() && InRange && Value == 0 &&
12743       Other->getType()->isUnsignedIntegerOrEnumerationType())
12744     TautologicalTypeCompare = true;
12745 
12746   // If this is a comparison to an enum constant, include that
12747   // constant in the diagnostic.
12748   const EnumConstantDecl *ED = nullptr;
12749   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
12750     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
12751 
12752   // Should be enough for uint128 (39 decimal digits)
12753   SmallString<64> PrettySourceValue;
12754   llvm::raw_svector_ostream OS(PrettySourceValue);
12755   if (ED) {
12756     OS << '\'' << *ED << "' (" << Value << ")";
12757   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
12758                Constant->IgnoreParenImpCasts())) {
12759     OS << (BL->getValue() ? "YES" : "NO");
12760   } else {
12761     OS << Value;
12762   }
12763 
12764   if (!TautologicalTypeCompare) {
12765     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
12766         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
12767         << E->getOpcodeStr() << OS.str() << *Result
12768         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12769     return true;
12770   }
12771 
12772   if (IsObjCSignedCharBool) {
12773     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12774                           S.PDiag(diag::warn_tautological_compare_objc_bool)
12775                               << OS.str() << *Result);
12776     return true;
12777   }
12778 
12779   // FIXME: We use a somewhat different formatting for the in-range cases and
12780   // cases involving boolean values for historical reasons. We should pick a
12781   // consistent way of presenting these diagnostics.
12782   if (!InRange || Other->isKnownToHaveBooleanValue()) {
12783 
12784     S.DiagRuntimeBehavior(
12785         E->getOperatorLoc(), E,
12786         S.PDiag(!InRange ? diag::warn_out_of_range_compare
12787                          : diag::warn_tautological_bool_compare)
12788             << OS.str() << classifyConstantValue(Constant) << OtherT
12789             << OtherIsBooleanDespiteType << *Result
12790             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
12791   } else {
12792     bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
12793     unsigned Diag =
12794         (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
12795             ? (HasEnumType(OriginalOther)
12796                    ? diag::warn_unsigned_enum_always_true_comparison
12797                    : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
12798                               : diag::warn_unsigned_always_true_comparison)
12799             : diag::warn_tautological_constant_compare;
12800 
12801     S.Diag(E->getOperatorLoc(), Diag)
12802         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
12803         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
12804   }
12805 
12806   return true;
12807 }
12808 
12809 /// Analyze the operands of the given comparison.  Implements the
12810 /// fallback case from AnalyzeComparison.
12811 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
12812   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
12813   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
12814 }
12815 
12816 /// Implements -Wsign-compare.
12817 ///
12818 /// \param E the binary operator to check for warnings
12819 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
12820   // The type the comparison is being performed in.
12821   QualType T = E->getLHS()->getType();
12822 
12823   // Only analyze comparison operators where both sides have been converted to
12824   // the same type.
12825   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
12826     return AnalyzeImpConvsInComparison(S, E);
12827 
12828   // Don't analyze value-dependent comparisons directly.
12829   if (E->isValueDependent())
12830     return AnalyzeImpConvsInComparison(S, E);
12831 
12832   Expr *LHS = E->getLHS();
12833   Expr *RHS = E->getRHS();
12834 
12835   if (T->isIntegralType(S.Context)) {
12836     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
12837     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
12838 
12839     // We don't care about expressions whose result is a constant.
12840     if (RHSValue && LHSValue)
12841       return AnalyzeImpConvsInComparison(S, E);
12842 
12843     // We only care about expressions where just one side is literal
12844     if ((bool)RHSValue ^ (bool)LHSValue) {
12845       // Is the constant on the RHS or LHS?
12846       const bool RhsConstant = (bool)RHSValue;
12847       Expr *Const = RhsConstant ? RHS : LHS;
12848       Expr *Other = RhsConstant ? LHS : RHS;
12849       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
12850 
12851       // Check whether an integer constant comparison results in a value
12852       // of 'true' or 'false'.
12853       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
12854         return AnalyzeImpConvsInComparison(S, E);
12855     }
12856   }
12857 
12858   if (!T->hasUnsignedIntegerRepresentation()) {
12859     // We don't do anything special if this isn't an unsigned integral
12860     // comparison:  we're only interested in integral comparisons, and
12861     // signed comparisons only happen in cases we don't care to warn about.
12862     return AnalyzeImpConvsInComparison(S, E);
12863   }
12864 
12865   LHS = LHS->IgnoreParenImpCasts();
12866   RHS = RHS->IgnoreParenImpCasts();
12867 
12868   if (!S.getLangOpts().CPlusPlus) {
12869     // Avoid warning about comparison of integers with different signs when
12870     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
12871     // the type of `E`.
12872     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
12873       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12874     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
12875       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
12876   }
12877 
12878   // Check to see if one of the (unmodified) operands is of different
12879   // signedness.
12880   Expr *signedOperand, *unsignedOperand;
12881   if (LHS->getType()->hasSignedIntegerRepresentation()) {
12882     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
12883            "unsigned comparison between two signed integer expressions?");
12884     signedOperand = LHS;
12885     unsignedOperand = RHS;
12886   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
12887     signedOperand = RHS;
12888     unsignedOperand = LHS;
12889   } else {
12890     return AnalyzeImpConvsInComparison(S, E);
12891   }
12892 
12893   // Otherwise, calculate the effective range of the signed operand.
12894   IntRange signedRange = GetExprRange(
12895       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
12896 
12897   // Go ahead and analyze implicit conversions in the operands.  Note
12898   // that we skip the implicit conversions on both sides.
12899   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
12900   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
12901 
12902   // If the signed range is non-negative, -Wsign-compare won't fire.
12903   if (signedRange.NonNegative)
12904     return;
12905 
12906   // For (in)equality comparisons, if the unsigned operand is a
12907   // constant which cannot collide with a overflowed signed operand,
12908   // then reinterpreting the signed operand as unsigned will not
12909   // change the result of the comparison.
12910   if (E->isEqualityOp()) {
12911     unsigned comparisonWidth = S.Context.getIntWidth(T);
12912     IntRange unsignedRange =
12913         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
12914                      /*Approximate*/ true);
12915 
12916     // We should never be unable to prove that the unsigned operand is
12917     // non-negative.
12918     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
12919 
12920     if (unsignedRange.Width < comparisonWidth)
12921       return;
12922   }
12923 
12924   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
12925                         S.PDiag(diag::warn_mixed_sign_comparison)
12926                             << LHS->getType() << RHS->getType()
12927                             << LHS->getSourceRange() << RHS->getSourceRange());
12928 }
12929 
12930 /// Analyzes an attempt to assign the given value to a bitfield.
12931 ///
12932 /// Returns true if there was something fishy about the attempt.
12933 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
12934                                       SourceLocation InitLoc) {
12935   assert(Bitfield->isBitField());
12936   if (Bitfield->isInvalidDecl())
12937     return false;
12938 
12939   // White-list bool bitfields.
12940   QualType BitfieldType = Bitfield->getType();
12941   if (BitfieldType->isBooleanType())
12942      return false;
12943 
12944   if (BitfieldType->isEnumeralType()) {
12945     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
12946     // If the underlying enum type was not explicitly specified as an unsigned
12947     // type and the enum contain only positive values, MSVC++ will cause an
12948     // inconsistency by storing this as a signed type.
12949     if (S.getLangOpts().CPlusPlus11 &&
12950         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
12951         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
12952         BitfieldEnumDecl->getNumNegativeBits() == 0) {
12953       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
12954           << BitfieldEnumDecl;
12955     }
12956   }
12957 
12958   if (Bitfield->getType()->isBooleanType())
12959     return false;
12960 
12961   // Ignore value- or type-dependent expressions.
12962   if (Bitfield->getBitWidth()->isValueDependent() ||
12963       Bitfield->getBitWidth()->isTypeDependent() ||
12964       Init->isValueDependent() ||
12965       Init->isTypeDependent())
12966     return false;
12967 
12968   Expr *OriginalInit = Init->IgnoreParenImpCasts();
12969   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
12970 
12971   Expr::EvalResult Result;
12972   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
12973                                    Expr::SE_AllowSideEffects)) {
12974     // The RHS is not constant.  If the RHS has an enum type, make sure the
12975     // bitfield is wide enough to hold all the values of the enum without
12976     // truncation.
12977     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
12978       EnumDecl *ED = EnumTy->getDecl();
12979       bool SignedBitfield = BitfieldType->isSignedIntegerType();
12980 
12981       // Enum types are implicitly signed on Windows, so check if there are any
12982       // negative enumerators to see if the enum was intended to be signed or
12983       // not.
12984       bool SignedEnum = ED->getNumNegativeBits() > 0;
12985 
12986       // Check for surprising sign changes when assigning enum values to a
12987       // bitfield of different signedness.  If the bitfield is signed and we
12988       // have exactly the right number of bits to store this unsigned enum,
12989       // suggest changing the enum to an unsigned type. This typically happens
12990       // on Windows where unfixed enums always use an underlying type of 'int'.
12991       unsigned DiagID = 0;
12992       if (SignedEnum && !SignedBitfield) {
12993         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
12994       } else if (SignedBitfield && !SignedEnum &&
12995                  ED->getNumPositiveBits() == FieldWidth) {
12996         DiagID = diag::warn_signed_bitfield_enum_conversion;
12997       }
12998 
12999       if (DiagID) {
13000         S.Diag(InitLoc, DiagID) << Bitfield << ED;
13001         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
13002         SourceRange TypeRange =
13003             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
13004         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
13005             << SignedEnum << TypeRange;
13006       }
13007 
13008       // Compute the required bitwidth. If the enum has negative values, we need
13009       // one more bit than the normal number of positive bits to represent the
13010       // sign bit.
13011       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
13012                                                   ED->getNumNegativeBits())
13013                                        : ED->getNumPositiveBits();
13014 
13015       // Check the bitwidth.
13016       if (BitsNeeded > FieldWidth) {
13017         Expr *WidthExpr = Bitfield->getBitWidth();
13018         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
13019             << Bitfield << ED;
13020         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
13021             << BitsNeeded << ED << WidthExpr->getSourceRange();
13022       }
13023     }
13024 
13025     return false;
13026   }
13027 
13028   llvm::APSInt Value = Result.Val.getInt();
13029 
13030   unsigned OriginalWidth = Value.getBitWidth();
13031 
13032   if (!Value.isSigned() || Value.isNegative())
13033     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
13034       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
13035         OriginalWidth = Value.getMinSignedBits();
13036 
13037   if (OriginalWidth <= FieldWidth)
13038     return false;
13039 
13040   // Compute the value which the bitfield will contain.
13041   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
13042   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
13043 
13044   // Check whether the stored value is equal to the original value.
13045   TruncatedValue = TruncatedValue.extend(OriginalWidth);
13046   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
13047     return false;
13048 
13049   // Special-case bitfields of width 1: booleans are naturally 0/1, and
13050   // therefore don't strictly fit into a signed bitfield of width 1.
13051   if (FieldWidth == 1 && Value == 1)
13052     return false;
13053 
13054   std::string PrettyValue = toString(Value, 10);
13055   std::string PrettyTrunc = toString(TruncatedValue, 10);
13056 
13057   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
13058     << PrettyValue << PrettyTrunc << OriginalInit->getType()
13059     << Init->getSourceRange();
13060 
13061   return true;
13062 }
13063 
13064 /// Analyze the given simple or compound assignment for warning-worthy
13065 /// operations.
13066 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
13067   // Just recurse on the LHS.
13068   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
13069 
13070   // We want to recurse on the RHS as normal unless we're assigning to
13071   // a bitfield.
13072   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
13073     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
13074                                   E->getOperatorLoc())) {
13075       // Recurse, ignoring any implicit conversions on the RHS.
13076       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
13077                                         E->getOperatorLoc());
13078     }
13079   }
13080 
13081   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
13082 
13083   // Diagnose implicitly sequentially-consistent atomic assignment.
13084   if (E->getLHS()->getType()->isAtomicType())
13085     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
13086 }
13087 
13088 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
13089 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
13090                             SourceLocation CContext, unsigned diag,
13091                             bool pruneControlFlow = false) {
13092   if (pruneControlFlow) {
13093     S.DiagRuntimeBehavior(E->getExprLoc(), E,
13094                           S.PDiag(diag)
13095                               << SourceType << T << E->getSourceRange()
13096                               << SourceRange(CContext));
13097     return;
13098   }
13099   S.Diag(E->getExprLoc(), diag)
13100     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
13101 }
13102 
13103 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
13104 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
13105                             SourceLocation CContext,
13106                             unsigned diag, bool pruneControlFlow = false) {
13107   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
13108 }
13109 
13110 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
13111   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
13112       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
13113 }
13114 
13115 static void adornObjCBoolConversionDiagWithTernaryFixit(
13116     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
13117   Expr *Ignored = SourceExpr->IgnoreImplicit();
13118   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
13119     Ignored = OVE->getSourceExpr();
13120   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
13121                      isa<BinaryOperator>(Ignored) ||
13122                      isa<CXXOperatorCallExpr>(Ignored);
13123   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
13124   if (NeedsParens)
13125     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
13126             << FixItHint::CreateInsertion(EndLoc, ")");
13127   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
13128 }
13129 
13130 /// Diagnose an implicit cast from a floating point value to an integer value.
13131 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
13132                                     SourceLocation CContext) {
13133   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
13134   const bool PruneWarnings = S.inTemplateInstantiation();
13135 
13136   Expr *InnerE = E->IgnoreParenImpCasts();
13137   // We also want to warn on, e.g., "int i = -1.234"
13138   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
13139     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
13140       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
13141 
13142   const bool IsLiteral =
13143       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
13144 
13145   llvm::APFloat Value(0.0);
13146   bool IsConstant =
13147     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
13148   if (!IsConstant) {
13149     if (isObjCSignedCharBool(S, T)) {
13150       return adornObjCBoolConversionDiagWithTernaryFixit(
13151           S, E,
13152           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
13153               << E->getType());
13154     }
13155 
13156     return DiagnoseImpCast(S, E, T, CContext,
13157                            diag::warn_impcast_float_integer, PruneWarnings);
13158   }
13159 
13160   bool isExact = false;
13161 
13162   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
13163                             T->hasUnsignedIntegerRepresentation());
13164   llvm::APFloat::opStatus Result = Value.convertToInteger(
13165       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
13166 
13167   // FIXME: Force the precision of the source value down so we don't print
13168   // digits which are usually useless (we don't really care here if we
13169   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
13170   // would automatically print the shortest representation, but it's a bit
13171   // tricky to implement.
13172   SmallString<16> PrettySourceValue;
13173   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
13174   precision = (precision * 59 + 195) / 196;
13175   Value.toString(PrettySourceValue, precision);
13176 
13177   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
13178     return adornObjCBoolConversionDiagWithTernaryFixit(
13179         S, E,
13180         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
13181             << PrettySourceValue);
13182   }
13183 
13184   if (Result == llvm::APFloat::opOK && isExact) {
13185     if (IsLiteral) return;
13186     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
13187                            PruneWarnings);
13188   }
13189 
13190   // Conversion of a floating-point value to a non-bool integer where the
13191   // integral part cannot be represented by the integer type is undefined.
13192   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
13193     return DiagnoseImpCast(
13194         S, E, T, CContext,
13195         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
13196                   : diag::warn_impcast_float_to_integer_out_of_range,
13197         PruneWarnings);
13198 
13199   unsigned DiagID = 0;
13200   if (IsLiteral) {
13201     // Warn on floating point literal to integer.
13202     DiagID = diag::warn_impcast_literal_float_to_integer;
13203   } else if (IntegerValue == 0) {
13204     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
13205       return DiagnoseImpCast(S, E, T, CContext,
13206                              diag::warn_impcast_float_integer, PruneWarnings);
13207     }
13208     // Warn on non-zero to zero conversion.
13209     DiagID = diag::warn_impcast_float_to_integer_zero;
13210   } else {
13211     if (IntegerValue.isUnsigned()) {
13212       if (!IntegerValue.isMaxValue()) {
13213         return DiagnoseImpCast(S, E, T, CContext,
13214                                diag::warn_impcast_float_integer, PruneWarnings);
13215       }
13216     } else {  // IntegerValue.isSigned()
13217       if (!IntegerValue.isMaxSignedValue() &&
13218           !IntegerValue.isMinSignedValue()) {
13219         return DiagnoseImpCast(S, E, T, CContext,
13220                                diag::warn_impcast_float_integer, PruneWarnings);
13221       }
13222     }
13223     // Warn on evaluatable floating point expression to integer conversion.
13224     DiagID = diag::warn_impcast_float_to_integer;
13225   }
13226 
13227   SmallString<16> PrettyTargetValue;
13228   if (IsBool)
13229     PrettyTargetValue = Value.isZero() ? "false" : "true";
13230   else
13231     IntegerValue.toString(PrettyTargetValue);
13232 
13233   if (PruneWarnings) {
13234     S.DiagRuntimeBehavior(E->getExprLoc(), E,
13235                           S.PDiag(DiagID)
13236                               << E->getType() << T.getUnqualifiedType()
13237                               << PrettySourceValue << PrettyTargetValue
13238                               << E->getSourceRange() << SourceRange(CContext));
13239   } else {
13240     S.Diag(E->getExprLoc(), DiagID)
13241         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
13242         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
13243   }
13244 }
13245 
13246 /// Analyze the given compound assignment for the possible losing of
13247 /// floating-point precision.
13248 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
13249   assert(isa<CompoundAssignOperator>(E) &&
13250          "Must be compound assignment operation");
13251   // Recurse on the LHS and RHS in here
13252   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
13253   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
13254 
13255   if (E->getLHS()->getType()->isAtomicType())
13256     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
13257 
13258   // Now check the outermost expression
13259   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
13260   const auto *RBT = cast<CompoundAssignOperator>(E)
13261                         ->getComputationResultType()
13262                         ->getAs<BuiltinType>();
13263 
13264   // The below checks assume source is floating point.
13265   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
13266 
13267   // If source is floating point but target is an integer.
13268   if (ResultBT->isInteger())
13269     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
13270                            E->getExprLoc(), diag::warn_impcast_float_integer);
13271 
13272   if (!ResultBT->isFloatingPoint())
13273     return;
13274 
13275   // If both source and target are floating points, warn about losing precision.
13276   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13277       QualType(ResultBT, 0), QualType(RBT, 0));
13278   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
13279     // warn about dropping FP rank.
13280     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
13281                     diag::warn_impcast_float_result_precision);
13282 }
13283 
13284 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
13285                                       IntRange Range) {
13286   if (!Range.Width) return "0";
13287 
13288   llvm::APSInt ValueInRange = Value;
13289   ValueInRange.setIsSigned(!Range.NonNegative);
13290   ValueInRange = ValueInRange.trunc(Range.Width);
13291   return toString(ValueInRange, 10);
13292 }
13293 
13294 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
13295   if (!isa<ImplicitCastExpr>(Ex))
13296     return false;
13297 
13298   Expr *InnerE = Ex->IgnoreParenImpCasts();
13299   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
13300   const Type *Source =
13301     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
13302   if (Target->isDependentType())
13303     return false;
13304 
13305   const BuiltinType *FloatCandidateBT =
13306     dyn_cast<BuiltinType>(ToBool ? Source : Target);
13307   const Type *BoolCandidateType = ToBool ? Target : Source;
13308 
13309   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
13310           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
13311 }
13312 
13313 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
13314                                              SourceLocation CC) {
13315   unsigned NumArgs = TheCall->getNumArgs();
13316   for (unsigned i = 0; i < NumArgs; ++i) {
13317     Expr *CurrA = TheCall->getArg(i);
13318     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
13319       continue;
13320 
13321     bool IsSwapped = ((i > 0) &&
13322         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
13323     IsSwapped |= ((i < (NumArgs - 1)) &&
13324         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
13325     if (IsSwapped) {
13326       // Warn on this floating-point to bool conversion.
13327       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
13328                       CurrA->getType(), CC,
13329                       diag::warn_impcast_floating_point_to_bool);
13330     }
13331   }
13332 }
13333 
13334 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
13335                                    SourceLocation CC) {
13336   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
13337                         E->getExprLoc()))
13338     return;
13339 
13340   // Don't warn on functions which have return type nullptr_t.
13341   if (isa<CallExpr>(E))
13342     return;
13343 
13344   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
13345   const Expr::NullPointerConstantKind NullKind =
13346       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
13347   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
13348     return;
13349 
13350   // Return if target type is a safe conversion.
13351   if (T->isAnyPointerType() || T->isBlockPointerType() ||
13352       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
13353     return;
13354 
13355   SourceLocation Loc = E->getSourceRange().getBegin();
13356 
13357   // Venture through the macro stacks to get to the source of macro arguments.
