1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include <optional>
25 
26 namespace clang {
27 
28 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
29 {
30   if (const PointerType *PtrTy = T->getAs<PointerType>())
31     T = PtrTy->getPointeeType();
32   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
33     T = RefTy->getPointeeType();
34   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
35     T = MPTy->getPointeeType();
36   return T->getAs<FunctionProtoType>();
37 }
38 
39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40 /// member swap function then tries to call std::swap unqualified from the
41 /// exception specification of that function. This function detects whether
42 /// we're in such a case and turns off delay-parsing of exception
43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
46   auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
47 
48   // All the problem cases are member functions named "swap" within class
49   // templates declared directly within namespace std or std::__debug or
50   // std::__profile.
51   if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
52       !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
53     return false;
54 
55   auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
56   if (!ND)
57     return false;
58 
59   bool IsInStd = ND->isStdNamespace();
60   if (!IsInStd) {
61     // This isn't a direct member of namespace std, but it might still be
62     // libstdc++'s std::__debug::array or std::__profile::array.
63     IdentifierInfo *II = ND->getIdentifier();
64     if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
65         !ND->isInStdNamespace())
66       return false;
67   }
68 
69   // Only apply this hack within a system header.
70   if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
71     return false;
72 
73   return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
74       .Case("array", true)
75       .Case("pair", IsInStd)
76       .Case("priority_queue", IsInStd)
77       .Case("stack", IsInStd)
78       .Case("queue", IsInStd)
79       .Default(false);
80 }
81 
82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
83                                    ExceptionSpecificationType &EST) {
84 
85   if (NoexceptExpr->isTypeDependent() ||
86       NoexceptExpr->containsUnexpandedParameterPack()) {
87     EST = EST_DependentNoexcept;
88     return NoexceptExpr;
89   }
90 
91   llvm::APSInt Result;
92   ExprResult Converted = CheckConvertedConstantExpression(
93       NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
94 
95   if (Converted.isInvalid()) {
96     EST = EST_NoexceptFalse;
97     // Fill in an expression of 'false' as a fixup.
98     auto *BoolExpr = new (Context)
99         CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
100     llvm::APSInt Value{1};
101     Value = 0;
102     return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
103   }
104 
105   if (Converted.get()->isValueDependent()) {
106     EST = EST_DependentNoexcept;
107     return Converted;
108   }
109 
110   if (!Converted.isInvalid())
111     EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
112   return Converted;
113 }
114 
115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
116 /// exception specification. Incomplete types, or pointers to incomplete types
117 /// other than void are not allowed.
118 ///
119 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
120 ///                   when the input is an array or a function type.
121 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
122   // C++11 [except.spec]p2:
123   //   A type cv T, "array of T", or "function returning T" denoted
124   //   in an exception-specification is adjusted to type T, "pointer to T", or
125   //   "pointer to function returning T", respectively.
126   //
127   // We also apply this rule in C++98.
128   if (T->isArrayType())
129     T = Context.getArrayDecayedType(T);
130   else if (T->isFunctionType())
131     T = Context.getPointerType(T);
132 
133   int Kind = 0;
134   QualType PointeeT = T;
135   if (const PointerType *PT = T->getAs<PointerType>()) {
136     PointeeT = PT->getPointeeType();
137     Kind = 1;
138 
139     // cv void* is explicitly permitted, despite being a pointer to an
140     // incomplete type.
141     if (PointeeT->isVoidType())
142       return false;
143   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
144     PointeeT = RT->getPointeeType();
145     Kind = 2;
146 
147     if (RT->isRValueReferenceType()) {
148       // C++11 [except.spec]p2:
149       //   A type denoted in an exception-specification shall not denote [...]
150       //   an rvalue reference type.
151       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
152         << T << Range;
153       return true;
154     }
155   }
156 
157   // C++11 [except.spec]p2:
158   //   A type denoted in an exception-specification shall not denote an
159   //   incomplete type other than a class currently being defined [...].
160   //   A type denoted in an exception-specification shall not denote a
161   //   pointer or reference to an incomplete type, other than (cv) void* or a
162   //   pointer or reference to a class currently being defined.
163   // In Microsoft mode, downgrade this to a warning.
164   unsigned DiagID = diag::err_incomplete_in_exception_spec;
165   bool ReturnValueOnError = true;
166   if (getLangOpts().MSVCCompat) {
167     DiagID = diag::ext_incomplete_in_exception_spec;
168     ReturnValueOnError = false;
169   }
170   if (!(PointeeT->isRecordType() &&
171         PointeeT->castAs<RecordType>()->isBeingDefined()) &&
172       RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
173     return ReturnValueOnError;
174 
175   // WebAssembly reference types can't be used in exception specifications.
176   if (PointeeT.isWebAssemblyReferenceType()) {
177     Diag(Range.getBegin(), diag::err_wasm_reftype_exception_spec);
178     return true;
179   }
180 
181   // The MSVC compatibility mode doesn't extend to sizeless types,
182   // so diagnose them separately.
183   if (PointeeT->isSizelessType() && Kind != 1) {
184     Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
185         << (Kind == 2 ? 1 : 0) << PointeeT << Range;
186     return true;
187   }
188 
189   return false;
190 }
191 
192 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
193 /// to member to a function with an exception specification. This means that
194 /// it is invalid to add another level of indirection.
195 bool Sema::CheckDistantExceptionSpec(QualType T) {
196   // C++17 removes this rule in favor of putting exception specifications into
197   // the type system.
198   if (getLangOpts().CPlusPlus17)
199     return false;
200 
201   if (const PointerType *PT = T->getAs<PointerType>())
202     T = PT->getPointeeType();
203   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
204     T = PT->getPointeeType();
205   else
206     return false;
207 
208   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
209   if (!FnT)
210     return false;
211 
212   return FnT->hasExceptionSpec();
213 }
214 
215 const FunctionProtoType *
216 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
217   if (FPT->getExceptionSpecType() == EST_Unparsed) {
218     Diag(Loc, diag::err_exception_spec_not_parsed);
219     return nullptr;
220   }
221 
222   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
223     return FPT;
224 
225   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
226   const FunctionProtoType *SourceFPT =
227       SourceDecl->getType()->castAs<FunctionProtoType>();
228 
229   // If the exception specification has already been resolved, just return it.
230   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
231     return SourceFPT;
232 
233   // Compute or instantiate the exception specification now.
234   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
235     EvaluateImplicitExceptionSpec(Loc, SourceDecl);
236   else
237     InstantiateExceptionSpec(Loc, SourceDecl);
238 
239   const FunctionProtoType *Proto =
240     SourceDecl->getType()->castAs<FunctionProtoType>();
241   if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
242     Diag(Loc, diag::err_exception_spec_not_parsed);
243     Proto = nullptr;
244   }
245   return Proto;
246 }
247 
248 void
249 Sema::UpdateExceptionSpec(FunctionDecl *FD,
250                           const FunctionProtoType::ExceptionSpecInfo &ESI) {
251   // If we've fully resolved the exception specification, notify listeners.
