1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/LiteralSupport.h"
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Sema/AnalysisBasedWarnings.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Designator.h"
44 #include "clang/Sema/EnterExpressionEvaluationContext.h"
45 #include "clang/Sema/Initialization.h"
46 #include "clang/Sema/Lookup.h"
47 #include "clang/Sema/Overload.h"
48 #include "clang/Sema/ParsedTemplate.h"
49 #include "clang/Sema/Scope.h"
50 #include "clang/Sema/ScopeInfo.h"
51 #include "clang/Sema/SemaFixItUtils.h"
52 #include "clang/Sema/SemaInternal.h"
53 #include "clang/Sema/Template.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/ConvertUTF.h"
58 #include "llvm/Support/SaveAndRestore.h"
59 #include "llvm/Support/TypeSize.h"
60 #include <optional>
61 
62 using namespace clang;
63 using namespace sema;
64 
65 /// Determine whether the use of this declaration is valid, without
66 /// emitting diagnostics.
67 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
68   // See if this is an auto-typed variable whose initializer we are parsing.
69   if (ParsingInitForAutoVars.count(D))
70     return false;
71 
72   // See if this is a deleted function.
73   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
74     if (FD->isDeleted())
75       return false;
76 
77     // If the function has a deduced return type, and we can't deduce it,
78     // then we can't use it either.
79     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
80         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
81       return false;
82 
83     // See if this is an aligned allocation/deallocation function that is
84     // unavailable.
85     if (TreatUnavailableAsInvalid &&
86         isUnavailableAlignedAllocationFunction(*FD))
87       return false;
88   }
89 
90   // See if this function is unavailable.
91   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
92       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
93     return false;
94 
95   if (isa<UnresolvedUsingIfExistsDecl>(D))
96     return false;
97 
98   return true;
99 }
100 
101 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
102   // Warn if this is used but marked unused.
103   if (const auto *A = D->getAttr<UnusedAttr>()) {
104     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
105     // should diagnose them.
106     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
107         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
108       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
109       if (DC && !DC->hasAttr<UnusedAttr>())
110         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
111     }
112   }
113 }
114 
115 /// Emit a note explaining that this function is deleted.
116 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
117   assert(Decl && Decl->isDeleted());
118 
119   if (Decl->isDefaulted()) {
120     // If the method was explicitly defaulted, point at that declaration.
121     if (!Decl->isImplicit())
122       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
123 
124     // Try to diagnose why this special member function was implicitly
125     // deleted. This might fail, if that reason no longer applies.
126     DiagnoseDeletedDefaultedFunction(Decl);
127     return;
128   }
129 
130   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
131   if (Ctor && Ctor->isInheritingConstructor())
132     return NoteDeletedInheritingConstructor(Ctor);
133 
134   Diag(Decl->getLocation(), diag::note_availability_specified_here)
135     << Decl << 1;
136 }
137 
138 /// Determine whether a FunctionDecl was ever declared with an
139 /// explicit storage class.
140 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
141   for (auto *I : D->redecls()) {
142     if (I->getStorageClass() != SC_None)
143       return true;
144   }
145   return false;
146 }
147 
148 /// Check whether we're in an extern inline function and referring to a
149 /// variable or function with internal linkage (C11 6.7.4p3).
150 ///
151 /// This is only a warning because we used to silently accept this code, but
152 /// in many cases it will not behave correctly. This is not enabled in C++ mode
153 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
154 /// and so while there may still be user mistakes, most of the time we can't
155 /// prove that there are errors.
156 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
157                                                       const NamedDecl *D,
158                                                       SourceLocation Loc) {
159   // This is disabled under C++; there are too many ways for this to fire in
160   // contexts where the warning is a false positive, or where it is technically
161   // correct but benign.
162   if (S.getLangOpts().CPlusPlus)
163     return;
164 
165   // Check if this is an inlined function or method.
166   FunctionDecl *Current = S.getCurFunctionDecl();
167   if (!Current)
168     return;
169   if (!Current->isInlined())
170     return;
171   if (!Current->isExternallyVisible())
172     return;
173 
174   // Check if the decl has internal linkage.
175   if (D->getFormalLinkage() != InternalLinkage)
176     return;
177 
178   // Downgrade from ExtWarn to Extension if
179   //  (1) the supposedly external inline function is in the main file,
180   //      and probably won't be included anywhere else.
181   //  (2) the thing we're referencing is a pure function.
182   //  (3) the thing we're referencing is another inline function.
183   // This last can give us false negatives, but it's better than warning on
184   // wrappers for simple C library functions.
185   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
186   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
187   if (!DowngradeWarning && UsedFn)
188     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
189 
190   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
191                                : diag::ext_internal_in_extern_inline)
192     << /*IsVar=*/!UsedFn << D;
193 
194   S.MaybeSuggestAddingStaticToDecl(Current);
195 
196   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
197       << D;
198 }
199 
200 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
201   const FunctionDecl *First = Cur->getFirstDecl();
202 
203   // Suggest "static" on the function, if possible.
204   if (!hasAnyExplicitStorageClass(First)) {
205     SourceLocation DeclBegin = First->getSourceRange().getBegin();
206     Diag(DeclBegin, diag::note_convert_inline_to_static)
207       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
208   }
209 }
210 
211 /// Determine whether the use of this declaration is valid, and
212 /// emit any corresponding diagnostics.
213 ///
214 /// This routine diagnoses various problems with referencing
215 /// declarations that can occur when using a declaration. For example,
216 /// it might warn if a deprecated or unavailable declaration is being
217 /// used, or produce an error (and return true) if a C++0x deleted
218 /// function is being used.
219 ///
220 /// \returns true if there was an error (this declaration cannot be
221 /// referenced), false otherwise.
222 ///
223 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
224                              const ObjCInterfaceDecl *UnknownObjCClass,
225                              bool ObjCPropertyAccess,
226                              bool AvoidPartialAvailabilityChecks,
227                              ObjCInterfaceDecl *ClassReceiver,
228                              bool SkipTrailingRequiresClause) {
229   SourceLocation Loc = Locs.front();
230   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
231     // If there were any diagnostics suppressed by template argument deduction,
232     // emit them now.
233     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
234     if (Pos != SuppressedDiagnostics.end()) {
235       for (const PartialDiagnosticAt &Suppressed : Pos->second)
236         Diag(Suppressed.first, Suppressed.second);
237 
238       // Clear out the list of suppressed diagnostics, so that we don't emit
239       // them again for this specialization. However, we don't obsolete this
240       // entry from the table, because we want to avoid ever emitting these
241       // diagnostics again.
242       Pos->second.clear();
243     }
244 
245     // C++ [basic.start.main]p3:
246     //   The function 'main' shall not be used within a program.
247     if (cast<FunctionDecl>(D)->isMain())
248       Diag(Loc, diag::ext_main_used);
249 
250     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
251   }
252 
253   // See if this is an auto-typed variable whose initializer we are parsing.
254   if (ParsingInitForAutoVars.count(D)) {
255     if (isa<BindingDecl>(D)) {
256       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
257         << D->getDeclName();
258     } else {
259       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
260         << D->getDeclName() << cast<VarDecl>(D)->getType();
261     }
262     return true;
263   }
264 
265   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
266     // See if this is a deleted function.
267     if (FD->isDeleted()) {
268       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
269       if (Ctor && Ctor->isInheritingConstructor())
270         Diag(Loc, diag::err_deleted_inherited_ctor_use)
271             << Ctor->getParent()
272             << Ctor->getInheritedConstructor().getConstructor()->getParent();
273       else
274         Diag(Loc, diag::err_deleted_function_use);
275       NoteDeletedFunction(FD);
276       return true;
277     }
278 
279     // [expr.prim.id]p4
280     //   A program that refers explicitly or implicitly to a function with a
281     //   trailing requires-clause whose constraint-expression is not satisfied,
282     //   other than to declare it, is ill-formed. [...]
283     //
284     // See if this is a function with constraints that need to be satisfied.
285     // Check this before deducing the return type, as it might instantiate the
286     // definition.
287     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
288       ConstraintSatisfaction Satisfaction;
289       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
290                                    /*ForOverloadResolution*/ true))
291         // A diagnostic will have already been generated (non-constant
292         // constraint expression, for example)
293         return true;
294       if (!Satisfaction.IsSatisfied) {
295         Diag(Loc,
296              diag::err_reference_to_function_with_unsatisfied_constraints)
297             << D;
298         DiagnoseUnsatisfiedConstraint(Satisfaction);
299         return true;
300       }
301     }
302 
303     // If the function has a deduced return type, and we can't deduce it,
304     // then we can't use it either.
305     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
306         DeduceReturnType(FD, Loc))
307       return true;
308 
309     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
310       return true;
311 
312   }
313 
314   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
315     // Lambdas are only default-constructible or assignable in C++2a onwards.
316     if (MD->getParent()->isLambda() &&
317         ((isa<CXXConstructorDecl>(MD) &&
318           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
319          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
320       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
321         << !isa<CXXConstructorDecl>(MD);
322     }
323   }
324 
325   auto getReferencedObjCProp = [](const NamedDecl *D) ->
326                                       const ObjCPropertyDecl * {
327     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
328       return MD->findPropertyDecl();
329     return nullptr;
330   };
331   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
332     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
333       return true;
334   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
335       return true;
336   }
337 
338   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
339   // Only the variables omp_in and omp_out are allowed in the combiner.
340   // Only the variables omp_priv and omp_orig are allowed in the
341   // initializer-clause.
342   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
343   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
344       isa<VarDecl>(D)) {
345     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
346         << getCurFunction()->HasOMPDeclareReductionCombiner;
347     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
348     return true;
349   }
350 
351   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
352   //  List-items in map clauses on this construct may only refer to the declared
353   //  variable var and entities that could be referenced by a procedure defined
354   //  at the same location.
355   // [OpenMP 5.2] Also allow iterator declared variables.
356   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
357       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
358     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
359         << getOpenMPDeclareMapperVarName();
360     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
361     return true;
362   }
363 
364   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
365     Diag(Loc, diag::err_use_of_empty_using_if_exists);
366     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
367     return true;
368   }
369 
370   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
371                              AvoidPartialAvailabilityChecks, ClassReceiver);
372 
373   DiagnoseUnusedOfDecl(*this, D, Loc);
374 
375   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
376 
377   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
378     if (getLangOpts().getFPEvalMethod() !=
379             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
380         PP.getLastFPEvalPragmaLocation().isValid() &&
381         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
382       Diag(D->getLocation(),
383            diag::err_type_available_only_in_default_eval_method)
384           << D->getName();
385   }
386 
387   if (auto *VD = dyn_cast<ValueDecl>(D))
388     checkTypeSupport(VD->getType(), Loc, VD);
389 
390   if (LangOpts.SYCLIsDevice ||
391       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
392     if (!Context.getTargetInfo().isTLSSupported())
393       if (const auto *VD = dyn_cast<VarDecl>(D))
394         if (VD->getTLSKind() != VarDecl::TLS_None)
395           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
396   }
397 
398   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
399       !isUnevaluatedContext()) {
400     // C++ [expr.prim.req.nested] p3
401     //   A local parameter shall only appear as an unevaluated operand
402     //   (Clause 8) within the constraint-expression.
403     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
404         << D;
405     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
406     return true;
407   }
408 
409   return false;
410 }
411 
412 /// DiagnoseSentinelCalls - This routine checks whether a call or
413 /// message-send is to a declaration with the sentinel attribute, and
414 /// if so, it checks that the requirements of the sentinel are
415 /// satisfied.
416 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
417                                  ArrayRef<Expr *> Args) {
418   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
419   if (!attr)
420     return;
421 
422   // The number of formal parameters of the declaration.
423   unsigned numFormalParams;
424 
425   // The kind of declaration.  This is also an index into a %select in
426   // the diagnostic.
427   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
428 
429   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
430     numFormalParams = MD->param_size();
431     calleeType = CT_Method;
432   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
433     numFormalParams = FD->param_size();
434     calleeType = CT_Function;
435   } else if (isa<VarDecl>(D)) {
436     QualType type = cast<ValueDecl>(D)->getType();
437     const FunctionType *fn = nullptr;
438     if (const PointerType *ptr = type->getAs<PointerType>()) {
439       fn = ptr->getPointeeType()->getAs<FunctionType>();
440       if (!fn) return;
441       calleeType = CT_Function;
442     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
443       fn = ptr->getPointeeType()->castAs<FunctionType>();
444       calleeType = CT_Block;
445     } else {
446       return;
447     }
448 
449     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
450       numFormalParams = proto->getNumParams();
451     } else {
452       numFormalParams = 0;
453     }
454   } else {
455     return;
456   }
457 
458   // "nullPos" is the number of formal parameters at the end which
459   // effectively count as part of the variadic arguments.  This is
460   // useful if you would prefer to not have *any* formal parameters,
461   // but the language forces you to have at least one.
462   unsigned nullPos = attr->getNullPos();
463   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
464   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
465 
466   // The number of arguments which should follow the sentinel.
467   unsigned numArgsAfterSentinel = attr->getSentinel();
468 
469   // If there aren't enough arguments for all the formal parameters,
470   // the sentinel, and the args after the sentinel, complain.
471   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
472     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
473     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
474     return;
475   }
476 
477   // Otherwise, find the sentinel expression.
478   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
479   if (!sentinelExpr) return;
480   if (sentinelExpr->isValueDependent()) return;
481   if (Context.isSentinelNullExpr(sentinelExpr)) return;
482 
483   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
484   // or 'NULL' if those are actually defined in the context.  Only use
485   // 'nil' for ObjC methods, where it's much more likely that the
486   // variadic arguments form a list of object pointers.
487   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
488   std::string NullValue;
489   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
490     NullValue = "nil";
491   else if (getLangOpts().CPlusPlus11)
492     NullValue = "nullptr";
493   else if (PP.isMacroDefined("NULL"))
494     NullValue = "NULL";
495   else
496     NullValue = "(void*) 0";
497 
498   if (MissingNilLoc.isInvalid())
499     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
500   else
501     Diag(MissingNilLoc, diag::warn_missing_sentinel)
502       << int(calleeType)
503       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
504   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
505 }
506 
507 SourceRange Sema::getExprRange(Expr *E) const {
508   return E ? E->getSourceRange() : SourceRange();
509 }
510 
511 //===----------------------------------------------------------------------===//
512 //  Standard Promotions and Conversions
513 //===----------------------------------------------------------------------===//
514 
515 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
516 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
517   // Handle any placeholder expressions which made it here.
518   if (E->hasPlaceholderType()) {
519     ExprResult result = CheckPlaceholderExpr(E);
520     if (result.isInvalid()) return ExprError();
521     E = result.get();
522   }
523 
524   QualType Ty = E->getType();
525   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
526 
527   if (Ty->isFunctionType()) {
528     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
529       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
530         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
531           return ExprError();
532 
533     E = ImpCastExprToType(E, Context.getPointerType(Ty),
534                           CK_FunctionToPointerDecay).get();
535   } else if (Ty->isArrayType()) {
536     // In C90 mode, arrays only promote to pointers if the array expression is
537     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
538     // type 'array of type' is converted to an expression that has type 'pointer
539     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
540     // that has type 'array of type' ...".  The relevant change is "an lvalue"
541     // (C90) to "an expression" (C99).
542     //
543     // C++ 4.2p1:
544     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
545     // T" can be converted to an rvalue of type "pointer to T".
546     //
547     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
548       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
549                                          CK_ArrayToPointerDecay);
550       if (Res.isInvalid())
551         return ExprError();
552       E = Res.get();
553     }
554   }
555   return E;
556 }
557 
558 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
559   // Check to see if we are dereferencing a null pointer.  If so,
560   // and if not volatile-qualified, this is undefined behavior that the
561   // optimizer will delete, so warn about it.  People sometimes try to use this
562   // to get a deterministic trap and are surprised by clang's behavior.  This
563   // only handles the pattern "*null", which is a very syntactic check.
564   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
565   if (UO && UO->getOpcode() == UO_Deref &&
566       UO->getSubExpr()->getType()->isPointerType()) {
567     const LangAS AS =
568         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
569     if ((!isTargetAddressSpace(AS) ||
570          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
571         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
572             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
573         !UO->getType().isVolatileQualified()) {
574       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
575                             S.PDiag(diag::warn_indirection_through_null)
576                                 << UO->getSubExpr()->getSourceRange());
577       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
578                             S.PDiag(diag::note_indirection_through_null));
579     }
580   }
581 }
582 
583 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
584                                     SourceLocation AssignLoc,
585                                     const Expr* RHS) {
586   const ObjCIvarDecl *IV = OIRE->getDecl();
587   if (!IV)
588     return;
589 
590   DeclarationName MemberName = IV->getDeclName();
591   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
592   if (!Member || !Member->isStr("isa"))
593     return;
594 
595   const Expr *Base = OIRE->getBase();
596   QualType BaseType = Base->getType();
597   if (OIRE->isArrow())
598     BaseType = BaseType->getPointeeType();
599   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
600     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
601       ObjCInterfaceDecl *ClassDeclared = nullptr;
602       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
603       if (!ClassDeclared->getSuperClass()
604           && (*ClassDeclared->ivar_begin()) == IV) {
605         if (RHS) {
606           NamedDecl *ObjectSetClass =
607             S.LookupSingleName(S.TUScope,
608                                &S.Context.Idents.get("object_setClass"),
609                                SourceLocation(), S.LookupOrdinaryName);
610           if (ObjectSetClass) {
611             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
612             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
613                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
614                                               "object_setClass(")
615                 << FixItHint::CreateReplacement(
616                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
617                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
618           }
619           else
620             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
621         } else {
622           NamedDecl *ObjectGetClass =
623             S.LookupSingleName(S.TUScope,
624                                &S.Context.Idents.get("object_getClass"),
625                                SourceLocation(), S.LookupOrdinaryName);
626           if (ObjectGetClass)
627             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
628                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
629                                               "object_getClass(")
630                 << FixItHint::CreateReplacement(
631                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
632           else
633             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
634         }
635         S.Diag(IV->getLocation(), diag::note_ivar_decl);
636       }
637     }
638 }
639 
640 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
641   // Handle any placeholder expressions which made it here.
642   if (E->hasPlaceholderType()) {
643     ExprResult result = CheckPlaceholderExpr(E);
644     if (result.isInvalid()) return ExprError();
645     E = result.get();
646   }
647 
648   // C++ [conv.lval]p1:
649   //   A glvalue of a non-function, non-array type T can be
650   //   converted to a prvalue.
651   if (!E->isGLValue()) return E;
652 
653   QualType T = E->getType();
654   assert(!T.isNull() && "r-value conversion on typeless expression?");
655 
656   // lvalue-to-rvalue conversion cannot be applied to function or array types.
657   if (T->isFunctionType() || T->isArrayType())
658     return E;
659 
660   // We don't want to throw lvalue-to-rvalue casts on top of
661   // expressions of certain types in C++.
662   if (getLangOpts().CPlusPlus &&
663       (E->getType() == Context.OverloadTy ||
664        T->isDependentType() ||
665        T->isRecordType()))
666     return E;
667 
668   // The C standard is actually really unclear on this point, and
669   // DR106 tells us what the result should be but not why.  It's
670   // generally best to say that void types just doesn't undergo
671   // lvalue-to-rvalue at all.  Note that expressions of unqualified
672   // 'void' type are never l-values, but qualified void can be.
673   if (T->isVoidType())
674     return E;
675 
676   // OpenCL usually rejects direct accesses to values of 'half' type.
677   if (getLangOpts().OpenCL &&
678       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
679       T->isHalfType()) {
680     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
681       << 0 << T;
682     return ExprError();
683   }
684 
685   CheckForNullPointerDereference(*this, E);
686   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
687     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
688                                      &Context.Idents.get("object_getClass"),
689                                      SourceLocation(), LookupOrdinaryName);
690     if (ObjectGetClass)
691       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
692           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
693           << FixItHint::CreateReplacement(
694                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
695     else
696       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
697   }
698   else if (const ObjCIvarRefExpr *OIRE =
699             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
700     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
701 
702   // C++ [conv.lval]p1:
703   //   [...] If T is a non-class type, the type of the prvalue is the
704   //   cv-unqualified version of T. Otherwise, the type of the
705   //   rvalue is T.
706   //
707   // C99 6.3.2.1p2:
708   //   If the lvalue has qualified type, the value has the unqualified
709   //   version of the type of the lvalue; otherwise, the value has the
710   //   type of the lvalue.
711   if (T.hasQualifiers())
712     T = T.getUnqualifiedType();
713 
714   // Under the MS ABI, lock down the inheritance model now.
715   if (T->isMemberPointerType() &&
716       Context.getTargetInfo().getCXXABI().isMicrosoft())
717     (void)isCompleteType(E->getExprLoc(), T);
718 
719   ExprResult Res = CheckLValueToRValueConversionOperand(E);
720   if (Res.isInvalid())
721     return Res;
722   E = Res.get();
723 
724   // Loading a __weak object implicitly retains the value, so we need a cleanup to
725   // balance that.
726   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
727     Cleanup.setExprNeedsCleanups(true);
728 
729   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
730     Cleanup.setExprNeedsCleanups(true);
731 
732   // C++ [conv.lval]p3:
733   //   If T is cv std::nullptr_t, the result is a null pointer constant.
734   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
735   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
736                                  CurFPFeatureOverrides());
737 
738   // C11 6.3.2.1p2:
739   //   ... if the lvalue has atomic type, the value has the non-atomic version
740   //   of the type of the lvalue ...
741   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
742     T = Atomic->getValueType().getUnqualifiedType();
743     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
744                                    nullptr, VK_PRValue, FPOptionsOverride());
745   }
746 
747   return Res;
748 }
749 
750 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
751   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
752   if (Res.isInvalid())
753     return ExprError();
754   Res = DefaultLvalueConversion(Res.get());
755   if (Res.isInvalid())
756     return ExprError();
757   return Res;
758 }
759 
760 /// CallExprUnaryConversions - a special case of an unary conversion
761 /// performed on a function designator of a call expression.
762 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
763   QualType Ty = E->getType();
764   ExprResult Res = E;
765   // Only do implicit cast for a function type, but not for a pointer
766   // to function type.
767   if (Ty->isFunctionType()) {
768     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
769                             CK_FunctionToPointerDecay);
770     if (Res.isInvalid())
771       return ExprError();
772   }
773   Res = DefaultLvalueConversion(Res.get());
774   if (Res.isInvalid())
775     return ExprError();
776   return Res.get();
777 }
778 
779 /// UsualUnaryConversions - Performs various conversions that are common to most
780 /// operators (C99 6.3). The conversions of array and function types are
781 /// sometimes suppressed. For example, the array->pointer conversion doesn't
782 /// apply if the array is an argument to the sizeof or address (&) operators.
783 /// In these instances, this routine should *not* be called.
784 ExprResult Sema::UsualUnaryConversions(Expr *E) {
785   // First, convert to an r-value.
786   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
787   if (Res.isInvalid())
788     return ExprError();
789   E = Res.get();
790 
791   QualType Ty = E->getType();
792   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
793 
794   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
795   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
796       (getLangOpts().getFPEvalMethod() !=
797            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
798        PP.getLastFPEvalPragmaLocation().isValid())) {
799     switch (EvalMethod) {
800     default:
801       llvm_unreachable("Unrecognized float evaluation method");
802       break;
803     case LangOptions::FEM_UnsetOnCommandLine:
804       llvm_unreachable("Float evaluation method should be set by now");
805       break;
806     case LangOptions::FEM_Double:
807       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
808         // Widen the expression to double.
809         return Ty->isComplexType()
810                    ? ImpCastExprToType(E,
811                                        Context.getComplexType(Context.DoubleTy),
812                                        CK_FloatingComplexCast)
813                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
814       break;
815     case LangOptions::FEM_Extended:
816       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
817         // Widen the expression to long double.
818         return Ty->isComplexType()
819                    ? ImpCastExprToType(
820                          E, Context.getComplexType(Context.LongDoubleTy),
821                          CK_FloatingComplexCast)
822                    : ImpCastExprToType(E, Context.LongDoubleTy,
823                                        CK_FloatingCast);
824       break;
825     }
826   }
827 
828   // Half FP have to be promoted to float unless it is natively supported
829   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
830     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
831 
832   // Try to perform integral promotions if the object has a theoretically
833   // promotable type.
834   if (Ty->isIntegralOrUnscopedEnumerationType()) {
835     // C99 6.3.1.1p2:
836     //
837     //   The following may be used in an expression wherever an int or
838     //   unsigned int may be used:
839     //     - an object or expression with an integer type whose integer
840     //       conversion rank is less than or equal to the rank of int
841     //       and unsigned int.
842     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
843     //
844     //   If an int can represent all values of the original type, the
845     //   value is converted to an int; otherwise, it is converted to an
846     //   unsigned int. These are called the integer promotions. All
847     //   other types are unchanged by the integer promotions.
848 
849     QualType PTy = Context.isPromotableBitField(E);
850     if (!PTy.isNull()) {
851       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
852       return E;
853     }
854     if (Context.isPromotableIntegerType(Ty)) {
855       QualType PT = Context.getPromotedIntegerType(Ty);
856       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
857       return E;
858     }
859   }
860   return E;
861 }
862 
863 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
864 /// do not have a prototype. Arguments that have type float or __fp16
865 /// are promoted to double. All other argument types are converted by
866 /// UsualUnaryConversions().
867 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
868   QualType Ty = E->getType();
869   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
870 
871   ExprResult Res = UsualUnaryConversions(E);
872   if (Res.isInvalid())
873     return ExprError();
874   E = Res.get();
875 
876   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
877   // promote to double.
878   // Note that default argument promotion applies only to float (and
879   // half/fp16); it does not apply to _Float16.
880   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
881   if (BTy && (BTy->getKind() == BuiltinType::Half ||
882               BTy->getKind() == BuiltinType::Float)) {
883     if (getLangOpts().OpenCL &&
884         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
885       if (BTy->getKind() == BuiltinType::Half) {
886         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
887       }
888     } else {
889       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
890     }
891   }
892   if (BTy &&
893       getLangOpts().getExtendIntArgs() ==
894           LangOptions::ExtendArgsKind::ExtendTo64 &&
895       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
896       Context.getTypeSizeInChars(BTy) <
897           Context.getTypeSizeInChars(Context.LongLongTy)) {
898     E = (Ty->isUnsignedIntegerType())
899             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
900                   .get()
901             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
902     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
903            "Unexpected typesize for LongLongTy");
904   }
905 
906   // C++ performs lvalue-to-rvalue conversion as a default argument
907   // promotion, even on class types, but note:
908   //   C++11 [conv.lval]p2:
909   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
910   //     operand or a subexpression thereof the value contained in the
911   //     referenced object is not accessed. Otherwise, if the glvalue
912   //     has a class type, the conversion copy-initializes a temporary
913   //     of type T from the glvalue and the result of the conversion
914   //     is a prvalue for the temporary.
915   // FIXME: add some way to gate this entire thing for correctness in
916   // potentially potentially evaluated contexts.
917   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
918     ExprResult Temp = PerformCopyInitialization(
919                        InitializedEntity::InitializeTemporary(E->getType()),
920                                                 E->getExprLoc(), E);
921     if (Temp.isInvalid())
922       return ExprError();
923     E = Temp.get();
924   }
925 
926   return E;
927 }
928 
929 /// Determine the degree of POD-ness for an expression.
930 /// Incomplete types are considered POD, since this check can be performed
931 /// when we're in an unevaluated context.
932 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
933   if (Ty->isIncompleteType()) {
934     // C++11 [expr.call]p7:
935     //   After these conversions, if the argument does not have arithmetic,
936     //   enumeration, pointer, pointer to member, or class type, the program
937     //   is ill-formed.
938     //
939     // Since we've already performed array-to-pointer and function-to-pointer
940     // decay, the only such type in C++ is cv void. This also handles
941     // initializer lists as variadic arguments.
942     if (Ty->isVoidType())
943       return VAK_Invalid;
944 
945     if (Ty->isObjCObjectType())
946       return VAK_Invalid;
947     return VAK_Valid;
948   }
949 
950   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
951     return VAK_Invalid;
952 
953   if (Context.getTargetInfo().getTriple().isWasm() &&
954       Ty.isWebAssemblyReferenceType()) {
955     return VAK_Invalid;
956   }
957 
958   if (Ty.isCXX98PODType(Context))
959     return VAK_Valid;
960 
961   // C++11 [expr.call]p7:
962   //   Passing a potentially-evaluated argument of class type (Clause 9)
963   //   having a non-trivial copy constructor, a non-trivial move constructor,
964   //   or a non-trivial destructor, with no corresponding parameter,
965   //   is conditionally-supported with implementation-defined semantics.
966   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
967     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
968       if (!Record->hasNonTrivialCopyConstructor() &&
969           !Record->hasNonTrivialMoveConstructor() &&
970           !Record->hasNonTrivialDestructor())
971         return VAK_ValidInCXX11;
972 
973   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
974     return VAK_Valid;
975 
976   if (Ty->isObjCObjectType())
977     return VAK_Invalid;
978 
979   if (getLangOpts().MSVCCompat)
980     return VAK_MSVCUndefined;
981 
982   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
983   // permitted to reject them. We should consider doing so.
984   return VAK_Undefined;
985 }
986 
987 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
988   // Don't allow one to pass an Objective-C interface to a vararg.
989   const QualType &Ty = E->getType();
990   VarArgKind VAK = isValidVarArgType(Ty);
991 
992   // Complain about passing non-POD types through varargs.
993   switch (VAK) {
994   case VAK_ValidInCXX11:
995     DiagRuntimeBehavior(
996         E->getBeginLoc(), nullptr,
997         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
998     [[fallthrough]];
999   case VAK_Valid:
1000     if (Ty->isRecordType()) {
1001       // This is unlikely to be what the user intended. If the class has a
1002       // 'c_str' member function, the user probably meant to call that.
1003       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1004                           PDiag(diag::warn_pass_class_arg_to_vararg)
1005                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
1006     }
1007     break;
1008 
1009   case VAK_Undefined:
1010   case VAK_MSVCUndefined:
1011     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1012                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1013                             << getLangOpts().CPlusPlus11 << Ty << CT);
1014     break;
1015 
1016   case VAK_Invalid:
1017     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1018       Diag(E->getBeginLoc(),
1019            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1020           << Ty << CT;
1021     else if (Ty->isObjCObjectType())
1022       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1023                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1024                               << Ty << CT);
1025     else
1026       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1027           << isa<InitListExpr>(E) << Ty << CT;
1028     break;
1029   }
1030 }
1031 
1032 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1033 /// will create a trap if the resulting type is not a POD type.
1034 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1035                                                   FunctionDecl *FDecl) {
1036   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1037     // Strip the unbridged-cast placeholder expression off, if applicable.
1038     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1039         (CT == VariadicMethod ||
1040          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1041       E = stripARCUnbridgedCast(E);
1042 
1043     // Otherwise, do normal placeholder checking.
1044     } else {
1045       ExprResult ExprRes = CheckPlaceholderExpr(E);
1046       if (ExprRes.isInvalid())
1047         return ExprError();
1048       E = ExprRes.get();
1049     }
1050   }
1051 
1052   ExprResult ExprRes = DefaultArgumentPromotion(E);
1053   if (ExprRes.isInvalid())
1054     return ExprError();
1055 
1056   // Copy blocks to the heap.
1057   if (ExprRes.get()->getType()->isBlockPointerType())
1058     maybeExtendBlockObject(ExprRes);
1059 
1060   E = ExprRes.get();
1061 
1062   // Diagnostics regarding non-POD argument types are
1063   // emitted along with format string checking in Sema::CheckFunctionCall().
1064   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1065     // Turn this into a trap.
1066     CXXScopeSpec SS;
1067     SourceLocation TemplateKWLoc;
1068     UnqualifiedId Name;
1069     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1070                        E->getBeginLoc());
1071     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1072                                           /*HasTrailingLParen=*/true,
1073                                           /*IsAddressOfOperand=*/false);
1074     if (TrapFn.isInvalid())
1075       return ExprError();
1076 
1077     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1078                                     std::nullopt, E->getEndLoc());
1079     if (Call.isInvalid())
1080       return ExprError();
1081 
1082     ExprResult Comma =
1083         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1084     if (Comma.isInvalid())
1085       return ExprError();
1086     return Comma.get();
1087   }
1088 
1089   if (!getLangOpts().CPlusPlus &&
1090       RequireCompleteType(E->getExprLoc(), E->getType(),
1091                           diag::err_call_incomplete_argument))
1092     return ExprError();
1093 
1094   return E;
1095 }
1096 
1097 /// Converts an integer to complex float type.  Helper function of
1098 /// UsualArithmeticConversions()
1099 ///
1100 /// \return false if the integer expression is an integer type and is
1101 /// successfully converted to the complex type.
1102 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1103                                                   ExprResult &ComplexExpr,
1104                                                   QualType IntTy,
1105                                                   QualType ComplexTy,
1106                                                   bool SkipCast) {
1107   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1108   if (SkipCast) return false;
1109   if (IntTy->isIntegerType()) {
1110     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1111     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1112     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1113                                   CK_FloatingRealToComplex);
1114   } else {
1115     assert(IntTy->isComplexIntegerType());
1116     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1117                                   CK_IntegralComplexToFloatingComplex);
1118   }
1119   return false;
1120 }
1121 
1122 // This handles complex/complex, complex/float, or float/complex.
1123 // When both operands are complex, the shorter operand is converted to the
1124 // type of the longer, and that is the type of the result. This corresponds
1125 // to what is done when combining two real floating-point operands.
1126 // The fun begins when size promotion occur across type domains.
1127 // From H&S 6.3.4: When one operand is complex and the other is a real
1128 // floating-point type, the less precise type is converted, within it's
1129 // real or complex domain, to the precision of the other type. For example,
1130 // when combining a "long double" with a "double _Complex", the
1131 // "double _Complex" is promoted to "long double _Complex".
1132 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1133                                              QualType ShorterType,
1134                                              QualType LongerType,
1135                                              bool PromotePrecision) {
1136   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1137   QualType Result =
1138       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1139 
1140   if (PromotePrecision) {
1141     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1142       Shorter =
1143           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1144     } else {
1145       if (LongerIsComplex)
1146         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1147       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1148     }
1149   }
1150   return Result;
1151 }
1152 
1153 /// Handle arithmetic conversion with complex types.  Helper function of
1154 /// UsualArithmeticConversions()
1155 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1156                                         ExprResult &RHS, QualType LHSType,
1157                                         QualType RHSType, bool IsCompAssign) {
1158   // if we have an integer operand, the result is the complex type.
1159   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1160                                              /*SkipCast=*/false))
1161     return LHSType;
1162   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1163                                              /*SkipCast=*/IsCompAssign))
1164     return RHSType;
1165 
1166   // Compute the rank of the two types, regardless of whether they are complex.
1167   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1168   if (Order < 0)
1169     // Promote the precision of the LHS if not an assignment.
1170     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1171                                         /*PromotePrecision=*/!IsCompAssign);
1172   // Promote the precision of the RHS unless it is already the same as the LHS.
1173   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1174                                       /*PromotePrecision=*/Order > 0);
1175 }
1176 
1177 /// Handle arithmetic conversion from integer to float.  Helper function
1178 /// of UsualArithmeticConversions()
1179 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1180                                            ExprResult &IntExpr,
1181                                            QualType FloatTy, QualType IntTy,
1182                                            bool ConvertFloat, bool ConvertInt) {
1183   if (IntTy->isIntegerType()) {
1184     if (ConvertInt)
1185       // Convert intExpr to the lhs floating point type.
1186       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1187                                     CK_IntegralToFloating);
1188     return FloatTy;
1189   }
1190 
1191   // Convert both sides to the appropriate complex float.
1192   assert(IntTy->isComplexIntegerType());
1193   QualType result = S.Context.getComplexType(FloatTy);
1194 
1195   // _Complex int -> _Complex float
1196   if (ConvertInt)
1197     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1198                                   CK_IntegralComplexToFloatingComplex);
1199 
1200   // float -> _Complex float
1201   if (ConvertFloat)
1202     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1203                                     CK_FloatingRealToComplex);
1204 
1205   return result;
1206 }
1207 
1208 /// Handle arithmethic conversion with floating point types.  Helper
1209 /// function of UsualArithmeticConversions()
1210 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1211                                       ExprResult &RHS, QualType LHSType,
1212                                       QualType RHSType, bool IsCompAssign) {
1213   bool LHSFloat = LHSType->isRealFloatingType();
1214   bool RHSFloat = RHSType->isRealFloatingType();
1215 
1216   // N1169 4.1.4: If one of the operands has a floating type and the other
1217   //              operand has a fixed-point type, the fixed-point operand
1218   //              is converted to the floating type [...]
1219   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1220     if (LHSFloat)
1221       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1222     else if (!IsCompAssign)
1223       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1224     return LHSFloat ? LHSType : RHSType;
1225   }
1226 
1227   // If we have two real floating types, convert the smaller operand
1228   // to the bigger result.
1229   if (LHSFloat && RHSFloat) {
1230     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1231     if (order > 0) {
1232       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1233       return LHSType;
1234     }
1235 
1236     assert(order < 0 && "illegal float comparison");
1237     if (!IsCompAssign)
1238       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1239     return RHSType;
1240   }
1241 
1242   if (LHSFloat) {
1243     // Half FP has to be promoted to float unless it is natively supported
1244     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1245       LHSType = S.Context.FloatTy;
1246 
1247     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1248                                       /*ConvertFloat=*/!IsCompAssign,
1249                                       /*ConvertInt=*/ true);
1250   }
1251   assert(RHSFloat);
1252   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1253                                     /*ConvertFloat=*/ true,
1254                                     /*ConvertInt=*/!IsCompAssign);
1255 }
1256 
1257 /// Diagnose attempts to convert between __float128, __ibm128 and
1258 /// long double if there is no support for such conversion.
1259 /// Helper function of UsualArithmeticConversions().
1260 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1261                                       QualType RHSType) {
1262   // No issue if either is not a floating point type.
1263   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1264     return false;
1265 
1266   // No issue if both have the same 128-bit float semantics.
1267   auto *LHSComplex = LHSType->getAs<ComplexType>();
1268   auto *RHSComplex = RHSType->getAs<ComplexType>();
1269 
1270   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1271   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1272 
1273   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1274   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1275 
1276   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1277        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1278       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1279        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1280     return false;
1281 
1282   return true;
1283 }
1284 
1285 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1286 
1287 namespace {
1288 /// These helper callbacks are placed in an anonymous namespace to
1289 /// permit their use as function template parameters.
1290 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1291   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1292 }
1293 
1294 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1295   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1296                              CK_IntegralComplexCast);
1297 }
1298 }
1299 
1300 /// Handle integer arithmetic conversions.  Helper function of
1301 /// UsualArithmeticConversions()
1302 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1303 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1304                                         ExprResult &RHS, QualType LHSType,
1305                                         QualType RHSType, bool IsCompAssign) {
1306   // The rules for this case are in C99 6.3.1.8
1307   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1308   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1309   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1310   if (LHSSigned == RHSSigned) {
1311     // Same signedness; use the higher-ranked type
1312     if (order >= 0) {
1313       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1314       return LHSType;
1315     } else if (!IsCompAssign)
1316       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1317     return RHSType;
1318   } else if (order != (LHSSigned ? 1 : -1)) {
1319     // The unsigned type has greater than or equal rank to the
1320     // signed type, so use the unsigned type
1321     if (RHSSigned) {
1322       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1323       return LHSType;
1324     } else if (!IsCompAssign)
1325       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1326     return RHSType;
1327   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1328     // The two types are different widths; if we are here, that
1329     // means the signed type is larger than the unsigned type, so
1330     // use the signed type.
1331     if (LHSSigned) {
1332       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1333       return LHSType;
1334     } else if (!IsCompAssign)
1335       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1336     return RHSType;
1337   } else {
1338     // The signed type is higher-ranked than the unsigned type,
1339     // but isn't actually any bigger (like unsigned int and long
1340     // on most 32-bit systems).  Use the unsigned type corresponding
1341     // to the signed type.
1342     QualType result =
1343       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1344     RHS = (*doRHSCast)(S, RHS.get(), result);
1345     if (!IsCompAssign)
1346       LHS = (*doLHSCast)(S, LHS.get(), result);
1347     return result;
1348   }
1349 }
1350 
1351 /// Handle conversions with GCC complex int extension.  Helper function
1352 /// of UsualArithmeticConversions()
1353 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1354                                            ExprResult &RHS, QualType LHSType,
1355                                            QualType RHSType,
1356                                            bool IsCompAssign) {
1357   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1358   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1359 
1360   if (LHSComplexInt && RHSComplexInt) {
1361     QualType LHSEltType = LHSComplexInt->getElementType();
1362     QualType RHSEltType = RHSComplexInt->getElementType();
1363     QualType ScalarType =
1364       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1365         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1366 
1367     return S.Context.getComplexType(ScalarType);
1368   }
1369 
1370   if (LHSComplexInt) {
1371     QualType LHSEltType = LHSComplexInt->getElementType();
1372     QualType ScalarType =
1373       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1374         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1375     QualType ComplexType = S.Context.getComplexType(ScalarType);
1376     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1377                               CK_IntegralRealToComplex);
1378 
1379     return ComplexType;
1380   }
1381 
1382   assert(RHSComplexInt);
1383 
1384   QualType RHSEltType = RHSComplexInt->getElementType();
1385   QualType ScalarType =
1386     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1387       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1388   QualType ComplexType = S.Context.getComplexType(ScalarType);
1389 
1390   if (!IsCompAssign)
1391     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1392                               CK_IntegralRealToComplex);
1393   return ComplexType;
1394 }
1395 
1396 /// Return the rank of a given fixed point or integer type. The value itself
1397 /// doesn't matter, but the values must be increasing with proper increasing
1398 /// rank as described in N1169 4.1.1.
1399 static unsigned GetFixedPointRank(QualType Ty) {
1400   const auto *BTy = Ty->getAs<BuiltinType>();
1401   assert(BTy && "Expected a builtin type.");
1402 
1403   switch (BTy->getKind()) {
1404   case BuiltinType::ShortFract:
1405   case BuiltinType::UShortFract:
1406   case BuiltinType::SatShortFract:
1407   case BuiltinType::SatUShortFract:
1408     return 1;
1409   case BuiltinType::Fract:
1410   case BuiltinType::UFract:
1411   case BuiltinType::SatFract:
1412   case BuiltinType::SatUFract:
1413     return 2;
1414   case BuiltinType::LongFract:
1415   case BuiltinType::ULongFract:
1416   case BuiltinType::SatLongFract:
1417   case BuiltinType::SatULongFract:
1418     return 3;
1419   case BuiltinType::ShortAccum:
1420   case BuiltinType::UShortAccum:
1421   case BuiltinType::SatShortAccum:
1422   case BuiltinType::SatUShortAccum:
1423     return 4;
1424   case BuiltinType::Accum:
1425   case BuiltinType::UAccum:
1426   case BuiltinType::SatAccum:
1427   case BuiltinType::SatUAccum:
1428     return 5;
1429   case BuiltinType::LongAccum:
1430   case BuiltinType::ULongAccum:
1431   case BuiltinType::SatLongAccum:
1432   case BuiltinType::SatULongAccum:
1433     return 6;
1434   default:
1435     if (BTy->isInteger())
1436       return 0;
1437     llvm_unreachable("Unexpected fixed point or integer type");
1438   }
1439 }
1440 
1441 /// handleFixedPointConversion - Fixed point operations between fixed
1442 /// point types and integers or other fixed point types do not fall under
1443 /// usual arithmetic conversion since these conversions could result in loss
1444 /// of precsision (N1169 4.1.4). These operations should be calculated with
1445 /// the full precision of their result type (N1169 4.1.6.2.1).
1446 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1447                                            QualType RHSTy) {
1448   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1449          "Expected at least one of the operands to be a fixed point type");
1450   assert((LHSTy->isFixedPointOrIntegerType() ||
1451           RHSTy->isFixedPointOrIntegerType()) &&
1452          "Special fixed point arithmetic operation conversions are only "
1453          "applied to ints or other fixed point types");
1454 
1455   // If one operand has signed fixed-point type and the other operand has
1456   // unsigned fixed-point type, then the unsigned fixed-point operand is
1457   // converted to its corresponding signed fixed-point type and the resulting
1458   // type is the type of the converted operand.
1459   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1460     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1461   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1462     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1463 
1464   // The result type is the type with the highest rank, whereby a fixed-point
1465   // conversion rank is always greater than an integer conversion rank; if the
1466   // type of either of the operands is a saturating fixedpoint type, the result
1467   // type shall be the saturating fixed-point type corresponding to the type
1468   // with the highest rank; the resulting value is converted (taking into
1469   // account rounding and overflow) to the precision of the resulting type.
1470   // Same ranks between signed and unsigned types are resolved earlier, so both
1471   // types are either signed or both unsigned at this point.
1472   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1473   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1474 
1475   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1476 
1477   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1478     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1479 
1480   return ResultTy;
1481 }
1482 
1483 /// Check that the usual arithmetic conversions can be performed on this pair of
1484 /// expressions that might be of enumeration type.
1485 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1486                                            SourceLocation Loc,
1487                                            Sema::ArithConvKind ACK) {
1488   // C++2a [expr.arith.conv]p1:
1489   //   If one operand is of enumeration type and the other operand is of a
1490   //   different enumeration type or a floating-point type, this behavior is
1491   //   deprecated ([depr.arith.conv.enum]).
1492   //
1493   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1494   // Eventually we will presumably reject these cases (in C++23 onwards?).
1495   QualType L = LHS->getType(), R = RHS->getType();
1496   bool LEnum = L->isUnscopedEnumerationType(),
1497        REnum = R->isUnscopedEnumerationType();
1498   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1499   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1500       (REnum && L->isFloatingType())) {
1501     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1502                     ? diag::warn_arith_conv_enum_float_cxx20
1503                     : diag::warn_arith_conv_enum_float)
1504         << LHS->getSourceRange() << RHS->getSourceRange()
1505         << (int)ACK << LEnum << L << R;
1506   } else if (!IsCompAssign && LEnum && REnum &&
1507              !S.Context.hasSameUnqualifiedType(L, R)) {
1508     unsigned DiagID;
1509     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1510         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1511       // If either enumeration type is unnamed, it's less likely that the
1512       // user cares about this, but this situation is still deprecated in
1513       // C++2a. Use a different warning group.
1514       DiagID = S.getLangOpts().CPlusPlus20
1515                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1516                     : diag::warn_arith_conv_mixed_anon_enum_types;
1517     } else if (ACK == Sema::ACK_Conditional) {
1518       // Conditional expressions are separated out because they have
1519       // historically had a different warning flag.
1520       DiagID = S.getLangOpts().CPlusPlus20
1521                    ? diag::warn_conditional_mixed_enum_types_cxx20
1522                    : diag::warn_conditional_mixed_enum_types;
1523     } else if (ACK == Sema::ACK_Comparison) {
1524       // Comparison expressions are separated out because they have
1525       // historically had a different warning flag.
1526       DiagID = S.getLangOpts().CPlusPlus20
1527                    ? diag::warn_comparison_mixed_enum_types_cxx20
1528                    : diag::warn_comparison_mixed_enum_types;
1529     } else {
1530       DiagID = S.getLangOpts().CPlusPlus20
1531                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1532                    : diag::warn_arith_conv_mixed_enum_types;
1533     }
1534     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1535                         << (int)ACK << L << R;
1536   }
1537 }
1538 
1539 /// UsualArithmeticConversions - Performs various conversions that are common to
1540 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1541 /// routine returns the first non-arithmetic type found. The client is
1542 /// responsible for emitting appropriate error diagnostics.
1543 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1544                                           SourceLocation Loc,
1545                                           ArithConvKind ACK) {
1546   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1547 
1548   if (ACK != ACK_CompAssign) {
1549     LHS = UsualUnaryConversions(LHS.get());
1550     if (LHS.isInvalid())
1551       return QualType();
1552   }
1553 
1554   RHS = UsualUnaryConversions(RHS.get());
1555   if (RHS.isInvalid())
1556     return QualType();
1557 
1558   // For conversion purposes, we ignore any qualifiers.
1559   // For example, "const float" and "float" are equivalent.
1560   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1561   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1562 
1563   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1564   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1565     LHSType = AtomicLHS->getValueType();
1566 
1567   // If both types are identical, no conversion is needed.
1568   if (Context.hasSameType(LHSType, RHSType))
1569     return Context.getCommonSugaredType(LHSType, RHSType);
1570 
1571   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1572   // The caller can deal with this (e.g. pointer + int).
1573   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1574     return QualType();
1575 
1576   // Apply unary and bitfield promotions to the LHS's type.
1577   QualType LHSUnpromotedType = LHSType;
1578   if (Context.isPromotableIntegerType(LHSType))
1579     LHSType = Context.getPromotedIntegerType(LHSType);
1580   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1581   if (!LHSBitfieldPromoteTy.isNull())
1582     LHSType = LHSBitfieldPromoteTy;
1583   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1584     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1585 
1586   // If both types are identical, no conversion is needed.
1587   if (Context.hasSameType(LHSType, RHSType))
1588     return Context.getCommonSugaredType(LHSType, RHSType);
1589 
1590   // At this point, we have two different arithmetic types.
1591 
1592   // Diagnose attempts to convert between __ibm128, __float128 and long double
1593   // where such conversions currently can't be handled.
1594   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1595     return QualType();
1596 
1597   // Handle complex types first (C99 6.3.1.8p1).
1598   if (LHSType->isComplexType() || RHSType->isComplexType())
1599     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1600                                    ACK == ACK_CompAssign);
1601 
1602   // Now handle "real" floating types (i.e. float, double, long double).
1603   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1604     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1605                                  ACK == ACK_CompAssign);
1606 
1607   // Handle GCC complex int extension.
1608   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1609     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1610                                       ACK == ACK_CompAssign);
1611 
1612   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1613     return handleFixedPointConversion(*this, LHSType, RHSType);
1614 
1615   // Finally, we have two differing integer types.
1616   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1617            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1618 }
1619 
1620 //===----------------------------------------------------------------------===//
1621 //  Semantic Analysis for various Expression Types
1622 //===----------------------------------------------------------------------===//
1623 
1624 
1625 ExprResult Sema::ActOnGenericSelectionExpr(
1626     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1627     bool PredicateIsExpr, void *ControllingExprOrType,
1628     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1629   unsigned NumAssocs = ArgTypes.size();
1630   assert(NumAssocs == ArgExprs.size());
1631 
1632   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1633   for (unsigned i = 0; i < NumAssocs; ++i) {
1634     if (ArgTypes[i])
1635       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1636     else
1637       Types[i] = nullptr;
1638   }
1639 
1640   // If we have a controlling type, we need to convert it from a parsed type
1641   // into a semantic type and then pass that along.
1642   if (!PredicateIsExpr) {
1643     TypeSourceInfo *ControllingType;
1644     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1645                             &ControllingType);
1646     assert(ControllingType && "couldn't get the type out of the parser");
1647     ControllingExprOrType = ControllingType;
1648   }
1649 
1650   ExprResult ER = CreateGenericSelectionExpr(
1651       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1652       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1653   delete [] Types;
1654   return ER;
1655 }
1656 
1657 ExprResult Sema::CreateGenericSelectionExpr(
1658     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1659     bool PredicateIsExpr, void *ControllingExprOrType,
1660     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1661   unsigned NumAssocs = Types.size();
1662   assert(NumAssocs == Exprs.size());
1663   assert(ControllingExprOrType &&
1664          "Must have either a controlling expression or a controlling type");
1665 
1666   Expr *ControllingExpr = nullptr;
1667   TypeSourceInfo *ControllingType = nullptr;
1668   if (PredicateIsExpr) {
1669     // Decay and strip qualifiers for the controlling expression type, and
1670     // handle placeholder type replacement. See committee discussion from WG14
1671     // DR423.
1672     EnterExpressionEvaluationContext Unevaluated(
1673         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1674     ExprResult R = DefaultFunctionArrayLvalueConversion(
1675         reinterpret_cast<Expr *>(ControllingExprOrType));
1676     if (R.isInvalid())
1677       return ExprError();
1678     ControllingExpr = R.get();
1679   } else {
1680     // The extension form uses the type directly rather than converting it.
1681     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1682     if (!ControllingType)
1683       return ExprError();
1684   }
1685 
1686   bool TypeErrorFound = false,
1687        IsResultDependent = ControllingExpr
1688                                ? ControllingExpr->isTypeDependent()
1689                                : ControllingType->getType()->isDependentType(),
1690        ContainsUnexpandedParameterPack =
1691            ControllingExpr
1692                ? ControllingExpr->containsUnexpandedParameterPack()
1693                : ControllingType->getType()->containsUnexpandedParameterPack();
1694 
1695   // The controlling expression is an unevaluated operand, so side effects are
1696   // likely unintended.
1697   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1698       ControllingExpr->HasSideEffects(Context, false))
1699     Diag(ControllingExpr->getExprLoc(),
1700          diag::warn_side_effects_unevaluated_context);
1701 
1702   for (unsigned i = 0; i < NumAssocs; ++i) {
1703     if (Exprs[i]->containsUnexpandedParameterPack())
1704       ContainsUnexpandedParameterPack = true;
1705 
1706     if (Types[i]) {
1707       if (Types[i]->getType()->containsUnexpandedParameterPack())
1708         ContainsUnexpandedParameterPack = true;
1709 
1710       if (Types[i]->getType()->isDependentType()) {
1711         IsResultDependent = true;
1712       } else {
1713         // We relax the restriction on use of incomplete types and non-object
1714         // types with the type-based extension of _Generic. Allowing incomplete
1715         // objects means those can be used as "tags" for a type-safe way to map
1716         // to a value. Similarly, matching on function types rather than
1717         // function pointer types can be useful. However, the restriction on VM
1718         // types makes sense to retain as there are open questions about how
1719         // the selection can be made at compile time.
1720         //
1721         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1722         // complete object type other than a variably modified type."
1723         unsigned D = 0;
1724         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1725           D = diag::err_assoc_type_incomplete;
1726         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1727           D = diag::err_assoc_type_nonobject;
1728         else if (Types[i]->getType()->isVariablyModifiedType())
1729           D = diag::err_assoc_type_variably_modified;
1730         else if (ControllingExpr) {
1731           // Because the controlling expression undergoes lvalue conversion,
1732           // array conversion, and function conversion, an association which is
1733           // of array type, function type, or is qualified can never be
1734           // reached. We will warn about this so users are less surprised by
1735           // the unreachable association. However, we don't have to handle
1736           // function types; that's not an object type, so it's handled above.
1737           //
1738           // The logic is somewhat different for C++ because C++ has different
1739           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1740           // If T is a non-class type, the type of the prvalue is the cv-
1741           // unqualified version of T. Otherwise, the type of the prvalue is T.
1742           // The result of these rules is that all qualified types in an
1743           // association in C are unreachable, and in C++, only qualified non-
1744           // class types are unreachable.
1745           //
1746           // NB: this does not apply when the first operand is a type rather
1747           // than an expression, because the type form does not undergo
1748           // conversion.
1749           unsigned Reason = 0;
1750           QualType QT = Types[i]->getType();
1751           if (QT->isArrayType())
1752             Reason = 1;
1753           else if (QT.hasQualifiers() &&
1754                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1755             Reason = 2;
1756 
1757           if (Reason)
1758             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1759                  diag::warn_unreachable_association)
1760                 << QT << (Reason - 1);
1761         }
1762 
1763         if (D != 0) {
1764           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1765             << Types[i]->getTypeLoc().getSourceRange()
1766             << Types[i]->getType();
1767           TypeErrorFound = true;
1768         }
1769 
1770         // C11 6.5.1.1p2 "No two generic associations in the same generic
1771         // selection shall specify compatible types."
1772         for (unsigned j = i+1; j < NumAssocs; ++j)
1773           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1774               Context.typesAreCompatible(Types[i]->getType(),
1775                                          Types[j]->getType())) {
1776             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1777                  diag::err_assoc_compatible_types)
1778               << Types[j]->getTypeLoc().getSourceRange()
1779               << Types[j]->getType()
1780               << Types[i]->getType();
1781             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1782                  diag::note_compat_assoc)
1783               << Types[i]->getTypeLoc().getSourceRange()
1784               << Types[i]->getType();
1785             TypeErrorFound = true;
1786           }
1787       }
1788     }
1789   }
1790   if (TypeErrorFound)
1791     return ExprError();
1792 
1793   // If we determined that the generic selection is result-dependent, don't
1794   // try to compute the result expression.
1795   if (IsResultDependent) {
1796     if (ControllingExpr)
1797       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1798                                           Types, Exprs, DefaultLoc, RParenLoc,
1799                                           ContainsUnexpandedParameterPack);
1800     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1801                                         Exprs, DefaultLoc, RParenLoc,
1802                                         ContainsUnexpandedParameterPack);
1803   }
1804 
1805   SmallVector<unsigned, 1> CompatIndices;
1806   unsigned DefaultIndex = -1U;
1807   // Look at the canonical type of the controlling expression in case it was a
1808   // deduced type like __auto_type. However, when issuing diagnostics, use the
1809   // type the user wrote in source rather than the canonical one.