13358   // The new location is a better location than the complete location that was
13359   // passed in.
13360   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
13361   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
13362 
13363   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
13364   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
13365     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
13366         Loc, S.SourceMgr, S.getLangOpts());
13367     if (MacroName == "NULL")
13368       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
13369   }
13370 
13371   // Only warn if the null and context location are in the same macro expansion.
13372   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
13373     return;
13374 
13375   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
13376       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
13377       << FixItHint::CreateReplacement(Loc,
13378                                       S.getFixItZeroLiteralForType(T, Loc));
13379 }
13380 
13381 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
13382                                   ObjCArrayLiteral *ArrayLiteral);
13383 
13384 static void
13385 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
13386                            ObjCDictionaryLiteral *DictionaryLiteral);
13387 
13388 /// Check a single element within a collection literal against the
13389 /// target element type.
13390 static void checkObjCCollectionLiteralElement(Sema &S,
13391                                               QualType TargetElementType,
13392                                               Expr *Element,
13393                                               unsigned ElementKind) {
13394   // Skip a bitcast to 'id' or qualified 'id'.
13395   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
13396     if (ICE->getCastKind() == CK_BitCast &&
13397         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
13398       Element = ICE->getSubExpr();
13399   }
13400 
13401   QualType ElementType = Element->getType();
13402   ExprResult ElementResult(Element);
13403   if (ElementType->getAs<ObjCObjectPointerType>() &&
13404       S.CheckSingleAssignmentConstraints(TargetElementType,
13405                                          ElementResult,
13406                                          false, false)
13407         != Sema::Compatible) {
13408     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
13409         << ElementType << ElementKind << TargetElementType
13410         << Element->getSourceRange();
13411   }
13412 
13413   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
13414     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
13415   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
13416     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
13417 }
13418 
13419 /// Check an Objective-C array literal being converted to the given
13420 /// target type.
13421 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
13422                                   ObjCArrayLiteral *ArrayLiteral) {
13423   if (!S.NSArrayDecl)
13424     return;
13425 
13426   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
13427   if (!TargetObjCPtr)
13428     return;
13429 
13430   if (TargetObjCPtr->isUnspecialized() ||
13431       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
13432         != S.NSArrayDecl->getCanonicalDecl())
13433     return;
13434 
13435   auto TypeArgs = TargetObjCPtr->getTypeArgs();
13436   if (TypeArgs.size() != 1)
13437     return;
13438 
13439   QualType TargetElementType = TypeArgs[0];
13440   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
13441     checkObjCCollectionLiteralElement(S, TargetElementType,
13442                                       ArrayLiteral->getElement(I),
13443                                       0);
13444   }
13445 }
13446 
13447 /// Check an Objective-C dictionary literal being converted to the given
13448 /// target type.
13449 static void
13450 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
13451                            ObjCDictionaryLiteral *DictionaryLiteral) {
13452   if (!S.NSDictionaryDecl)
13453     return;
13454 
13455   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
13456   if (!TargetObjCPtr)
13457     return;
13458 
13459   if (TargetObjCPtr->isUnspecialized() ||
13460       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
13461         != S.NSDictionaryDecl->getCanonicalDecl())
13462     return;
13463 
13464   auto TypeArgs = TargetObjCPtr->getTypeArgs();
13465   if (TypeArgs.size() != 2)
13466     return;
13467 
13468   QualType TargetKeyType = TypeArgs[0];
13469   QualType TargetObjectType = TypeArgs[1];
13470   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
13471     auto Element = DictionaryLiteral->getKeyValueElement(I);
13472     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
13473     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
13474   }
13475 }
13476 
13477 // Helper function to filter out cases for constant width constant conversion.
13478 // Don't warn on char array initialization or for non-decimal values.
13479 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
13480                                           SourceLocation CC) {
13481   // If initializing from a constant, and the constant starts with '0',
13482   // then it is a binary, octal, or hexadecimal.  Allow these constants
13483   // to fill all the bits, even if there is a sign change.
13484   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
13485     const char FirstLiteralCharacter =
13486         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
13487     if (FirstLiteralCharacter == '0')
13488       return false;
13489   }
13490 
13491   // If the CC location points to a '{', and the type is char, then assume
13492   // assume it is an array initialization.
13493   if (CC.isValid() && T->isCharType()) {
13494     const char FirstContextCharacter =
13495         S.getSourceManager().getCharacterData(CC)[0];
13496     if (FirstContextCharacter == '{')
13497       return false;
13498   }
13499 
13500   return true;
13501 }
13502 
13503 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
13504   const auto *IL = dyn_cast<IntegerLiteral>(E);
13505   if (!IL) {
13506     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
13507       if (UO->getOpcode() == UO_Minus)
13508         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
13509     }
13510   }
13511 
13512   return IL;
13513 }
13514 
13515 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
13516   E = E->IgnoreParenImpCasts();
13517   SourceLocation ExprLoc = E->getExprLoc();
13518 
13519   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
13520     BinaryOperator::Opcode Opc = BO->getOpcode();
13521     Expr::EvalResult Result;
13522     // Do not diagnose unsigned shifts.
13523     if (Opc == BO_Shl) {
13524       const auto *LHS = getIntegerLiteral(BO->getLHS());
13525       const auto *RHS = getIntegerLiteral(BO->getRHS());
13526       if (LHS && LHS->getValue() == 0)
13527         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
13528       else if (!E->isValueDependent() && LHS && RHS &&
13529                RHS->getValue().isNonNegative() &&
13530                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
13531         S.Diag(ExprLoc, diag::warn_left_shift_always)
13532             << (Result.Val.getInt() != 0);
13533       else if (E->getType()->isSignedIntegerType())
13534         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
13535     }
13536   }
13537 
13538   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
13539     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
13540     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
13541     if (!LHS || !RHS)
13542       return;
13543     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
13544         (RHS->getValue() == 0 || RHS->getValue() == 1))
13545       // Do not diagnose common idioms.
13546       return;
13547     if (LHS->getValue() != 0 && RHS->getValue() != 0)
13548       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
13549   }
13550 }
13551 
13552 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
13553                                     SourceLocation CC,
13554                                     bool *ICContext = nullptr,
13555                                     bool IsListInit = false) {
13556   if (E->isTypeDependent() || E->isValueDependent()) return;
13557 
13558   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
13559   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
13560   if (Source == Target) return;
13561   if (Target->isDependentType()) return;
13562 
13563   // If the conversion context location is invalid don't complain. We also
13564   // don't want to emit a warning if the issue occurs from the expansion of
13565   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
13566   // delay this check as long as possible. Once we detect we are in that
13567   // scenario, we just return.
13568   if (CC.isInvalid())
13569     return;
13570 
13571   if (Source->isAtomicType())
13572     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
13573 
13574   // Diagnose implicit casts to bool.
13575   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
13576     if (isa<StringLiteral>(E))
13577       // Warn on string literal to bool.  Checks for string literals in logical
13578       // and expressions, for instance, assert(0 && "error here"), are
13579       // prevented by a check in AnalyzeImplicitConversions().
13580       return DiagnoseImpCast(S, E, T, CC,
13581                              diag::warn_impcast_string_literal_to_bool);
13582     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
13583         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
13584       // This covers the literal expressions that evaluate to Objective-C
13585       // objects.
13586       return DiagnoseImpCast(S, E, T, CC,
13587                              diag::warn_impcast_objective_c_literal_to_bool);
13588     }
13589     if (Source->isPointerType() || Source->canDecayToPointerType()) {
13590       // Warn on pointer to bool conversion that is always true.
13591       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
13592                                      SourceRange(CC));
13593     }
13594   }
13595 
13596   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
13597   // is a typedef for signed char (macOS), then that constant value has to be 1
13598   // or 0.
13599   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
13600     Expr::EvalResult Result;
13601     if (E->EvaluateAsInt(Result, S.getASTContext(),
13602                          Expr::SE_AllowSideEffects)) {
13603       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
13604         adornObjCBoolConversionDiagWithTernaryFixit(
13605             S, E,
13606             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
13607                 << toString(Result.Val.getInt(), 10));
13608       }
13609       return;
13610     }
13611   }
13612 
13613   // Check implicit casts from Objective-C collection literals to specialized
13614   // collection types, e.g., NSArray<NSString *> *.
13615   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
13616     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
13617   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
13618     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
13619 
13620   // Strip vector types.
13621   if (isa<VectorType>(Source)) {
13622     if (Target->isVLSTBuiltinType() &&
13623         (S.Context.areCompatibleSveTypes(QualType(Target, 0),
13624                                          QualType(Source, 0)) ||
13625          S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
13626                                             QualType(Source, 0))))
13627       return;
13628 
13629     if (!isa<VectorType>(Target)) {
13630       if (S.SourceMgr.isInSystemMacro(CC))
13631         return;
13632       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
13633     }
13634 
13635     // If the vector cast is cast between two vectors of the same size, it is
13636     // a bitcast, not a conversion.
13637     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13638       return;
13639 
13640     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
13641     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
13642   }
13643   if (auto VecTy = dyn_cast<VectorType>(Target))
13644     Target = VecTy->getElementType().getTypePtr();
13645 
13646   // Strip complex types.
13647   if (isa<ComplexType>(Source)) {
13648     if (!isa<ComplexType>(Target)) {
13649       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
13650         return;
13651 
13652       return DiagnoseImpCast(S, E, T, CC,
13653                              S.getLangOpts().CPlusPlus
13654                                  ? diag::err_impcast_complex_scalar
13655                                  : diag::warn_impcast_complex_scalar);
13656     }
13657 
13658     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
13659     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
13660   }
13661 
13662   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
13663   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
13664 
13665   // Strip SVE vector types
13666   if (SourceBT && SourceBT->isVLSTBuiltinType()) {
13667     // Need the original target type for vector type checks
13668     const Type *OriginalTarget = S.Context.getCanonicalType(T).getTypePtr();
13669     // Handle conversion from scalable to fixed when msve-vector-bits is
13670     // specified
13671     if (S.Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
13672                                         QualType(Source, 0)) ||
13673         S.Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
13674                                            QualType(Source, 0)))
13675       return;
13676 
13677     // If the vector cast is cast between two vectors of the same size, it is
13678     // a bitcast, not a conversion.
13679     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
13680       return;
13681 
13682     Source = SourceBT->getSveEltType(S.Context).getTypePtr();
13683   }
13684 
13685   if (TargetBT && TargetBT->isVLSTBuiltinType())
13686     Target = TargetBT->getSveEltType(S.Context).getTypePtr();
13687 
13688   // If the source is floating point...
13689   if (SourceBT && SourceBT->isFloatingPoint()) {
13690     // ...and the target is floating point...
13691     if (TargetBT && TargetBT->isFloatingPoint()) {
13692       // ...then warn if we're dropping FP rank.
13693 
13694       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
13695           QualType(SourceBT, 0), QualType(TargetBT, 0));
13696       if (Order > 0) {
13697         // Don't warn about float constants that are precisely
13698         // representable in the target type.
13699         Expr::EvalResult result;
13700         if (E->EvaluateAsRValue(result, S.Context)) {
13701           // Value might be a float, a float vector, or a float complex.
13702           if (IsSameFloatAfterCast(result.Val,
13703                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
13704                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
13705             return;
13706         }
13707 
13708         if (S.SourceMgr.isInSystemMacro(CC))
13709           return;
13710 
13711         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
13712       }
13713       // ... or possibly if we're increasing rank, too
13714       else if (Order < 0) {
13715         if (S.SourceMgr.isInSystemMacro(CC))
13716           return;
13717 
13718         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
13719       }
13720       return;
13721     }
13722 
13723     // If the target is integral, always warn.
13724     if (TargetBT && TargetBT->isInteger()) {
13725       if (S.SourceMgr.isInSystemMacro(CC))
13726         return;
13727 
13728       DiagnoseFloatingImpCast(S, E, T, CC);
13729     }
13730 
13731     // Detect the case where a call result is converted from floating-point to
13732     // to bool, and the final argument to the call is converted from bool, to
13733     // discover this typo:
13734     //
13735     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
13736     //
13737     // FIXME: This is an incredibly special case; is there some more general
13738     // way to detect this class of misplaced-parentheses bug?
13739     if (Target->isBooleanType() && isa<CallExpr>(E)) {
13740       // Check last argument of function call to see if it is an
13741       // implicit cast from a type matching the type the result
13742       // is being cast to.
13743       CallExpr *CEx = cast<CallExpr>(E);
13744       if (unsigned NumArgs = CEx->getNumArgs()) {
13745         Expr *LastA = CEx->getArg(NumArgs - 1);
13746         Expr *InnerE = LastA->IgnoreParenImpCasts();
13747         if (isa<ImplicitCastExpr>(LastA) &&
13748             InnerE->getType()->isBooleanType()) {
13749           // Warn on this floating-point to bool conversion
13750           DiagnoseImpCast(S, E, T, CC,
13751                           diag::warn_impcast_floating_point_to_bool);
13752         }
13753       }
13754     }
13755     return;
13756   }
13757 
13758   // Valid casts involving fixed point types should be accounted for here.
13759   if (Source->isFixedPointType()) {
13760     if (Target->isUnsaturatedFixedPointType()) {
13761       Expr::EvalResult Result;
13762       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
13763                                   S.isConstantEvaluated())) {
13764         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
13765         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
13766         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
13767         if (Value > MaxVal || Value < MinVal) {
13768           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13769                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13770                                     << Value.toString() << T
13771                                     << E->getSourceRange()
13772                                     << clang::SourceRange(CC));
13773           return;
13774         }
13775       }
13776     } else if (Target->isIntegerType()) {
13777       Expr::EvalResult Result;
13778       if (!S.isConstantEvaluated() &&
13779           E->EvaluateAsFixedPoint(Result, S.Context,
13780                                   Expr::SE_AllowSideEffects)) {
13781         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
13782 
13783         bool Overflowed;
13784         llvm::APSInt IntResult = FXResult.convertToInt(
13785             S.Context.getIntWidth(T),
13786             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
13787 
13788         if (Overflowed) {
13789           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13790                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13791                                     << FXResult.toString() << T
13792                                     << E->getSourceRange()
13793                                     << clang::SourceRange(CC));
13794           return;
13795         }
13796       }
13797     }
13798   } else if (Target->isUnsaturatedFixedPointType()) {
13799     if (Source->isIntegerType()) {
13800       Expr::EvalResult Result;
13801       if (!S.isConstantEvaluated() &&
13802           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
13803         llvm::APSInt Value = Result.Val.getInt();
13804 
13805         bool Overflowed;
13806         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
13807             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
13808 
13809         if (Overflowed) {
13810           S.DiagRuntimeBehavior(E->getExprLoc(), E,
13811                                 S.PDiag(diag::warn_impcast_fixed_point_range)
13812                                     << toString(Value, /*Radix=*/10) << T
13813                                     << E->getSourceRange()
13814                                     << clang::SourceRange(CC));
13815           return;
13816         }
13817       }
13818     }
13819   }
13820 
13821   // If we are casting an integer type to a floating point type without
13822   // initialization-list syntax, we might lose accuracy if the floating
13823   // point type has a narrower significand than the integer type.
13824   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
13825       TargetBT->isFloatingType() && !IsListInit) {
13826     // Determine the number of precision bits in the source integer type.
13827     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
13828                                         /*Approximate*/ true);
13829     unsigned int SourcePrecision = SourceRange.Width;
13830 
13831     // Determine the number of precision bits in the
13832     // target floating point type.
13833     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
13834         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13835 
13836     if (SourcePrecision > 0 && TargetPrecision > 0 &&
13837         SourcePrecision > TargetPrecision) {
13838 
13839       if (Optional<llvm::APSInt> SourceInt =
13840               E->getIntegerConstantExpr(S.Context)) {
13841         // If the source integer is a constant, convert it to the target
13842         // floating point type. Issue a warning if the value changes
13843         // during the whole conversion.
13844         llvm::APFloat TargetFloatValue(
13845             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
13846         llvm::APFloat::opStatus ConversionStatus =
13847             TargetFloatValue.convertFromAPInt(
13848                 *SourceInt, SourceBT->isSignedInteger(),
13849                 llvm::APFloat::rmNearestTiesToEven);
13850 
13851         if (ConversionStatus != llvm::APFloat::opOK) {
13852           SmallString<32> PrettySourceValue;
13853           SourceInt->toString(PrettySourceValue, 10);
13854           SmallString<32> PrettyTargetValue;
13855           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
13856 
13857           S.DiagRuntimeBehavior(
13858               E->getExprLoc(), E,
13859               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
13860                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
13861                   << E->getSourceRange() << clang::SourceRange(CC));
13862         }
13863       } else {
13864         // Otherwise, the implicit conversion may lose precision.
13865         DiagnoseImpCast(S, E, T, CC,
13866                         diag::warn_impcast_integer_float_precision);
13867       }
13868     }
13869   }
13870 
13871   DiagnoseNullConversion(S, E, T, CC);
13872 
13873   S.DiscardMisalignedMemberAddress(Target, E);
13874 
13875   if (Target->isBooleanType())
13876     DiagnoseIntInBoolContext(S, E);
13877 
13878   if (!Source->isIntegerType() || !Target->isIntegerType())
13879     return;
13880 
13881   // TODO: remove this early return once the false positives for constant->bool
13882   // in templates, macros, etc, are reduced or removed.
13883   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
13884     return;
13885 
13886   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
13887       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
13888     return adornObjCBoolConversionDiagWithTernaryFixit(
13889         S, E,
13890         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
13891             << E->getType());
13892   }
13893 
13894   IntRange SourceTypeRange =
13895       IntRange::forTargetOfCanonicalType(S.Context, Source);
13896   IntRange LikelySourceRange =
13897       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
13898   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
13899 
13900   if (LikelySourceRange.Width > TargetRange.Width) {
13901     // If the source is a constant, use a default-on diagnostic.
13902     // TODO: this should happen for bitfield stores, too.
13903     Expr::EvalResult Result;
13904     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
13905                          S.isConstantEvaluated())) {
13906       llvm::APSInt Value(32);
13907       Value = Result.Val.getInt();
13908 
13909       if (S.SourceMgr.isInSystemMacro(CC))
13910         return;
13911 
13912       std::string PrettySourceValue = toString(Value, 10);
13913       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13914 
13915       S.DiagRuntimeBehavior(
13916           E->getExprLoc(), E,
13917           S.PDiag(diag::warn_impcast_integer_precision_constant)
13918               << PrettySourceValue << PrettyTargetValue << E->getType() << T
13919               << E->getSourceRange() << SourceRange(CC));
13920       return;
13921     }
13922 
13923     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
13924     if (S.SourceMgr.isInSystemMacro(CC))
13925       return;
13926 
13927     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
13928       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
13929                              /* pruneControlFlow */ true);
13930     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
13931   }
13932 
13933   if (TargetRange.Width > SourceTypeRange.Width) {
13934     if (auto *UO = dyn_cast<UnaryOperator>(E))
13935       if (UO->getOpcode() == UO_Minus)
13936         if (Source->isUnsignedIntegerType()) {
13937           if (Target->isUnsignedIntegerType())
13938             return DiagnoseImpCast(S, E, T, CC,
13939                                    diag::warn_impcast_high_order_zero_bits);
13940           if (Target->isSignedIntegerType())
13941             return DiagnoseImpCast(S, E, T, CC,
13942                                    diag::warn_impcast_nonnegative_result);
13943         }
13944   }
13945 
13946   if (TargetRange.Width == LikelySourceRange.Width &&
13947       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13948       Source->isSignedIntegerType()) {
13949     // Warn when doing a signed to signed conversion, warn if the positive
13950     // source value is exactly the width of the target type, which will
13951     // cause a negative value to be stored.
13952 
13953     Expr::EvalResult Result;
13954     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
13955         !S.SourceMgr.isInSystemMacro(CC)) {
13956       llvm::APSInt Value = Result.Val.getInt();
13957       if (isSameWidthConstantConversion(S, E, T, CC)) {
13958         std::string PrettySourceValue = toString(Value, 10);
13959         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
13960 
13961         S.DiagRuntimeBehavior(
13962             E->getExprLoc(), E,
13963             S.PDiag(diag::warn_impcast_integer_precision_constant)
13964                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
13965                 << E->getSourceRange() << SourceRange(CC));
13966         return;
13967       }
13968     }
13969 
13970     // Fall through for non-constants to give a sign conversion warning.
13971   }
13972 
13973   if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
13974       ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
13975        (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
13976         LikelySourceRange.Width == TargetRange.Width))) {
13977     if (S.SourceMgr.isInSystemMacro(CC))
13978       return;
13979 
13980     unsigned DiagID = diag::warn_impcast_integer_sign;
13981 
13982     // Traditionally, gcc has warned about this under -Wsign-compare.