252   if (!isUnresolvedExceptionSpec(ESI.Type))
253     if (auto *Listener = getASTMutationListener())
254       Listener->ResolvedExceptionSpec(FD);
255 
256   for (FunctionDecl *Redecl : FD->redecls())
257     Context.adjustExceptionSpec(Redecl, ESI);
258 }
259 
260 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
261   auto *MD = dyn_cast<CXXMethodDecl>(FD);
262   if (!MD)
263     return false;
264 
265   auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
266   return EST == EST_Unparsed ||
267          (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
268 }
269 
270 static bool CheckEquivalentExceptionSpecImpl(
271     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
272     const FunctionProtoType *Old, SourceLocation OldLoc,
273     const FunctionProtoType *New, SourceLocation NewLoc,
274     bool *MissingExceptionSpecification = nullptr,
275     bool *MissingEmptyExceptionSpecification = nullptr,
276     bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
277 
278 /// Determine whether a function has an implicitly-generated exception
279 /// specification.
280 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
281   if (!isa<CXXDestructorDecl>(Decl) &&
282       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
283       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
284     return false;
285 
286   // For a function that the user didn't declare:
287   //  - if this is a destructor, its exception specification is implicit.
288   //  - if this is 'operator delete' or 'operator delete[]', the exception
289   //    specification is as-if an explicit exception specification was given
290   //    (per [basic.stc.dynamic]p2).
291   if (!Decl->getTypeSourceInfo())
292     return isa<CXXDestructorDecl>(Decl);
293 
294   auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
295   return !Ty->hasExceptionSpec();
296 }
297 
298 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
299   // Just completely ignore this under -fno-exceptions prior to C++17.
300   // In C++17 onwards, the exception specification is part of the type and
301   // we will diagnose mismatches anyway, so it's better to check for them here.
302   if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
303     return false;
304 
305   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
306   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
307   bool MissingExceptionSpecification = false;
308   bool MissingEmptyExceptionSpecification = false;
309 
310   unsigned DiagID = diag::err_mismatched_exception_spec;
311   bool ReturnValueOnError = true;
312   if (getLangOpts().MSVCCompat) {
313     DiagID = diag::ext_mismatched_exception_spec;
314     ReturnValueOnError = false;
315   }
316 
317   // If we're befriending a member function of a class that's currently being
318   // defined, we might not be able to work out its exception specification yet.
319   // If not, defer the check until later.
320   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
321     DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
322     return false;
323   }
324 
325   // Check the types as written: they must match before any exception
326   // specification adjustment is applied.
327   if (!CheckEquivalentExceptionSpecImpl(
328         *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
329         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
330         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
331         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
332         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
333     // C++11 [except.spec]p4 [DR1492]:
334     //   If a declaration of a function has an implicit
335     //   exception-specification, other declarations of the function shall
336     //   not specify an exception-specification.
337     if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
338         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
339       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
340         << hasImplicitExceptionSpec(Old);
341       if (Old->getLocation().isValid())
342         Diag(Old->getLocation(), diag::note_previous_declaration);
343     }
344     return false;
345   }
346 
347   // The failure was something other than an missing exception
348   // specification; return an error, except in MS mode where this is a warning.
349   if (!MissingExceptionSpecification)
350     return ReturnValueOnError;
351 
352   const auto *NewProto = New->getType()->castAs<FunctionProtoType>();
353 
354   // The new function declaration is only missing an empty exception
355   // specification "throw()". If the throw() specification came from a
356   // function in a system header that has C linkage, just add an empty
357   // exception specification to the "new" declaration. Note that C library
358   // implementations are permitted to add these nothrow exception
359   // specifications.
360   //
361   // Likewise if the old function is a builtin.
362   if (MissingEmptyExceptionSpecification &&
363       (Old->getLocation().isInvalid() ||
364        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
365        Old->getBuiltinID()) &&
366       Old->isExternC()) {
367     New->setType(Context.getFunctionType(
368         NewProto->getReturnType(), NewProto->getParamTypes(),
369         NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
370     return false;
371   }
372 
373   const auto *OldProto = Old->getType()->castAs<FunctionProtoType>();
374 
375   FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
376   if (ESI.Type == EST_Dynamic) {
377     // FIXME: What if the exceptions are described in terms of the old
378     // prototype's parameters?
379     ESI.Exceptions = OldProto->exceptions();
380   }
381 
382   if (ESI.Type == EST_NoexceptFalse)
383     ESI.Type = EST_None;
384   if (ESI.Type == EST_NoexceptTrue)
385     ESI.Type = EST_BasicNoexcept;
386 
387   // For dependent noexcept, we can't just take the expression from the old
388   // prototype. It likely contains references to the old prototype's parameters.
389   if (ESI.Type == EST_DependentNoexcept) {
390     New->setInvalidDecl();
391   } else {
392     // Update the type of the function with the appropriate exception
393     // specification.
394     New->setType(Context.getFunctionType(
395         NewProto->getReturnType(), NewProto->getParamTypes(),
396         NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
397   }
398 
399   if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
400     DiagID = diag::ext_missing_exception_specification;
401     ReturnValueOnError = false;
402   } else if (New->isReplaceableGlobalAllocationFunction() &&
403              ESI.Type != EST_DependentNoexcept) {
404     // Allow missing exception specifications in redeclarations as an extension,
405     // when declaring a replaceable global allocation function.
406     DiagID = diag::ext_missing_exception_specification;
407     ReturnValueOnError = false;
408   } else if (ESI.Type == EST_NoThrow) {
409     // Don't emit any warning for missing 'nothrow' in MSVC.
410     if (getLangOpts().MSVCCompat) {
411       return false;
412     }
413     // Allow missing attribute 'nothrow' in redeclarations, since this is a very
414     // common omission.
415     DiagID = diag::ext_missing_exception_specification;
416     ReturnValueOnError = false;
417   } else {
418     DiagID = diag::err_missing_exception_specification;
419     ReturnValueOnError = true;
420   }
421 
422   // Warn about the lack of exception specification.
423   SmallString<128> ExceptionSpecString;
424   llvm::raw_svector_ostream OS(ExceptionSpecString);
425   switch (OldProto->getExceptionSpecType()) {
426   case EST_DynamicNone:
427     OS << "throw()";
428     break;
429 
430   case EST_Dynamic: {
431     OS << "throw(";
432     bool OnFirstException = true;
433     for (const auto &E : OldProto->exceptions()) {
434       if (OnFirstException)
435         OnFirstException = false;
436       else
437         OS << ", ";
438 
439       OS << E.getAsString(getPrintingPolicy());
440     }
441     OS << ")";
442     break;
443   }
444 
445   case EST_BasicNoexcept:
446     OS << "noexcept";
447     break;
448 
449   case EST_DependentNoexcept:
450   case EST_NoexceptFalse:
451   case EST_NoexceptTrue:
452     OS << "noexcept(";
453     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
454     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
455     OS << ")";
456     break;
457   case EST_NoThrow:
458     OS <<"__attribute__((nothrow))";
459     break;
460   case EST_None:
461   case EST_MSAny:
462   case EST_Unevaluated:
463   case EST_Uninstantiated:
464   case EST_Unparsed:
465     llvm_unreachable("This spec type is compatible with none.");
466   }
467 
468   SourceLocation FixItLoc;
469   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
470     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
471     // FIXME: Preserve enough information so that we can produce a correct fixit
472     // location when there is a trailing return type.