1810   for (unsigned i = 0; i < NumAssocs; ++i) {
1811     if (!Types[i])
1812       DefaultIndex = i;
1813     else if (ControllingExpr &&
1814              Context.typesAreCompatible(
1815                  ControllingExpr->getType().getCanonicalType(),
1816                  Types[i]->getType()))
1817       CompatIndices.push_back(i);
1818     else if (ControllingType &&
1819              Context.typesAreCompatible(
1820                  ControllingType->getType().getCanonicalType(),
1821                  Types[i]->getType()))
1822       CompatIndices.push_back(i);
1823   }
1824 
1825   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1826                                        TypeSourceInfo *ControllingType) {
1827     // We strip parens here because the controlling expression is typically
1828     // parenthesized in macro definitions.
1829     if (ControllingExpr)
1830       ControllingExpr = ControllingExpr->IgnoreParens();
1831 
1832     SourceRange SR = ControllingExpr
1833                          ? ControllingExpr->getSourceRange()
1834                          : ControllingType->getTypeLoc().getSourceRange();
1835     QualType QT = ControllingExpr ? ControllingExpr->getType()
1836                                   : ControllingType->getType();
1837 
1838     return std::make_pair(SR, QT);
1839   };
1840 
1841   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1842   // type compatible with at most one of the types named in its generic
1843   // association list."
1844   if (CompatIndices.size() > 1) {
1845     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1846     SourceRange SR = P.first;
1847     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1848         << SR << P.second << (unsigned)CompatIndices.size();
1849     for (unsigned I : CompatIndices) {
1850       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1851            diag::note_compat_assoc)
1852         << Types[I]->getTypeLoc().getSourceRange()
1853         << Types[I]->getType();
1854     }
1855     return ExprError();
1856   }
1857 
1858   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1859   // its controlling expression shall have type compatible with exactly one of
1860   // the types named in its generic association list."
1861   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1862     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1863     SourceRange SR = P.first;
1864     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1865     return ExprError();
1866   }
1867 
1868   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1869   // type name that is compatible with the type of the controlling expression,
1870   // then the result expression of the generic selection is the expression
1871   // in that generic association. Otherwise, the result expression of the
1872   // generic selection is the expression in the default generic association."
1873   unsigned ResultIndex =
1874     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1875 
1876   if (ControllingExpr) {
1877     return GenericSelectionExpr::Create(
1878         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1879         ContainsUnexpandedParameterPack, ResultIndex);
1880   }
1881   return GenericSelectionExpr::Create(
1882       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1883       ContainsUnexpandedParameterPack, ResultIndex);
1884 }
1885 
1886 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1887 /// location of the token and the offset of the ud-suffix within it.
1888 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1889                                      unsigned Offset) {
1890   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1891                                         S.getLangOpts());
1892 }
1893 
1894 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1895 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1896 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1897                                                  IdentifierInfo *UDSuffix,
1898                                                  SourceLocation UDSuffixLoc,
1899                                                  ArrayRef<Expr*> Args,
1900                                                  SourceLocation LitEndLoc) {
1901   assert(Args.size() <= 2 && "too many arguments for literal operator");
1902 
1903   QualType ArgTy[2];
1904   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1905     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1906     if (ArgTy[ArgIdx]->isArrayType())
1907       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1908   }
1909 
1910   DeclarationName OpName =
1911     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1912   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1913   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1914 
1915   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1916   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1917                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1918                               /*AllowStringTemplatePack*/ false,
1919                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1920     return ExprError();
1921 
1922   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1923 }
1924 
1925 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1926   StringLiteralParser Literal(StringToks, PP,
1927                               StringLiteralEvalMethod::Unevaluated);
1928   if (Literal.hadError)
1929     return ExprError();
1930 
1931   SmallVector<SourceLocation, 4> StringTokLocs;
1932   for (const Token &Tok : StringToks)
1933     StringTokLocs.push_back(Tok.getLocation());
1934 
1935   StringLiteral *Lit = StringLiteral::Create(
1936       Context, Literal.GetString(), StringLiteral::Unevaluated, false, {},
1937       &StringTokLocs[0], StringTokLocs.size());
1938 
1939   if (!Literal.getUDSuffix().empty()) {
1940     SourceLocation UDSuffixLoc =
1941         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1942                        Literal.getUDSuffixOffset());
1943     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1944   }
1945 
1946   return Lit;
1947 }
1948 
1949 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1950 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1951 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1952 /// multiple tokens.  However, the common case is that StringToks points to one
1953 /// string.
1954 ///
1955 ExprResult
1956 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1957   assert(!StringToks.empty() && "Must have at least one string!");
1958 
1959   StringLiteralParser Literal(StringToks, PP);
1960   if (Literal.hadError)
1961     return ExprError();
1962 
1963   SmallVector<SourceLocation, 4> StringTokLocs;
1964   for (const Token &Tok : StringToks)
1965     StringTokLocs.push_back(Tok.getLocation());
1966 
1967   QualType CharTy = Context.CharTy;
1968   StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1969   if (Literal.isWide()) {
1970     CharTy = Context.getWideCharType();
1971     Kind = StringLiteral::Wide;
1972   } else if (Literal.isUTF8()) {
1973     if (getLangOpts().Char8)
1974       CharTy = Context.Char8Ty;
1975     Kind = StringLiteral::UTF8;
1976   } else if (Literal.isUTF16()) {
1977     CharTy = Context.Char16Ty;
1978     Kind = StringLiteral::UTF16;
1979   } else if (Literal.isUTF32()) {
1980     CharTy = Context.Char32Ty;
1981     Kind = StringLiteral::UTF32;
1982   } else if (Literal.isPascal()) {
1983     CharTy = Context.UnsignedCharTy;
1984   }
1985 
1986   // Warn on initializing an array of char from a u8 string literal; this
1987   // becomes ill-formed in C++2a.
1988   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1989       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1990     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1991 
1992     // Create removals for all 'u8' prefixes in the string literal(s). This
1993     // ensures C++2a compatibility (but may change the program behavior when
1994     // built by non-Clang compilers for which the execution character set is
1995     // not always UTF-8).
1996     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1997     SourceLocation RemovalDiagLoc;
1998     for (const Token &Tok : StringToks) {
1999       if (Tok.getKind() == tok::utf8_string_literal) {
2000         if (RemovalDiagLoc.isInvalid())
2001           RemovalDiagLoc = Tok.getLocation();
2002         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2003             Tok.getLocation(),
2004             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2005                                            getSourceManager(), getLangOpts())));
2006       }
2007     }
2008     Diag(RemovalDiagLoc, RemovalDiag);
2009   }
2010 
2011   QualType StrTy =
2012       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2013 
2014   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2015   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2016                                              Kind, Literal.Pascal, StrTy,
2017                                              &StringTokLocs[0],
2018                                              StringTokLocs.size());
2019   if (Literal.getUDSuffix().empty())
2020     return Lit;
2021 
2022   // We're building a user-defined literal.
2023   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2024   SourceLocation UDSuffixLoc =
2025     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2026                    Literal.getUDSuffixOffset());
2027 
2028   // Make sure we're allowed user-defined literals here.
2029   if (!UDLScope)
2030     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2031 
2032   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2033   //   operator "" X (str, len)
2034   QualType SizeType = Context.getSizeType();
2035 
2036   DeclarationName OpName =
2037     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2038   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2039   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2040 
2041   QualType ArgTy[] = {
2042     Context.getArrayDecayedType(StrTy), SizeType
2043   };
2044 
2045   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2046   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2047                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2048                                 /*AllowStringTemplatePack*/ true,
2049                                 /*DiagnoseMissing*/ true, Lit)) {
2050 
2051   case LOLR_Cooked: {
2052     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2053     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2054                                                     StringTokLocs[0]);
2055     Expr *Args[] = { Lit, LenArg };
2056 
2057     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2058   }
2059 
2060   case LOLR_Template: {
2061     TemplateArgumentListInfo ExplicitArgs;
2062     TemplateArgument Arg(Lit);
2063     TemplateArgumentLocInfo ArgInfo(Lit);
2064     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2065     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2066                                     StringTokLocs.back(), &ExplicitArgs);
2067   }
2068 
2069   case LOLR_StringTemplatePack: {
2070     TemplateArgumentListInfo ExplicitArgs;
2071 
2072     unsigned CharBits = Context.getIntWidth(CharTy);
2073     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2074     llvm::APSInt Value(CharBits, CharIsUnsigned);
2075 
2076     TemplateArgument TypeArg(CharTy);
2077     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2078     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2079 
2080     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2081       Value = Lit->getCodeUnit(I);
2082       TemplateArgument Arg(Context, Value, CharTy);
2083       TemplateArgumentLocInfo ArgInfo;
2084       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2085     }
2086     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2087                                     StringTokLocs.back(), &ExplicitArgs);
2088   }
2089   case LOLR_Raw:
2090   case LOLR_ErrorNoDiagnostic:
2091     llvm_unreachable("unexpected literal operator lookup result");
2092   case LOLR_Error:
2093     return ExprError();
2094   }
2095   llvm_unreachable("unexpected literal operator lookup result");
2096 }
2097 
2098 DeclRefExpr *
2099 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2100                        SourceLocation Loc,
2101                        const CXXScopeSpec *SS) {
2102   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2103   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2104 }
2105 
2106 DeclRefExpr *
2107 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2108                        const DeclarationNameInfo &NameInfo,
2109                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2110                        SourceLocation TemplateKWLoc,
2111                        const TemplateArgumentListInfo *TemplateArgs) {
2112   NestedNameSpecifierLoc NNS =
2113       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2114   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2115                           TemplateArgs);
2116 }
2117 
2118 // CUDA/HIP: Check whether a captured reference variable is referencing a
2119 // host variable in a device or host device lambda.
2120 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2121                                                             VarDecl *VD) {
2122   if (!S.getLangOpts().CUDA || !VD->hasInit())
2123     return false;
2124   assert(VD->getType()->isReferenceType());
2125 
2126   // Check whether the reference variable is referencing a host variable.
2127   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2128   if (!DRE)
2129     return false;
2130   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2131   if (!Referee || !Referee->hasGlobalStorage() ||
2132       Referee->hasAttr<CUDADeviceAttr>())
2133     return false;
2134 
2135   // Check whether the current function is a device or host device lambda.
2136   // Check whether the reference variable is a capture by getDeclContext()
2137   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2138   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2139   if (MD && MD->getParent()->isLambda() &&
2140       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2141       VD->getDeclContext() != MD)
2142     return true;
2143 
2144   return false;
2145 }
2146 
2147 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2148   // A declaration named in an unevaluated operand never constitutes an odr-use.
2149   if (isUnevaluatedContext())
2150     return NOUR_Unevaluated;
2151 
2152   // C++2a [basic.def.odr]p4:
2153   //   A variable x whose name appears as a potentially-evaluated expression e
2154   //   is odr-used by e unless [...] x is a reference that is usable in
2155   //   constant expressions.
2156   // CUDA/HIP:
2157   //   If a reference variable referencing a host variable is captured in a
2158   //   device or host device lambda, the value of the referee must be copied
2159   //   to the capture and the reference variable must be treated as odr-use
2160   //   since the value of the referee is not known at compile time and must
2161   //   be loaded from the captured.
2162   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2163     if (VD->getType()->isReferenceType() &&
2164         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2165         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2166         VD->isUsableInConstantExpressions(Context))
2167       return NOUR_Constant;
2168   }
2169 
2170   // All remaining non-variable cases constitute an odr-use. For variables, we
2171   // need to wait and see how the expression is used.
2172   return NOUR_None;
2173 }
2174 
2175 /// BuildDeclRefExpr - Build an expression that references a
2176 /// declaration that does not require a closure capture.
2177 DeclRefExpr *
2178 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2179                        const DeclarationNameInfo &NameInfo,
2180                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2181                        SourceLocation TemplateKWLoc,
2182                        const TemplateArgumentListInfo *TemplateArgs) {
2183   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2184                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2185 
2186   DeclRefExpr *E = DeclRefExpr::Create(
2187       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2188       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2189   MarkDeclRefReferenced(E);
2190 
2191   // C++ [except.spec]p17:
2192   //   An exception-specification is considered to be needed when:
2193   //   - in an expression, the function is the unique lookup result or
2194   //     the selected member of a set of overloaded functions.
2195   //
2196   // We delay doing this until after we've built the function reference and
2197   // marked it as used so that:
2198   //  a) if the function is defaulted, we get errors from defining it before /
2199   //     instead of errors from computing its exception specification, and
2200   //  b) if the function is a defaulted comparison, we can use the body we
2201   //     build when defining it as input to the exception specification
2202   //     computation rather than computing a new body.
2203   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2204     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2205       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2206         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2207     }
2208   }
2209 
2210   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2211       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2212       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2213     getCurFunction()->recordUseOfWeak(E);
2214 
2215   const auto *FD = dyn_cast<FieldDecl>(D);
2216   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2217     FD = IFD->getAnonField();
2218   if (FD) {
2219     UnusedPrivateFields.remove(FD);
2220     // Just in case we're building an illegal pointer-to-member.
2221     if (FD->isBitField())
2222       E->setObjectKind(OK_BitField);
2223   }
2224 
2225   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2226   // designates a bit-field.
2227   if (const auto *BD = dyn_cast<BindingDecl>(D))
2228     if (const auto *BE = BD->getBinding())
2229       E->setObjectKind(BE->getObjectKind());
2230 
2231   return E;
2232 }
2233 
2234 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2235 /// possibly a list of template arguments.
2236 ///
2237 /// If this produces template arguments, it is permitted to call
2238 /// DecomposeTemplateName.
2239 ///
2240 /// This actually loses a lot of source location information for
2241 /// non-standard name kinds; we should consider preserving that in
2242 /// some way.
2243 void
2244 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2245                              TemplateArgumentListInfo &Buffer,
2246                              DeclarationNameInfo &NameInfo,
2247                              const TemplateArgumentListInfo *&TemplateArgs) {
2248   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2249     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2250     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2251 
2252     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2253                                        Id.TemplateId->NumArgs);
2254     translateTemplateArguments(TemplateArgsPtr, Buffer);
2255 
2256     TemplateName TName = Id.TemplateId->Template.get();
2257     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2258     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2259     TemplateArgs = &Buffer;
2260   } else {
2261     NameInfo = GetNameFromUnqualifiedId(Id);
2262     TemplateArgs = nullptr;
2263   }
2264 }
2265 
2266 static void emitEmptyLookupTypoDiagnostic(
2267     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2268     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2269     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2270   DeclContext *Ctx =
2271       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2272   if (!TC) {
2273     // Emit a special diagnostic for failed member lookups.
2274     // FIXME: computing the declaration context might fail here (?)
2275     if (Ctx)
2276       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2277                                                  << SS.getRange();
2278     else
2279       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2280     return;
2281   }
2282 
2283   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2284   bool DroppedSpecifier =
2285       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2286   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2287                         ? diag::note_implicit_param_decl
2288                         : diag::note_previous_decl;
2289   if (!Ctx)
2290     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2291                          SemaRef.PDiag(NoteID));
2292   else
2293     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2294                                  << Typo << Ctx << DroppedSpecifier
2295                                  << SS.getRange(),
2296                          SemaRef.PDiag(NoteID));
2297 }
2298 
2299 /// Diagnose a lookup that found results in an enclosing class during error
2300 /// recovery. This usually indicates that the results were found in a dependent
2301 /// base class that could not be searched as part of a template definition.
2302 /// Always issues a diagnostic (though this may be only a warning in MS
2303 /// compatibility mode).
2304 ///
2305 /// Return \c true if the error is unrecoverable, or \c false if the caller
2306 /// should attempt to recover using these lookup results.
2307 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2308   // During a default argument instantiation the CurContext points
2309   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2310   // function parameter list, hence add an explicit check.
2311   bool isDefaultArgument =
2312       !CodeSynthesisContexts.empty() &&
2313       CodeSynthesisContexts.back().Kind ==
2314           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2315   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2316   bool isInstance = CurMethod && CurMethod->isInstance() &&
2317                     R.getNamingClass() == CurMethod->getParent() &&
2318                     !isDefaultArgument;
2319 
2320   // There are two ways we can find a class-scope declaration during template
2321   // instantiation that we did not find in the template definition: if it is a
2322   // member of a dependent base class, or if it is declared after the point of
2323   // use in the same class. Distinguish these by comparing the class in which
2324   // the member was found to the naming class of the lookup.
2325   unsigned DiagID = diag::err_found_in_dependent_base;
2326   unsigned NoteID = diag::note_member_declared_at;
2327   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2328     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2329                                       : diag::err_found_later_in_class;
2330   } else if (getLangOpts().MSVCCompat) {
2331     DiagID = diag::ext_found_in_dependent_base;
2332     NoteID = diag::note_dependent_member_use;
2333   }
2334 
2335   if (isInstance) {
2336     // Give a code modification hint to insert 'this->'.
2337     Diag(R.getNameLoc(), DiagID)
2338         << R.getLookupName()
2339         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2340     CheckCXXThisCapture(R.getNameLoc());
2341   } else {
2342     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2343     // they're not shadowed).
2344     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2345   }
2346 
2347   for (const NamedDecl *D : R)
2348     Diag(D->getLocation(), NoteID);
2349 
2350   // Return true if we are inside a default argument instantiation
2351   // and the found name refers to an instance member function, otherwise
2352   // the caller will try to create an implicit member call and this is wrong
2353   // for default arguments.
2354   //
2355   // FIXME: Is this special case necessary? We could allow the caller to
2356   // diagnose this.
2357   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2358     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2359     return true;
2360   }
2361 
2362   // Tell the callee to try to recover.
2363   return false;
2364 }
2365 
2366 /// Diagnose an empty lookup.
2367 ///
2368 /// \return false if new lookup candidates were found
2369 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2370                                CorrectionCandidateCallback &CCC,
2371                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2372                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2373   DeclarationName Name = R.getLookupName();
2374 
2375   unsigned diagnostic = diag::err_undeclared_var_use;
2376   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2377   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2378       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2379       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2380     diagnostic = diag::err_undeclared_use;
2381     diagnostic_suggest = diag::err_undeclared_use_suggest;
2382   }
2383 
2384   // If the original lookup was an unqualified lookup, fake an
2385   // unqualified lookup.  This is useful when (for example) the
2386   // original lookup would not have found something because it was a
2387   // dependent name.
2388   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2389   while (DC) {
2390     if (isa<CXXRecordDecl>(DC)) {
2391       LookupQualifiedName(R, DC);
2392 
2393       if (!R.empty()) {
2394         // Don't give errors about ambiguities in this lookup.
2395         R.suppressDiagnostics();
2396 
2397         // If there's a best viable function among the results, only mention
2398         // that one in the notes.
2399         OverloadCandidateSet Candidates(R.getNameLoc(),
2400                                         OverloadCandidateSet::CSK_Normal);
2401         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2402         OverloadCandidateSet::iterator Best;
2403         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2404             OR_Success) {
2405           R.clear();
2406           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2407           R.resolveKind();
2408         }
2409 
2410         return DiagnoseDependentMemberLookup(R);
2411       }
2412 
2413       R.clear();
2414     }
2415 
2416     DC = DC->getLookupParent();
2417   }
2418 
2419   // We didn't find anything, so try to correct for a typo.
2420   TypoCorrection Corrected;
2421   if (S && Out) {
2422     SourceLocation TypoLoc = R.getNameLoc();
2423     assert(!ExplicitTemplateArgs &&
2424            "Diagnosing an empty lookup with explicit template args!");
2425     *Out = CorrectTypoDelayed(
2426         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2427         [=](const TypoCorrection &TC) {
2428           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2429                                         diagnostic, diagnostic_suggest);
2430         },
2431         nullptr, CTK_ErrorRecovery);
2432     if (*Out)
2433       return true;
2434   } else if (S &&
2435              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2436                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2437     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2438     bool DroppedSpecifier =
2439         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2440     R.setLookupName(Corrected.getCorrection());
2441 
2442     bool AcceptableWithRecovery = false;
2443     bool AcceptableWithoutRecovery = false;
2444     NamedDecl *ND = Corrected.getFoundDecl();
2445     if (ND) {
2446       if (Corrected.isOverloaded()) {
2447         OverloadCandidateSet OCS(R.getNameLoc(),
2448                                  OverloadCandidateSet::CSK_Normal);
2449         OverloadCandidateSet::iterator Best;
2450         for (NamedDecl *CD : Corrected) {
2451           if (FunctionTemplateDecl *FTD =
2452                    dyn_cast<FunctionTemplateDecl>(CD))
2453             AddTemplateOverloadCandidate(
2454                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2455                 Args, OCS);
2456           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2457             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2458               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2459                                    Args, OCS);
2460         }
2461         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2462         case OR_Success:
2463           ND = Best->FoundDecl;
2464           Corrected.setCorrectionDecl(ND);
2465           break;
2466         default:
2467           // FIXME: Arbitrarily pick the first declaration for the note.
2468           Corrected.setCorrectionDecl(ND);
2469           break;
2470         }
2471       }
2472       R.addDecl(ND);
2473       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2474         CXXRecordDecl *Record = nullptr;
2475         if (Corrected.getCorrectionSpecifier()) {
2476           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2477           Record = Ty->getAsCXXRecordDecl();
2478         }
2479         if (!Record)
2480           Record = cast<CXXRecordDecl>(
2481               ND->getDeclContext()->getRedeclContext());
2482         R.setNamingClass(Record);
2483       }
2484 
2485       auto *UnderlyingND = ND->getUnderlyingDecl();
2486       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2487                                isa<FunctionTemplateDecl>(UnderlyingND);
2488       // FIXME: If we ended up with a typo for a type name or
2489       // Objective-C class name, we're in trouble because the parser
2490       // is in the wrong place to recover. Suggest the typo
2491       // correction, but don't make it a fix-it since we're not going
2492       // to recover well anyway.
2493       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2494                                   getAsTypeTemplateDecl(UnderlyingND) ||
2495                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2496     } else {
2497       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2498       // because we aren't able to recover.
2499       AcceptableWithoutRecovery = true;
2500     }
2501 
2502     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2503       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2504                             ? diag::note_implicit_param_decl
2505                             : diag::note_previous_decl;
2506       if (SS.isEmpty())
2507         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2508                      PDiag(NoteID), AcceptableWithRecovery);
2509       else
2510         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2511                                   << Name << computeDeclContext(SS, false)
2512                                   << DroppedSpecifier << SS.getRange(),
2513                      PDiag(NoteID), AcceptableWithRecovery);
2514 
2515       // Tell the callee whether to try to recover.
2516       return !AcceptableWithRecovery;
2517     }
2518   }
2519   R.clear();
2520 
2521   // Emit a special diagnostic for failed member lookups.
2522   // FIXME: computing the declaration context might fail here (?)
2523   if (!SS.isEmpty()) {
2524     Diag(R.getNameLoc(), diag::err_no_member)
2525       << Name << computeDeclContext(SS, false)
2526       << SS.getRange();
2527     return true;
2528   }
2529 
2530   // Give up, we can't recover.
2531   Diag(R.getNameLoc(), diagnostic) << Name;
2532   return true;
2533 }
2534 
2535 /// In Microsoft mode, if we are inside a template class whose parent class has
2536 /// dependent base classes, and we can't resolve an unqualified identifier, then
2537 /// assume the identifier is a member of a dependent base class.  We can only
2538 /// recover successfully in static methods, instance methods, and other contexts
2539 /// where 'this' is available.  This doesn't precisely match MSVC's
2540 /// instantiation model, but it's close enough.
2541 static Expr *
2542 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2543                                DeclarationNameInfo &NameInfo,
2544                                SourceLocation TemplateKWLoc,
2545                                const TemplateArgumentListInfo *TemplateArgs) {
2546   // Only try to recover from lookup into dependent bases in static methods or
2547   // contexts where 'this' is available.
2548   QualType ThisType = S.getCurrentThisType();
2549   const CXXRecordDecl *RD = nullptr;
2550   if (!ThisType.isNull())
2551     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2552   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2553     RD = MD->getParent();
2554   if (!RD || !RD->hasAnyDependentBases())
2555     return nullptr;
2556 
2557   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2558   // is available, suggest inserting 'this->' as a fixit.
2559   SourceLocation Loc = NameInfo.getLoc();
2560   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2561   DB << NameInfo.getName() << RD;
2562 
2563   if (!ThisType.isNull()) {
2564     DB << FixItHint::CreateInsertion(Loc, "this->");
2565     return CXXDependentScopeMemberExpr::Create(
2566         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2567         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2568         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2569   }
2570 
2571   // Synthesize a fake NNS that points to the derived class.  This will
2572   // perform name lookup during template instantiation.
2573   CXXScopeSpec SS;
2574   auto *NNS =
2575       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2576   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2577   return DependentScopeDeclRefExpr::Create(
2578       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2579       TemplateArgs);
2580 }
2581 
2582 ExprResult
2583 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2584                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2585                         bool HasTrailingLParen, bool IsAddressOfOperand,
2586                         CorrectionCandidateCallback *CCC,
2587                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2588   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2589          "cannot be direct & operand and have a trailing lparen");
2590   if (SS.isInvalid())
2591     return ExprError();
2592 
2593   TemplateArgumentListInfo TemplateArgsBuffer;
2594 
2595   // Decompose the UnqualifiedId into the following data.
2596   DeclarationNameInfo NameInfo;
2597   const TemplateArgumentListInfo *TemplateArgs;
2598   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2599 
2600   DeclarationName Name = NameInfo.getName();
2601   IdentifierInfo *II = Name.getAsIdentifierInfo();
2602   SourceLocation NameLoc = NameInfo.getLoc();
2603 
2604   if (II && II->isEditorPlaceholder()) {
2605     // FIXME: When typed placeholders are supported we can create a typed
2606     // placeholder expression node.
2607     return ExprError();
2608   }
2609 
2610   // C++ [temp.dep.expr]p3:
2611   //   An id-expression is type-dependent if it contains:
2612   //     -- an identifier that was declared with a dependent type,
2613   //        (note: handled after lookup)
2614   //     -- a template-id that is dependent,
2615   //        (note: handled in BuildTemplateIdExpr)
2616   //     -- a conversion-function-id that specifies a dependent type,
2617   //     -- a nested-name-specifier that contains a class-name that
2618   //        names a dependent type.
2619   // Determine whether this is a member of an unknown specialization;
2620   // we need to handle these differently.
2621   bool DependentID = false;
2622   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2623       Name.getCXXNameType()->isDependentType()) {
2624     DependentID = true;
2625   } else if (SS.isSet()) {
2626     if (DeclContext *DC = computeDeclContext(SS, false)) {
2627       if (RequireCompleteDeclContext(SS, DC))
2628         return ExprError();
2629     } else {
2630       DependentID = true;
2631     }
2632   }
2633 
2634   if (DependentID)
2635     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2636                                       IsAddressOfOperand, TemplateArgs);
2637 
2638   // Perform the required lookup.
2639   LookupResult R(*this, NameInfo,
2640                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2641                      ? LookupObjCImplicitSelfParam
2642                      : LookupOrdinaryName);
2643   if (TemplateKWLoc.isValid() || TemplateArgs) {
2644     // Lookup the template name again to correctly establish the context in
2645     // which it was found. This is really unfortunate as we already did the
2646     // lookup to determine that it was a template name in the first place. If
2647     // this becomes a performance hit, we can work harder to preserve those
2648     // results until we get here but it's likely not worth it.
2649     bool MemberOfUnknownSpecialization;
2650     AssumedTemplateKind AssumedTemplate;
2651     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2652                            MemberOfUnknownSpecialization, TemplateKWLoc,
2653                            &AssumedTemplate))
2654       return ExprError();
2655 
2656     if (MemberOfUnknownSpecialization ||
2657         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2658       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2659                                         IsAddressOfOperand, TemplateArgs);
2660   } else {
2661     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2662     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2663 
2664     // If the result might be in a dependent base class, this is a dependent
2665     // id-expression.
2666     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2667       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2668                                         IsAddressOfOperand, TemplateArgs);
2669 
2670     // If this reference is in an Objective-C method, then we need to do
2671     // some special Objective-C lookup, too.
2672     if (IvarLookupFollowUp) {
2673       ExprResult E(LookupInObjCMethod(R, S, II, true));
2674       if (E.isInvalid())
2675         return ExprError();
2676 
2677       if (Expr *Ex = E.getAs<Expr>())
2678         return Ex;
2679     }
2680   }
2681 
2682   if (R.isAmbiguous())
2683     return ExprError();
2684 
2685   // This could be an implicitly declared function reference if the language
2686   // mode allows it as a feature.
2687   if (R.empty() && HasTrailingLParen && II &&
2688       getLangOpts().implicitFunctionsAllowed()) {
2689     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2690     if (D) R.addDecl(D);
2691   }
2692 
2693   // Determine whether this name might be a candidate for
2694   // argument-dependent lookup.
2695   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2696 
2697   if (R.empty() && !ADL) {
2698     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2699       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2700                                                    TemplateKWLoc, TemplateArgs))
2701         return E;
2702     }
2703 
2704     // Don't diagnose an empty lookup for inline assembly.
2705     if (IsInlineAsmIdentifier)
2706       return ExprError();
2707 
2708     // If this name wasn't predeclared and if this is not a function
2709     // call, diagnose the problem.
2710     TypoExpr *TE = nullptr;
2711     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2712                                                        : nullptr);
2713     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2714     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2715            "Typo correction callback misconfigured");
2716     if (CCC) {
2717       // Make sure the callback knows what the typo being diagnosed is.
2718       CCC->setTypoName(II);
2719       if (SS.isValid())
2720         CCC->setTypoNNS(SS.getScopeRep());
2721     }
2722     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2723     // a template name, but we happen to have always already looked up the name
2724     // before we get here if it must be a template name.
2725     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2726                             std::nullopt, &TE)) {
2727       if (TE && KeywordReplacement) {
2728         auto &State = getTypoExprState(TE);
2729         auto BestTC = State.Consumer->getNextCorrection();
2730         if (BestTC.isKeyword()) {
2731           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2732           if (State.DiagHandler)
2733             State.DiagHandler(BestTC);
2734           KeywordReplacement->startToken();
2735           KeywordReplacement->setKind(II->getTokenID());
2736           KeywordReplacement->setIdentifierInfo(II);
2737           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2738           // Clean up the state associated with the TypoExpr, since it has
2739           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2740           clearDelayedTypo(TE);
2741           // Signal that a correction to a keyword was performed by returning a
2742           // valid-but-null ExprResult.
2743           return (Expr*)nullptr;
2744         }
2745         State.Consumer->resetCorrectionStream();
2746       }
2747       return TE ? TE : ExprError();
2748     }
2749 
2750     assert(!R.empty() &&
2751            "DiagnoseEmptyLookup returned false but added no results");
2752 
2753     // If we found an Objective-C instance variable, let
2754     // LookupInObjCMethod build the appropriate expression to
2755     // reference the ivar.
2756     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2757       R.clear();
2758       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2759       // In a hopelessly buggy code, Objective-C instance variable
2760       // lookup fails and no expression will be built to reference it.
2761       if (!E.isInvalid() && !E.get())
2762         return ExprError();
2763       return E;
2764     }
2765   }
2766 
2767   // This is guaranteed from this point on.
2768   assert(!R.empty() || ADL);
2769 
2770   // Check whether this might be a C++ implicit instance member access.
2771   // C++ [class.mfct.non-static]p3:
2772   //   When an id-expression that is not part of a class member access
2773   //   syntax and not used to form a pointer to member is used in the
2774   //   body of a non-static member function of class X, if name lookup
2775   //   resolves the name in the id-expression to a non-static non-type
2776   //   member of some class C, the id-expression is transformed into a
2777   //   class member access expression using (*this) as the
2778   //   postfix-expression to the left of the . operator.
2779   //
2780   // But we don't actually need to do this for '&' operands if R
2781   // resolved to a function or overloaded function set, because the
2782   // expression is ill-formed if it actually works out to be a
2783   // non-static member function:
2784   //
2785   // C++ [expr.ref]p4:
2786   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2787   //   [t]he expression can be used only as the left-hand operand of a
2788   //   member function call.
2789   //
2790   // There are other safeguards against such uses, but it's important
2791   // to get this right here so that we don't end up making a
2792   // spuriously dependent expression if we're inside a dependent
2793   // instance method.
2794   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2795     bool MightBeImplicitMember;
2796     if (!IsAddressOfOperand)
2797       MightBeImplicitMember = true;
2798     else if (!SS.isEmpty())
2799       MightBeImplicitMember = false;
2800     else if (R.isOverloadedResult())
2801       MightBeImplicitMember = false;
2802     else if (R.isUnresolvableResult())
2803       MightBeImplicitMember = true;
2804     else
2805       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2806                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2807                               isa<MSPropertyDecl>(R.getFoundDecl());
2808 
2809     if (MightBeImplicitMember)
2810       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2811                                              R, TemplateArgs, S);
2812   }
2813 
2814   if (TemplateArgs || TemplateKWLoc.isValid()) {
2815 
2816     // In C++1y, if this is a variable template id, then check it
2817     // in BuildTemplateIdExpr().
2818     // The single lookup result must be a variable template declaration.
2819     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2820         Id.TemplateId->Kind == TNK_Var_template) {
2821       assert(R.getAsSingle<VarTemplateDecl>() &&
2822              "There should only be one declaration found.");
2823     }
2824 
2825     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2826   }
2827 
2828   return BuildDeclarationNameExpr(SS, R, ADL);
2829 }
2830 
2831 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2832 /// declaration name, generally during template instantiation.
2833 /// There's a large number of things which don't need to be done along
2834 /// this path.
2835 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2836     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2837     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2838   if (NameInfo.getName().isDependentName())
2839     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2840                                      NameInfo, /*TemplateArgs=*/nullptr);
2841 
2842   DeclContext *DC = computeDeclContext(SS, false);
2843   if (!DC)
2844     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2845                                      NameInfo, /*TemplateArgs=*/nullptr);
2846 
2847   if (RequireCompleteDeclContext(SS, DC))
2848     return ExprError();
2849 
2850   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2851   LookupQualifiedName(R, DC);
2852 
2853   if (R.isAmbiguous())
2854     return ExprError();
2855 
2856   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2857     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2858                                      NameInfo, /*TemplateArgs=*/nullptr);
2859 
2860   if (R.empty()) {
2861     // Don't diagnose problems with invalid record decl, the secondary no_member
2862     // diagnostic during template instantiation is likely bogus, e.g. if a class
2863     // is invalid because it's derived from an invalid base class, then missing
2864     // members were likely supposed to be inherited.
2865     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2866       if (CD->isInvalidDecl())
2867         return ExprError();
2868     Diag(NameInfo.getLoc(), diag::err_no_member)
2869       << NameInfo.getName() << DC << SS.getRange();
2870     return ExprError();
2871   }
2872 
2873   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2874     // Diagnose a missing typename if this resolved unambiguously to a type in
2875     // a dependent context.  If we can recover with a type, downgrade this to
2876     // a warning in Microsoft compatibility mode.
2877     unsigned DiagID = diag::err_typename_missing;
2878     if (RecoveryTSI && getLangOpts().MSVCCompat)
2879       DiagID = diag::ext_typename_missing;
2880     SourceLocation Loc = SS.getBeginLoc();
2881     auto D = Diag(Loc, DiagID);
2882     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2883       << SourceRange(Loc, NameInfo.getEndLoc());
2884 
2885     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2886     // context.
2887     if (!RecoveryTSI)
2888       return ExprError();
2889 
2890     // Only issue the fixit if we're prepared to recover.
2891     D << FixItHint::CreateInsertion(Loc, "typename ");
2892 
2893     // Recover by pretending this was an elaborated type.
2894     QualType Ty = Context.getTypeDeclType(TD);
2895     TypeLocBuilder TLB;
2896     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2897 
2898     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2899     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2900     QTL.setElaboratedKeywordLoc(SourceLocation());
2901     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2902 
2903     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2904 
2905     return ExprEmpty();
2906   }
2907 
2908   // Defend against this resolving to an implicit member access. We usually
2909   // won't get here if this might be a legitimate a class member (we end up in
2910   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2911   // a pointer-to-member or in an unevaluated context in C++11.
2912   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2913     return BuildPossibleImplicitMemberExpr(SS,
2914                                            /*TemplateKWLoc=*/SourceLocation(),
2915                                            R, /*TemplateArgs=*/nullptr, S);
2916 
2917   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2918 }
2919 
2920 /// The parser has read a name in, and Sema has detected that we're currently
2921 /// inside an ObjC method. Perform some additional checks and determine if we
2922 /// should form a reference to an ivar.
2923 ///
2924 /// Ideally, most of this would be done by lookup, but there's
2925 /// actually quite a lot of extra work involved.
2926 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2927                                         IdentifierInfo *II) {
2928   SourceLocation Loc = Lookup.getNameLoc();
2929   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2930 
2931   // Check for error condition which is already reported.
2932   if (!CurMethod)
2933     return DeclResult(true);
2934 
2935   // There are two cases to handle here.  1) scoped lookup could have failed,
2936   // in which case we should look for an ivar.  2) scoped lookup could have
2937   // found a decl, but that decl is outside the current instance method (i.e.
2938   // a global variable).  In these two cases, we do a lookup for an ivar with
2939   // this name, if the lookup sucedes, we replace it our current decl.
2940 
2941   // If we're in a class method, we don't normally want to look for
2942   // ivars.  But if we don't find anything else, and there's an
2943   // ivar, that's an error.
2944   bool IsClassMethod = CurMethod->isClassMethod();
2945 
2946   bool LookForIvars;
2947   if (Lookup.empty())
2948     LookForIvars = true;
2949   else if (IsClassMethod)
2950     LookForIvars = false;
2951   else
2952     LookForIvars = (Lookup.isSingleResult() &&
2953                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2954   ObjCInterfaceDecl *IFace = nullptr;
2955   if (LookForIvars) {
2956     IFace = CurMethod->getClassInterface();
2957     ObjCInterfaceDecl *ClassDeclared;
2958     ObjCIvarDecl *IV = nullptr;
2959     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2960       // Diagnose using an ivar in a class method.
2961       if (IsClassMethod) {
2962         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2963         return DeclResult(true);
2964       }
2965 
2966       // Diagnose the use of an ivar outside of the declaring class.
2967       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2968           !declaresSameEntity(ClassDeclared, IFace) &&
2969           !getLangOpts().DebuggerSupport)
2970         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2971 
2972       // Success.
2973       return IV;
2974     }
2975   } else if (CurMethod->isInstanceMethod()) {
2976     // We should warn if a local variable hides an ivar.
2977     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2978       ObjCInterfaceDecl *ClassDeclared;
2979       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2980         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2981             declaresSameEntity(IFace, ClassDeclared))
2982           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2983       }
2984     }
2985   } else if (Lookup.isSingleResult() &&
2986              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2987     // If accessing a stand-alone ivar in a class method, this is an error.
2988     if (const ObjCIvarDecl *IV =
2989             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2990       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2991       return DeclResult(true);
2992     }
2993   }
2994 
2995   // Didn't encounter an error, didn't find an ivar.
2996   return DeclResult(false);
2997 }
2998 
2999 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3000                                   ObjCIvarDecl *IV) {
3001   ObjCMethodDecl *CurMethod = getCurMethodDecl();
3002   assert(CurMethod && CurMethod->isInstanceMethod() &&
3003          "should not reference ivar from this context");
3004 
3005   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3006   assert(IFace && "should not reference ivar from this context");
3007 
3008   // If we're referencing an invalid decl, just return this as a silent
3009   // error node.  The error diagnostic was already emitted on the decl.
3010   if (IV->isInvalidDecl())
3011     return ExprError();
3012 
3013   // Check if referencing a field with __attribute__((deprecated)).
3014   if (DiagnoseUseOfDecl(IV, Loc))
3015     return ExprError();
3016 
3017   // FIXME: This should use a new expr for a direct reference, don't
3018   // turn this into Self->ivar, just return a BareIVarExpr or something.
3019   IdentifierInfo &II = Context.Idents.get("self");
3020   UnqualifiedId SelfName;
3021   SelfName.setImplicitSelfParam(&II);
3022   CXXScopeSpec SelfScopeSpec;
3023   SourceLocation TemplateKWLoc;
3024   ExprResult SelfExpr =
3025       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3026                         /*HasTrailingLParen=*/false,
3027                         /*IsAddressOfOperand=*/false);
3028   if (SelfExpr.isInvalid())
3029     return ExprError();
3030 
3031   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3032   if (SelfExpr.isInvalid())
3033     return ExprError();
3034 
3035   MarkAnyDeclReferenced(Loc, IV, true);
3036 
3037   ObjCMethodFamily MF = CurMethod->getMethodFamily();
3038   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3039       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3040     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3041 
3042   ObjCIvarRefExpr *Result = new (Context)
3043       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3044                       IV->getLocation(), SelfExpr.get(), true, true);
3045 
3046   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3047     if (!isUnevaluatedContext() &&
3048         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3049       getCurFunction()->recordUseOfWeak(Result);
3050   }
3051   if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3052     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3053       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3054 
3055   return Result;
3056 }
3057 
3058 /// The parser has read a name in, and Sema has detected that we're currently
3059 /// inside an ObjC method. Perform some additional checks and determine if we
3060 /// should form a reference to an ivar. If so, build an expression referencing
3061 /// that ivar.
3062 ExprResult
3063 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3064                          IdentifierInfo *II, bool AllowBuiltinCreation) {
3065   // FIXME: Integrate this lookup step into LookupParsedName.
3066   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3067   if (Ivar.isInvalid())
3068     return ExprError();
3069   if (Ivar.isUsable())
3070     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3071                             cast<ObjCIvarDecl>(Ivar.get()));
3072 
3073   if (Lookup.empty() && II && AllowBuiltinCreation)
3074     LookupBuiltin(Lookup);
3075 
3076   // Sentinel value saying that we didn't do anything special.
3077   return ExprResult(false);
3078 }
3079 
3080 /// Cast a base object to a member's actual type.
3081 ///
3082 /// There are two relevant checks:
3083 ///
3084 /// C++ [class.access.base]p7:
3085 ///
3086 ///   If a class member access operator [...] is used to access a non-static
3087 ///   data member or non-static member function, the reference is ill-formed if
3088 ///   the left operand [...] cannot be implicitly converted to a pointer to the
3089 ///   naming class of the right operand.
3090 ///
3091 /// C++ [expr.ref]p7:
3092 ///
3093 ///   If E2 is a non-static data member or a non-static member function, the
3094 ///   program is ill-formed if the class of which E2 is directly a member is an
3095 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
3096 ///
3097 /// Note that the latter check does not consider access; the access of the
3098 /// "real" base class is checked as appropriate when checking the access of the
3099 /// member name.
3100 ExprResult
3101 Sema::PerformObjectMemberConversion(Expr *From,
3102                                     NestedNameSpecifier *Qualifier,
3103                                     NamedDecl *FoundDecl,
3104                                     NamedDecl *Member) {
3105   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3106   if (!RD)
3107     return From;
3108 
3109   QualType DestRecordType;
3110   QualType DestType;
3111   QualType FromRecordType;
3112   QualType FromType = From->getType();
3113   bool PointerConversions = false;
3114   if (isa<FieldDecl>(Member)) {
3115     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3116     auto FromPtrType = FromType->getAs<PointerType>();
3117     DestRecordType = Context.getAddrSpaceQualType(
3118         DestRecordType, FromPtrType
3119                             ? FromType->getPointeeType().getAddressSpace()
3120                             : FromType.getAddressSpace());
3121 
3122     if (FromPtrType) {
3123       DestType = Context.getPointerType(DestRecordType);
3124       FromRecordType = FromPtrType->getPointeeType();
3125       PointerConversions = true;
3126     } else {
3127       DestType = DestRecordType;
3128       FromRecordType = FromType;
3129     }
3130   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3131     if (Method->isStatic())
3132       return From;
3133 
3134     DestType = Method->getThisType();
3135     DestRecordType = DestType->getPointeeType();
3136 
3137     if (FromType->getAs<PointerType>()) {
3138       FromRecordType = FromType->getPointeeType();
3139       PointerConversions = true;
3140     } else {
3141       FromRecordType = FromType;
3142       DestType = DestRecordType;
3143     }
3144 
3145     LangAS FromAS = FromRecordType.getAddressSpace();
3146     LangAS DestAS = DestRecordType.getAddressSpace();
3147     if (FromAS != DestAS) {
3148       QualType FromRecordTypeWithoutAS =
3149           Context.removeAddrSpaceQualType(FromRecordType);
3150       QualType FromTypeWithDestAS =
3151           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3152       if (PointerConversions)
3153         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3154       From = ImpCastExprToType(From, FromTypeWithDestAS,
3155                                CK_AddressSpaceConversion, From->getValueKind())
3156                  .get();
3157     }
3158   } else {
3159     // No conversion necessary.
3160     return From;
3161   }
3162 
3163   if (DestType->isDependentType() || FromType->isDependentType())
3164     return From;
3165 
3166   // If the unqualified types are the same, no conversion is necessary.
3167   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3168     return From;
3169 
3170   SourceRange FromRange = From->getSourceRange();
3171   SourceLocation FromLoc = FromRange.getBegin();
3172 
3173   ExprValueKind VK = From->getValueKind();
3174 
3175   // C++ [class.member.lookup]p8:
3176   //   [...] Ambiguities can often be resolved by qualifying a name with its
3177   //   class name.
3178   //
3179   // If the member was a qualified name and the qualified referred to a
3180   // specific base subobject type, we'll cast to that intermediate type
3181   // first and then to the object in which the member is declared. That allows
3182   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3183   //
3184   //   class Base { public: int x; };
3185   //   class Derived1 : public Base { };
3186   //   class Derived2 : public Base { };
3187   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3188   //
3189   //   void VeryDerived::f() {
3190   //     x = 17; // error: ambiguous base subobjects
3191   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3192   //   }
3193   if (Qualifier && Qualifier->getAsType()) {
3194     QualType QType = QualType(Qualifier->getAsType(), 0);
3195     assert(QType->isRecordType() && "lookup done with non-record type");
3196 
3197     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3198 
3199     // In C++98, the qualifier type doesn't actually have to be a base
3200     // type of the object type, in which case we just ignore it.
3201     // Otherwise build the appropriate casts.
3202     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3203       CXXCastPath BasePath;
3204       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3205                                        FromLoc, FromRange, &BasePath))
3206         return ExprError();
3207 
3208       if (PointerConversions)
3209         QType = Context.getPointerType(QType);
3210       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3211                                VK, &BasePath).get();
3212 
3213       FromType = QType;
3214       FromRecordType = QRecordType;
3215 
3216       // If the qualifier type was the same as the destination type,
3217       // we're done.
3218       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3219         return From;
3220     }
3221   }
3222 
3223   CXXCastPath BasePath;
3224   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3225                                    FromLoc, FromRange, &BasePath,
3226                                    /*IgnoreAccess=*/true))
3227     return ExprError();
3228 
3229   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3230                            VK, &BasePath);
3231 }
3232 
3233 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3234                                       const LookupResult &R,
3235                                       bool HasTrailingLParen) {
3236   // Only when used directly as the postfix-expression of a call.
3237   if (!HasTrailingLParen)
3238     return false;
3239 
3240   // Never if a scope specifier was provided.
3241   if (SS.isSet())
3242     return false;
3243 
3244   // Only in C++ or ObjC++.
3245   if (!getLangOpts().CPlusPlus)
3246     return false;
3247 
3248   // Turn off ADL when we find certain kinds of declarations during
3249   // normal lookup:
3250   for (const NamedDecl *D : R) {
3251     // C++0x [basic.lookup.argdep]p3:
3252     //     -- a declaration of a class member
3253     // Since using decls preserve this property, we check this on the
3254     // original decl.
3255     if (D->isCXXClassMember())
3256       return false;
3257 
3258     // C++0x [basic.lookup.argdep]p3:
3259     //     -- a block-scope function declaration that is not a
3260     //        using-declaration
3261     // NOTE: we also trigger this for function templates (in fact, we
3262     // don't check the decl type at all, since all other decl types
3263     // turn off ADL anyway).
3264     if (isa<UsingShadowDecl>(D))
3265       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3266     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3267       return false;
3268 
3269     // C++0x [basic.lookup.argdep]p3:
3270     //     -- a declaration that is neither a function or a function
3271     //        template
3272     // And also for builtin functions.
3273     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3274       // But also builtin functions.
3275       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3276         return false;
3277     } else if (!isa<FunctionTemplateDecl>(D))
3278       return false;
3279   }
3280 
3281   return true;
3282 }
3283 
3284 
3285 /// Diagnoses obvious problems with the use of the given declaration
3286 /// as an expression.  This is only actually called for lookups that
3287 /// were not overloaded, and it doesn't promise that the declaration
3288 /// will in fact be used.
3289 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3290                             bool AcceptInvalid) {
3291   if (D->isInvalidDecl() && !AcceptInvalid)
3292     return true;
3293 
3294   if (isa<TypedefNameDecl>(D)) {
3295     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3296     return true;
3297   }
3298 
3299   if (isa<ObjCInterfaceDecl>(D)) {
3300     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3301     return true;
3302   }
3303 
3304   if (isa<NamespaceDecl>(D)) {
3305     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3306     return true;
3307   }
3308 
3309   return false;
3310 }
3311 
3312 // Certain multiversion types should be treated as overloaded even when there is
3313 // only one result.
3314 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3315   assert(R.isSingleResult() && "Expected only a single result");
3316   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3317   return FD &&
3318          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3319 }
3320 
3321 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3322                                           LookupResult &R, bool NeedsADL,
3323                                           bool AcceptInvalidDecl) {
3324   // If this is a single, fully-resolved result and we don't need ADL,
3325   // just build an ordinary singleton decl ref.
3326   if (!NeedsADL && R.isSingleResult() &&
3327       !R.getAsSingle<FunctionTemplateDecl>() &&
3328       !ShouldLookupResultBeMultiVersionOverload(R))
3329     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3330                                     R.getRepresentativeDecl(), nullptr,
3331                                     AcceptInvalidDecl);
3332 
3333   // We only need to check the declaration if there's exactly one
3334   // result, because in the overloaded case the results can only be
3335   // functions and function templates.
3336   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3337       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3338                       AcceptInvalidDecl))
3339     return ExprError();
3340 
3341   // Otherwise, just build an unresolved lookup expression.  Suppress
3342   // any lookup-related diagnostics; we'll hash these out later, when
3343   // we've picked a target.
3344   R.suppressDiagnostics();
3345 
3346   UnresolvedLookupExpr *ULE
3347     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3348                                    SS.getWithLocInContext(Context),
3349                                    R.getLookupNameInfo(),
3350                                    NeedsADL, R.isOverloadedResult(),
3351                                    R.begin(), R.end());
3352 
3353   return ULE;
3354 }
3355 
3356 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3357                                                         SourceLocation loc,
3358                                                         ValueDecl *var);
3359 
3360 /// Complete semantic analysis for a reference to the given declaration.
3361 ExprResult Sema::BuildDeclarationNameExpr(
3362     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3363     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3364     bool AcceptInvalidDecl) {
3365   assert(D && "Cannot refer to a NULL declaration");
3366   assert(!isa<FunctionTemplateDecl>(D) &&
3367          "Cannot refer unambiguously to a function template");
3368 
3369   SourceLocation Loc = NameInfo.getLoc();
3370   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3371     // Recovery from invalid cases (e.g. D is an invalid Decl).
3372     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3373     // diagnostics, as invalid decls use int as a fallback type.
3374     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3375   }
3376 
3377   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3378     // Specifically diagnose references to class templates that are missing
3379     // a template argument list.
3380     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3381     return ExprError();
3382   }
3383 
3384   // Make sure that we're referring to a value.
3385   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3386     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3387     Diag(D->getLocation(), diag::note_declared_at);
3388     return ExprError();
3389   }
3390 
3391   // Check whether this declaration can be used. Note that we suppress
3392   // this check when we're going to perform argument-dependent lookup
3393   // on this function name, because this might not be the function
3394   // that overload resolution actually selects.
3395   if (DiagnoseUseOfDecl(D, Loc))
3396     return ExprError();
3397 
3398   auto *VD = cast<ValueDecl>(D);
3399 
3400   // Only create DeclRefExpr's for valid Decl's.
3401   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3402     return ExprError();
3403 
3404   // Handle members of anonymous structs and unions.  If we got here,
3405   // and the reference is to a class member indirect field, then this
3406   // must be the subject of a pointer-to-member expression.
3407   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3408       IndirectField && !IndirectField->isCXXClassMember())
3409     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3410                                                     IndirectField);
3411 
3412   QualType type = VD->getType();
3413   if (type.isNull())
3414     return ExprError();
3415   ExprValueKind valueKind = VK_PRValue;
3416 
3417   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3418   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3419   // is expanded by some outer '...' in the context of the use.
3420   type = type.getNonPackExpansionType();
3421 
3422   switch (D->getKind()) {
3423     // Ignore all the non-ValueDecl kinds.
3424 #define ABSTRACT_DECL(kind)
3425 #define VALUE(type, base)
3426 #define DECL(type, base) case Decl::type:
3427 #include "clang/AST/DeclNodes.inc"
3428     llvm_unreachable("invalid value decl kind");
3429 
3430   // These shouldn't make it here.
3431   case Decl::ObjCAtDefsField:
3432     llvm_unreachable("forming non-member reference to ivar?");
3433 
3434   // Enum constants are always r-values and never references.
3435   // Unresolved using declarations are dependent.
3436   case Decl::EnumConstant:
3437   case Decl::UnresolvedUsingValue:
3438   case Decl::OMPDeclareReduction:
3439   case Decl::OMPDeclareMapper:
3440     valueKind = VK_PRValue;
3441     break;
3442 
3443   // Fields and indirect fields that got here must be for
3444   // pointer-to-member expressions; we just call them l-values for
3445   // internal consistency, because this subexpression doesn't really
3446   // exist in the high-level semantics.
3447   case Decl::Field:
3448   case Decl::IndirectField:
3449   case Decl::ObjCIvar:
3450     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3451 
3452     // These can't have reference type in well-formed programs, but
3453     // for internal consistency we do this anyway.
3454     type = type.getNonReferenceType();
3455     valueKind = VK_LValue;
3456     break;
3457 
3458   // Non-type template parameters are either l-values or r-values
3459   // depending on the type.
3460   case Decl::NonTypeTemplateParm: {
3461     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3462       type = reftype->getPointeeType();
3463       valueKind = VK_LValue; // even if the parameter is an r-value reference
3464       break;
3465     }
3466 
3467     // [expr.prim.id.unqual]p2:
3468     //   If the entity is a template parameter object for a template
3469     //   parameter of type T, the type of the expression is const T.
3470     //   [...] The expression is an lvalue if the entity is a [...] template
3471     //   parameter object.
3472     if (type->isRecordType()) {
3473       type = type.getUnqualifiedType().withConst();
3474       valueKind = VK_LValue;
3475       break;
3476     }
3477 
3478     // For non-references, we need to strip qualifiers just in case
3479     // the template parameter was declared as 'const int' or whatever.
3480     valueKind = VK_PRValue;
3481     type = type.getUnqualifiedType();
3482     break;
3483   }
3484 
3485   case Decl::Var:
3486   case Decl::VarTemplateSpecialization:
3487   case Decl::VarTemplatePartialSpecialization:
3488   case Decl::Decomposition:
3489   case Decl::OMPCapturedExpr:
3490     // In C, "extern void blah;" is valid and is an r-value.
3491     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3492         type->isVoidType()) {
3493       valueKind = VK_PRValue;
3494       break;
3495     }
3496     [[fallthrough]];
3497 
3498   case Decl::ImplicitParam:
3499   case Decl::ParmVar: {
3500     // These are always l-values.
3501     valueKind = VK_LValue;
3502     type = type.getNonReferenceType();
3503 
3504     // FIXME: Does the addition of const really only apply in
3505     // potentially-evaluated contexts? Since the variable isn't actually
3506     // captured in an unevaluated context, it seems that the answer is no.
3507     if (!isUnevaluatedContext()) {
3508       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3509       if (!CapturedType.isNull())
3510         type = CapturedType;
3511     }
3512 
3513     break;
3514   }
3515 
3516   case Decl::Binding:
3517     // These are always lvalues.
3518     valueKind = VK_LValue;
3519     type = type.getNonReferenceType();
3520     break;
3521 
3522   case Decl::Function: {
3523     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3524       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3525         type = Context.BuiltinFnTy;
3526         valueKind = VK_PRValue;
3527         break;
3528       }
3529     }
3530 
3531     const FunctionType *fty = type->castAs<FunctionType>();
3532 
3533     // If we're referring to a function with an __unknown_anytype
3534     // result type, make the entire expression __unknown_anytype.
3535     if (fty->getReturnType() == Context.UnknownAnyTy) {
3536       type = Context.UnknownAnyTy;
3537       valueKind = VK_PRValue;
3538       break;
3539     }
3540 
3541     // Functions are l-values in C++.
3542     if (getLangOpts().CPlusPlus) {
3543       valueKind = VK_LValue;
3544       break;
3545     }
3546 
3547     // C99 DR 316 says that, if a function type comes from a
3548     // function definition (without a prototype), that type is only
3549     // used for checking compatibility. Therefore, when referencing
3550     // the function, we pretend that we don't have the full function
3551     // type.
3552     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3553       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3554                                             fty->getExtInfo());
3555 
3556     // Functions are r-values in C.