13983     // We also want to warn about it in -Wconversion.
13984     // So if -Wconversion is off, use a completely identical diagnostic
13985     // in the sign-compare group.
13986     // The conditional-checking code will
13987     if (ICContext) {
13988       DiagID = diag::warn_impcast_integer_sign_conditional;
13989       *ICContext = true;
13990     }
13991 
13992     return DiagnoseImpCast(S, E, T, CC, DiagID);
13993   }
13994 
13995   // Diagnose conversions between different enumeration types.
13996   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
13997   // type, to give us better diagnostics.
13998   QualType SourceType = E->getType();
13999   if (!S.getLangOpts().CPlusPlus) {
14000     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14001       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
14002         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
14003         SourceType = S.Context.getTypeDeclType(Enum);
14004         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
14005       }
14006   }
14007 
14008   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
14009     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
14010       if (SourceEnum->getDecl()->hasNameForLinkage() &&
14011           TargetEnum->getDecl()->hasNameForLinkage() &&
14012           SourceEnum != TargetEnum) {
14013         if (S.SourceMgr.isInSystemMacro(CC))
14014           return;
14015 
14016         return DiagnoseImpCast(S, E, SourceType, T, CC,
14017                                diag::warn_impcast_different_enum_types);
14018       }
14019 }
14020 
14021 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
14022                                      SourceLocation CC, QualType T);
14023 
14024 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
14025                                     SourceLocation CC, bool &ICContext) {
14026   E = E->IgnoreParenImpCasts();
14027 
14028   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
14029     return CheckConditionalOperator(S, CO, CC, T);
14030 
14031   AnalyzeImplicitConversions(S, E, CC);
14032   if (E->getType() != T)
14033     return CheckImplicitConversion(S, E, T, CC, &ICContext);
14034 }
14035 
14036 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
14037                                      SourceLocation CC, QualType T) {
14038   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
14039 
14040   Expr *TrueExpr = E->getTrueExpr();
14041   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
14042     TrueExpr = BCO->getCommon();
14043 
14044   bool Suspicious = false;
14045   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
14046   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
14047 
14048   if (T->isBooleanType())
14049     DiagnoseIntInBoolContext(S, E);
14050 
14051   // If -Wconversion would have warned about either of the candidates
14052   // for a signedness conversion to the context type...
14053   if (!Suspicious) return;
14054 
14055   // ...but it's currently ignored...
14056   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
14057     return;
14058 
14059   // ...then check whether it would have warned about either of the
14060   // candidates for a signedness conversion to the condition type.
14061   if (E->getType() == T) return;
14062 
14063   Suspicious = false;
14064   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
14065                           E->getType(), CC, &Suspicious);
14066   if (!Suspicious)
14067     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
14068                             E->getType(), CC, &Suspicious);
14069 }
14070 
14071 /// Check conversion of given expression to boolean.
14072 /// Input argument E is a logical expression.
14073 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
14074   if (S.getLangOpts().Bool)
14075     return;
14076   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
14077     return;
14078   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
14079 }
14080 
14081 namespace {
14082 struct AnalyzeImplicitConversionsWorkItem {
14083   Expr *E;
14084   SourceLocation CC;
14085   bool IsListInit;
14086 };
14087 }
14088 
14089 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
14090 /// that should be visited are added to WorkList.
14091 static void AnalyzeImplicitConversions(
14092     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
14093     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
14094   Expr *OrigE = Item.E;
14095   SourceLocation CC = Item.CC;
14096 
14097   QualType T = OrigE->getType();
14098   Expr *E = OrigE->IgnoreParenImpCasts();
14099 
14100   // Propagate whether we are in a C++ list initialization expression.
14101   // If so, we do not issue warnings for implicit int-float conversion
14102   // precision loss, because C++11 narrowing already handles it.
14103   bool IsListInit = Item.IsListInit ||
14104                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
14105 
14106   if (E->isTypeDependent() || E->isValueDependent())
14107     return;
14108 
14109   Expr *SourceExpr = E;
14110   // Examine, but don't traverse into the source expression of an
14111   // OpaqueValueExpr, since it may have multiple parents and we don't want to
14112   // emit duplicate diagnostics. Its fine to examine the form or attempt to
14113   // evaluate it in the context of checking the specific conversion to T though.
14114   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
14115     if (auto *Src = OVE->getSourceExpr())
14116       SourceExpr = Src;
14117 
14118   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
14119     if (UO->getOpcode() == UO_Not &&
14120         UO->getSubExpr()->isKnownToHaveBooleanValue())
14121       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
14122           << OrigE->getSourceRange() << T->isBooleanType()
14123           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
14124 
14125   if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
14126     if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
14127         BO->getLHS()->isKnownToHaveBooleanValue() &&
14128         BO->getRHS()->isKnownToHaveBooleanValue() &&
14129         BO->getLHS()->HasSideEffects(S.Context) &&
14130         BO->getRHS()->HasSideEffects(S.Context)) {
14131       S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
14132           << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
14133           << FixItHint::CreateReplacement(
14134                  BO->getOperatorLoc(),
14135                  (BO->getOpcode() == BO_And ? "&&" : "||"));
14136       S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
14137     }
14138 
14139   // For conditional operators, we analyze the arguments as if they
14140   // were being fed directly into the output.
14141   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
14142     CheckConditionalOperator(S, CO, CC, T);
14143     return;
14144   }
14145 
14146   // Check implicit argument conversions for function calls.
14147   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
14148     CheckImplicitArgumentConversions(S, Call, CC);
14149 
14150   // Go ahead and check any implicit conversions we might have skipped.
14151   // The non-canonical typecheck is just an optimization;
14152   // CheckImplicitConversion will filter out dead implicit conversions.
14153   if (SourceExpr->getType() != T)
14154     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
14155 
14156   // Now continue drilling into this expression.
14157 
14158   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
14159     // The bound subexpressions in a PseudoObjectExpr are not reachable
14160     // as transitive children.
14161     // FIXME: Use a more uniform representation for this.
14162     for (auto *SE : POE->semantics())
14163       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
14164         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
14165   }
14166 
14167   // Skip past explicit casts.
14168   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
14169     E = CE->getSubExpr()->IgnoreParenImpCasts();
14170     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
14171       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
14172     WorkList.push_back({E, CC, IsListInit});
14173     return;
14174   }
14175 
14176   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14177     // Do a somewhat different check with comparison operators.
14178     if (BO->isComparisonOp())
14179       return AnalyzeComparison(S, BO);
14180 
14181     // And with simple assignments.
14182     if (BO->getOpcode() == BO_Assign)
14183       return AnalyzeAssignment(S, BO);
14184     // And with compound assignments.
14185     if (BO->isAssignmentOp())
14186       return AnalyzeCompoundAssignment(S, BO);
14187   }
14188 
14189   // These break the otherwise-useful invariant below.  Fortunately,
14190   // we don't really need to recurse into them, because any internal
14191   // expressions should have been analyzed already when they were
14192   // built into statements.
14193   if (isa<StmtExpr>(E)) return;
14194 
14195   // Don't descend into unevaluated contexts.
14196   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
14197 
14198   // Now just recurse over the expression's children.
14199   CC = E->getExprLoc();
14200   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
14201   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
14202   for (Stmt *SubStmt : E->children()) {
14203     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
14204     if (!ChildExpr)
14205       continue;
14206 
14207     if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
14208       if (ChildExpr == CSE->getOperand())
14209         // Do not recurse over a CoroutineSuspendExpr's operand.
14210         // The operand is also a subexpression of getCommonExpr(), and
14211         // recursing into it directly would produce duplicate diagnostics.
14212         continue;
14213 
14214     if (IsLogicalAndOperator &&
14215         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
14216       // Ignore checking string literals that are in logical and operators.
14217       // This is a common pattern for asserts.
14218       continue;
14219     WorkList.push_back({ChildExpr, CC, IsListInit});
14220   }
14221 
14222   if (BO && BO->isLogicalOp()) {
14223     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
14224     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
14225       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
14226 
14227     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
14228     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
14229       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
14230   }
14231 
14232   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
14233     if (U->getOpcode() == UO_LNot) {
14234       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
14235     } else if (U->getOpcode() != UO_AddrOf) {
14236       if (U->getSubExpr()->getType()->isAtomicType())
14237         S.Diag(U->getSubExpr()->getBeginLoc(),
14238                diag::warn_atomic_implicit_seq_cst);
14239     }
14240   }
14241 }
14242 
14243 /// AnalyzeImplicitConversions - Find and report any interesting
14244 /// implicit conversions in the given expression.  There are a couple
14245 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
14246 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
14247                                        bool IsListInit/*= false*/) {
14248   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
14249   WorkList.push_back({OrigE, CC, IsListInit});
14250   while (!WorkList.empty())
14251     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
14252 }
14253 
14254 /// Diagnose integer type and any valid implicit conversion to it.
14255 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
14256   // Taking into account implicit conversions,
14257   // allow any integer.
14258   if (!E->getType()->isIntegerType()) {
14259     S.Diag(E->getBeginLoc(),
14260            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
14261     return true;
14262   }
14263   // Potentially emit standard warnings for implicit conversions if enabled
14264   // using -Wconversion.
14265   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
14266   return false;
14267 }
14268 
14269 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
14270 // Returns true when emitting a warning about taking the address of a reference.
14271 static bool CheckForReference(Sema &SemaRef, const Expr *E,
14272                               const PartialDiagnostic &PD) {
14273   E = E->IgnoreParenImpCasts();
14274 
14275   const FunctionDecl *FD = nullptr;
14276 
14277   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14278     if (!DRE->getDecl()->getType()->isReferenceType())
14279       return false;
14280   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
14281     if (!M->getMemberDecl()->getType()->isReferenceType())
14282       return false;
14283   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
14284     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
14285       return false;
14286     FD = Call->getDirectCallee();
14287   } else {
14288     return false;
14289   }
14290 
14291   SemaRef.Diag(E->getExprLoc(), PD);
14292 
14293   // If possible, point to location of function.
14294   if (FD) {
14295     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
14296   }
14297 
14298   return true;
14299 }
14300 
14301 // Returns true if the SourceLocation is expanded from any macro body.
14302 // Returns false if the SourceLocation is invalid, is from not in a macro
14303 // expansion, or is from expanded from a top-level macro argument.
14304 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
14305   if (Loc.isInvalid())
14306     return false;
14307 
14308   while (Loc.isMacroID()) {
14309     if (SM.isMacroBodyExpansion(Loc))
14310       return true;
14311     Loc = SM.getImmediateMacroCallerLoc(Loc);
14312   }
14313 
14314   return false;
14315 }
14316 
14317 /// Diagnose pointers that are always non-null.
14318 /// \param E the expression containing the pointer
14319 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
14320 /// compared to a null pointer
14321 /// \param IsEqual True when the comparison is equal to a null pointer
14322 /// \param Range Extra SourceRange to highlight in the diagnostic
14323 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
14324                                         Expr::NullPointerConstantKind NullKind,
14325                                         bool IsEqual, SourceRange Range) {
14326   if (!E)
14327     return;
14328 
14329   // Don't warn inside macros.
14330   if (E->getExprLoc().isMacroID()) {
14331     const SourceManager &SM = getSourceManager();
14332     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
14333         IsInAnyMacroBody(SM, Range.getBegin()))
14334       return;
14335   }
14336   E = E->IgnoreImpCasts();
14337 
14338   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
14339 
14340   if (isa<CXXThisExpr>(E)) {
14341     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
14342                                 : diag::warn_this_bool_conversion;
14343     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
14344     return;
14345   }
14346 
14347   bool IsAddressOf = false;
14348 
14349   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14350     if (UO->getOpcode() != UO_AddrOf)
14351       return;
14352     IsAddressOf = true;
14353     E = UO->getSubExpr();
14354   }
14355 
14356   if (IsAddressOf) {
14357     unsigned DiagID = IsCompare
14358                           ? diag::warn_address_of_reference_null_compare
14359                           : diag::warn_address_of_reference_bool_conversion;
14360     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
14361                                          << IsEqual;
14362     if (CheckForReference(*this, E, PD)) {
14363       return;
14364     }
14365   }
14366 
14367   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
14368     bool IsParam = isa<NonNullAttr>(NonnullAttr);
14369     std::string Str;
14370     llvm::raw_string_ostream S(Str);
14371     E->printPretty(S, nullptr, getPrintingPolicy());
14372     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
14373                                 : diag::warn_cast_nonnull_to_bool;
14374     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
14375       << E->getSourceRange() << Range << IsEqual;
14376     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
14377   };
14378 
14379   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
14380   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
14381     if (auto *Callee = Call->getDirectCallee()) {
14382       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
14383         ComplainAboutNonnullParamOrCall(A);
14384         return;
14385       }
14386     }
14387   }
14388 
14389   // Expect to find a single Decl.  Skip anything more complicated.
14390   ValueDecl *D = nullptr;
14391   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
14392     D = R->getDecl();
14393   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
14394     D = M->getMemberDecl();
14395   }
14396 
14397   // Weak Decls can be null.
14398   if (!D || D->isWeak())
14399     return;
14400 
14401   // Check for parameter decl with nonnull attribute
14402   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
14403     if (getCurFunction() &&
14404         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
14405       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
14406         ComplainAboutNonnullParamOrCall(A);
14407         return;
14408       }
14409 
14410       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
14411         // Skip function template not specialized yet.
14412         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
14413           return;
14414         auto ParamIter = llvm::find(FD->parameters(), PV);
14415         assert(ParamIter != FD->param_end());
14416         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
14417 
14418         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
14419           if (!NonNull->args_size()) {
14420               ComplainAboutNonnullParamOrCall(NonNull);
14421               return;
14422           }
14423 
14424           for (const ParamIdx &ArgNo : NonNull->args()) {
14425             if (ArgNo.getASTIndex() == ParamNo) {
14426               ComplainAboutNonnullParamOrCall(NonNull);
14427               return;
14428             }
14429           }
14430         }
14431       }
14432     }
14433   }
14434 
14435   QualType T = D->getType();
14436   const bool IsArray = T->isArrayType();
14437   const bool IsFunction = T->isFunctionType();
14438 
14439   // Address of function is used to silence the function warning.
14440   if (IsAddressOf && IsFunction) {
14441     return;
14442   }
14443 
14444   // Found nothing.
14445   if (!IsAddressOf && !IsFunction && !IsArray)
14446     return;
14447 
14448   // Pretty print the expression for the diagnostic.
14449   std::string Str;
14450   llvm::raw_string_ostream S(Str);
14451   E->printPretty(S, nullptr, getPrintingPolicy());
14452 
14453   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
14454                               : diag::warn_impcast_pointer_to_bool;
14455   enum {
14456     AddressOf,
14457     FunctionPointer,
14458     ArrayPointer
14459   } DiagType;
14460   if (IsAddressOf)
14461     DiagType = AddressOf;
14462   else if (IsFunction)
14463     DiagType = FunctionPointer;
14464   else if (IsArray)
14465     DiagType = ArrayPointer;
14466   else
14467     llvm_unreachable("Could not determine diagnostic.");
14468   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
14469                                 << Range << IsEqual;
14470 
14471   if (!IsFunction)
14472     return;
14473 
14474   // Suggest '&' to silence the function warning.
14475   Diag(E->getExprLoc(), diag::note_function_warning_silence)
14476       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
14477 
14478   // Check to see if '()' fixit should be emitted.
14479   QualType ReturnType;
14480   UnresolvedSet<4> NonTemplateOverloads;
14481   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
14482   if (ReturnType.isNull())
14483     return;
14484 
14485   if (IsCompare) {
14486     // There are two cases here.  If there is null constant, the only suggest
14487     // for a pointer return type.  If the null is 0, then suggest if the return
14488     // type is a pointer or an integer type.
14489     if (!ReturnType->isPointerType()) {
14490       if (NullKind == Expr::NPCK_ZeroExpression ||
14491           NullKind == Expr::NPCK_ZeroLiteral) {
14492         if (!ReturnType->isIntegerType())
14493           return;
14494       } else {
14495         return;
14496       }
14497     }
14498   } else { // !IsCompare
14499     // For function to bool, only suggest if the function pointer has bool
14500     // return type.
14501     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
14502       return;
14503   }
14504   Diag(E->getExprLoc(), diag::note_function_to_function_call)
14505       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
14506 }
14507 
14508 /// Diagnoses "dangerous" implicit conversions within the given
14509 /// expression (which is a full expression).  Implements -Wconversion
14510 /// and -Wsign-compare.
14511 ///
14512 /// \param CC the "context" location of the implicit conversion, i.e.
14513 ///   the most location of the syntactic entity requiring the implicit
14514 ///   conversion
14515 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
14516   // Don't diagnose in unevaluated contexts.
14517   if (isUnevaluatedContext())
14518     return;
14519 
14520   // Don't diagnose for value- or type-dependent expressions.
14521   if (E->isTypeDependent() || E->isValueDependent())
14522     return;
14523 
14524   // Check for array bounds violations in cases where the check isn't triggered
14525   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
14526   // ArraySubscriptExpr is on the RHS of a variable initialization.
14527   CheckArrayAccess(E);
14528 
14529   // This is not the right CC for (e.g.) a variable initialization.
14530   AnalyzeImplicitConversions(*this, E, CC);
14531 }
14532 
14533 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
14534 /// Input argument E is a logical expression.
14535 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
14536   ::CheckBoolLikeConversion(*this, E, CC);
14537 }
14538 
14539 /// Diagnose when expression is an integer constant expression and its evaluation
14540 /// results in integer overflow
14541 void Sema::CheckForIntOverflow (Expr *E) {
14542   // Use a work list to deal with nested struct initializers.
14543   SmallVector<Expr *, 2> Exprs(1, E);
14544 
14545   do {
14546     Expr *OriginalE = Exprs.pop_back_val();
14547     Expr *E = OriginalE->IgnoreParenCasts();
14548 
14549     if (isa<BinaryOperator>(E)) {
14550       E->EvaluateForOverflow(Context);
14551       continue;
14552     }
14553 
14554     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
14555       Exprs.append(InitList->inits().begin(), InitList->inits().end());
14556     else if (isa<ObjCBoxedExpr>(OriginalE))
14557       E->EvaluateForOverflow(Context);
14558     else if (auto Call = dyn_cast<CallExpr>(E))
14559       Exprs.append(Call->arg_begin(), Call->arg_end());
14560     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
14561       Exprs.append(Message->arg_begin(), Message->arg_end());
14562   } while (!Exprs.empty());
14563 }
14564 
14565 namespace {
14566 
14567 /// Visitor for expressions which looks for unsequenced operations on the
14568 /// same object.
14569 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
14570   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
14571 
14572   /// A tree of sequenced regions within an expression. Two regions are
14573   /// unsequenced if one is an ancestor or a descendent of the other. When we
14574   /// finish processing an expression with sequencing, such as a comma
14575   /// expression, we fold its tree nodes into its parent, since they are
14576   /// unsequenced with respect to nodes we will visit later.
14577   class SequenceTree {
14578     struct Value {
14579       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
14580       unsigned Parent : 31;
14581       unsigned Merged : 1;
14582     };
14583     SmallVector<Value, 8> Values;
14584 
14585   public:
14586     /// A region within an expression which may be sequenced with respect
14587     /// to some other region.
14588     class Seq {
14589       friend class SequenceTree;
14590 
14591       unsigned Index;
14592 
14593       explicit Seq(unsigned N) : Index(N) {}
14594 
14595     public:
14596       Seq() : Index(0) {}
14597     };
14598 
14599     SequenceTree() { Values.push_back(Value(0)); }
14600     Seq root() const { return Seq(0); }
14601 
14602     /// Create a new sequence of operations, which is an unsequenced
14603     /// subset of \p Parent. This sequence of operations is sequenced with
14604     /// respect to other children of \p Parent.
14605     Seq allocate(Seq Parent) {
14606       Values.push_back(Value(Parent.Index));
14607       return Seq(Values.size() - 1);
14608     }
14609 
14610     /// Merge a sequence of operations into its parent.
14611     void merge(Seq S) {
14612       Values[S.Index].Merged = true;
14613     }
14614 
14615     /// Determine whether two operations are unsequenced. This operation
14616     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
14617     /// should have been merged into its parent as appropriate.
14618     bool isUnsequenced(Seq Cur, Seq Old) {
14619       unsigned C = representative(Cur.Index);
14620       unsigned Target = representative(Old.Index);
14621       while (C >= Target) {
14622         if (C == Target)
14623           return true;
14624         C = Values[C].Parent;
14625       }
14626       return false;
14627     }
14628 
14629   private:
14630     /// Pick a representative for a sequence.