473     if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
474       if (!FTLoc.getTypePtr()->hasTrailingReturn())
475         FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
476   }
477 
478   if (FixItLoc.isInvalid())
479     Diag(New->getLocation(), DiagID)
480       << New << OS.str();
481   else {
482     Diag(New->getLocation(), DiagID)
483       << New << OS.str()
484       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
485   }
486 
487   if (Old->getLocation().isValid())
488     Diag(Old->getLocation(), diag::note_previous_declaration);
489 
490   return ReturnValueOnError;
491 }
492 
493 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
494 /// exception specifications. Exception specifications are equivalent if
495 /// they allow exactly the same set of exception types. It does not matter how
496 /// that is achieved. See C++ [except.spec]p2.
497 bool Sema::CheckEquivalentExceptionSpec(
498     const FunctionProtoType *Old, SourceLocation OldLoc,
499     const FunctionProtoType *New, SourceLocation NewLoc) {
500   if (!getLangOpts().CXXExceptions)
501     return false;
502 
503   unsigned DiagID = diag::err_mismatched_exception_spec;
504   if (getLangOpts().MSVCCompat)
505     DiagID = diag::ext_mismatched_exception_spec;
506   bool Result = CheckEquivalentExceptionSpecImpl(
507       *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
508       Old, OldLoc, New, NewLoc);
509 
510   // In Microsoft mode, mismatching exception specifications just cause a warning.
511   if (getLangOpts().MSVCCompat)
512     return false;
513   return Result;
514 }
515 
516 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
517 /// exception specifications. See C++ [except.spec]p3.
518 ///
519 /// \return \c false if the exception specifications match, \c true if there is
520 /// a problem. If \c true is returned, either a diagnostic has already been
521 /// produced or \c *MissingExceptionSpecification is set to \c true.
522 static bool CheckEquivalentExceptionSpecImpl(
523     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
524     const FunctionProtoType *Old, SourceLocation OldLoc,
525     const FunctionProtoType *New, SourceLocation NewLoc,
526     bool *MissingExceptionSpecification,
527     bool *MissingEmptyExceptionSpecification,
528     bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
529   if (MissingExceptionSpecification)
530     *MissingExceptionSpecification = false;
531 
532   if (MissingEmptyExceptionSpecification)
533     *MissingEmptyExceptionSpecification = false;
534 
535   Old = S.ResolveExceptionSpec(NewLoc, Old);
536   if (!Old)
537     return false;
538   New = S.ResolveExceptionSpec(NewLoc, New);
539   if (!New)
540     return false;
541 
542   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
543   //   - both are non-throwing, regardless of their form,
544   //   - both have the form noexcept(constant-expression) and the constant-
545   //     expressions are equivalent,
546   //   - both are dynamic-exception-specifications that have the same set of
547   //     adjusted types.
548   //
549   // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
550   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
551   //   constant-expression yields true.
552   //
553   // C++0x [except.spec]p4: If any declaration of a function has an exception-
554   //   specifier that is not a noexcept-specification allowing all exceptions,
555   //   all declarations [...] of that function shall have a compatible
556   //   exception-specification.
557   //
558   // That last point basically means that noexcept(false) matches no spec.
559   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
560 
561   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
562   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
563 
564   assert(!isUnresolvedExceptionSpec(OldEST) &&
565          !isUnresolvedExceptionSpec(NewEST) &&
566          "Shouldn't see unknown exception specifications here");
567 
568   CanThrowResult OldCanThrow = Old->canThrow();
569   CanThrowResult NewCanThrow = New->canThrow();
570 
571   // Any non-throwing specifications are compatible.
572   if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
573     return false;
574 
575   // Any throws-anything specifications are usually compatible.
576   if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
577       NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
578     // The exception is that the absence of an exception specification only
579     // matches noexcept(false) for functions, as described above.
580     if (!AllowNoexceptAllMatchWithNoSpec &&
581         ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
582          (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
583       // This is the disallowed case.
584     } else {
585       return false;
586     }
587   }
588 
589   // C++14 [except.spec]p3:
590   //   Two exception-specifications are compatible if [...] both have the form
591   //   noexcept(constant-expression) and the constant-expressions are equivalent
592   if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
593     llvm::FoldingSetNodeID OldFSN, NewFSN;
594     Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
595     New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
596     if (OldFSN == NewFSN)
597       return false;
598   }
599 
600   // Dynamic exception specifications with the same set of adjusted types
601   // are compatible.
602   if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
603     bool Success = true;
604     // Both have a dynamic exception spec. Collect the first set, then compare
605     // to the second.
606     llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
607     for (const auto &I : Old->exceptions())
608       OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
609 
610     for (const auto &I : New->exceptions()) {
611       CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
612       if (OldTypes.count(TypePtr))
613         NewTypes.insert(TypePtr);
614       else {
615         Success = false;
616         break;
617       }
618     }
619 
620     if (Success && OldTypes.size() == NewTypes.size())
621       return false;
622   }
623 
624   // As a special compatibility feature, under C++0x we accept no spec and
625   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
626   // This is because the implicit declaration changed, but old code would break.
627   if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
628     const FunctionProtoType *WithExceptions = nullptr;
629     if (OldEST == EST_None && NewEST == EST_Dynamic)
630       WithExceptions = New;
631     else if (OldEST == EST_Dynamic && NewEST == EST_None)
632       WithExceptions = Old;
633     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
634       // One has no spec, the other throw(something). If that something is
635       // std::bad_alloc, all conditions are met.
636       QualType Exception = *WithExceptions->exception_begin();
637       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
638         IdentifierInfo* Name = ExRecord->getIdentifier();
639         if (Name && Name->getName() == "bad_alloc") {
640           // It's called bad_alloc, but is it in std?
641           if (ExRecord->isInStdNamespace()) {
642             return false;
643           }
644         }
645       }
646     }
647   }
648 
649   // If the caller wants to handle the case that the new function is
650   // incompatible due to a missing exception specification, let it.
651   if (MissingExceptionSpecification && OldEST != EST_None &&
652       NewEST == EST_None) {
653     // The old type has an exception specification of some sort, but
654     // the new type does not.
655     *MissingExceptionSpecification = true;
656 
657     if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
658       // The old type has a throw() or noexcept(true) exception specification
659       // and the new type has no exception specification, and the caller asked
660       // to handle this itself.
661       *MissingEmptyExceptionSpecification = true;
662     }
663 
664     return true;
665   }
666 
667   S.Diag(NewLoc, DiagID);
668   if (NoteID.getDiagID() != 0 && OldLoc.isValid())
669     S.Diag(OldLoc, NoteID);
670   return true;
671 }
672 
673 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
674                                         const PartialDiagnostic &NoteID,
675                                         const FunctionProtoType *Old,
676                                         SourceLocation OldLoc,
677                                         const FunctionProtoType *New,
678                                         SourceLocation NewLoc) {
679   if (!getLangOpts().CXXExceptions)
680     return false;
681   return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
682                                           New, NewLoc);
683 }
684 
685 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
686   // [except.handle]p3:
687   //   A handler is a match for an exception object of type E if:
688 
689   // HandlerType must be ExceptionType or derived from it, or pointer or
690   // reference to such types.