3557     valueKind = VK_PRValue;
3558     break;
3559   }
3560 
3561   case Decl::CXXDeductionGuide:
3562     llvm_unreachable("building reference to deduction guide");
3563 
3564   case Decl::MSProperty:
3565   case Decl::MSGuid:
3566   case Decl::TemplateParamObject:
3567     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3568     // capture in OpenMP, or duplicated between host and device?
3569     valueKind = VK_LValue;
3570     break;
3571 
3572   case Decl::UnnamedGlobalConstant:
3573     valueKind = VK_LValue;
3574     break;
3575 
3576   case Decl::CXXMethod:
3577     // If we're referring to a method with an __unknown_anytype
3578     // result type, make the entire expression __unknown_anytype.
3579     // This should only be possible with a type written directly.
3580     if (const FunctionProtoType *proto =
3581             dyn_cast<FunctionProtoType>(VD->getType()))
3582       if (proto->getReturnType() == Context.UnknownAnyTy) {
3583         type = Context.UnknownAnyTy;
3584         valueKind = VK_PRValue;
3585         break;
3586       }
3587 
3588     // C++ methods are l-values if static, r-values if non-static.
3589     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3590       valueKind = VK_LValue;
3591       break;
3592     }
3593     [[fallthrough]];
3594 
3595   case Decl::CXXConversion:
3596   case Decl::CXXDestructor:
3597   case Decl::CXXConstructor:
3598     valueKind = VK_PRValue;
3599     break;
3600   }
3601 
3602   auto *E =
3603       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3604                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3605   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3606   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3607   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3608   // diagnostics).
3609   if (VD->isInvalidDecl() && E)
3610     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3611   return E;
3612 }
3613 
3614 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3615                                     SmallString<32> &Target) {
3616   Target.resize(CharByteWidth * (Source.size() + 1));
3617   char *ResultPtr = &Target[0];
3618   const llvm::UTF8 *ErrorPtr;
3619   bool success =
3620       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3621   (void)success;
3622   assert(success);
3623   Target.resize(ResultPtr - &Target[0]);
3624 }
3625 
3626 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3627                                      PredefinedExpr::IdentKind IK) {
3628   // Pick the current block, lambda, captured statement or function.
3629   Decl *currentDecl = nullptr;
3630   if (const BlockScopeInfo *BSI = getCurBlock())
3631     currentDecl = BSI->TheDecl;
3632   else if (const LambdaScopeInfo *LSI = getCurLambda())
3633     currentDecl = LSI->CallOperator;
3634   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3635     currentDecl = CSI->TheCapturedDecl;
3636   else
3637     currentDecl = getCurFunctionOrMethodDecl();
3638 
3639   if (!currentDecl) {
3640     Diag(Loc, diag::ext_predef_outside_function);
3641     currentDecl = Context.getTranslationUnitDecl();
3642   }
3643 
3644   QualType ResTy;
3645   StringLiteral *SL = nullptr;
3646   if (cast<DeclContext>(currentDecl)->isDependentContext())
3647     ResTy = Context.DependentTy;
3648   else {
3649     // Pre-defined identifiers are of type char[x], where x is the length of
3650     // the string.
3651     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3652     unsigned Length = Str.length();
3653 
3654     llvm::APInt LengthI(32, Length + 1);
3655     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3656       ResTy =
3657           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3658       SmallString<32> RawChars;
3659       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3660                               Str, RawChars);
3661       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3662                                            ArrayType::Normal,
3663                                            /*IndexTypeQuals*/ 0);
3664       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3665                                  /*Pascal*/ false, ResTy, Loc);
3666     } else {
3667       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3668       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3669                                            ArrayType::Normal,
3670                                            /*IndexTypeQuals*/ 0);
3671       SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3672                                  /*Pascal*/ false, ResTy, Loc);
3673     }
3674   }
3675 
3676   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3677                                 SL);
3678 }
3679 
3680 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3681                                                SourceLocation LParen,
3682                                                SourceLocation RParen,
3683                                                TypeSourceInfo *TSI) {
3684   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3685 }
3686 
3687 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3688                                                SourceLocation LParen,
3689                                                SourceLocation RParen,
3690                                                ParsedType ParsedTy) {
3691   TypeSourceInfo *TSI = nullptr;
3692   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3693 
3694   if (Ty.isNull())
3695     return ExprError();
3696   if (!TSI)
3697     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3698 
3699   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3700 }
3701 
3702 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3703   PredefinedExpr::IdentKind IK;
3704 
3705   switch (Kind) {
3706   default: llvm_unreachable("Unknown simple primary expr!");
3707   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3708   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3709   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3710   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3711   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3712   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3713   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3714   }
3715 
3716   return BuildPredefinedExpr(Loc, IK);
3717 }
3718 
3719 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3720   SmallString<16> CharBuffer;
3721   bool Invalid = false;
3722   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3723   if (Invalid)
3724     return ExprError();
3725 
3726   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3727                             PP, Tok.getKind());
3728   if (Literal.hadError())
3729     return ExprError();
3730 
3731   QualType Ty;
3732   if (Literal.isWide())
3733     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3734   else if (Literal.isUTF8() && getLangOpts().C2x)
3735     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3736   else if (Literal.isUTF8() && getLangOpts().Char8)
3737     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3738   else if (Literal.isUTF16())
3739     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3740   else if (Literal.isUTF32())
3741     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3742   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3743     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3744   else
3745     Ty = Context.CharTy; // 'x' -> char in C++;
3746                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3747 
3748   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3749   if (Literal.isWide())
3750     Kind = CharacterLiteral::Wide;
3751   else if (Literal.isUTF16())
3752     Kind = CharacterLiteral::UTF16;
3753   else if (Literal.isUTF32())
3754     Kind = CharacterLiteral::UTF32;
3755   else if (Literal.isUTF8())
3756     Kind = CharacterLiteral::UTF8;
3757 
3758   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3759                                              Tok.getLocation());
3760 
3761   if (Literal.getUDSuffix().empty())
3762     return Lit;
3763 
3764   // We're building a user-defined literal.
3765   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3766   SourceLocation UDSuffixLoc =
3767     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3768 
3769   // Make sure we're allowed user-defined literals here.
3770   if (!UDLScope)
3771     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3772 
3773   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3774   //   operator "" X (ch)
3775   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3776                                         Lit, Tok.getLocation());
3777 }
3778 
3779 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3780   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3781   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3782                                 Context.IntTy, Loc);
3783 }
3784 
3785 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3786                                   QualType Ty, SourceLocation Loc) {
3787   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3788 
3789   using llvm::APFloat;
3790   APFloat Val(Format);
3791 
3792   APFloat::opStatus result = Literal.GetFloatValue(Val);
3793 
3794   // Overflow is always an error, but underflow is only an error if
3795   // we underflowed to zero (APFloat reports denormals as underflow).
3796   if ((result & APFloat::opOverflow) ||
3797       ((result & APFloat::opUnderflow) && Val.isZero())) {
3798     unsigned diagnostic;
3799     SmallString<20> buffer;
3800     if (result & APFloat::opOverflow) {
3801       diagnostic = diag::warn_float_overflow;
3802       APFloat::getLargest(Format).toString(buffer);
3803     } else {
3804       diagnostic = diag::warn_float_underflow;
3805       APFloat::getSmallest(Format).toString(buffer);
3806     }
3807 
3808     S.Diag(Loc, diagnostic)
3809       << Ty
3810       << StringRef(buffer.data(), buffer.size());
3811   }
3812 
3813   bool isExact = (result == APFloat::opOK);
3814   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3815 }
3816 
3817 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3818   assert(E && "Invalid expression");
3819 
3820   if (E->isValueDependent())
3821     return false;
3822 
3823   QualType QT = E->getType();
3824   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3825     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3826     return true;
3827   }
3828 
3829   llvm::APSInt ValueAPS;
3830   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3831 
3832   if (R.isInvalid())
3833     return true;
3834 
3835   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3836   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3837     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3838         << toString(ValueAPS, 10) << ValueIsPositive;
3839     return true;
3840   }
3841 
3842   return false;
3843 }
3844 
3845 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3846   // Fast path for a single digit (which is quite common).  A single digit
3847   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3848   if (Tok.getLength() == 1) {
3849     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3850     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3851   }
3852 
3853   SmallString<128> SpellingBuffer;
3854   // NumericLiteralParser wants to overread by one character.  Add padding to
3855   // the buffer in case the token is copied to the buffer.  If getSpelling()
3856   // returns a StringRef to the memory buffer, it should have a null char at
3857   // the EOF, so it is also safe.
3858   SpellingBuffer.resize(Tok.getLength() + 1);
3859 
3860   // Get the spelling of the token, which eliminates trigraphs, etc.
3861   bool Invalid = false;
3862   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3863   if (Invalid)
3864     return ExprError();
3865 
3866   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3867                                PP.getSourceManager(), PP.getLangOpts(),
3868                                PP.getTargetInfo(), PP.getDiagnostics());
3869   if (Literal.hadError)
3870     return ExprError();
3871 
3872   if (Literal.hasUDSuffix()) {
3873     // We're building a user-defined literal.
3874     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3875     SourceLocation UDSuffixLoc =
3876       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3877 
3878     // Make sure we're allowed user-defined literals here.
3879     if (!UDLScope)
3880       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3881 
3882     QualType CookedTy;
3883     if (Literal.isFloatingLiteral()) {
3884       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3885       // long double, the literal is treated as a call of the form
3886       //   operator "" X (f L)
3887       CookedTy = Context.LongDoubleTy;
3888     } else {
3889       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3890       // unsigned long long, the literal is treated as a call of the form
3891       //   operator "" X (n ULL)
3892       CookedTy = Context.UnsignedLongLongTy;
3893     }
3894 
3895     DeclarationName OpName =
3896       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3897     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3898     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3899 
3900     SourceLocation TokLoc = Tok.getLocation();
3901 
3902     // Perform literal operator lookup to determine if we're building a raw
3903     // literal or a cooked one.
3904     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3905     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3906                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3907                                   /*AllowStringTemplatePack*/ false,
3908                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3909     case LOLR_ErrorNoDiagnostic:
3910       // Lookup failure for imaginary constants isn't fatal, there's still the
3911       // GNU extension producing _Complex types.
3912       break;
3913     case LOLR_Error:
3914       return ExprError();
3915     case LOLR_Cooked: {
3916       Expr *Lit;
3917       if (Literal.isFloatingLiteral()) {
3918         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3919       } else {
3920         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3921         if (Literal.GetIntegerValue(ResultVal))
3922           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3923               << /* Unsigned */ 1;
3924         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3925                                      Tok.getLocation());
3926       }
3927       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3928     }
3929 
3930     case LOLR_Raw: {
3931       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3932       // literal is treated as a call of the form
3933       //   operator "" X ("n")
3934       unsigned Length = Literal.getUDSuffixOffset();
3935       QualType StrTy = Context.getConstantArrayType(
3936           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3937           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3938       Expr *Lit =
3939           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3940                                 StringLiteral::Ordinary,
3941                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3942       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3943     }
3944 
3945     case LOLR_Template: {
3946       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3947       // template), L is treated as a call fo the form
3948       //   operator "" X <'c1', 'c2', ... 'ck'>()
3949       // where n is the source character sequence c1 c2 ... ck.
3950       TemplateArgumentListInfo ExplicitArgs;
3951       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3952       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3953       llvm::APSInt Value(CharBits, CharIsUnsigned);
3954       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3955         Value = TokSpelling[I];
3956         TemplateArgument Arg(Context, Value, Context.CharTy);
3957         TemplateArgumentLocInfo ArgInfo;
3958         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3959       }
3960       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
3961                                       &ExplicitArgs);
3962     }
3963     case LOLR_StringTemplatePack:
3964       llvm_unreachable("unexpected literal operator lookup result");
3965     }
3966   }
3967 
3968   Expr *Res;
3969 
3970   if (Literal.isFixedPointLiteral()) {
3971     QualType Ty;
3972 
3973     if (Literal.isAccum) {
3974       if (Literal.isHalf) {
3975         Ty = Context.ShortAccumTy;
3976       } else if (Literal.isLong) {
3977         Ty = Context.LongAccumTy;
3978       } else {
3979         Ty = Context.AccumTy;
3980       }
3981     } else if (Literal.isFract) {
3982       if (Literal.isHalf) {
3983         Ty = Context.ShortFractTy;
3984       } else if (Literal.isLong) {
3985         Ty = Context.LongFractTy;
3986       } else {
3987         Ty = Context.FractTy;
3988       }
3989     }
3990 
3991     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3992 
3993     bool isSigned = !Literal.isUnsigned;
3994     unsigned scale = Context.getFixedPointScale(Ty);
3995     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3996 
3997     llvm::APInt Val(bit_width, 0, isSigned);
3998     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3999     bool ValIsZero = Val.isZero() && !Overflowed;
4000 
4001     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4002     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4003       // Clause 6.4.4 - The value of a constant shall be in the range of
4004       // representable values for its type, with exception for constants of a
4005       // fract type with a value of exactly 1; such a constant shall denote
4006       // the maximal value for the type.
4007       --Val;
4008     else if (Val.ugt(MaxVal) || Overflowed)
4009       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4010 
4011     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4012                                               Tok.getLocation(), scale);
4013   } else if (Literal.isFloatingLiteral()) {
4014     QualType Ty;
4015     if (Literal.isHalf){
4016       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4017         Ty = Context.HalfTy;
4018       else {
4019         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4020         return ExprError();
4021       }
4022     } else if (Literal.isFloat)
4023       Ty = Context.FloatTy;
4024     else if (Literal.isLong)
4025       Ty = Context.LongDoubleTy;
4026     else if (Literal.isFloat16)
4027       Ty = Context.Float16Ty;
4028     else if (Literal.isFloat128)
4029       Ty = Context.Float128Ty;
4030     else
4031       Ty = Context.DoubleTy;
4032 
4033     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4034 
4035     if (Ty == Context.DoubleTy) {
4036       if (getLangOpts().SinglePrecisionConstants) {
4037         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4038           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4039         }
4040       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4041                                              "cl_khr_fp64", getLangOpts())) {
4042         // Impose single-precision float type when cl_khr_fp64 is not enabled.
4043         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4044             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4045         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4046       }
4047     }
4048   } else if (!Literal.isIntegerLiteral()) {
4049     return ExprError();
4050   } else {
4051     QualType Ty;
4052 
4053     // 'z/uz' literals are a C++23 feature.
4054     if (Literal.isSizeT)
4055       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4056                                   ? getLangOpts().CPlusPlus23
4057                                         ? diag::warn_cxx20_compat_size_t_suffix
4058                                         : diag::ext_cxx23_size_t_suffix
4059                                   : diag::err_cxx23_size_t_suffix);
4060 
4061     // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
4062     // but we do not currently support the suffix in C++ mode because it's not
4063     // entirely clear whether WG21 will prefer this suffix to return a library
4064     // type such as std::bit_int instead of returning a _BitInt.
4065     if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4066       PP.Diag(Tok.getLocation(), getLangOpts().C2x
4067                                      ? diag::warn_c2x_compat_bitint_suffix
4068                                      : diag::ext_c2x_bitint_suffix);
4069 
4070     // Get the value in the widest-possible width. What is "widest" depends on
4071     // whether the literal is a bit-precise integer or not. For a bit-precise
4072     // integer type, try to scan the source to determine how many bits are
4073     // needed to represent the value. This may seem a bit expensive, but trying
4074     // to get the integer value from an overly-wide APInt is *extremely*
4075     // expensive, so the naive approach of assuming
4076     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4077     unsigned BitsNeeded =
4078         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4079                                Literal.getLiteralDigits(), Literal.getRadix())
4080                          : Context.getTargetInfo().getIntMaxTWidth();
4081     llvm::APInt ResultVal(BitsNeeded, 0);
4082 
4083     if (Literal.GetIntegerValue(ResultVal)) {
4084       // If this value didn't fit into uintmax_t, error and force to ull.
4085       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4086           << /* Unsigned */ 1;
4087       Ty = Context.UnsignedLongLongTy;
4088       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4089              "long long is not intmax_t?");
4090     } else {
4091       // If this value fits into a ULL, try to figure out what else it fits into
4092       // according to the rules of C99 6.4.4.1p5.
4093 
4094       // Octal, Hexadecimal, and integers with a U suffix are allowed to
4095       // be an unsigned int.
4096       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4097 
4098       // Check from smallest to largest, picking the smallest type we can.
4099       unsigned Width = 0;
4100 
4101       // Microsoft specific integer suffixes are explicitly sized.
4102       if (Literal.MicrosoftInteger) {
4103         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4104           Width = 8;
4105           Ty = Context.CharTy;
4106         } else {
4107           Width = Literal.MicrosoftInteger;
4108           Ty = Context.getIntTypeForBitwidth(Width,
4109                                              /*Signed=*/!Literal.isUnsigned);
4110         }
4111       }
4112 
4113       // Bit-precise integer literals are automagically-sized based on the
4114       // width required by the literal.
4115       if (Literal.isBitInt) {
4116         // The signed version has one more bit for the sign value. There are no
4117         // zero-width bit-precise integers, even if the literal value is 0.
4118         Width = std::max(ResultVal.getActiveBits(), 1u) +
4119                 (Literal.isUnsigned ? 0u : 1u);
4120 
4121         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4122         // and reset the type to the largest supported width.
4123         unsigned int MaxBitIntWidth =
4124             Context.getTargetInfo().getMaxBitIntWidth();
4125         if (Width > MaxBitIntWidth) {
4126           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4127               << Literal.isUnsigned;
4128           Width = MaxBitIntWidth;
4129         }
4130 
4131         // Reset the result value to the smaller APInt and select the correct
4132         // type to be used. Note, we zext even for signed values because the
4133         // literal itself is always an unsigned value (a preceeding - is a
4134         // unary operator, not part of the literal).
4135         ResultVal = ResultVal.zextOrTrunc(Width);
4136         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4137       }
4138 
4139       // Check C++23 size_t literals.
4140       if (Literal.isSizeT) {
4141         assert(!Literal.MicrosoftInteger &&
4142                "size_t literals can't be Microsoft literals");
4143         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4144             Context.getTargetInfo().getSizeType());
4145 
4146         // Does it fit in size_t?
4147         if (ResultVal.isIntN(SizeTSize)) {
4148           // Does it fit in ssize_t?
4149           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4150             Ty = Context.getSignedSizeType();
4151           else if (AllowUnsigned)
4152             Ty = Context.getSizeType();
4153           Width = SizeTSize;
4154         }
4155       }
4156 
4157       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4158           !Literal.isSizeT) {
4159         // Are int/unsigned possibilities?
4160         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4161 
4162         // Does it fit in a unsigned int?
4163         if (ResultVal.isIntN(IntSize)) {
4164           // Does it fit in a signed int?
4165           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4166             Ty = Context.IntTy;
4167           else if (AllowUnsigned)
4168             Ty = Context.UnsignedIntTy;
4169           Width = IntSize;
4170         }
4171       }
4172 
4173       // Are long/unsigned long possibilities?
4174       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4175         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4176 
4177         // Does it fit in a unsigned long?
4178         if (ResultVal.isIntN(LongSize)) {
4179           // Does it fit in a signed long?
4180           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4181             Ty = Context.LongTy;
4182           else if (AllowUnsigned)
4183             Ty = Context.UnsignedLongTy;
4184           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4185           // is compatible.
4186           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4187             const unsigned LongLongSize =
4188                 Context.getTargetInfo().getLongLongWidth();
4189             Diag(Tok.getLocation(),
4190                  getLangOpts().CPlusPlus
4191                      ? Literal.isLong
4192                            ? diag::warn_old_implicitly_unsigned_long_cxx
4193                            : /*C++98 UB*/ diag::
4194                                  ext_old_implicitly_unsigned_long_cxx
4195                      : diag::warn_old_implicitly_unsigned_long)
4196                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4197                                             : /*will be ill-formed*/ 1);
4198             Ty = Context.UnsignedLongTy;
4199           }
4200           Width = LongSize;
4201         }
4202       }
4203 
4204       // Check long long if needed.
4205       if (Ty.isNull() && !Literal.isSizeT) {
4206         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4207 
4208         // Does it fit in a unsigned long long?
4209         if (ResultVal.isIntN(LongLongSize)) {
4210           // Does it fit in a signed long long?
4211           // To be compatible with MSVC, hex integer literals ending with the
4212           // LL or i64 suffix are always signed in Microsoft mode.
4213           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4214               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4215             Ty = Context.LongLongTy;
4216           else if (AllowUnsigned)
4217             Ty = Context.UnsignedLongLongTy;
4218           Width = LongLongSize;
4219 
4220           // 'long long' is a C99 or C++11 feature, whether the literal
4221           // explicitly specified 'long long' or we needed the extra width.
4222           if (getLangOpts().CPlusPlus)
4223             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4224                                         ? diag::warn_cxx98_compat_longlong
4225                                         : diag::ext_cxx11_longlong);
4226           else if (!getLangOpts().C99)
4227             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4228         }
4229       }
4230 
4231       // If we still couldn't decide a type, we either have 'size_t' literal
4232       // that is out of range, or a decimal literal that does not fit in a
4233       // signed long long and has no U suffix.
4234       if (Ty.isNull()) {
4235         if (Literal.isSizeT)
4236           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4237               << Literal.isUnsigned;
4238         else
4239           Diag(Tok.getLocation(),
4240                diag::ext_integer_literal_too_large_for_signed);
4241         Ty = Context.UnsignedLongLongTy;
4242         Width = Context.getTargetInfo().getLongLongWidth();
4243       }
4244 
4245       if (ResultVal.getBitWidth() != Width)
4246         ResultVal = ResultVal.trunc(Width);
4247     }
4248     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4249   }
4250 
4251   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4252   if (Literal.isImaginary) {
4253     Res = new (Context) ImaginaryLiteral(Res,
4254                                         Context.getComplexType(Res->getType()));
4255 
4256     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4257   }
4258   return Res;
4259 }
4260 
4261 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4262   assert(E && "ActOnParenExpr() missing expr");
4263   QualType ExprTy = E->getType();
4264   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4265       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4266     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4267   return new (Context) ParenExpr(L, R, E);
4268 }
4269 
4270 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4271                                          SourceLocation Loc,
4272                                          SourceRange ArgRange) {
4273   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4274   // scalar or vector data type argument..."
4275   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4276   // type (C99 6.2.5p18) or void.
4277   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4278     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4279       << T << ArgRange;
4280     return true;
4281   }
4282 
4283   assert((T->isVoidType() || !T->isIncompleteType()) &&
4284          "Scalar types should always be complete");
4285   return false;
4286 }
4287 
4288 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4289                                            SourceLocation Loc,
4290                                            SourceRange ArgRange,
4291                                            UnaryExprOrTypeTrait TraitKind) {
4292   // Invalid types must be hard errors for SFINAE in C++.
4293   if (S.LangOpts.CPlusPlus)
4294     return true;
4295 
4296   // C99 6.5.3.4p1:
4297   if (T->isFunctionType() &&
4298       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4299        TraitKind == UETT_PreferredAlignOf)) {
4300     // sizeof(function)/alignof(function) is allowed as an extension.
4301     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4302         << getTraitSpelling(TraitKind) << ArgRange;
4303     return false;
4304   }
4305 
4306   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4307   // this is an error (OpenCL v1.1 s6.3.k)
4308   if (T->isVoidType()) {
4309     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4310                                         : diag::ext_sizeof_alignof_void_type;
4311     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4312     return false;
4313   }
4314 
4315   return true;
4316 }
4317 
4318 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4319                                              SourceLocation Loc,
4320                                              SourceRange ArgRange,
4321                                              UnaryExprOrTypeTrait TraitKind) {
4322   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4323   // runtime doesn't allow it.
4324   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4325     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4326       << T << (TraitKind == UETT_SizeOf)
4327       << ArgRange;
4328     return true;
4329   }
4330 
4331   return false;
4332 }
4333 
4334 /// Check whether E is a pointer from a decayed array type (the decayed
4335 /// pointer type is equal to T) and emit a warning if it is.
4336 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4337                                      const Expr *E) {
4338   // Don't warn if the operation changed the type.
4339   if (T != E->getType())
4340     return;
4341 
4342   // Now look for array decays.
4343   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4344   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4345     return;
4346 
4347   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4348                                              << ICE->getType()
4349                                              << ICE->getSubExpr()->getType();
4350 }
4351 
4352 /// Check the constraints on expression operands to unary type expression
4353 /// and type traits.
4354 ///
4355 /// Completes any types necessary and validates the constraints on the operand
4356 /// expression. The logic mostly mirrors the type-based overload, but may modify
4357 /// the expression as it completes the type for that expression through template
4358 /// instantiation, etc.
4359 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4360                                             UnaryExprOrTypeTrait ExprKind) {
4361   QualType ExprTy = E->getType();
4362   assert(!ExprTy->isReferenceType());
4363 
4364   bool IsUnevaluatedOperand =
4365       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4366        ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4367   if (IsUnevaluatedOperand) {
4368     ExprResult Result = CheckUnevaluatedOperand(E);
4369     if (Result.isInvalid())
4370       return true;
4371     E = Result.get();
4372   }
4373 
4374   // The operand for sizeof and alignof is in an unevaluated expression context,
4375   // so side effects could result in unintended consequences.
4376   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4377   // used to build SFINAE gadgets.
4378   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4379   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4380       !E->isInstantiationDependent() &&
4381       !E->getType()->isVariableArrayType() &&
4382       E->HasSideEffects(Context, false))
4383     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4384 
4385   if (ExprKind == UETT_VecStep)
4386     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4387                                         E->getSourceRange());
4388 
4389   // Explicitly list some types as extensions.
4390   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4391                                       E->getSourceRange(), ExprKind))
4392     return false;
4393 
4394   // WebAssembly tables are always illegal operands to unary expressions and
4395   // type traits.
4396   if (Context.getTargetInfo().getTriple().isWasm() &&
4397       E->getType()->isWebAssemblyTableType()) {
4398     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4399         << getTraitSpelling(ExprKind);
4400     return true;
4401   }
4402 
4403   // 'alignof' applied to an expression only requires the base element type of
4404   // the expression to be complete. 'sizeof' requires the expression's type to
4405   // be complete (and will attempt to complete it if it's an array of unknown
4406   // bound).
4407   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4408     if (RequireCompleteSizedType(
4409             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4410             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4411             getTraitSpelling(ExprKind), E->getSourceRange()))
4412       return true;
4413   } else {
4414     if (RequireCompleteSizedExprType(
4415             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4416             getTraitSpelling(ExprKind), E->getSourceRange()))
4417       return true;
4418   }
4419 
4420   // Completing the expression's type may have changed it.
4421   ExprTy = E->getType();
4422   assert(!ExprTy->isReferenceType());
4423 
4424   if (ExprTy->isFunctionType()) {
4425     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4426         << getTraitSpelling(ExprKind) << E->getSourceRange();
4427     return true;
4428   }
4429 
4430   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4431                                        E->getSourceRange(), ExprKind))
4432     return true;
4433 
4434   if (ExprKind == UETT_SizeOf) {
4435     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4436       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4437         QualType OType = PVD->getOriginalType();
4438         QualType Type = PVD->getType();
4439         if (Type->isPointerType() && OType->isArrayType()) {
4440           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4441             << Type << OType;
4442           Diag(PVD->getLocation(), diag::note_declared_at);
4443         }
4444       }
4445     }
4446 
4447     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4448     // decays into a pointer and returns an unintended result. This is most
4449     // likely a typo for "sizeof(array) op x".
4450     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4451       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4452                                BO->getLHS());
4453       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4454                                BO->getRHS());
4455     }
4456   }
4457 
4458   return false;
4459 }
4460 
4461 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4462   // Cannot know anything else if the expression is dependent.
4463   if (E->isTypeDependent())
4464     return false;
4465 
4466   if (E->getObjectKind() == OK_BitField) {
4467     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4468        << 1 << E->getSourceRange();
4469     return true;
4470   }
4471 
4472   ValueDecl *D = nullptr;
4473   Expr *Inner = E->IgnoreParens();
4474   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4475     D = DRE->getDecl();
4476   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4477     D = ME->getMemberDecl();
4478   }
4479 
4480   // If it's a field, require the containing struct to have a
4481   // complete definition so that we can compute the layout.
4482   //
4483   // This can happen in C++11 onwards, either by naming the member
4484   // in a way that is not transformed into a member access expression
4485   // (in an unevaluated operand, for instance), or by naming the member
4486   // in a trailing-return-type.
4487   //
4488   // For the record, since __alignof__ on expressions is a GCC
4489   // extension, GCC seems to permit this but always gives the
4490   // nonsensical answer 0.
4491   //
4492   // We don't really need the layout here --- we could instead just
4493   // directly check for all the appropriate alignment-lowing
4494   // attributes --- but that would require duplicating a lot of
4495   // logic that just isn't worth duplicating for such a marginal
4496   // use-case.
4497   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4498     // Fast path this check, since we at least know the record has a
4499     // definition if we can find a member of it.
4500     if (!FD->getParent()->isCompleteDefinition()) {
4501       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4502         << E->getSourceRange();
4503       return true;
4504     }
4505 
4506     // Otherwise, if it's a field, and the field doesn't have
4507     // reference type, then it must have a complete type (or be a
4508     // flexible array member, which we explicitly want to
4509     // white-list anyway), which makes the following checks trivial.
4510     if (!FD->getType()->isReferenceType())
4511       return false;
4512   }
4513 
4514   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4515 }
4516 
4517 bool Sema::CheckVecStepExpr(Expr *E) {
4518   E = E->IgnoreParens();
4519 
4520   // Cannot know anything else if the expression is dependent.
4521   if (E->isTypeDependent())
4522     return false;
4523 
4524   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4525 }
4526 
4527 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4528                                         CapturingScopeInfo *CSI) {
4529   assert(T->isVariablyModifiedType());
4530   assert(CSI != nullptr);
4531 
4532   // We're going to walk down into the type and look for VLA expressions.
4533   do {
4534     const Type *Ty = T.getTypePtr();
4535     switch (Ty->getTypeClass()) {
4536 #define TYPE(Class, Base)
4537 #define ABSTRACT_TYPE(Class, Base)
4538 #define NON_CANONICAL_TYPE(Class, Base)
4539 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4540 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4541 #include "clang/AST/TypeNodes.inc"
4542       T = QualType();
4543       break;
4544     // These types are never variably-modified.
4545     case Type::Builtin:
4546     case Type::Complex:
4547     case Type::Vector:
4548     case Type::ExtVector:
4549     case Type::ConstantMatrix:
4550     case Type::Record:
4551     case Type::Enum:
4552     case Type::TemplateSpecialization:
4553     case Type::ObjCObject:
4554     case Type::ObjCInterface:
4555     case Type::ObjCObjectPointer:
4556     case Type::ObjCTypeParam:
4557     case Type::Pipe:
4558     case Type::BitInt:
4559       llvm_unreachable("type class is never variably-modified!");
4560     case Type::Elaborated:
4561       T = cast<ElaboratedType>(Ty)->getNamedType();
4562       break;
4563     case Type::Adjusted:
4564       T = cast<AdjustedType>(Ty)->getOriginalType();
4565       break;
4566     case Type::Decayed:
4567       T = cast<DecayedType>(Ty)->getPointeeType();
4568       break;
4569     case Type::Pointer:
4570       T = cast<PointerType>(Ty)->getPointeeType();
4571       break;
4572     case Type::BlockPointer:
4573       T = cast<BlockPointerType>(Ty)->getPointeeType();
4574       break;
4575     case Type::LValueReference:
4576     case Type::RValueReference:
4577       T = cast<ReferenceType>(Ty)->getPointeeType();
4578       break;
4579     case Type::MemberPointer:
4580       T = cast<MemberPointerType>(Ty)->getPointeeType();
4581       break;
4582     case Type::ConstantArray:
4583     case Type::IncompleteArray:
4584       // Losing element qualification here is fine.
4585       T = cast<ArrayType>(Ty)->getElementType();
4586       break;
4587     case Type::VariableArray: {
4588       // Losing element qualification here is fine.
4589       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4590 
4591       // Unknown size indication requires no size computation.
4592       // Otherwise, evaluate and record it.
4593       auto Size = VAT->getSizeExpr();
4594       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4595           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4596         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4597 
4598       T = VAT->getElementType();
4599       break;
4600     }
4601     case Type::FunctionProto:
4602     case Type::FunctionNoProto:
4603       T = cast<FunctionType>(Ty)->getReturnType();
4604       break;
4605     case Type::Paren:
4606     case Type::TypeOf:
4607     case Type::UnaryTransform:
4608     case Type::Attributed:
4609     case Type::BTFTagAttributed:
4610     case Type::SubstTemplateTypeParm:
4611     case Type::MacroQualified:
4612       // Keep walking after single level desugaring.
4613       T = T.getSingleStepDesugaredType(Context);
4614       break;
4615     case Type::Typedef:
4616       T = cast<TypedefType>(Ty)->desugar();
4617       break;
4618     case Type::Decltype:
4619       T = cast<DecltypeType>(Ty)->desugar();
4620       break;
4621     case Type::Using:
4622       T = cast<UsingType>(Ty)->desugar();
4623       break;
4624     case Type::Auto:
4625     case Type::DeducedTemplateSpecialization:
4626       T = cast<DeducedType>(Ty)->getDeducedType();
4627       break;
4628     case Type::TypeOfExpr:
4629       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4630       break;
4631     case Type::Atomic:
4632       T = cast<AtomicType>(Ty)->getValueType();
4633       break;
4634     }
4635   } while (!T.isNull() && T->isVariablyModifiedType());
4636 }
4637 
4638 /// Check the constraints on operands to unary expression and type
4639 /// traits.
4640 ///
4641 /// This will complete any types necessary, and validate the various constraints
4642 /// on those operands.
4643 ///
4644 /// The UsualUnaryConversions() function is *not* called by this routine.
4645 /// C99 6.3.2.1p[2-4] all state:
4646 ///   Except when it is the operand of the sizeof operator ...
4647 ///
4648 /// C++ [expr.sizeof]p4
4649 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4650 ///   standard conversions are not applied to the operand of sizeof.
4651 ///
4652 /// This policy is followed for all of the unary trait expressions.
4653 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4654                                             SourceLocation OpLoc,
4655                                             SourceRange ExprRange,
4656                                             UnaryExprOrTypeTrait ExprKind,
4657                                             StringRef KWName) {
4658   if (ExprType->isDependentType())
4659     return false;
4660 
4661   // C++ [expr.sizeof]p2:
4662   //     When applied to a reference or a reference type, the result
4663   //     is the size of the referenced type.
4664   // C++11 [expr.alignof]p3:
4665   //     When alignof is applied to a reference type, the result
4666   //     shall be the alignment of the referenced type.
4667   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4668     ExprType = Ref->getPointeeType();
4669 
4670   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4671   //   When alignof or _Alignof is applied to an array type, the result
4672   //   is the alignment of the element type.
4673   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4674       ExprKind == UETT_OpenMPRequiredSimdAlign)
4675     ExprType = Context.getBaseElementType(ExprType);
4676 
4677   if (ExprKind == UETT_VecStep)
4678     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4679 
4680   // Explicitly list some types as extensions.
4681   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4682                                       ExprKind))
4683     return false;
4684 
4685   if (RequireCompleteSizedType(
4686           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4687           KWName, ExprRange))
4688     return true;
4689 
4690   if (ExprType->isFunctionType()) {
4691     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4692     return true;
4693   }
4694 
4695   // WebAssembly tables are always illegal operands to unary expressions and
4696   // type traits.
4697   if (Context.getTargetInfo().getTriple().isWasm() &&
4698       ExprType->isWebAssemblyTableType()) {
4699     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4700         << getTraitSpelling(ExprKind);
4701     return true;
4702   }
4703 
4704   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4705                                        ExprKind))
4706     return true;
4707 
4708   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4709     if (auto *TT = ExprType->getAs<TypedefType>()) {
4710       for (auto I = FunctionScopes.rbegin(),
4711                 E = std::prev(FunctionScopes.rend());
4712            I != E; ++I) {
4713         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4714         if (CSI == nullptr)
4715           break;
4716         DeclContext *DC = nullptr;
4717         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4718           DC = LSI->CallOperator;
4719         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4720           DC = CRSI->TheCapturedDecl;
4721         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4722           DC = BSI->TheDecl;
4723         if (DC) {
4724           if (DC->containsDecl(TT->getDecl()))
4725             break;
4726           captureVariablyModifiedType(Context, ExprType, CSI);
4727         }
4728       }
4729     }
4730   }
4731 
4732   return false;
4733 }
4734 
4735 /// Build a sizeof or alignof expression given a type operand.
4736 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4737                                                 SourceLocation OpLoc,
4738                                                 UnaryExprOrTypeTrait ExprKind,
4739                                                 SourceRange R) {
4740   if (!TInfo)
4741     return ExprError();
4742 
4743   QualType T = TInfo->getType();
4744 
4745   if (!T->isDependentType() &&
4746       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4747                                        getTraitSpelling(ExprKind)))
4748     return ExprError();
4749 
4750   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4751   // properly deal with VLAs in nested calls of sizeof and typeof.
4752   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4753       TInfo->getType()->isVariablyModifiedType())
4754     TInfo = TransformToPotentiallyEvaluated(TInfo);
4755 
4756   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4757   return new (Context) UnaryExprOrTypeTraitExpr(
4758       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4759 }
4760 
4761 /// Build a sizeof or alignof expression given an expression
4762 /// operand.
4763 ExprResult
4764 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4765                                      UnaryExprOrTypeTrait ExprKind) {
4766   ExprResult PE = CheckPlaceholderExpr(E);
4767   if (PE.isInvalid())
4768     return ExprError();
4769 
4770   E = PE.get();
4771 
4772   // Verify that the operand is valid.
4773   bool isInvalid = false;
4774   if (E->isTypeDependent()) {
4775     // Delay type-checking for type-dependent expressions.
4776   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4777     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4778   } else if (ExprKind == UETT_VecStep) {
4779     isInvalid = CheckVecStepExpr(E);
4780   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4781       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4782       isInvalid = true;
4783   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4784     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4785     isInvalid = true;
4786   } else {
4787     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4788   }
4789 
4790   if (isInvalid)
4791     return ExprError();
4792 
4793   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4794     PE = TransformToPotentiallyEvaluated(E);
4795     if (PE.isInvalid()) return ExprError();
4796     E = PE.get();
4797   }
4798 
4799   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4800   return new (Context) UnaryExprOrTypeTraitExpr(
4801       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4802 }
4803 
4804 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4805 /// expr and the same for @c alignof and @c __alignof
4806 /// Note that the ArgRange is invalid if isType is false.
4807 ExprResult
4808 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4809                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4810                                     void *TyOrEx, SourceRange ArgRange) {
4811   // If error parsing type, ignore.
4812   if (!TyOrEx) return ExprError();
4813 
4814   if (IsType) {
4815     TypeSourceInfo *TInfo;
4816     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4817     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4818   }
4819 
4820   Expr *ArgEx = (Expr *)TyOrEx;
4821   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4822   return Result;
4823 }
4824 
4825 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4826                                     SourceLocation OpLoc, SourceRange R) {
4827   if (!TInfo)
4828     return true;
4829   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4830                                           UETT_AlignOf, KWName);
4831 }
4832 
4833 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4834 /// _Alignas(type-name) .
4835 /// [dcl.align] An alignment-specifier of the form
4836 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4837 ///
4838 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4839 /// _Alignas(_Alignof(type-name)).
4840 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4841                                     SourceLocation OpLoc, SourceRange R) {
4842   TypeSourceInfo *TInfo;
4843   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4844                           &TInfo);
4845   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4846 }
4847 
4848 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4849                                      bool IsReal) {
4850   if (V.get()->isTypeDependent())
4851     return S.Context.DependentTy;
4852 
4853   // _Real and _Imag are only l-values for normal l-values.
4854   if (V.get()->getObjectKind() != OK_Ordinary) {
4855     V = S.DefaultLvalueConversion(V.get());
4856     if (V.isInvalid())
4857       return QualType();
4858   }
4859 
4860   // These operators return the element type of a complex type.
4861   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4862     return CT->getElementType();
4863 
4864   // Otherwise they pass through real integer and floating point types here.
4865   if (V.get()->getType()->isArithmeticType())
4866     return V.get()->getType();
4867 
4868   // Test for placeholders.
4869   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4870   if (PR.isInvalid()) return QualType();
4871   if (PR.get() != V.get()) {
4872     V = PR;
4873     return CheckRealImagOperand(S, V, Loc, IsReal);
4874   }
4875 
4876   // Reject anything else.
4877   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4878     << (IsReal ? "__real" : "__imag");
4879   return QualType();
4880 }
4881 
4882 
4883 
4884 ExprResult
4885 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4886                           tok::TokenKind Kind, Expr *Input) {
4887   UnaryOperatorKind Opc;
4888   switch (Kind) {
4889   default: llvm_unreachable("Unknown unary op!");
4890   case tok::plusplus:   Opc = UO_PostInc; break;
4891   case tok::minusminus: Opc = UO_PostDec; break;
4892   }
4893 
4894   // Since this might is a postfix expression, get rid of ParenListExprs.
4895   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4896   if (Result.isInvalid()) return ExprError();
4897   Input = Result.get();
4898 
4899   return BuildUnaryOp(S, OpLoc, Opc, Input);
4900 }
4901 
4902 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4903 ///
4904 /// \return true on error
4905 static bool checkArithmeticOnObjCPointer(Sema &S,
4906                                          SourceLocation opLoc,
4907                                          Expr *op) {
4908   assert(op->getType()->isObjCObjectPointerType());
4909   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4910       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4911     return false;
4912 
4913   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4914     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4915     << op->getSourceRange();
4916   return true;
4917 }
4918 
4919 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4920   auto *BaseNoParens = Base->IgnoreParens();
4921   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4922     return MSProp->getPropertyDecl()->getType()->isArrayType();
4923   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4924 }
4925 
4926 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4927 // Typically this is DependentTy, but can sometimes be more precise.
4928 //
4929 // There are cases when we could determine a non-dependent type:
4930 //  - LHS and RHS may have non-dependent types despite being type-dependent
4931 //    (e.g. unbounded array static members of the current instantiation)
4932 //  - one may be a dependent-sized array with known element type
4933 //  - one may be a dependent-typed valid index (enum in current instantiation)
4934 //
4935 // We *always* return a dependent type, in such cases it is DependentTy.
4936 // This avoids creating type-dependent expressions with non-dependent types.
4937 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4938 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4939                                                const ASTContext &Ctx) {
4940   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4941   QualType LTy = LHS->getType(), RTy = RHS->getType();
4942   QualType Result = Ctx.DependentTy;
4943   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4944     if (const PointerType *PT = LTy->getAs<PointerType>())
4945       Result = PT->getPointeeType();
4946     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4947       Result = AT->getElementType();
4948   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4949     if (const PointerType *PT = RTy->getAs<PointerType>())
4950       Result = PT->getPointeeType();
4951     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4952       Result = AT->getElementType();
4953   }
4954   // Ensure we return a dependent type.
4955   return Result->isDependentType() ? Result : Ctx.DependentTy;
4956 }
4957 
4958 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4959 
4960 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4961                                          SourceLocation lbLoc,
4962                                          MultiExprArg ArgExprs,
4963                                          SourceLocation rbLoc) {
4964 
4965   if (base && !base->getType().isNull() &&
4966       base->hasPlaceholderType(BuiltinType::OMPArraySection))
4967     return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4968                                     SourceLocation(), /*Length*/ nullptr,
4969                                     /*Stride=*/nullptr, rbLoc);
4970 
4971   // Since this might be a postfix expression, get rid of ParenListExprs.
4972   if (isa<ParenListExpr>(base)) {
4973     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4974     if (result.isInvalid())
4975       return ExprError();
4976     base = result.get();
4977   }
4978 
4979   // Check if base and idx form a MatrixSubscriptExpr.
4980   //
4981   // Helper to check for comma expressions, which are not allowed as indices for
4982   // matrix subscript expressions.
4983   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4984     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4985       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4986           << SourceRange(base->getBeginLoc(), rbLoc);
4987       return true;
4988     }
4989     return false;
4990   };
4991   // The matrix subscript operator ([][])is considered a single operator.
4992   // Separating the index expressions by parenthesis is not allowed.
4993   if (base && !base->getType().isNull() &&
4994       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4995       !isa<MatrixSubscriptExpr>(base)) {
4996     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4997         << SourceRange(base->getBeginLoc(), rbLoc);
4998     return ExprError();
4999   }
5000   // If the base is a MatrixSubscriptExpr, try to create a new
5001   // MatrixSubscriptExpr.
5002   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5003   if (matSubscriptE) {
5004     assert(ArgExprs.size() == 1);
5005     if (CheckAndReportCommaError(ArgExprs.front()))
5006       return ExprError();
5007 
5008     assert(matSubscriptE->isIncomplete() &&
5009            "base has to be an incomplete matrix subscript");
5010     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5011                                             matSubscriptE->getRowIdx(),
5012                                             ArgExprs.front(), rbLoc);
5013   }
5014   if (base->getType()->isWebAssemblyTableType()) {
5015     Diag(base->getExprLoc(), diag::err_wasm_table_art)
5016         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5017     return ExprError();
5018   }
5019 
5020   // Handle any non-overload placeholder types in the base and index
5021   // expressions.  We can't handle overloads here because the other
5022   // operand might be an overloadable type, in which case the overload
5023   // resolution for the operator overload should get the first crack
5024   // at the overload.
5025   bool IsMSPropertySubscript = false;
5026   if (base->getType()->isNonOverloadPlaceholderType()) {
5027     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5028     if (!IsMSPropertySubscript) {
5029       ExprResult result = CheckPlaceholderExpr(base);
5030       if (result.isInvalid())
5031         return ExprError();
5032       base = result.get();
5033     }
5034   }
5035 
5036   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5037   if (base->getType()->isMatrixType()) {
5038     assert(ArgExprs.size() == 1);
5039     if (CheckAndReportCommaError(ArgExprs.front()))
5040       return ExprError();
5041 
5042     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5043                                             rbLoc);
5044   }
5045 
5046   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5047     Expr *idx = ArgExprs[0];
5048     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5049         (isa<CXXOperatorCallExpr>(idx) &&
5050          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5051       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5052           << SourceRange(base->getBeginLoc(), rbLoc);
5053     }
5054   }
5055 
5056   if (ArgExprs.size() == 1 &&
5057       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5058     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5059     if (result.isInvalid())
5060       return ExprError();
5061     ArgExprs[0] = result.get();
5062   } else {
5063     if (checkArgsForPlaceholders(*this, ArgExprs))
5064       return ExprError();
5065   }
5066 
5067   // Build an unanalyzed expression if either operand is type-dependent.
5068   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5069       (base->isTypeDependent() ||
5070        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5071       !isa<PackExpansionExpr>(ArgExprs[0])) {
5072     return new (Context) ArraySubscriptExpr(
5073         base, ArgExprs.front(),
5074         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5075         VK_LValue, OK_Ordinary, rbLoc);
5076   }
5077 
5078   // MSDN, property (C++)
5079   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5080   // This attribute can also be used in the declaration of an empty array in a
5081   // class or structure definition. For example:
5082   // __declspec(property(get=GetX, put=PutX)) int x[];
5083   // The above statement indicates that x[] can be used with one or more array
5084   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5085   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5086   if (IsMSPropertySubscript) {
5087     assert(ArgExprs.size() == 1);
5088     // Build MS property subscript expression if base is MS property reference
5089     // or MS property subscript.
5090     return new (Context)
5091         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5092                                 VK_LValue, OK_Ordinary, rbLoc);
5093   }
5094 
5095   // Use C++ overloaded-operator rules if either operand has record
5096   // type.  The spec says to do this if either type is *overloadable*,
5097   // but enum types can't declare subscript operators or conversion
5098   // operators, so there's nothing interesting for overload resolution
5099   // to do if there aren't any record types involved.
5100   //
5101   // ObjC pointers have their own subscripting logic that is not tied
5102   // to overload resolution and so should not take this path.
5103   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5104       ((base->getType()->isRecordType() ||
5105         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5106          ArgExprs[0]->getType()->isRecordType())))) {
5107     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5108   }
5109 
5110   ExprResult Res =
5111       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5112 
5113   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5114     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5115 
5116   return Res;
5117 }
5118 
5119 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5120   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5121   InitializationKind Kind =
5122       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5123   InitializationSequence InitSeq(*this, Entity, Kind, E);
5124   return InitSeq.Perform(*this, Entity, Kind, E);
5125 }
5126 
5127 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5128                                                   Expr *ColumnIdx,
5129                                                   SourceLocation RBLoc) {
5130   ExprResult BaseR = CheckPlaceholderExpr(Base);
5131   if (BaseR.isInvalid())
5132     return BaseR;
5133   Base = BaseR.get();
5134 
5135   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5136   if (RowR.isInvalid())
5137     return RowR;
5138   RowIdx = RowR.get();
5139 
5140   if (!ColumnIdx)
5141     return new (Context) MatrixSubscriptExpr(
5142         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5143 
5144   // Build an unanalyzed expression if any of the operands is type-dependent.
5145   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5146       ColumnIdx->isTypeDependent())
5147     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5148                                              Context.DependentTy, RBLoc);
5149 
5150   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5151   if (ColumnR.isInvalid())
5152     return ColumnR;
5153   ColumnIdx = ColumnR.get();
5154 
5155   // Check that IndexExpr is an integer expression. If it is a constant
5156   // expression, check that it is less than Dim (= the number of elements in the
5157   // corresponding dimension).
5158   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5159                           bool IsColumnIdx) -> Expr * {
5160     if (!IndexExpr->getType()->isIntegerType() &&
5161         !IndexExpr->isTypeDependent()) {
5162       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5163           << IsColumnIdx;
5164       return nullptr;
5165     }
5166 
5167     if (std::optional<llvm::APSInt> Idx =
5168             IndexExpr->getIntegerConstantExpr(Context)) {
5169       if ((*Idx < 0 || *Idx >= Dim)) {
5170         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5171             << IsColumnIdx << Dim;
5172         return nullptr;
5173       }
5174     }
5175 
5176     ExprResult ConvExpr =
5177         tryConvertExprToType(IndexExpr, Context.getSizeType());
5178     assert(!ConvExpr.isInvalid() &&
5179            "should be able to convert any integer type to size type");
5180     return ConvExpr.get();
5181   };
5182 
5183   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5184   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5185   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5186   if (!RowIdx || !ColumnIdx)
5187     return ExprError();
5188 
5189   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5190                                            MTy->getElementType(), RBLoc);
5191 }
5192 
5193 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5194   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5195   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5196 
5197   // For expressions like `&(*s).b`, the base is recorded and what should be
5198   // checked.
5199   const MemberExpr *Member = nullptr;
5200   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5201     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5202 
5203   LastRecord.PossibleDerefs.erase(StrippedExpr);
5204 }
5205 
5206 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5207   if (isUnevaluatedContext())
5208     return;
5209 
5210   QualType ResultTy = E->getType();
5211   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5212 
5213   // Bail if the element is an array since it is not memory access.
5214   if (isa<ArrayType>(ResultTy))
5215     return;
5216 
5217   if (ResultTy->hasAttr(attr::NoDeref)) {
5218     LastRecord.PossibleDerefs.insert(E);
5219     return;
5220   }
5221 
5222   // Check if the base type is a pointer to a member access of a struct
5223   // marked with noderef.
5224   const Expr *Base = E->getBase();
5225   QualType BaseTy = Base->getType();
5226   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5227     // Not a pointer access
5228     return;
5229 
5230   const MemberExpr *Member = nullptr;
5231   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5232          Member->isArrow())
5233     Base = Member->getBase();
5234 
5235   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5236     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5237       LastRecord.PossibleDerefs.insert(E);
5238   }
5239 }
5240 
5241 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5242                                           Expr *LowerBound,
5243                                           SourceLocation ColonLocFirst,
5244                                           SourceLocation ColonLocSecond,
5245                                           Expr *Length, Expr *Stride,
5246                                           SourceLocation RBLoc) {
5247   if (Base->hasPlaceholderType() &&
5248       !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5249     ExprResult Result = CheckPlaceholderExpr(Base);
5250     if (Result.isInvalid())
5251       return ExprError();
5252     Base = Result.get();
5253   }
5254   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5255     ExprResult Result = CheckPlaceholderExpr(LowerBound);
5256     if (Result.isInvalid())
5257       return ExprError();
5258     Result = DefaultLvalueConversion(Result.get());
5259     if (Result.isInvalid())
5260       return ExprError();
5261     LowerBound = Result.get();
5262   }
5263   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5264     ExprResult Result = CheckPlaceholderExpr(Length);
5265     if (Result.isInvalid())
5266       return ExprError();
5267     Result = DefaultLvalueConversion(Result.get());
5268     if (Result.isInvalid())
5269       return ExprError();
5270     Length = Result.get();
5271   }
5272   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5273     ExprResult Result = CheckPlaceholderExpr(Stride);
5274     if (Result.isInvalid())
5275       return ExprError();
5276     Result = DefaultLvalueConversion(Result.get());
5277     if (Result.isInvalid())
5278       return ExprError();
5279     Stride = Result.get();
5280   }
5281 
5282   // Build an unanalyzed expression if either operand is type-dependent.
5283   if (Base->isTypeDependent() ||
5284       (LowerBound &&
5285        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5286       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5287       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5288     return new (Context) OMPArraySectionExpr(
5289         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5290         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5291   }
5292 
5293   // Perform default conversions.
5294   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5295   QualType ResultTy;
5296   if (OriginalTy->isAnyPointerType()) {
5297     ResultTy = OriginalTy->getPointeeType();
5298   } else if (OriginalTy->isArrayType()) {
5299     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5300   } else {
5301     return ExprError(
5302         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5303         << Base->getSourceRange());
5304   }
5305   // C99 6.5.2.1p1
5306   if (LowerBound) {
5307     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5308                                                       LowerBound);
5309     if (Res.isInvalid())
5310       return ExprError(Diag(LowerBound->getExprLoc(),
5311                             diag::err_omp_typecheck_section_not_integer)
5312                        << 0 << LowerBound->getSourceRange());
5313     LowerBound = Res.get();
5314 
5315     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5316         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5317       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5318           << 0 << LowerBound->getSourceRange();
5319   }
5320   if (Length) {
5321     auto Res =
5322         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5323     if (Res.isInvalid())
5324       return ExprError(Diag(Length->getExprLoc(),
5325                             diag::err_omp_typecheck_section_not_integer)
5326                        << 1 << Length->getSourceRange());
5327     Length = Res.get();
5328 
5329     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5330         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5331       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5332           << 1 << Length->getSourceRange();
5333   }
5334   if (Stride) {
5335     ExprResult Res =
5336         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5337     if (Res.isInvalid())
5338       return ExprError(Diag(Stride->getExprLoc(),
5339                             diag::err_omp_typecheck_section_not_integer)
5340                        << 1 << Stride->getSourceRange());
5341     Stride = Res.get();
5342 
5343     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5344         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5345       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5346           << 1 << Stride->getSourceRange();
5347   }
5348 
5349   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5350   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5351   // type. Note that functions are not objects, and that (in C99 parlance)
5352   // incomplete types are not object types.
5353   if (ResultTy->isFunctionType()) {
5354     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5355         << ResultTy << Base->getSourceRange();
5356     return ExprError();
5357   }
5358 
5359   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5360                           diag::err_omp_section_incomplete_type, Base))
5361     return ExprError();
5362 
5363   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5364     Expr::EvalResult Result;
5365     if (LowerBound->EvaluateAsInt(Result, Context)) {
5366       // OpenMP 5.0, [2.1.5 Array Sections]
5367       // The array section must be a subset of the original array.
5368       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5369       if (LowerBoundValue.isNegative()) {
5370         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5371             << LowerBound->getSourceRange();
5372         return ExprError();
5373       }
5374     }
5375   }
5376 
5377   if (Length) {
5378     Expr::EvalResult Result;
5379     if (Length->EvaluateAsInt(Result, Context)) {
5380       // OpenMP 5.0, [2.1.5 Array Sections]
5381       // The length must evaluate to non-negative integers.
5382       llvm::APSInt LengthValue = Result.Val.getInt();
5383       if (LengthValue.isNegative()) {
5384         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5385             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5386             << Length->getSourceRange();
5387         return ExprError();
5388       }
5389     }
5390   } else if (ColonLocFirst.isValid() &&
5391              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5392                                       !OriginalTy->isVariableArrayType()))) {
5393     // OpenMP 5.0, [2.1.5 Array Sections]
5394     // When the size of the array dimension is not known, the length must be
5395     // specified explicitly.
5396     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5397         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5398     return ExprError();
5399   }
5400 
5401   if (Stride) {
5402     Expr::EvalResult Result;
5403     if (Stride->EvaluateAsInt(Result, Context)) {
5404       // OpenMP 5.0, [2.1.5 Array Sections]
5405       // The stride must evaluate to a positive integer.