14631     unsigned representative(unsigned K) {
14632       if (Values[K].Merged)
14633         // Perform path compression as we go.
14634         return Values[K].Parent = representative(Values[K].Parent);
14635       return K;
14636     }
14637   };
14638 
14639   /// An object for which we can track unsequenced uses.
14640   using Object = const NamedDecl *;
14641 
14642   /// Different flavors of object usage which we track. We only track the
14643   /// least-sequenced usage of each kind.
14644   enum UsageKind {
14645     /// A read of an object. Multiple unsequenced reads are OK.
14646     UK_Use,
14647 
14648     /// A modification of an object which is sequenced before the value
14649     /// computation of the expression, such as ++n in C++.
14650     UK_ModAsValue,
14651 
14652     /// A modification of an object which is not sequenced before the value
14653     /// computation of the expression, such as n++.
14654     UK_ModAsSideEffect,
14655 
14656     UK_Count = UK_ModAsSideEffect + 1
14657   };
14658 
14659   /// Bundle together a sequencing region and the expression corresponding
14660   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
14661   struct Usage {
14662     const Expr *UsageExpr;
14663     SequenceTree::Seq Seq;
14664 
14665     Usage() : UsageExpr(nullptr) {}
14666   };
14667 
14668   struct UsageInfo {
14669     Usage Uses[UK_Count];
14670 
14671     /// Have we issued a diagnostic for this object already?
14672     bool Diagnosed;
14673 
14674     UsageInfo() : Diagnosed(false) {}
14675   };
14676   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
14677 
14678   Sema &SemaRef;
14679 
14680   /// Sequenced regions within the expression.
14681   SequenceTree Tree;
14682 
14683   /// Declaration modifications and references which we have seen.
14684   UsageInfoMap UsageMap;
14685 
14686   /// The region we are currently within.
14687   SequenceTree::Seq Region;
14688 
14689   /// Filled in with declarations which were modified as a side-effect
14690   /// (that is, post-increment operations).
14691   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
14692 
14693   /// Expressions to check later. We defer checking these to reduce
14694   /// stack usage.
14695   SmallVectorImpl<const Expr *> &WorkList;
14696 
14697   /// RAII object wrapping the visitation of a sequenced subexpression of an
14698   /// expression. At the end of this process, the side-effects of the evaluation
14699   /// become sequenced with respect to the value computation of the result, so
14700   /// we downgrade any UK_ModAsSideEffect within the evaluation to
14701   /// UK_ModAsValue.
14702   struct SequencedSubexpression {
14703     SequencedSubexpression(SequenceChecker &Self)
14704       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
14705       Self.ModAsSideEffect = &ModAsSideEffect;
14706     }
14707 
14708     ~SequencedSubexpression() {
14709       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
14710         // Add a new usage with usage kind UK_ModAsValue, and then restore
14711         // the previous usage with UK_ModAsSideEffect (thus clearing it if
14712         // the previous one was empty).
14713         UsageInfo &UI = Self.UsageMap[M.first];
14714         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
14715         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
14716         SideEffectUsage = M.second;
14717       }
14718       Self.ModAsSideEffect = OldModAsSideEffect;
14719     }
14720 
14721     SequenceChecker &Self;
14722     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
14723     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
14724   };
14725 
14726   /// RAII object wrapping the visitation of a subexpression which we might
14727   /// choose to evaluate as a constant. If any subexpression is evaluated and
14728   /// found to be non-constant, this allows us to suppress the evaluation of
14729   /// the outer expression.
14730   class EvaluationTracker {
14731   public:
14732     EvaluationTracker(SequenceChecker &Self)
14733         : Self(Self), Prev(Self.EvalTracker) {
14734       Self.EvalTracker = this;
14735     }
14736 
14737     ~EvaluationTracker() {
14738       Self.EvalTracker = Prev;
14739       if (Prev)
14740         Prev->EvalOK &= EvalOK;
14741     }
14742 
14743     bool evaluate(const Expr *E, bool &Result) {
14744       if (!EvalOK || E->isValueDependent())
14745         return false;
14746       EvalOK = E->EvaluateAsBooleanCondition(
14747           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
14748       return EvalOK;
14749     }
14750 
14751   private:
14752     SequenceChecker &Self;
14753     EvaluationTracker *Prev;
14754     bool EvalOK = true;
14755   } *EvalTracker = nullptr;
14756 
14757   /// Find the object which is produced by the specified expression,
14758   /// if any.
14759   Object getObject(const Expr *E, bool Mod) const {
14760     E = E->IgnoreParenCasts();
14761     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
14762       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
14763         return getObject(UO->getSubExpr(), Mod);
14764     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
14765       if (BO->getOpcode() == BO_Comma)
14766         return getObject(BO->getRHS(), Mod);
14767       if (Mod && BO->isAssignmentOp())
14768         return getObject(BO->getLHS(), Mod);
14769     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14770       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
14771       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
14772         return ME->getMemberDecl();
14773     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14774       // FIXME: If this is a reference, map through to its value.
14775       return DRE->getDecl();
14776     return nullptr;
14777   }
14778 
14779   /// Note that an object \p O was modified or used by an expression
14780   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
14781   /// the object \p O as obtained via the \p UsageMap.
14782   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
14783     // Get the old usage for the given object and usage kind.
14784     Usage &U = UI.Uses[UK];
14785     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
14786       // If we have a modification as side effect and are in a sequenced
14787       // subexpression, save the old Usage so that we can restore it later
14788       // in SequencedSubexpression::~SequencedSubexpression.
14789       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
14790         ModAsSideEffect->push_back(std::make_pair(O, U));
14791       // Then record the new usage with the current sequencing region.
14792       U.UsageExpr = UsageExpr;
14793       U.Seq = Region;
14794     }
14795   }
14796 
14797   /// Check whether a modification or use of an object \p O in an expression
14798   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
14799   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
14800   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
14801   /// usage and false we are checking for a mod-use unsequenced usage.
14802   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
14803                   UsageKind OtherKind, bool IsModMod) {
14804     if (UI.Diagnosed)
14805       return;
14806 
14807     const Usage &U = UI.Uses[OtherKind];
14808     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
14809       return;
14810 
14811     const Expr *Mod = U.UsageExpr;
14812     const Expr *ModOrUse = UsageExpr;
14813     if (OtherKind == UK_Use)
14814       std::swap(Mod, ModOrUse);
14815 
14816     SemaRef.DiagRuntimeBehavior(
14817         Mod->getExprLoc(), {Mod, ModOrUse},
14818         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
14819                                : diag::warn_unsequenced_mod_use)
14820             << O << SourceRange(ModOrUse->getExprLoc()));
14821     UI.Diagnosed = true;
14822   }
14823 
14824   // A note on note{Pre, Post}{Use, Mod}:
14825   //
14826   // (It helps to follow the algorithm with an expression such as
14827   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
14828   //  operations before C++17 and both are well-defined in C++17).
14829   //
14830   // When visiting a node which uses/modify an object we first call notePreUse
14831   // or notePreMod before visiting its sub-expression(s). At this point the
14832   // children of the current node have not yet been visited and so the eventual
14833   // uses/modifications resulting from the children of the current node have not
14834   // been recorded yet.
14835   //
14836   // We then visit the children of the current node. After that notePostUse or
14837   // notePostMod is called. These will 1) detect an unsequenced modification
14838   // as side effect (as in "k++ + k") and 2) add a new usage with the
14839   // appropriate usage kind.
14840   //
14841   // We also have to be careful that some operation sequences modification as
14842   // side effect as well (for example: || or ,). To account for this we wrap
14843   // the visitation of such a sub-expression (for example: the LHS of || or ,)
14844   // with SequencedSubexpression. SequencedSubexpression is an RAII object
14845   // which record usages which are modifications as side effect, and then
14846   // downgrade them (or more accurately restore the previous usage which was a
14847   // modification as side effect) when exiting the scope of the sequenced
14848   // subexpression.
14849 
14850   void notePreUse(Object O, const Expr *UseExpr) {
14851     UsageInfo &UI = UsageMap[O];
14852     // Uses conflict with other modifications.
14853     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
14854   }
14855 
14856   void notePostUse(Object O, const Expr *UseExpr) {
14857     UsageInfo &UI = UsageMap[O];
14858     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
14859                /*IsModMod=*/false);
14860     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
14861   }
14862 
14863   void notePreMod(Object O, const Expr *ModExpr) {
14864     UsageInfo &UI = UsageMap[O];
14865     // Modifications conflict with other modifications and with uses.
14866     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
14867     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
14868   }
14869 
14870   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
14871     UsageInfo &UI = UsageMap[O];
14872     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
14873                /*IsModMod=*/true);
14874     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
14875   }
14876 
14877 public:
14878   SequenceChecker(Sema &S, const Expr *E,
14879                   SmallVectorImpl<const Expr *> &WorkList)
14880       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
14881     Visit(E);
14882     // Silence a -Wunused-private-field since WorkList is now unused.
14883     // TODO: Evaluate if it can be used, and if not remove it.
14884     (void)this->WorkList;
14885   }
14886 
14887   void VisitStmt(const Stmt *S) {
14888     // Skip all statements which aren't expressions for now.
14889   }
14890 
14891   void VisitExpr(const Expr *E) {
14892     // By default, just recurse to evaluated subexpressions.
14893     Base::VisitStmt(E);
14894   }
14895 
14896   void VisitCastExpr(const CastExpr *E) {
14897     Object O = Object();
14898     if (E->getCastKind() == CK_LValueToRValue)
14899       O = getObject(E->getSubExpr(), false);
14900 
14901     if (O)
14902       notePreUse(O, E);
14903     VisitExpr(E);
14904     if (O)
14905       notePostUse(O, E);
14906   }
14907 
14908   void VisitSequencedExpressions(const Expr *SequencedBefore,
14909                                  const Expr *SequencedAfter) {
14910     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
14911     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
14912     SequenceTree::Seq OldRegion = Region;
14913 
14914     {
14915       SequencedSubexpression SeqBefore(*this);
14916       Region = BeforeRegion;
14917       Visit(SequencedBefore);
14918     }
14919 
14920     Region = AfterRegion;
14921     Visit(SequencedAfter);
14922 
14923     Region = OldRegion;
14924 
14925     Tree.merge(BeforeRegion);
14926     Tree.merge(AfterRegion);
14927   }
14928 
14929   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
14930     // C++17 [expr.sub]p1:
14931     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
14932     //   expression E1 is sequenced before the expression E2.
14933     if (SemaRef.getLangOpts().CPlusPlus17)
14934       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
14935     else {
14936       Visit(ASE->getLHS());
14937       Visit(ASE->getRHS());
14938     }
14939   }
14940 
14941   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14942   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
14943   void VisitBinPtrMem(const BinaryOperator *BO) {
14944     // C++17 [expr.mptr.oper]p4:
14945     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
14946     //  the expression E1 is sequenced before the expression E2.
14947     if (SemaRef.getLangOpts().CPlusPlus17)
14948       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14949     else {
14950       Visit(BO->getLHS());
14951       Visit(BO->getRHS());
14952     }
14953   }
14954 
14955   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14956   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
14957   void VisitBinShlShr(const BinaryOperator *BO) {
14958     // C++17 [expr.shift]p4:
14959     //  The expression E1 is sequenced before the expression E2.
14960     if (SemaRef.getLangOpts().CPlusPlus17)
14961       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14962     else {
14963       Visit(BO->getLHS());
14964       Visit(BO->getRHS());
14965     }
14966   }
14967 
14968   void VisitBinComma(const BinaryOperator *BO) {
14969     // C++11 [expr.comma]p1:
14970     //   Every value computation and side effect associated with the left
14971     //   expression is sequenced before every value computation and side
14972     //   effect associated with the right expression.
14973     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
14974   }
14975 
14976   void VisitBinAssign(const BinaryOperator *BO) {
14977     SequenceTree::Seq RHSRegion;
14978     SequenceTree::Seq LHSRegion;
14979     if (SemaRef.getLangOpts().CPlusPlus17) {
14980       RHSRegion = Tree.allocate(Region);
14981       LHSRegion = Tree.allocate(Region);
14982     } else {
14983       RHSRegion = Region;
14984       LHSRegion = Region;
14985     }
14986     SequenceTree::Seq OldRegion = Region;
14987 
14988     // C++11 [expr.ass]p1:
14989     //  [...] the assignment is sequenced after the value computation
14990     //  of the right and left operands, [...]
14991     //
14992     // so check it before inspecting the operands and update the
14993     // map afterwards.
14994     Object O = getObject(BO->getLHS(), /*Mod=*/true);
14995     if (O)
14996       notePreMod(O, BO);
14997 
14998     if (SemaRef.getLangOpts().CPlusPlus17) {
14999       // C++17 [expr.ass]p1:
15000       //  [...] The right operand is sequenced before the left operand. [...]
15001       {
15002         SequencedSubexpression SeqBefore(*this);
15003         Region = RHSRegion;
15004         Visit(BO->getRHS());
15005       }
15006 
15007       Region = LHSRegion;
15008       Visit(BO->getLHS());
15009 
15010       if (O && isa<CompoundAssignOperator>(BO))
15011         notePostUse(O, BO);
15012 
15013     } else {
15014       // C++11 does not specify any sequencing between the LHS and RHS.
15015       Region = LHSRegion;
15016       Visit(BO->getLHS());
15017 
15018       if (O && isa<CompoundAssignOperator>(BO))
15019         notePostUse(O, BO);
15020 
15021       Region = RHSRegion;
15022       Visit(BO->getRHS());
15023     }
15024 
15025     // C++11 [expr.ass]p1:
15026     //  the assignment is sequenced [...] before the value computation of the
15027     //  assignment expression.
15028     // C11 6.5.16/3 has no such rule.
15029     Region = OldRegion;
15030     if (O)
15031       notePostMod(O, BO,
15032                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
15033                                                   : UK_ModAsSideEffect);
15034     if (SemaRef.getLangOpts().CPlusPlus17) {
15035       Tree.merge(RHSRegion);
15036       Tree.merge(LHSRegion);
15037     }
15038   }
15039 
15040   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
15041     VisitBinAssign(CAO);
15042   }
15043 
15044   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
15045   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
15046   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
15047     Object O = getObject(UO->getSubExpr(), true);
15048     if (!O)
15049       return VisitExpr(UO);
15050 
15051     notePreMod(O, UO);
15052     Visit(UO->getSubExpr());
15053     // C++11 [expr.pre.incr]p1:
15054     //   the expression ++x is equivalent to x+=1
15055     notePostMod(O, UO,
15056                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
15057                                                 : UK_ModAsSideEffect);
15058   }
15059 
15060   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
15061   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
15062   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
15063     Object O = getObject(UO->getSubExpr(), true);
15064     if (!O)
15065       return VisitExpr(UO);
15066 
15067     notePreMod(O, UO);
15068     Visit(UO->getSubExpr());
15069     notePostMod(O, UO, UK_ModAsSideEffect);
15070   }
15071 
15072   void VisitBinLOr(const BinaryOperator *BO) {
15073     // C++11 [expr.log.or]p2:
15074     //  If the second expression is evaluated, every value computation and
15075     //  side effect associated with the first expression is sequenced before
15076     //  every value computation and side effect associated with the
15077     //  second expression.
15078     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
15079     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
15080     SequenceTree::Seq OldRegion = Region;
15081 
15082     EvaluationTracker Eval(*this);
15083     {
15084       SequencedSubexpression Sequenced(*this);
15085       Region = LHSRegion;
15086       Visit(BO->getLHS());
15087     }
15088 
15089     // C++11 [expr.log.or]p1:
15090     //  [...] the second operand is not evaluated if the first operand
15091     //  evaluates to true.
15092     bool EvalResult = false;
15093     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
15094     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
15095     if (ShouldVisitRHS) {
15096       Region = RHSRegion;
15097       Visit(BO->getRHS());
15098     }
15099 
15100     Region = OldRegion;
15101     Tree.merge(LHSRegion);
15102     Tree.merge(RHSRegion);
15103   }
15104 
15105   void VisitBinLAnd(const BinaryOperator *BO) {
15106     // C++11 [expr.log.and]p2:
15107     //  If the second expression is evaluated, every value computation and
15108     //  side effect associated with the first expression is sequenced before
15109     //  every value computation and side effect associated with the
15110     //  second expression.
15111     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
15112     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
15113     SequenceTree::Seq OldRegion = Region;
15114 
15115     EvaluationTracker Eval(*this);
15116     {
15117       SequencedSubexpression Sequenced(*this);
15118       Region = LHSRegion;
15119       Visit(BO->getLHS());
15120     }
15121 
15122     // C++11 [expr.log.and]p1:
15123     //  [...] the second operand is not evaluated if the first operand is false.
15124     bool EvalResult = false;
15125     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
15126     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
15127     if (ShouldVisitRHS) {
15128       Region = RHSRegion;
15129       Visit(BO->getRHS());
15130     }
15131 
15132     Region = OldRegion;
15133     Tree.merge(LHSRegion);
15134     Tree.merge(RHSRegion);
15135   }
15136 
15137   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
15138     // C++11 [expr.cond]p1:
15139     //  [...] Every value computation and side effect associated with the first
15140     //  expression is sequenced before every value computation and side effect
15141     //  associated with the second or third expression.
15142     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
15143 
15144     // No sequencing is specified between the true and false expression.
15145     // However since exactly one of both is going to be evaluated we can
15146     // consider them to be sequenced. This is needed to avoid warning on
15147     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
15148     // both the true and false expressions because we can't evaluate x.
15149     // This will still allow us to detect an expression like (pre C++17)
15150     // "(x ? y += 1 : y += 2) = y".
15151     //
15152     // We don't wrap the visitation of the true and false expression with
15153     // SequencedSubexpression because we don't want to downgrade modifications
15154     // as side effect in the true and false expressions after the visition
15155     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
15156     // not warn between the two "y++", but we should warn between the "y++"
15157     // and the "y".
15158     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
15159     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
15160     SequenceTree::Seq OldRegion = Region;
15161 
15162     EvaluationTracker Eval(*this);
15163     {
15164       SequencedSubexpression Sequenced(*this);
15165       Region = ConditionRegion;
15166       Visit(CO->getCond());
15167     }
15168 
15169     // C++11 [expr.cond]p1:
15170     // [...] The first expression is contextually converted to bool (Clause 4).
15171     // It is evaluated and if it is true, the result of the conditional
15172     // expression is the value of the second expression, otherwise that of the
15173     // third expression. Only one of the second and third expressions is
15174     // evaluated. [...]
15175     bool EvalResult = false;
15176     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
15177     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
15178     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
15179     if (ShouldVisitTrueExpr) {
15180       Region = TrueRegion;
15181       Visit(CO->getTrueExpr());
15182     }
15183     if (ShouldVisitFalseExpr) {
15184       Region = FalseRegion;
15185       Visit(CO->getFalseExpr());
15186     }
15187 
15188     Region = OldRegion;
15189     Tree.merge(ConditionRegion);
15190     Tree.merge(TrueRegion);
15191     Tree.merge(FalseRegion);
15192   }
15193 
15194   void VisitCallExpr(const CallExpr *CE) {
15195     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
15196 
15197     if (CE->isUnevaluatedBuiltinCall(Context))
15198       return;
15199 
15200     // C++11 [intro.execution]p15:
15201     //   When calling a function [...], every value computation and side effect
15202     //   associated with any argument expression, or with the postfix expression
15203     //   designating the called function, is sequenced before execution of every
15204     //   expression or statement in the body of the function [and thus before
15205     //   the value computation of its result].
15206     SequencedSubexpression Sequenced(*this);
15207     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
15208       // C++17 [expr.call]p5
15209       //   The postfix-expression is sequenced before each expression in the
15210       //   expression-list and any default argument. [...]
15211       SequenceTree::Seq CalleeRegion;
15212       SequenceTree::Seq OtherRegion;
15213       if (SemaRef.getLangOpts().CPlusPlus17) {
15214         CalleeRegion = Tree.allocate(Region);
15215         OtherRegion = Tree.allocate(Region);
15216       } else {
15217         CalleeRegion = Region;
15218         OtherRegion = Region;
15219       }
15220       SequenceTree::Seq OldRegion = Region;
15221 
15222       // Visit the callee expression first.
15223       Region = CalleeRegion;
15224       if (SemaRef.getLangOpts().CPlusPlus17) {
15225         SequencedSubexpression Sequenced(*this);
15226         Visit(CE->getCallee());
15227       } else {
15228         Visit(CE->getCallee());
15229       }
15230 
15231       // Then visit the argument expressions.