691   const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
692   if (RefTy)
693     HandlerType = RefTy->getPointeeType();
694 
695   //   -- the handler is of type cv T or cv T& and E and T are the same type
696   if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
697     return true;
698 
699   // FIXME: ObjC pointer types?
700   if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
701     if (RefTy && (!HandlerType.isConstQualified() ||
702                   HandlerType.isVolatileQualified()))
703       return false;
704 
705     // -- the handler is of type cv T or const T& where T is a pointer or
706     //    pointer to member type and E is std::nullptr_t
707     if (ExceptionType->isNullPtrType())
708       return true;
709 
710     // -- the handler is of type cv T or const T& where T is a pointer or
711     //    pointer to member type and E is a pointer or pointer to member type
712     //    that can be converted to T by one or more of
713     //    -- a qualification conversion
714     //    -- a function pointer conversion
715     bool LifetimeConv;
716     QualType Result;
717     // FIXME: Should we treat the exception as catchable if a lifetime
718     // conversion is required?
719     if (IsQualificationConversion(ExceptionType, HandlerType, false,
720                                   LifetimeConv) ||
721         IsFunctionConversion(ExceptionType, HandlerType, Result))
722       return true;
723 
724     //    -- a standard pointer conversion [...]
725     if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
726       return false;
727 
728     // Handle the "qualification conversion" portion.
729     Qualifiers EQuals, HQuals;
730     ExceptionType = Context.getUnqualifiedArrayType(
731         ExceptionType->getPointeeType(), EQuals);
732     HandlerType = Context.getUnqualifiedArrayType(
733         HandlerType->getPointeeType(), HQuals);
734     if (!HQuals.compatiblyIncludes(EQuals))
735       return false;
736 
737     if (HandlerType->isVoidType() && ExceptionType->isObjectType())
738       return true;
739 
740     // The only remaining case is a derived-to-base conversion.
741   }
742 
743   //   -- the handler is of type cg T or cv T& and T is an unambiguous public
744   //      base class of E
745   if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
746     return false;
747   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
748                      /*DetectVirtual=*/false);
749   if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
750       Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
751     return false;
752 
753   // Do this check from a context without privileges.
754   switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
755                                Paths.front(),
756                                /*Diagnostic*/ 0,
757                                /*ForceCheck*/ true,
758                                /*ForceUnprivileged*/ true)) {
759   case AR_accessible: return true;
760   case AR_inaccessible: return false;
761   case AR_dependent:
762     llvm_unreachable("access check dependent for unprivileged context");
763   case AR_delayed:
764     llvm_unreachable("access check delayed in non-declaration");
765   }
766   llvm_unreachable("unexpected access check result");
767 }
768 
769 /// CheckExceptionSpecSubset - Check whether the second function type's
770 /// exception specification is a subset (or equivalent) of the first function
771 /// type. This is used by override and pointer assignment checks.
772 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
773                                     const PartialDiagnostic &NestedDiagID,
774                                     const PartialDiagnostic &NoteID,
775                                     const PartialDiagnostic &NoThrowDiagID,
776                                     const FunctionProtoType *Superset,
777                                     SourceLocation SuperLoc,
778                                     const FunctionProtoType *Subset,
779                                     SourceLocation SubLoc) {
780 
781   // Just auto-succeed under -fno-exceptions.
782   if (!getLangOpts().CXXExceptions)
783     return false;
784 
785   // FIXME: As usual, we could be more specific in our error messages, but
786   // that better waits until we've got types with source locations.
787 
788   if (!SubLoc.isValid())
789     SubLoc = SuperLoc;
790 
791   // Resolve the exception specifications, if needed.
792   Superset = ResolveExceptionSpec(SuperLoc, Superset);
793   if (!Superset)
794     return false;
795   Subset = ResolveExceptionSpec(SubLoc, Subset);
796   if (!Subset)
797     return false;
798 
799   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
800   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
801   assert(!isUnresolvedExceptionSpec(SuperEST) &&
802          !isUnresolvedExceptionSpec(SubEST) &&
803          "Shouldn't see unknown exception specifications here");
804 
805   // If there are dependent noexcept specs, assume everything is fine. Unlike
806   // with the equivalency check, this is safe in this case, because we don't
807   // want to merge declarations. Checks after instantiation will catch any
808   // omissions we make here.
809   if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
810     return false;
811 
812   CanThrowResult SuperCanThrow = Superset->canThrow();
813   CanThrowResult SubCanThrow = Subset->canThrow();
814 
815   // If the superset contains everything or the subset contains nothing, we're
816   // done.
817   if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
818       SubCanThrow == CT_Cannot)
819     return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
820                                    Subset, SubLoc);
821 
822   // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
823   // some cases.
824   if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
825       SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
826     Diag(SubLoc, NoThrowDiagID);
827     if (NoteID.getDiagID() != 0)
828       Diag(SuperLoc, NoteID);
829     return true;
830   }
831 
832   // If the subset contains everything or the superset contains nothing, we've
833   // failed.
834   if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
835       SuperCanThrow == CT_Cannot) {
836     Diag(SubLoc, DiagID);
837     if (NoteID.getDiagID() != 0)
838       Diag(SuperLoc, NoteID);
839     return true;
840   }
841 
842   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
843          "Exception spec subset: non-dynamic case slipped through.");
844 
845   // Neither contains everything or nothing. Do a proper comparison.
846   for (QualType SubI : Subset->exceptions()) {
847     if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
848       SubI = RefTy->getPointeeType();
849 
850     // Make sure it's in the superset.
851     bool Contained = false;
852     for (QualType SuperI : Superset->exceptions()) {
853       // [except.spec]p5:
854       //   the target entity shall allow at least the exceptions allowed by the
855       //   source
856       //
857       // We interpret this as meaning that a handler for some target type would
858       // catch an exception of each source type.
859       if (handlerCanCatch(SuperI, SubI)) {
860         Contained = true;
861         break;
862       }
863     }
864     if (!Contained) {
865       Diag(SubLoc, DiagID);
866       if (NoteID.getDiagID() != 0)
867         Diag(SuperLoc, NoteID);
868       return true;
869     }
870   }
871   // We've run half the gauntlet.
872   return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
873                                  Subset, SubLoc);
874 }
875 
876 static bool
877 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
878                             const PartialDiagnostic &NoteID, QualType Target,
879                             SourceLocation TargetLoc, QualType Source,
880                             SourceLocation SourceLoc) {
881   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
882   if (!TFunc)
883     return false;
884   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
885   if (!SFunc)
886     return false;
887 
888   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
889                                         SFunc, SourceLoc);
890 }
891 
892 /// CheckParamExceptionSpec - Check if the parameter and return types of the
893 /// two functions have equivalent exception specs. This is part of the
894 /// assignment and override compatibility check. We do not check the parameters
895 /// of parameter function pointers recursively, as no sane programmer would
896 /// even be able to write such a function type.