5406       llvm::APSInt StrideValue = Result.Val.getInt();
5407       if (!StrideValue.isStrictlyPositive()) {
5408         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5409             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5410             << Stride->getSourceRange();
5411         return ExprError();
5412       }
5413     }
5414   }
5415 
5416   if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5417     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5418     if (Result.isInvalid())
5419       return ExprError();
5420     Base = Result.get();
5421   }
5422   return new (Context) OMPArraySectionExpr(
5423       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5424       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5425 }
5426 
5427 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5428                                           SourceLocation RParenLoc,
5429                                           ArrayRef<Expr *> Dims,
5430                                           ArrayRef<SourceRange> Brackets) {
5431   if (Base->hasPlaceholderType()) {
5432     ExprResult Result = CheckPlaceholderExpr(Base);
5433     if (Result.isInvalid())
5434       return ExprError();
5435     Result = DefaultLvalueConversion(Result.get());
5436     if (Result.isInvalid())
5437       return ExprError();
5438     Base = Result.get();
5439   }
5440   QualType BaseTy = Base->getType();
5441   // Delay analysis of the types/expressions if instantiation/specialization is
5442   // required.
5443   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5444     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5445                                        LParenLoc, RParenLoc, Dims, Brackets);
5446   if (!BaseTy->isPointerType() ||
5447       (!Base->isTypeDependent() &&
5448        BaseTy->getPointeeType()->isIncompleteType()))
5449     return ExprError(Diag(Base->getExprLoc(),
5450                           diag::err_omp_non_pointer_type_array_shaping_base)
5451                      << Base->getSourceRange());
5452 
5453   SmallVector<Expr *, 4> NewDims;
5454   bool ErrorFound = false;
5455   for (Expr *Dim : Dims) {
5456     if (Dim->hasPlaceholderType()) {
5457       ExprResult Result = CheckPlaceholderExpr(Dim);
5458       if (Result.isInvalid()) {
5459         ErrorFound = true;
5460         continue;
5461       }
5462       Result = DefaultLvalueConversion(Result.get());
5463       if (Result.isInvalid()) {
5464         ErrorFound = true;
5465         continue;
5466       }
5467       Dim = Result.get();
5468     }
5469     if (!Dim->isTypeDependent()) {
5470       ExprResult Result =
5471           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5472       if (Result.isInvalid()) {
5473         ErrorFound = true;
5474         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5475             << Dim->getSourceRange();
5476         continue;
5477       }
5478       Dim = Result.get();
5479       Expr::EvalResult EvResult;
5480       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5481         // OpenMP 5.0, [2.1.4 Array Shaping]
5482         // Each si is an integral type expression that must evaluate to a
5483         // positive integer.
5484         llvm::APSInt Value = EvResult.Val.getInt();
5485         if (!Value.isStrictlyPositive()) {
5486           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5487               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5488               << Dim->getSourceRange();
5489           ErrorFound = true;
5490           continue;
5491         }
5492       }
5493     }
5494     NewDims.push_back(Dim);
5495   }
5496   if (ErrorFound)
5497     return ExprError();
5498   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5499                                      LParenLoc, RParenLoc, NewDims, Brackets);
5500 }
5501 
5502 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5503                                       SourceLocation LLoc, SourceLocation RLoc,
5504                                       ArrayRef<OMPIteratorData> Data) {
5505   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5506   bool IsCorrect = true;
5507   for (const OMPIteratorData &D : Data) {
5508     TypeSourceInfo *TInfo = nullptr;
5509     SourceLocation StartLoc;
5510     QualType DeclTy;
5511     if (!D.Type.getAsOpaquePtr()) {
5512       // OpenMP 5.0, 2.1.6 Iterators
5513       // In an iterator-specifier, if the iterator-type is not specified then
5514       // the type of that iterator is of int type.
5515       DeclTy = Context.IntTy;
5516       StartLoc = D.DeclIdentLoc;
5517     } else {
5518       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5519       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5520     }
5521 
5522     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5523                              DeclTy->containsUnexpandedParameterPack() ||
5524                              DeclTy->isInstantiationDependentType();
5525     if (!IsDeclTyDependent) {
5526       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5527         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5528         // The iterator-type must be an integral or pointer type.
5529         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5530             << DeclTy;
5531         IsCorrect = false;
5532         continue;
5533       }
5534       if (DeclTy.isConstant(Context)) {
5535         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5536         // The iterator-type must not be const qualified.
5537         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5538             << DeclTy;
5539         IsCorrect = false;
5540         continue;
5541       }
5542     }
5543 
5544     // Iterator declaration.
5545     assert(D.DeclIdent && "Identifier expected.");
5546     // Always try to create iterator declarator to avoid extra error messages
5547     // about unknown declarations use.
5548     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5549                                D.DeclIdent, DeclTy, TInfo, SC_None);
5550     VD->setImplicit();
5551     if (S) {
5552       // Check for conflicting previous declaration.
5553       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5554       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5555                             ForVisibleRedeclaration);
5556       Previous.suppressDiagnostics();
5557       LookupName(Previous, S);
5558 
5559       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5560                            /*AllowInlineNamespace=*/false);
5561       if (!Previous.empty()) {
5562         NamedDecl *Old = Previous.getRepresentativeDecl();
5563         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5564         Diag(Old->getLocation(), diag::note_previous_definition);
5565       } else {
5566         PushOnScopeChains(VD, S);
5567       }
5568     } else {
5569       CurContext->addDecl(VD);
5570     }
5571 
5572     /// Act on the iterator variable declaration.
5573     ActOnOpenMPIteratorVarDecl(VD);
5574 
5575     Expr *Begin = D.Range.Begin;
5576     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5577       ExprResult BeginRes =
5578           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5579       Begin = BeginRes.get();
5580     }
5581     Expr *End = D.Range.End;
5582     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5583       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5584       End = EndRes.get();
5585     }
5586     Expr *Step = D.Range.Step;
5587     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5588       if (!Step->getType()->isIntegralType(Context)) {
5589         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5590             << Step << Step->getSourceRange();
5591         IsCorrect = false;
5592         continue;
5593       }
5594       std::optional<llvm::APSInt> Result =
5595           Step->getIntegerConstantExpr(Context);
5596       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5597       // If the step expression of a range-specification equals zero, the
5598       // behavior is unspecified.
5599       if (Result && Result->isZero()) {
5600         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5601             << Step << Step->getSourceRange();
5602         IsCorrect = false;
5603         continue;
5604       }
5605     }
5606     if (!Begin || !End || !IsCorrect) {
5607       IsCorrect = false;
5608       continue;
5609     }
5610     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5611     IDElem.IteratorDecl = VD;
5612     IDElem.AssignmentLoc = D.AssignLoc;
5613     IDElem.Range.Begin = Begin;
5614     IDElem.Range.End = End;
5615     IDElem.Range.Step = Step;
5616     IDElem.ColonLoc = D.ColonLoc;
5617     IDElem.SecondColonLoc = D.SecColonLoc;
5618   }
5619   if (!IsCorrect) {
5620     // Invalidate all created iterator declarations if error is found.
5621     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5622       if (Decl *ID = D.IteratorDecl)
5623         ID->setInvalidDecl();
5624     }
5625     return ExprError();
5626   }
5627   SmallVector<OMPIteratorHelperData, 4> Helpers;
5628   if (!CurContext->isDependentContext()) {
5629     // Build number of ityeration for each iteration range.
5630     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5631     // ((Begini-Stepi-1-Endi) / -Stepi);
5632     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5633       // (Endi - Begini)
5634       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5635                                           D.Range.Begin);
5636       if(!Res.isUsable()) {
5637         IsCorrect = false;
5638         continue;
5639       }
5640       ExprResult St, St1;
5641       if (D.Range.Step) {
5642         St = D.Range.Step;
5643         // (Endi - Begini) + Stepi
5644         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5645         if (!Res.isUsable()) {
5646           IsCorrect = false;
5647           continue;
5648         }
5649         // (Endi - Begini) + Stepi - 1
5650         Res =
5651             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5652                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5653         if (!Res.isUsable()) {
5654           IsCorrect = false;
5655           continue;
5656         }
5657         // ((Endi - Begini) + Stepi - 1) / Stepi
5658         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5659         if (!Res.isUsable()) {
5660           IsCorrect = false;
5661           continue;
5662         }
5663         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5664         // (Begini - Endi)
5665         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5666                                              D.Range.Begin, D.Range.End);
5667         if (!Res1.isUsable()) {
5668           IsCorrect = false;
5669           continue;
5670         }
5671         // (Begini - Endi) - Stepi
5672         Res1 =
5673             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5674         if (!Res1.isUsable()) {
5675           IsCorrect = false;
5676           continue;
5677         }
5678         // (Begini - Endi) - Stepi - 1
5679         Res1 =
5680             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5681                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5682         if (!Res1.isUsable()) {
5683           IsCorrect = false;
5684           continue;
5685         }
5686         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5687         Res1 =
5688             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5689         if (!Res1.isUsable()) {
5690           IsCorrect = false;
5691           continue;
5692         }
5693         // Stepi > 0.
5694         ExprResult CmpRes =
5695             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5696                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5697         if (!CmpRes.isUsable()) {
5698           IsCorrect = false;
5699           continue;
5700         }
5701         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5702                                  Res.get(), Res1.get());
5703         if (!Res.isUsable()) {
5704           IsCorrect = false;
5705           continue;
5706         }
5707       }
5708       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5709       if (!Res.isUsable()) {
5710         IsCorrect = false;
5711         continue;
5712       }
5713 
5714       // Build counter update.
5715       // Build counter.
5716       auto *CounterVD =
5717           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5718                           D.IteratorDecl->getBeginLoc(), nullptr,
5719                           Res.get()->getType(), nullptr, SC_None);
5720       CounterVD->setImplicit();
5721       ExprResult RefRes =
5722           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5723                            D.IteratorDecl->getBeginLoc());
5724       // Build counter update.
5725       // I = Begini + counter * Stepi;
5726       ExprResult UpdateRes;
5727       if (D.Range.Step) {
5728         UpdateRes = CreateBuiltinBinOp(
5729             D.AssignmentLoc, BO_Mul,
5730             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5731       } else {
5732         UpdateRes = DefaultLvalueConversion(RefRes.get());
5733       }
5734       if (!UpdateRes.isUsable()) {
5735         IsCorrect = false;
5736         continue;
5737       }
5738       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5739                                      UpdateRes.get());
5740       if (!UpdateRes.isUsable()) {
5741         IsCorrect = false;
5742         continue;
5743       }
5744       ExprResult VDRes =
5745           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5746                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5747                            D.IteratorDecl->getBeginLoc());
5748       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5749                                      UpdateRes.get());
5750       if (!UpdateRes.isUsable()) {
5751         IsCorrect = false;
5752         continue;
5753       }
5754       UpdateRes =
5755           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5756       if (!UpdateRes.isUsable()) {
5757         IsCorrect = false;
5758         continue;
5759       }
5760       ExprResult CounterUpdateRes =
5761           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5762       if (!CounterUpdateRes.isUsable()) {
5763         IsCorrect = false;
5764         continue;
5765       }
5766       CounterUpdateRes =
5767           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5768       if (!CounterUpdateRes.isUsable()) {
5769         IsCorrect = false;
5770         continue;
5771       }
5772       OMPIteratorHelperData &HD = Helpers.emplace_back();
5773       HD.CounterVD = CounterVD;
5774       HD.Upper = Res.get();
5775       HD.Update = UpdateRes.get();
5776       HD.CounterUpdate = CounterUpdateRes.get();
5777     }
5778   } else {
5779     Helpers.assign(ID.size(), {});
5780   }
5781   if (!IsCorrect) {
5782     // Invalidate all created iterator declarations if error is found.
5783     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5784       if (Decl *ID = D.IteratorDecl)
5785         ID->setInvalidDecl();
5786     }
5787     return ExprError();
5788   }
5789   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5790                                  LLoc, RLoc, ID, Helpers);
5791 }
5792 
5793 ExprResult
5794 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5795                                       Expr *Idx, SourceLocation RLoc) {
5796   Expr *LHSExp = Base;
5797   Expr *RHSExp = Idx;
5798 
5799   ExprValueKind VK = VK_LValue;
5800   ExprObjectKind OK = OK_Ordinary;
5801 
5802   // Per C++ core issue 1213, the result is an xvalue if either operand is
5803   // a non-lvalue array, and an lvalue otherwise.
5804   if (getLangOpts().CPlusPlus11) {
5805     for (auto *Op : {LHSExp, RHSExp}) {
5806       Op = Op->IgnoreImplicit();
5807       if (Op->getType()->isArrayType() && !Op->isLValue())
5808         VK = VK_XValue;
5809     }
5810   }
5811 
5812   // Perform default conversions.
5813   if (!LHSExp->getType()->getAs<VectorType>()) {
5814     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5815     if (Result.isInvalid())
5816       return ExprError();
5817     LHSExp = Result.get();
5818   }
5819   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5820   if (Result.isInvalid())
5821     return ExprError();
5822   RHSExp = Result.get();
5823 
5824   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5825 
5826   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5827   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5828   // in the subscript position. As a result, we need to derive the array base
5829   // and index from the expression types.
5830   Expr *BaseExpr, *IndexExpr;
5831   QualType ResultType;
5832   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5833     BaseExpr = LHSExp;
5834     IndexExpr = RHSExp;
5835     ResultType =
5836         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5837   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5838     BaseExpr = LHSExp;
5839     IndexExpr = RHSExp;
5840     ResultType = PTy->getPointeeType();
5841   } else if (const ObjCObjectPointerType *PTy =
5842                LHSTy->getAs<ObjCObjectPointerType>()) {
5843     BaseExpr = LHSExp;
5844     IndexExpr = RHSExp;
5845 
5846     // Use custom logic if this should be the pseudo-object subscript
5847     // expression.
5848     if (!LangOpts.isSubscriptPointerArithmetic())
5849       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5850                                           nullptr);
5851 
5852     ResultType = PTy->getPointeeType();
5853   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5854      // Handle the uncommon case of "123[Ptr]".
5855     BaseExpr = RHSExp;
5856     IndexExpr = LHSExp;
5857     ResultType = PTy->getPointeeType();
5858   } else if (const ObjCObjectPointerType *PTy =
5859                RHSTy->getAs<ObjCObjectPointerType>()) {
5860      // Handle the uncommon case of "123[Ptr]".
5861     BaseExpr = RHSExp;
5862     IndexExpr = LHSExp;
5863     ResultType = PTy->getPointeeType();
5864     if (!LangOpts.isSubscriptPointerArithmetic()) {
5865       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5866         << ResultType << BaseExpr->getSourceRange();
5867       return ExprError();
5868     }
5869   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5870     BaseExpr = LHSExp;    // vectors: V[123]
5871     IndexExpr = RHSExp;
5872     // We apply C++ DR1213 to vector subscripting too.
5873     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5874       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5875       if (Materialized.isInvalid())
5876         return ExprError();
5877       LHSExp = Materialized.get();
5878     }
5879     VK = LHSExp->getValueKind();
5880     if (VK != VK_PRValue)
5881       OK = OK_VectorComponent;
5882 
5883     ResultType = VTy->getElementType();
5884     QualType BaseType = BaseExpr->getType();
5885     Qualifiers BaseQuals = BaseType.getQualifiers();
5886     Qualifiers MemberQuals = ResultType.getQualifiers();
5887     Qualifiers Combined = BaseQuals + MemberQuals;
5888     if (Combined != MemberQuals)
5889       ResultType = Context.getQualifiedType(ResultType, Combined);
5890   } else if (LHSTy->isBuiltinType() &&
5891              LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5892     const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5893     if (BTy->isSVEBool())
5894       return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5895                        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5896 
5897     BaseExpr = LHSExp;
5898     IndexExpr = RHSExp;
5899     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5900       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5901       if (Materialized.isInvalid())
5902         return ExprError();
5903       LHSExp = Materialized.get();
5904     }
5905     VK = LHSExp->getValueKind();
5906     if (VK != VK_PRValue)
5907       OK = OK_VectorComponent;
5908 
5909     ResultType = BTy->getSveEltType(Context);
5910 
5911     QualType BaseType = BaseExpr->getType();
5912     Qualifiers BaseQuals = BaseType.getQualifiers();
5913     Qualifiers MemberQuals = ResultType.getQualifiers();
5914     Qualifiers Combined = BaseQuals + MemberQuals;
5915     if (Combined != MemberQuals)
5916       ResultType = Context.getQualifiedType(ResultType, Combined);
5917   } else if (LHSTy->isArrayType()) {
5918     // If we see an array that wasn't promoted by
5919     // DefaultFunctionArrayLvalueConversion, it must be an array that
5920     // wasn't promoted because of the C90 rule that doesn't
5921     // allow promoting non-lvalue arrays.  Warn, then
5922     // force the promotion here.
5923     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5924         << LHSExp->getSourceRange();
5925     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5926                                CK_ArrayToPointerDecay).get();
5927     LHSTy = LHSExp->getType();
5928 
5929     BaseExpr = LHSExp;
5930     IndexExpr = RHSExp;
5931     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5932   } else if (RHSTy->isArrayType()) {
5933     // Same as previous, except for 123[f().a] case
5934     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5935         << RHSExp->getSourceRange();
5936     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5937                                CK_ArrayToPointerDecay).get();
5938     RHSTy = RHSExp->getType();
5939 
5940     BaseExpr = RHSExp;
5941     IndexExpr = LHSExp;
5942     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5943   } else {
5944     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5945        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5946   }
5947   // C99 6.5.2.1p1
5948   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5949     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5950                      << IndexExpr->getSourceRange());
5951 
5952   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5953        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5954          && !IndexExpr->isTypeDependent())
5955     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5956 
5957   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5958   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5959   // type. Note that Functions are not objects, and that (in C99 parlance)
5960   // incomplete types are not object types.
5961   if (ResultType->isFunctionType()) {
5962     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5963         << ResultType << BaseExpr->getSourceRange();
5964     return ExprError();
5965   }
5966 
5967   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5968     // GNU extension: subscripting on pointer to void
5969     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5970       << BaseExpr->getSourceRange();
5971 
5972     // C forbids expressions of unqualified void type from being l-values.
5973     // See IsCForbiddenLValueType.
5974     if (!ResultType.hasQualifiers())
5975       VK = VK_PRValue;
5976   } else if (!ResultType->isDependentType() &&
5977              !ResultType.isWebAssemblyReferenceType() &&
5978              RequireCompleteSizedType(
5979                  LLoc, ResultType,
5980                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5981     return ExprError();
5982 
5983   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5984          !ResultType.isCForbiddenLValueType());
5985 
5986   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5987       FunctionScopes.size() > 1) {
5988     if (auto *TT =
5989             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5990       for (auto I = FunctionScopes.rbegin(),
5991                 E = std::prev(FunctionScopes.rend());
5992            I != E; ++I) {
5993         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5994         if (CSI == nullptr)
5995           break;
5996         DeclContext *DC = nullptr;
5997         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5998           DC = LSI->CallOperator;
5999         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6000           DC = CRSI->TheCapturedDecl;
6001         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6002           DC = BSI->TheDecl;
6003         if (DC) {
6004           if (DC->containsDecl(TT->getDecl()))
6005             break;
6006           captureVariablyModifiedType(
6007               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6008         }
6009       }
6010     }
6011   }
6012 
6013   return new (Context)
6014       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6015 }
6016 
6017 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6018                                   ParmVarDecl *Param, Expr *RewrittenInit,
6019                                   bool SkipImmediateInvocations) {
6020   if (Param->hasUnparsedDefaultArg()) {
6021     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6022     // If we've already cleared out the location for the default argument,
6023     // that means we're parsing it right now.
6024     if (!UnparsedDefaultArgLocs.count(Param)) {
6025       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6026       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6027       Param->setInvalidDecl();
6028       return true;
6029     }
6030 
6031     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6032         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6033     Diag(UnparsedDefaultArgLocs[Param],
6034          diag::note_default_argument_declared_here);
6035     return true;
6036   }
6037 
6038   if (Param->hasUninstantiatedDefaultArg()) {
6039     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6040     if (InstantiateDefaultArgument(CallLoc, FD, Param))
6041       return true;
6042   }
6043 
6044   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6045   assert(Init && "default argument but no initializer?");
6046 
6047   // If the default expression creates temporaries, we need to
6048   // push them to the current stack of expression temporaries so they'll
6049   // be properly destroyed.
6050   // FIXME: We should really be rebuilding the default argument with new
6051   // bound temporaries; see the comment in PR5810.
6052   // We don't need to do that with block decls, though, because
6053   // blocks in default argument expression can never capture anything.
6054   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6055     // Set the "needs cleanups" bit regardless of whether there are
6056     // any explicit objects.
6057     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6058     // Append all the objects to the cleanup list.  Right now, this
6059     // should always be a no-op, because blocks in default argument
6060     // expressions should never be able to capture anything.
6061     assert(!InitWithCleanup->getNumObjects() &&
6062            "default argument expression has capturing blocks?");
6063   }
6064   // C++ [expr.const]p15.1:
6065   //   An expression or conversion is in an immediate function context if it is
6066   //   potentially evaluated and [...] its innermost enclosing non-block scope
6067   //   is a function parameter scope of an immediate function.
6068   EnterExpressionEvaluationContext EvalContext(
6069       *this,
6070       FD->isImmediateFunction()
6071           ? ExpressionEvaluationContext::ImmediateFunctionContext
6072           : ExpressionEvaluationContext::PotentiallyEvaluated,
6073       Param);
6074   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6075       SkipImmediateInvocations;
6076   runWithSufficientStackSpace(CallLoc, [&] {
6077     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6078   });
6079   return false;
6080 }
6081 
6082 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6083   const ASTContext &Context;
6084   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6085 
6086   bool HasImmediateCalls = false;
6087   bool shouldVisitImplicitCode() const { return true; }
6088 
6089   bool VisitCallExpr(CallExpr *E) {
6090     if (const FunctionDecl *FD = E->getDirectCallee())
6091       HasImmediateCalls |= FD->isImmediateFunction();
6092     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6093   }
6094 
6095   // SourceLocExpr are not immediate invocations
6096   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6097   // need to be rebuilt so that they refer to the correct SourceLocation and
6098   // DeclContext.
6099   bool VisitSourceLocExpr(SourceLocExpr *E) {
6100     HasImmediateCalls = true;
6101     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6102   }
6103 
6104   // A nested lambda might have parameters with immediate invocations
6105   // in their default arguments.
6106   // The compound statement is not visited (as it does not constitute a
6107   // subexpression).
6108   // FIXME: We should consider visiting and transforming captures
6109   // with init expressions.
6110   bool VisitLambdaExpr(LambdaExpr *E) {
6111     return VisitCXXMethodDecl(E->getCallOperator());
6112   }
6113 
6114   // Blocks don't support default parameters, and, as for lambdas,
6115   // we don't consider their body a subexpression.
6116   bool VisitBlockDecl(BlockDecl *B) { return false; }
6117 
6118   bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6119 
6120   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6121     return TraverseStmt(E->getExpr());
6122   }
6123 
6124   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6125     return TraverseStmt(E->getExpr());
6126   }
6127 };
6128 
6129 struct EnsureImmediateInvocationInDefaultArgs
6130     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
6131   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6132       : TreeTransform(SemaRef) {}
6133 
6134   // Lambda can only have immediate invocations in the default
6135   // args of their parameters, which is transformed upon calling the closure.
6136   // The body is not a subexpression, so we have nothing to do.
6137   // FIXME: Immediate calls in capture initializers should be transformed.
6138   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
6139   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6140 
6141   // Make sure we don't rebuild the this pointer as it would
6142   // cause it to incorrectly point it to the outermost class
6143   // in the case of nested struct initialization.
6144   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6145 };
6146 
6147 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6148                                         FunctionDecl *FD, ParmVarDecl *Param,
6149                                         Expr *Init) {
6150   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6151 
6152   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6153 
6154   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6155       InitializationContext =
6156           OutermostDeclarationWithDelayedImmediateInvocations();
6157   if (!InitializationContext.has_value())
6158     InitializationContext.emplace(CallLoc, Param, CurContext);
6159 
6160   if (!Init && !Param->hasUnparsedDefaultArg()) {
6161     // Mark that we are replacing a default argument first.
6162     // If we are instantiating a template we won't have to
6163     // retransform immediate calls.
6164     // C++ [expr.const]p15.1:
6165     //   An expression or conversion is in an immediate function context if it
6166     //   is potentially evaluated and [...] its innermost enclosing non-block
6167     //   scope is a function parameter scope of an immediate function.
6168     EnterExpressionEvaluationContext EvalContext(
6169         *this,
6170         FD->isImmediateFunction()
6171             ? ExpressionEvaluationContext::ImmediateFunctionContext
6172             : ExpressionEvaluationContext::PotentiallyEvaluated,
6173         Param);
6174 
6175     if (Param->hasUninstantiatedDefaultArg()) {
6176       if (InstantiateDefaultArgument(CallLoc, FD, Param))
6177         return ExprError();
6178     }
6179     // CWG2631
6180     // An immediate invocation that is not evaluated where it appears is
6181     // evaluated and checked for whether it is a constant expression at the
6182     // point where the enclosing initializer is used in a function call.
6183     ImmediateCallVisitor V(getASTContext());
6184     if (!NestedDefaultChecking)
6185       V.TraverseDecl(Param);
6186     if (V.HasImmediateCalls) {
6187       ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6188           CallLoc, Param, CurContext};
6189       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6190       ExprResult Res;
6191       runWithSufficientStackSpace(CallLoc, [&] {
6192         Res = Immediate.TransformInitializer(Param->getInit(),
6193                                              /*NotCopy=*/false);
6194       });
6195       if (Res.isInvalid())
6196         return ExprError();
6197       Res = ConvertParamDefaultArgument(Param, Res.get(),
6198                                         Res.get()->getBeginLoc());
6199       if (Res.isInvalid())
6200         return ExprError();
6201       Init = Res.get();
6202     }
6203   }
6204 
6205   if (CheckCXXDefaultArgExpr(
6206           CallLoc, FD, Param, Init,
6207           /*SkipImmediateInvocations=*/NestedDefaultChecking))
6208     return ExprError();
6209 
6210   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6211                                    Init, InitializationContext->Context);
6212 }
6213 
6214 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6215   assert(Field->hasInClassInitializer());
6216 
6217   // If we might have already tried and failed to instantiate, don't try again.
6218   if (Field->isInvalidDecl())
6219     return ExprError();
6220 
6221   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6222 
6223   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6224 
6225   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6226       InitializationContext =
6227           OutermostDeclarationWithDelayedImmediateInvocations();
6228   if (!InitializationContext.has_value())
6229     InitializationContext.emplace(Loc, Field, CurContext);
6230 
6231   Expr *Init = nullptr;
6232 
6233   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6234 
6235   EnterExpressionEvaluationContext EvalContext(
6236       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6237 
6238   if (!Field->getInClassInitializer()) {
6239     // Maybe we haven't instantiated the in-class initializer. Go check the
6240     // pattern FieldDecl to see if it has one.
6241     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6242       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6243       DeclContext::lookup_result Lookup =
6244           ClassPattern->lookup(Field->getDeclName());
6245 
6246       FieldDecl *Pattern = nullptr;
6247       for (auto *L : Lookup) {
6248         if ((Pattern = dyn_cast<FieldDecl>(L)))
6249           break;
6250       }
6251       assert(Pattern && "We must have set the Pattern!");
6252       if (!Pattern->hasInClassInitializer() ||
6253           InstantiateInClassInitializer(Loc, Field, Pattern,
6254                                         getTemplateInstantiationArgs(Field))) {
6255         Field->setInvalidDecl();
6256         return ExprError();
6257       }
6258     }
6259   }
6260 
6261   // CWG2631
6262   // An immediate invocation that is not evaluated where it appears is
6263   // evaluated and checked for whether it is a constant expression at the
6264   // point where the enclosing initializer is used in a [...] a constructor
6265   // definition, or an aggregate initialization.
6266   ImmediateCallVisitor V(getASTContext());
6267   if (!NestedDefaultChecking)
6268     V.TraverseDecl(Field);
6269   if (V.HasImmediateCalls) {
6270     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6271                                                                    CurContext};
6272     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6273         NestedDefaultChecking;
6274 
6275     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6276     ExprResult Res;
6277     runWithSufficientStackSpace(Loc, [&] {
6278       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6279                                            /*CXXDirectInit=*/false);
6280     });
6281     if (!Res.isInvalid())
6282       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6283     if (Res.isInvalid()) {
6284       Field->setInvalidDecl();
6285       return ExprError();
6286     }
6287     Init = Res.get();
6288   }
6289 
6290   if (Field->getInClassInitializer()) {
6291     Expr *E = Init ? Init : Field->getInClassInitializer();
6292     if (!NestedDefaultChecking)
6293       runWithSufficientStackSpace(Loc, [&] {
6294         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6295       });
6296     // C++11 [class.base.init]p7:
6297     //   The initialization of each base and member constitutes a
6298     //   full-expression.
6299     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6300     if (Res.isInvalid()) {
6301       Field->setInvalidDecl();
6302       return ExprError();
6303     }
6304     Init = Res.get();
6305 
6306     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6307                                       Field, InitializationContext->Context,
6308                                       Init);
6309   }
6310 
6311   // DR1351:
6312   //   If the brace-or-equal-initializer of a non-static data member
6313   //   invokes a defaulted default constructor of its class or of an
6314   //   enclosing class in a potentially evaluated subexpression, the
6315   //   program is ill-formed.
6316   //
6317   // This resolution is unworkable: the exception specification of the
6318   // default constructor can be needed in an unevaluated context, in
6319   // particular, in the operand of a noexcept-expression, and we can be
6320   // unable to compute an exception specification for an enclosed class.
6321   //
6322   // Any attempt to resolve the exception specification of a defaulted default
6323   // constructor before the initializer is lexically complete will ultimately
6324   // come here at which point we can diagnose it.
6325   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6326   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6327       << OutermostClass << Field;
6328   Diag(Field->getEndLoc(),
6329        diag::note_default_member_initializer_not_yet_parsed);
6330   // Recover by marking the field invalid, unless we're in a SFINAE context.
6331   if (!isSFINAEContext())
6332     Field->setInvalidDecl();
6333   return ExprError();
6334 }
6335 
6336 Sema::VariadicCallType
6337 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6338                           Expr *Fn) {
6339   if (Proto && Proto->isVariadic()) {
6340     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6341       return VariadicConstructor;
6342     else if (Fn && Fn->getType()->isBlockPointerType())
6343       return VariadicBlock;
6344     else if (FDecl) {
6345       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6346         if (Method->isInstance())
6347           return VariadicMethod;
6348     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6349       return VariadicMethod;
6350     return VariadicFunction;
6351   }
6352   return VariadicDoesNotApply;
6353 }
6354 
6355 namespace {
6356 class FunctionCallCCC final : public FunctionCallFilterCCC {
6357 public:
6358   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6359                   unsigned NumArgs, MemberExpr *ME)
6360       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6361         FunctionName(FuncName) {}
6362 
6363   bool ValidateCandidate(const TypoCorrection &candidate) override {
6364     if (!candidate.getCorrectionSpecifier() ||
6365         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6366       return false;
6367     }
6368 
6369     return FunctionCallFilterCCC::ValidateCandidate(candidate);
6370   }
6371 
6372   std::unique_ptr<CorrectionCandidateCallback> clone() override {
6373     return std::make_unique<FunctionCallCCC>(*this);
6374   }
6375 
6376 private:
6377   const IdentifierInfo *const FunctionName;
6378 };
6379 }
6380 
6381 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6382                                                FunctionDecl *FDecl,
6383                                                ArrayRef<Expr *> Args) {
6384   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6385   DeclarationName FuncName = FDecl->getDeclName();
6386   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6387 
6388   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6389   if (TypoCorrection Corrected = S.CorrectTypo(
6390           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6391           S.getScopeForContext(S.CurContext), nullptr, CCC,
6392           Sema::CTK_ErrorRecovery)) {
6393     if (NamedDecl *ND = Corrected.getFoundDecl()) {
6394       if (Corrected.isOverloaded()) {
6395         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6396         OverloadCandidateSet::iterator Best;
6397         for (NamedDecl *CD : Corrected) {
6398           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6399             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6400                                    OCS);
6401         }
6402         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6403         case OR_Success:
6404           ND = Best->FoundDecl;
6405           Corrected.setCorrectionDecl(ND);
6406           break;
6407         default:
6408           break;
6409         }
6410       }
6411       ND = ND->getUnderlyingDecl();
6412       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6413         return Corrected;
6414     }
6415   }
6416   return TypoCorrection();
6417 }
6418 
6419 /// ConvertArgumentsForCall - Converts the arguments specified in
6420 /// Args/NumArgs to the parameter types of the function FDecl with
6421 /// function prototype Proto. Call is the call expression itself, and
6422 /// Fn is the function expression. For a C++ member function, this
6423 /// routine does not attempt to convert the object argument. Returns
6424 /// true if the call is ill-formed.
6425 bool
6426 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6427                               FunctionDecl *FDecl,
6428                               const FunctionProtoType *Proto,
6429                               ArrayRef<Expr *> Args,
6430                               SourceLocation RParenLoc,
6431                               bool IsExecConfig) {
6432   // Bail out early if calling a builtin with custom typechecking.
6433   if (FDecl)
6434     if (unsigned ID = FDecl->getBuiltinID())
6435       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6436         return false;
6437 
6438   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6439   // assignment, to the types of the corresponding parameter, ...
6440   unsigned NumParams = Proto->getNumParams();
6441   bool Invalid = false;
6442   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6443   unsigned FnKind = Fn->getType()->isBlockPointerType()
6444                        ? 1 /* block */
6445                        : (IsExecConfig ? 3 /* kernel function (exec config) */
6446                                        : 0 /* function */);
6447 
6448   // If too few arguments are available (and we don't have default
6449   // arguments for the remaining parameters), don't make the call.
6450   if (Args.size() < NumParams) {
6451     if (Args.size() < MinArgs) {
6452       TypoCorrection TC;
6453       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6454         unsigned diag_id =
6455             MinArgs == NumParams && !Proto->isVariadic()
6456                 ? diag::err_typecheck_call_too_few_args_suggest
6457                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6458         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6459                                         << static_cast<unsigned>(Args.size())
6460                                         << TC.getCorrectionRange());
6461       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6462         Diag(RParenLoc,
6463              MinArgs == NumParams && !Proto->isVariadic()
6464                  ? diag::err_typecheck_call_too_few_args_one
6465                  : diag::err_typecheck_call_too_few_args_at_least_one)
6466             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6467       else
6468         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6469                             ? diag::err_typecheck_call_too_few_args
6470                             : diag::err_typecheck_call_too_few_args_at_least)
6471             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6472             << Fn->getSourceRange();
6473 
6474       // Emit the location of the prototype.
6475       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6476         Diag(FDecl->getLocation(), diag::note_callee_decl)
6477             << FDecl << FDecl->getParametersSourceRange();
6478 
6479       return true;
6480     }
6481     // We reserve space for the default arguments when we create
6482     // the call expression, before calling ConvertArgumentsForCall.
6483     assert((Call->getNumArgs() == NumParams) &&
6484            "We should have reserved space for the default arguments before!");
6485   }
6486 
6487   // If too many are passed and not variadic, error on the extras and drop
6488   // them.
6489   if (Args.size() > NumParams) {
6490     if (!Proto->isVariadic()) {
6491       TypoCorrection TC;
6492       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6493         unsigned diag_id =
6494             MinArgs == NumParams && !Proto->isVariadic()
6495                 ? diag::err_typecheck_call_too_many_args_suggest
6496                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6497         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6498                                         << static_cast<unsigned>(Args.size())
6499                                         << TC.getCorrectionRange());
6500       } else if (NumParams == 1 && FDecl &&
6501                  FDecl->getParamDecl(0)->getDeclName())
6502         Diag(Args[NumParams]->getBeginLoc(),
6503              MinArgs == NumParams
6504                  ? diag::err_typecheck_call_too_many_args_one
6505                  : diag::err_typecheck_call_too_many_args_at_most_one)
6506             << FnKind << FDecl->getParamDecl(0)
6507             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6508             << SourceRange(Args[NumParams]->getBeginLoc(),
6509                            Args.back()->getEndLoc());
6510       else
6511         Diag(Args[NumParams]->getBeginLoc(),
6512              MinArgs == NumParams
6513                  ? diag::err_typecheck_call_too_many_args
6514                  : diag::err_typecheck_call_too_many_args_at_most)
6515             << FnKind << NumParams << static_cast<unsigned>(Args.size())
6516             << Fn->getSourceRange()
6517             << SourceRange(Args[NumParams]->getBeginLoc(),
6518                            Args.back()->getEndLoc());
6519 
6520       // Emit the location of the prototype.
6521       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6522         Diag(FDecl->getLocation(), diag::note_callee_decl)
6523             << FDecl << FDecl->getParametersSourceRange();
6524 
6525       // This deletes the extra arguments.
6526       Call->shrinkNumArgs(NumParams);
6527       return true;
6528     }
6529   }
6530   SmallVector<Expr *, 8> AllArgs;
6531   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6532 
6533   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6534                                    AllArgs, CallType);
6535   if (Invalid)
6536     return true;
6537   unsigned TotalNumArgs = AllArgs.size();
6538   for (unsigned i = 0; i < TotalNumArgs; ++i)
6539     Call->setArg(i, AllArgs[i]);
6540 
6541   Call->computeDependence();
6542   return false;
6543 }
6544 
6545 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6546                                   const FunctionProtoType *Proto,
6547                                   unsigned FirstParam, ArrayRef<Expr *> Args,
6548                                   SmallVectorImpl<Expr *> &AllArgs,
6549                                   VariadicCallType CallType, bool AllowExplicit,
6550                                   bool IsListInitialization) {
6551   unsigned NumParams = Proto->getNumParams();
6552   bool Invalid = false;
6553   size_t ArgIx = 0;
6554   // Continue to check argument types (even if we have too few/many args).
6555   for (unsigned i = FirstParam; i < NumParams; i++) {
6556     QualType ProtoArgType = Proto->getParamType(i);
6557 
6558     Expr *Arg;
6559     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6560     if (ArgIx < Args.size()) {
6561       Arg = Args[ArgIx++];
6562 
6563       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6564                               diag::err_call_incomplete_argument, Arg))
6565         return true;
6566 
6567       // Strip the unbridged-cast placeholder expression off, if applicable.
6568       bool CFAudited = false;
6569       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6570           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6571           (!Param || !Param->hasAttr<CFConsumedAttr>()))
6572         Arg = stripARCUnbridgedCast(Arg);
6573       else if (getLangOpts().ObjCAutoRefCount &&
6574                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6575                (!Param || !Param->hasAttr<CFConsumedAttr>()))
6576         CFAudited = true;
6577 
6578       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6579           ProtoArgType->isBlockPointerType())
6580         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6581           BE->getBlockDecl()->setDoesNotEscape();
6582 
6583       InitializedEntity Entity =
6584           Param ? InitializedEntity::InitializeParameter(Context, Param,
6585                                                          ProtoArgType)
6586                 : InitializedEntity::InitializeParameter(
6587                       Context, ProtoArgType, Proto->isParamConsumed(i));
6588 
6589       // Remember that parameter belongs to a CF audited API.
6590       if (CFAudited)
6591         Entity.setParameterCFAudited();
6592 
6593       ExprResult ArgE = PerformCopyInitialization(
6594           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6595       if (ArgE.isInvalid())
6596         return true;
6597 
6598       Arg = ArgE.getAs<Expr>();
6599     } else {
6600       assert(Param && "can't use default arguments without a known callee");
6601 
6602       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6603       if (ArgExpr.isInvalid())
6604         return true;
6605 
6606       Arg = ArgExpr.getAs<Expr>();
6607     }
6608 
6609     // Check for array bounds violations for each argument to the call. This
6610     // check only triggers warnings when the argument isn't a more complex Expr
6611     // with its own checking, such as a BinaryOperator.
6612     CheckArrayAccess(Arg);
6613 
6614     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6615     CheckStaticArrayArgument(CallLoc, Param, Arg);
6616 
6617     AllArgs.push_back(Arg);
6618   }
6619 
6620   // If this is a variadic call, handle args passed through "...".
6621   if (CallType != VariadicDoesNotApply) {
6622     // Assume that extern "C" functions with variadic arguments that
6623     // return __unknown_anytype aren't *really* variadic.
6624     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6625         FDecl->isExternC()) {
6626       for (Expr *A : Args.slice(ArgIx)) {
6627         QualType paramType; // ignored
6628         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6629         Invalid |= arg.isInvalid();
6630         AllArgs.push_back(arg.get());
6631       }
6632 
6633     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6634     } else {
6635       for (Expr *A : Args.slice(ArgIx)) {
6636         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6637         Invalid |= Arg.isInvalid();
6638         AllArgs.push_back(Arg.get());
6639       }
6640     }
6641 
6642     // Check for array bounds violations.
6643     for (Expr *A : Args.slice(ArgIx))
6644       CheckArrayAccess(A);
6645   }
6646   return Invalid;
6647 }
6648 
6649 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6650   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6651   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6652     TL = DTL.getOriginalLoc();
6653   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6654     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6655       << ATL.getLocalSourceRange();
6656 }
6657 
6658 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6659 /// array parameter, check that it is non-null, and that if it is formed by
6660 /// array-to-pointer decay, the underlying array is sufficiently large.
6661 ///
6662 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6663 /// array type derivation, then for each call to the function, the value of the
6664 /// corresponding actual argument shall provide access to the first element of
6665 /// an array with at least as many elements as specified by the size expression.
6666 void
6667 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6668                                ParmVarDecl *Param,
6669                                const Expr *ArgExpr) {
6670   // Static array parameters are not supported in C++.
6671   if (!Param || getLangOpts().CPlusPlus)
6672     return;
6673 
6674   QualType OrigTy = Param->getOriginalType();
6675 
6676   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6677   if (!AT || AT->getSizeModifier() != ArrayType::Static)
6678     return;
6679 
6680   if (ArgExpr->isNullPointerConstant(Context,
6681                                      Expr::NPC_NeverValueDependent)) {
6682     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6683     DiagnoseCalleeStaticArrayParam(*this, Param);
6684     return;
6685   }
6686 
6687   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6688   if (!CAT)
6689     return;
6690 
6691   const ConstantArrayType *ArgCAT =
6692     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6693   if (!ArgCAT)
6694     return;
6695 
6696   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6697                                              ArgCAT->getElementType())) {
6698     if (ArgCAT->getSize().ult(CAT->getSize())) {
6699       Diag(CallLoc, diag::warn_static_array_too_small)
6700           << ArgExpr->getSourceRange()
6701           << (unsigned)ArgCAT->getSize().getZExtValue()
6702           << (unsigned)CAT->getSize().getZExtValue() << 0;
6703       DiagnoseCalleeStaticArrayParam(*this, Param);
6704     }
6705     return;
6706   }
6707 
6708   std::optional<CharUnits> ArgSize =
6709       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6710   std::optional<CharUnits> ParmSize =
6711       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6712   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6713     Diag(CallLoc, diag::warn_static_array_too_small)
6714         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6715         << (unsigned)ParmSize->getQuantity() << 1;
6716     DiagnoseCalleeStaticArrayParam(*this, Param);
6717   }
6718 }
6719 
6720 /// Given a function expression of unknown-any type, try to rebuild it
6721 /// to have a function type.
6722 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6723 
6724 /// Is the given type a placeholder that we need to lower out
6725 /// immediately during argument processing?
6726 static bool isPlaceholderToRemoveAsArg(QualType type) {
6727   // Placeholders are never sugared.
6728   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6729   if (!placeholder) return false;
6730 
6731   switch (placeholder->getKind()) {
6732   // Ignore all the non-placeholder types.
6733 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6734   case BuiltinType::Id:
6735 #include "clang/Basic/OpenCLImageTypes.def"
6736 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6737   case BuiltinType::Id:
6738 #include "clang/Basic/OpenCLExtensionTypes.def"
6739   // In practice we'll never use this, since all SVE types are sugared
6740   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6741 #define SVE_TYPE(Name, Id, SingletonId) \
6742   case BuiltinType::Id:
6743 #include "clang/Basic/AArch64SVEACLETypes.def"
6744 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6745   case BuiltinType::Id:
6746 #include "clang/Basic/PPCTypes.def"
6747 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6748 #include "clang/Basic/RISCVVTypes.def"
6749 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6750 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6751 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6752 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6753 #include "clang/AST/BuiltinTypes.def"
6754     return false;
6755 
6756   // We cannot lower out overload sets; they might validly be resolved
6757   // by the call machinery.
6758   case BuiltinType::Overload:
6759     return false;
6760 
6761   // Unbridged casts in ARC can be handled in some call positions and
6762   // should be left in place.
6763   case BuiltinType::ARCUnbridgedCast:
6764     return false;
6765 
6766   // Pseudo-objects should be converted as soon as possible.
6767   case BuiltinType::PseudoObject:
6768     return true;
6769 
6770   // The debugger mode could theoretically but currently does not try
6771   // to resolve unknown-typed arguments based on known parameter types.
6772   case BuiltinType::UnknownAny:
6773     return true;
6774 
6775   // These are always invalid as call arguments and should be reported.
6776   case BuiltinType::BoundMember:
6777   case BuiltinType::BuiltinFn:
6778   case BuiltinType::IncompleteMatrixIdx:
6779   case BuiltinType::OMPArraySection:
6780   case BuiltinType::OMPArrayShaping:
6781   case BuiltinType::OMPIterator:
6782     return true;
6783 
6784   }
6785   llvm_unreachable("bad builtin type kind");
6786 }
6787 
6788 /// Check an argument list for placeholders that we won't try to
6789 /// handle later.
6790 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6791   // Apply this processing to all the arguments at once instead of
6792   // dying at the first failure.
6793   bool hasInvalid = false;
6794   for (size_t i = 0, e = args.size(); i != e; i++) {
6795     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6796       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6797       if (result.isInvalid()) hasInvalid = true;
6798       else args[i] = result.get();
6799     }
6800   }
6801   return hasInvalid;
6802 }
6803 
6804 /// If a builtin function has a pointer argument with no explicit address
6805 /// space, then it should be able to accept a pointer to any address
6806 /// space as input.  In order to do this, we need to replace the
6807 /// standard builtin declaration with one that uses the same address space
6808 /// as the call.
6809 ///
6810 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6811 ///                  it does not contain any pointer arguments without
6812 ///                  an address space qualifer.  Otherwise the rewritten
6813 ///                  FunctionDecl is returned.
6814 /// TODO: Handle pointer return types.
6815 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6816                                                 FunctionDecl *FDecl,
6817                                                 MultiExprArg ArgExprs) {
6818 
6819   QualType DeclType = FDecl->getType();
6820   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6821 
6822   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6823       ArgExprs.size() < FT->getNumParams())
6824     return nullptr;
6825 
6826   bool NeedsNewDecl = false;
6827   unsigned i = 0;
6828   SmallVector<QualType, 8> OverloadParams;
6829 
6830   for (QualType ParamType : FT->param_types()) {
6831 
6832     // Convert array arguments to pointer to simplify type lookup.
6833     ExprResult ArgRes =
6834         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6835     if (ArgRes.isInvalid())
6836       return nullptr;
6837     Expr *Arg = ArgRes.get();
6838     QualType ArgType = Arg->getType();
6839     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6840         !ArgType->isPointerType() ||
6841         !ArgType->getPointeeType().hasAddressSpace() ||
6842         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6843       OverloadParams.push_back(ParamType);
6844       continue;
6845     }
6846 
6847     QualType PointeeType = ParamType->getPointeeType();
6848     if (PointeeType.hasAddressSpace())
6849       continue;
6850 
6851     NeedsNewDecl = true;
6852     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6853 
6854     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6855     OverloadParams.push_back(Context.getPointerType(PointeeType));
6856   }
6857 
6858   if (!NeedsNewDecl)
6859     return nullptr;
6860 
6861   FunctionProtoType::ExtProtoInfo EPI;
6862   EPI.Variadic = FT->isVariadic();
6863   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6864                                                 OverloadParams, EPI);
6865   DeclContext *Parent = FDecl->getParent();
6866   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6867       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6868       FDecl->getIdentifier(), OverloadTy,
6869       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6870       false,
6871       /*hasPrototype=*/true);
6872   SmallVector<ParmVarDecl*, 16> Params;
6873   FT = cast<FunctionProtoType>(OverloadTy);
6874   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6875     QualType ParamType = FT->getParamType(i);
6876     ParmVarDecl *Parm =
6877         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6878                                 SourceLocation(), nullptr, ParamType,
6879                                 /*TInfo=*/nullptr, SC_None, nullptr);
6880     Parm->setScopeInfo(0, i);
6881     Params.push_back(Parm);
6882   }
6883   OverloadDecl->setParams(Params);
6884   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6885   return OverloadDecl;
6886 }
6887 
6888 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6889                                     FunctionDecl *Callee,
6890                                     MultiExprArg ArgExprs) {
6891   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6892   // similar attributes) really don't like it when functions are called with an
6893   // invalid number of args.
6894   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6895                          /*PartialOverloading=*/false) &&
6896       !Callee->isVariadic())
6897     return;
6898   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6899     return;
6900 
6901   if (const EnableIfAttr *Attr =
6902           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6903     S.Diag(Fn->getBeginLoc(),
6904            isa<CXXMethodDecl>(Callee)
6905                ? diag::err_ovl_no_viable_member_function_in_call
6906                : diag::err_ovl_no_viable_function_in_call)
6907         << Callee << Callee->getSourceRange();
6908     S.Diag(Callee->getLocation(),
6909            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6910         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6911     return;
6912   }
6913 }
6914 
6915 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6916     const UnresolvedMemberExpr *const UME, Sema &S) {
6917 
6918   const auto GetFunctionLevelDCIfCXXClass =
6919       [](Sema &S) -> const CXXRecordDecl * {
6920     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6921     if (!DC || !DC->getParent())
6922       return nullptr;
6923 
6924     // If the call to some member function was made from within a member
6925     // function body 'M' return return 'M's parent.
6926     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6927       return MD->getParent()->getCanonicalDecl();
6928     // else the call was made from within a default member initializer of a
6929     // class, so return the class.
6930     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6931       return RD->getCanonicalDecl();
6932     return nullptr;
6933   };
6934   // If our DeclContext is neither a member function nor a class (in the
6935   // case of a lambda in a default member initializer), we can't have an
6936   // enclosing 'this'.
6937 
6938   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6939   if (!CurParentClass)
6940     return false;
6941 
6942   // The naming class for implicit member functions call is the class in which
6943   // name lookup starts.
6944   const CXXRecordDecl *const NamingClass =
6945       UME->getNamingClass()->getCanonicalDecl();
6946   assert(NamingClass && "Must have naming class even for implicit access");
6947 
6948   // If the unresolved member functions were found in a 'naming class' that is
6949   // related (either the same or derived from) to the class that contains the
6950   // member function that itself contained the implicit member access.
6951 
6952   return CurParentClass == NamingClass ||
6953          CurParentClass->isDerivedFrom(NamingClass);
6954 }
6955 
6956 static void
6957 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6958     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6959 
6960   if (!UME)
6961     return;
6962 
6963   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6964   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6965   // already been captured, or if this is an implicit member function call (if
6966   // it isn't, an attempt to capture 'this' should already have been made).
6967   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6968       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6969     return;
6970 
6971   // Check if the naming class in which the unresolved members were found is
6972   // related (same as or is a base of) to the enclosing class.
6973 
6974   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6975     return;
6976 
6977 
6978   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6979   // If the enclosing function is not dependent, then this lambda is
6980   // capture ready, so if we can capture this, do so.
6981   if (!EnclosingFunctionCtx->isDependentContext()) {
6982     // If the current lambda and all enclosing lambdas can capture 'this' -
6983     // then go ahead and capture 'this' (since our unresolved overload set
6984     // contains at least one non-static member function).
6985     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6986       S.CheckCXXThisCapture(CallLoc);
6987   } else if (S.CurContext->isDependentContext()) {
6988     // ... since this is an implicit member reference, that might potentially
6989     // involve a 'this' capture, mark 'this' for potential capture in
6990     // enclosing lambdas.
6991     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6992       CurLSI->addPotentialThisCapture(CallLoc);
6993   }
6994 }
6995 
6996 // Once a call is fully resolved, warn for unqualified calls to specific
6997 // C++ standard functions, like move and forward.
6998 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6999   // We are only checking unary move and forward so exit early here.
7000   if (Call->getNumArgs() != 1)
7001     return;
7002 
7003   Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7004   if (!E || isa<UnresolvedLookupExpr>(E))
7005     return;
7006   DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
7007   if (!DRE || !DRE->getLocation().isValid())
7008     return;
7009 
7010   if (DRE->getQualifier())
7011     return;
7012 
7013   const FunctionDecl *FD = Call->getDirectCallee();
7014   if (!FD)
7015     return;
7016 
7017   // Only warn for some functions deemed more frequent or problematic.
7018   unsigned BuiltinID = FD->getBuiltinID();
7019   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7020     return;
7021 
7022   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7023       << FD->getQualifiedNameAsString()
7024       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7025 }
7026 
7027 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7028                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7029                                Expr *ExecConfig) {
7030   ExprResult Call =
7031       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7032                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7033   if (Call.isInvalid())
7034     return Call;
7035 
7036   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7037   // language modes.
7038   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
7039     if (ULE->hasExplicitTemplateArgs() &&
7040         ULE->decls_begin() == ULE->decls_end()) {
7041       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7042                                  ? diag::warn_cxx17_compat_adl_only_template_id
7043                                  : diag::ext_adl_only_template_id)
7044           << ULE->getName();
7045     }
7046   }
7047 
7048   if (LangOpts.OpenMP)
7049     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7050                            ExecConfig);
7051   if (LangOpts.CPlusPlus) {
7052     CallExpr *CE = dyn_cast<CallExpr>(Call.get());
7053     if (CE)
7054       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7055   }
7056   return Call;
7057 }
7058 
7059 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7060 /// This provides the location of the left/right parens and a list of comma
7061 /// locations.
7062 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7063                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
7064                                Expr *ExecConfig, bool IsExecConfig,
7065                                bool AllowRecovery) {
7066   // Since this might be a postfix expression, get rid of ParenListExprs.
7067   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7068   if (Result.isInvalid()) return ExprError();
7069   Fn = Result.get();
7070 
7071   if (checkArgsForPlaceholders(*this, ArgExprs))
7072     return ExprError();
7073 
7074   if (getLangOpts().CPlusPlus) {
7075     // If this is a pseudo-destructor expression, build the call immediately.
7076     if (isa<CXXPseudoDestructorExpr>(Fn)) {
7077       if (!ArgExprs.empty()) {
7078         // Pseudo-destructor calls should not have any arguments.
7079         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7080             << FixItHint::CreateRemoval(
7081                    SourceRange(ArgExprs.front()->getBeginLoc(),
7082                                ArgExprs.back()->getEndLoc()));
7083       }
7084 
7085       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7086                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7087     }
7088     if (Fn->getType() == Context.PseudoObjectTy) {
7089       ExprResult result = CheckPlaceholderExpr(Fn);
7090       if (result.isInvalid()) return ExprError();
7091       Fn = result.get();
7092     }
7093 
7094     // Determine whether this is a dependent call inside a C++ template,
7095     // in which case we won't do any semantic analysis now.
7096     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7097       if (ExecConfig) {
7098         return CUDAKernelCallExpr::Create(Context, Fn,
7099                                           cast<CallExpr>(ExecConfig), ArgExprs,
7100                                           Context.DependentTy, VK_PRValue,
7101                                           RParenLoc, CurFPFeatureOverrides());
7102       } else {
7103 
7104         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7105             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7106             Fn->getBeginLoc());
7107 
7108         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7109                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7110       }
7111     }
7112 
7113     // Determine whether this is a call to an object (C++ [over.call.object]).
7114     if (Fn->getType()->isRecordType())
7115       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7116                                           RParenLoc);
7117 
7118     if (Fn->getType() == Context.UnknownAnyTy) {
7119       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7120       if (result.isInvalid()) return ExprError();
7121       Fn = result.get();
7122     }
7123 
7124     if (Fn->getType() == Context.BoundMemberTy) {
7125       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7126                                        RParenLoc, ExecConfig, IsExecConfig,
7127                                        AllowRecovery);
7128     }
7129   }
7130 
7131   // Check for overloaded calls.  This can happen even in C due to extensions.
7132   if (Fn->getType() == Context.OverloadTy) {
7133     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7134 
7135     // We aren't supposed to apply this logic if there's an '&' involved.
7136     if (!find.HasFormOfMemberPointer) {
7137       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7138         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7139                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7140       OverloadExpr *ovl = find.Expression;
7141       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7142         return BuildOverloadedCallExpr(
7143             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7144             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7145       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7146                                        RParenLoc, ExecConfig, IsExecConfig,
7147                                        AllowRecovery);
7148     }
7149   }
7150 
7151   // If we're directly calling a function, get the appropriate declaration.
7152   if (Fn->getType() == Context.UnknownAnyTy) {
7153     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7154     if (result.isInvalid()) return ExprError();
7155     Fn = result.get();
7156   }
7157 
7158   Expr *NakedFn = Fn->IgnoreParens();
7159 
7160   bool CallingNDeclIndirectly = false;
7161   NamedDecl *NDecl = nullptr;
7162   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7163     if (UnOp->getOpcode() == UO_AddrOf) {
7164       CallingNDeclIndirectly = true;
7165       NakedFn = UnOp->getSubExpr()->IgnoreParens();
7166     }
7167   }
7168 
7169   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7170     NDecl = DRE->getDecl();
7171 
7172     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7173     if (FDecl && FDecl->getBuiltinID()) {
7174       // Rewrite the function decl for this builtin by replacing parameters
7175       // with no explicit address space with the address space of the arguments
7176       // in ArgExprs.