15232       Region = OtherRegion;
15233       for (const Expr *Argument : CE->arguments())
15234         Visit(Argument);
15235 
15236       Region = OldRegion;
15237       if (SemaRef.getLangOpts().CPlusPlus17) {
15238         Tree.merge(CalleeRegion);
15239         Tree.merge(OtherRegion);
15240       }
15241     });
15242   }
15243 
15244   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
15245     // C++17 [over.match.oper]p2:
15246     //   [...] the operator notation is first transformed to the equivalent
15247     //   function-call notation as summarized in Table 12 (where @ denotes one
15248     //   of the operators covered in the specified subclause). However, the
15249     //   operands are sequenced in the order prescribed for the built-in
15250     //   operator (Clause 8).
15251     //
15252     // From the above only overloaded binary operators and overloaded call
15253     // operators have sequencing rules in C++17 that we need to handle
15254     // separately.
15255     if (!SemaRef.getLangOpts().CPlusPlus17 ||
15256         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
15257       return VisitCallExpr(CXXOCE);
15258 
15259     enum {
15260       NoSequencing,
15261       LHSBeforeRHS,
15262       RHSBeforeLHS,
15263       LHSBeforeRest
15264     } SequencingKind;
15265     switch (CXXOCE->getOperator()) {
15266     case OO_Equal:
15267     case OO_PlusEqual:
15268     case OO_MinusEqual:
15269     case OO_StarEqual:
15270     case OO_SlashEqual:
15271     case OO_PercentEqual:
15272     case OO_CaretEqual:
15273     case OO_AmpEqual:
15274     case OO_PipeEqual:
15275     case OO_LessLessEqual:
15276     case OO_GreaterGreaterEqual:
15277       SequencingKind = RHSBeforeLHS;
15278       break;
15279 
15280     case OO_LessLess:
15281     case OO_GreaterGreater:
15282     case OO_AmpAmp:
15283     case OO_PipePipe:
15284     case OO_Comma:
15285     case OO_ArrowStar:
15286     case OO_Subscript:
15287       SequencingKind = LHSBeforeRHS;
15288       break;
15289 
15290     case OO_Call:
15291       SequencingKind = LHSBeforeRest;
15292       break;
15293 
15294     default:
15295       SequencingKind = NoSequencing;
15296       break;
15297     }
15298 
15299     if (SequencingKind == NoSequencing)
15300       return VisitCallExpr(CXXOCE);
15301 
15302     // This is a call, so all subexpressions are sequenced before the result.
15303     SequencedSubexpression Sequenced(*this);
15304 
15305     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
15306       assert(SemaRef.getLangOpts().CPlusPlus17 &&
15307              "Should only get there with C++17 and above!");
15308       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
15309              "Should only get there with an overloaded binary operator"
15310              " or an overloaded call operator!");
15311 
15312       if (SequencingKind == LHSBeforeRest) {
15313         assert(CXXOCE->getOperator() == OO_Call &&
15314                "We should only have an overloaded call operator here!");
15315 
15316         // This is very similar to VisitCallExpr, except that we only have the
15317         // C++17 case. The postfix-expression is the first argument of the
15318         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
15319         // are in the following arguments.
15320         //
15321         // Note that we intentionally do not visit the callee expression since
15322         // it is just a decayed reference to a function.
15323         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
15324         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
15325         SequenceTree::Seq OldRegion = Region;
15326 
15327         assert(CXXOCE->getNumArgs() >= 1 &&
15328                "An overloaded call operator must have at least one argument"
15329                " for the postfix-expression!");
15330         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
15331         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
15332                                           CXXOCE->getNumArgs() - 1);
15333 
15334         // Visit the postfix-expression first.
15335         {
15336           Region = PostfixExprRegion;
15337           SequencedSubexpression Sequenced(*this);
15338           Visit(PostfixExpr);
15339         }
15340 
15341         // Then visit the argument expressions.
15342         Region = ArgsRegion;
15343         for (const Expr *Arg : Args)
15344           Visit(Arg);
15345 
15346         Region = OldRegion;
15347         Tree.merge(PostfixExprRegion);
15348         Tree.merge(ArgsRegion);
15349       } else {
15350         assert(CXXOCE->getNumArgs() == 2 &&
15351                "Should only have two arguments here!");
15352         assert((SequencingKind == LHSBeforeRHS ||
15353                 SequencingKind == RHSBeforeLHS) &&
15354                "Unexpected sequencing kind!");
15355 
15356         // We do not visit the callee expression since it is just a decayed
15357         // reference to a function.
15358         const Expr *E1 = CXXOCE->getArg(0);
15359         const Expr *E2 = CXXOCE->getArg(1);
15360         if (SequencingKind == RHSBeforeLHS)
15361           std::swap(E1, E2);
15362 
15363         return VisitSequencedExpressions(E1, E2);
15364       }
15365     });
15366   }
15367 
15368   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
15369     // This is a call, so all subexpressions are sequenced before the result.
15370     SequencedSubexpression Sequenced(*this);
15371 
15372     if (!CCE->isListInitialization())
15373       return VisitExpr(CCE);
15374 
15375     // In C++11, list initializations are sequenced.
15376     SmallVector<SequenceTree::Seq, 32> Elts;
15377     SequenceTree::Seq Parent = Region;
15378     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
15379                                               E = CCE->arg_end();
15380          I != E; ++I) {
15381       Region = Tree.allocate(Parent);
15382       Elts.push_back(Region);
15383       Visit(*I);
15384     }
15385 
15386     // Forget that the initializers are sequenced.
15387     Region = Parent;
15388     for (unsigned I = 0; I < Elts.size(); ++I)
15389       Tree.merge(Elts[I]);
15390   }
15391 
15392   void VisitInitListExpr(const InitListExpr *ILE) {
15393     if (!SemaRef.getLangOpts().CPlusPlus11)
15394       return VisitExpr(ILE);
15395 
15396     // In C++11, list initializations are sequenced.
15397     SmallVector<SequenceTree::Seq, 32> Elts;
15398     SequenceTree::Seq Parent = Region;
15399     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
15400       const Expr *E = ILE->getInit(I);
15401       if (!E)
15402         continue;
15403       Region = Tree.allocate(Parent);
15404       Elts.push_back(Region);
15405       Visit(E);
15406     }
15407 
15408     // Forget that the initializers are sequenced.
15409     Region = Parent;
15410     for (unsigned I = 0; I < Elts.size(); ++I)
15411       Tree.merge(Elts[I]);
15412   }
15413 };
15414 
15415 } // namespace
15416 
15417 void Sema::CheckUnsequencedOperations(const Expr *E) {
15418   SmallVector<const Expr *, 8> WorkList;
15419   WorkList.push_back(E);
15420   while (!WorkList.empty()) {
15421     const Expr *Item = WorkList.pop_back_val();
15422     SequenceChecker(*this, Item, WorkList);
15423   }
15424 }
15425 
15426 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
15427                               bool IsConstexpr) {
15428   llvm::SaveAndRestore<bool> ConstantContext(
15429       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
15430   CheckImplicitConversions(E, CheckLoc);
15431   if (!E->isInstantiationDependent())
15432     CheckUnsequencedOperations(E);
15433   if (!IsConstexpr && !E->isValueDependent())
15434     CheckForIntOverflow(E);
15435   DiagnoseMisalignedMembers();
15436 }
15437 
15438 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
15439                                        FieldDecl *BitField,
15440                                        Expr *Init) {
15441   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
15442 }
15443 
15444 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
15445                                          SourceLocation Loc) {
15446   if (!PType->isVariablyModifiedType())
15447     return;
15448   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
15449     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
15450     return;
15451   }
15452   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
15453     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
15454     return;
15455   }
15456   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
15457     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
15458     return;
15459   }
15460 
15461   const ArrayType *AT = S.Context.getAsArrayType(PType);
15462   if (!AT)
15463     return;
15464 
15465   if (AT->getSizeModifier() != ArrayType::Star) {
15466     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
15467     return;
15468   }
15469 
15470   S.Diag(Loc, diag::err_array_star_in_function_definition);
15471 }
15472 
15473 /// CheckParmsForFunctionDef - Check that the parameters of the given
15474 /// function are appropriate for the definition of a function. This
15475 /// takes care of any checks that cannot be performed on the
15476 /// declaration itself, e.g., that the types of each of the function
15477 /// parameters are complete.
15478 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
15479                                     bool CheckParameterNames) {
15480   bool HasInvalidParm = false;
15481   for (ParmVarDecl *Param : Parameters) {
15482     // C99 6.7.5.3p4: the parameters in a parameter type list in a
15483     // function declarator that is part of a function definition of
15484     // that function shall not have incomplete type.
15485     //
15486     // This is also C++ [dcl.fct]p6.
15487     if (!Param->isInvalidDecl() &&
15488         RequireCompleteType(Param->getLocation(), Param->getType(),
15489                             diag::err_typecheck_decl_incomplete_type)) {
15490       Param->setInvalidDecl();
15491       HasInvalidParm = true;
15492     }
15493 
15494     // C99 6.9.1p5: If the declarator includes a parameter type list, the
15495     // declaration of each parameter shall include an identifier.
15496     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
15497         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
15498       // Diagnose this as an extension in C17 and earlier.
15499       if (!getLangOpts().C2x)
15500         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15501     }
15502 
15503     // C99 6.7.5.3p12:
15504     //   If the function declarator is not part of a definition of that
15505     //   function, parameters may have incomplete type and may use the [*]
15506     //   notation in their sequences of declarator specifiers to specify
15507     //   variable length array types.
15508     QualType PType = Param->getOriginalType();
15509     // FIXME: This diagnostic should point the '[*]' if source-location
15510     // information is added for it.
15511     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
15512 
15513     // If the parameter is a c++ class type and it has to be destructed in the
15514     // callee function, declare the destructor so that it can be called by the
15515     // callee function. Do not perform any direct access check on the dtor here.
15516     if (!Param->isInvalidDecl()) {
15517       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
15518         if (!ClassDecl->isInvalidDecl() &&
15519             !ClassDecl->hasIrrelevantDestructor() &&
15520             !ClassDecl->isDependentContext() &&
15521             ClassDecl->isParamDestroyedInCallee()) {
15522           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15523           MarkFunctionReferenced(Param->getLocation(), Destructor);
15524           DiagnoseUseOfDecl(Destructor, Param->getLocation());
15525         }
15526       }
15527     }
15528 
15529     // Parameters with the pass_object_size attribute only need to be marked
15530     // constant at function definitions. Because we lack information about
15531     // whether we're on a declaration or definition when we're instantiating the
15532     // attribute, we need to check for constness here.
15533     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
15534       if (!Param->getType().isConstQualified())
15535         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
15536             << Attr->getSpelling() << 1;
15537 
15538     // Check for parameter names shadowing fields from the class.
15539     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
15540       // The owning context for the parameter should be the function, but we
15541       // want to see if this function's declaration context is a record.
15542       DeclContext *DC = Param->getDeclContext();
15543       if (DC && DC->isFunctionOrMethod()) {
15544         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
15545           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
15546                                      RD, /*DeclIsField*/ false);
15547       }
15548     }
15549   }
15550 
15551   return HasInvalidParm;
15552 }
15553 
15554 Optional<std::pair<CharUnits, CharUnits>>
15555 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
15556 
15557 /// Compute the alignment and offset of the base class object given the
15558 /// derived-to-base cast expression and the alignment and offset of the derived
15559 /// class object.
15560 static std::pair<CharUnits, CharUnits>
15561 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
15562                                    CharUnits BaseAlignment, CharUnits Offset,
15563                                    ASTContext &Ctx) {
15564   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
15565        ++PathI) {
15566     const CXXBaseSpecifier *Base = *PathI;
15567     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
15568     if (Base->isVirtual()) {
15569       // The complete object may have a lower alignment than the non-virtual
15570       // alignment of the base, in which case the base may be misaligned. Choose
15571       // the smaller of the non-virtual alignment and BaseAlignment, which is a
15572       // conservative lower bound of the complete object alignment.
15573       CharUnits NonVirtualAlignment =
15574           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
15575       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
15576       Offset = CharUnits::Zero();
15577     } else {
15578       const ASTRecordLayout &RL =
15579           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
15580       Offset += RL.getBaseClassOffset(BaseDecl);
15581     }
15582     DerivedType = Base->getType();
15583   }
15584 
15585   return std::make_pair(BaseAlignment, Offset);
15586 }
15587 
15588 /// Compute the alignment and offset of a binary additive operator.
15589 static Optional<std::pair<CharUnits, CharUnits>>
15590 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
15591                                      bool IsSub, ASTContext &Ctx) {
15592   QualType PointeeType = PtrE->getType()->getPointeeType();
15593 
15594   if (!PointeeType->isConstantSizeType())
15595     return llvm::None;
15596 
15597   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
15598 
15599   if (!P)
15600     return llvm::None;
15601 
15602   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
15603   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
15604     CharUnits Offset = EltSize * IdxRes->getExtValue();
15605     if (IsSub)
15606       Offset = -Offset;
15607     return std::make_pair(P->first, P->second + Offset);
15608   }
15609 
15610   // If the integer expression isn't a constant expression, compute the lower
15611   // bound of the alignment using the alignment and offset of the pointer
15612   // expression and the element size.
15613   return std::make_pair(
15614       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
15615       CharUnits::Zero());
15616 }
15617 
15618 /// This helper function takes an lvalue expression and returns the alignment of
15619 /// a VarDecl and a constant offset from the VarDecl.
15620 Optional<std::pair<CharUnits, CharUnits>>
15621 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
15622   E = E->IgnoreParens();
15623   switch (E->getStmtClass()) {
15624   default:
15625     break;
15626   case Stmt::CStyleCastExprClass:
15627   case Stmt::CXXStaticCastExprClass:
15628   case Stmt::ImplicitCastExprClass: {
15629     auto *CE = cast<CastExpr>(E);
15630     const Expr *From = CE->getSubExpr();
15631     switch (CE->getCastKind()) {
15632     default:
15633       break;
15634     case CK_NoOp:
15635       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15636     case CK_UncheckedDerivedToBase:
15637     case CK_DerivedToBase: {
15638       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15639       if (!P)
15640         break;
15641       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
15642                                                 P->second, Ctx);
15643     }
15644     }
15645     break;
15646   }
15647   case Stmt::ArraySubscriptExprClass: {
15648     auto *ASE = cast<ArraySubscriptExpr>(E);
15649     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
15650                                                 false, Ctx);
15651   }
15652   case Stmt::DeclRefExprClass: {
15653     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
15654       // FIXME: If VD is captured by copy or is an escaping __block variable,
15655       // use the alignment of VD's type.
15656       if (!VD->getType()->isReferenceType())
15657         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
15658       if (VD->hasInit())
15659         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
15660     }
15661     break;
15662   }
15663   case Stmt::MemberExprClass: {
15664     auto *ME = cast<MemberExpr>(E);
15665     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
15666     if (!FD || FD->getType()->isReferenceType() ||
15667         FD->getParent()->isInvalidDecl())
15668       break;
15669     Optional<std::pair<CharUnits, CharUnits>> P;
15670     if (ME->isArrow())
15671       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
15672     else
15673       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
15674     if (!P)
15675       break;
15676     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
15677     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
15678     return std::make_pair(P->first,
15679                           P->second + CharUnits::fromQuantity(Offset));
15680   }
15681   case Stmt::UnaryOperatorClass: {
15682     auto *UO = cast<UnaryOperator>(E);
15683     switch (UO->getOpcode()) {
15684     default:
15685       break;
15686     case UO_Deref:
15687       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
15688     }
15689     break;
15690   }
15691   case Stmt::BinaryOperatorClass: {
15692     auto *BO = cast<BinaryOperator>(E);
15693     auto Opcode = BO->getOpcode();
15694     switch (Opcode) {
15695     default:
15696       break;
15697     case BO_Comma:
15698       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
15699     }
15700     break;
15701   }
15702   }
15703   return llvm::None;
15704 }
15705 
15706 /// This helper function takes a pointer expression and returns the alignment of
15707 /// a VarDecl and a constant offset from the VarDecl.
15708 Optional<std::pair<CharUnits, CharUnits>>
15709 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
15710   E = E->IgnoreParens();
15711   switch (E->getStmtClass()) {
15712   default:
15713     break;
15714   case Stmt::CStyleCastExprClass:
15715   case Stmt::CXXStaticCastExprClass:
15716   case Stmt::ImplicitCastExprClass: {
15717     auto *CE = cast<CastExpr>(E);
15718     const Expr *From = CE->getSubExpr();
15719     switch (CE->getCastKind()) {
15720     default:
15721       break;
15722     case CK_NoOp:
15723       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15724     case CK_ArrayToPointerDecay:
15725       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
15726     case CK_UncheckedDerivedToBase:
15727     case CK_DerivedToBase: {
15728       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
15729       if (!P)
15730         break;
15731       return getDerivedToBaseAlignmentAndOffset(
15732           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
15733     }
15734     }
15735     break;
15736   }
15737   case Stmt::CXXThisExprClass: {
15738     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
15739     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
15740     return std::make_pair(Alignment, CharUnits::Zero());
15741   }
15742   case Stmt::UnaryOperatorClass: {
15743     auto *UO = cast<UnaryOperator>(E);
15744     if (UO->getOpcode() == UO_AddrOf)
15745       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
15746     break;
15747   }
15748   case Stmt::BinaryOperatorClass: {
15749     auto *BO = cast<BinaryOperator>(E);
15750     auto Opcode = BO->getOpcode();
15751     switch (Opcode) {
15752     default:
15753       break;
15754     case BO_Add:
15755     case BO_Sub: {
15756       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
15757       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
15758         std::swap(LHS, RHS);
15759       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
15760                                                   Ctx);
15761     }
15762     case BO_Comma:
15763       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
15764     }
15765     break;
15766   }
15767   }
15768   return llvm::None;
15769 }
15770 
15771 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
15772   // See if we can compute the alignment of a VarDecl and an offset from it.
15773   Optional<std::pair<CharUnits, CharUnits>> P =
15774       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
15775 
15776   if (P)
15777     return P->first.alignmentAtOffset(P->second);
15778 
15779   // If that failed, return the type's alignment.
15780   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
15781 }
15782 
15783 /// CheckCastAlign - Implements -Wcast-align, which warns when a
15784 /// pointer cast increases the alignment requirements.
15785 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
15786   // This is actually a lot of work to potentially be doing on every
15787   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
15788   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
15789     return;
15790 
15791   // Ignore dependent types.
15792   if (T->isDependentType() || Op->getType()->isDependentType())
15793     return;
15794 
15795   // Require that the destination be a pointer type.
15796   const PointerType *DestPtr = T->getAs<PointerType>();
15797   if (!DestPtr) return;
15798 
15799   // If the destination has alignment 1, we're done.
15800   QualType DestPointee = DestPtr->getPointeeType();
15801   if (DestPointee->isIncompleteType()) return;
15802   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
15803   if (DestAlign.isOne()) return;
15804 
15805   // Require that the source be a pointer type.
15806   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
15807   if (!SrcPtr) return;
15808   QualType SrcPointee = SrcPtr->getPointeeType();
15809 
15810   // Explicitly allow casts from cv void*.  We already implicitly
15811   // allowed casts to cv void*, since they have alignment 1.
15812   // Also allow casts involving incomplete types, which implicitly
15813   // includes 'void'.
15814   if (SrcPointee->isIncompleteType()) return;
15815 
15816   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
15817 
15818   if (SrcAlign >= DestAlign) return;
15819 
15820   Diag(TRange.getBegin(), diag::warn_cast_align)
15821     << Op->getType() << T
15822     << static_cast<unsigned>(SrcAlign.getQuantity())
15823     << static_cast<unsigned>(DestAlign.getQuantity())
15824     << TRange << Op->getSourceRange();
15825 }
15826 
15827 /// Check whether this array fits the idiom of a size-one tail padded
15828 /// array member of a struct.
15829 ///
15830 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
15831 /// commonly used to emulate flexible arrays in C89 code.
15832 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
15833                                     const NamedDecl *ND,
15834                                     unsigned StrictFlexArraysLevel) {
15835   if (!ND)
15836     return false;
15837 
15838   if (StrictFlexArraysLevel >= 2 && Size != 0)
15839     return false;
15840 
15841   if (StrictFlexArraysLevel == 1 && Size.ule(1))
15842     return false;
15843 
15844   // FIXME: While the default -fstrict-flex-arrays=0 permits Size>1 trailing
15845   // arrays to be treated as flexible-array-members, we still emit diagnostics
15846   // as if they are not. Pending further discussion...
15847   if (StrictFlexArraysLevel == 0 && Size != 1)
15848     return false;
15849 
15850   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
15851   if (!FD)
15852     return false;
15853 
15854   // Don't consider sizes resulting from macro expansions or template argument
15855   // substitution to form C89 tail-padded arrays.