897 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
898                                    const PartialDiagnostic &NoteID,
899                                    const FunctionProtoType *Target,
900                                    SourceLocation TargetLoc,
901                                    const FunctionProtoType *Source,
902                                    SourceLocation SourceLoc) {
903   auto RetDiag = DiagID;
904   RetDiag << 0;
905   if (CheckSpecForTypesEquivalent(
906           *this, RetDiag, PDiag(),
907           Target->getReturnType(), TargetLoc, Source->getReturnType(),
908           SourceLoc))
909     return true;
910 
911   // We shouldn't even be testing this unless the arguments are otherwise
912   // compatible.
913   assert(Target->getNumParams() == Source->getNumParams() &&
914          "Functions have different argument counts.");
915   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
916     auto ParamDiag = DiagID;
917     ParamDiag << 1;
918     if (CheckSpecForTypesEquivalent(
919             *this, ParamDiag, PDiag(),
920             Target->getParamType(i), TargetLoc, Source->getParamType(i),
921             SourceLoc))
922       return true;
923   }
924   return false;
925 }
926 
927 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
928   // First we check for applicability.
929   // Target type must be a function, function pointer or function reference.
930   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
931   if (!ToFunc || ToFunc->hasDependentExceptionSpec())
932     return false;
933 
934   // SourceType must be a function or function pointer.
935   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
936   if (!FromFunc || FromFunc->hasDependentExceptionSpec())
937     return false;
938 
939   unsigned DiagID = diag::err_incompatible_exception_specs;
940   unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
941   // This is not an error in C++17 onwards, unless the noexceptness doesn't
942   // match, but in that case we have a full-on type mismatch, not just a
943   // type sugar mismatch.
944   if (getLangOpts().CPlusPlus17) {
945     DiagID = diag::warn_incompatible_exception_specs;
946     NestedDiagID = diag::warn_deep_exception_specs_differ;
947   }
948 
949   // Now we've got the correct types on both sides, check their compatibility.
950   // This means that the source of the conversion can only throw a subset of
951   // the exceptions of the target, and any exception specs on arguments or
952   // return types must be equivalent.
953   //
954   // FIXME: If there is a nested dependent exception specification, we should
955   // not be checking it here. This is fine:
956   //   template<typename T> void f() {
957   //     void (*p)(void (*) throw(T));
958   //     void (*q)(void (*) throw(int)) = p;
959   //   }
960   // ... because it might be instantiated with T=int.
961   return CheckExceptionSpecSubset(
962              PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
963              From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
964          !getLangOpts().CPlusPlus17;
965 }
966 
967 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
968                                                 const CXXMethodDecl *Old) {
969   // If the new exception specification hasn't been parsed yet, skip the check.
970   // We'll get called again once it's been parsed.
971   if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
972       EST_Unparsed)
973     return false;
974 
975   // Don't check uninstantiated template destructors at all. We can only
976   // synthesize correct specs after the template is instantiated.
977   if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
978     return false;
979 
980   // If the old exception specification hasn't been parsed yet, or the new
981   // exception specification can't be computed yet, remember that we need to
982   // perform this check when we get to the end of the outermost
983   // lexically-surrounding class.
984   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
985     DelayedOverridingExceptionSpecChecks.push_back({New, Old});
986     return false;
987   }
988 
989   unsigned DiagID = diag::err_override_exception_spec;
990   if (getLangOpts().MSVCCompat)
991     DiagID = diag::ext_override_exception_spec;
992   return CheckExceptionSpecSubset(PDiag(DiagID),
993                                   PDiag(diag::err_deep_exception_specs_differ),
994                                   PDiag(diag::note_overridden_virtual_function),
995                                   PDiag(diag::ext_override_exception_spec),
996                                   Old->getType()->castAs<FunctionProtoType>(),
997                                   Old->getLocation(),
998                                   New->getType()->castAs<FunctionProtoType>(),
999                                   New->getLocation());
1000 }
1001 
1002 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
1003   CanThrowResult R = CT_Cannot;
1004   for (const Stmt *SubStmt : S->children()) {
1005     if (!SubStmt)
1006       continue;
1007     R = mergeCanThrow(R, Self.canThrow(SubStmt));
1008     if (R == CT_Can)
1009       break;
1010   }
1011   return R;
1012 }
1013 
1014 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1015                                     SourceLocation Loc) {
1016   // As an extension, we assume that __attribute__((nothrow)) functions don't
1017   // throw.
1018   if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1019     return CT_Cannot;
1020 
1021   QualType T;
1022 
1023   // In C++1z, just look at the function type of the callee.
1024   if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1025     E = cast<CallExpr>(E)->getCallee();
1026     T = E->getType();
1027     if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1028       // Sadly we don't preserve the actual type as part of the "bound member"
1029       // placeholder, so we need to reconstruct it.
1030       E = E->IgnoreParenImpCasts();
1031 
1032       // Could be a call to a pointer-to-member or a plain member access.
1033       if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1034         assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1035         T = Op->getRHS()->getType()
1036               ->castAs<MemberPointerType>()->getPointeeType();
1037       } else {
1038         T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1039       }
1040     }
1041   } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1042     T = VD->getType();
1043   else
1044     // If we have no clue what we're calling, assume the worst.
1045     return CT_Can;
1046 
1047   const FunctionProtoType *FT;
1048   if ((FT = T->getAs<FunctionProtoType>())) {
1049   } else if (const PointerType *PT = T->getAs<PointerType>())
1050     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1051   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1052     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1053   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1054     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1055   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1056     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1057 
1058   if (!FT)
1059     return CT_Can;
1060 
1061   if (Loc.isValid() || (Loc.isInvalid() && E))
1062     FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1063   if (!FT)
1064     return CT_Can;
1065 
1066   return FT->canThrow();
1067 }
1068 
1069 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1070   CanThrowResult CT = CT_Cannot;
1071 
1072   // Initialization might throw.
1073   if (!VD->isUsableInConstantExpressions(Self.Context))
1074     if (const Expr *Init = VD->getInit())
1075       CT = mergeCanThrow(CT, Self.canThrow(Init));
1076 
1077   // Destructor might throw.
1078   if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1079     if (auto *RD =
1080             VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1081       if (auto *Dtor = RD->getDestructor()) {
1082         CT = mergeCanThrow(
1083             CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1084       }
1085     }
1086   }
1087 
1088   // If this is a decomposition declaration, bindings might throw.