7177       if ((FDecl =
7178                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7179         NDecl = FDecl;
7180         Fn = DeclRefExpr::Create(
7181             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7182             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7183             nullptr, DRE->isNonOdrUse());
7184       }
7185     }
7186   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7187     NDecl = ME->getMemberDecl();
7188 
7189   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7190     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7191                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
7192       return ExprError();
7193 
7194     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7195 
7196     // If this expression is a call to a builtin function in HIP device
7197     // compilation, allow a pointer-type argument to default address space to be
7198     // passed as a pointer-type parameter to a non-default address space.
7199     // If Arg is declared in the default address space and Param is declared
7200     // in a non-default address space, perform an implicit address space cast to
7201     // the parameter type.
7202     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7203         FD->getBuiltinID()) {
7204       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7205         ParmVarDecl *Param = FD->getParamDecl(Idx);
7206         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7207             !ArgExprs[Idx]->getType()->isPointerType())
7208           continue;
7209 
7210         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7211         auto ArgTy = ArgExprs[Idx]->getType();
7212         auto ArgPtTy = ArgTy->getPointeeType();
7213         auto ArgAS = ArgPtTy.getAddressSpace();
7214 
7215         // Add address space cast if target address spaces are different
7216         bool NeedImplicitASC =
7217           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
7218           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
7219                                               // or from specific AS which has target AS matching that of Param.
7220           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7221         if (!NeedImplicitASC)
7222           continue;
7223 
7224         // First, ensure that the Arg is an RValue.
7225         if (ArgExprs[Idx]->isGLValue()) {
7226           ArgExprs[Idx] = ImplicitCastExpr::Create(
7227               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7228               nullptr, VK_PRValue, FPOptionsOverride());
7229         }
7230 
7231         // Construct a new arg type with address space of Param
7232         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7233         ArgPtQuals.setAddressSpace(ParamAS);
7234         auto NewArgPtTy =
7235             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7236         auto NewArgTy =
7237             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7238                                      ArgTy.getQualifiers());
7239 
7240         // Finally perform an implicit address space cast
7241         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7242                                           CK_AddressSpaceConversion)
7243                             .get();
7244       }
7245     }
7246   }
7247 
7248   if (Context.isDependenceAllowed() &&
7249       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7250     assert(!getLangOpts().CPlusPlus);
7251     assert((Fn->containsErrors() ||
7252             llvm::any_of(ArgExprs,
7253                          [](clang::Expr *E) { return E->containsErrors(); })) &&
7254            "should only occur in error-recovery path.");
7255     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7256                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7257   }
7258   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7259                                ExecConfig, IsExecConfig);
7260 }
7261 
7262 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7263 //  with the specified CallArgs
7264 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7265                                  MultiExprArg CallArgs) {
7266   StringRef Name = Context.BuiltinInfo.getName(Id);
7267   LookupResult R(*this, &Context.Idents.get(Name), Loc,
7268                  Sema::LookupOrdinaryName);
7269   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7270 
7271   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7272   assert(BuiltInDecl && "failed to find builtin declaration");
7273 
7274   ExprResult DeclRef =
7275       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7276   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7277 
7278   ExprResult Call =
7279       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7280 
7281   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7282   return Call.get();
7283 }
7284 
7285 /// Parse a __builtin_astype expression.
7286 ///
7287 /// __builtin_astype( value, dst type )
7288 ///
7289 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7290                                  SourceLocation BuiltinLoc,
7291                                  SourceLocation RParenLoc) {
7292   QualType DstTy = GetTypeFromParser(ParsedDestTy);
7293   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7294 }
7295 
7296 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7297 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7298                                  SourceLocation BuiltinLoc,
7299                                  SourceLocation RParenLoc) {
7300   ExprValueKind VK = VK_PRValue;
7301   ExprObjectKind OK = OK_Ordinary;
7302   QualType SrcTy = E->getType();
7303   if (!SrcTy->isDependentType() &&
7304       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7305     return ExprError(
7306         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7307         << DestTy << SrcTy << E->getSourceRange());
7308   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7309 }
7310 
7311 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7312 /// provided arguments.
7313 ///
7314 /// __builtin_convertvector( value, dst type )
7315 ///
7316 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7317                                         SourceLocation BuiltinLoc,
7318                                         SourceLocation RParenLoc) {
7319   TypeSourceInfo *TInfo;
7320   GetTypeFromParser(ParsedDestTy, &TInfo);
7321   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7322 }
7323 
7324 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7325 /// i.e. an expression not of \p OverloadTy.  The expression should
7326 /// unary-convert to an expression of function-pointer or
7327 /// block-pointer type.
7328 ///
7329 /// \param NDecl the declaration being called, if available
7330 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7331                                        SourceLocation LParenLoc,
7332                                        ArrayRef<Expr *> Args,
7333                                        SourceLocation RParenLoc, Expr *Config,
7334                                        bool IsExecConfig, ADLCallKind UsesADL) {
7335   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7336   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7337 
7338   // Functions with 'interrupt' attribute cannot be called directly.
7339   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7340     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7341     return ExprError();
7342   }
7343 
7344   // Interrupt handlers don't save off the VFP regs automatically on ARM,
7345   // so there's some risk when calling out to non-interrupt handler functions
7346   // that the callee might not preserve them. This is easy to diagnose here,
7347   // but can be very challenging to debug.
7348   // Likewise, X86 interrupt handlers may only call routines with attribute
7349   // no_caller_saved_registers since there is no efficient way to
7350   // save and restore the non-GPR state.
7351   if (auto *Caller = getCurFunctionDecl()) {
7352     if (Caller->hasAttr<ARMInterruptAttr>()) {
7353       bool VFP = Context.getTargetInfo().hasFeature("vfp");
7354       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7355         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7356         if (FDecl)
7357           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7358       }
7359     }
7360     if (Caller->hasAttr<AnyX86InterruptAttr>() &&
7361         ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
7362       Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
7363       if (FDecl)
7364         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7365     }
7366   }
7367 
7368   // Promote the function operand.
7369   // We special-case function promotion here because we only allow promoting
7370   // builtin functions to function pointers in the callee of a call.
7371   ExprResult Result;
7372   QualType ResultTy;
7373   if (BuiltinID &&
7374       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7375     // Extract the return type from the (builtin) function pointer type.
7376     // FIXME Several builtins still have setType in
7377     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7378     // Builtins.def to ensure they are correct before removing setType calls.
7379     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7380     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7381     ResultTy = FDecl->getCallResultType();
7382   } else {
7383     Result = CallExprUnaryConversions(Fn);
7384     ResultTy = Context.BoolTy;
7385   }
7386   if (Result.isInvalid())
7387     return ExprError();
7388   Fn = Result.get();
7389 
7390   // Check for a valid function type, but only if it is not a builtin which
7391   // requires custom type checking. These will be handled by
7392   // CheckBuiltinFunctionCall below just after creation of the call expression.
7393   const FunctionType *FuncT = nullptr;
7394   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7395   retry:
7396     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7397       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7398       // have type pointer to function".
7399       FuncT = PT->getPointeeType()->getAs<FunctionType>();
7400       if (!FuncT)
7401         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7402                          << Fn->getType() << Fn->getSourceRange());
7403     } else if (const BlockPointerType *BPT =
7404                    Fn->getType()->getAs<BlockPointerType>()) {
7405       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7406     } else {
7407       // Handle calls to expressions of unknown-any type.
7408       if (Fn->getType() == Context.UnknownAnyTy) {
7409         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7410         if (rewrite.isInvalid())
7411           return ExprError();
7412         Fn = rewrite.get();
7413         goto retry;
7414       }
7415 
7416       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7417                        << Fn->getType() << Fn->getSourceRange());
7418     }
7419   }
7420 
7421   // Get the number of parameters in the function prototype, if any.
7422   // We will allocate space for max(Args.size(), NumParams) arguments
7423   // in the call expression.
7424   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7425   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7426 
7427   CallExpr *TheCall;
7428   if (Config) {
7429     assert(UsesADL == ADLCallKind::NotADL &&
7430            "CUDAKernelCallExpr should not use ADL");
7431     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7432                                          Args, ResultTy, VK_PRValue, RParenLoc,
7433                                          CurFPFeatureOverrides(), NumParams);
7434   } else {
7435     TheCall =
7436         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7437                          CurFPFeatureOverrides(), NumParams, UsesADL);
7438   }
7439 
7440   if (!Context.isDependenceAllowed()) {
7441     // Forget about the nulled arguments since typo correction
7442     // do not handle them well.
7443     TheCall->shrinkNumArgs(Args.size());
7444     // C cannot always handle TypoExpr nodes in builtin calls and direct
7445     // function calls as their argument checking don't necessarily handle
7446     // dependent types properly, so make sure any TypoExprs have been
7447     // dealt with.
7448     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7449     if (!Result.isUsable()) return ExprError();
7450     CallExpr *TheOldCall = TheCall;
7451     TheCall = dyn_cast<CallExpr>(Result.get());
7452     bool CorrectedTypos = TheCall != TheOldCall;
7453     if (!TheCall) return Result;
7454     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7455 
7456     // A new call expression node was created if some typos were corrected.
7457     // However it may not have been constructed with enough storage. In this
7458     // case, rebuild the node with enough storage. The waste of space is
7459     // immaterial since this only happens when some typos were corrected.
7460     if (CorrectedTypos && Args.size() < NumParams) {
7461       if (Config)
7462         TheCall = CUDAKernelCallExpr::Create(
7463             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7464             RParenLoc, CurFPFeatureOverrides(), NumParams);
7465       else
7466         TheCall =
7467             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7468                              CurFPFeatureOverrides(), NumParams, UsesADL);
7469     }
7470     // We can now handle the nulled arguments for the default arguments.
7471     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7472   }
7473 
7474   // Bail out early if calling a builtin with custom type checking.
7475   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7476     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7477 
7478   if (getLangOpts().CUDA) {
7479     if (Config) {
7480       // CUDA: Kernel calls must be to global functions
7481       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7482         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7483             << FDecl << Fn->getSourceRange());
7484 
7485       // CUDA: Kernel function must have 'void' return type
7486       if (!FuncT->getReturnType()->isVoidType() &&
7487           !FuncT->getReturnType()->getAs<AutoType>() &&
7488           !FuncT->getReturnType()->isInstantiationDependentType())
7489         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7490             << Fn->getType() << Fn->getSourceRange());
7491     } else {
7492       // CUDA: Calls to global functions must be configured
7493       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7494         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7495             << FDecl << Fn->getSourceRange());
7496     }
7497   }
7498 
7499   // Check for a valid return type
7500   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7501                           FDecl))
7502     return ExprError();
7503 
7504   // We know the result type of the call, set it.
7505   TheCall->setType(FuncT->getCallResultType(Context));
7506   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7507 
7508   // WebAssembly tables can't be used as arguments.
7509   if (Context.getTargetInfo().getTriple().isWasm()) {
7510     for (const Expr *Arg : Args) {
7511       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7512         return ExprError(Diag(Arg->getExprLoc(),
7513                               diag::err_wasm_table_as_function_parameter));
7514       }
7515     }
7516   }
7517 
7518   if (Proto) {
7519     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7520                                 IsExecConfig))
7521       return ExprError();
7522   } else {
7523     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7524 
7525     if (FDecl) {
7526       // Check if we have too few/too many template arguments, based
7527       // on our knowledge of the function definition.
7528       const FunctionDecl *Def = nullptr;
7529       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7530         Proto = Def->getType()->getAs<FunctionProtoType>();
7531        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7532           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7533           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7534       }
7535 
7536       // If the function we're calling isn't a function prototype, but we have
7537       // a function prototype from a prior declaratiom, use that prototype.
7538       if (!FDecl->hasPrototype())
7539         Proto = FDecl->getType()->getAs<FunctionProtoType>();
7540     }
7541 
7542     // If we still haven't found a prototype to use but there are arguments to
7543     // the call, diagnose this as calling a function without a prototype.
7544     // However, if we found a function declaration, check to see if
7545     // -Wdeprecated-non-prototype was disabled where the function was declared.
7546     // If so, we will silence the diagnostic here on the assumption that this
7547     // interface is intentional and the user knows what they're doing. We will
7548     // also silence the diagnostic if there is a function declaration but it
7549     // was implicitly defined (the user already gets diagnostics about the
7550     // creation of the implicit function declaration, so the additional warning
7551     // is not helpful).
7552     if (!Proto && !Args.empty() &&
7553         (!FDecl || (!FDecl->isImplicit() &&
7554                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7555                                      FDecl->getLocation()))))
7556       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7557           << (FDecl != nullptr) << FDecl;
7558 
7559     // Promote the arguments (C99 6.5.2.2p6).
7560     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7561       Expr *Arg = Args[i];
7562 
7563       if (Proto && i < Proto->getNumParams()) {
7564         InitializedEntity Entity = InitializedEntity::InitializeParameter(
7565             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7566         ExprResult ArgE =
7567             PerformCopyInitialization(Entity, SourceLocation(), Arg);
7568         if (ArgE.isInvalid())
7569           return true;
7570 
7571         Arg = ArgE.getAs<Expr>();
7572 
7573       } else {
7574         ExprResult ArgE = DefaultArgumentPromotion(Arg);
7575 
7576         if (ArgE.isInvalid())
7577           return true;
7578 
7579         Arg = ArgE.getAs<Expr>();
7580       }
7581 
7582       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7583                               diag::err_call_incomplete_argument, Arg))
7584         return ExprError();
7585 
7586       TheCall->setArg(i, Arg);
7587     }
7588     TheCall->computeDependence();
7589   }
7590 
7591   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7592     if (!Method->isStatic())
7593       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7594         << Fn->getSourceRange());
7595 
7596   // Check for sentinels
7597   if (NDecl)
7598     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7599 
7600   // Warn for unions passing across security boundary (CMSE).
7601   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7602     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7603       if (const auto *RT =
7604               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7605         if (RT->getDecl()->isOrContainsUnion())
7606           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7607               << 0 << i;
7608       }
7609     }
7610   }
7611 
7612   // Do special checking on direct calls to functions.
7613   if (FDecl) {
7614     if (CheckFunctionCall(FDecl, TheCall, Proto))
7615       return ExprError();
7616 
7617     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7618 
7619     if (BuiltinID)
7620       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7621   } else if (NDecl) {
7622     if (CheckPointerCall(NDecl, TheCall, Proto))
7623       return ExprError();
7624   } else {
7625     if (CheckOtherCall(TheCall, Proto))
7626       return ExprError();
7627   }
7628 
7629   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7630 }
7631 
7632 ExprResult
7633 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7634                            SourceLocation RParenLoc, Expr *InitExpr) {
7635   assert(Ty && "ActOnCompoundLiteral(): missing type");
7636   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7637 
7638   TypeSourceInfo *TInfo;
7639   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7640   if (!TInfo)
7641     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7642 
7643   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7644 }
7645 
7646 ExprResult
7647 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7648                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7649   QualType literalType = TInfo->getType();
7650 
7651   if (literalType->isArrayType()) {
7652     if (RequireCompleteSizedType(
7653             LParenLoc, Context.getBaseElementType(literalType),
7654             diag::err_array_incomplete_or_sizeless_type,
7655             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7656       return ExprError();
7657     if (literalType->isVariableArrayType()) {
7658       // C2x 6.7.9p4: An entity of variable length array type shall not be
7659       // initialized except by an empty initializer.
7660       //
7661       // The C extension warnings are issued from ParseBraceInitializer() and
7662       // do not need to be issued here. However, we continue to issue an error
7663       // in the case there are initializers or we are compiling C++. We allow
7664       // use of VLAs in C++, but it's not clear we want to allow {} to zero
7665       // init a VLA in C++ in all cases (such as with non-trivial constructors).
7666       // FIXME: should we allow this construct in C++ when it makes sense to do
7667       // so?
7668       std::optional<unsigned> NumInits;
7669       if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7670         NumInits = ILE->getNumInits();
7671       if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7672           !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7673                                            diag::err_variable_object_no_init))
7674         return ExprError();
7675     }
7676   } else if (!literalType->isDependentType() &&
7677              RequireCompleteType(LParenLoc, literalType,
7678                diag::err_typecheck_decl_incomplete_type,
7679                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7680     return ExprError();
7681 
7682   InitializedEntity Entity
7683     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7684   InitializationKind Kind
7685     = InitializationKind::CreateCStyleCast(LParenLoc,
7686                                            SourceRange(LParenLoc, RParenLoc),
7687                                            /*InitList=*/true);
7688   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7689   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7690                                       &literalType);
7691   if (Result.isInvalid())
7692     return ExprError();
7693   LiteralExpr = Result.get();
7694 
7695   bool isFileScope = !CurContext->isFunctionOrMethod();
7696 
7697   // In C, compound literals are l-values for some reason.
7698   // For GCC compatibility, in C++, file-scope array compound literals with
7699   // constant initializers are also l-values, and compound literals are
7700   // otherwise prvalues.
7701   //
7702   // (GCC also treats C++ list-initialized file-scope array prvalues with
7703   // constant initializers as l-values, but that's non-conforming, so we don't
7704   // follow it there.)
7705   //
7706   // FIXME: It would be better to handle the lvalue cases as materializing and
7707   // lifetime-extending a temporary object, but our materialized temporaries
7708   // representation only supports lifetime extension from a variable, not "out
7709   // of thin air".
7710   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7711   // is bound to the result of applying array-to-pointer decay to the compound
7712   // literal.
7713   // FIXME: GCC supports compound literals of reference type, which should
7714   // obviously have a value kind derived from the kind of reference involved.
7715   ExprValueKind VK =
7716       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7717           ? VK_PRValue
7718           : VK_LValue;
7719 
7720   if (isFileScope)
7721     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7722       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7723         Expr *Init = ILE->getInit(i);
7724         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7725       }
7726 
7727   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7728                                               VK, LiteralExpr, isFileScope);
7729   if (isFileScope) {
7730     if (!LiteralExpr->isTypeDependent() &&
7731         !LiteralExpr->isValueDependent() &&
7732         !literalType->isDependentType()) // C99 6.5.2.5p3
7733       if (CheckForConstantInitializer(LiteralExpr, literalType))
7734         return ExprError();
7735   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7736              literalType.getAddressSpace() != LangAS::Default) {
7737     // Embedded-C extensions to C99 6.5.2.5:
7738     //   "If the compound literal occurs inside the body of a function, the
7739     //   type name shall not be qualified by an address-space qualifier."
7740     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7741       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7742     return ExprError();
7743   }
7744 
7745   if (!isFileScope && !getLangOpts().CPlusPlus) {
7746     // Compound literals that have automatic storage duration are destroyed at
7747     // the end of the scope in C; in C++, they're just temporaries.
7748 
7749     // Emit diagnostics if it is or contains a C union type that is non-trivial
7750     // to destruct.
7751     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7752       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7753                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7754 
7755     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7756     if (literalType.isDestructedType()) {
7757       Cleanup.setExprNeedsCleanups(true);
7758       ExprCleanupObjects.push_back(E);
7759       getCurFunction()->setHasBranchProtectedScope();
7760     }
7761   }
7762 
7763   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7764       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7765     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7766                                        E->getInitializer()->getExprLoc());
7767 
7768   return MaybeBindToTemporary(E);
7769 }
7770 
7771 ExprResult
7772 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7773                     SourceLocation RBraceLoc) {
7774   // Only produce each kind of designated initialization diagnostic once.
7775   SourceLocation FirstDesignator;
7776   bool DiagnosedArrayDesignator = false;
7777   bool DiagnosedNestedDesignator = false;
7778   bool DiagnosedMixedDesignator = false;
7779 
7780   // Check that any designated initializers are syntactically valid in the
7781   // current language mode.
7782   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7783     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7784       if (FirstDesignator.isInvalid())
7785         FirstDesignator = DIE->getBeginLoc();
7786 
7787       if (!getLangOpts().CPlusPlus)
7788         break;
7789 
7790       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7791         DiagnosedNestedDesignator = true;
7792         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7793           << DIE->getDesignatorsSourceRange();
7794       }
7795 
7796       for (auto &Desig : DIE->designators()) {
7797         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7798           DiagnosedArrayDesignator = true;
7799           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7800             << Desig.getSourceRange();
7801         }
7802       }
7803 
7804       if (!DiagnosedMixedDesignator &&
7805           !isa<DesignatedInitExpr>(InitArgList[0])) {
7806         DiagnosedMixedDesignator = true;
7807         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7808           << DIE->getSourceRange();
7809         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7810           << InitArgList[0]->getSourceRange();
7811       }
7812     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7813                isa<DesignatedInitExpr>(InitArgList[0])) {
7814       DiagnosedMixedDesignator = true;
7815       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7816       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7817         << DIE->getSourceRange();
7818       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7819         << InitArgList[I]->getSourceRange();
7820     }
7821   }
7822 
7823   if (FirstDesignator.isValid()) {
7824     // Only diagnose designated initiaization as a C++20 extension if we didn't
7825     // already diagnose use of (non-C++20) C99 designator syntax.
7826     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7827         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7828       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7829                                 ? diag::warn_cxx17_compat_designated_init
7830                                 : diag::ext_cxx_designated_init);
7831     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7832       Diag(FirstDesignator, diag::ext_designated_init);
7833     }
7834   }
7835 
7836   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7837 }
7838 
7839 ExprResult
7840 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7841                     SourceLocation RBraceLoc) {
7842   // Semantic analysis for initializers is done by ActOnDeclarator() and
7843   // CheckInitializer() - it requires knowledge of the object being initialized.
7844 
7845   // Immediately handle non-overload placeholders.  Overloads can be
7846   // resolved contextually, but everything else here can't.
7847   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7848     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7849       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7850 
7851       // Ignore failures; dropping the entire initializer list because
7852       // of one failure would be terrible for indexing/etc.
7853       if (result.isInvalid()) continue;
7854 
7855       InitArgList[I] = result.get();
7856     }
7857   }
7858 
7859   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7860                                                RBraceLoc);
7861   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7862   return E;
7863 }
7864 
7865 /// Do an explicit extend of the given block pointer if we're in ARC.
7866 void Sema::maybeExtendBlockObject(ExprResult &E) {
7867   assert(E.get()->getType()->isBlockPointerType());
7868   assert(E.get()->isPRValue());
7869 
7870   // Only do this in an r-value context.
7871   if (!getLangOpts().ObjCAutoRefCount) return;
7872 
7873   E = ImplicitCastExpr::Create(
7874       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7875       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7876   Cleanup.setExprNeedsCleanups(true);
7877 }
7878 
7879 /// Prepare a conversion of the given expression to an ObjC object
7880 /// pointer type.
7881 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7882   QualType type = E.get()->getType();
7883   if (type->isObjCObjectPointerType()) {
7884     return CK_BitCast;
7885   } else if (type->isBlockPointerType()) {
7886     maybeExtendBlockObject(E);
7887     return CK_BlockPointerToObjCPointerCast;
7888   } else {
7889     assert(type->isPointerType());
7890     return CK_CPointerToObjCPointerCast;
7891   }
7892 }
7893 
7894 /// Prepares for a scalar cast, performing all the necessary stages
7895 /// except the final cast and returning the kind required.
7896 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7897   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7898   // Also, callers should have filtered out the invalid cases with
7899   // pointers.  Everything else should be possible.
7900 
7901   QualType SrcTy = Src.get()->getType();
7902   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7903     return CK_NoOp;
7904 
7905   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7906   case Type::STK_MemberPointer:
7907     llvm_unreachable("member pointer type in C");
7908 
7909   case Type::STK_CPointer:
7910   case Type::STK_BlockPointer:
7911   case Type::STK_ObjCObjectPointer:
7912     switch (DestTy->getScalarTypeKind()) {
7913     case Type::STK_CPointer: {
7914       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7915       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7916       if (SrcAS != DestAS)
7917         return CK_AddressSpaceConversion;
7918       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7919         return CK_NoOp;
7920       return CK_BitCast;
7921     }
7922     case Type::STK_BlockPointer:
7923       return (SrcKind == Type::STK_BlockPointer
7924                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7925     case Type::STK_ObjCObjectPointer:
7926       if (SrcKind == Type::STK_ObjCObjectPointer)
7927         return CK_BitCast;
7928       if (SrcKind == Type::STK_CPointer)
7929         return CK_CPointerToObjCPointerCast;
7930       maybeExtendBlockObject(Src);
7931       return CK_BlockPointerToObjCPointerCast;
7932     case Type::STK_Bool:
7933       return CK_PointerToBoolean;
7934     case Type::STK_Integral:
7935       return CK_PointerToIntegral;
7936     case Type::STK_Floating:
7937     case Type::STK_FloatingComplex:
7938     case Type::STK_IntegralComplex:
7939     case Type::STK_MemberPointer:
7940     case Type::STK_FixedPoint:
7941       llvm_unreachable("illegal cast from pointer");
7942     }
7943     llvm_unreachable("Should have returned before this");
7944 
7945   case Type::STK_FixedPoint:
7946     switch (DestTy->getScalarTypeKind()) {
7947     case Type::STK_FixedPoint:
7948       return CK_FixedPointCast;
7949     case Type::STK_Bool:
7950       return CK_FixedPointToBoolean;
7951     case Type::STK_Integral:
7952       return CK_FixedPointToIntegral;
7953     case Type::STK_Floating:
7954       return CK_FixedPointToFloating;
7955     case Type::STK_IntegralComplex:
7956     case Type::STK_FloatingComplex:
7957       Diag(Src.get()->getExprLoc(),
7958            diag::err_unimplemented_conversion_with_fixed_point_type)
7959           << DestTy;
7960       return CK_IntegralCast;
7961     case Type::STK_CPointer:
7962     case Type::STK_ObjCObjectPointer:
7963     case Type::STK_BlockPointer:
7964     case Type::STK_MemberPointer:
7965       llvm_unreachable("illegal cast to pointer type");
7966     }
7967     llvm_unreachable("Should have returned before this");
7968 
7969   case Type::STK_Bool: // casting from bool is like casting from an integer
7970   case Type::STK_Integral:
7971     switch (DestTy->getScalarTypeKind()) {
7972     case Type::STK_CPointer:
7973     case Type::STK_ObjCObjectPointer:
7974     case Type::STK_BlockPointer:
7975       if (Src.get()->isNullPointerConstant(Context,
7976                                            Expr::NPC_ValueDependentIsNull))
7977         return CK_NullToPointer;
7978       return CK_IntegralToPointer;
7979     case Type::STK_Bool:
7980       return CK_IntegralToBoolean;
7981     case Type::STK_Integral:
7982       return CK_IntegralCast;
7983     case Type::STK_Floating:
7984       return CK_IntegralToFloating;
7985     case Type::STK_IntegralComplex:
7986       Src = ImpCastExprToType(Src.get(),
7987                       DestTy->castAs<ComplexType>()->getElementType(),
7988                       CK_IntegralCast);
7989       return CK_IntegralRealToComplex;
7990     case Type::STK_FloatingComplex:
7991       Src = ImpCastExprToType(Src.get(),
7992                       DestTy->castAs<ComplexType>()->getElementType(),
7993                       CK_IntegralToFloating);
7994       return CK_FloatingRealToComplex;
7995     case Type::STK_MemberPointer:
7996       llvm_unreachable("member pointer type in C");
7997     case Type::STK_FixedPoint:
7998       return CK_IntegralToFixedPoint;
7999     }
8000     llvm_unreachable("Should have returned before this");
8001 
8002   case Type::STK_Floating:
8003     switch (DestTy->getScalarTypeKind()) {
8004     case Type::STK_Floating:
8005       return CK_FloatingCast;
8006     case Type::STK_Bool:
8007       return CK_FloatingToBoolean;
8008     case Type::STK_Integral:
8009       return CK_FloatingToIntegral;
8010     case Type::STK_FloatingComplex:
8011       Src = ImpCastExprToType(Src.get(),
8012                               DestTy->castAs<ComplexType>()->getElementType(),
8013                               CK_FloatingCast);
8014       return CK_FloatingRealToComplex;
8015     case Type::STK_IntegralComplex:
8016       Src = ImpCastExprToType(Src.get(),
8017                               DestTy->castAs<ComplexType>()->getElementType(),
8018                               CK_FloatingToIntegral);
8019       return CK_IntegralRealToComplex;
8020     case Type::STK_CPointer:
8021     case Type::STK_ObjCObjectPointer:
8022     case Type::STK_BlockPointer:
8023       llvm_unreachable("valid float->pointer cast?");
8024     case Type::STK_MemberPointer:
8025       llvm_unreachable("member pointer type in C");
8026     case Type::STK_FixedPoint:
8027       return CK_FloatingToFixedPoint;
8028     }
8029     llvm_unreachable("Should have returned before this");
8030 
8031   case Type::STK_FloatingComplex:
8032     switch (DestTy->getScalarTypeKind()) {
8033     case Type::STK_FloatingComplex:
8034       return CK_FloatingComplexCast;
8035     case Type::STK_IntegralComplex:
8036       return CK_FloatingComplexToIntegralComplex;
8037     case Type::STK_Floating: {
8038       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8039       if (Context.hasSameType(ET, DestTy))
8040         return CK_FloatingComplexToReal;
8041       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8042       return CK_FloatingCast;
8043     }
8044     case Type::STK_Bool:
8045       return CK_FloatingComplexToBoolean;
8046     case Type::STK_Integral:
8047       Src = ImpCastExprToType(Src.get(),
8048                               SrcTy->castAs<ComplexType>()->getElementType(),
8049                               CK_FloatingComplexToReal);
8050       return CK_FloatingToIntegral;
8051     case Type::STK_CPointer:
8052     case Type::STK_ObjCObjectPointer:
8053     case Type::STK_BlockPointer:
8054       llvm_unreachable("valid complex float->pointer cast?");
8055     case Type::STK_MemberPointer:
8056       llvm_unreachable("member pointer type in C");
8057     case Type::STK_FixedPoint:
8058       Diag(Src.get()->getExprLoc(),
8059            diag::err_unimplemented_conversion_with_fixed_point_type)
8060           << SrcTy;
8061       return CK_IntegralCast;
8062     }
8063     llvm_unreachable("Should have returned before this");
8064 
8065   case Type::STK_IntegralComplex:
8066     switch (DestTy->getScalarTypeKind()) {
8067     case Type::STK_FloatingComplex:
8068       return CK_IntegralComplexToFloatingComplex;
8069     case Type::STK_IntegralComplex:
8070       return CK_IntegralComplexCast;
8071     case Type::STK_Integral: {
8072       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8073       if (Context.hasSameType(ET, DestTy))
8074         return CK_IntegralComplexToReal;
8075       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8076       return CK_IntegralCast;
8077     }
8078     case Type::STK_Bool:
8079       return CK_IntegralComplexToBoolean;
8080     case Type::STK_Floating:
8081       Src = ImpCastExprToType(Src.get(),
8082                               SrcTy->castAs<ComplexType>()->getElementType(),
8083                               CK_IntegralComplexToReal);
8084       return CK_IntegralToFloating;
8085     case Type::STK_CPointer:
8086     case Type::STK_ObjCObjectPointer:
8087     case Type::STK_BlockPointer:
8088       llvm_unreachable("valid complex int->pointer cast?");
8089     case Type::STK_MemberPointer:
8090       llvm_unreachable("member pointer type in C");
8091     case Type::STK_FixedPoint:
8092       Diag(Src.get()->getExprLoc(),
8093            diag::err_unimplemented_conversion_with_fixed_point_type)
8094           << SrcTy;
8095       return CK_IntegralCast;
8096     }
8097     llvm_unreachable("Should have returned before this");
8098   }
8099 
8100   llvm_unreachable("Unhandled scalar cast");
8101 }
8102 
8103 static bool breakDownVectorType(QualType type, uint64_t &len,
8104                                 QualType &eltType) {
8105   // Vectors are simple.
8106   if (const VectorType *vecType = type->getAs<VectorType>()) {
8107     len = vecType->getNumElements();
8108     eltType = vecType->getElementType();
8109     assert(eltType->isScalarType());
8110     return true;
8111   }
8112 
8113   // We allow lax conversion to and from non-vector types, but only if
8114   // they're real types (i.e. non-complex, non-pointer scalar types).
8115   if (!type->isRealType()) return false;
8116 
8117   len = 1;
8118   eltType = type;
8119   return true;
8120 }
8121 
8122 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8123 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8124 /// allowed?
8125 ///
8126 /// This will also return false if the two given types do not make sense from
8127 /// the perspective of SVE bitcasts.
8128 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8129   assert(srcTy->isVectorType() || destTy->isVectorType());
8130 
8131   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8132     if (!FirstType->isSVESizelessBuiltinType())
8133       return false;
8134 
8135     const auto *VecTy = SecondType->getAs<VectorType>();
8136     return VecTy &&
8137            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
8138   };
8139 
8140   return ValidScalableConversion(srcTy, destTy) ||
8141          ValidScalableConversion(destTy, srcTy);
8142 }
8143 
8144 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8145 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8146 /// VLS type) allowed?
8147 ///
8148 /// This will also return false if the two given types do not make sense from
8149 /// the perspective of RVV bitcasts.
8150 bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8151   assert(srcTy->isVectorType() || destTy->isVectorType());
8152 
8153   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8154     if (!FirstType->isRVVSizelessBuiltinType())
8155       return false;
8156 
8157     const auto *VecTy = SecondType->getAs<VectorType>();
8158     return VecTy &&
8159            VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector;
8160   };
8161 
8162   return ValidScalableConversion(srcTy, destTy) ||
8163          ValidScalableConversion(destTy, srcTy);
8164 }
8165 
8166 /// Are the two types matrix types and do they have the same dimensions i.e.
8167 /// do they have the same number of rows and the same number of columns?
8168 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8169   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8170     return false;
8171 
8172   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8173   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8174 
8175   return matSrcType->getNumRows() == matDestType->getNumRows() &&
8176          matSrcType->getNumColumns() == matDestType->getNumColumns();
8177 }
8178 
8179 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8180   assert(DestTy->isVectorType() || SrcTy->isVectorType());
8181 
8182   uint64_t SrcLen, DestLen;
8183   QualType SrcEltTy, DestEltTy;
8184   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8185     return false;
8186   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8187     return false;
8188 
8189   // ASTContext::getTypeSize will return the size rounded up to a
8190   // power of 2, so instead of using that, we need to use the raw
8191   // element size multiplied by the element count.
8192   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8193   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8194 
8195   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8196 }
8197 
8198 // This returns true if at least one of the types is an altivec vector.
8199 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8200   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8201          "expected at least one type to be a vector here");
8202 
8203   bool IsSrcTyAltivec =
8204       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8205                                  VectorType::AltiVecVector) ||
8206                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8207                                  VectorType::AltiVecBool) ||
8208                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8209                                  VectorType::AltiVecPixel));
8210 
8211   bool IsDestTyAltivec = DestTy->isVectorType() &&
8212                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
8213                            VectorType::AltiVecVector) ||
8214                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8215                            VectorType::AltiVecBool) ||
8216                           (DestTy->castAs<VectorType>()->getVectorKind() ==
8217                            VectorType::AltiVecPixel));
8218 
8219   return (IsSrcTyAltivec || IsDestTyAltivec);
8220 }
8221 
8222 /// Are the two types lax-compatible vector types?  That is, given
8223 /// that one of them is a vector, do they have equal storage sizes,
8224 /// where the storage size is the number of elements times the element
8225 /// size?
8226 ///
8227 /// This will also return false if either of the types is neither a
8228 /// vector nor a real type.
8229 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8230   assert(destTy->isVectorType() || srcTy->isVectorType());
8231 
8232   // Disallow lax conversions between scalars and ExtVectors (these
8233   // conversions are allowed for other vector types because common headers
8234   // depend on them).  Most scalar OP ExtVector cases are handled by the
8235   // splat path anyway, which does what we want (convert, not bitcast).
8236   // What this rules out for ExtVectors is crazy things like char4*float.
8237   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8238   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8239 
8240   return areVectorTypesSameSize(srcTy, destTy);
8241 }
8242 
8243 /// Is this a legal conversion between two types, one of which is
8244 /// known to be a vector type?
8245 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8246   assert(destTy->isVectorType() || srcTy->isVectorType());
8247 
8248   switch (Context.getLangOpts().getLaxVectorConversions()) {
8249   case LangOptions::LaxVectorConversionKind::None:
8250     return false;
8251 
8252   case LangOptions::LaxVectorConversionKind::Integer:
8253     if (!srcTy->isIntegralOrEnumerationType()) {
8254       auto *Vec = srcTy->getAs<VectorType>();
8255       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8256         return false;
8257     }
8258     if (!destTy->isIntegralOrEnumerationType()) {
8259       auto *Vec = destTy->getAs<VectorType>();
8260       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8261         return false;
8262     }
8263     // OK, integer (vector) -> integer (vector) bitcast.
8264     break;
8265 
8266     case LangOptions::LaxVectorConversionKind::All:
8267     break;
8268   }
8269 
8270   return areLaxCompatibleVectorTypes(srcTy, destTy);
8271 }
8272 
8273 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8274                            CastKind &Kind) {
8275   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8276     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8277       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8278              << DestTy << SrcTy << R;
8279     }
8280   } else if (SrcTy->isMatrixType()) {
8281     return Diag(R.getBegin(),
8282                 diag::err_invalid_conversion_between_matrix_and_type)
8283            << SrcTy << DestTy << R;
8284   } else if (DestTy->isMatrixType()) {
8285     return Diag(R.getBegin(),
8286                 diag::err_invalid_conversion_between_matrix_and_type)
8287            << DestTy << SrcTy << R;
8288   }
8289 
8290   Kind = CK_MatrixCast;
8291   return false;
8292 }
8293 
8294 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8295                            CastKind &Kind) {
8296   assert(VectorTy->isVectorType() && "Not a vector type!");
8297 
8298   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8299     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8300       return Diag(R.getBegin(),
8301                   Ty->isVectorType() ?
8302                   diag::err_invalid_conversion_between_vectors :
8303                   diag::err_invalid_conversion_between_vector_and_integer)
8304         << VectorTy << Ty << R;
8305   } else
8306     return Diag(R.getBegin(),
8307                 diag::err_invalid_conversion_between_vector_and_scalar)
8308       << VectorTy << Ty << R;
8309 
8310   Kind = CK_BitCast;
8311   return false;
8312 }
8313 
8314 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8315   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8316 
8317   if (DestElemTy == SplattedExpr->getType())
8318     return SplattedExpr;
8319 
8320   assert(DestElemTy->isFloatingType() ||
8321          DestElemTy->isIntegralOrEnumerationType());
8322 
8323   CastKind CK;
8324   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8325     // OpenCL requires that we convert `true` boolean expressions to -1, but
8326     // only when splatting vectors.
8327     if (DestElemTy->isFloatingType()) {
8328       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8329       // in two steps: boolean to signed integral, then to floating.
8330       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8331                                                  CK_BooleanToSignedIntegral);
8332       SplattedExpr = CastExprRes.get();
8333       CK = CK_IntegralToFloating;
8334     } else {
8335       CK = CK_BooleanToSignedIntegral;
8336     }
8337   } else {
8338     ExprResult CastExprRes = SplattedExpr;
8339     CK = PrepareScalarCast(CastExprRes, DestElemTy);
8340     if (CastExprRes.isInvalid())
8341       return ExprError();
8342     SplattedExpr = CastExprRes.get();
8343   }
8344   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8345 }
8346 
8347 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8348                                     Expr *CastExpr, CastKind &Kind) {
8349   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8350 
8351   QualType SrcTy = CastExpr->getType();
8352 
8353   // If SrcTy is a VectorType, the total size must match to explicitly cast to
8354   // an ExtVectorType.
8355   // In OpenCL, casts between vectors of different types are not allowed.
8356   // (See OpenCL 6.2).
8357   if (SrcTy->isVectorType()) {
8358     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8359         (getLangOpts().OpenCL &&
8360          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8361       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8362         << DestTy << SrcTy << R;
8363       return ExprError();
8364     }
8365     Kind = CK_BitCast;
8366     return CastExpr;
8367   }
8368 
8369   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
8370   // conversion will take place first from scalar to elt type, and then
8371   // splat from elt type to vector.
8372   if (SrcTy->isPointerType())
8373     return Diag(R.getBegin(),
8374                 diag::err_invalid_conversion_between_vector_and_scalar)
8375       << DestTy << SrcTy << R;
8376 
8377   Kind = CK_VectorSplat;
8378   return prepareVectorSplat(DestTy, CastExpr);
8379 }
8380 
8381 ExprResult
8382 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8383                     Declarator &D, ParsedType &Ty,
8384                     SourceLocation RParenLoc, Expr *CastExpr) {
8385   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8386          "ActOnCastExpr(): missing type or expr");
8387 
8388   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8389   if (D.isInvalidType())
8390     return ExprError();
8391 
8392   if (getLangOpts().CPlusPlus) {
8393     // Check that there are no default arguments (C++ only).
8394     CheckExtraCXXDefaultArguments(D);
8395   } else {
8396     // Make sure any TypoExprs have been dealt with.
8397     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8398     if (!Res.isUsable())
8399       return ExprError();
8400     CastExpr = Res.get();
8401   }
8402 
8403   checkUnusedDeclAttributes(D);
8404 
8405   QualType castType = castTInfo->getType();
8406   Ty = CreateParsedType(castType, castTInfo);
8407 
8408   bool isVectorLiteral = false;
8409 
8410   // Check for an altivec or OpenCL literal,
8411   // i.e. all the elements are integer constants.
8412   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8413   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8414   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8415        && castType->isVectorType() && (PE || PLE)) {
8416     if (PLE && PLE->getNumExprs() == 0) {
8417       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8418       return ExprError();
8419     }
8420     if (PE || PLE->getNumExprs() == 1) {
8421       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8422       if (!E->isTypeDependent() && !E->getType()->isVectorType())
8423         isVectorLiteral = true;
8424     }
8425     else
8426       isVectorLiteral = true;
8427   }
8428 
8429   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8430   // then handle it as such.
8431   if (isVectorLiteral)
8432     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8433 
8434   // If the Expr being casted is a ParenListExpr, handle it specially.
8435   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8436   // sequence of BinOp comma operators.
8437   if (isa<ParenListExpr>(CastExpr)) {
8438     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8439     if (Result.isInvalid()) return ExprError();
8440     CastExpr = Result.get();
8441   }
8442 
8443   if (getLangOpts().CPlusPlus && !castType->isVoidType())
8444     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8445 
8446   CheckTollFreeBridgeCast(castType, CastExpr);
8447 
8448   CheckObjCBridgeRelatedCast(castType, CastExpr);
8449 
8450   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8451 
8452   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8453 }
8454 
8455 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8456                                     SourceLocation RParenLoc, Expr *E,
8457                                     TypeSourceInfo *TInfo) {
8458   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8459          "Expected paren or paren list expression");
8460 
8461   Expr **exprs;
8462   unsigned numExprs;
8463   Expr *subExpr;
8464   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8465   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8466     LiteralLParenLoc = PE->getLParenLoc();
8467     LiteralRParenLoc = PE->getRParenLoc();
8468     exprs = PE->getExprs();
8469     numExprs = PE->getNumExprs();
8470   } else { // isa<ParenExpr> by assertion at function entrance
8471     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8472     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8473     subExpr = cast<ParenExpr>(E)->getSubExpr();
8474     exprs = &subExpr;
8475     numExprs = 1;
8476   }
8477 
8478   QualType Ty = TInfo->getType();
8479   assert(Ty->isVectorType() && "Expected vector type");
8480 
8481   SmallVector<Expr *, 8> initExprs;
8482   const VectorType *VTy = Ty->castAs<VectorType>();
8483   unsigned numElems = VTy->getNumElements();
8484 
8485   // '(...)' form of vector initialization in AltiVec: the number of
8486   // initializers must be one or must match the size of the vector.
8487   // If a single value is specified in the initializer then it will be
8488   // replicated to all the components of the vector
8489   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8490                                  VTy->getElementType()))
8491     return ExprError();
8492   if (ShouldSplatAltivecScalarInCast(VTy)) {
8493     // The number of initializers must be one or must match the size of the
8494     // vector. If a single value is specified in the initializer then it will
8495     // be replicated to all the components of the vector
8496     if (numExprs == 1) {
8497       QualType ElemTy = VTy->getElementType();
8498       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8499       if (Literal.isInvalid())
8500         return ExprError();
8501       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8502                                   PrepareScalarCast(Literal, ElemTy));
8503       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8504     }
8505     else if (numExprs < numElems) {
8506       Diag(E->getExprLoc(),
8507            diag::err_incorrect_number_of_vector_initializers);
8508       return ExprError();
8509     }
8510     else
8511       initExprs.append(exprs, exprs + numExprs);
8512   }
8513   else {
8514     // For OpenCL, when the number of initializers is a single value,
8515     // it will be replicated to all components of the vector.
8516     if (getLangOpts().OpenCL &&
8517         VTy->getVectorKind() == VectorType::GenericVector &&
8518         numExprs == 1) {
8519         QualType ElemTy = VTy->getElementType();
8520         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8521         if (Literal.isInvalid())
8522           return ExprError();
8523         Literal = ImpCastExprToType(Literal.get(), ElemTy,
8524                                     PrepareScalarCast(Literal, ElemTy));
8525         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8526     }
8527 
8528     initExprs.append(exprs, exprs + numExprs);
8529   }
8530   // FIXME: This means that pretty-printing the final AST will produce curly
8531   // braces instead of the original commas.
8532   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8533                                                    initExprs, LiteralRParenLoc);
8534   initE->setType(Ty);
8535   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8536 }
8537 
8538 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8539 /// the ParenListExpr into a sequence of comma binary operators.
8540 ExprResult
8541 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8542   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8543   if (!E)
8544     return OrigExpr;
8545 
8546   ExprResult Result(E->getExpr(0));
8547 
8548   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8549     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8550                         E->getExpr(i));
8551 
8552   if (Result.isInvalid()) return ExprError();
8553 
8554   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8555 }
8556 
8557 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8558                                     SourceLocation R,
8559                                     MultiExprArg Val) {
8560   return ParenListExpr::Create(Context, L, Val, R);
8561 }
8562 
8563 /// Emit a specialized diagnostic when one expression is a null pointer
8564 /// constant and the other is not a pointer.  Returns true if a diagnostic is
8565 /// emitted.
8566 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8567                                       SourceLocation QuestionLoc) {
8568   Expr *NullExpr = LHSExpr;
8569   Expr *NonPointerExpr = RHSExpr;
8570   Expr::NullPointerConstantKind NullKind =
8571       NullExpr->isNullPointerConstant(Context,
8572                                       Expr::NPC_ValueDependentIsNotNull);
8573 
8574   if (NullKind == Expr::NPCK_NotNull) {
8575     NullExpr = RHSExpr;
8576     NonPointerExpr = LHSExpr;
8577     NullKind =
8578         NullExpr->isNullPointerConstant(Context,
8579                                         Expr::NPC_ValueDependentIsNotNull);
8580   }
8581 
8582   if (NullKind == Expr::NPCK_NotNull)
8583     return false;
8584 
8585   if (NullKind == Expr::NPCK_ZeroExpression)
8586     return false;
8587 
8588   if (NullKind == Expr::NPCK_ZeroLiteral) {
8589     // In this case, check to make sure that we got here from a "NULL"
8590     // string in the source code.
8591     NullExpr = NullExpr->IgnoreParenImpCasts();
8592     SourceLocation loc = NullExpr->getExprLoc();
8593     if (!findMacroSpelling(loc, "NULL"))
8594       return false;
8595   }
8596 
8597   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8598   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8599       << NonPointerExpr->getType() << DiagType
8600       << NonPointerExpr->getSourceRange();
8601   return true;
8602 }
8603 
8604 /// Return false if the condition expression is valid, true otherwise.
8605 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8606   QualType CondTy = Cond->getType();
8607 
8608   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8609   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8610     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8611       << CondTy << Cond->getSourceRange();
8612     return true;
8613   }
8614 
8615   // C99 6.5.15p2
8616   if (CondTy->isScalarType()) return false;
8617 
8618   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8619     << CondTy << Cond->getSourceRange();
8620   return true;
8621 }
8622 
8623 /// Return false if the NullExpr can be promoted to PointerTy,
8624 /// true otherwise.
8625 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8626                                         QualType PointerTy) {
8627   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8628       !NullExpr.get()->isNullPointerConstant(S.Context,
8629                                             Expr::NPC_ValueDependentIsNull))
8630     return true;
8631 
8632   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8633   return false;
8634 }
8635 
8636 /// Checks compatibility between two pointers and return the resulting
8637 /// type.
8638 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8639                                                      ExprResult &RHS,
8640                                                      SourceLocation Loc) {
8641   QualType LHSTy = LHS.get()->getType();
8642   QualType RHSTy = RHS.get()->getType();
8643 
8644   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8645     // Two identical pointers types are always compatible.
8646     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8647   }
8648 
8649   QualType lhptee, rhptee;
8650 
8651   // Get the pointee types.
8652   bool IsBlockPointer = false;
8653   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8654     lhptee = LHSBTy->getPointeeType();
8655     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8656     IsBlockPointer = true;
8657   } else {
8658     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8659     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8660   }
8661 
8662   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8663   // differently qualified versions of compatible types, the result type is
8664   // a pointer to an appropriately qualified version of the composite
8665   // type.
8666 
8667   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8668   // clause doesn't make sense for our extensions. E.g. address space 2 should
8669   // be incompatible with address space 3: they may live on different devices or
8670   // anything.
8671   Qualifiers lhQual = lhptee.getQualifiers();
8672   Qualifiers rhQual = rhptee.getQualifiers();
8673 
8674   LangAS ResultAddrSpace = LangAS::Default;
8675   LangAS LAddrSpace = lhQual.getAddressSpace();
8676   LangAS RAddrSpace = rhQual.getAddressSpace();
8677 
8678   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8679   // spaces is disallowed.
8680   if (lhQual.isAddressSpaceSupersetOf(rhQual))
8681     ResultAddrSpace = LAddrSpace;
8682   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8683     ResultAddrSpace = RAddrSpace;
8684   else {
8685     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8686         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8687         << RHS.get()->getSourceRange();
8688     return QualType();
8689   }
8690 
8691   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8692   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8693   lhQual.removeCVRQualifiers();
8694   rhQual.removeCVRQualifiers();
8695 
8696   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8697   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8698   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8699   // qual types are compatible iff
8700   //  * corresponded types are compatible
8701   //  * CVR qualifiers are equal
8702   //  * address spaces are equal
8703   // Thus for conditional operator we merge CVR and address space unqualified
8704   // pointees and if there is a composite type we return a pointer to it with
8705   // merged qualifiers.
8706   LHSCastKind =
8707       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8708   RHSCastKind =
8709       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8710   lhQual.removeAddressSpace();
8711   rhQual.removeAddressSpace();
8712 
8713   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8714   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8715 
8716   QualType CompositeTy = S.Context.mergeTypes(
8717       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8718       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8719 
8720   if (CompositeTy.isNull()) {
8721     // In this situation, we assume void* type. No especially good
8722     // reason, but this is what gcc does, and we do have to pick
8723     // to get a consistent AST.
8724     QualType incompatTy;
8725     incompatTy = S.Context.getPointerType(
8726         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8727     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8728     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8729 
8730     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8731     // for casts between types with incompatible address space qualifiers.
8732     // For the following code the compiler produces casts between global and
8733     // local address spaces of the corresponded innermost pointees:
8734     // local int *global *a;
8735     // global int *global *b;
8736     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8737     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8738         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8739         << RHS.get()->getSourceRange();
8740 
8741     return incompatTy;
8742   }
8743 
8744   // The pointer types are compatible.
8745   // In case of OpenCL ResultTy should have the address space qualifier
8746   // which is a superset of address spaces of both the 2nd and the 3rd
8747   // operands of the conditional operator.
8748   QualType ResultTy = [&, ResultAddrSpace]() {
8749     if (S.getLangOpts().OpenCL) {
8750       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8751       CompositeQuals.setAddressSpace(ResultAddrSpace);
8752       return S.Context
8753           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8754           .withCVRQualifiers(MergedCVRQual);
8755     }
8756     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8757   }();
8758   if (IsBlockPointer)
8759     ResultTy = S.Context.getBlockPointerType(ResultTy);
8760   else
8761     ResultTy = S.Context.getPointerType(ResultTy);
8762 
8763   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8764   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8765   return ResultTy;
8766 }
8767 
8768 /// Return the resulting type when the operands are both block pointers.
8769 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8770                                                           ExprResult &LHS,
8771                                                           ExprResult &RHS,
8772                                                           SourceLocation Loc) {
8773   QualType LHSTy = LHS.get()->getType();
8774   QualType RHSTy = RHS.get()->getType();
8775 
8776   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8777     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8778       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8779       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8780       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8781       return destType;
8782     }
8783     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8784       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8785       << RHS.get()->getSourceRange();
8786     return QualType();
8787   }
8788 
8789   // We have 2 block pointer types.
8790   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8791 }
8792 
8793 /// Return the resulting type when the operands are both pointers.
8794 static QualType
8795 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8796                                             ExprResult &RHS,
8797                                             SourceLocation Loc) {
8798   // get the pointer types
8799   QualType LHSTy = LHS.get()->getType();
8800   QualType RHSTy = RHS.get()->getType();
8801 
8802   // get the "pointed to" types
8803   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8804   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8805 
8806   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8807   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8808     // Figure out necessary qualifiers (C99 6.5.15p6)
8809     QualType destPointee
8810       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8811     QualType destType = S.Context.getPointerType(destPointee);
8812     // Add qualifiers if necessary.
8813     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8814     // Promote to void*.
8815     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8816     return destType;
8817   }
8818   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8819     QualType destPointee
8820       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8821     QualType destType = S.Context.getPointerType(destPointee);
8822     // Add qualifiers if necessary.
8823     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8824     // Promote to void*.
8825     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8826     return destType;
8827   }
8828 
8829   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8830 }
8831 
8832 /// Return false if the first expression is not an integer and the second
8833 /// expression is not a pointer, true otherwise.
8834 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8835                                         Expr* PointerExpr, SourceLocation Loc,
8836                                         bool IsIntFirstExpr) {
8837   if (!PointerExpr->getType()->isPointerType() ||
8838       !Int.get()->getType()->isIntegerType())
8839     return false;
8840 
8841   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8842   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8843 
8844   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8845     << Expr1->getType() << Expr2->getType()
8846     << Expr1->getSourceRange() << Expr2->getSourceRange();
8847   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8848                             CK_IntegralToPointer);
8849   return true;
8850 }
8851 
8852 /// Simple conversion between integer and floating point types.
8853 ///
8854 /// Used when handling the OpenCL conditional operator where the
8855 /// condition is a vector while the other operands are scalar.
8856 ///
8857 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8858 /// types are either integer or floating type. Between the two
8859 /// operands, the type with the higher rank is defined as the "result
8860 /// type". The other operand needs to be promoted to the same type. No
8861 /// other type promotion is allowed. We cannot use
8862 /// UsualArithmeticConversions() for this purpose, since it always
8863 /// promotes promotable types.
8864 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8865                                             ExprResult &RHS,
8866                                             SourceLocation QuestionLoc) {
8867   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8868   if (LHS.isInvalid())
8869     return QualType();
8870   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8871   if (RHS.isInvalid())
8872     return QualType();
8873 
8874   // For conversion purposes, we ignore any qualifiers.
8875   // For example, "const float" and "float" are equivalent.
8876   QualType LHSType =
8877     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8878   QualType RHSType =
8879     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8880 
8881   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8882     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8883       << LHSType << LHS.get()->getSourceRange();
8884     return QualType();
8885   }
8886 
8887   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8888     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8889       << RHSType << RHS.get()->getSourceRange();
8890     return QualType();
8891   }
8892 
8893   // If both types are identical, no conversion is needed.
8894   if (LHSType == RHSType)
8895     return LHSType;
8896 
8897   // Now handle "real" floating types (i.e. float, double, long double).
8898   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8899     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8900                                  /*IsCompAssign = */ false);
8901 
8902   // Finally, we have two differing integer types.
8903   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8904   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8905 }
8906 
8907 /// Convert scalar operands to a vector that matches the
8908 ///        condition in length.
8909 ///
8910 /// Used when handling the OpenCL conditional operator where the
8911 /// condition is a vector while the other operands are scalar.
8912 ///
8913 /// We first compute the "result type" for the scalar operands
8914 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8915 /// into a vector of that type where the length matches the condition
8916 /// vector type. s6.11.6 requires that the element types of the result
8917 /// and the condition must have the same number of bits.
8918 static QualType
8919 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8920                               QualType CondTy, SourceLocation QuestionLoc) {
8921   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8922   if (ResTy.isNull()) return QualType();
8923 
8924   const VectorType *CV = CondTy->getAs<VectorType>();
8925   assert(CV);
8926 
8927   // Determine the vector result type
8928   unsigned NumElements = CV->getNumElements();
8929   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8930 
8931   // Ensure that all types have the same number of bits
8932   if (S.Context.getTypeSize(CV->getElementType())
8933       != S.Context.getTypeSize(ResTy)) {
8934     // Since VectorTy is created internally, it does not pretty print
8935     // with an OpenCL name. Instead, we just print a description.