15856 
15857   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
15858   while (TInfo) {
15859     TypeLoc TL = TInfo->getTypeLoc();
15860     // Look through typedefs.
15861     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
15862       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
15863       TInfo = TDL->getTypeSourceInfo();
15864       continue;
15865     }
15866     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
15867       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
15868       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
15869         return false;
15870     }
15871     break;
15872   }
15873 
15874   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
15875   if (!RD)
15876     return false;
15877   if (RD->isUnion())
15878     return false;
15879   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15880     if (!CRD->isStandardLayout())
15881       return false;
15882   }
15883 
15884   // See if this is the last field decl in the record.
15885   const Decl *D = FD;
15886   while ((D = D->getNextDeclInContext()))
15887     if (isa<FieldDecl>(D))
15888       return false;
15889   return true;
15890 }
15891 
15892 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
15893                             const ArraySubscriptExpr *ASE,
15894                             bool AllowOnePastEnd, bool IndexNegated) {
15895   // Already diagnosed by the constant evaluator.
15896   if (isConstantEvaluated())
15897     return;
15898 
15899   IndexExpr = IndexExpr->IgnoreParenImpCasts();
15900   if (IndexExpr->isValueDependent())
15901     return;
15902 
15903   const Type *EffectiveType =
15904       BaseExpr->getType()->getPointeeOrArrayElementType();
15905   BaseExpr = BaseExpr->IgnoreParenCasts();
15906   const ConstantArrayType *ArrayTy =
15907       Context.getAsConstantArrayType(BaseExpr->getType());
15908 
15909   const Type *BaseType =
15910       ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
15911   bool IsUnboundedArray = (BaseType == nullptr);
15912   if (EffectiveType->isDependentType() ||
15913       (!IsUnboundedArray && BaseType->isDependentType()))
15914     return;
15915 
15916   Expr::EvalResult Result;
15917   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
15918     return;
15919 
15920   llvm::APSInt index = Result.Val.getInt();
15921   if (IndexNegated) {
15922     index.setIsUnsigned(false);
15923     index = -index;
15924   }
15925 
15926   const NamedDecl *ND = nullptr;
15927   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15928     ND = DRE->getDecl();
15929   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
15930     ND = ME->getMemberDecl();
15931 
15932   if (IsUnboundedArray) {
15933     if (EffectiveType->isFunctionType())
15934       return;
15935     if (index.isUnsigned() || !index.isNegative()) {
15936       const auto &ASTC = getASTContext();
15937       unsigned AddrBits =
15938           ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace(
15939               EffectiveType->getCanonicalTypeInternal()));
15940       if (index.getBitWidth() < AddrBits)
15941         index = index.zext(AddrBits);
15942       Optional<CharUnits> ElemCharUnits =
15943           ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
15944       // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
15945       // pointer) bounds-checking isn't meaningful.
15946       if (!ElemCharUnits)
15947         return;
15948       llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
15949       // If index has more active bits than address space, we already know
15950       // we have a bounds violation to warn about.  Otherwise, compute
15951       // address of (index + 1)th element, and warn about bounds violation
15952       // only if that address exceeds address space.
15953       if (index.getActiveBits() <= AddrBits) {
15954         bool Overflow;
15955         llvm::APInt Product(index);
15956         Product += 1;
15957         Product = Product.umul_ov(ElemBytes, Overflow);
15958         if (!Overflow && Product.getActiveBits() <= AddrBits)
15959           return;
15960       }
15961 
15962       // Need to compute max possible elements in address space, since that
15963       // is included in diag message.
15964       llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
15965       MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
15966       MaxElems += 1;
15967       ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
15968       MaxElems = MaxElems.udiv(ElemBytes);
15969 
15970       unsigned DiagID =
15971           ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
15972               : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
15973 
15974       // Diag message shows element size in bits and in "bytes" (platform-
15975       // dependent CharUnits)
15976       DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
15977                           PDiag(DiagID)
15978                               << toString(index, 10, true) << AddrBits
15979                               << (unsigned)ASTC.toBits(*ElemCharUnits)
15980                               << toString(ElemBytes, 10, false)
15981                               << toString(MaxElems, 10, false)
15982                               << (unsigned)MaxElems.getLimitedValue(~0U)
15983                               << IndexExpr->getSourceRange());
15984 
15985       if (!ND) {
15986         // Try harder to find a NamedDecl to point at in the note.
15987         while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
15988           BaseExpr = ASE->getBase()->IgnoreParenCasts();
15989         if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
15990           ND = DRE->getDecl();
15991         if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
15992           ND = ME->getMemberDecl();
15993       }
15994 
15995       if (ND)
15996         DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
15997                             PDiag(diag::note_array_declared_here) << ND);
15998     }
15999     return;
16000   }
16001 
16002   if (index.isUnsigned() || !index.isNegative()) {
16003     // It is possible that the type of the base expression after
16004     // IgnoreParenCasts is incomplete, even though the type of the base
16005     // expression before IgnoreParenCasts is complete (see PR39746 for an
16006     // example). In this case we have no information about whether the array
16007     // access exceeds the array bounds. However we can still diagnose an array
16008     // access which precedes the array bounds.
16009     //
16010     // FIXME: this check should be redundant with the IsUnboundedArray check
16011     // above.
16012     if (BaseType->isIncompleteType())
16013       return;
16014 
16015     // FIXME: this check should belong to the IsTailPaddedMemberArray call
16016     // below.
16017     llvm::APInt size = ArrayTy->getSize();
16018     if (!size.isStrictlyPositive())
16019       return;
16020 
16021     if (BaseType != EffectiveType) {
16022       // Make sure we're comparing apples to apples when comparing index to size
16023       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
16024       uint64_t array_typesize = Context.getTypeSize(BaseType);
16025       // Handle ptrarith_typesize being zero, such as when casting to void*
16026       if (!ptrarith_typesize) ptrarith_typesize = 1;
16027       if (ptrarith_typesize != array_typesize) {
16028         // There's a cast to a different size type involved
16029         uint64_t ratio = array_typesize / ptrarith_typesize;
16030         // TODO: Be smarter about handling cases where array_typesize is not a
16031         // multiple of ptrarith_typesize
16032         if (ptrarith_typesize * ratio == array_typesize)
16033           size *= llvm::APInt(size.getBitWidth(), ratio);
16034       }
16035     }
16036 
16037     if (size.getBitWidth() > index.getBitWidth())
16038       index = index.zext(size.getBitWidth());
16039     else if (size.getBitWidth() < index.getBitWidth())
16040       size = size.zext(index.getBitWidth());
16041 
16042     // For array subscripting the index must be less than size, but for pointer
16043     // arithmetic also allow the index (offset) to be equal to size since
16044     // computing the next address after the end of the array is legal and
16045     // commonly done e.g. in C++ iterators and range-based for loops.
16046     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
16047       return;
16048 
16049     // Also don't warn for Flexible Array Member emulation.
16050     const unsigned StrictFlexArraysLevel = getLangOpts().StrictFlexArrays;
16051     if (IsTailPaddedMemberArray(*this, size, ND, StrictFlexArraysLevel))
16052       return;
16053 
16054     // Suppress the warning if the subscript expression (as identified by the
16055     // ']' location) and the index expression are both from macro expansions
16056     // within a system header.
16057     if (ASE) {
16058       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
16059           ASE->getRBracketLoc());
16060       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
16061         SourceLocation IndexLoc =
16062             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
16063         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
16064           return;
16065       }
16066     }
16067 
16068     unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
16069                           : diag::warn_ptr_arith_exceeds_bounds;
16070 
16071     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
16072                         PDiag(DiagID) << toString(index, 10, true)
16073                                       << toString(size, 10, true)
16074                                       << (unsigned)size.getLimitedValue(~0U)
16075                                       << IndexExpr->getSourceRange());
16076   } else {
16077     unsigned DiagID = diag::warn_array_index_precedes_bounds;
16078     if (!ASE) {
16079       DiagID = diag::warn_ptr_arith_precedes_bounds;
16080       if (index.isNegative()) index = -index;
16081     }
16082 
16083     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
16084                         PDiag(DiagID) << toString(index, 10, true)
16085                                       << IndexExpr->getSourceRange());
16086   }
16087 
16088   if (!ND) {
16089     // Try harder to find a NamedDecl to point at in the note.
16090     while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
16091       BaseExpr = ASE->getBase()->IgnoreParenCasts();
16092     if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
16093       ND = DRE->getDecl();
16094     if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
16095       ND = ME->getMemberDecl();
16096   }
16097 
16098   if (ND)
16099     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
16100                         PDiag(diag::note_array_declared_here) << ND);
16101 }
16102 
16103 void Sema::CheckArrayAccess(const Expr *expr) {
16104   int AllowOnePastEnd = 0;
16105   while (expr) {
16106     expr = expr->IgnoreParenImpCasts();
16107     switch (expr->getStmtClass()) {
16108       case Stmt::ArraySubscriptExprClass: {
16109         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
16110         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
16111                          AllowOnePastEnd > 0);
16112         expr = ASE->getBase();
16113         break;
16114       }
16115       case Stmt::MemberExprClass: {
16116         expr = cast<MemberExpr>(expr)->getBase();
16117         break;
16118       }
16119       case Stmt::OMPArraySectionExprClass: {
16120         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
16121         if (ASE->getLowerBound())
16122           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
16123                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
16124         return;
16125       }
16126       case Stmt::UnaryOperatorClass: {
16127         // Only unwrap the * and & unary operators
16128         const UnaryOperator *UO = cast<UnaryOperator>(expr);
16129         expr = UO->getSubExpr();
16130         switch (UO->getOpcode()) {
16131           case UO_AddrOf:
16132             AllowOnePastEnd++;
16133             break;
16134           case UO_Deref:
16135             AllowOnePastEnd--;
16136             break;
16137           default:
16138             return;
16139         }
16140         break;
16141       }
16142       case Stmt::ConditionalOperatorClass: {
16143         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
16144         if (const Expr *lhs = cond->getLHS())
16145           CheckArrayAccess(lhs);
16146         if (const Expr *rhs = cond->getRHS())
16147           CheckArrayAccess(rhs);
16148         return;
16149       }
16150       case Stmt::CXXOperatorCallExprClass: {
16151         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
16152         for (const auto *Arg : OCE->arguments())
16153           CheckArrayAccess(Arg);
16154         return;
16155       }
16156       default:
16157         return;
16158     }
16159   }
16160 }
16161 
16162 //===--- CHECK: Objective-C retain cycles ----------------------------------//
16163 
16164 namespace {
16165 
16166 struct RetainCycleOwner {
16167   VarDecl *Variable = nullptr;
16168   SourceRange Range;
16169   SourceLocation Loc;
16170   bool Indirect = false;
16171 
16172   RetainCycleOwner() = default;
16173 
16174   void setLocsFrom(Expr *e) {
16175     Loc = e->getExprLoc();
16176     Range = e->getSourceRange();
16177   }
16178 };
16179 
16180 } // namespace
16181 
16182 /// Consider whether capturing the given variable can possibly lead to
16183 /// a retain cycle.
16184 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
16185   // In ARC, it's captured strongly iff the variable has __strong
16186   // lifetime.  In MRR, it's captured strongly if the variable is
16187   // __block and has an appropriate type.
16188   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
16189     return false;
16190 
16191   owner.Variable = var;
16192   if (ref)
16193     owner.setLocsFrom(ref);
16194   return true;
16195 }
16196 
16197 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
16198   while (true) {
16199     e = e->IgnoreParens();
16200     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
16201       switch (cast->getCastKind()) {
16202       case CK_BitCast:
16203       case CK_LValueBitCast:
16204       case CK_LValueToRValue:
16205       case CK_ARCReclaimReturnedObject:
16206         e = cast->getSubExpr();
16207         continue;
16208 
16209       default:
16210         return false;
16211       }
16212     }
16213 
16214     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
16215       ObjCIvarDecl *ivar = ref->getDecl();
16216       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
16217         return false;
16218 
16219       // Try to find a retain cycle in the base.
16220       if (!findRetainCycleOwner(S, ref->getBase(), owner))
16221         return false;
16222 
16223       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
16224       owner.Indirect = true;
16225       return true;
16226     }
16227 
16228     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
16229       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
16230       if (!var) return false;
16231       return considerVariable(var, ref, owner);
16232     }
16233 
16234     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
16235       if (member->isArrow()) return false;
16236 
16237       // Don't count this as an indirect ownership.
16238       e = member->getBase();
16239       continue;
16240     }
16241 
16242     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
16243       // Only pay attention to pseudo-objects on property references.
16244       ObjCPropertyRefExpr *pre
16245         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
16246                                               ->IgnoreParens());
16247       if (!pre) return false;
16248       if (pre->isImplicitProperty()) return false;
16249       ObjCPropertyDecl *property = pre->getExplicitProperty();
16250       if (!property->isRetaining() &&
16251           !(property->getPropertyIvarDecl() &&
16252             property->getPropertyIvarDecl()->getType()
16253               .getObjCLifetime() == Qualifiers::OCL_Strong))
16254           return false;
16255 
16256       owner.Indirect = true;
16257       if (pre->isSuperReceiver()) {
16258         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
16259         if (!owner.Variable)
16260           return false;
16261         owner.Loc = pre->getLocation();
16262         owner.Range = pre->getSourceRange();
16263         return true;
16264       }
16265       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
16266                               ->getSourceExpr());
16267       continue;
16268     }
16269 
16270     // Array ivars?
16271 
16272     return false;
16273   }
16274 }
16275 
16276 namespace {
16277 
16278   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
16279     ASTContext &Context;
16280     VarDecl *Variable;
16281     Expr *Capturer = nullptr;
16282     bool VarWillBeReased = false;
16283 
16284     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
16285         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
16286           Context(Context), Variable(variable) {}
16287 
16288     void VisitDeclRefExpr(DeclRefExpr *ref) {
16289       if (ref->getDecl() == Variable && !Capturer)
16290         Capturer = ref;
16291     }
16292 
16293     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
16294       if (Capturer) return;
16295       Visit(ref->getBase());
16296       if (Capturer && ref->isFreeIvar())
16297         Capturer = ref;
16298     }
16299 
16300     void VisitBlockExpr(BlockExpr *block) {
16301       // Look inside nested blocks
16302       if (block->getBlockDecl()->capturesVariable(Variable))
16303         Visit(block->getBlockDecl()->getBody());
16304     }
16305 
16306     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
16307       if (Capturer) return;
16308       if (OVE->getSourceExpr())
16309         Visit(OVE->getSourceExpr());
16310     }
16311 
16312     void VisitBinaryOperator(BinaryOperator *BinOp) {
16313       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
16314         return;
16315       Expr *LHS = BinOp->getLHS();
16316       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
16317         if (DRE->getDecl() != Variable)
16318           return;
16319         if (Expr *RHS = BinOp->getRHS()) {
16320           RHS = RHS->IgnoreParenCasts();
16321           Optional<llvm::APSInt> Value;
16322           VarWillBeReased =
16323               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
16324                *Value == 0);
16325         }
16326       }
16327     }
16328   };
16329 
16330 } // namespace
16331 
16332 /// Check whether the given argument is a block which captures a
16333 /// variable.
16334 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
16335   assert(owner.Variable && owner.Loc.isValid());
16336 
16337   e = e->IgnoreParenCasts();
16338 
16339   // Look through [^{...} copy] and Block_copy(^{...}).
16340   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
16341     Selector Cmd = ME->getSelector();
16342     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
16343       e = ME->getInstanceReceiver();
16344       if (!e)
16345         return nullptr;
16346       e = e->IgnoreParenCasts();
16347     }
16348   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
16349     if (CE->getNumArgs() == 1) {
16350       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
16351       if (Fn) {
16352         const IdentifierInfo *FnI = Fn->getIdentifier();
16353         if (FnI && FnI->isStr("_Block_copy")) {
16354           e = CE->getArg(0)->IgnoreParenCasts();
16355         }
16356       }
16357     }
16358   }
16359 
16360   BlockExpr *block = dyn_cast<BlockExpr>(e);
16361   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
16362     return nullptr;
16363 
16364   FindCaptureVisitor visitor(S.Context, owner.Variable);
16365   visitor.Visit(block->getBlockDecl()->getBody());
16366   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
16367 }
16368 
16369 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
16370                                 RetainCycleOwner &owner) {
16371   assert(capturer);
16372   assert(owner.Variable && owner.Loc.isValid());
16373 
16374   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
16375     << owner.Variable << capturer->getSourceRange();
16376   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
16377     << owner.Indirect << owner.Range;
16378 }
16379 
16380 /// Check for a keyword selector that starts with the word 'add' or
16381 /// 'set'.
16382 static bool isSetterLikeSelector(Selector sel) {
16383   if (sel.isUnarySelector()) return false;
16384 
16385   StringRef str = sel.getNameForSlot(0);
16386   while (!str.empty() && str.front() == '_') str = str.substr(1);
16387   if (str.startswith("set"))
16388     str = str.substr(3);
16389   else if (str.startswith("add")) {
16390     // Specially allow 'addOperationWithBlock:'.
16391     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
16392       return false;
16393     str = str.substr(3);
16394   }
16395   else
16396     return false;
16397 
16398   if (str.empty()) return true;
16399   return !isLowercase(str.front());
16400 }
16401 
16402 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
16403                                                     ObjCMessageExpr *Message) {
16404   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
16405                                                 Message->getReceiverInterface(),
16406                                                 NSAPI::ClassId_NSMutableArray);
16407   if (!IsMutableArray) {
16408     return None;
16409   }
16410 
16411   Selector Sel = Message->getSelector();
16412 
16413   Optional<NSAPI::NSArrayMethodKind> MKOpt =
16414     S.NSAPIObj->getNSArrayMethodKind(Sel);
16415   if (!MKOpt) {
16416     return None;
16417   }
16418 
16419   NSAPI::NSArrayMethodKind MK = *MKOpt;
16420 
16421   switch (MK) {
16422     case NSAPI::NSMutableArr_addObject:
16423     case NSAPI::NSMutableArr_insertObjectAtIndex:
16424     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
16425       return 0;
16426     case NSAPI::NSMutableArr_replaceObjectAtIndex:
16427       return 1;
16428 
16429     default:
16430       return None;
16431   }
16432 
16433   return None;
16434 }
16435 
16436 static
16437 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
16438                                                   ObjCMessageExpr *Message) {
16439   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
16440                                             Message->getReceiverInterface(),
16441                                             NSAPI::ClassId_NSMutableDictionary);
16442   if (!IsMutableDictionary) {
16443     return None;
16444   }
16445 
16446   Selector Sel = Message->getSelector();
16447 
16448   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
16449     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
16450   if (!MKOpt) {
16451     return None;
16452   }
16453 
16454   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
16455 
16456   switch (MK) {
16457     case NSAPI::NSMutableDict_setObjectForKey:
16458     case NSAPI::NSMutableDict_setValueForKey:
16459     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
16460       return 0;
16461 
16462     default:
16463       return None;
16464   }
16465 
16466   return None;
16467 }
16468 
16469 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
16470   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
16471                                                 Message->getReceiverInterface(),
16472                                                 NSAPI::ClassId_NSMutableSet);
16473 
16474   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
16475                                             Message->getReceiverInterface(),
16476                                             NSAPI::ClassId_NSMutableOrderedSet);
16477   if (!IsMutableSet && !IsMutableOrderedSet) {
16478     return None;
16479   }
16480 
16481   Selector Sel = Message->getSelector();
16482 
16483   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
16484   if (!MKOpt) {
16485     return None;
16486   }
16487 
16488   NSAPI::NSSetMethodKind MK = *MKOpt;
16489 
16490   switch (MK) {
16491     case NSAPI::NSMutableSet_addObject:
16492     case NSAPI::NSOrderedSet_setObjectAtIndex:
16493     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
16494     case NSAPI::NSOrderedSet_insertObjectAtIndex:
16495       return 0;
16496     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
16497       return 1;
16498   }
16499 
16500   return None;
16501 }
16502 
16503 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
16504   if (!Message->isInstanceMessage()) {
16505     return;
16506   }
16507 
16508   Optional<int> ArgOpt;
16509 
16510   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
16511       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
16512       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
16513     return;
16514   }
16515 
16516   int ArgIndex = *ArgOpt;
16517 
16518   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
16519   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
16520     Arg = OE->getSourceExpr()->IgnoreImpCasts();
16521   }
16522 
16523   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
16524     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
16525       if (ArgRE->isObjCSelfExpr()) {
16526         Diag(Message->getSourceRange().getBegin(),
16527              diag::warn_objc_circular_container)
16528           << ArgRE->getDecl() << StringRef("'super'");
16529       }
16530     }
16531   } else {
16532     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
16533 
16534     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
16535       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
16536     }
16537 
16538     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
16539       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
16540         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
16541           ValueDecl *Decl = ReceiverRE->getDecl();
16542           Diag(Message->getSourceRange().getBegin(),
16543                diag::warn_objc_circular_container)
16544             << Decl << Decl;
16545           if (!ArgRE->isObjCSelfExpr()) {
16546             Diag(Decl->getLocation(),
16547                  diag::note_objc_circular_container_declared_here)
16548               << Decl;
16549           }
16550         }
16551       }
16552     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
16553       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
16554         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
16555           ObjCIvarDecl *Decl = IvarRE->getDecl();
16556           Diag(Message->getSourceRange().getBegin(),
16557                diag::warn_objc_circular_container)
16558             << Decl << Decl;
16559           Diag(Decl->getLocation(),
16560                diag::note_objc_circular_container_declared_here)
16561             << Decl;
16562         }
16563       }
16564     }
16565   }
16566 }
16567 
16568 /// Check a message send to see if it's likely to cause a retain cycle.