1089   if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1090     for (auto *B : DD->bindings())
1091       if (auto *HD = B->getHoldingVar())
1092         CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1093 
1094   return CT;
1095 }
1096 
1097 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1098   if (DC->isTypeDependent())
1099     return CT_Dependent;
1100 
1101   if (!DC->getTypeAsWritten()->isReferenceType())
1102     return CT_Cannot;
1103 
1104   if (DC->getSubExpr()->isTypeDependent())
1105     return CT_Dependent;
1106 
1107   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1108 }
1109 
1110 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1111   if (DC->isTypeOperand())
1112     return CT_Cannot;
1113 
1114   Expr *Op = DC->getExprOperand();
1115   if (Op->isTypeDependent())
1116     return CT_Dependent;
1117 
1118   const RecordType *RT = Op->getType()->getAs<RecordType>();
1119   if (!RT)
1120     return CT_Cannot;
1121 
1122   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1123     return CT_Cannot;
1124 
1125   if (Op->Classify(S.Context).isPRValue())
1126     return CT_Cannot;
1127 
1128   return CT_Can;
1129 }
1130 
1131 CanThrowResult Sema::canThrow(const Stmt *S) {
1132   // C++ [expr.unary.noexcept]p3:
1133   //   [Can throw] if in a potentially-evaluated context the expression would
1134   //   contain:
1135   switch (S->getStmtClass()) {
1136   case Expr::ConstantExprClass:
1137     return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1138 
1139   case Expr::CXXThrowExprClass:
1140     //   - a potentially evaluated throw-expression
1141     return CT_Can;
1142 
1143   case Expr::CXXDynamicCastExprClass: {
1144     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1145     //     where T is a reference type, that requires a run-time check
1146     auto *CE = cast<CXXDynamicCastExpr>(S);
1147     // FIXME: Properly determine whether a variably-modified type can throw.
1148     if (CE->getType()->isVariablyModifiedType())
1149       return CT_Can;
1150     CanThrowResult CT = canDynamicCastThrow(CE);
1151     if (CT == CT_Can)
1152       return CT;
1153     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1154   }
1155 
1156   case Expr::CXXTypeidExprClass:
1157     //   - a potentially evaluated typeid expression applied to a glvalue
1158     //     expression whose type is a polymorphic class type
1159     return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1160 
1161     //   - a potentially evaluated call to a function, member function, function
1162     //     pointer, or member function pointer that does not have a non-throwing
1163     //     exception-specification
1164   case Expr::CallExprClass:
1165   case Expr::CXXMemberCallExprClass:
1166   case Expr::CXXOperatorCallExprClass:
1167   case Expr::UserDefinedLiteralClass: {
1168     const CallExpr *CE = cast<CallExpr>(S);
1169     CanThrowResult CT;
1170     if (CE->isTypeDependent())
1171       CT = CT_Dependent;
1172     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1173       CT = CT_Cannot;
1174     else
1175       CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1176     if (CT == CT_Can)
1177       return CT;
1178     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1179   }
1180 
1181   case Expr::CXXConstructExprClass:
1182   case Expr::CXXTemporaryObjectExprClass: {
1183     auto *CE = cast<CXXConstructExpr>(S);
1184     // FIXME: Properly determine whether a variably-modified type can throw.
1185     if (CE->getType()->isVariablyModifiedType())
1186       return CT_Can;
1187     CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1188     if (CT == CT_Can)
1189       return CT;
1190     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1191   }
1192 
1193   case Expr::CXXInheritedCtorInitExprClass: {
1194     auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1195     return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1196   }
1197 
1198   case Expr::LambdaExprClass: {
1199     const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1200     CanThrowResult CT = CT_Cannot;
1201     for (LambdaExpr::const_capture_init_iterator
1202              Cap = Lambda->capture_init_begin(),
1203              CapEnd = Lambda->capture_init_end();
1204          Cap != CapEnd; ++Cap)
1205       CT = mergeCanThrow(CT, canThrow(*Cap));
1206     return CT;
1207   }
1208 
1209   case Expr::CXXNewExprClass: {
1210     auto *NE = cast<CXXNewExpr>(S);
1211     CanThrowResult CT;
1212     if (NE->isTypeDependent())
1213       CT = CT_Dependent;
1214     else
1215       CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1216     if (CT == CT_Can)
1217       return CT;
1218     return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1219   }
1220 
1221   case Expr::CXXDeleteExprClass: {
1222     auto *DE = cast<CXXDeleteExpr>(S);
1223     CanThrowResult CT;
1224     QualType DTy = DE->getDestroyedType();
1225     if (DTy.isNull() || DTy->isDependentType()) {
1226       CT = CT_Dependent;
1227     } else {
1228       CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1229       if (const RecordType *RT = DTy->getAs<RecordType>()) {
1230         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1231         const CXXDestructorDecl *DD = RD->getDestructor();
1232         if (DD)
1233           CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1234       }
1235       if (CT == CT_Can)
1236         return CT;
1237     }
1238     return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1239   }
1240 
1241   case Expr::CXXBindTemporaryExprClass: {
1242     auto *BTE = cast<CXXBindTemporaryExpr>(S);
1243     // The bound temporary has to be destroyed again, which might throw.
1244     CanThrowResult CT =
1245         canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1246     if (CT == CT_Can)
1247       return CT;
1248     return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1249   }
1250 
1251   case Expr::PseudoObjectExprClass: {
1252     auto *POE = cast<PseudoObjectExpr>(S);
1253     CanThrowResult CT = CT_Cannot;
1254     for (const Expr *E : POE->semantics()) {
1255       CT = mergeCanThrow(CT, canThrow(E));
1256       if (CT == CT_Can)
1257         break;
1258     }
1259     return CT;
1260   }
1261 
1262     // ObjC message sends are like function calls, but never have exception
1263     // specs.
1264   case Expr::ObjCMessageExprClass:
1265   case Expr::ObjCPropertyRefExprClass:
1266   case Expr::ObjCSubscriptRefExprClass:
1267     return CT_Can;
1268 
1269     // All the ObjC literals that are implemented as calls are
1270     // potentially throwing unless we decide to close off that
1271     // possibility.
1272   case Expr::ObjCArrayLiteralClass:
1273   case Expr::ObjCDictionaryLiteralClass:
1274   case Expr::ObjCBoxedExprClass:
1275     return CT_Can;
1276 
1277     // Many other things have subexpressions, so we have to test those.
1278     // Some are simple:
1279   case Expr::CoawaitExprClass:
1280   case Expr::ConditionalOperatorClass:
1281   case Expr::CoyieldExprClass:
1282   case Expr::CXXRewrittenBinaryOperatorClass:
1283   case Expr::CXXStdInitializerListExprClass:
1284   case Expr::DesignatedInitExprClass:
1285   case Expr::DesignatedInitUpdateExprClass:
1286   case Expr::ExprWithCleanupsClass:
1287   case Expr::ExtVectorElementExprClass:
1288   case Expr::InitListExprClass:
1289   case Expr::ArrayInitLoopExprClass:
1290   case Expr::MemberExprClass:
1291   case Expr::ObjCIsaExprClass:
1292   case Expr::ObjCIvarRefExprClass:
1293   case Expr::ParenExprClass:
1294   case Expr::ParenListExprClass:
1295   case Expr::ShuffleVectorExprClass:
1296   case Expr::StmtExprClass:
1297   case Expr::ConvertVectorExprClass:
1298   case Expr::VAArgExprClass:
1299   case Expr::CXXParenListInitExprClass:
1300     return canSubStmtsThrow(*this, S);
1301 
1302   case Expr::CompoundLiteralExprClass:
1303   case Expr::CXXConstCastExprClass:
1304   case Expr::CXXAddrspaceCastExprClass:
1305   case Expr::CXXReinterpretCastExprClass:
1306   case Expr::BuiltinBitCastExprClass:
1307       // FIXME: Properly determine whether a variably-modified type can throw.
1308     if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1309       return CT_Can;
1310     return canSubStmtsThrow(*this, S);
1311 
1312     // Some might be dependent for other reasons.