8936     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8937     SmallString<64> Str;
8938     llvm::raw_svector_ostream OS(Str);
8939     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8940     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8941       << CondTy << OS.str();
8942     return QualType();
8943   }
8944 
8945   // Convert operands to the vector result type
8946   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8947   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8948 
8949   return VectorTy;
8950 }
8951 
8952 /// Return false if this is a valid OpenCL condition vector
8953 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8954                                        SourceLocation QuestionLoc) {
8955   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8956   // integral type.
8957   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8958   assert(CondTy);
8959   QualType EleTy = CondTy->getElementType();
8960   if (EleTy->isIntegerType()) return false;
8961 
8962   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8963     << Cond->getType() << Cond->getSourceRange();
8964   return true;
8965 }
8966 
8967 /// Return false if the vector condition type and the vector
8968 ///        result type are compatible.
8969 ///
8970 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8971 /// number of elements, and their element types have the same number
8972 /// of bits.
8973 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8974                               SourceLocation QuestionLoc) {
8975   const VectorType *CV = CondTy->getAs<VectorType>();
8976   const VectorType *RV = VecResTy->getAs<VectorType>();
8977   assert(CV && RV);
8978 
8979   if (CV->getNumElements() != RV->getNumElements()) {
8980     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8981       << CondTy << VecResTy;
8982     return true;
8983   }
8984 
8985   QualType CVE = CV->getElementType();
8986   QualType RVE = RV->getElementType();
8987 
8988   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8989     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8990       << CondTy << VecResTy;
8991     return true;
8992   }
8993 
8994   return false;
8995 }
8996 
8997 /// Return the resulting type for the conditional operator in
8998 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8999 ///        s6.3.i) when the condition is a vector type.
9000 static QualType
9001 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9002                              ExprResult &LHS, ExprResult &RHS,
9003                              SourceLocation QuestionLoc) {
9004   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9005   if (Cond.isInvalid())
9006     return QualType();
9007   QualType CondTy = Cond.get()->getType();
9008 
9009   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9010     return QualType();
9011 
9012   // If either operand is a vector then find the vector type of the
9013   // result as specified in OpenCL v1.1 s6.3.i.
9014   if (LHS.get()->getType()->isVectorType() ||
9015       RHS.get()->getType()->isVectorType()) {
9016     bool IsBoolVecLang =
9017         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9018     QualType VecResTy =
9019         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9020                               /*isCompAssign*/ false,
9021                               /*AllowBothBool*/ true,
9022                               /*AllowBoolConversions*/ false,
9023                               /*AllowBooleanOperation*/ IsBoolVecLang,
9024                               /*ReportInvalid*/ true);
9025     if (VecResTy.isNull())
9026       return QualType();
9027     // The result type must match the condition type as specified in
9028     // OpenCL v1.1 s6.11.6.
9029     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9030       return QualType();
9031     return VecResTy;
9032   }
9033 
9034   // Both operands are scalar.
9035   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9036 }
9037 
9038 /// Return true if the Expr is block type
9039 static bool checkBlockType(Sema &S, const Expr *E) {
9040   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9041     QualType Ty = CE->getCallee()->getType();
9042     if (Ty->isBlockPointerType()) {
9043       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9044       return true;
9045     }
9046   }
9047   return false;
9048 }
9049 
9050 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9051 /// In that case, LHS = cond.
9052 /// C99 6.5.15
9053 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9054                                         ExprResult &RHS, ExprValueKind &VK,
9055                                         ExprObjectKind &OK,
9056                                         SourceLocation QuestionLoc) {
9057 
9058   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9059   if (!LHSResult.isUsable()) return QualType();
9060   LHS = LHSResult;
9061 
9062   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9063   if (!RHSResult.isUsable()) return QualType();
9064   RHS = RHSResult;
9065 
9066   // C++ is sufficiently different to merit its own checker.
9067   if (getLangOpts().CPlusPlus)
9068     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9069 
9070   VK = VK_PRValue;
9071   OK = OK_Ordinary;
9072 
9073   if (Context.isDependenceAllowed() &&
9074       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9075        RHS.get()->isTypeDependent())) {
9076     assert(!getLangOpts().CPlusPlus);
9077     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9078             RHS.get()->containsErrors()) &&
9079            "should only occur in error-recovery path.");
9080     return Context.DependentTy;
9081   }
9082 
9083   // The OpenCL operator with a vector condition is sufficiently
9084   // different to merit its own checker.
9085   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9086       Cond.get()->getType()->isExtVectorType())
9087     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9088 
9089   // First, check the condition.
9090   Cond = UsualUnaryConversions(Cond.get());
9091   if (Cond.isInvalid())
9092     return QualType();
9093   if (checkCondition(*this, Cond.get(), QuestionLoc))
9094     return QualType();
9095 
9096   // Now check the two expressions.
9097   if (LHS.get()->getType()->isVectorType() ||
9098       RHS.get()->getType()->isVectorType())
9099     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9100                                /*AllowBothBool*/ true,
9101                                /*AllowBoolConversions*/ false,
9102                                /*AllowBooleanOperation*/ false,
9103                                /*ReportInvalid*/ true);
9104 
9105   QualType ResTy =
9106       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9107   if (LHS.isInvalid() || RHS.isInvalid())
9108     return QualType();
9109 
9110   // WebAssembly tables are not allowed as conditional LHS or RHS.
9111   QualType LHSTy = LHS.get()->getType();
9112   QualType RHSTy = RHS.get()->getType();
9113   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9114     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9115         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9116     return QualType();
9117   }
9118 
9119   // Diagnose attempts to convert between __ibm128, __float128 and long double
9120   // where such conversions currently can't be handled.
9121   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9122     Diag(QuestionLoc,
9123          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9124       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9125     return QualType();
9126   }
9127 
9128   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9129   // selection operator (?:).
9130   if (getLangOpts().OpenCL &&
9131       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9132     return QualType();
9133   }
9134 
9135   // If both operands have arithmetic type, do the usual arithmetic conversions
9136   // to find a common type: C99 6.5.15p3,5.
9137   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9138     // Disallow invalid arithmetic conversions, such as those between bit-
9139     // precise integers types of different sizes, or between a bit-precise
9140     // integer and another type.
9141     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9142       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9143           << LHSTy << RHSTy << LHS.get()->getSourceRange()
9144           << RHS.get()->getSourceRange();
9145       return QualType();
9146     }
9147 
9148     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9149     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9150 
9151     return ResTy;
9152   }
9153 
9154   // And if they're both bfloat (which isn't arithmetic), that's fine too.
9155   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
9156     return Context.getCommonSugaredType(LHSTy, RHSTy);
9157   }
9158 
9159   // If both operands are the same structure or union type, the result is that
9160   // type.
9161   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
9162     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9163       if (LHSRT->getDecl() == RHSRT->getDecl())
9164         // "If both the operands have structure or union type, the result has
9165         // that type."  This implies that CV qualifiers are dropped.
9166         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9167                                             RHSTy.getUnqualifiedType());
9168     // FIXME: Type of conditional expression must be complete in C mode.
9169   }
9170 
9171   // C99 6.5.15p5: "If both operands have void type, the result has void type."
9172   // The following || allows only one side to be void (a GCC-ism).
9173   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9174     QualType ResTy;
9175     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9176       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9177     } else if (RHSTy->isVoidType()) {
9178       ResTy = RHSTy;
9179       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9180           << RHS.get()->getSourceRange();
9181     } else {
9182       ResTy = LHSTy;
9183       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9184           << LHS.get()->getSourceRange();
9185     }
9186     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9187     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9188     return ResTy;
9189   }
9190 
9191   // C2x 6.5.15p7:
9192   //   ... if both the second and third operands have nullptr_t type, the
9193   //   result also has that type.
9194   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9195     return ResTy;
9196 
9197   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9198   // the type of the other operand."
9199   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9200   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9201 
9202   // All objective-c pointer type analysis is done here.
9203   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9204                                                         QuestionLoc);
9205   if (LHS.isInvalid() || RHS.isInvalid())
9206     return QualType();
9207   if (!compositeType.isNull())
9208     return compositeType;
9209 
9210 
9211   // Handle block pointer types.
9212   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9213     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9214                                                      QuestionLoc);
9215 
9216   // Check constraints for C object pointers types (C99 6.5.15p3,6).
9217   if (LHSTy->isPointerType() && RHSTy->isPointerType())
9218     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9219                                                        QuestionLoc);
9220 
9221   // GCC compatibility: soften pointer/integer mismatch.  Note that
9222   // null pointers have been filtered out by this point.
9223   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9224       /*IsIntFirstExpr=*/true))
9225     return RHSTy;
9226   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9227       /*IsIntFirstExpr=*/false))
9228     return LHSTy;
9229 
9230   // Allow ?: operations in which both operands have the same
9231   // built-in sizeless type.
9232   if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
9233     return Context.getCommonSugaredType(LHSTy, RHSTy);
9234 
9235   // Emit a better diagnostic if one of the expressions is a null pointer
9236   // constant and the other is not a pointer type. In this case, the user most
9237   // likely forgot to take the address of the other expression.
9238   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9239     return QualType();
9240 
9241   // Otherwise, the operands are not compatible.
9242   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9243     << LHSTy << RHSTy << LHS.get()->getSourceRange()
9244     << RHS.get()->getSourceRange();
9245   return QualType();
9246 }
9247 
9248 /// FindCompositeObjCPointerType - Helper method to find composite type of
9249 /// two objective-c pointer types of the two input expressions.
9250 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9251                                             SourceLocation QuestionLoc) {
9252   QualType LHSTy = LHS.get()->getType();
9253   QualType RHSTy = RHS.get()->getType();
9254 
9255   // Handle things like Class and struct objc_class*.  Here we case the result
9256   // to the pseudo-builtin, because that will be implicitly cast back to the
9257   // redefinition type if an attempt is made to access its fields.
9258   if (LHSTy->isObjCClassType() &&
9259       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9260     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9261     return LHSTy;
9262   }
9263   if (RHSTy->isObjCClassType() &&
9264       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9265     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9266     return RHSTy;
9267   }
9268   // And the same for struct objc_object* / id
9269   if (LHSTy->isObjCIdType() &&
9270       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9271     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9272     return LHSTy;
9273   }
9274   if (RHSTy->isObjCIdType() &&
9275       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9276     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9277     return RHSTy;
9278   }
9279   // And the same for struct objc_selector* / SEL
9280   if (Context.isObjCSelType(LHSTy) &&
9281       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9282     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9283     return LHSTy;
9284   }
9285   if (Context.isObjCSelType(RHSTy) &&
9286       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9287     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9288     return RHSTy;
9289   }
9290   // Check constraints for Objective-C object pointers types.
9291   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9292 
9293     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9294       // Two identical object pointer types are always compatible.
9295       return LHSTy;
9296     }
9297     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9298     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9299     QualType compositeType = LHSTy;
9300 
9301     // If both operands are interfaces and either operand can be
9302     // assigned to the other, use that type as the composite
9303     // type. This allows
9304     //   xxx ? (A*) a : (B*) b
9305     // where B is a subclass of A.
9306     //
9307     // Additionally, as for assignment, if either type is 'id'
9308     // allow silent coercion. Finally, if the types are
9309     // incompatible then make sure to use 'id' as the composite
9310     // type so the result is acceptable for sending messages to.
9311 
9312     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9313     // It could return the composite type.
9314     if (!(compositeType =
9315           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9316       // Nothing more to do.
9317     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9318       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9319     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9320       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9321     } else if ((LHSOPT->isObjCQualifiedIdType() ||
9322                 RHSOPT->isObjCQualifiedIdType()) &&
9323                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9324                                                          true)) {
9325       // Need to handle "id<xx>" explicitly.
9326       // GCC allows qualified id and any Objective-C type to devolve to
9327       // id. Currently localizing to here until clear this should be
9328       // part of ObjCQualifiedIdTypesAreCompatible.
9329       compositeType = Context.getObjCIdType();
9330     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9331       compositeType = Context.getObjCIdType();
9332     } else {
9333       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9334       << LHSTy << RHSTy
9335       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9336       QualType incompatTy = Context.getObjCIdType();
9337       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9338       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9339       return incompatTy;
9340     }
9341     // The object pointer types are compatible.
9342     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9343     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9344     return compositeType;
9345   }
9346   // Check Objective-C object pointer types and 'void *'
9347   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9348     if (getLangOpts().ObjCAutoRefCount) {
9349       // ARC forbids the implicit conversion of object pointers to 'void *',
9350       // so these types are not compatible.
9351       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9352           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9353       LHS = RHS = true;
9354       return QualType();
9355     }
9356     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9357     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9358     QualType destPointee
9359     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9360     QualType destType = Context.getPointerType(destPointee);
9361     // Add qualifiers if necessary.
9362     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9363     // Promote to void*.
9364     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9365     return destType;
9366   }
9367   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9368     if (getLangOpts().ObjCAutoRefCount) {
9369       // ARC forbids the implicit conversion of object pointers to 'void *',
9370       // so these types are not compatible.
9371       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9372           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9373       LHS = RHS = true;
9374       return QualType();
9375     }
9376     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9377     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9378     QualType destPointee
9379     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9380     QualType destType = Context.getPointerType(destPointee);
9381     // Add qualifiers if necessary.
9382     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9383     // Promote to void*.
9384     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9385     return destType;
9386   }
9387   return QualType();
9388 }
9389 
9390 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9391 /// ParenRange in parentheses.
9392 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9393                                const PartialDiagnostic &Note,
9394                                SourceRange ParenRange) {
9395   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9396   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9397       EndLoc.isValid()) {
9398     Self.Diag(Loc, Note)
9399       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9400       << FixItHint::CreateInsertion(EndLoc, ")");
9401   } else {
9402     // We can't display the parentheses, so just show the bare note.
9403     Self.Diag(Loc, Note) << ParenRange;
9404   }
9405 }
9406 
9407 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9408   return BinaryOperator::isAdditiveOp(Opc) ||
9409          BinaryOperator::isMultiplicativeOp(Opc) ||
9410          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9411   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9412   // not any of the logical operators.  Bitwise-xor is commonly used as a
9413   // logical-xor because there is no logical-xor operator.  The logical
9414   // operators, including uses of xor, have a high false positive rate for
9415   // precedence warnings.
9416 }
9417 
9418 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9419 /// expression, either using a built-in or overloaded operator,
9420 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9421 /// expression.
9422 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
9423                                    Expr **RHSExprs) {
9424   // Don't strip parenthesis: we should not warn if E is in parenthesis.
9425   E = E->IgnoreImpCasts();
9426   E = E->IgnoreConversionOperatorSingleStep();
9427   E = E->IgnoreImpCasts();
9428   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9429     E = MTE->getSubExpr();
9430     E = E->IgnoreImpCasts();
9431   }
9432 
9433   // Built-in binary operator.
9434   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
9435     if (IsArithmeticOp(OP->getOpcode())) {
9436       *Opcode = OP->getOpcode();
9437       *RHSExprs = OP->getRHS();
9438       return true;
9439     }
9440   }
9441 
9442   // Overloaded operator.
9443   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9444     if (Call->getNumArgs() != 2)
9445       return false;
9446 
9447     // Make sure this is really a binary operator that is safe to pass into
9448     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9449     OverloadedOperatorKind OO = Call->getOperator();
9450     if (OO < OO_Plus || OO > OO_Arrow ||
9451         OO == OO_PlusPlus || OO == OO_MinusMinus)
9452       return false;
9453 
9454     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9455     if (IsArithmeticOp(OpKind)) {
9456       *Opcode = OpKind;
9457       *RHSExprs = Call->getArg(1);
9458       return true;
9459     }
9460   }
9461 
9462   return false;
9463 }
9464 
9465 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9466 /// or is a logical expression such as (x==y) which has int type, but is
9467 /// commonly interpreted as boolean.
9468 static bool ExprLooksBoolean(Expr *E) {
9469   E = E->IgnoreParenImpCasts();
9470 
9471   if (E->getType()->isBooleanType())
9472     return true;
9473   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9474     return OP->isComparisonOp() || OP->isLogicalOp();
9475   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9476     return OP->getOpcode() == UO_LNot;
9477   if (E->getType()->isPointerType())
9478     return true;
9479   // FIXME: What about overloaded operator calls returning "unspecified boolean
9480   // type"s (commonly pointer-to-members)?
9481 
9482   return false;
9483 }
9484 
9485 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9486 /// and binary operator are mixed in a way that suggests the programmer assumed
9487 /// the conditional operator has higher precedence, for example:
9488 /// "int x = a + someBinaryCondition ? 1 : 2".
9489 static void DiagnoseConditionalPrecedence(Sema &Self,
9490                                           SourceLocation OpLoc,
9491                                           Expr *Condition,
9492                                           Expr *LHSExpr,
9493                                           Expr *RHSExpr) {
9494   BinaryOperatorKind CondOpcode;
9495   Expr *CondRHS;
9496 
9497   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9498     return;
9499   if (!ExprLooksBoolean(CondRHS))
9500     return;
9501 
9502   // The condition is an arithmetic binary expression, with a right-
9503   // hand side that looks boolean, so warn.
9504 
9505   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9506                         ? diag::warn_precedence_bitwise_conditional
9507                         : diag::warn_precedence_conditional;
9508 
9509   Self.Diag(OpLoc, DiagID)
9510       << Condition->getSourceRange()
9511       << BinaryOperator::getOpcodeStr(CondOpcode);
9512 
9513   SuggestParentheses(
9514       Self, OpLoc,
9515       Self.PDiag(diag::note_precedence_silence)
9516           << BinaryOperator::getOpcodeStr(CondOpcode),
9517       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9518 
9519   SuggestParentheses(Self, OpLoc,
9520                      Self.PDiag(diag::note_precedence_conditional_first),
9521                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9522 }
9523 
9524 /// Compute the nullability of a conditional expression.
9525 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9526                                               QualType LHSTy, QualType RHSTy,
9527                                               ASTContext &Ctx) {
9528   if (!ResTy->isAnyPointerType())
9529     return ResTy;
9530 
9531   auto GetNullability = [](QualType Ty) {
9532     std::optional<NullabilityKind> Kind = Ty->getNullability();
9533     if (Kind) {
9534       // For our purposes, treat _Nullable_result as _Nullable.
9535       if (*Kind == NullabilityKind::NullableResult)
9536         return NullabilityKind::Nullable;
9537       return *Kind;
9538     }
9539     return NullabilityKind::Unspecified;
9540   };
9541 
9542   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9543   NullabilityKind MergedKind;
9544 
9545   // Compute nullability of a binary conditional expression.
9546   if (IsBin) {
9547     if (LHSKind == NullabilityKind::NonNull)
9548       MergedKind = NullabilityKind::NonNull;
9549     else
9550       MergedKind = RHSKind;
9551   // Compute nullability of a normal conditional expression.
9552   } else {
9553     if (LHSKind == NullabilityKind::Nullable ||
9554         RHSKind == NullabilityKind::Nullable)
9555       MergedKind = NullabilityKind::Nullable;
9556     else if (LHSKind == NullabilityKind::NonNull)
9557       MergedKind = RHSKind;
9558     else if (RHSKind == NullabilityKind::NonNull)
9559       MergedKind = LHSKind;
9560     else
9561       MergedKind = NullabilityKind::Unspecified;
9562   }
9563 
9564   // Return if ResTy already has the correct nullability.
9565   if (GetNullability(ResTy) == MergedKind)
9566     return ResTy;
9567 
9568   // Strip all nullability from ResTy.
9569   while (ResTy->getNullability())
9570     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9571 
9572   // Create a new AttributedType with the new nullability kind.
9573   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9574   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9575 }
9576 
9577 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9578 /// in the case of a the GNU conditional expr extension.
9579 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9580                                     SourceLocation ColonLoc,
9581                                     Expr *CondExpr, Expr *LHSExpr,
9582                                     Expr *RHSExpr) {
9583   if (!Context.isDependenceAllowed()) {
9584     // C cannot handle TypoExpr nodes in the condition because it
9585     // doesn't handle dependent types properly, so make sure any TypoExprs have
9586     // been dealt with before checking the operands.
9587     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9588     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9589     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9590 
9591     if (!CondResult.isUsable())
9592       return ExprError();
9593 
9594     if (LHSExpr) {
9595       if (!LHSResult.isUsable())
9596         return ExprError();
9597     }
9598 
9599     if (!RHSResult.isUsable())
9600       return ExprError();
9601 
9602     CondExpr = CondResult.get();
9603     LHSExpr = LHSResult.get();
9604     RHSExpr = RHSResult.get();
9605   }
9606 
9607   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9608   // was the condition.
9609   OpaqueValueExpr *opaqueValue = nullptr;
9610   Expr *commonExpr = nullptr;
9611   if (!LHSExpr) {
9612     commonExpr = CondExpr;
9613     // Lower out placeholder types first.  This is important so that we don't
9614     // try to capture a placeholder. This happens in few cases in C++; such
9615     // as Objective-C++'s dictionary subscripting syntax.
9616     if (commonExpr->hasPlaceholderType()) {
9617       ExprResult result = CheckPlaceholderExpr(commonExpr);
9618       if (!result.isUsable()) return ExprError();
9619       commonExpr = result.get();
9620     }
9621     // We usually want to apply unary conversions *before* saving, except
9622     // in the special case of a C++ l-value conditional.
9623     if (!(getLangOpts().CPlusPlus
9624           && !commonExpr->isTypeDependent()
9625           && commonExpr->getValueKind() == RHSExpr->getValueKind()
9626           && commonExpr->isGLValue()
9627           && commonExpr->isOrdinaryOrBitFieldObject()
9628           && RHSExpr->isOrdinaryOrBitFieldObject()
9629           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9630       ExprResult commonRes = UsualUnaryConversions(commonExpr);
9631       if (commonRes.isInvalid())
9632         return ExprError();
9633       commonExpr = commonRes.get();
9634     }
9635 
9636     // If the common expression is a class or array prvalue, materialize it
9637     // so that we can safely refer to it multiple times.
9638     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9639                                     commonExpr->getType()->isArrayType())) {
9640       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9641       if (MatExpr.isInvalid())
9642         return ExprError();
9643       commonExpr = MatExpr.get();
9644     }
9645 
9646     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9647                                                 commonExpr->getType(),
9648                                                 commonExpr->getValueKind(),
9649                                                 commonExpr->getObjectKind(),
9650                                                 commonExpr);
9651     LHSExpr = CondExpr = opaqueValue;
9652   }
9653 
9654   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9655   ExprValueKind VK = VK_PRValue;
9656   ExprObjectKind OK = OK_Ordinary;
9657   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9658   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9659                                              VK, OK, QuestionLoc);
9660   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9661       RHS.isInvalid())
9662     return ExprError();
9663 
9664   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9665                                 RHS.get());
9666 
9667   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9668 
9669   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9670                                          Context);
9671 
9672   if (!commonExpr)
9673     return new (Context)
9674         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9675                             RHS.get(), result, VK, OK);
9676 
9677   return new (Context) BinaryConditionalOperator(
9678       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9679       ColonLoc, result, VK, OK);
9680 }
9681 
9682 // Check if we have a conversion between incompatible cmse function pointer
9683 // types, that is, a conversion between a function pointer with the
9684 // cmse_nonsecure_call attribute and one without.
9685 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9686                                           QualType ToType) {
9687   if (const auto *ToFn =
9688           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9689     if (const auto *FromFn =
9690             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9691       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9692       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9693 
9694       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9695     }
9696   }
9697   return false;
9698 }
9699 
9700 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9701 // being closely modeled after the C99 spec:-). The odd characteristic of this
9702 // routine is it effectively iqnores the qualifiers on the top level pointee.
9703 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9704 // FIXME: add a couple examples in this comment.
9705 static Sema::AssignConvertType
9706 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9707                                SourceLocation Loc) {
9708   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9709   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9710 
9711   // get the "pointed to" type (ignoring qualifiers at the top level)
9712   const Type *lhptee, *rhptee;
9713   Qualifiers lhq, rhq;
9714   std::tie(lhptee, lhq) =
9715       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9716   std::tie(rhptee, rhq) =
9717       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9718 
9719   Sema::AssignConvertType ConvTy = Sema::Compatible;
9720 
9721   // C99 6.5.16.1p1: This following citation is common to constraints
9722   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9723   // qualifiers of the type *pointed to* by the right;
9724 
9725   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9726   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9727       lhq.compatiblyIncludesObjCLifetime(rhq)) {
9728     // Ignore lifetime for further calculation.
9729     lhq.removeObjCLifetime();
9730     rhq.removeObjCLifetime();
9731   }
9732 
9733   if (!lhq.compatiblyIncludes(rhq)) {
9734     // Treat address-space mismatches as fatal.
9735     if (!lhq.isAddressSpaceSupersetOf(rhq))
9736       return Sema::IncompatiblePointerDiscardsQualifiers;
9737 
9738     // It's okay to add or remove GC or lifetime qualifiers when converting to
9739     // and from void*.
9740     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9741                         .compatiblyIncludes(
9742                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9743              && (lhptee->isVoidType() || rhptee->isVoidType()))
9744       ; // keep old
9745 
9746     // Treat lifetime mismatches as fatal.
9747     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9748       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9749 
9750     // For GCC/MS compatibility, other qualifier mismatches are treated
9751     // as still compatible in C.
9752     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9753   }
9754 
9755   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9756   // incomplete type and the other is a pointer to a qualified or unqualified
9757   // version of void...
9758   if (lhptee->isVoidType()) {
9759     if (rhptee->isIncompleteOrObjectType())
9760       return ConvTy;
9761 
9762     // As an extension, we allow cast to/from void* to function pointer.
9763     assert(rhptee->isFunctionType());
9764     return Sema::FunctionVoidPointer;
9765   }
9766 
9767   if (rhptee->isVoidType()) {
9768     if (lhptee->isIncompleteOrObjectType())
9769       return ConvTy;
9770 
9771     // As an extension, we allow cast to/from void* to function pointer.
9772     assert(lhptee->isFunctionType());
9773     return Sema::FunctionVoidPointer;
9774   }
9775 
9776   if (!S.Diags.isIgnored(
9777           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9778           Loc) &&
9779       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9780       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9781     return Sema::IncompatibleFunctionPointerStrict;
9782 
9783   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9784   // unqualified versions of compatible types, ...
9785   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9786   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9787     // Check if the pointee types are compatible ignoring the sign.
9788     // We explicitly check for char so that we catch "char" vs
9789     // "unsigned char" on systems where "char" is unsigned.
9790     if (lhptee->isCharType())
9791       ltrans = S.Context.UnsignedCharTy;
9792     else if (lhptee->hasSignedIntegerRepresentation())
9793       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9794 
9795     if (rhptee->isCharType())
9796       rtrans = S.Context.UnsignedCharTy;
9797     else if (rhptee->hasSignedIntegerRepresentation())
9798       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9799 
9800     if (ltrans == rtrans) {
9801       // Types are compatible ignoring the sign. Qualifier incompatibility
9802       // takes priority over sign incompatibility because the sign
9803       // warning can be disabled.
9804       if (ConvTy != Sema::Compatible)
9805         return ConvTy;
9806 
9807       return Sema::IncompatiblePointerSign;
9808     }
9809 
9810     // If we are a multi-level pointer, it's possible that our issue is simply
9811     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9812     // the eventual target type is the same and the pointers have the same
9813     // level of indirection, this must be the issue.
9814     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9815       do {
9816         std::tie(lhptee, lhq) =
9817           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9818         std::tie(rhptee, rhq) =
9819           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9820 
9821         // Inconsistent address spaces at this point is invalid, even if the
9822         // address spaces would be compatible.
9823         // FIXME: This doesn't catch address space mismatches for pointers of
9824         // different nesting levels, like:
9825         //   __local int *** a;
9826         //   int ** b = a;
9827         // It's not clear how to actually determine when such pointers are
9828         // invalidly incompatible.
9829         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9830           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9831 
9832       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9833 
9834       if (lhptee == rhptee)
9835         return Sema::IncompatibleNestedPointerQualifiers;
9836     }
9837 
9838     // General pointer incompatibility takes priority over qualifiers.
9839     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9840       return Sema::IncompatibleFunctionPointer;
9841     return Sema::IncompatiblePointer;
9842   }
9843   if (!S.getLangOpts().CPlusPlus &&
9844       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9845     return Sema::IncompatibleFunctionPointer;
9846   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9847     return Sema::IncompatibleFunctionPointer;
9848   return ConvTy;
9849 }
9850 
9851 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9852 /// block pointer types are compatible or whether a block and normal pointer
9853 /// are compatible. It is more restrict than comparing two function pointer
9854 // types.
9855 static Sema::AssignConvertType
9856 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9857                                     QualType RHSType) {
9858   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9859   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9860 
9861   QualType lhptee, rhptee;
9862 
9863   // get the "pointed to" type (ignoring qualifiers at the top level)
9864   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9865   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9866 
9867   // In C++, the types have to match exactly.
9868   if (S.getLangOpts().CPlusPlus)
9869     return Sema::IncompatibleBlockPointer;
9870 
9871   Sema::AssignConvertType ConvTy = Sema::Compatible;
9872 
9873   // For blocks we enforce that qualifiers are identical.
9874   Qualifiers LQuals = lhptee.getLocalQualifiers();
9875   Qualifiers RQuals = rhptee.getLocalQualifiers();
9876   if (S.getLangOpts().OpenCL) {
9877     LQuals.removeAddressSpace();
9878     RQuals.removeAddressSpace();
9879   }
9880   if (LQuals != RQuals)
9881     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9882 
9883   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9884   // assignment.
9885   // The current behavior is similar to C++ lambdas. A block might be
9886   // assigned to a variable iff its return type and parameters are compatible
9887   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9888   // an assignment. Presumably it should behave in way that a function pointer
9889   // assignment does in C, so for each parameter and return type:
9890   //  * CVR and address space of LHS should be a superset of CVR and address
9891   //  space of RHS.
9892   //  * unqualified types should be compatible.
9893   if (S.getLangOpts().OpenCL) {
9894     if (!S.Context.typesAreBlockPointerCompatible(
9895             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9896             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9897       return Sema::IncompatibleBlockPointer;
9898   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9899     return Sema::IncompatibleBlockPointer;
9900 
9901   return ConvTy;
9902 }
9903 
9904 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9905 /// for assignment compatibility.
9906 static Sema::AssignConvertType
9907 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9908                                    QualType RHSType) {
9909   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9910   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9911 
9912   if (LHSType->isObjCBuiltinType()) {
9913     // Class is not compatible with ObjC object pointers.
9914     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9915         !RHSType->isObjCQualifiedClassType())
9916       return Sema::IncompatiblePointer;
9917     return Sema::Compatible;
9918   }
9919   if (RHSType->isObjCBuiltinType()) {
9920     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9921         !LHSType->isObjCQualifiedClassType())
9922       return Sema::IncompatiblePointer;
9923     return Sema::Compatible;
9924   }
9925   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9926   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9927 
9928   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9929       // make an exception for id<P>
9930       !LHSType->isObjCQualifiedIdType())
9931     return Sema::CompatiblePointerDiscardsQualifiers;
9932 
9933   if (S.Context.typesAreCompatible(LHSType, RHSType))
9934     return Sema::Compatible;
9935   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9936     return Sema::IncompatibleObjCQualifiedId;
9937   return Sema::IncompatiblePointer;
9938 }
9939 
9940 Sema::AssignConvertType
9941 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9942                                  QualType LHSType, QualType RHSType) {
9943   // Fake up an opaque expression.  We don't actually care about what
9944   // cast operations are required, so if CheckAssignmentConstraints
9945   // adds casts to this they'll be wasted, but fortunately that doesn't
9946   // usually happen on valid code.
9947   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9948   ExprResult RHSPtr = &RHSExpr;
9949   CastKind K;
9950 
9951   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9952 }
9953 
9954 /// This helper function returns true if QT is a vector type that has element
9955 /// type ElementType.
9956 static bool isVector(QualType QT, QualType ElementType) {
9957   if (const VectorType *VT = QT->getAs<VectorType>())
9958     return VT->getElementType().getCanonicalType() == ElementType;
9959   return false;
9960 }
9961 
9962 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9963 /// has code to accommodate several GCC extensions when type checking
9964 /// pointers. Here are some objectionable examples that GCC considers warnings:
9965 ///
9966 ///  int a, *pint;
9967 ///  short *pshort;
9968 ///  struct foo *pfoo;
9969 ///
9970 ///  pint = pshort; // warning: assignment from incompatible pointer type
9971 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9972 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9973 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9974 ///
9975 /// As a result, the code for dealing with pointers is more complex than the
9976 /// C99 spec dictates.
9977 ///
9978 /// Sets 'Kind' for any result kind except Incompatible.
9979 Sema::AssignConvertType
9980 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9981                                  CastKind &Kind, bool ConvertRHS) {
9982   QualType RHSType = RHS.get()->getType();
9983   QualType OrigLHSType = LHSType;
9984 
9985   // Get canonical types.  We're not formatting these types, just comparing
9986   // them.
9987   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9988   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9989 
9990   // Common case: no conversion required.
9991   if (LHSType == RHSType) {
9992     Kind = CK_NoOp;
9993     return Compatible;
9994   }
9995 
9996   // If the LHS has an __auto_type, there are no additional type constraints
9997   // to be worried about.
9998   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9999     if (AT->isGNUAutoType()) {
10000       Kind = CK_NoOp;
10001       return Compatible;
10002     }
10003   }
10004 
10005   // If we have an atomic type, try a non-atomic assignment, then just add an
10006   // atomic qualification step.
10007   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10008     Sema::AssignConvertType result =
10009       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10010     if (result != Compatible)
10011       return result;
10012     if (Kind != CK_NoOp && ConvertRHS)
10013       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10014     Kind = CK_NonAtomicToAtomic;
10015     return Compatible;
10016   }
10017 
10018   // If the left-hand side is a reference type, then we are in a
10019   // (rare!) case where we've allowed the use of references in C,
10020   // e.g., as a parameter type in a built-in function. In this case,
10021   // just make sure that the type referenced is compatible with the
10022   // right-hand side type. The caller is responsible for adjusting
10023   // LHSType so that the resulting expression does not have reference
10024   // type.
10025   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10026     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10027       Kind = CK_LValueBitCast;
10028       return Compatible;
10029     }
10030     return Incompatible;
10031   }
10032 
10033   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10034   // to the same ExtVector type.
10035   if (LHSType->isExtVectorType()) {
10036     if (RHSType->isExtVectorType())
10037       return Incompatible;
10038     if (RHSType->isArithmeticType()) {
10039       // CK_VectorSplat does T -> vector T, so first cast to the element type.
10040       if (ConvertRHS)
10041         RHS = prepareVectorSplat(LHSType, RHS.get());
10042       Kind = CK_VectorSplat;
10043       return Compatible;
10044     }
10045   }
10046 
10047   // Conversions to or from vector type.
10048   if (LHSType->isVectorType() || RHSType->isVectorType()) {
10049     if (LHSType->isVectorType() && RHSType->isVectorType()) {
10050       // Allow assignments of an AltiVec vector type to an equivalent GCC
10051       // vector type and vice versa
10052       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10053         Kind = CK_BitCast;
10054         return Compatible;
10055       }
10056 
10057       // If we are allowing lax vector conversions, and LHS and RHS are both
10058       // vectors, the total size only needs to be the same. This is a bitcast;
10059       // no bits are changed but the result type is different.
10060       if (isLaxVectorConversion(RHSType, LHSType)) {
10061         // The default for lax vector conversions with Altivec vectors will
10062         // change, so if we are converting between vector types where
10063         // at least one is an Altivec vector, emit a warning.
10064         if (Context.getTargetInfo().getTriple().isPPC() &&
10065             anyAltivecTypes(RHSType, LHSType) &&
10066             !Context.areCompatibleVectorTypes(RHSType, LHSType))
10067           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10068               << RHSType << LHSType;
10069         Kind = CK_BitCast;
10070         return IncompatibleVectors;
10071       }
10072     }
10073 
10074     // When the RHS comes from another lax conversion (e.g. binops between
10075     // scalars and vectors) the result is canonicalized as a vector. When the
10076     // LHS is also a vector, the lax is allowed by the condition above. Handle
10077     // the case where LHS is a scalar.
10078     if (LHSType->isScalarType()) {
10079       const VectorType *VecType = RHSType->getAs<VectorType>();
10080       if (VecType && VecType->getNumElements() == 1 &&
10081           isLaxVectorConversion(RHSType, LHSType)) {
10082         if (Context.getTargetInfo().getTriple().isPPC() &&
10083             (VecType->getVectorKind() == VectorType::AltiVecVector ||
10084              VecType->getVectorKind() == VectorType::AltiVecBool ||
10085              VecType->getVectorKind() == VectorType::AltiVecPixel))
10086           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10087               << RHSType << LHSType;
10088         ExprResult *VecExpr = &RHS;
10089         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10090         Kind = CK_BitCast;
10091         return Compatible;
10092       }
10093     }
10094 
10095     // Allow assignments between fixed-length and sizeless SVE vectors.
10096     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10097         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10098       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10099           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10100         Kind = CK_BitCast;
10101         return Compatible;
10102       }
10103 
10104     // Allow assignments between fixed-length and sizeless RVV vectors.
10105     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10106         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10107       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10108           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10109         Kind = CK_BitCast;
10110         return Compatible;
10111       }
10112     }
10113 
10114     return Incompatible;
10115   }
10116 
10117   // Diagnose attempts to convert between __ibm128, __float128 and long double
10118   // where such conversions currently can't be handled.
10119   if (unsupportedTypeConversion(*this, LHSType, RHSType))
10120     return Incompatible;
10121 
10122   // Disallow assigning a _Complex to a real type in C++ mode since it simply
10123   // discards the imaginary part.
10124   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10125       !LHSType->getAs<ComplexType>())
10126     return Incompatible;
10127 
10128   // Arithmetic conversions.
10129   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10130       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10131     if (ConvertRHS)
10132       Kind = PrepareScalarCast(RHS, LHSType);
10133     return Compatible;
10134   }
10135 
10136   // Conversions to normal pointers.
10137   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10138     // U* -> T*
10139     if (isa<PointerType>(RHSType)) {
10140       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10141       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10142       if (AddrSpaceL != AddrSpaceR)
10143         Kind = CK_AddressSpaceConversion;
10144       else if (Context.hasCvrSimilarType(RHSType, LHSType))
10145         Kind = CK_NoOp;
10146       else
10147         Kind = CK_BitCast;
10148       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10149                                             RHS.get()->getBeginLoc());
10150     }
10151 
10152     // int -> T*
10153     if (RHSType->isIntegerType()) {
10154       Kind = CK_IntegralToPointer; // FIXME: null?
10155       return IntToPointer;
10156     }
10157 
10158     // C pointers are not compatible with ObjC object pointers,
10159     // with two exceptions:
10160     if (isa<ObjCObjectPointerType>(RHSType)) {
10161       //  - conversions to void*
10162       if (LHSPointer->getPointeeType()->isVoidType()) {
10163         Kind = CK_BitCast;
10164         return Compatible;
10165       }
10166 
10167       //  - conversions from 'Class' to the redefinition type
10168       if (RHSType->isObjCClassType() &&
10169           Context.hasSameType(LHSType,
10170                               Context.getObjCClassRedefinitionType())) {
10171         Kind = CK_BitCast;
10172         return Compatible;
10173       }
10174 
10175       Kind = CK_BitCast;
10176       return IncompatiblePointer;
10177     }
10178 
10179     // U^ -> void*
10180     if (RHSType->getAs<BlockPointerType>()) {
10181       if (LHSPointer->getPointeeType()->isVoidType()) {
10182         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10183         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10184                                 ->getPointeeType()
10185                                 .getAddressSpace();
10186         Kind =
10187             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10188         return Compatible;
10189       }
10190     }
10191 
10192     return Incompatible;
10193   }
10194 
10195   // Conversions to block pointers.
10196   if (isa<BlockPointerType>(LHSType)) {
10197     // U^ -> T^
10198     if (RHSType->isBlockPointerType()) {
10199       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10200                               ->getPointeeType()
10201                               .getAddressSpace();
10202       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10203                               ->getPointeeType()
10204                               .getAddressSpace();
10205       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10206       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10207     }
10208 
10209     // int or null -> T^
10210     if (RHSType->isIntegerType()) {
10211       Kind = CK_IntegralToPointer; // FIXME: null
10212       return IntToBlockPointer;
10213     }
10214 
10215     // id -> T^
10216     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10217       Kind = CK_AnyPointerToBlockPointerCast;
10218       return Compatible;
10219     }
10220 
10221     // void* -> T^
10222     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10223       if (RHSPT->getPointeeType()->isVoidType()) {
10224         Kind = CK_AnyPointerToBlockPointerCast;
10225         return Compatible;
10226       }
10227 
10228     return Incompatible;
10229   }
10230 
10231   // Conversions to Objective-C pointers.
10232   if (isa<ObjCObjectPointerType>(LHSType)) {
10233     // A* -> B*
10234     if (RHSType->isObjCObjectPointerType()) {
10235       Kind = CK_BitCast;
10236       Sema::AssignConvertType result =
10237         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10238       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10239           result == Compatible &&
10240           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10241         result = IncompatibleObjCWeakRef;
10242       return result;
10243     }
10244 
10245     // int or null -> A*
10246     if (RHSType->isIntegerType()) {
10247       Kind = CK_IntegralToPointer; // FIXME: null
10248       return IntToPointer;
10249     }
10250 
10251     // In general, C pointers are not compatible with ObjC object pointers,
10252     // with two exceptions:
10253     if (isa<PointerType>(RHSType)) {
10254       Kind = CK_CPointerToObjCPointerCast;
10255 
10256       //  - conversions from 'void*'
10257       if (RHSType->isVoidPointerType()) {
10258         return Compatible;
10259       }
10260 
10261       //  - conversions to 'Class' from its redefinition type
10262       if (LHSType->isObjCClassType() &&
10263           Context.hasSameType(RHSType,
10264                               Context.getObjCClassRedefinitionType())) {
10265         return Compatible;
10266       }
10267 
10268       return IncompatiblePointer;
10269     }
10270 
10271     // Only under strict condition T^ is compatible with an Objective-C pointer.
10272     if (RHSType->isBlockPointerType() &&
10273         LHSType->isBlockCompatibleObjCPointerType(Context)) {
10274       if (ConvertRHS)
10275         maybeExtendBlockObject(RHS);
10276       Kind = CK_BlockPointerToObjCPointerCast;
10277       return Compatible;
10278     }
10279 
10280     return Incompatible;
10281   }
10282 
10283   // Conversion to nullptr_t (C2x only)
10284   if (getLangOpts().C2x && LHSType->isNullPtrType() &&
10285       RHS.get()->isNullPointerConstant(Context,
10286                                        Expr::NPC_ValueDependentIsNull)) {
10287     // null -> nullptr_t
10288     Kind = CK_NullToPointer;
10289     return Compatible;
10290   }
10291 
10292   // Conversions from pointers that are not covered by the above.
10293   if (isa<PointerType>(RHSType)) {
10294     // T* -> _Bool
10295     if (LHSType == Context.BoolTy) {
10296       Kind = CK_PointerToBoolean;
10297       return Compatible;
10298     }
10299 
10300     // T* -> int
10301     if (LHSType->isIntegerType()) {
10302       Kind = CK_PointerToIntegral;
10303       return PointerToInt;
10304     }
10305 
10306     return Incompatible;
10307   }
10308 
10309   // Conversions from Objective-C pointers that are not covered by the above.
10310   if (isa<ObjCObjectPointerType>(RHSType)) {
10311     // T* -> _Bool
10312     if (LHSType == Context.BoolTy) {
10313       Kind = CK_PointerToBoolean;
10314       return Compatible;
10315     }
10316 
10317     // T* -> int
10318     if (LHSType->isIntegerType()) {
10319       Kind = CK_PointerToIntegral;
10320       return PointerToInt;
10321     }
10322 
10323     return Incompatible;
10324   }
10325 
10326   // struct A -> struct B
10327   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10328     if (Context.typesAreCompatible(LHSType, RHSType)) {
10329       Kind = CK_NoOp;
10330       return Compatible;
10331     }
10332   }
10333 
10334   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10335     Kind = CK_IntToOCLSampler;
10336     return Compatible;
10337   }
10338 
10339   return Incompatible;
10340 }
10341 
10342 /// Constructs a transparent union from an expression that is
10343 /// used to initialize the transparent union.
10344 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10345                                       ExprResult &EResult, QualType UnionType,
10346                                       FieldDecl *Field) {
10347   // Build an initializer list that designates the appropriate member
10348   // of the transparent union.
10349   Expr *E = EResult.get();
10350   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10351                                                    E, SourceLocation());
10352   Initializer->setType(UnionType);
10353   Initializer->setInitializedFieldInUnion(Field);
10354 
10355   // Build a compound literal constructing a value of the transparent
10356   // union type from this initializer list.
10357   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10358   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10359                                         VK_PRValue, Initializer, false);
10360 }
10361 
10362 Sema::AssignConvertType
10363 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10364                                                ExprResult &RHS) {
10365   QualType RHSType = RHS.get()->getType();
10366 
10367   // If the ArgType is a Union type, we want to handle a potential
10368   // transparent_union GCC extension.
10369   const RecordType *UT = ArgType->getAsUnionType();
10370   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10371     return Incompatible;
10372 
10373   // The field to initialize within the transparent union.
10374   RecordDecl *UD = UT->getDecl();
10375   FieldDecl *InitField = nullptr;
10376   // It's compatible if the expression matches any of the fields.
10377   for (auto *it : UD->fields()) {
10378     if (it->getType()->isPointerType()) {
10379       // If the transparent union contains a pointer type, we allow:
10380       // 1) void pointer
10381       // 2) null pointer constant
10382       if (RHSType->isPointerType())
10383         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10384           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10385           InitField = it;
10386           break;
10387         }
10388 
10389       if (RHS.get()->isNullPointerConstant(Context,
10390                                            Expr::NPC_ValueDependentIsNull)) {
10391         RHS = ImpCastExprToType(RHS.get(), it->getType(),
10392                                 CK_NullToPointer);
10393         InitField = it;
10394         break;
10395       }
10396     }
10397 
10398     CastKind Kind;
10399     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10400           == Compatible) {
10401       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10402       InitField = it;
10403       break;
10404     }
10405   }
10406 
10407   if (!InitField)
10408     return Incompatible;
10409 
10410   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10411   return Compatible;
10412 }
10413 
10414 Sema::AssignConvertType
10415 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10416                                        bool Diagnose,
10417                                        bool DiagnoseCFAudited,
10418                                        bool ConvertRHS) {
10419   // We need to be able to tell the caller whether we diagnosed a problem, if
10420   // they ask us to issue diagnostics.
10421   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10422 
10423   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10424   // we can't avoid *all* modifications at the moment, so we need some somewhere
10425   // to put the updated value.
10426   ExprResult LocalRHS = CallerRHS;
10427   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10428 
10429   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10430     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10431       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10432           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10433         Diag(RHS.get()->getExprLoc(),
10434              diag::warn_noderef_to_dereferenceable_pointer)
10435             << RHS.get()->getSourceRange();
10436       }
10437     }
10438   }
10439 
10440   if (getLangOpts().CPlusPlus) {
10441     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10442       // C++ 5.17p3: If the left operand is not of class type, the
10443       // expression is implicitly converted (C++ 4) to the
10444       // cv-unqualified type of the left operand.
10445       QualType RHSType = RHS.get()->getType();
10446       if (Diagnose) {
10447         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10448                                         AA_Assigning);
10449       } else {
10450         ImplicitConversionSequence ICS =
10451             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10452                                   /*SuppressUserConversions=*/false,
10453                                   AllowedExplicit::None,
10454                                   /*InOverloadResolution=*/false,
10455                                   /*CStyle=*/false,
10456                                   /*AllowObjCWritebackConversion=*/false);
10457         if (ICS.isFailure())
10458           return Incompatible;
10459         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10460                                         ICS, AA_Assigning);
10461       }
10462       if (RHS.isInvalid())
10463         return Incompatible;
10464       Sema::AssignConvertType result = Compatible;
10465       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10466           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10467         result = IncompatibleObjCWeakRef;
10468       return result;
10469     }
10470 
10471     // FIXME: Currently, we fall through and treat C++ classes like C
10472     // structures.
10473     // FIXME: We also fall through for atomics; not sure what should
10474     // happen there, though.
10475   } else if (RHS.get()->getType() == Context.OverloadTy) {
10476     // As a set of extensions to C, we support overloading on functions. These
10477     // functions need to be resolved here.
10478     DeclAccessPair DAP;
10479     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10480             RHS.get(), LHSType, /*Complain=*/false, DAP))
10481       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10482     else
10483       return Incompatible;
10484   }
10485 
10486   // This check seems unnatural, however it is necessary to ensure the proper
10487   // conversion of functions/arrays. If the conversion were done for all
10488   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10489   // expressions that suppress this implicit conversion (&, sizeof). This needs
10490   // to happen before we check for null pointer conversions because C does not
10491   // undergo the same implicit conversions as C++ does above (by the calls to
10492   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10493   // lvalue to rvalue cast before checking for null pointer constraints. This
10494   // addresses code like: nullptr_t val; int *ptr; ptr = val;
10495   //
10496   // Suppress this for references: C++ 8.5.3p5.
10497   if (!LHSType->isReferenceType()) {
10498     // FIXME: We potentially allocate here even if ConvertRHS is false.
10499     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10500     if (RHS.isInvalid())
10501       return Incompatible;
10502   }
10503 
10504   // The constraints are expressed in terms of the atomic, qualified, or
10505   // unqualified type of the LHS.
10506   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10507 
10508   // C99 6.5.16.1p1: the left operand is a pointer and the right is
10509   // a null pointer constant <C2x>or its type is nullptr_t;</C2x>.
10510   if ((LHSTypeAfterConversion->isPointerType() ||
10511        LHSTypeAfterConversion->isObjCObjectPointerType() ||
10512        LHSTypeAfterConversion->isBlockPointerType()) &&
10513       ((getLangOpts().C2x && RHS.get()->getType()->isNullPtrType()) ||
10514        RHS.get()->isNullPointerConstant(Context,
10515                                         Expr::NPC_ValueDependentIsNull))) {
10516     if (Diagnose || ConvertRHS) {
10517       CastKind Kind;
10518       CXXCastPath Path;
10519       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10520                              /*IgnoreBaseAccess=*/false, Diagnose);
10521       if (ConvertRHS)
10522         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10523     }
10524     return Compatible;
10525   }
10526   // C2x 6.5.16.1p1: the left operand has type atomic, qualified, or
10527   // unqualified bool, and the right operand is a pointer or its type is
10528   // nullptr_t.
10529   if (getLangOpts().C2x && LHSType->isBooleanType() &&
10530       RHS.get()->getType()->isNullPtrType()) {
10531     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10532     // only handles nullptr -> _Bool due to needing an extra conversion
10533     // step.
10534     // We model this by converting from nullptr -> void * and then let the
10535     // conversion from void * -> _Bool happen naturally.
10536     if (Diagnose || ConvertRHS) {
10537       CastKind Kind;
10538       CXXCastPath Path;
10539       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10540                              /*IgnoreBaseAccess=*/false, Diagnose);
10541       if (ConvertRHS)
10542         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10543                                 &Path);
10544     }
10545   }
10546 
10547   // OpenCL queue_t type assignment.
10548   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10549                                  Context, Expr::NPC_ValueDependentIsNull)) {
10550     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10551     return Compatible;
10552   }
10553 
10554   CastKind Kind;
10555   Sema::AssignConvertType result =
10556     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10557 
10558   // C99 6.5.16.1p2: The value of the right operand is converted to the
10559   // type of the assignment expression.
10560   // CheckAssignmentConstraints allows the left-hand side to be a reference,
10561   // so that we can use references in built-in functions even in C.
10562   // The getNonReferenceType() call makes sure that the resulting expression
10563   // does not have reference type.
10564   if (result != Incompatible && RHS.get()->getType() != LHSType) {
10565     QualType Ty = LHSType.getNonLValueExprType(Context);
10566     Expr *E = RHS.get();
10567 
10568     // Check for various Objective-C errors. If we are not reporting
10569     // diagnostics and just checking for errors, e.g., during overload
10570     // resolution, return Incompatible to indicate the failure.
10571     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10572         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10573                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
10574       if (!Diagnose)
10575         return Incompatible;
10576     }
10577     if (getLangOpts().ObjC &&
10578         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10579                                            E->getType(), E, Diagnose) ||
10580          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10581       if (!Diagnose)
10582         return Incompatible;
10583       // Replace the expression with a corrected version and continue so we
10584       // can find further errors.
10585       RHS = E;
10586       return Compatible;
10587     }
10588 
10589     if (ConvertRHS)
10590       RHS = ImpCastExprToType(E, Ty, Kind);
10591   }
10592 
10593   return result;
10594 }
10595 
10596 namespace {
10597 /// The original operand to an operator, prior to the application of the usual
10598 /// arithmetic conversions and converting the arguments of a builtin operator
10599 /// candidate.
10600 struct OriginalOperand {
10601   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10602     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10603       Op = MTE->getSubExpr();
10604     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10605       Op = BTE->getSubExpr();
10606     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10607       Orig = ICE->getSubExprAsWritten();
10608       Conversion = ICE->getConversionFunction();
10609     }
10610   }
10611 
10612   QualType getType() const { return Orig->getType(); }
10613 
10614   Expr *Orig;
10615   NamedDecl *Conversion;
10616 };
10617 }
10618 
10619 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10620                                ExprResult &RHS) {
10621   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10622 
10623   Diag(Loc, diag::err_typecheck_invalid_operands)
10624     << OrigLHS.getType() << OrigRHS.getType()
10625     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10626 
10627   // If a user-defined conversion was applied to either of the operands prior
10628   // to applying the built-in operator rules, tell the user about it.
10629   if (OrigLHS.Conversion) {
10630     Diag(OrigLHS.Conversion->getLocation(),
10631          diag::note_typecheck_invalid_operands_converted)
10632       << 0 << LHS.get()->getType();
10633   }
10634   if (OrigRHS.Conversion) {
10635     Diag(OrigRHS.Conversion->getLocation(),
10636          diag::note_typecheck_invalid_operands_converted)
10637       << 1 << RHS.get()->getType();
10638   }
10639 
10640   return QualType();
10641 }
10642 
10643 // Diagnose cases where a scalar was implicitly converted to a vector and
10644 // diagnose the underlying types. Otherwise, diagnose the error
10645 // as invalid vector logical operands for non-C++ cases.
10646 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10647                                             ExprResult &RHS) {
10648   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10649   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10650 
10651   bool LHSNatVec = LHSType->isVectorType();
10652   bool RHSNatVec = RHSType->isVectorType();
10653 
10654   if (!(LHSNatVec && RHSNatVec)) {
10655     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10656     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10657     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10658         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10659         << Vector->getSourceRange();
10660     return QualType();
10661   }
10662 
10663   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10664       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10665       << RHS.get()->getSourceRange();
10666 
10667   return QualType();
10668 }
10669 
10670 /// Try to convert a value of non-vector type to a vector type by converting
10671 /// the type to the element type of the vector and then performing a splat.
10672 /// If the language is OpenCL, we only use conversions that promote scalar
10673 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10674 /// for float->int.
10675 ///
10676 /// OpenCL V2.0 6.2.6.p2:
10677 /// An error shall occur if any scalar operand type has greater rank
10678 /// than the type of the vector element.
10679 ///
10680 /// \param scalar - if non-null, actually perform the conversions
10681 /// \return true if the operation fails (but without diagnosing the failure)
10682 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10683                                      QualType scalarTy,
10684                                      QualType vectorEltTy,
10685                                      QualType vectorTy,
10686                                      unsigned &DiagID) {
10687   // The conversion to apply to the scalar before splatting it,
10688   // if necessary.
10689   CastKind scalarCast = CK_NoOp;
10690 
10691   if (vectorEltTy->isIntegralType(S.Context)) {
10692     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10693         (scalarTy->isIntegerType() &&
10694          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10695       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10696       return true;
10697     }
10698     if (!scalarTy->isIntegralType(S.Context))
10699       return true;
10700     scalarCast = CK_IntegralCast;
10701   } else if (vectorEltTy->isRealFloatingType()) {
10702     if (scalarTy->isRealFloatingType()) {
10703       if (S.getLangOpts().OpenCL &&
10704           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10705         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10706         return true;
10707       }
10708       scalarCast = CK_FloatingCast;
10709     }
10710     else if (scalarTy->isIntegralType(S.Context))
10711       scalarCast = CK_IntegralToFloating;
10712     else
10713       return true;
10714   } else {
10715     return true;
10716   }
10717 
10718   // Adjust scalar if desired.
10719   if (scalar) {
10720     if (scalarCast != CK_NoOp)
10721       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10722     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10723   }
10724   return false;
10725 }
10726 
10727 /// Convert vector E to a vector with the same number of elements but different
10728 /// element type.
10729 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10730   const auto *VecTy = E->getType()->getAs<VectorType>();
10731   assert(VecTy && "Expression E must be a vector");
10732   QualType NewVecTy =
10733       VecTy->isExtVectorType()
10734           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10735           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10736                                     VecTy->getVectorKind());
10737 
10738   // Look through the implicit cast. Return the subexpression if its type is
10739   // NewVecTy.