16569 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
16570   // Only check instance methods whose selector looks like a setter.
16571   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
16572     return;
16573 
16574   // Try to find a variable that the receiver is strongly owned by.
16575   RetainCycleOwner owner;
16576   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
16577     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
16578       return;
16579   } else {
16580     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
16581     owner.Variable = getCurMethodDecl()->getSelfDecl();
16582     owner.Loc = msg->getSuperLoc();
16583     owner.Range = msg->getSuperLoc();
16584   }
16585 
16586   // Check whether the receiver is captured by any of the arguments.
16587   const ObjCMethodDecl *MD = msg->getMethodDecl();
16588   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
16589     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
16590       // noescape blocks should not be retained by the method.
16591       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
16592         continue;
16593       return diagnoseRetainCycle(*this, capturer, owner);
16594     }
16595   }
16596 }
16597 
16598 /// Check a property assign to see if it's likely to cause a retain cycle.
16599 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
16600   RetainCycleOwner owner;
16601   if (!findRetainCycleOwner(*this, receiver, owner))
16602     return;
16603 
16604   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
16605     diagnoseRetainCycle(*this, capturer, owner);
16606 }
16607 
16608 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
16609   RetainCycleOwner Owner;
16610   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
16611     return;
16612 
16613   // Because we don't have an expression for the variable, we have to set the
16614   // location explicitly here.
16615   Owner.Loc = Var->getLocation();
16616   Owner.Range = Var->getSourceRange();
16617 
16618   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
16619     diagnoseRetainCycle(*this, Capturer, Owner);
16620 }
16621 
16622 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
16623                                      Expr *RHS, bool isProperty) {
16624   // Check if RHS is an Objective-C object literal, which also can get
16625   // immediately zapped in a weak reference.  Note that we explicitly
16626   // allow ObjCStringLiterals, since those are designed to never really die.
16627   RHS = RHS->IgnoreParenImpCasts();
16628 
16629   // This enum needs to match with the 'select' in
16630   // warn_objc_arc_literal_assign (off-by-1).
16631   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
16632   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
16633     return false;
16634 
16635   S.Diag(Loc, diag::warn_arc_literal_assign)
16636     << (unsigned) Kind
16637     << (isProperty ? 0 : 1)
16638     << RHS->getSourceRange();
16639 
16640   return true;
16641 }
16642 
16643 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
16644                                     Qualifiers::ObjCLifetime LT,
16645                                     Expr *RHS, bool isProperty) {
16646   // Strip off any implicit cast added to get to the one ARC-specific.
16647   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16648     if (cast->getCastKind() == CK_ARCConsumeObject) {
16649       S.Diag(Loc, diag::warn_arc_retained_assign)
16650         << (LT == Qualifiers::OCL_ExplicitNone)
16651         << (isProperty ? 0 : 1)
16652         << RHS->getSourceRange();
16653       return true;
16654     }
16655     RHS = cast->getSubExpr();
16656   }
16657 
16658   if (LT == Qualifiers::OCL_Weak &&
16659       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
16660     return true;
16661 
16662   return false;
16663 }
16664 
16665 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
16666                               QualType LHS, Expr *RHS) {
16667   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
16668 
16669   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
16670     return false;
16671 
16672   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
16673     return true;
16674 
16675   return false;
16676 }
16677 
16678 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
16679                               Expr *LHS, Expr *RHS) {
16680   QualType LHSType;
16681   // PropertyRef on LHS type need be directly obtained from
16682   // its declaration as it has a PseudoType.
16683   ObjCPropertyRefExpr *PRE
16684     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
16685   if (PRE && !PRE->isImplicitProperty()) {
16686     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16687     if (PD)
16688       LHSType = PD->getType();
16689   }
16690 
16691   if (LHSType.isNull())
16692     LHSType = LHS->getType();
16693 
16694   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
16695 
16696   if (LT == Qualifiers::OCL_Weak) {
16697     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
16698       getCurFunction()->markSafeWeakUse(LHS);
16699   }
16700 
16701   if (checkUnsafeAssigns(Loc, LHSType, RHS))
16702     return;
16703 
16704   // FIXME. Check for other life times.
16705   if (LT != Qualifiers::OCL_None)
16706     return;
16707 
16708   if (PRE) {
16709     if (PRE->isImplicitProperty())
16710       return;
16711     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
16712     if (!PD)
16713       return;
16714 
16715     unsigned Attributes = PD->getPropertyAttributes();
16716     if (Attributes & ObjCPropertyAttribute::kind_assign) {
16717       // when 'assign' attribute was not explicitly specified
16718       // by user, ignore it and rely on property type itself
16719       // for lifetime info.
16720       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
16721       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
16722           LHSType->isObjCRetainableType())
16723         return;
16724 
16725       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
16726         if (cast->getCastKind() == CK_ARCConsumeObject) {
16727           Diag(Loc, diag::warn_arc_retained_property_assign)
16728           << RHS->getSourceRange();
16729           return;
16730         }
16731         RHS = cast->getSubExpr();
16732       }
16733     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
16734       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
16735         return;
16736     }
16737   }
16738 }
16739 
16740 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
16741 
16742 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
16743                                         SourceLocation StmtLoc,
16744                                         const NullStmt *Body) {
16745   // Do not warn if the body is a macro that expands to nothing, e.g:
16746   //
16747   // #define CALL(x)
16748   // if (condition)
16749   //   CALL(0);
16750   if (Body->hasLeadingEmptyMacro())
16751     return false;
16752 
16753   // Get line numbers of statement and body.
16754   bool StmtLineInvalid;
16755   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
16756                                                       &StmtLineInvalid);
16757   if (StmtLineInvalid)
16758     return false;
16759 
16760   bool BodyLineInvalid;
16761   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
16762                                                       &BodyLineInvalid);
16763   if (BodyLineInvalid)
16764     return false;
16765 
16766   // Warn if null statement and body are on the same line.
16767   if (StmtLine != BodyLine)
16768     return false;
16769 
16770   return true;
16771 }
16772 
16773 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
16774                                  const Stmt *Body,
16775                                  unsigned DiagID) {
16776   // Since this is a syntactic check, don't emit diagnostic for template
16777   // instantiations, this just adds noise.
16778   if (CurrentInstantiationScope)
16779     return;
16780 
16781   // The body should be a null statement.
16782   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16783   if (!NBody)
16784     return;
16785 
16786   // Do the usual checks.
16787   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16788     return;
16789 
16790   Diag(NBody->getSemiLoc(), DiagID);
16791   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16792 }
16793 
16794 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
16795                                  const Stmt *PossibleBody) {
16796   assert(!CurrentInstantiationScope); // Ensured by caller
16797 
16798   SourceLocation StmtLoc;
16799   const Stmt *Body;
16800   unsigned DiagID;
16801   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
16802     StmtLoc = FS->getRParenLoc();
16803     Body = FS->getBody();
16804     DiagID = diag::warn_empty_for_body;
16805   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
16806     StmtLoc = WS->getRParenLoc();
16807     Body = WS->getBody();
16808     DiagID = diag::warn_empty_while_body;
16809   } else
16810     return; // Neither `for' nor `while'.
16811 
16812   // The body should be a null statement.
16813   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
16814   if (!NBody)
16815     return;
16816 
16817   // Skip expensive checks if diagnostic is disabled.
16818   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
16819     return;
16820 
16821   // Do the usual checks.
16822   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
16823     return;
16824 
16825   // `for(...);' and `while(...);' are popular idioms, so in order to keep
16826   // noise level low, emit diagnostics only if for/while is followed by a
16827   // CompoundStmt, e.g.:
16828   //    for (int i = 0; i < n; i++);
16829   //    {
16830   //      a(i);
16831   //    }
16832   // or if for/while is followed by a statement with more indentation
16833   // than for/while itself:
16834   //    for (int i = 0; i < n; i++);
16835   //      a(i);
16836   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
16837   if (!ProbableTypo) {
16838     bool BodyColInvalid;
16839     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
16840         PossibleBody->getBeginLoc(), &BodyColInvalid);
16841     if (BodyColInvalid)
16842       return;
16843 
16844     bool StmtColInvalid;
16845     unsigned StmtCol =
16846         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
16847     if (StmtColInvalid)
16848       return;
16849 
16850     if (BodyCol > StmtCol)
16851       ProbableTypo = true;
16852   }
16853 
16854   if (ProbableTypo) {
16855     Diag(NBody->getSemiLoc(), DiagID);
16856     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
16857   }
16858 }
16859 
16860 //===--- CHECK: Warn on self move with std::move. -------------------------===//
16861 
16862 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
16863 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
16864                              SourceLocation OpLoc) {
16865   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
16866     return;
16867 
16868   if (inTemplateInstantiation())
16869     return;
16870 
16871   // Strip parens and casts away.
16872   LHSExpr = LHSExpr->IgnoreParenImpCasts();
16873   RHSExpr = RHSExpr->IgnoreParenImpCasts();
16874 
16875   // Check for a call expression
16876   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
16877   if (!CE || CE->getNumArgs() != 1)
16878     return;
16879 
16880   // Check for a call to std::move
16881   if (!CE->isCallToStdMove())
16882     return;
16883 
16884   // Get argument from std::move
16885   RHSExpr = CE->getArg(0);
16886 
16887   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
16888   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
16889 
16890   // Two DeclRefExpr's, check that the decls are the same.
16891   if (LHSDeclRef && RHSDeclRef) {
16892     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16893       return;
16894     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16895         RHSDeclRef->getDecl()->getCanonicalDecl())
16896       return;
16897 
16898     auto D = Diag(OpLoc, diag::warn_self_move)
16899              << LHSExpr->getType() << LHSExpr->getSourceRange()
16900              << RHSExpr->getSourceRange();
16901     if (const FieldDecl *F =
16902             getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
16903       D << 1 << F
16904         << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
16905     else
16906       D << 0;
16907     return;
16908   }
16909 
16910   // Member variables require a different approach to check for self moves.
16911   // MemberExpr's are the same if every nested MemberExpr refers to the same
16912   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
16913   // the base Expr's are CXXThisExpr's.
16914   const Expr *LHSBase = LHSExpr;
16915   const Expr *RHSBase = RHSExpr;
16916   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
16917   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
16918   if (!LHSME || !RHSME)
16919     return;
16920 
16921   while (LHSME && RHSME) {
16922     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
16923         RHSME->getMemberDecl()->getCanonicalDecl())
16924       return;
16925 
16926     LHSBase = LHSME->getBase();
16927     RHSBase = RHSME->getBase();
16928     LHSME = dyn_cast<MemberExpr>(LHSBase);
16929     RHSME = dyn_cast<MemberExpr>(RHSBase);
16930   }
16931 
16932   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
16933   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
16934   if (LHSDeclRef && RHSDeclRef) {
16935     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
16936       return;
16937     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
16938         RHSDeclRef->getDecl()->getCanonicalDecl())
16939       return;
16940 
16941     Diag(OpLoc, diag::warn_self_move)
16942         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
16943         << RHSExpr->getSourceRange();
16944     return;
16945   }
16946 
16947   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
16948     Diag(OpLoc, diag::warn_self_move)
16949         << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
16950         << RHSExpr->getSourceRange();
16951 }
16952 
16953 //===--- Layout compatibility ----------------------------------------------//
16954 
16955 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
16956 
16957 /// Check if two enumeration types are layout-compatible.
16958 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
16959   // C++11 [dcl.enum] p8:
16960   // Two enumeration types are layout-compatible if they have the same
16961   // underlying type.
16962   return ED1->isComplete() && ED2->isComplete() &&
16963          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
16964 }
16965 
16966 /// Check if two fields are layout-compatible.
16967 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
16968                                FieldDecl *Field2) {
16969   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
16970     return false;
16971 
16972   if (Field1->isBitField() != Field2->isBitField())
16973     return false;
16974 
16975   if (Field1->isBitField()) {
16976     // Make sure that the bit-fields are the same length.
16977     unsigned Bits1 = Field1->getBitWidthValue(C);
16978     unsigned Bits2 = Field2->getBitWidthValue(C);
16979 
16980     if (Bits1 != Bits2)
16981       return false;
16982   }
16983 
16984   return true;
16985 }
16986 
16987 /// Check if two standard-layout structs are layout-compatible.
16988 /// (C++11 [class.mem] p17)
16989 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
16990                                      RecordDecl *RD2) {
16991   // If both records are C++ classes, check that base classes match.
16992   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
16993     // If one of records is a CXXRecordDecl we are in C++ mode,
16994     // thus the other one is a CXXRecordDecl, too.
16995     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
16996     // Check number of base classes.
16997     if (D1CXX->getNumBases() != D2CXX->getNumBases())
16998       return false;
16999 
17000     // Check the base classes.
17001     for (CXXRecordDecl::base_class_const_iterator
17002                Base1 = D1CXX->bases_begin(),
17003            BaseEnd1 = D1CXX->bases_end(),
17004               Base2 = D2CXX->bases_begin();
17005          Base1 != BaseEnd1;
17006          ++Base1, ++Base2) {
17007       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
17008         return false;
17009     }
17010   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
17011     // If only RD2 is a C++ class, it should have zero base classes.
17012     if (D2CXX->getNumBases() > 0)
17013       return false;
17014   }
17015 
17016   // Check the fields.
17017   RecordDecl::field_iterator Field2 = RD2->field_begin(),
17018                              Field2End = RD2->field_end(),
17019                              Field1 = RD1->field_begin(),
17020                              Field1End = RD1->field_end();
17021   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
17022     if (!isLayoutCompatible(C, *Field1, *Field2))
17023       return false;
17024   }
17025   if (Field1 != Field1End || Field2 != Field2End)
17026     return false;
17027 
17028   return true;
17029 }
17030 
17031 /// Check if two standard-layout unions are layout-compatible.
17032 /// (C++11 [class.mem] p18)
17033 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
17034                                     RecordDecl *RD2) {
17035   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
17036   for (auto *Field2 : RD2->fields())
17037     UnmatchedFields.insert(Field2);
17038 
17039   for (auto *Field1 : RD1->fields()) {
17040     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
17041         I = UnmatchedFields.begin(),
17042         E = UnmatchedFields.end();
17043 
17044     for ( ; I != E; ++I) {
17045       if (isLayoutCompatible(C, Field1, *I)) {
17046         bool Result = UnmatchedFields.erase(*I);
17047         (void) Result;
17048         assert(Result);
17049         break;
17050       }
17051     }
17052     if (I == E)
17053       return false;
17054   }
17055 
17056   return UnmatchedFields.empty();
17057 }
17058 
17059 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
17060                                RecordDecl *RD2) {
17061   if (RD1->isUnion() != RD2->isUnion())
17062     return false;
17063 
17064   if (RD1->isUnion())
17065     return isLayoutCompatibleUnion(C, RD1, RD2);
17066   else
17067     return isLayoutCompatibleStruct(C, RD1, RD2);
17068 }
17069 
17070 /// Check if two types are layout-compatible in C++11 sense.
17071 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
17072   if (T1.isNull() || T2.isNull())
17073     return false;
17074 
17075   // C++11 [basic.types] p11:
17076   // If two types T1 and T2 are the same type, then T1 and T2 are
17077   // layout-compatible types.
17078   if (C.hasSameType(T1, T2))
17079     return true;
17080 
17081   T1 = T1.getCanonicalType().getUnqualifiedType();
17082   T2 = T2.getCanonicalType().getUnqualifiedType();
17083 
17084   const Type::TypeClass TC1 = T1->getTypeClass();
17085   const Type::TypeClass TC2 = T2->getTypeClass();
17086 
17087   if (TC1 != TC2)
17088     return false;
17089 
17090   if (TC1 == Type::Enum) {
17091     return isLayoutCompatible(C,
17092                               cast<EnumType>(T1)->getDecl(),
17093                               cast<EnumType>(T2)->getDecl());
17094   } else if (TC1 == Type::Record) {
17095     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
17096       return false;
17097 
17098     return isLayoutCompatible(C,
17099                               cast<RecordType>(T1)->getDecl(),
17100                               cast<RecordType>(T2)->getDecl());
17101   }
17102 
17103   return false;
17104 }
17105 
17106 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
17107 
17108 /// Given a type tag expression find the type tag itself.
17109 ///
17110 /// \param TypeExpr Type tag expression, as it appears in user's code.
17111 ///
17112 /// \param VD Declaration of an identifier that appears in a type tag.
17113 ///
17114 /// \param MagicValue Type tag magic value.
17115 ///
17116 /// \param isConstantEvaluated whether the evalaution should be performed in
17117 
17118 /// constant context.
17119 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
17120                             const ValueDecl **VD, uint64_t *MagicValue,
17121                             bool isConstantEvaluated) {
17122   while(true) {
17123     if (!TypeExpr)
17124       return false;
17125 
17126     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
17127 
17128     switch (TypeExpr->getStmtClass()) {
17129     case Stmt::UnaryOperatorClass: {
17130       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
17131       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
17132         TypeExpr = UO->getSubExpr();
17133         continue;
17134       }
17135       return false;
17136     }
17137 
17138     case Stmt::DeclRefExprClass: {
17139       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
17140       *VD = DRE->getDecl();
17141       return true;
17142     }
17143 
17144     case Stmt::IntegerLiteralClass: {
17145       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
17146       llvm::APInt MagicValueAPInt = IL->getValue();
17147       if (MagicValueAPInt.getActiveBits() <= 64) {
17148         *MagicValue = MagicValueAPInt.getZExtValue();
17149         return true;
17150       } else
17151         return false;
17152     }
17153 
17154     case Stmt::BinaryConditionalOperatorClass:
17155     case Stmt::ConditionalOperatorClass: {
17156       const AbstractConditionalOperator *ACO =
17157           cast<AbstractConditionalOperator>(TypeExpr);
17158       bool Result;
17159       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
17160                                                      isConstantEvaluated)) {
17161         if (Result)
17162           TypeExpr = ACO->getTrueExpr();
17163         else
17164           TypeExpr = ACO->getFalseExpr();
17165         continue;
17166       }
17167       return false;
17168     }
17169 
17170     case Stmt::BinaryOperatorClass: {
17171       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
17172       if (BO->getOpcode() == BO_Comma) {
17173         TypeExpr = BO->getRHS();
17174         continue;
17175       }
17176       return false;
17177     }
17178 
17179     default:
17180       return false;
17181     }
17182   }
17183 }
17184 
17185 /// Retrieve the C type corresponding to type tag TypeExpr.
17186 ///
17187 /// \param TypeExpr Expression that specifies a type tag.
17188 ///
17189 /// \param MagicValues Registered magic values.
17190 ///
17191 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
17192 ///        kind.
17193 ///
17194 /// \param TypeInfo Information about the corresponding C type.
17195 ///
17196 /// \param isConstantEvaluated whether the evalaution should be performed in
17197 /// constant context.
17198 ///
17199 /// \returns true if the corresponding C type was found.
17200 static bool GetMatchingCType(
17201     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
17202     const ASTContext &Ctx,
17203     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
17204         *MagicValues,
17205     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
17206     bool isConstantEvaluated) {
17207   FoundWrongKind = false;
17208 
17209   // Variable declaration that has type_tag_for_datatype attribute.