1313   case Expr::ArraySubscriptExprClass:
1314   case Expr::MatrixSubscriptExprClass:
1315   case Expr::OMPArraySectionExprClass:
1316   case Expr::OMPArrayShapingExprClass:
1317   case Expr::OMPIteratorExprClass:
1318   case Expr::BinaryOperatorClass:
1319   case Expr::DependentCoawaitExprClass:
1320   case Expr::CompoundAssignOperatorClass:
1321   case Expr::CStyleCastExprClass:
1322   case Expr::CXXStaticCastExprClass:
1323   case Expr::CXXFunctionalCastExprClass:
1324   case Expr::ImplicitCastExprClass:
1325   case Expr::MaterializeTemporaryExprClass:
1326   case Expr::UnaryOperatorClass: {
1327     // FIXME: Properly determine whether a variably-modified type can throw.
1328     if (auto *CE = dyn_cast<CastExpr>(S))
1329       if (CE->getType()->isVariablyModifiedType())
1330         return CT_Can;
1331     CanThrowResult CT =
1332         cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1333     return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1334   }
1335 
1336   case Expr::CXXDefaultArgExprClass:
1337     return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1338 
1339   case Expr::CXXDefaultInitExprClass:
1340     return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1341 
1342   case Expr::ChooseExprClass: {
1343     auto *CE = cast<ChooseExpr>(S);
1344     if (CE->isTypeDependent() || CE->isValueDependent())
1345       return CT_Dependent;
1346     return canThrow(CE->getChosenSubExpr());
1347   }
1348 
1349   case Expr::GenericSelectionExprClass:
1350     if (cast<GenericSelectionExpr>(S)->isResultDependent())
1351       return CT_Dependent;
1352     return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1353 
1354     // Some expressions are always dependent.
1355   case Expr::CXXDependentScopeMemberExprClass:
1356   case Expr::CXXUnresolvedConstructExprClass:
1357   case Expr::DependentScopeDeclRefExprClass:
1358   case Expr::CXXFoldExprClass:
1359   case Expr::RecoveryExprClass:
1360     return CT_Dependent;
1361 
1362   case Expr::AsTypeExprClass:
1363   case Expr::BinaryConditionalOperatorClass:
1364   case Expr::BlockExprClass:
1365   case Expr::CUDAKernelCallExprClass:
1366   case Expr::DeclRefExprClass:
1367   case Expr::ObjCBridgedCastExprClass:
1368   case Expr::ObjCIndirectCopyRestoreExprClass:
1369   case Expr::ObjCProtocolExprClass:
1370   case Expr::ObjCSelectorExprClass:
1371   case Expr::ObjCAvailabilityCheckExprClass:
1372   case Expr::OffsetOfExprClass:
1373   case Expr::PackExpansionExprClass:
1374   case Expr::SubstNonTypeTemplateParmExprClass:
1375   case Expr::SubstNonTypeTemplateParmPackExprClass:
1376   case Expr::FunctionParmPackExprClass:
1377   case Expr::UnaryExprOrTypeTraitExprClass:
1378   case Expr::UnresolvedLookupExprClass:
1379   case Expr::UnresolvedMemberExprClass:
1380   case Expr::TypoExprClass:
1381     // FIXME: Many of the above can throw.
1382     return CT_Cannot;
1383 
1384   case Expr::AddrLabelExprClass:
1385   case Expr::ArrayTypeTraitExprClass:
1386   case Expr::AtomicExprClass:
1387   case Expr::TypeTraitExprClass:
1388   case Expr::CXXBoolLiteralExprClass:
1389   case Expr::CXXNoexceptExprClass:
1390   case Expr::CXXNullPtrLiteralExprClass:
1391   case Expr::CXXPseudoDestructorExprClass:
1392   case Expr::CXXScalarValueInitExprClass:
1393   case Expr::CXXThisExprClass:
1394   case Expr::CXXUuidofExprClass:
1395   case Expr::CharacterLiteralClass:
1396   case Expr::ExpressionTraitExprClass:
1397   case Expr::FloatingLiteralClass:
1398   case Expr::GNUNullExprClass:
1399   case Expr::ImaginaryLiteralClass:
1400   case Expr::ImplicitValueInitExprClass:
1401   case Expr::IntegerLiteralClass:
1402   case Expr::FixedPointLiteralClass:
1403   case Expr::ArrayInitIndexExprClass:
1404   case Expr::NoInitExprClass:
1405   case Expr::ObjCEncodeExprClass:
1406   case Expr::ObjCStringLiteralClass:
1407   case Expr::ObjCBoolLiteralExprClass:
1408   case Expr::OpaqueValueExprClass:
1409   case Expr::PredefinedExprClass:
1410   case Expr::SizeOfPackExprClass:
1411   case Expr::StringLiteralClass:
1412   case Expr::SourceLocExprClass:
1413   case Expr::ConceptSpecializationExprClass:
1414   case Expr::RequiresExprClass:
1415     // These expressions can never throw.
1416     return CT_Cannot;
1417 
1418   case Expr::MSPropertyRefExprClass:
1419   case Expr::MSPropertySubscriptExprClass:
1420     llvm_unreachable("Invalid class for expression");
1421 
1422     // Most statements can throw if any substatement can throw.