10740   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10741     if (ICE->getSubExpr()->getType() == NewVecTy)
10742       return ICE->getSubExpr();
10743 
10744   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10745   return S.ImpCastExprToType(E, NewVecTy, Cast);
10746 }
10747 
10748 /// Test if a (constant) integer Int can be casted to another integer type
10749 /// IntTy without losing precision.
10750 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10751                                       QualType OtherIntTy) {
10752   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10753 
10754   // Reject cases where the value of the Int is unknown as that would
10755   // possibly cause truncation, but accept cases where the scalar can be
10756   // demoted without loss of precision.
10757   Expr::EvalResult EVResult;
10758   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10759   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10760   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10761   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10762 
10763   if (CstInt) {
10764     // If the scalar is constant and is of a higher order and has more active
10765     // bits that the vector element type, reject it.
10766     llvm::APSInt Result = EVResult.Val.getInt();
10767     unsigned NumBits = IntSigned
10768                            ? (Result.isNegative() ? Result.getSignificantBits()
10769                                                   : Result.getActiveBits())
10770                            : Result.getActiveBits();
10771     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10772       return true;
10773 
10774     // If the signedness of the scalar type and the vector element type
10775     // differs and the number of bits is greater than that of the vector
10776     // element reject it.
10777     return (IntSigned != OtherIntSigned &&
10778             NumBits > S.Context.getIntWidth(OtherIntTy));
10779   }
10780 
10781   // Reject cases where the value of the scalar is not constant and it's
10782   // order is greater than that of the vector element type.
10783   return (Order < 0);
10784 }
10785 
10786 /// Test if a (constant) integer Int can be casted to floating point type
10787 /// FloatTy without losing precision.
10788 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10789                                      QualType FloatTy) {
10790   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10791 
10792   // Determine if the integer constant can be expressed as a floating point
10793   // number of the appropriate type.
10794   Expr::EvalResult EVResult;
10795   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10796 
10797   uint64_t Bits = 0;
10798   if (CstInt) {
10799     // Reject constants that would be truncated if they were converted to
10800     // the floating point type. Test by simple to/from conversion.
10801     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10802     //        could be avoided if there was a convertFromAPInt method
10803     //        which could signal back if implicit truncation occurred.
10804     llvm::APSInt Result = EVResult.Val.getInt();
10805     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10806     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10807                            llvm::APFloat::rmTowardZero);
10808     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10809                              !IntTy->hasSignedIntegerRepresentation());
10810     bool Ignored = false;
10811     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10812                            &Ignored);
10813     if (Result != ConvertBack)
10814       return true;
10815   } else {
10816     // Reject types that cannot be fully encoded into the mantissa of
10817     // the float.
10818     Bits = S.Context.getTypeSize(IntTy);
10819     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10820         S.Context.getFloatTypeSemantics(FloatTy));
10821     if (Bits > FloatPrec)
10822       return true;
10823   }
10824 
10825   return false;
10826 }
10827 
10828 /// Attempt to convert and splat Scalar into a vector whose types matches
10829 /// Vector following GCC conversion rules. The rule is that implicit
10830 /// conversion can occur when Scalar can be casted to match Vector's element
10831 /// type without causing truncation of Scalar.
10832 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10833                                         ExprResult *Vector) {
10834   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10835   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10836   QualType VectorEltTy;
10837 
10838   if (const auto *VT = VectorTy->getAs<VectorType>()) {
10839     assert(!isa<ExtVectorType>(VT) &&
10840            "ExtVectorTypes should not be handled here!");
10841     VectorEltTy = VT->getElementType();
10842   } else if (VectorTy->isVLSTBuiltinType()) {
10843     VectorEltTy =
10844         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10845   } else {
10846     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10847   }
10848 
10849   // Reject cases where the vector element type or the scalar element type are
10850   // not integral or floating point types.
10851   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10852     return true;
10853 
10854   // The conversion to apply to the scalar before splatting it,
10855   // if necessary.
10856   CastKind ScalarCast = CK_NoOp;
10857 
10858   // Accept cases where the vector elements are integers and the scalar is
10859   // an integer.
10860   // FIXME: Notionally if the scalar was a floating point value with a precise
10861   //        integral representation, we could cast it to an appropriate integer
10862   //        type and then perform the rest of the checks here. GCC will perform
10863   //        this conversion in some cases as determined by the input language.
10864   //        We should accept it on a language independent basis.
10865   if (VectorEltTy->isIntegralType(S.Context) &&
10866       ScalarTy->isIntegralType(S.Context) &&
10867       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10868 
10869     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10870       return true;
10871 
10872     ScalarCast = CK_IntegralCast;
10873   } else if (VectorEltTy->isIntegralType(S.Context) &&
10874              ScalarTy->isRealFloatingType()) {
10875     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10876       ScalarCast = CK_FloatingToIntegral;
10877     else
10878       return true;
10879   } else if (VectorEltTy->isRealFloatingType()) {
10880     if (ScalarTy->isRealFloatingType()) {
10881 
10882       // Reject cases where the scalar type is not a constant and has a higher
10883       // Order than the vector element type.
10884       llvm::APFloat Result(0.0);
10885 
10886       // Determine whether this is a constant scalar. In the event that the
10887       // value is dependent (and thus cannot be evaluated by the constant
10888       // evaluator), skip the evaluation. This will then diagnose once the
10889       // expression is instantiated.
10890       bool CstScalar = Scalar->get()->isValueDependent() ||
10891                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10892       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10893       if (!CstScalar && Order < 0)
10894         return true;
10895 
10896       // If the scalar cannot be safely casted to the vector element type,
10897       // reject it.
10898       if (CstScalar) {
10899         bool Truncated = false;
10900         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10901                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10902         if (Truncated)
10903           return true;
10904       }
10905 
10906       ScalarCast = CK_FloatingCast;
10907     } else if (ScalarTy->isIntegralType(S.Context)) {
10908       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10909         return true;
10910 
10911       ScalarCast = CK_IntegralToFloating;
10912     } else
10913       return true;
10914   } else if (ScalarTy->isEnumeralType())
10915     return true;
10916 
10917   // Adjust scalar if desired.
10918   if (ScalarCast != CK_NoOp)
10919     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10920   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10921   return false;
10922 }
10923 
10924 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10925                                    SourceLocation Loc, bool IsCompAssign,
10926                                    bool AllowBothBool,
10927                                    bool AllowBoolConversions,
10928                                    bool AllowBoolOperation,
10929                                    bool ReportInvalid) {
10930   if (!IsCompAssign) {
10931     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10932     if (LHS.isInvalid())
10933       return QualType();
10934   }
10935   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10936   if (RHS.isInvalid())
10937     return QualType();
10938 
10939   // For conversion purposes, we ignore any qualifiers.
10940   // For example, "const float" and "float" are equivalent.
10941   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10942   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10943 
10944   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10945   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10946   assert(LHSVecType || RHSVecType);
10947 
10948   // AltiVec-style "vector bool op vector bool" combinations are allowed
10949   // for some operators but not others.
10950   if (!AllowBothBool &&
10951       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10952       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10953     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10954 
10955   // This operation may not be performed on boolean vectors.
10956   if (!AllowBoolOperation &&
10957       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10958     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10959 
10960   // If the vector types are identical, return.
10961   if (Context.hasSameType(LHSType, RHSType))
10962     return Context.getCommonSugaredType(LHSType, RHSType);
10963 
10964   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10965   if (LHSVecType && RHSVecType &&
10966       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10967     if (isa<ExtVectorType>(LHSVecType)) {
10968       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10969       return LHSType;
10970     }
10971 
10972     if (!IsCompAssign)
10973       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10974     return RHSType;
10975   }
10976 
10977   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10978   // can be mixed, with the result being the non-bool type.  The non-bool
10979   // operand must have integer element type.
10980   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10981       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10982       (Context.getTypeSize(LHSVecType->getElementType()) ==
10983        Context.getTypeSize(RHSVecType->getElementType()))) {
10984     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10985         LHSVecType->getElementType()->isIntegerType() &&
10986         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10987       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10988       return LHSType;
10989     }
10990     if (!IsCompAssign &&
10991         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10992         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10993         RHSVecType->getElementType()->isIntegerType()) {
10994       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10995       return RHSType;
10996     }
10997   }
10998 
10999   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11000   // invalid since the ambiguity can affect the ABI.
11001   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11002                                unsigned &SVEorRVV) {
11003     const VectorType *VecType = SecondType->getAs<VectorType>();
11004     SVEorRVV = 0;
11005     if (FirstType->isSizelessBuiltinType() && VecType) {
11006       if (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
11007           VecType->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
11008         return true;
11009       if (VecType->getVectorKind() == VectorType::RVVFixedLengthDataVector) {
11010         SVEorRVV = 1;
11011         return true;
11012       }
11013     }
11014 
11015     return false;
11016   };
11017 
11018   unsigned SVEorRVV;
11019   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11020       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11021     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11022         << SVEorRVV << LHSType << RHSType;
11023     return QualType();
11024   }
11025 
11026   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11027   // invalid since the ambiguity can affect the ABI.
11028   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11029                                   unsigned &SVEorRVV) {
11030     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11031     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11032 
11033     SVEorRVV = 0;
11034     if (FirstVecType && SecondVecType) {
11035       if (FirstVecType->getVectorKind() == VectorType::GenericVector) {
11036         if (SecondVecType->getVectorKind() ==
11037                 VectorType::SveFixedLengthDataVector ||
11038             SecondVecType->getVectorKind() ==
11039                 VectorType::SveFixedLengthPredicateVector)
11040           return true;
11041         if (SecondVecType->getVectorKind() ==
11042             VectorType::RVVFixedLengthDataVector) {
11043           SVEorRVV = 1;
11044           return true;
11045         }
11046       }
11047       return false;
11048     }
11049 
11050     if (SecondVecType &&
11051         SecondVecType->getVectorKind() == VectorType::GenericVector) {
11052       if (FirstType->isSVESizelessBuiltinType())
11053         return true;
11054       if (FirstType->isRVVSizelessBuiltinType()) {
11055         SVEorRVV = 1;
11056         return true;
11057       }
11058     }
11059 
11060     return false;
11061   };
11062 
11063   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11064       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11065     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11066         << SVEorRVV << LHSType << RHSType;
11067     return QualType();
11068   }
11069 
11070   // If there's a vector type and a scalar, try to convert the scalar to
11071   // the vector element type and splat.
11072   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11073   if (!RHSVecType) {
11074     if (isa<ExtVectorType>(LHSVecType)) {
11075       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11076                                     LHSVecType->getElementType(), LHSType,
11077                                     DiagID))
11078         return LHSType;
11079     } else {
11080       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11081         return LHSType;
11082     }
11083   }
11084   if (!LHSVecType) {
11085     if (isa<ExtVectorType>(RHSVecType)) {
11086       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11087                                     LHSType, RHSVecType->getElementType(),
11088                                     RHSType, DiagID))
11089         return RHSType;
11090     } else {
11091       if (LHS.get()->isLValue() ||
11092           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11093         return RHSType;
11094     }
11095   }
11096 
11097   // FIXME: The code below also handles conversion between vectors and
11098   // non-scalars, we should break this down into fine grained specific checks
11099   // and emit proper diagnostics.
11100   QualType VecType = LHSVecType ? LHSType : RHSType;
11101   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11102   QualType OtherType = LHSVecType ? RHSType : LHSType;
11103   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11104   if (isLaxVectorConversion(OtherType, VecType)) {
11105     if (Context.getTargetInfo().getTriple().isPPC() &&
11106         anyAltivecTypes(RHSType, LHSType) &&
11107         !Context.areCompatibleVectorTypes(RHSType, LHSType))
11108       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11109     // If we're allowing lax vector conversions, only the total (data) size
11110     // needs to be the same. For non compound assignment, if one of the types is
11111     // scalar, the result is always the vector type.
11112     if (!IsCompAssign) {
11113       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11114       return VecType;
11115     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11116     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11117     // type. Note that this is already done by non-compound assignments in
11118     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11119     // <1 x T> -> T. The result is also a vector type.
11120     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11121                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11122       ExprResult *RHSExpr = &RHS;
11123       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11124       return VecType;
11125     }
11126   }
11127 
11128   // Okay, the expression is invalid.
11129 
11130   // If there's a non-vector, non-real operand, diagnose that.
11131   if ((!RHSVecType && !RHSType->isRealType()) ||
11132       (!LHSVecType && !LHSType->isRealType())) {
11133     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11134       << LHSType << RHSType
11135       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11136     return QualType();
11137   }
11138 
11139   // OpenCL V1.1 6.2.6.p1:
11140   // If the operands are of more than one vector type, then an error shall
11141   // occur. Implicit conversions between vector types are not permitted, per
11142   // section 6.2.1.
11143   if (getLangOpts().OpenCL &&
11144       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11145       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11146     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11147                                                            << RHSType;
11148     return QualType();
11149   }
11150 
11151 
11152   // If there is a vector type that is not a ExtVector and a scalar, we reach
11153   // this point if scalar could not be converted to the vector's element type
11154   // without truncation.
11155   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11156       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11157     QualType Scalar = LHSVecType ? RHSType : LHSType;
11158     QualType Vector = LHSVecType ? LHSType : RHSType;
11159     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11160     Diag(Loc,
11161          diag::err_typecheck_vector_not_convertable_implict_truncation)
11162         << ScalarOrVector << Scalar << Vector;
11163 
11164     return QualType();
11165   }
11166 
11167   // Otherwise, use the generic diagnostic.
11168   Diag(Loc, DiagID)
11169     << LHSType << RHSType
11170     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11171   return QualType();
11172 }
11173 
11174 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11175                                            SourceLocation Loc,
11176                                            bool IsCompAssign,
11177                                            ArithConvKind OperationKind) {
11178   if (!IsCompAssign) {
11179     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11180     if (LHS.isInvalid())
11181       return QualType();
11182   }
11183   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11184   if (RHS.isInvalid())
11185     return QualType();
11186 
11187   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11188   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11189 
11190   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11191   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11192 
11193   unsigned DiagID = diag::err_typecheck_invalid_operands;
11194   if ((OperationKind == ACK_Arithmetic) &&
11195       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11196        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11197     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11198                       << RHS.get()->getSourceRange();
11199     return QualType();
11200   }
11201 
11202   if (Context.hasSameType(LHSType, RHSType))
11203     return LHSType;
11204 
11205   if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
11206     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11207       return LHSType;
11208   }
11209   if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
11210     if (LHS.get()->isLValue() ||
11211         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11212       return RHSType;
11213   }
11214 
11215   if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
11216       (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
11217     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11218         << LHSType << RHSType << LHS.get()->getSourceRange()
11219         << RHS.get()->getSourceRange();
11220     return QualType();
11221   }
11222 
11223   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11224       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11225           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11226     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11227         << LHSType << RHSType << LHS.get()->getSourceRange()
11228         << RHS.get()->getSourceRange();
11229     return QualType();
11230   }
11231 
11232   if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
11233     QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
11234     QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
11235     bool ScalarOrVector =
11236         LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
11237 
11238     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11239         << ScalarOrVector << Scalar << Vector;
11240 
11241     return QualType();
11242   }
11243 
11244   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11245                     << RHS.get()->getSourceRange();
11246   return QualType();
11247 }
11248 
11249 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11250 // expression.  These are mainly cases where the null pointer is used as an
11251 // integer instead of a pointer.
11252 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11253                                 SourceLocation Loc, bool IsCompare) {
11254   // The canonical way to check for a GNU null is with isNullPointerConstant,
11255   // but we use a bit of a hack here for speed; this is a relatively
11256   // hot path, and isNullPointerConstant is slow.
11257   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11258   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11259 
11260   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11261 
11262   // Avoid analyzing cases where the result will either be invalid (and
11263   // diagnosed as such) or entirely valid and not something to warn about.
11264   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11265       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11266     return;
11267 
11268   // Comparison operations would not make sense with a null pointer no matter
11269   // what the other expression is.
11270   if (!IsCompare) {
11271     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11272         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11273         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11274     return;
11275   }
11276 
11277   // The rest of the operations only make sense with a null pointer
11278   // if the other expression is a pointer.
11279   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11280       NonNullType->canDecayToPointerType())
11281     return;
11282 
11283   S.Diag(Loc, diag::warn_null_in_comparison_operation)
11284       << LHSNull /* LHS is NULL */ << NonNullType
11285       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11286 }
11287 
11288 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11289                                           SourceLocation Loc) {
11290   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11291   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11292   if (!LUE || !RUE)
11293     return;
11294   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11295       RUE->getKind() != UETT_SizeOf)
11296     return;
11297 
11298   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11299   QualType LHSTy = LHSArg->getType();
11300   QualType RHSTy;
11301 
11302   if (RUE->isArgumentType())
11303     RHSTy = RUE->getArgumentType().getNonReferenceType();
11304   else
11305     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11306 
11307   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11308     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11309       return;
11310 
11311     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11312     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11313       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11314         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11315             << LHSArgDecl;
11316     }
11317   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11318     QualType ArrayElemTy = ArrayTy->getElementType();
11319     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11320         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11321         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11322         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11323       return;
11324     S.Diag(Loc, diag::warn_division_sizeof_array)
11325         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11326     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11327       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11328         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11329             << LHSArgDecl;
11330     }
11331 
11332     S.Diag(Loc, diag::note_precedence_silence) << RHS;
11333   }
11334 }
11335 
11336 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11337                                                ExprResult &RHS,
11338                                                SourceLocation Loc, bool IsDiv) {
11339   // Check for division/remainder by zero.
11340   Expr::EvalResult RHSValue;
11341   if (!RHS.get()->isValueDependent() &&
11342       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11343       RHSValue.Val.getInt() == 0)
11344     S.DiagRuntimeBehavior(Loc, RHS.get(),
11345                           S.PDiag(diag::warn_remainder_division_by_zero)
11346                             << IsDiv << RHS.get()->getSourceRange());
11347 }
11348 
11349 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11350                                            SourceLocation Loc,
11351                                            bool IsCompAssign, bool IsDiv) {
11352   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11353 
11354   QualType LHSTy = LHS.get()->getType();
11355   QualType RHSTy = RHS.get()->getType();
11356   if (LHSTy->isVectorType() || RHSTy->isVectorType())
11357     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11358                                /*AllowBothBool*/ getLangOpts().AltiVec,
11359                                /*AllowBoolConversions*/ false,
11360                                /*AllowBooleanOperation*/ false,
11361                                /*ReportInvalid*/ true);
11362   if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
11363     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11364                                        ACK_Arithmetic);
11365   if (!IsDiv &&
11366       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11367     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11368   // For division, only matrix-by-scalar is supported. Other combinations with
11369   // matrix types are invalid.
11370   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11371     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11372 
11373   QualType compType = UsualArithmeticConversions(
11374       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11375   if (LHS.isInvalid() || RHS.isInvalid())
11376     return QualType();
11377 
11378 
11379   if (compType.isNull() || !compType->isArithmeticType())
11380     return InvalidOperands(Loc, LHS, RHS);
11381   if (IsDiv) {
11382     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11383     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11384   }
11385   return compType;
11386 }
11387 
11388 QualType Sema::CheckRemainderOperands(
11389   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11390   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11391 
11392   if (LHS.get()->getType()->isVectorType() ||
11393       RHS.get()->getType()->isVectorType()) {
11394     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11395         RHS.get()->getType()->hasIntegerRepresentation())
11396       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11397                                  /*AllowBothBool*/ getLangOpts().AltiVec,
11398                                  /*AllowBoolConversions*/ false,
11399                                  /*AllowBooleanOperation*/ false,
11400                                  /*ReportInvalid*/ true);
11401     return InvalidOperands(Loc, LHS, RHS);
11402   }
11403 
11404   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11405       RHS.get()->getType()->isVLSTBuiltinType()) {
11406     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11407         RHS.get()->getType()->hasIntegerRepresentation())
11408       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11409                                          ACK_Arithmetic);
11410 
11411     return InvalidOperands(Loc, LHS, RHS);
11412   }
11413 
11414   QualType compType = UsualArithmeticConversions(
11415       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11416   if (LHS.isInvalid() || RHS.isInvalid())
11417     return QualType();
11418 
11419   if (compType.isNull() || !compType->isIntegerType())
11420     return InvalidOperands(Loc, LHS, RHS);
11421   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11422   return compType;
11423 }
11424 
11425 /// Diagnose invalid arithmetic on two void pointers.
11426 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11427                                                 Expr *LHSExpr, Expr *RHSExpr) {
11428   S.Diag(Loc, S.getLangOpts().CPlusPlus
11429                 ? diag::err_typecheck_pointer_arith_void_type
11430                 : diag::ext_gnu_void_ptr)
11431     << 1 /* two pointers */ << LHSExpr->getSourceRange()
11432                             << RHSExpr->getSourceRange();
11433 }
11434 
11435 /// Diagnose invalid arithmetic on a void pointer.
11436 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11437                                             Expr *Pointer) {
11438   S.Diag(Loc, S.getLangOpts().CPlusPlus
11439                 ? diag::err_typecheck_pointer_arith_void_type
11440                 : diag::ext_gnu_void_ptr)
11441     << 0 /* one pointer */ << Pointer->getSourceRange();
11442 }
11443 
11444 /// Diagnose invalid arithmetic on a null pointer.
11445 ///
11446 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11447 /// idiom, which we recognize as a GNU extension.
11448 ///
11449 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11450                                             Expr *Pointer, bool IsGNUIdiom) {
11451   if (IsGNUIdiom)
11452     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11453       << Pointer->getSourceRange();
11454   else
11455     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11456       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11457 }
11458 
11459 /// Diagnose invalid subraction on a null pointer.
11460 ///
11461 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11462                                              Expr *Pointer, bool BothNull) {
11463   // Null - null is valid in C++ [expr.add]p7
11464   if (BothNull && S.getLangOpts().CPlusPlus)
11465     return;
11466 
11467   // Is this s a macro from a system header?
11468   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11469     return;
11470 
11471   S.DiagRuntimeBehavior(Loc, Pointer,
11472                         S.PDiag(diag::warn_pointer_sub_null_ptr)
11473                             << S.getLangOpts().CPlusPlus
11474                             << Pointer->getSourceRange());
11475 }
11476 
11477 /// Diagnose invalid arithmetic on two function pointers.
11478 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11479                                                     Expr *LHS, Expr *RHS) {
11480   assert(LHS->getType()->isAnyPointerType());
11481   assert(RHS->getType()->isAnyPointerType());
11482   S.Diag(Loc, S.getLangOpts().CPlusPlus
11483                 ? diag::err_typecheck_pointer_arith_function_type
11484                 : diag::ext_gnu_ptr_func_arith)
11485     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11486     // We only show the second type if it differs from the first.
11487     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11488                                                    RHS->getType())
11489     << RHS->getType()->getPointeeType()
11490     << LHS->getSourceRange() << RHS->getSourceRange();
11491 }
11492 
11493 /// Diagnose invalid arithmetic on a function pointer.
11494 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11495                                                 Expr *Pointer) {
11496   assert(Pointer->getType()->isAnyPointerType());
11497   S.Diag(Loc, S.getLangOpts().CPlusPlus
11498                 ? diag::err_typecheck_pointer_arith_function_type
11499                 : diag::ext_gnu_ptr_func_arith)
11500     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11501     << 0 /* one pointer, so only one type */
11502     << Pointer->getSourceRange();
11503 }
11504 
11505 /// Emit error if Operand is incomplete pointer type
11506 ///
11507 /// \returns True if pointer has incomplete type
11508 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11509                                                  Expr *Operand) {
11510   QualType ResType = Operand->getType();
11511   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11512     ResType = ResAtomicType->getValueType();
11513 
11514   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11515   QualType PointeeTy = ResType->getPointeeType();
11516   return S.RequireCompleteSizedType(
11517       Loc, PointeeTy,
11518       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11519       Operand->getSourceRange());
11520 }
11521 
11522 /// Check the validity of an arithmetic pointer operand.
11523 ///
11524 /// If the operand has pointer type, this code will check for pointer types
11525 /// which are invalid in arithmetic operations. These will be diagnosed
11526 /// appropriately, including whether or not the use is supported as an
11527 /// extension.
11528 ///
11529 /// \returns True when the operand is valid to use (even if as an extension).
11530 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11531                                             Expr *Operand) {
11532   QualType ResType = Operand->getType();
11533   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11534     ResType = ResAtomicType->getValueType();
11535 
11536   if (!ResType->isAnyPointerType()) return true;
11537 
11538   QualType PointeeTy = ResType->getPointeeType();
11539   if (PointeeTy->isVoidType()) {
11540     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11541     return !S.getLangOpts().CPlusPlus;
11542   }
11543   if (PointeeTy->isFunctionType()) {
11544     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11545     return !S.getLangOpts().CPlusPlus;
11546   }
11547 
11548   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11549 
11550   return true;
11551 }
11552 
11553 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11554 /// operands.
11555 ///
11556 /// This routine will diagnose any invalid arithmetic on pointer operands much
11557 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11558 /// for emitting a single diagnostic even for operations where both LHS and RHS
11559 /// are (potentially problematic) pointers.
11560 ///
11561 /// \returns True when the operand is valid to use (even if as an extension).
11562 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11563                                                 Expr *LHSExpr, Expr *RHSExpr) {
11564   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11565   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11566   if (!isLHSPointer && !isRHSPointer) return true;
11567 
11568   QualType LHSPointeeTy, RHSPointeeTy;
11569   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11570   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11571 
11572   // if both are pointers check if operation is valid wrt address spaces
11573   if (isLHSPointer && isRHSPointer) {
11574     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11575       S.Diag(Loc,
11576              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11577           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11578           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11579       return false;
11580     }
11581   }
11582 
11583   // Check for arithmetic on pointers to incomplete types.
11584   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11585   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11586   if (isLHSVoidPtr || isRHSVoidPtr) {
11587     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11588     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11589     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11590 
11591     return !S.getLangOpts().CPlusPlus;
11592   }
11593 
11594   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11595   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11596   if (isLHSFuncPtr || isRHSFuncPtr) {
11597     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11598     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11599                                                                 RHSExpr);
11600     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11601 
11602     return !S.getLangOpts().CPlusPlus;
11603   }
11604 
11605   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11606     return false;
11607   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11608     return false;
11609 
11610   return true;
11611 }
11612 
11613 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11614 /// literal.
11615 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11616                                   Expr *LHSExpr, Expr *RHSExpr) {
11617   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11618   Expr* IndexExpr = RHSExpr;
11619   if (!StrExpr) {
11620     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11621     IndexExpr = LHSExpr;
11622   }
11623 
11624   bool IsStringPlusInt = StrExpr &&
11625       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11626   if (!IsStringPlusInt || IndexExpr->isValueDependent())
11627     return;
11628 
11629   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11630   Self.Diag(OpLoc, diag::warn_string_plus_int)
11631       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11632 
11633   // Only print a fixit for "str" + int, not for int + "str".
11634   if (IndexExpr == RHSExpr) {
11635     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11636     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11637         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11638         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11639         << FixItHint::CreateInsertion(EndLoc, "]");
11640   } else
11641     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11642 }
11643 
11644 /// Emit a warning when adding a char literal to a string.
11645 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11646                                    Expr *LHSExpr, Expr *RHSExpr) {
11647   const Expr *StringRefExpr = LHSExpr;
11648   const CharacterLiteral *CharExpr =
11649       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11650 
11651   if (!CharExpr) {
11652     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11653     StringRefExpr = RHSExpr;
11654   }
11655 
11656   if (!CharExpr || !StringRefExpr)
11657     return;
11658 
11659   const QualType StringType = StringRefExpr->getType();
11660 
11661   // Return if not a PointerType.
11662   if (!StringType->isAnyPointerType())
11663     return;
11664 
11665   // Return if not a CharacterType.
11666   if (!StringType->getPointeeType()->isAnyCharacterType())
11667     return;
11668 
11669   ASTContext &Ctx = Self.getASTContext();
11670   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11671 
11672   const QualType CharType = CharExpr->getType();
11673   if (!CharType->isAnyCharacterType() &&
11674       CharType->isIntegerType() &&
11675       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11676     Self.Diag(OpLoc, diag::warn_string_plus_char)
11677         << DiagRange << Ctx.CharTy;
11678   } else {
11679     Self.Diag(OpLoc, diag::warn_string_plus_char)
11680         << DiagRange << CharExpr->getType();
11681   }
11682 
11683   // Only print a fixit for str + char, not for char + str.
11684   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11685     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11686     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11687         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11688         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11689         << FixItHint::CreateInsertion(EndLoc, "]");
11690   } else {
11691     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11692   }
11693 }
11694 
11695 /// Emit error when two pointers are incompatible.
11696 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11697                                            Expr *LHSExpr, Expr *RHSExpr) {
11698   assert(LHSExpr->getType()->isAnyPointerType());
11699   assert(RHSExpr->getType()->isAnyPointerType());
11700   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11701     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11702     << RHSExpr->getSourceRange();
11703 }
11704 
11705 // C99 6.5.6
11706 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11707                                      SourceLocation Loc, BinaryOperatorKind Opc,
11708                                      QualType* CompLHSTy) {
11709   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11710 
11711   if (LHS.get()->getType()->isVectorType() ||
11712       RHS.get()->getType()->isVectorType()) {
11713     QualType compType =
11714         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11715                             /*AllowBothBool*/ getLangOpts().AltiVec,
11716                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11717                             /*AllowBooleanOperation*/ false,
11718                             /*ReportInvalid*/ true);
11719     if (CompLHSTy) *CompLHSTy = compType;
11720     return compType;
11721   }
11722 
11723   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11724       RHS.get()->getType()->isVLSTBuiltinType()) {
11725     QualType compType =
11726         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11727     if (CompLHSTy)
11728       *CompLHSTy = compType;
11729     return compType;
11730   }
11731 
11732   if (LHS.get()->getType()->isConstantMatrixType() ||
11733       RHS.get()->getType()->isConstantMatrixType()) {
11734     QualType compType =
11735         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11736     if (CompLHSTy)
11737       *CompLHSTy = compType;
11738     return compType;
11739   }
11740 
11741   QualType compType = UsualArithmeticConversions(
11742       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11743   if (LHS.isInvalid() || RHS.isInvalid())
11744     return QualType();
11745 
11746   // Diagnose "string literal" '+' int and string '+' "char literal".
11747   if (Opc == BO_Add) {
11748     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11749     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11750   }
11751 
11752   // handle the common case first (both operands are arithmetic).
11753   if (!compType.isNull() && compType->isArithmeticType()) {
11754     if (CompLHSTy) *CompLHSTy = compType;
11755     return compType;
11756   }
11757 
11758   // Type-checking.  Ultimately the pointer's going to be in PExp;
11759   // note that we bias towards the LHS being the pointer.
11760   Expr *PExp = LHS.get(), *IExp = RHS.get();
11761 
11762   bool isObjCPointer;
11763   if (PExp->getType()->isPointerType()) {
11764     isObjCPointer = false;
11765   } else if (PExp->getType()->isObjCObjectPointerType()) {
11766     isObjCPointer = true;
11767   } else {
11768     std::swap(PExp, IExp);
11769     if (PExp->getType()->isPointerType()) {
11770       isObjCPointer = false;
11771     } else if (PExp->getType()->isObjCObjectPointerType()) {
11772       isObjCPointer = true;
11773     } else {
11774       return InvalidOperands(Loc, LHS, RHS);
11775     }
11776   }
11777   assert(PExp->getType()->isAnyPointerType());
11778 
11779   if (!IExp->getType()->isIntegerType())
11780     return InvalidOperands(Loc, LHS, RHS);
11781 
11782   // Adding to a null pointer results in undefined behavior.
11783   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11784           Context, Expr::NPC_ValueDependentIsNotNull)) {
11785     // In C++ adding zero to a null pointer is defined.
11786     Expr::EvalResult KnownVal;
11787     if (!getLangOpts().CPlusPlus ||
11788         (!IExp->isValueDependent() &&
11789          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11790           KnownVal.Val.getInt() != 0))) {
11791       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11792       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11793           Context, BO_Add, PExp, IExp);
11794       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11795     }
11796   }
11797 
11798   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11799     return QualType();
11800 
11801   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11802     return QualType();
11803 
11804   // Check array bounds for pointer arithemtic
11805   CheckArrayAccess(PExp, IExp);
11806 
11807   if (CompLHSTy) {
11808     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11809     if (LHSTy.isNull()) {
11810       LHSTy = LHS.get()->getType();
11811       if (Context.isPromotableIntegerType(LHSTy))
11812         LHSTy = Context.getPromotedIntegerType(LHSTy);
11813     }
11814     *CompLHSTy = LHSTy;
11815   }
11816 
11817   return PExp->getType();
11818 }
11819 
11820 // C99 6.5.6
11821 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11822                                         SourceLocation Loc,
11823                                         QualType* CompLHSTy) {
11824   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11825 
11826   if (LHS.get()->getType()->isVectorType() ||
11827       RHS.get()->getType()->isVectorType()) {
11828     QualType compType =
11829         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11830                             /*AllowBothBool*/ getLangOpts().AltiVec,
11831                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11832                             /*AllowBooleanOperation*/ false,
11833                             /*ReportInvalid*/ true);
11834     if (CompLHSTy) *CompLHSTy = compType;
11835     return compType;
11836   }
11837 
11838   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11839       RHS.get()->getType()->isVLSTBuiltinType()) {
11840     QualType compType =
11841         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11842     if (CompLHSTy)
11843       *CompLHSTy = compType;
11844     return compType;
11845   }
11846 
11847   if (LHS.get()->getType()->isConstantMatrixType() ||
11848       RHS.get()->getType()->isConstantMatrixType()) {
11849     QualType compType =
11850         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11851     if (CompLHSTy)
11852       *CompLHSTy = compType;
11853     return compType;
11854   }
11855 
11856   QualType compType = UsualArithmeticConversions(
11857       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11858   if (LHS.isInvalid() || RHS.isInvalid())
11859     return QualType();
11860 
11861   // Enforce type constraints: C99 6.5.6p3.
11862 
11863   // Handle the common case first (both operands are arithmetic).
11864   if (!compType.isNull() && compType->isArithmeticType()) {
11865     if (CompLHSTy) *CompLHSTy = compType;
11866     return compType;
11867   }
11868 
11869   // Either ptr - int   or   ptr - ptr.
11870   if (LHS.get()->getType()->isAnyPointerType()) {
11871     QualType lpointee = LHS.get()->getType()->getPointeeType();
11872 
11873     // Diagnose bad cases where we step over interface counts.
11874     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11875         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11876       return QualType();
11877 
11878     // The result type of a pointer-int computation is the pointer type.
11879     if (RHS.get()->getType()->isIntegerType()) {
11880       // Subtracting from a null pointer should produce a warning.
11881       // The last argument to the diagnose call says this doesn't match the
11882       // GNU int-to-pointer idiom.
11883       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11884                                            Expr::NPC_ValueDependentIsNotNull)) {
11885         // In C++ adding zero to a null pointer is defined.
11886         Expr::EvalResult KnownVal;
11887         if (!getLangOpts().CPlusPlus ||
11888             (!RHS.get()->isValueDependent() &&
11889              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11890               KnownVal.Val.getInt() != 0))) {
11891           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11892         }
11893       }
11894 
11895       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11896         return QualType();
11897 
11898       // Check array bounds for pointer arithemtic
11899       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11900                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11901 
11902       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11903       return LHS.get()->getType();
11904     }
11905 
11906     // Handle pointer-pointer subtractions.
11907     if (const PointerType *RHSPTy
11908           = RHS.get()->getType()->getAs<PointerType>()) {
11909       QualType rpointee = RHSPTy->getPointeeType();
11910 
11911       if (getLangOpts().CPlusPlus) {
11912         // Pointee types must be the same: C++ [expr.add]
11913         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11914           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11915         }
11916       } else {
11917         // Pointee types must be compatible C99 6.5.6p3
11918         if (!Context.typesAreCompatible(
11919                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11920                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11921           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11922           return QualType();
11923         }
11924       }
11925 
11926       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11927                                                LHS.get(), RHS.get()))
11928         return QualType();
11929 
11930       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11931           Context, Expr::NPC_ValueDependentIsNotNull);
11932       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11933           Context, Expr::NPC_ValueDependentIsNotNull);
11934 
11935       // Subtracting nullptr or from nullptr is suspect
11936       if (LHSIsNullPtr)
11937         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11938       if (RHSIsNullPtr)
11939         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11940 
11941       // The pointee type may have zero size.  As an extension, a structure or
11942       // union may have zero size or an array may have zero length.  In this
11943       // case subtraction does not make sense.
11944       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11945         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11946         if (ElementSize.isZero()) {
11947           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11948             << rpointee.getUnqualifiedType()
11949             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11950         }
11951       }
11952 
11953       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11954       return Context.getPointerDiffType();
11955     }
11956   }
11957 
11958   return InvalidOperands(Loc, LHS, RHS);
11959 }
11960 
11961 static bool isScopedEnumerationType(QualType T) {
11962   if (const EnumType *ET = T->getAs<EnumType>())
11963     return ET->getDecl()->isScoped();
11964   return false;
11965 }
11966 
11967 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11968                                    SourceLocation Loc, BinaryOperatorKind Opc,
11969                                    QualType LHSType) {
11970   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11971   // so skip remaining warnings as we don't want to modify values within Sema.
11972   if (S.getLangOpts().OpenCL)
11973     return;
11974 
11975   // Check right/shifter operand
11976   Expr::EvalResult RHSResult;
11977   if (RHS.get()->isValueDependent() ||
11978       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11979     return;
11980   llvm::APSInt Right = RHSResult.Val.getInt();
11981 
11982   if (Right.isNegative()) {
11983     S.DiagRuntimeBehavior(Loc, RHS.get(),
11984                           S.PDiag(diag::warn_shift_negative)
11985                             << RHS.get()->getSourceRange());
11986     return;
11987   }
11988 
11989   QualType LHSExprType = LHS.get()->getType();
11990   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11991   if (LHSExprType->isBitIntType())
11992     LeftSize = S.Context.getIntWidth(LHSExprType);
11993   else if (LHSExprType->isFixedPointType()) {
11994     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11995     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11996   }
11997   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11998   if (Right.uge(LeftBits)) {
11999     S.DiagRuntimeBehavior(Loc, RHS.get(),
12000                           S.PDiag(diag::warn_shift_gt_typewidth)
12001                             << RHS.get()->getSourceRange());
12002     return;
12003   }
12004 
12005   // FIXME: We probably need to handle fixed point types specially here.
12006   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12007     return;
12008 
12009   // When left shifting an ICE which is signed, we can check for overflow which
12010   // according to C++ standards prior to C++2a has undefined behavior
12011   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12012   // more than the maximum value representable in the result type, so never
12013   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12014   // expression is still probably a bug.)
12015   Expr::EvalResult LHSResult;
12016   if (LHS.get()->isValueDependent() ||
12017       LHSType->hasUnsignedIntegerRepresentation() ||
12018       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12019     return;
12020   llvm::APSInt Left = LHSResult.Val.getInt();
12021 
12022   // Don't warn if signed overflow is defined, then all the rest of the
12023   // diagnostics will not be triggered because the behavior is defined.
12024   // Also don't warn in C++20 mode (and newer), as signed left shifts
12025   // always wrap and never overflow.
12026   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12027     return;
12028 
12029   // If LHS does not have a non-negative value then, the
12030   // behavior is undefined before C++2a. Warn about it.
12031   if (Left.isNegative()) {
12032     S.DiagRuntimeBehavior(Loc, LHS.get(),
12033                           S.PDiag(diag::warn_shift_lhs_negative)
12034                             << LHS.get()->getSourceRange());
12035     return;
12036   }
12037 
12038   llvm::APInt ResultBits =
12039       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12040   if (LeftBits.uge(ResultBits))
12041     return;
12042   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12043   Result = Result.shl(Right);
12044 
12045   // Print the bit representation of the signed integer as an unsigned
12046   // hexadecimal number.
12047   SmallString<40> HexResult;
12048   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12049 
12050   // If we are only missing a sign bit, this is less likely to result in actual
12051   // bugs -- if the result is cast back to an unsigned type, it will have the
12052   // expected value. Thus we place this behind a different warning that can be
12053   // turned off separately if needed.
12054   if (LeftBits == ResultBits - 1) {
12055     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12056         << HexResult << LHSType
12057         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12058     return;
12059   }
12060 
12061   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12062       << HexResult.str() << Result.getSignificantBits() << LHSType
12063       << Left.getBitWidth() << LHS.get()->getSourceRange()
12064       << RHS.get()->getSourceRange();
12065 }
12066 
12067 /// Return the resulting type when a vector is shifted
12068 ///        by a scalar or vector shift amount.
12069 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12070                                  SourceLocation Loc, bool IsCompAssign) {
12071   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12072   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12073       !LHS.get()->getType()->isVectorType()) {
12074     S.Diag(Loc, diag::err_shift_rhs_only_vector)
12075       << RHS.get()->getType() << LHS.get()->getType()
12076       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12077     return QualType();
12078   }
12079 
12080   if (!IsCompAssign) {
12081     LHS = S.UsualUnaryConversions(LHS.get());
12082     if (LHS.isInvalid()) return QualType();
12083   }
12084 
12085   RHS = S.UsualUnaryConversions(RHS.get());
12086   if (RHS.isInvalid()) return QualType();
12087 
12088   QualType LHSType = LHS.get()->getType();
12089   // Note that LHS might be a scalar because the routine calls not only in
12090   // OpenCL case.
12091   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12092   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12093 
12094   // Note that RHS might not be a vector.
12095   QualType RHSType = RHS.get()->getType();
12096   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12097   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12098 
12099   // Do not allow shifts for boolean vectors.
12100   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12101       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12102     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12103         << LHS.get()->getType() << RHS.get()->getType()
12104         << LHS.get()->getSourceRange();
12105     return QualType();
12106   }
12107 
12108   // The operands need to be integers.
12109   if (!LHSEleType->isIntegerType()) {
12110     S.Diag(Loc, diag::err_typecheck_expect_int)
12111       << LHS.get()->getType() << LHS.get()->getSourceRange();
12112     return QualType();
12113   }
12114 
12115   if (!RHSEleType->isIntegerType()) {
12116     S.Diag(Loc, diag::err_typecheck_expect_int)
12117       << RHS.get()->getType() << RHS.get()->getSourceRange();
12118     return QualType();
12119   }
12120 
12121   if (!LHSVecTy) {
12122     assert(RHSVecTy);
12123     if (IsCompAssign)
12124       return RHSType;
12125     if (LHSEleType != RHSEleType) {
12126       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12127       LHSEleType = RHSEleType;
12128     }
12129     QualType VecTy =
12130         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12131     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12132     LHSType = VecTy;
12133   } else if (RHSVecTy) {
12134     // OpenCL v1.1 s6.3.j says that for vector types, the operators
12135     // are applied component-wise. So if RHS is a vector, then ensure
12136     // that the number of elements is the same as LHS...
12137     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12138       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12139         << LHS.get()->getType() << RHS.get()->getType()
12140         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12141       return QualType();
12142     }
12143     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12144       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12145       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12146       if (LHSBT != RHSBT &&
12147           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12148         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12149             << LHS.get()->getType() << RHS.get()->getType()
12150             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12151       }
12152     }
12153   } else {
12154     // ...else expand RHS to match the number of elements in LHS.
12155     QualType VecTy =
12156       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12157     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12158   }
12159 
12160   return LHSType;
12161 }
12162 
12163 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12164                                          ExprResult &RHS, SourceLocation Loc,
12165                                          bool IsCompAssign) {
12166   if (!IsCompAssign) {
12167     LHS = S.UsualUnaryConversions(LHS.get());
12168     if (LHS.isInvalid())
12169       return QualType();
12170   }
12171 
12172   RHS = S.UsualUnaryConversions(RHS.get());
12173   if (RHS.isInvalid())
12174     return QualType();
12175 
12176   QualType LHSType = LHS.get()->getType();
12177   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12178   QualType LHSEleType = LHSType->isVLSTBuiltinType()
12179                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12180                             : LHSType;
12181 
12182   // Note that RHS might not be a vector
12183   QualType RHSType = RHS.get()->getType();
12184   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12185   QualType RHSEleType = RHSType->isVLSTBuiltinType()
12186                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12187                             : RHSType;
12188 
12189   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12190       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12191     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12192         << LHSType << RHSType << LHS.get()->getSourceRange();
12193     return QualType();
12194   }
12195 
12196   if (!LHSEleType->isIntegerType()) {
12197     S.Diag(Loc, diag::err_typecheck_expect_int)
12198         << LHS.get()->getType() << LHS.get()->getSourceRange();
12199     return QualType();
12200   }
12201 
12202   if (!RHSEleType->isIntegerType()) {
12203     S.Diag(Loc, diag::err_typecheck_expect_int)
12204         << RHS.get()->getType() << RHS.get()->getSourceRange();
12205     return QualType();
12206   }
12207 
12208   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
12209       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12210        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12211     S.Diag(Loc, diag::err_typecheck_invalid_operands)
12212         << LHSType << RHSType << LHS.get()->getSourceRange()
12213         << RHS.get()->getSourceRange();
12214     return QualType();
12215   }
12216 
12217   if (!LHSType->isVLSTBuiltinType()) {
12218     assert(RHSType->isVLSTBuiltinType());
12219     if (IsCompAssign)
12220       return RHSType;
12221     if (LHSEleType != RHSEleType) {
12222       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12223       LHSEleType = RHSEleType;
12224     }
12225     const llvm::ElementCount VecSize =
12226         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12227     QualType VecTy =
12228         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12229     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12230     LHSType = VecTy;
12231   } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
12232     if (S.Context.getTypeSize(RHSBuiltinTy) !=
12233         S.Context.getTypeSize(LHSBuiltinTy)) {
12234       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12235           << LHSType << RHSType << LHS.get()->getSourceRange()
12236           << RHS.get()->getSourceRange();
12237       return QualType();
12238     }
12239   } else {
12240     const llvm::ElementCount VecSize =
12241         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12242     if (LHSEleType != RHSEleType) {
12243       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12244       RHSEleType = LHSEleType;
12245     }
12246     QualType VecTy =
12247         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12248     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12249   }
12250 
12251   return LHSType;
12252 }
12253 
12254 // C99 6.5.7
12255 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12256                                   SourceLocation Loc, BinaryOperatorKind Opc,
12257                                   bool IsCompAssign) {
12258   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12259 
12260   // Vector shifts promote their scalar inputs to vector type.
12261   if (LHS.get()->getType()->isVectorType() ||
12262       RHS.get()->getType()->isVectorType()) {
12263     if (LangOpts.ZVector) {
12264       // The shift operators for the z vector extensions work basically
12265       // like general shifts, except that neither the LHS nor the RHS is
12266       // allowed to be a "vector bool".
12267       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12268         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
12269           return InvalidOperands(Loc, LHS, RHS);
12270       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12271         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
12272           return InvalidOperands(Loc, LHS, RHS);
12273     }
12274     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12275   }
12276 
12277   if (LHS.get()->getType()->isVLSTBuiltinType() ||
12278       RHS.get()->getType()->isVLSTBuiltinType())
12279     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12280 
12281   // Shifts don't perform usual arithmetic conversions, they just do integer
12282   // promotions on each operand. C99 6.5.7p3
12283 
12284   // For the LHS, do usual unary conversions, but then reset them away
12285   // if this is a compound assignment.
12286   ExprResult OldLHS = LHS;
12287   LHS = UsualUnaryConversions(LHS.get());
12288   if (LHS.isInvalid())
12289     return QualType();
12290   QualType LHSType = LHS.get()->getType();
12291   if (IsCompAssign) LHS = OldLHS;
12292 
12293   // The RHS is simpler.
12294   RHS = UsualUnaryConversions(RHS.get());
12295   if (RHS.isInvalid())
12296     return QualType();
12297   QualType RHSType = RHS.get()->getType();
12298 
12299   // C99 6.5.7p2: Each of the operands shall have integer type.
12300   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12301   if ((!LHSType->isFixedPointOrIntegerType() &&
12302        !LHSType->hasIntegerRepresentation()) ||
12303       !RHSType->hasIntegerRepresentation())
12304     return InvalidOperands(Loc, LHS, RHS);
12305 
12306   // C++0x: Don't allow scoped enums. FIXME: Use something better than
12307   // hasIntegerRepresentation() above instead of this.
12308   if (isScopedEnumerationType(LHSType) ||
12309       isScopedEnumerationType(RHSType)) {
12310     return InvalidOperands(Loc, LHS, RHS);
12311   }
12312   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12313 
12314   // "The type of the result is that of the promoted left operand."
12315   return LHSType;
12316 }
12317 
12318 /// Diagnose bad pointer comparisons.
12319 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12320                                               ExprResult &LHS, ExprResult &RHS,
12321                                               bool IsError) {
12322   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12323                       : diag::ext_typecheck_comparison_of_distinct_pointers)
12324     << LHS.get()->getType() << RHS.get()->getType()
12325     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12326 }
12327 
12328 /// Returns false if the pointers are converted to a composite type,
12329 /// true otherwise.
12330 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12331                                            ExprResult &LHS, ExprResult &RHS) {
12332   // C++ [expr.rel]p2:
12333   //   [...] Pointer conversions (4.10) and qualification
12334   //   conversions (4.4) are performed on pointer operands (or on
12335   //   a pointer operand and a null pointer constant) to bring
12336   //   them to their composite pointer type. [...]
12337   //
12338   // C++ [expr.eq]p1 uses the same notion for (in)equality
12339   // comparisons of pointers.
12340 
12341   QualType LHSType = LHS.get()->getType();
12342   QualType RHSType = RHS.get()->getType();
12343   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12344          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12345 
12346   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12347   if (T.isNull()) {
12348     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12349         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12350       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12351     else
12352       S.InvalidOperands(Loc, LHS, RHS);
12353     return true;
12354   }
12355 
12356   return false;
12357 }
12358 
12359 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12360                                                     ExprResult &LHS,
12361                                                     ExprResult &RHS,
12362                                                     bool IsError) {
12363   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12364                       : diag::ext_typecheck_comparison_of_fptr_to_void)
12365     << LHS.get()->getType() << RHS.get()->getType()
12366     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12367 }
12368 
12369 static bool isObjCObjectLiteral(ExprResult &E) {
12370   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12371   case Stmt::ObjCArrayLiteralClass:
12372   case Stmt::ObjCDictionaryLiteralClass:
12373   case Stmt::ObjCStringLiteralClass:
12374   case Stmt::ObjCBoxedExprClass:
12375     return true;
12376   default:
12377     // Note that ObjCBoolLiteral is NOT an object literal!
12378     return false;
12379   }
12380 }
12381 
12382 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12383   const ObjCObjectPointerType *Type =
12384     LHS->getType()->getAs<ObjCObjectPointerType>();
12385 
12386   // If this is not actually an Objective-C object, bail out.
12387   if (!Type)
12388     return false;
12389 
12390   // Get the LHS object's interface type.
12391   QualType InterfaceType = Type->getPointeeType();
12392 
12393   // If the RHS isn't an Objective-C object, bail out.
12394   if (!RHS->getType()->isObjCObjectPointerType())
12395     return false;
12396 
12397   // Try to find the -isEqual: method.
12398   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12399   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12400                                                       InterfaceType,
12401                                                       /*IsInstance=*/true);
12402   if (!Method) {
12403     if (Type->isObjCIdType()) {
12404       // For 'id', just check the global pool.
12405       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12406                                                   /*receiverId=*/true);
12407     } else {
12408       // Check protocols.
12409       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12410                                              /*IsInstance=*/true);
12411     }
12412   }
12413 
12414   if (!Method)
12415     return false;
12416 
12417   QualType T = Method->parameters()[0]->getType();
12418   if (!T->isObjCObjectPointerType())
12419     return false;
12420 
12421   QualType R = Method->getReturnType();
12422   if (!R->isScalarType())
12423     return false;
12424 
12425   return true;
12426 }
12427 
12428 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12429   FromE = FromE->IgnoreParenImpCasts();
12430   switch (FromE->getStmtClass()) {
12431     default:
12432       break;
12433     case Stmt::ObjCStringLiteralClass:
12434       // "string literal"
12435       return LK_String;
12436     case Stmt::ObjCArrayLiteralClass:
12437       // "array literal"
12438       return LK_Array;
12439     case Stmt::ObjCDictionaryLiteralClass:
12440       // "dictionary literal"
12441       return LK_Dictionary;
12442     case Stmt::BlockExprClass:
12443       return LK_Block;
12444     case Stmt::ObjCBoxedExprClass: {
12445       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12446       switch (Inner->getStmtClass()) {
12447         case Stmt::IntegerLiteralClass:
12448         case Stmt::FloatingLiteralClass:
12449         case Stmt::CharacterLiteralClass:
12450         case Stmt::ObjCBoolLiteralExprClass:
12451         case Stmt::CXXBoolLiteralExprClass:
12452           // "numeric literal"
12453           return LK_Numeric;
12454         case Stmt::ImplicitCastExprClass: {
12455           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12456           // Boolean literals can be represented by implicit casts.
12457           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12458             return LK_Numeric;
12459           break;
12460         }
12461         default:
12462           break;
12463       }
12464       return LK_Boxed;
12465     }
12466   }
12467   return LK_None;
12468 }
12469 
12470 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12471                                           ExprResult &LHS, ExprResult &RHS,
12472                                           BinaryOperator::Opcode Opc){
12473   Expr *Literal;
12474   Expr *Other;
12475   if (isObjCObjectLiteral(LHS)) {
12476     Literal = LHS.get();
12477     Other = RHS.get();
12478   } else {
12479     Literal = RHS.get();
12480     Other = LHS.get();
12481   }
12482 
12483   // Don't warn on comparisons against nil.
12484   Other = Other->IgnoreParenCasts();
12485   if (Other->isNullPointerConstant(S.getASTContext(),
12486                                    Expr::NPC_ValueDependentIsNotNull))
12487     return;
12488 
12489   // This should be kept in sync with warn_objc_literal_comparison.
12490   // LK_String should always be after the other literals, since it has its own
12491   // warning flag.
12492   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12493   assert(LiteralKind != Sema::LK_Block);
12494   if (LiteralKind == Sema::LK_None) {
12495     llvm_unreachable("Unknown Objective-C object literal kind");
12496   }
12497 
12498   if (LiteralKind == Sema::LK_String)
12499     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12500       << Literal->getSourceRange();
12501   else
12502     S.Diag(Loc, diag::warn_objc_literal_comparison)
12503       << LiteralKind << Literal->getSourceRange();
12504 
12505   if (BinaryOperator::isEqualityOp(Opc) &&
12506       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12507     SourceLocation Start = LHS.get()->getBeginLoc();
12508     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12509     CharSourceRange OpRange =
12510       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12511 
12512     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12513       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12514       << FixItHint::CreateReplacement(OpRange, " isEqual:")
12515       << FixItHint::CreateInsertion(End, "]");
12516   }
12517 }
12518 
12519 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12520 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12521                                            ExprResult &RHS, SourceLocation Loc,
12522                                            BinaryOperatorKind Opc) {
12523   // Check that left hand side is !something.
12524   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12525   if (!UO || UO->getOpcode() != UO_LNot) return;
12526 
12527   // Only check if the right hand side is non-bool arithmetic type.
12528   if (RHS.get()->isKnownToHaveBooleanValue()) return;
12529 
12530   // Make sure that the something in !something is not bool.
12531   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12532   if (SubExpr->isKnownToHaveBooleanValue()) return;
12533 
12534   // Emit warning.
12535   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12536   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12537       << Loc << IsBitwiseOp;
12538 
12539   // First note suggest !(x < y)
12540   SourceLocation FirstOpen = SubExpr->getBeginLoc();
12541   SourceLocation FirstClose = RHS.get()->getEndLoc();
12542   FirstClose = S.getLocForEndOfToken(FirstClose);
12543   if (FirstClose.isInvalid())
12544     FirstOpen = SourceLocation();
12545   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12546       << IsBitwiseOp
12547       << FixItHint::CreateInsertion(FirstOpen, "(")
12548       << FixItHint::CreateInsertion(FirstClose, ")");
12549 
12550   // Second note suggests (!x) < y
12551   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12552   SourceLocation SecondClose = LHS.get()->getEndLoc();
12553   SecondClose = S.getLocForEndOfToken(SecondClose);
12554   if (SecondClose.isInvalid())
12555     SecondOpen = SourceLocation();
12556   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12557       << FixItHint::CreateInsertion(SecondOpen, "(")
12558       << FixItHint::CreateInsertion(SecondClose, ")");
12559 }
12560 
12561 // Returns true if E refers to a non-weak array.
12562 static bool checkForArray(const Expr *E) {
12563   const ValueDecl *D = nullptr;
12564   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12565     D = DR->getDecl();
12566   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12567     if (Mem->isImplicitAccess())
12568       D = Mem->getMemberDecl();
12569   }
12570   if (!D)
12571     return false;
12572   return D->getType()->isArrayType() && !D->isWeak();
12573 }
12574 
12575 /// Diagnose some forms of syntactically-obvious tautological comparison.
12576 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12577                                            Expr *LHS, Expr *RHS,
12578                                            BinaryOperatorKind Opc) {
12579   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12580   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12581 
12582   QualType LHSType = LHS->getType();
12583   QualType RHSType = RHS->getType();
12584   if (LHSType->hasFloatingRepresentation() ||
12585       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12586       S.inTemplateInstantiation())
12587     return;
12588 
12589   // WebAssembly Tables cannot be compared, therefore shouldn't emit
12590   // Tautological diagnostics.