17210   const ValueDecl *VD = nullptr;
17211 
17212   uint64_t MagicValue;
17213 
17214   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
17215     return false;
17216 
17217   if (VD) {
17218     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
17219       if (I->getArgumentKind() != ArgumentKind) {
17220         FoundWrongKind = true;
17221         return false;
17222       }
17223       TypeInfo.Type = I->getMatchingCType();
17224       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
17225       TypeInfo.MustBeNull = I->getMustBeNull();
17226       return true;
17227     }
17228     return false;
17229   }
17230 
17231   if (!MagicValues)
17232     return false;
17233 
17234   llvm::DenseMap<Sema::TypeTagMagicValue,
17235                  Sema::TypeTagData>::const_iterator I =
17236       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
17237   if (I == MagicValues->end())
17238     return false;
17239 
17240   TypeInfo = I->second;
17241   return true;
17242 }
17243 
17244 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
17245                                       uint64_t MagicValue, QualType Type,
17246                                       bool LayoutCompatible,
17247                                       bool MustBeNull) {
17248   if (!TypeTagForDatatypeMagicValues)
17249     TypeTagForDatatypeMagicValues.reset(
17250         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
17251 
17252   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
17253   (*TypeTagForDatatypeMagicValues)[Magic] =
17254       TypeTagData(Type, LayoutCompatible, MustBeNull);
17255 }
17256 
17257 static bool IsSameCharType(QualType T1, QualType T2) {
17258   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
17259   if (!BT1)
17260     return false;
17261 
17262   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
17263   if (!BT2)
17264     return false;
17265 
17266   BuiltinType::Kind T1Kind = BT1->getKind();
17267   BuiltinType::Kind T2Kind = BT2->getKind();
17268 
17269   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
17270          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
17271          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
17272          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
17273 }
17274 
17275 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
17276                                     const ArrayRef<const Expr *> ExprArgs,
17277                                     SourceLocation CallSiteLoc) {
17278   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
17279   bool IsPointerAttr = Attr->getIsPointer();
17280 
17281   // Retrieve the argument representing the 'type_tag'.
17282   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
17283   if (TypeTagIdxAST >= ExprArgs.size()) {
17284     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
17285         << 0 << Attr->getTypeTagIdx().getSourceIndex();
17286     return;
17287   }
17288   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
17289   bool FoundWrongKind;
17290   TypeTagData TypeInfo;
17291   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
17292                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
17293                         TypeInfo, isConstantEvaluated())) {
17294     if (FoundWrongKind)
17295       Diag(TypeTagExpr->getExprLoc(),
17296            diag::warn_type_tag_for_datatype_wrong_kind)
17297         << TypeTagExpr->getSourceRange();
17298     return;
17299   }
17300 
17301   // Retrieve the argument representing the 'arg_idx'.
17302   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
17303   if (ArgumentIdxAST >= ExprArgs.size()) {
17304     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
17305         << 1 << Attr->getArgumentIdx().getSourceIndex();
17306     return;
17307   }
17308   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
17309   if (IsPointerAttr) {
17310     // Skip implicit cast of pointer to `void *' (as a function argument).
17311     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
17312       if (ICE->getType()->isVoidPointerType() &&
17313           ICE->getCastKind() == CK_BitCast)
17314         ArgumentExpr = ICE->getSubExpr();
17315   }
17316   QualType ArgumentType = ArgumentExpr->getType();
17317 
17318   // Passing a `void*' pointer shouldn't trigger a warning.
17319   if (IsPointerAttr && ArgumentType->isVoidPointerType())
17320     return;
17321 
17322   if (TypeInfo.MustBeNull) {
17323     // Type tag with matching void type requires a null pointer.
17324     if (!ArgumentExpr->isNullPointerConstant(Context,
17325                                              Expr::NPC_ValueDependentIsNotNull)) {
17326       Diag(ArgumentExpr->getExprLoc(),
17327            diag::warn_type_safety_null_pointer_required)
17328           << ArgumentKind->getName()
17329           << ArgumentExpr->getSourceRange()
17330           << TypeTagExpr->getSourceRange();
17331     }
17332     return;
17333   }
17334 
17335   QualType RequiredType = TypeInfo.Type;
17336   if (IsPointerAttr)
17337     RequiredType = Context.getPointerType(RequiredType);
17338 
17339   bool mismatch = false;
17340   if (!TypeInfo.LayoutCompatible) {
17341     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
17342 
17343     // C++11 [basic.fundamental] p1:
17344     // Plain char, signed char, and unsigned char are three distinct types.
17345     //
17346     // But we treat plain `char' as equivalent to `signed char' or `unsigned
17347     // char' depending on the current char signedness mode.
17348     if (mismatch)
17349       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
17350                                            RequiredType->getPointeeType())) ||
17351           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
17352         mismatch = false;
17353   } else
17354     if (IsPointerAttr)
17355       mismatch = !isLayoutCompatible(Context,
17356                                      ArgumentType->getPointeeType(),
17357                                      RequiredType->getPointeeType());
17358     else
17359       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
17360 
17361   if (mismatch)
17362     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
17363         << ArgumentType << ArgumentKind
17364         << TypeInfo.LayoutCompatible << RequiredType
17365         << ArgumentExpr->getSourceRange()
17366         << TypeTagExpr->getSourceRange();
17367 }
17368 
17369 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
17370                                          CharUnits Alignment) {
17371   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
17372 }
17373 
17374 void Sema::DiagnoseMisalignedMembers() {
17375   for (MisalignedMember &m : MisalignedMembers) {
17376     const NamedDecl *ND = m.RD;
17377     if (ND->getName().empty()) {
17378       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
17379         ND = TD;
17380     }
17381     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
17382         << m.MD << ND << m.E->getSourceRange();
17383   }
17384   MisalignedMembers.clear();
17385 }
17386 
17387 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
17388   E = E->IgnoreParens();
17389   if (!T->isPointerType() && !T->isIntegerType())
17390     return;
17391   if (isa<UnaryOperator>(E) &&
17392       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
17393     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
17394     if (isa<MemberExpr>(Op)) {
17395       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
17396       if (MA != MisalignedMembers.end() &&
17397           (T->isIntegerType() ||
17398            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
17399                                    Context.getTypeAlignInChars(
17400                                        T->getPointeeType()) <= MA->Alignment))))
17401         MisalignedMembers.erase(MA);
17402     }
17403   }
17404 }
17405 
17406 void Sema::RefersToMemberWithReducedAlignment(
17407     Expr *E,
17408     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
17409         Action) {
17410   const auto *ME = dyn_cast<MemberExpr>(E);
17411   if (!ME)
17412     return;
17413 
17414   // No need to check expressions with an __unaligned-qualified type.
17415   if (E->getType().getQualifiers().hasUnaligned())
17416     return;
17417 
17418   // For a chain of MemberExpr like "a.b.c.d" this list
17419   // will keep FieldDecl's like [d, c, b].
17420   SmallVector<FieldDecl *, 4> ReverseMemberChain;
17421   const MemberExpr *TopME = nullptr;
17422   bool AnyIsPacked = false;
17423   do {
17424     QualType BaseType = ME->getBase()->getType();
17425     if (BaseType->isDependentType())
17426       return;
17427     if (ME->isArrow())
17428       BaseType = BaseType->getPointeeType();
17429     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
17430     if (RD->isInvalidDecl())
17431       return;
17432 
17433     ValueDecl *MD = ME->getMemberDecl();
17434     auto *FD = dyn_cast<FieldDecl>(MD);
17435     // We do not care about non-data members.
17436     if (!FD || FD->isInvalidDecl())
17437       return;
17438 
17439     AnyIsPacked =
17440         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
17441     ReverseMemberChain.push_back(FD);
17442 
17443     TopME = ME;
17444     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
17445   } while (ME);
17446   assert(TopME && "We did not compute a topmost MemberExpr!");
17447 
17448   // Not the scope of this diagnostic.
17449   if (!AnyIsPacked)
17450     return;
17451 
17452   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
17453   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
17454   // TODO: The innermost base of the member expression may be too complicated.
17455   // For now, just disregard these cases. This is left for future
17456   // improvement.
17457   if (!DRE && !isa<CXXThisExpr>(TopBase))
17458       return;
17459 
17460   // Alignment expected by the whole expression.
17461   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
17462 
17463   // No need to do anything else with this case.
17464   if (ExpectedAlignment.isOne())
17465     return;
17466 
17467   // Synthesize offset of the whole access.
17468   CharUnits Offset;
17469   for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
17470     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
17471 
17472   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
17473   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
17474       ReverseMemberChain.back()->getParent()->getTypeForDecl());
17475 
17476   // The base expression of the innermost MemberExpr may give
17477   // stronger guarantees than the class containing the member.
17478   if (DRE && !TopME->isArrow()) {
17479     const ValueDecl *VD = DRE->getDecl();
17480     if (!VD->getType()->isReferenceType())
17481       CompleteObjectAlignment =
17482           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
17483   }
17484 
17485   // Check if the synthesized offset fulfills the alignment.
17486   if (Offset % ExpectedAlignment != 0 ||
17487       // It may fulfill the offset it but the effective alignment may still be
17488       // lower than the expected expression alignment.
17489       CompleteObjectAlignment < ExpectedAlignment) {
17490     // If this happens, we want to determine a sensible culprit of this.
17491     // Intuitively, watching the chain of member expressions from right to
17492     // left, we start with the required alignment (as required by the field
17493     // type) but some packed attribute in that chain has reduced the alignment.
17494     // It may happen that another packed structure increases it again. But if
17495     // we are here such increase has not been enough. So pointing the first
17496     // FieldDecl that either is packed or else its RecordDecl is,
17497     // seems reasonable.
17498     FieldDecl *FD = nullptr;
17499     CharUnits Alignment;
17500     for (FieldDecl *FDI : ReverseMemberChain) {
17501       if (FDI->hasAttr<PackedAttr>() ||
17502           FDI->getParent()->hasAttr<PackedAttr>()) {
17503         FD = FDI;
17504         Alignment = std::min(
17505             Context.getTypeAlignInChars(FD->getType()),
17506             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
17507         break;
17508       }
17509     }
17510     assert(FD && "We did not find a packed FieldDecl!");
17511     Action(E, FD->getParent(), FD, Alignment);
17512   }
17513 }
17514 
17515 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
17516   using namespace std::placeholders;
17517 
17518   RefersToMemberWithReducedAlignment(
17519       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
17520                      _2, _3, _4));
17521 }
17522 
17523 // Check if \p Ty is a valid type for the elementwise math builtins. If it is
17524 // not a valid type, emit an error message and return true. Otherwise return
17525 // false.
17526 static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
17527                                         QualType Ty) {
17528   if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
17529     S.Diag(Loc, diag::err_builtin_invalid_arg_type)
17530         << 1 << /* vector, integer or float ty*/ 0 << Ty;
17531     return true;
17532   }
17533   return false;
17534 }
17535 
17536 bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
17537   if (checkArgCount(*this, TheCall, 1))
17538     return true;
17539 
17540   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
17541   if (A.isInvalid())
17542     return true;
17543 
17544   TheCall->setArg(0, A.get());
17545   QualType TyA = A.get()->getType();
17546 
17547   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
17548     return true;
17549 
17550   TheCall->setType(TyA);
17551   return false;
17552 }
17553 
17554 bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
17555   if (checkArgCount(*this, TheCall, 2))
17556     return true;
17557 
17558   ExprResult A = TheCall->getArg(0);
17559   ExprResult B = TheCall->getArg(1);
17560   // Do standard promotions between the two arguments, returning their common
17561   // type.
17562   QualType Res =
17563       UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
17564   if (A.isInvalid() || B.isInvalid())
17565     return true;
17566 
17567   QualType TyA = A.get()->getType();
17568   QualType TyB = B.get()->getType();
17569 
17570   if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
17571     return Diag(A.get()->getBeginLoc(),
17572                 diag::err_typecheck_call_different_arg_types)
17573            << TyA << TyB;
17574 
17575   if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
17576     return true;
17577 
17578   TheCall->setArg(0, A.get());
17579   TheCall->setArg(1, B.get());
17580   TheCall->setType(Res);
17581   return false;
17582 }
17583 
17584 bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
17585   if (checkArgCount(*this, TheCall, 1))
17586     return true;
17587 
17588   ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
17589   if (A.isInvalid())
17590     return true;
17591 
17592   TheCall->setArg(0, A.get());
17593   return false;
17594 }
17595 
17596 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
17597                                             ExprResult CallResult) {
17598   if (checkArgCount(*this, TheCall, 1))
17599     return ExprError();
17600 
17601   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
17602   if (MatrixArg.isInvalid())
17603     return MatrixArg;
17604   Expr *Matrix = MatrixArg.get();
17605 
17606   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
17607   if (!MType) {
17608     Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17609         << 1 << /* matrix ty*/ 1 << Matrix->getType();
17610     return ExprError();
17611   }
17612 
17613   // Create returned matrix type by swapping rows and columns of the argument
17614   // matrix type.
17615   QualType ResultType = Context.getConstantMatrixType(
17616       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
17617 
17618   // Change the return type to the type of the returned matrix.
17619   TheCall->setType(ResultType);
17620 
17621   // Update call argument to use the possibly converted matrix argument.
17622   TheCall->setArg(0, Matrix);
17623   return CallResult;
17624 }
17625 
17626 // Get and verify the matrix dimensions.
17627 static llvm::Optional<unsigned>
17628 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
17629   SourceLocation ErrorPos;
17630   Optional<llvm::APSInt> Value =
17631       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
17632   if (!Value) {
17633     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
17634         << Name;
17635     return {};
17636   }
17637   uint64_t Dim = Value->getZExtValue();
17638   if (!ConstantMatrixType::isDimensionValid(Dim)) {
17639     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
17640         << Name << ConstantMatrixType::getMaxElementsPerDimension();
17641     return {};
17642   }
17643   return Dim;
17644 }
17645 
17646 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
17647                                                   ExprResult CallResult) {
17648   if (!getLangOpts().MatrixTypes) {
17649     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
17650     return ExprError();
17651   }
17652 
17653   if (checkArgCount(*this, TheCall, 4))
17654     return ExprError();
17655 
17656   unsigned PtrArgIdx = 0;
17657   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17658   Expr *RowsExpr = TheCall->getArg(1);
17659   Expr *ColumnsExpr = TheCall->getArg(2);
17660   Expr *StrideExpr = TheCall->getArg(3);
17661 
17662   bool ArgError = false;
17663 
17664   // Check pointer argument.
17665   {
17666     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17667     if (PtrConv.isInvalid())
17668       return PtrConv;
17669     PtrExpr = PtrConv.get();
17670     TheCall->setArg(0, PtrExpr);
17671     if (PtrExpr->isTypeDependent()) {
17672       TheCall->setType(Context.DependentTy);
17673       return TheCall;
17674     }
17675   }
17676 
17677   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17678   QualType ElementTy;
17679   if (!PtrTy) {
17680     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17681         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17682     ArgError = true;
17683   } else {
17684     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
17685 
17686     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
17687       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17688           << PtrArgIdx + 1 << /* pointer to element ty*/ 2
17689           << PtrExpr->getType();
17690       ArgError = true;
17691     }
17692   }
17693 
17694   // Apply default Lvalue conversions and convert the expression to size_t.
17695   auto ApplyArgumentConversions = [this](Expr *E) {
17696     ExprResult Conv = DefaultLvalueConversion(E);
17697     if (Conv.isInvalid())
17698       return Conv;
17699 
17700     return tryConvertExprToType(Conv.get(), Context.getSizeType());
17701   };
17702 
17703   // Apply conversion to row and column expressions.
17704   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
17705   if (!RowsConv.isInvalid()) {
17706     RowsExpr = RowsConv.get();
17707     TheCall->setArg(1, RowsExpr);
17708   } else
17709     RowsExpr = nullptr;
17710 
17711   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
17712   if (!ColumnsConv.isInvalid()) {
17713     ColumnsExpr = ColumnsConv.get();
17714     TheCall->setArg(2, ColumnsExpr);
17715   } else
17716     ColumnsExpr = nullptr;
17717 
17718   // If any any part of the result matrix type is still pending, just use
17719   // Context.DependentTy, until all parts are resolved.
17720   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
17721       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
17722     TheCall->setType(Context.DependentTy);
17723     return CallResult;
17724   }
17725 
17726   // Check row and column dimensions.
17727   llvm::Optional<unsigned> MaybeRows;
17728   if (RowsExpr)
17729     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
17730 
17731   llvm::Optional<unsigned> MaybeColumns;
17732   if (ColumnsExpr)
17733     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
17734 
17735   // Check stride argument.
17736   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
17737   if (StrideConv.isInvalid())
17738     return ExprError();
17739   StrideExpr = StrideConv.get();
17740   TheCall->setArg(3, StrideExpr);
17741 
17742   if (MaybeRows) {
17743     if (Optional<llvm::APSInt> Value =
17744             StrideExpr->getIntegerConstantExpr(Context)) {
17745       uint64_t Stride = Value->getZExtValue();
17746       if (Stride < *MaybeRows) {
17747         Diag(StrideExpr->getBeginLoc(),
17748              diag::err_builtin_matrix_stride_too_small);
17749         ArgError = true;
17750       }
17751     }
17752   }
17753 
17754   if (ArgError || !MaybeRows || !MaybeColumns)
17755     return ExprError();
17756 
17757   TheCall->setType(
17758       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
17759   return CallResult;
17760 }
17761 
17762 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
17763                                                    ExprResult CallResult) {
17764   if (checkArgCount(*this, TheCall, 3))
17765     return ExprError();
17766 
17767   unsigned PtrArgIdx = 1;
17768   Expr *MatrixExpr = TheCall->getArg(0);
17769   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
17770   Expr *StrideExpr = TheCall->getArg(2);
17771 
17772   bool ArgError = false;
17773 
17774   {
17775     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
17776     if (MatrixConv.isInvalid())
17777       return MatrixConv;
17778     MatrixExpr = MatrixConv.get();
17779     TheCall->setArg(0, MatrixExpr);
17780   }
17781   if (MatrixExpr->isTypeDependent()) {
17782     TheCall->setType(Context.DependentTy);
17783     return TheCall;
17784   }
17785 
17786   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
17787   if (!MatrixTy) {
17788     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17789         << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
17790     ArgError = true;
17791   }
17792 
17793   {
17794     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
17795     if (PtrConv.isInvalid())
17796       return PtrConv;
17797     PtrExpr = PtrConv.get();
17798     TheCall->setArg(1, PtrExpr);
17799     if (PtrExpr->isTypeDependent()) {
17800       TheCall->setType(Context.DependentTy);
17801       return TheCall;
17802     }
17803   }
17804 
17805   // Check pointer argument.
17806   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
17807   if (!PtrTy) {
17808     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
17809         << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
17810     ArgError = true;
17811   } else {
17812     QualType ElementTy = PtrTy->getPointeeType();
17813     if (ElementTy.isConstQualified()) {
17814       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
17815       ArgError = true;
17816     }
17817     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
17818     if (MatrixTy &&
17819         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
17820       Diag(PtrExpr->getBeginLoc(),
17821            diag::err_builtin_matrix_pointer_arg_mismatch)
17822           << ElementTy << MatrixTy->getElementType();
17823       ArgError = true;
17824     }
17825   }
17826 
17827   // Apply default Lvalue conversions and convert the stride expression to
17828   // size_t.
17829   {
17830     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
17831     if (StrideConv.isInvalid())
17832       return StrideConv;
17833 
17834     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
17835     if (StrideConv.isInvalid())
17836       return StrideConv;
17837     StrideExpr = StrideConv.get();
17838     TheCall->setArg(2, StrideExpr);
17839   }
17840 
17841   // Check stride argument.
17842   if (MatrixTy) {
17843     if (Optional<llvm::APSInt> Value =
17844             StrideExpr->getIntegerConstantExpr(Context)) {
17845       uint64_t Stride = Value->getZExtValue();
17846       if (Stride < MatrixTy->getNumRows()) {
17847         Diag(StrideExpr->getBeginLoc(),
17848              diag::err_builtin_matrix_stride_too_small);
17849         ArgError = true;
17850       }
17851     }
17852   }
17853 
17854   if (ArgError)
17855     return ExprError();
17856 
17857   return CallResult;
17858 }
17859 
17860 /// \brief Enforce the bounds of a TCB
17861 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
17862 /// directly calls other functions in the same TCB as marked by the enforce_tcb
17863 /// and enforce_tcb_leaf attributes.
17864 void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
17865                                const NamedDecl *Callee) {
17866   const NamedDecl *Caller = getCurFunctionOrMethodDecl();
17867 
17868   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
17869     return;
17870 
17871   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
17872   // all TCBs the callee is a part of.
17873   llvm::StringSet<> CalleeTCBs;
17874   for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
17875     CalleeTCBs.insert(A->getTCBName());
17876   for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
17877     CalleeTCBs.insert(A->getTCBName());
17878 
17879   // Go through the TCBs the caller is a part of and emit warnings if Caller
17880   // is in a TCB that the Callee is not.
17881   for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
17882     StringRef CallerTCB = A->getTCBName();
17883     if (CalleeTCBs.count(CallerTCB) == 0) {
17884       this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
17885           << Callee << CallerTCB;
17886     }
17887   }
17888 }
17889