1423   case Stmt::AttributedStmtClass:
1424   case Stmt::BreakStmtClass:
1425   case Stmt::CapturedStmtClass:
1426   case Stmt::CaseStmtClass:
1427   case Stmt::CompoundStmtClass:
1428   case Stmt::ContinueStmtClass:
1429   case Stmt::CoreturnStmtClass:
1430   case Stmt::CoroutineBodyStmtClass:
1431   case Stmt::CXXCatchStmtClass:
1432   case Stmt::CXXForRangeStmtClass:
1433   case Stmt::DefaultStmtClass:
1434   case Stmt::DoStmtClass:
1435   case Stmt::ForStmtClass:
1436   case Stmt::GCCAsmStmtClass:
1437   case Stmt::GotoStmtClass:
1438   case Stmt::IndirectGotoStmtClass:
1439   case Stmt::LabelStmtClass:
1440   case Stmt::MSAsmStmtClass:
1441   case Stmt::MSDependentExistsStmtClass:
1442   case Stmt::NullStmtClass:
1443   case Stmt::ObjCAtCatchStmtClass:
1444   case Stmt::ObjCAtFinallyStmtClass:
1445   case Stmt::ObjCAtSynchronizedStmtClass:
1446   case Stmt::ObjCAutoreleasePoolStmtClass:
1447   case Stmt::ObjCForCollectionStmtClass:
1448   case Stmt::OMPAtomicDirectiveClass:
1449   case Stmt::OMPBarrierDirectiveClass:
1450   case Stmt::OMPCancelDirectiveClass:
1451   case Stmt::OMPCancellationPointDirectiveClass:
1452   case Stmt::OMPCriticalDirectiveClass:
1453   case Stmt::OMPDistributeDirectiveClass:
1454   case Stmt::OMPDistributeParallelForDirectiveClass:
1455   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1456   case Stmt::OMPDistributeSimdDirectiveClass:
1457   case Stmt::OMPFlushDirectiveClass:
1458   case Stmt::OMPDepobjDirectiveClass:
1459   case Stmt::OMPScanDirectiveClass:
1460   case Stmt::OMPForDirectiveClass:
1461   case Stmt::OMPForSimdDirectiveClass:
1462   case Stmt::OMPMasterDirectiveClass:
1463   case Stmt::OMPMasterTaskLoopDirectiveClass:
1464   case Stmt::OMPMaskedTaskLoopDirectiveClass:
1465   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1466   case Stmt::OMPMaskedTaskLoopSimdDirectiveClass:
1467   case Stmt::OMPOrderedDirectiveClass:
1468   case Stmt::OMPCanonicalLoopClass:
1469   case Stmt::OMPParallelDirectiveClass:
1470   case Stmt::OMPParallelForDirectiveClass:
1471   case Stmt::OMPParallelForSimdDirectiveClass:
1472   case Stmt::OMPParallelMasterDirectiveClass:
1473   case Stmt::OMPParallelMaskedDirectiveClass:
1474   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1475   case Stmt::OMPParallelMaskedTaskLoopDirectiveClass:
1476   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1477   case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass:
1478   case Stmt::OMPParallelSectionsDirectiveClass:
1479   case Stmt::OMPSectionDirectiveClass:
1480   case Stmt::OMPSectionsDirectiveClass:
1481   case Stmt::OMPSimdDirectiveClass:
1482   case Stmt::OMPTileDirectiveClass:
1483   case Stmt::OMPUnrollDirectiveClass:
1484   case Stmt::OMPSingleDirectiveClass:
1485   case Stmt::OMPTargetDataDirectiveClass:
1486   case Stmt::OMPTargetDirectiveClass:
1487   case Stmt::OMPTargetEnterDataDirectiveClass:
1488   case Stmt::OMPTargetExitDataDirectiveClass:
1489   case Stmt::OMPTargetParallelDirectiveClass:
1490   case Stmt::OMPTargetParallelForDirectiveClass:
1491   case Stmt::OMPTargetParallelForSimdDirectiveClass:
1492   case Stmt::OMPTargetSimdDirectiveClass:
1493   case Stmt::OMPTargetTeamsDirectiveClass:
1494   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1495   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1496   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1497   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1498   case Stmt::OMPTargetUpdateDirectiveClass:
1499   case Stmt::OMPTaskDirectiveClass:
1500   case Stmt::OMPTaskgroupDirectiveClass:
1501   case Stmt::OMPTaskLoopDirectiveClass:
1502   case Stmt::OMPTaskLoopSimdDirectiveClass:
1503   case Stmt::OMPTaskwaitDirectiveClass:
1504   case Stmt::OMPTaskyieldDirectiveClass:
1505   case Stmt::OMPErrorDirectiveClass:
1506   case Stmt::OMPTeamsDirectiveClass:
1507   case Stmt::OMPTeamsDistributeDirectiveClass:
1508   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1509   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1510   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1511   case Stmt::OMPInteropDirectiveClass:
1512   case Stmt::OMPDispatchDirectiveClass:
1513   case Stmt::OMPMaskedDirectiveClass:
1514   case Stmt::OMPMetaDirectiveClass:
1515   case Stmt::OMPGenericLoopDirectiveClass:
1516   case Stmt::OMPTeamsGenericLoopDirectiveClass:
1517   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
1518   case Stmt::OMPParallelGenericLoopDirectiveClass:
1519   case Stmt::OMPTargetParallelGenericLoopDirectiveClass:
1520   case Stmt::ReturnStmtClass:
1521   case Stmt::SEHExceptStmtClass:
1522   case Stmt::SEHFinallyStmtClass:
1523   case Stmt::SEHLeaveStmtClass:
1524   case Stmt::SEHTryStmtClass:
1525   case Stmt::SwitchStmtClass:
1526   case Stmt::WhileStmtClass:
1527     return canSubStmtsThrow(*this, S);
1528 
1529   case Stmt::DeclStmtClass: {
1530     CanThrowResult CT = CT_Cannot;
1531     for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1532       if (auto *VD = dyn_cast<VarDecl>(D))
1533         CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1534 
1535       // FIXME: Properly determine whether a variably-modified type can throw.
1536       if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1537         if (TND->getUnderlyingType()->isVariablyModifiedType())
1538           return CT_Can;
1539       if (auto *VD = dyn_cast<ValueDecl>(D))
1540         if (VD->getType()->isVariablyModifiedType())
1541           return CT_Can;
1542     }
1543     return CT;
1544   }
1545 
1546   case Stmt::IfStmtClass: {
1547     auto *IS = cast<IfStmt>(S);
1548     CanThrowResult CT = CT_Cannot;
1549     if (const Stmt *Init = IS->getInit())
1550       CT = mergeCanThrow(CT, canThrow(Init));
1551     if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1552       CT = mergeCanThrow(CT, canThrow(CondDS));
1553     CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1554 
1555     // For 'if constexpr', consider only the non-discarded case.
1556     // FIXME: We should add a DiscardedStmt marker to the AST.
1557     if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1558       return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1559 
1560     CanThrowResult Then = canThrow(IS->getThen());
1561     CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1562     if (Then == Else)
1563       return mergeCanThrow(CT, Then);
1564 
1565     // For a dependent 'if constexpr', the result is dependent if it depends on
1566     // the value of the condition.
1567     return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1568                                                : mergeCanThrow(Then, Else));
1569   }
1570 
1571   case Stmt::CXXTryStmtClass: {
1572     auto *TS = cast<CXXTryStmt>(S);
1573     // try /*...*/ catch (...) { H } can throw only if H can throw.
1574     // Any other try-catch can throw if any substatement can throw.
1575     const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1576     if (!FinalHandler->getExceptionDecl())
1577       return canThrow(FinalHandler->getHandlerBlock());
1578     return canSubStmtsThrow(*this, S);
1579   }
1580 
1581   case Stmt::ObjCAtThrowStmtClass:
1582     return CT_Can;
1583 
1584   case Stmt::ObjCAtTryStmtClass: {
1585     auto *TS = cast<ObjCAtTryStmt>(S);
1586 
1587     // @catch(...) need not be last in Objective-C. Walk backwards until we
1588     // see one or hit the @try.
1589     CanThrowResult CT = CT_Cannot;
1590     if (const Stmt *Finally = TS->getFinallyStmt())
1591       CT = mergeCanThrow(CT, canThrow(Finally));
1592     for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1593       const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1594       CT = mergeCanThrow(CT, canThrow(Catch));
1595       // If we reach a @catch(...), no earlier exceptions can escape.
1596       if (Catch->hasEllipsis())
1597         return CT;
1598     }
1599 
1600     // Didn't find an @catch(...). Exceptions from the @try body can escape.
1601     return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1602   }
1603 
1604   case Stmt::SYCLUniqueStableNameExprClass:
1605     return CT_Cannot;
1606   case Stmt::NoStmtClass:
1607     llvm_unreachable("Invalid class for statement");
1608   }
1609   llvm_unreachable("Bogus StmtClass");
1610 }
1611 
1612 } // end namespace clang
1613