12591   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12592     return;
12593 
12594   // Comparisons between two array types are ill-formed for operator<=>, so
12595   // we shouldn't emit any additional warnings about it.
12596   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12597     return;
12598 
12599   // For non-floating point types, check for self-comparisons of the form
12600   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12601   // often indicate logic errors in the program.
12602   //
12603   // NOTE: Don't warn about comparison expressions resulting from macro
12604   // expansion. Also don't warn about comparisons which are only self
12605   // comparisons within a template instantiation. The warnings should catch
12606   // obvious cases in the definition of the template anyways. The idea is to
12607   // warn when the typed comparison operator will always evaluate to the same
12608   // result.
12609 
12610   // Used for indexing into %select in warn_comparison_always
12611   enum {
12612     AlwaysConstant,
12613     AlwaysTrue,
12614     AlwaysFalse,
12615     AlwaysEqual, // std::strong_ordering::equal from operator<=>
12616   };
12617 
12618   // C++2a [depr.array.comp]:
12619   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12620   //   operands of array type are deprecated.
12621   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12622       RHSStripped->getType()->isArrayType()) {
12623     S.Diag(Loc, diag::warn_depr_array_comparison)
12624         << LHS->getSourceRange() << RHS->getSourceRange()
12625         << LHSStripped->getType() << RHSStripped->getType();
12626     // Carry on to produce the tautological comparison warning, if this
12627     // expression is potentially-evaluated, we can resolve the array to a
12628     // non-weak declaration, and so on.
12629   }
12630 
12631   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12632     if (Expr::isSameComparisonOperand(LHS, RHS)) {
12633       unsigned Result;
12634       switch (Opc) {
12635       case BO_EQ:
12636       case BO_LE:
12637       case BO_GE:
12638         Result = AlwaysTrue;
12639         break;
12640       case BO_NE:
12641       case BO_LT:
12642       case BO_GT:
12643         Result = AlwaysFalse;
12644         break;
12645       case BO_Cmp:
12646         Result = AlwaysEqual;
12647         break;
12648       default:
12649         Result = AlwaysConstant;
12650         break;
12651       }
12652       S.DiagRuntimeBehavior(Loc, nullptr,
12653                             S.PDiag(diag::warn_comparison_always)
12654                                 << 0 /*self-comparison*/
12655                                 << Result);
12656     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12657       // What is it always going to evaluate to?
12658       unsigned Result;
12659       switch (Opc) {
12660       case BO_EQ: // e.g. array1 == array2
12661         Result = AlwaysFalse;
12662         break;
12663       case BO_NE: // e.g. array1 != array2
12664         Result = AlwaysTrue;
12665         break;
12666       default: // e.g. array1 <= array2
12667         // The best we can say is 'a constant'
12668         Result = AlwaysConstant;
12669         break;
12670       }
12671       S.DiagRuntimeBehavior(Loc, nullptr,
12672                             S.PDiag(diag::warn_comparison_always)
12673                                 << 1 /*array comparison*/
12674                                 << Result);
12675     }
12676   }
12677 
12678   if (isa<CastExpr>(LHSStripped))
12679     LHSStripped = LHSStripped->IgnoreParenCasts();
12680   if (isa<CastExpr>(RHSStripped))
12681     RHSStripped = RHSStripped->IgnoreParenCasts();
12682 
12683   // Warn about comparisons against a string constant (unless the other
12684   // operand is null); the user probably wants string comparison function.
12685   Expr *LiteralString = nullptr;
12686   Expr *LiteralStringStripped = nullptr;
12687   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12688       !RHSStripped->isNullPointerConstant(S.Context,
12689                                           Expr::NPC_ValueDependentIsNull)) {
12690     LiteralString = LHS;
12691     LiteralStringStripped = LHSStripped;
12692   } else if ((isa<StringLiteral>(RHSStripped) ||
12693               isa<ObjCEncodeExpr>(RHSStripped)) &&
12694              !LHSStripped->isNullPointerConstant(S.Context,
12695                                           Expr::NPC_ValueDependentIsNull)) {
12696     LiteralString = RHS;
12697     LiteralStringStripped = RHSStripped;
12698   }
12699 
12700   if (LiteralString) {
12701     S.DiagRuntimeBehavior(Loc, nullptr,
12702                           S.PDiag(diag::warn_stringcompare)
12703                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
12704                               << LiteralString->getSourceRange());
12705   }
12706 }
12707 
12708 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12709   switch (CK) {
12710   default: {
12711 #ifndef NDEBUG
12712     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12713                  << "\n";
12714 #endif
12715     llvm_unreachable("unhandled cast kind");
12716   }
12717   case CK_UserDefinedConversion:
12718     return ICK_Identity;
12719   case CK_LValueToRValue:
12720     return ICK_Lvalue_To_Rvalue;
12721   case CK_ArrayToPointerDecay:
12722     return ICK_Array_To_Pointer;
12723   case CK_FunctionToPointerDecay:
12724     return ICK_Function_To_Pointer;
12725   case CK_IntegralCast:
12726     return ICK_Integral_Conversion;
12727   case CK_FloatingCast:
12728     return ICK_Floating_Conversion;
12729   case CK_IntegralToFloating:
12730   case CK_FloatingToIntegral:
12731     return ICK_Floating_Integral;
12732   case CK_IntegralComplexCast:
12733   case CK_FloatingComplexCast:
12734   case CK_FloatingComplexToIntegralComplex:
12735   case CK_IntegralComplexToFloatingComplex:
12736     return ICK_Complex_Conversion;
12737   case CK_FloatingComplexToReal:
12738   case CK_FloatingRealToComplex:
12739   case CK_IntegralComplexToReal:
12740   case CK_IntegralRealToComplex:
12741     return ICK_Complex_Real;
12742   }
12743 }
12744 
12745 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12746                                              QualType FromType,
12747                                              SourceLocation Loc) {
12748   // Check for a narrowing implicit conversion.
12749   StandardConversionSequence SCS;
12750   SCS.setAsIdentityConversion();
12751   SCS.setToType(0, FromType);
12752   SCS.setToType(1, ToType);
12753   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12754     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12755 
12756   APValue PreNarrowingValue;
12757   QualType PreNarrowingType;
12758   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12759                                PreNarrowingType,
12760                                /*IgnoreFloatToIntegralConversion*/ true)) {
12761   case NK_Dependent_Narrowing:
12762     // Implicit conversion to a narrower type, but the expression is
12763     // value-dependent so we can't tell whether it's actually narrowing.
12764   case NK_Not_Narrowing:
12765     return false;
12766 
12767   case NK_Constant_Narrowing:
12768     // Implicit conversion to a narrower type, and the value is not a constant
12769     // expression.
12770     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12771         << /*Constant*/ 1
12772         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12773     return true;
12774 
12775   case NK_Variable_Narrowing:
12776     // Implicit conversion to a narrower type, and the value is not a constant
12777     // expression.
12778   case NK_Type_Narrowing:
12779     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12780         << /*Constant*/ 0 << FromType << ToType;
12781     // TODO: It's not a constant expression, but what if the user intended it
12782     // to be? Can we produce notes to help them figure out why it isn't?
12783     return true;
12784   }
12785   llvm_unreachable("unhandled case in switch");
12786 }
12787 
12788 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12789                                                          ExprResult &LHS,
12790                                                          ExprResult &RHS,
12791                                                          SourceLocation Loc) {
12792   QualType LHSType = LHS.get()->getType();
12793   QualType RHSType = RHS.get()->getType();
12794   // Dig out the original argument type and expression before implicit casts
12795   // were applied. These are the types/expressions we need to check the
12796   // [expr.spaceship] requirements against.
12797   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12798   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12799   QualType LHSStrippedType = LHSStripped.get()->getType();
12800   QualType RHSStrippedType = RHSStripped.get()->getType();
12801 
12802   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12803   // other is not, the program is ill-formed.
12804   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12805     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12806     return QualType();
12807   }
12808 
12809   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12810   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12811                     RHSStrippedType->isEnumeralType();
12812   if (NumEnumArgs == 1) {
12813     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12814     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12815     if (OtherTy->hasFloatingRepresentation()) {
12816       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12817       return QualType();
12818     }
12819   }
12820   if (NumEnumArgs == 2) {
12821     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12822     // type E, the operator yields the result of converting the operands
12823     // to the underlying type of E and applying <=> to the converted operands.
12824     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12825       S.InvalidOperands(Loc, LHS, RHS);
12826       return QualType();
12827     }
12828     QualType IntType =
12829         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12830     assert(IntType->isArithmeticType());
12831 
12832     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12833     // promote the boolean type, and all other promotable integer types, to
12834     // avoid this.
12835     if (S.Context.isPromotableIntegerType(IntType))
12836       IntType = S.Context.getPromotedIntegerType(IntType);
12837 
12838     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12839     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12840     LHSType = RHSType = IntType;
12841   }
12842 
12843   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12844   // usual arithmetic conversions are applied to the operands.
12845   QualType Type =
12846       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12847   if (LHS.isInvalid() || RHS.isInvalid())
12848     return QualType();
12849   if (Type.isNull())
12850     return S.InvalidOperands(Loc, LHS, RHS);
12851 
12852   std::optional<ComparisonCategoryType> CCT =
12853       getComparisonCategoryForBuiltinCmp(Type);
12854   if (!CCT)
12855     return S.InvalidOperands(Loc, LHS, RHS);
12856 
12857   bool HasNarrowing = checkThreeWayNarrowingConversion(
12858       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12859   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12860                                                    RHS.get()->getBeginLoc());
12861   if (HasNarrowing)
12862     return QualType();
12863 
12864   assert(!Type.isNull() && "composite type for <=> has not been set");
12865 
12866   return S.CheckComparisonCategoryType(
12867       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12868 }
12869 
12870 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12871                                                  ExprResult &RHS,
12872                                                  SourceLocation Loc,
12873                                                  BinaryOperatorKind Opc) {
12874   if (Opc == BO_Cmp)
12875     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12876 
12877   // C99 6.5.8p3 / C99 6.5.9p4
12878   QualType Type =
12879       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12880   if (LHS.isInvalid() || RHS.isInvalid())
12881     return QualType();
12882   if (Type.isNull())
12883     return S.InvalidOperands(Loc, LHS, RHS);
12884   assert(Type->isArithmeticType() || Type->isEnumeralType());
12885 
12886   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12887     return S.InvalidOperands(Loc, LHS, RHS);
12888 
12889   // Check for comparisons of floating point operands using != and ==.
12890   if (Type->hasFloatingRepresentation())
12891     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12892 
12893   // The result of comparisons is 'bool' in C++, 'int' in C.
12894   return S.Context.getLogicalOperationType();
12895 }
12896 
12897 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12898   if (!NullE.get()->getType()->isAnyPointerType())
12899     return;
12900   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12901   if (!E.get()->getType()->isAnyPointerType() &&
12902       E.get()->isNullPointerConstant(Context,
12903                                      Expr::NPC_ValueDependentIsNotNull) ==
12904         Expr::NPCK_ZeroExpression) {
12905     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12906       if (CL->getValue() == 0)
12907         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12908             << NullValue
12909             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12910                                             NullValue ? "NULL" : "(void *)0");
12911     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12912         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12913         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12914         if (T == Context.CharTy)
12915           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12916               << NullValue
12917               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12918                                               NullValue ? "NULL" : "(void *)0");
12919       }
12920   }
12921 }
12922 
12923 // C99 6.5.8, C++ [expr.rel]
12924 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12925                                     SourceLocation Loc,
12926                                     BinaryOperatorKind Opc) {
12927   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12928   bool IsThreeWay = Opc == BO_Cmp;
12929   bool IsOrdered = IsRelational || IsThreeWay;
12930   auto IsAnyPointerType = [](ExprResult E) {
12931     QualType Ty = E.get()->getType();
12932     return Ty->isPointerType() || Ty->isMemberPointerType();
12933   };
12934 
12935   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12936   // type, array-to-pointer, ..., conversions are performed on both operands to
12937   // bring them to their composite type.
12938   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12939   // any type-related checks.
12940   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12941     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12942     if (LHS.isInvalid())
12943       return QualType();
12944     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12945     if (RHS.isInvalid())
12946       return QualType();
12947   } else {
12948     LHS = DefaultLvalueConversion(LHS.get());
12949     if (LHS.isInvalid())
12950       return QualType();
12951     RHS = DefaultLvalueConversion(RHS.get());
12952     if (RHS.isInvalid())
12953       return QualType();
12954   }
12955 
12956   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12957   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12958     CheckPtrComparisonWithNullChar(LHS, RHS);
12959     CheckPtrComparisonWithNullChar(RHS, LHS);
12960   }
12961 
12962   // Handle vector comparisons separately.
12963   if (LHS.get()->getType()->isVectorType() ||
12964       RHS.get()->getType()->isVectorType())
12965     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12966 
12967   if (LHS.get()->getType()->isVLSTBuiltinType() ||
12968       RHS.get()->getType()->isVLSTBuiltinType())
12969     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12970 
12971   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12972   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12973 
12974   QualType LHSType = LHS.get()->getType();
12975   QualType RHSType = RHS.get()->getType();
12976   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12977       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12978     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12979 
12980   if ((LHSType->isPointerType() &&
12981        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12982       (RHSType->isPointerType() &&
12983        RHSType->getPointeeType().isWebAssemblyReferenceType()))
12984     return InvalidOperands(Loc, LHS, RHS);
12985 
12986   const Expr::NullPointerConstantKind LHSNullKind =
12987       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12988   const Expr::NullPointerConstantKind RHSNullKind =
12989       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12990   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12991   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12992 
12993   auto computeResultTy = [&]() {
12994     if (Opc != BO_Cmp)
12995       return Context.getLogicalOperationType();
12996     assert(getLangOpts().CPlusPlus);
12997     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12998 
12999     QualType CompositeTy = LHS.get()->getType();
13000     assert(!CompositeTy->isReferenceType());
13001 
13002     std::optional<ComparisonCategoryType> CCT =
13003         getComparisonCategoryForBuiltinCmp(CompositeTy);
13004     if (!CCT)
13005       return InvalidOperands(Loc, LHS, RHS);
13006 
13007     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13008       // P0946R0: Comparisons between a null pointer constant and an object
13009       // pointer result in std::strong_equality, which is ill-formed under
13010       // P1959R0.
13011       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13012           << (LHSIsNull ? LHS.get()->getSourceRange()
13013                         : RHS.get()->getSourceRange());
13014       return QualType();
13015     }
13016 
13017     return CheckComparisonCategoryType(
13018         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13019   };
13020 
13021   if (!IsOrdered && LHSIsNull != RHSIsNull) {
13022     bool IsEquality = Opc == BO_EQ;
13023     if (RHSIsNull)
13024       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13025                                    RHS.get()->getSourceRange());
13026     else
13027       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13028                                    LHS.get()->getSourceRange());
13029   }
13030 
13031   if (IsOrdered && LHSType->isFunctionPointerType() &&
13032       RHSType->isFunctionPointerType()) {
13033     // Valid unless a relational comparison of function pointers
13034     bool IsError = Opc == BO_Cmp;
13035     auto DiagID =
13036         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13037         : getLangOpts().CPlusPlus
13038             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13039             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13040     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13041                       << RHS.get()->getSourceRange();
13042     if (IsError)
13043       return QualType();
13044   }
13045 
13046   if ((LHSType->isIntegerType() && !LHSIsNull) ||
13047       (RHSType->isIntegerType() && !RHSIsNull)) {
13048     // Skip normal pointer conversion checks in this case; we have better
13049     // diagnostics for this below.
13050   } else if (getLangOpts().CPlusPlus) {
13051     // Equality comparison of a function pointer to a void pointer is invalid,
13052     // but we allow it as an extension.
13053     // FIXME: If we really want to allow this, should it be part of composite
13054     // pointer type computation so it works in conditionals too?
13055     if (!IsOrdered &&
13056         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13057          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13058       // This is a gcc extension compatibility comparison.
13059       // In a SFINAE context, we treat this as a hard error to maintain
13060       // conformance with the C++ standard.
13061       diagnoseFunctionPointerToVoidComparison(
13062           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13063 
13064       if (isSFINAEContext())
13065         return QualType();
13066 
13067       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13068       return computeResultTy();
13069     }
13070 
13071     // C++ [expr.eq]p2:
13072     //   If at least one operand is a pointer [...] bring them to their
13073     //   composite pointer type.
13074     // C++ [expr.spaceship]p6
13075     //  If at least one of the operands is of pointer type, [...] bring them
13076     //  to their composite pointer type.
13077     // C++ [expr.rel]p2:
13078     //   If both operands are pointers, [...] bring them to their composite
13079     //   pointer type.
13080     // For <=>, the only valid non-pointer types are arrays and functions, and
13081     // we already decayed those, so this is really the same as the relational
13082     // comparison rule.
13083     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13084             (IsOrdered ? 2 : 1) &&
13085         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13086                                          RHSType->isObjCObjectPointerType()))) {
13087       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13088         return QualType();
13089       return computeResultTy();
13090     }
13091   } else if (LHSType->isPointerType() &&
13092              RHSType->isPointerType()) { // C99 6.5.8p2
13093     // All of the following pointer-related warnings are GCC extensions, except
13094     // when handling null pointer constants.
13095     QualType LCanPointeeTy =
13096       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13097     QualType RCanPointeeTy =
13098       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13099 
13100     // C99 6.5.9p2 and C99 6.5.8p2
13101     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13102                                    RCanPointeeTy.getUnqualifiedType())) {
13103       if (IsRelational) {
13104         // Pointers both need to point to complete or incomplete types
13105         if ((LCanPointeeTy->isIncompleteType() !=
13106              RCanPointeeTy->isIncompleteType()) &&
13107             !getLangOpts().C11) {
13108           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13109               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13110               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13111               << RCanPointeeTy->isIncompleteType();
13112         }
13113       }
13114     } else if (!IsRelational &&
13115                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13116       // Valid unless comparison between non-null pointer and function pointer
13117       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13118           && !LHSIsNull && !RHSIsNull)
13119         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13120                                                 /*isError*/false);
13121     } else {
13122       // Invalid
13123       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13124     }
13125     if (LCanPointeeTy != RCanPointeeTy) {
13126       // Treat NULL constant as a special case in OpenCL.
13127       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13128         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13129           Diag(Loc,
13130                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13131               << LHSType << RHSType << 0 /* comparison */
13132               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13133         }
13134       }
13135       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13136       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13137       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13138                                                : CK_BitCast;
13139       if (LHSIsNull && !RHSIsNull)
13140         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13141       else
13142         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13143     }
13144     return computeResultTy();
13145   }
13146 
13147 
13148   // C++ [expr.eq]p4:
13149   //   Two operands of type std::nullptr_t or one operand of type
13150   //   std::nullptr_t and the other a null pointer constant compare
13151   //   equal.
13152   // C2x 6.5.9p5:
13153   //   If both operands have type nullptr_t or one operand has type nullptr_t
13154   //   and the other is a null pointer constant, they compare equal.
13155   if (!IsOrdered && LHSIsNull && RHSIsNull) {
13156     if (LHSType->isNullPtrType()) {
13157       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13158       return computeResultTy();
13159     }
13160     if (RHSType->isNullPtrType()) {
13161       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13162       return computeResultTy();
13163     }
13164   }
13165 
13166   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13167     // C2x 6.5.9p6:
13168     //   Otherwise, at least one operand is a pointer. If one is a pointer and
13169     //   the other is a null pointer constant, the null pointer constant is
13170     //   converted to the type of the pointer.
13171     if (LHSIsNull && RHSType->isPointerType()) {
13172       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13173       return computeResultTy();
13174     }
13175     if (RHSIsNull && LHSType->isPointerType()) {
13176       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13177       return computeResultTy();
13178     }
13179   }
13180 
13181   // Comparison of Objective-C pointers and block pointers against nullptr_t.
13182   // These aren't covered by the composite pointer type rules.
13183   if (!IsOrdered && RHSType->isNullPtrType() &&
13184       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13185     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13186     return computeResultTy();
13187   }
13188   if (!IsOrdered && LHSType->isNullPtrType() &&
13189       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13190     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13191     return computeResultTy();
13192   }
13193 
13194   if (getLangOpts().CPlusPlus) {
13195     if (IsRelational &&
13196         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13197          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13198       // HACK: Relational comparison of nullptr_t against a pointer type is
13199       // invalid per DR583, but we allow it within std::less<> and friends,
13200       // since otherwise common uses of it break.
13201       // FIXME: Consider removing this hack once LWG fixes std::less<> and
13202       // friends to have std::nullptr_t overload candidates.
13203       DeclContext *DC = CurContext;
13204       if (isa<FunctionDecl>(DC))
13205         DC = DC->getParent();
13206       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13207         if (CTSD->isInStdNamespace() &&
13208             llvm::StringSwitch<bool>(CTSD->getName())
13209                 .Cases("less", "less_equal", "greater", "greater_equal", true)
13210                 .Default(false)) {
13211           if (RHSType->isNullPtrType())
13212             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13213           else
13214             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13215           return computeResultTy();
13216         }
13217       }
13218     }
13219 
13220     // C++ [expr.eq]p2:
13221     //   If at least one operand is a pointer to member, [...] bring them to
13222     //   their composite pointer type.
13223     if (!IsOrdered &&
13224         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13225       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13226         return QualType();
13227       else
13228         return computeResultTy();
13229     }
13230   }
13231 
13232   // Handle block pointer types.
13233   if (!IsOrdered && LHSType->isBlockPointerType() &&
13234       RHSType->isBlockPointerType()) {
13235     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13236     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13237 
13238     if (!LHSIsNull && !RHSIsNull &&
13239         !Context.typesAreCompatible(lpointee, rpointee)) {
13240       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13241         << LHSType << RHSType << LHS.get()->getSourceRange()
13242         << RHS.get()->getSourceRange();
13243     }
13244     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13245     return computeResultTy();
13246   }
13247 
13248   // Allow block pointers to be compared with null pointer constants.
13249   if (!IsOrdered
13250       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13251           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13252     if (!LHSIsNull && !RHSIsNull) {
13253       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13254              ->getPointeeType()->isVoidType())
13255             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13256                 ->getPointeeType()->isVoidType())))
13257         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13258           << LHSType << RHSType << LHS.get()->getSourceRange()
13259           << RHS.get()->getSourceRange();
13260     }
13261     if (LHSIsNull && !RHSIsNull)
13262       LHS = ImpCastExprToType(LHS.get(), RHSType,
13263                               RHSType->isPointerType() ? CK_BitCast
13264                                 : CK_AnyPointerToBlockPointerCast);
13265     else
13266       RHS = ImpCastExprToType(RHS.get(), LHSType,
13267                               LHSType->isPointerType() ? CK_BitCast
13268                                 : CK_AnyPointerToBlockPointerCast);
13269     return computeResultTy();
13270   }
13271 
13272   if (LHSType->isObjCObjectPointerType() ||
13273       RHSType->isObjCObjectPointerType()) {
13274     const PointerType *LPT = LHSType->getAs<PointerType>();
13275     const PointerType *RPT = RHSType->getAs<PointerType>();
13276     if (LPT || RPT) {
13277       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13278       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13279 
13280       if (!LPtrToVoid && !RPtrToVoid &&
13281           !Context.typesAreCompatible(LHSType, RHSType)) {
13282         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13283                                           /*isError*/false);
13284       }
13285       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13286       // the RHS, but we have test coverage for this behavior.
13287       // FIXME: Consider using convertPointersToCompositeType in C++.
13288       if (LHSIsNull && !RHSIsNull) {
13289         Expr *E = LHS.get();
13290         if (getLangOpts().ObjCAutoRefCount)
13291           CheckObjCConversion(SourceRange(), RHSType, E,
13292                               CCK_ImplicitConversion);
13293         LHS = ImpCastExprToType(E, RHSType,
13294                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13295       }
13296       else {
13297         Expr *E = RHS.get();
13298         if (getLangOpts().ObjCAutoRefCount)
13299           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13300                               /*Diagnose=*/true,
13301                               /*DiagnoseCFAudited=*/false, Opc);
13302         RHS = ImpCastExprToType(E, LHSType,
13303                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13304       }
13305       return computeResultTy();
13306     }
13307     if (LHSType->isObjCObjectPointerType() &&
13308         RHSType->isObjCObjectPointerType()) {
13309       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13310         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13311                                           /*isError*/false);
13312       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13313         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13314 
13315       if (LHSIsNull && !RHSIsNull)
13316         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13317       else
13318         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13319       return computeResultTy();
13320     }
13321 
13322     if (!IsOrdered && LHSType->isBlockPointerType() &&
13323         RHSType->isBlockCompatibleObjCPointerType(Context)) {
13324       LHS = ImpCastExprToType(LHS.get(), RHSType,
13325                               CK_BlockPointerToObjCPointerCast);
13326       return computeResultTy();
13327     } else if (!IsOrdered &&
13328                LHSType->isBlockCompatibleObjCPointerType(Context) &&
13329                RHSType->isBlockPointerType()) {
13330       RHS = ImpCastExprToType(RHS.get(), LHSType,
13331                               CK_BlockPointerToObjCPointerCast);
13332       return computeResultTy();
13333     }
13334   }
13335   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13336       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13337     unsigned DiagID = 0;
13338     bool isError = false;
13339     if (LangOpts.DebuggerSupport) {
13340       // Under a debugger, allow the comparison of pointers to integers,
13341       // since users tend to want to compare addresses.
13342     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13343                (RHSIsNull && RHSType->isIntegerType())) {
13344       if (IsOrdered) {
13345         isError = getLangOpts().CPlusPlus;
13346         DiagID =
13347           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13348                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13349       }
13350     } else if (getLangOpts().CPlusPlus) {
13351       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13352       isError = true;
13353     } else if (IsOrdered)
13354       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13355     else
13356       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13357 
13358     if (DiagID) {
13359       Diag(Loc, DiagID)
13360         << LHSType << RHSType << LHS.get()->getSourceRange()
13361         << RHS.get()->getSourceRange();
13362       if (isError)
13363         return QualType();
13364     }
13365 
13366     if (LHSType->isIntegerType())
13367       LHS = ImpCastExprToType(LHS.get(), RHSType,
13368                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13369     else
13370       RHS = ImpCastExprToType(RHS.get(), LHSType,
13371                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13372     return computeResultTy();
13373   }
13374 
13375   // Handle block pointers.
13376   if (!IsOrdered && RHSIsNull
13377       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13378     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13379     return computeResultTy();
13380   }
13381   if (!IsOrdered && LHSIsNull
13382       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13383     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13384     return computeResultTy();
13385   }
13386 
13387   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13388     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13389       return computeResultTy();
13390     }
13391 
13392     if (LHSType->isQueueT() && RHSType->isQueueT()) {
13393       return computeResultTy();
13394     }
13395 
13396     if (LHSIsNull && RHSType->isQueueT()) {
13397       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13398       return computeResultTy();
13399     }
13400 
13401     if (LHSType->isQueueT() && RHSIsNull) {
13402       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13403       return computeResultTy();
13404     }
13405   }
13406 
13407   return InvalidOperands(Loc, LHS, RHS);
13408 }
13409 
13410 // Return a signed ext_vector_type that is of identical size and number of
13411 // elements. For floating point vectors, return an integer type of identical
13412 // size and number of elements. In the non ext_vector_type case, search from
13413 // the largest type to the smallest type to avoid cases where long long == long,
13414 // where long gets picked over long long.
13415 QualType Sema::GetSignedVectorType(QualType V) {
13416   const VectorType *VTy = V->castAs<VectorType>();
13417   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13418 
13419   if (isa<ExtVectorType>(VTy)) {
13420     if (VTy->isExtVectorBoolType())
13421       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13422     if (TypeSize == Context.getTypeSize(Context.CharTy))
13423       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13424     if (TypeSize == Context.getTypeSize(Context.ShortTy))
13425       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13426     if (TypeSize == Context.getTypeSize(Context.IntTy))
13427       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13428     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13429       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13430     if (TypeSize == Context.getTypeSize(Context.LongTy))
13431       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13432     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13433            "Unhandled vector element size in vector compare");
13434     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13435   }
13436 
13437   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13438     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13439                                  VectorType::GenericVector);
13440   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13441     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13442                                  VectorType::GenericVector);
13443   if (TypeSize == Context.getTypeSize(Context.LongTy))
13444     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13445                                  VectorType::GenericVector);
13446   if (TypeSize == Context.getTypeSize(Context.IntTy))
13447     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13448                                  VectorType::GenericVector);
13449   if (TypeSize == Context.getTypeSize(Context.ShortTy))
13450     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13451                                  VectorType::GenericVector);
13452   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13453          "Unhandled vector element size in vector compare");
13454   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13455                                VectorType::GenericVector);
13456 }
13457 
13458 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13459   const BuiltinType *VTy = V->castAs<BuiltinType>();
13460   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13461 
13462   const QualType ETy = V->getSveEltType(Context);
13463   const auto TypeSize = Context.getTypeSize(ETy);
13464 
13465   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13466   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13467   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13468 }
13469 
13470 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13471 /// operates on extended vector types.  Instead of producing an IntTy result,
13472 /// like a scalar comparison, a vector comparison produces a vector of integer
13473 /// types.
13474 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13475                                           SourceLocation Loc,
13476                                           BinaryOperatorKind Opc) {
13477   if (Opc == BO_Cmp) {
13478     Diag(Loc, diag::err_three_way_vector_comparison);
13479     return QualType();
13480   }
13481 
13482   // Check to make sure we're operating on vectors of the same type and width,
13483   // Allowing one side to be a scalar of element type.
13484   QualType vType =
13485       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13486                           /*AllowBothBool*/ true,
13487                           /*AllowBoolConversions*/ getLangOpts().ZVector,
13488                           /*AllowBooleanOperation*/ true,
13489                           /*ReportInvalid*/ true);
13490   if (vType.isNull())
13491     return vType;
13492 
13493   QualType LHSType = LHS.get()->getType();
13494 
13495   // Determine the return type of a vector compare. By default clang will return
13496   // a scalar for all vector compares except vector bool and vector pixel.
13497   // With the gcc compiler we will always return a vector type and with the xl
13498   // compiler we will always return a scalar type. This switch allows choosing
13499   // which behavior is prefered.
13500   if (getLangOpts().AltiVec) {
13501     switch (getLangOpts().getAltivecSrcCompat()) {
13502     case LangOptions::AltivecSrcCompatKind::Mixed:
13503       // If AltiVec, the comparison results in a numeric type, i.e.
13504       // bool for C++, int for C
13505       if (vType->castAs<VectorType>()->getVectorKind() ==
13506           VectorType::AltiVecVector)
13507         return Context.getLogicalOperationType();
13508       else
13509         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13510       break;
13511     case LangOptions::AltivecSrcCompatKind::GCC:
13512       // For GCC we always return the vector type.
13513       break;
13514     case LangOptions::AltivecSrcCompatKind::XL:
13515       return Context.getLogicalOperationType();
13516       break;
13517     }
13518   }
13519 
13520   // For non-floating point types, check for self-comparisons of the form
13521   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13522   // often indicate logic errors in the program.
13523   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13524 
13525   // Check for comparisons of floating point operands using != and ==.
13526   if (LHSType->hasFloatingRepresentation()) {
13527     assert(RHS.get()->getType()->hasFloatingRepresentation());
13528     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13529   }
13530 
13531   // Return a signed type for the vector.
13532   return GetSignedVectorType(vType);
13533 }
13534 
13535 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13536                                                   ExprResult &RHS,
13537                                                   SourceLocation Loc,
13538                                                   BinaryOperatorKind Opc) {
13539   if (Opc == BO_Cmp) {
13540     Diag(Loc, diag::err_three_way_vector_comparison);
13541     return QualType();
13542   }
13543 
13544   // Check to make sure we're operating on vectors of the same type and width,
13545   // Allowing one side to be a scalar of element type.
13546   QualType vType = CheckSizelessVectorOperands(
13547       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13548 
13549   if (vType.isNull())
13550     return vType;
13551 
13552   QualType LHSType = LHS.get()->getType();
13553 
13554   // For non-floating point types, check for self-comparisons of the form
13555   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13556   // often indicate logic errors in the program.
13557   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13558 
13559   // Check for comparisons of floating point operands using != and ==.
13560   if (LHSType->hasFloatingRepresentation()) {
13561     assert(RHS.get()->getType()->hasFloatingRepresentation());
13562     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13563   }
13564 
13565   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13566   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13567 
13568   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13569       RHSBuiltinTy->isSVEBool())
13570     return LHSType;
13571 
13572   // Return a signed type for the vector.
13573   return GetSignedSizelessVectorType(vType);
13574 }
13575 
13576 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13577                                     const ExprResult &XorRHS,
13578                                     const SourceLocation Loc) {
13579   // Do not diagnose macros.
13580   if (Loc.isMacroID())
13581     return;
13582 
13583   // Do not diagnose if both LHS and RHS are macros.
13584   if (XorLHS.get()->getExprLoc().isMacroID() &&
13585       XorRHS.get()->getExprLoc().isMacroID())
13586     return;
13587 
13588   bool Negative = false;
13589   bool ExplicitPlus = false;
13590   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13591   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13592 
13593   if (!LHSInt)
13594     return;
13595   if (!RHSInt) {
13596     // Check negative literals.
13597     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13598       UnaryOperatorKind Opc = UO->getOpcode();
13599       if (Opc != UO_Minus && Opc != UO_Plus)
13600         return;
13601       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13602       if (!RHSInt)
13603         return;
13604       Negative = (Opc == UO_Minus);
13605       ExplicitPlus = !Negative;
13606     } else {
13607       return;
13608     }
13609   }
13610 
13611   const llvm::APInt &LeftSideValue = LHSInt->getValue();
13612   llvm::APInt RightSideValue = RHSInt->getValue();
13613   if (LeftSideValue != 2 && LeftSideValue != 10)
13614     return;
13615 
13616   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13617     return;
13618 
13619   CharSourceRange ExprRange = CharSourceRange::getCharRange(
13620       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13621   llvm::StringRef ExprStr =
13622       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13623 
13624   CharSourceRange XorRange =
13625       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13626   llvm::StringRef XorStr =
13627       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13628   // Do not diagnose if xor keyword/macro is used.
13629   if (XorStr == "xor")
13630     return;
13631 
13632   std::string LHSStr = std::string(Lexer::getSourceText(
13633       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13634       S.getSourceManager(), S.getLangOpts()));
13635   std::string RHSStr = std::string(Lexer::getSourceText(
13636       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13637       S.getSourceManager(), S.getLangOpts()));
13638 
13639   if (Negative) {
13640     RightSideValue = -RightSideValue;
13641     RHSStr = "-" + RHSStr;
13642   } else if (ExplicitPlus) {
13643     RHSStr = "+" + RHSStr;
13644   }
13645 
13646   StringRef LHSStrRef = LHSStr;
13647   StringRef RHSStrRef = RHSStr;
13648   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13649   // literals.
13650   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13651       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13652       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13653       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13654       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13655       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13656       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13657     return;
13658 
13659   bool SuggestXor =
13660       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13661   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13662   int64_t RightSideIntValue = RightSideValue.getSExtValue();
13663   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13664     std::string SuggestedExpr = "1 << " + RHSStr;
13665     bool Overflow = false;
13666     llvm::APInt One = (LeftSideValue - 1);
13667     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13668     if (Overflow) {
13669       if (RightSideIntValue < 64)
13670         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13671             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13672             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13673       else if (RightSideIntValue == 64)
13674         S.Diag(Loc, diag::warn_xor_used_as_pow)
13675             << ExprStr << toString(XorValue, 10, true);
13676       else
13677         return;
13678     } else {
13679       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13680           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13681           << toString(PowValue, 10, true)
13682           << FixItHint::CreateReplacement(
13683                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13684     }
13685 
13686     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13687         << ("0x2 ^ " + RHSStr) << SuggestXor;
13688   } else if (LeftSideValue == 10) {
13689     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13690     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13691         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13692         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13693     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13694         << ("0xA ^ " + RHSStr) << SuggestXor;
13695   }
13696 }
13697 
13698 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13699                                           SourceLocation Loc) {
13700   // Ensure that either both operands are of the same vector type, or
13701   // one operand is of a vector type and the other is of its element type.
13702   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13703                                        /*AllowBothBool*/ true,
13704                                        /*AllowBoolConversions*/ false,
13705                                        /*AllowBooleanOperation*/ false,
13706                                        /*ReportInvalid*/ false);
13707   if (vType.isNull())
13708     return InvalidOperands(Loc, LHS, RHS);
13709   if (getLangOpts().OpenCL &&
13710       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13711       vType->hasFloatingRepresentation())
13712     return InvalidOperands(Loc, LHS, RHS);
13713   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13714   //        usage of the logical operators && and || with vectors in C. This
13715   //        check could be notionally dropped.
13716   if (!getLangOpts().CPlusPlus &&
13717       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13718     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13719 
13720   return GetSignedVectorType(LHS.get()->getType());
13721 }
13722 
13723 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13724                                               SourceLocation Loc,
13725                                               bool IsCompAssign) {
13726   if (!IsCompAssign) {
13727     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13728     if (LHS.isInvalid())
13729       return QualType();
13730   }
13731   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13732   if (RHS.isInvalid())
13733     return QualType();
13734 
13735   // For conversion purposes, we ignore any qualifiers.
13736   // For example, "const float" and "float" are equivalent.
13737   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13738   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13739 
13740   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13741   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13742   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13743 
13744   if (Context.hasSameType(LHSType, RHSType))
13745     return Context.getCommonSugaredType(LHSType, RHSType);
13746 
13747   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13748   // case we have to return InvalidOperands.
13749   ExprResult OriginalLHS = LHS;
13750   ExprResult OriginalRHS = RHS;
13751   if (LHSMatType && !RHSMatType) {
13752     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13753     if (!RHS.isInvalid())
13754       return LHSType;
13755 
13756     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13757   }
13758 
13759   if (!LHSMatType && RHSMatType) {
13760     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13761     if (!LHS.isInvalid())
13762       return RHSType;
13763     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13764   }
13765 
13766   return InvalidOperands(Loc, LHS, RHS);
13767 }
13768 
13769 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13770                                            SourceLocation Loc,
13771                                            bool IsCompAssign) {
13772   if (!IsCompAssign) {
13773     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13774     if (LHS.isInvalid())
13775       return QualType();
13776   }
13777   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13778   if (RHS.isInvalid())
13779     return QualType();
13780 
13781   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13782   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13783   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13784 
13785   if (LHSMatType && RHSMatType) {
13786     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13787       return InvalidOperands(Loc, LHS, RHS);
13788 
13789     if (Context.hasSameType(LHSMatType, RHSMatType))
13790       return Context.getCommonSugaredType(
13791           LHS.get()->getType().getUnqualifiedType(),
13792           RHS.get()->getType().getUnqualifiedType());
13793 
13794     QualType LHSELTy = LHSMatType->getElementType(),
13795              RHSELTy = RHSMatType->getElementType();
13796     if (!Context.hasSameType(LHSELTy, RHSELTy))
13797       return InvalidOperands(Loc, LHS, RHS);
13798 
13799     return Context.getConstantMatrixType(
13800         Context.getCommonSugaredType(LHSELTy, RHSELTy),
13801         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13802   }
13803   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13804 }
13805 
13806 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13807   switch (Opc) {
13808   default:
13809     return false;
13810   case BO_And:
13811   case BO_AndAssign:
13812   case BO_Or:
13813   case BO_OrAssign:
13814   case BO_Xor:
13815   case BO_XorAssign:
13816     return true;
13817   }
13818 }
13819 
13820 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13821                                            SourceLocation Loc,
13822                                            BinaryOperatorKind Opc) {
13823   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13824 
13825   bool IsCompAssign =
13826       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13827 
13828   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13829 
13830   if (LHS.get()->getType()->isVectorType() ||
13831       RHS.get()->getType()->isVectorType()) {
13832     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13833         RHS.get()->getType()->hasIntegerRepresentation())
13834       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13835                                  /*AllowBothBool*/ true,
13836                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13837                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13838                                  /*ReportInvalid*/ true);
13839     return InvalidOperands(Loc, LHS, RHS);
13840   }
13841 
13842   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13843       RHS.get()->getType()->isVLSTBuiltinType()) {
13844     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13845         RHS.get()->getType()->hasIntegerRepresentation())
13846       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13847                                          ACK_BitwiseOp);
13848     return InvalidOperands(Loc, LHS, RHS);
13849   }
13850 
13851   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13852       RHS.get()->getType()->isVLSTBuiltinType()) {
13853     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13854         RHS.get()->getType()->hasIntegerRepresentation())
13855       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13856                                          ACK_BitwiseOp);
13857     return InvalidOperands(Loc, LHS, RHS);
13858   }
13859 
13860   if (Opc == BO_And)
13861     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13862 
13863   if (LHS.get()->getType()->hasFloatingRepresentation() ||
13864       RHS.get()->getType()->hasFloatingRepresentation())
13865     return InvalidOperands(Loc, LHS, RHS);
13866 
13867   ExprResult LHSResult = LHS, RHSResult = RHS;
13868   QualType compType = UsualArithmeticConversions(
13869       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13870   if (LHSResult.isInvalid() || RHSResult.isInvalid())
13871     return QualType();
13872   LHS = LHSResult.get();
13873   RHS = RHSResult.get();
13874 
13875   if (Opc == BO_Xor)
13876     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13877 
13878   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13879     return compType;
13880   return InvalidOperands(Loc, LHS, RHS);
13881 }
13882 
13883 // C99 6.5.[13,14]
13884 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13885                                            SourceLocation Loc,
13886                                            BinaryOperatorKind Opc) {
13887   // Check vector operands differently.
13888   if (LHS.get()->getType()->isVectorType() ||
13889       RHS.get()->getType()->isVectorType())
13890     return CheckVectorLogicalOperands(LHS, RHS, Loc);
13891 
13892   bool EnumConstantInBoolContext = false;
13893   for (const ExprResult &HS : {LHS, RHS}) {
13894     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13895       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13896       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13897         EnumConstantInBoolContext = true;
13898     }
13899   }
13900 
13901   if (EnumConstantInBoolContext)
13902     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13903 
13904   // WebAssembly tables can't be used with logical operators.
13905   QualType LHSTy = LHS.get()->getType();
13906   QualType RHSTy = RHS.get()->getType();
13907   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
13908   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
13909   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13910       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13911     return InvalidOperands(Loc, LHS, RHS);
13912   }
13913 
13914   // Diagnose cases where the user write a logical and/or but probably meant a
13915   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13916   // is a constant.
13917   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13918       !LHS.get()->getType()->isBooleanType() &&
13919       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13920       // Don't warn in macros or template instantiations.
13921       !Loc.isMacroID() && !inTemplateInstantiation()) {
13922     // If the RHS can be constant folded, and if it constant folds to something
13923     // that isn't 0 or 1 (which indicate a potential logical operation that
13924     // happened to fold to true/false) then warn.
13925     // Parens on the RHS are ignored.
13926     Expr::EvalResult EVResult;
13927     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13928       llvm::APSInt Result = EVResult.Val.getInt();
13929       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13930            !RHS.get()->getExprLoc().isMacroID()) ||
13931           (Result != 0 && Result != 1)) {
13932         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13933             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13934         // Suggest replacing the logical operator with the bitwise version
13935         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13936             << (Opc == BO_LAnd ? "&" : "|")
13937             << FixItHint::CreateReplacement(
13938                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13939                    Opc == BO_LAnd ? "&" : "|");
13940         if (Opc == BO_LAnd)
13941           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13942           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13943               << FixItHint::CreateRemoval(
13944                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13945                                  RHS.get()->getEndLoc()));
13946       }
13947     }
13948   }
13949 
13950   if (!Context.getLangOpts().CPlusPlus) {
13951     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13952     // not operate on the built-in scalar and vector float types.
13953     if (Context.getLangOpts().OpenCL &&
13954         Context.getLangOpts().OpenCLVersion < 120) {
13955       if (LHS.get()->getType()->isFloatingType() ||
13956           RHS.get()->getType()->isFloatingType())
13957         return InvalidOperands(Loc, LHS, RHS);
13958     }
13959 
13960     LHS = UsualUnaryConversions(LHS.get());
13961     if (LHS.isInvalid())
13962       return QualType();
13963 
13964     RHS = UsualUnaryConversions(RHS.get());
13965     if (RHS.isInvalid())
13966       return QualType();
13967 
13968     if (!LHS.get()->getType()->isScalarType() ||
13969         !RHS.get()->getType()->isScalarType())
13970       return InvalidOperands(Loc, LHS, RHS);
13971 
13972     return Context.IntTy;
13973   }
13974 
13975   // The following is safe because we only use this method for
13976   // non-overloadable operands.
13977 
13978   // C++ [expr.log.and]p1
13979   // C++ [expr.log.or]p1
13980   // The operands are both contextually converted to type bool.
13981   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13982   if (LHSRes.isInvalid())
13983     return InvalidOperands(Loc, LHS, RHS);
13984   LHS = LHSRes;
13985 
13986   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13987   if (RHSRes.isInvalid())
13988     return InvalidOperands(Loc, LHS, RHS);
13989   RHS = RHSRes;
13990 
13991   // C++ [expr.log.and]p2
13992   // C++ [expr.log.or]p2
13993   // The result is a bool.
13994   return Context.BoolTy;
13995 }
13996 
13997 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13998   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13999   if (!ME) return false;
14000   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14001   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14002       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14003   if (!Base) return false;
14004   return Base->getMethodDecl() != nullptr;
14005 }
14006 
14007 /// Is the given expression (which must be 'const') a reference to a
14008 /// variable which was originally non-const, but which has become
14009 /// 'const' due to being captured within a block?
14010 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
14011 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14012   assert(E->isLValue() && E->getType().isConstQualified());
14013   E = E->IgnoreParens();
14014 
14015   // Must be a reference to a declaration from an enclosing scope.
14016   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14017   if (!DRE) return NCCK_None;
14018   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14019 
14020   // The declaration must be a variable which is not declared 'const'.
14021   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14022   if (!var) return NCCK_None;
14023   if (var->getType().isConstQualified()) return NCCK_None;
14024   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14025 
14026   // Decide whether the first capture was for a block or a lambda.
14027   DeclContext *DC = S.CurContext, *Prev = nullptr;
14028   // Decide whether the first capture was for a block or a lambda.
14029   while (DC) {
14030     // For init-capture, it is possible that the variable belongs to the
14031     // template pattern of the current context.
14032     if (auto *FD = dyn_cast<FunctionDecl>(DC))
14033       if (var->isInitCapture() &&
14034           FD->getTemplateInstantiationPattern() == var->getDeclContext())
14035         break;
14036     if (DC == var->getDeclContext())
14037       break;
14038     Prev = DC;
14039     DC = DC->getParent();
14040   }
14041   // Unless we have an init-capture, we've gone one step too far.
14042   if (!var->isInitCapture())
14043     DC = Prev;
14044   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14045 }
14046 
14047 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14048   Ty = Ty.getNonReferenceType();
14049   if (IsDereference && Ty->isPointerType())
14050     Ty = Ty->getPointeeType();
14051   return !Ty.isConstQualified();
14052 }
14053 
14054 // Update err_typecheck_assign_const and note_typecheck_assign_const
14055 // when this enum is changed.
14056 enum {
14057   ConstFunction,
14058   ConstVariable,
14059   ConstMember,
14060   ConstMethod,
14061   NestedConstMember,
14062   ConstUnknown,  // Keep as last element
14063 };
14064 
14065 /// Emit the "read-only variable not assignable" error and print notes to give
14066 /// more information about why the variable is not assignable, such as pointing
14067 /// to the declaration of a const variable, showing that a method is const, or
14068 /// that the function is returning a const reference.
14069 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14070                                     SourceLocation Loc) {
14071   SourceRange ExprRange = E->getSourceRange();
14072 
14073   // Only emit one error on the first const found.  All other consts will emit
14074   // a note to the error.
14075   bool DiagnosticEmitted = false;
14076 
14077   // Track if the current expression is the result of a dereference, and if the
14078   // next checked expression is the result of a dereference.
14079   bool IsDereference = false;
14080   bool NextIsDereference = false;
14081 
14082   // Loop to process MemberExpr chains.
14083   while (true) {
14084     IsDereference = NextIsDereference;
14085 
14086     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14087     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14088       NextIsDereference = ME->isArrow();
14089       const ValueDecl *VD = ME->getMemberDecl();
14090       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14091         // Mutable fields can be modified even if the class is const.
14092         if (Field->isMutable()) {
14093           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14094           break;
14095         }
14096 
14097         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14098           if (!DiagnosticEmitted) {
14099             S.Diag(Loc, diag::err_typecheck_assign_const)
14100                 << ExprRange << ConstMember << false /*static*/ << Field
14101                 << Field->getType();
14102             DiagnosticEmitted = true;
14103           }
14104           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14105               << ConstMember << false /*static*/ << Field << Field->getType()
14106               << Field->getSourceRange();
14107         }
14108         E = ME->getBase();
14109         continue;
14110       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14111         if (VDecl->getType().isConstQualified()) {
14112           if (!DiagnosticEmitted) {
14113             S.Diag(Loc, diag::err_typecheck_assign_const)
14114                 << ExprRange << ConstMember << true /*static*/ << VDecl
14115                 << VDecl->getType();
14116             DiagnosticEmitted = true;
14117           }
14118           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14119               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14120               << VDecl->getSourceRange();
14121         }
14122         // Static fields do not inherit constness from parents.
14123         break;
14124       }
14125       break; // End MemberExpr
14126     } else if (const ArraySubscriptExpr *ASE =
14127                    dyn_cast<ArraySubscriptExpr>(E)) {
14128       E = ASE->getBase()->IgnoreParenImpCasts();
14129       continue;
14130     } else if (const ExtVectorElementExpr *EVE =
14131                    dyn_cast<ExtVectorElementExpr>(E)) {
14132       E = EVE->getBase()->IgnoreParenImpCasts();
14133       continue;
14134     }
14135     break;
14136   }
14137 
14138   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14139     // Function calls
14140     const FunctionDecl *FD = CE->getDirectCallee();
14141     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14142       if (!DiagnosticEmitted) {
14143         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14144                                                       << ConstFunction << FD;
14145         DiagnosticEmitted = true;
14146       }
14147       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14148              diag::note_typecheck_assign_const)
14149           << ConstFunction << FD << FD->getReturnType()
14150           << FD->getReturnTypeSourceRange();
14151     }
14152   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14153     // Point to variable declaration.
14154     if (const ValueDecl *VD = DRE->getDecl()) {
14155       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14156         if (!DiagnosticEmitted) {
14157           S.Diag(Loc, diag::err_typecheck_assign_const)
14158               << ExprRange << ConstVariable << VD << VD->getType();
14159           DiagnosticEmitted = true;
14160         }
14161         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14162             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14163       }
14164     }
14165   } else if (isa<CXXThisExpr>(E)) {
14166     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14167       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14168         if (MD->isConst()) {
14169           if (!DiagnosticEmitted) {
14170             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14171                                                           << ConstMethod << MD;
14172             DiagnosticEmitted = true;
14173           }
14174           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14175               << ConstMethod << MD << MD->getSourceRange();
14176         }
14177       }
14178     }
14179   }
14180 
14181   if (DiagnosticEmitted)
14182     return;
14183 
14184   // Can't determine a more specific message, so display the generic error.
14185   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14186 }
14187 
14188 enum OriginalExprKind {
14189   OEK_Variable,
14190   OEK_Member,
14191   OEK_LValue
14192 };
14193 
14194 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14195                                          const RecordType *Ty,
14196                                          SourceLocation Loc, SourceRange Range,
14197                                          OriginalExprKind OEK,
14198                                          bool &DiagnosticEmitted) {
14199   std::vector<const RecordType *> RecordTypeList;
14200   RecordTypeList.push_back(Ty);
14201   unsigned NextToCheckIndex = 0;
14202   // We walk the record hierarchy breadth-first to ensure that we print
14203   // diagnostics in field nesting order.
14204   while (RecordTypeList.size() > NextToCheckIndex) {
14205     bool IsNested = NextToCheckIndex > 0;
14206     for (const FieldDecl *Field :
14207          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14208       // First, check every field for constness.
14209       QualType FieldTy = Field->getType();
14210       if (FieldTy.isConstQualified()) {
14211         if (!DiagnosticEmitted) {
14212           S.Diag(Loc, diag::err_typecheck_assign_const)
14213               << Range << NestedConstMember << OEK << VD
14214               << IsNested << Field;
14215           DiagnosticEmitted = true;
14216         }
14217         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14218             << NestedConstMember << IsNested << Field
14219             << FieldTy << Field->getSourceRange();
14220       }
14221 
14222       // Then we append it to the list to check next in order.
14223       FieldTy = FieldTy.getCanonicalType();
14224       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14225         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14226           RecordTypeList.push_back(FieldRecTy);
14227       }
14228     }
14229     ++NextToCheckIndex;
14230   }
14231 }
14232 
14233 /// Emit an error for the case where a record we are trying to assign to has a
14234 /// const-qualified field somewhere in its hierarchy.
14235 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14236                                          SourceLocation Loc) {
14237   QualType Ty = E->getType();
14238   assert(Ty->isRecordType() && "lvalue was not record?");
14239   SourceRange Range = E->getSourceRange();
14240   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14241   bool DiagEmitted = false;
14242 
14243   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14244     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14245             Range, OEK_Member, DiagEmitted);
14246   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14247     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14248             Range, OEK_Variable, DiagEmitted);
14249   else
14250     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14251             Range, OEK_LValue, DiagEmitted);
14252   if (!DiagEmitted)
14253     DiagnoseConstAssignment(S, E, Loc);
14254 }
14255 
14256 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
14257 /// emit an error and return true.  If so, return false.
14258 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14259   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14260 
14261   S.CheckShadowingDeclModification(E, Loc);
14262 
14263   SourceLocation OrigLoc = Loc;
14264   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14265                                                               &Loc);
14266   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14267     IsLV = Expr::MLV_InvalidMessageExpression;
14268   if (IsLV == Expr::MLV_Valid)
14269     return false;
14270 
14271   unsigned DiagID = 0;
14272   bool NeedType = false;
14273   switch (IsLV) { // C99 6.5.16p2
14274   case Expr::MLV_ConstQualified:
14275     // Use a specialized diagnostic when we're assigning to an object
14276     // from an enclosing function or block.
14277     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14278       if (NCCK == NCCK_Block)
14279         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14280       else
14281         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14282       break;
14283     }
14284 
14285     // In ARC, use some specialized diagnostics for occasions where we
14286     // infer 'const'.  These are always pseudo-strong variables.
14287     if (S.getLangOpts().ObjCAutoRefCount) {
14288       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14289       if (declRef && isa<VarDecl>(declRef->getDecl())) {
14290         VarDecl *var = cast<VarDecl>(declRef->getDecl());
14291 
14292         // Use the normal diagnostic if it's pseudo-__strong but the
14293         // user actually wrote 'const'.
14294         if (var->isARCPseudoStrong() &&
14295             (!var->getTypeSourceInfo() ||
14296              !var->getTypeSourceInfo()->getType().isConstQualified())) {
14297           // There are three pseudo-strong cases:
14298           //  - self
14299           ObjCMethodDecl *method = S.getCurMethodDecl();
14300           if (method && var == method->getSelfDecl()) {
14301             DiagID = method->isClassMethod()
14302               ? diag::err_typecheck_arc_assign_self_class_method
14303               : diag::err_typecheck_arc_assign_self;
14304 
14305           //  - Objective-C externally_retained attribute.
14306           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14307                      isa<ParmVarDecl>(var)) {
14308             DiagID = diag::err_typecheck_arc_assign_externally_retained;
14309 
14310           //  - fast enumeration variables
14311           } else {
14312             DiagID = diag::err_typecheck_arr_assign_enumeration;
14313           }
14314 
14315           SourceRange Assign;
14316           if (Loc != OrigLoc)
14317             Assign = SourceRange(OrigLoc, OrigLoc);
14318           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14319           // We need to preserve the AST regardless, so migration tool
14320           // can do its job.
14321           return false;
14322         }
14323       }
14324     }
14325 
14326     // If none of the special cases above are triggered, then this is a
14327     // simple const assignment.
14328     if (DiagID == 0) {
14329       DiagnoseConstAssignment(S, E, Loc);
14330       return true;
14331     }
14332 
14333     break;
14334   case Expr::MLV_ConstAddrSpace:
14335     DiagnoseConstAssignment(S, E, Loc);
14336     return true;
14337   case Expr::MLV_ConstQualifiedField:
14338     DiagnoseRecursiveConstFields(S, E, Loc);
14339     return true;
14340   case Expr::MLV_ArrayType:
14341   case Expr::MLV_ArrayTemporary:
14342     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14343     NeedType = true;
14344     break;
14345   case Expr::MLV_NotObjectType:
14346     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14347     NeedType = true;
14348     break;
14349   case Expr::MLV_LValueCast:
14350     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14351     break;
14352   case Expr::MLV_Valid:
14353     llvm_unreachable("did not take early return for MLV_Valid");
14354   case Expr::MLV_InvalidExpression:
14355   case Expr::MLV_MemberFunction:
14356   case Expr::MLV_ClassTemporary:
14357     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14358     break;
14359   case Expr::MLV_IncompleteType:
14360   case Expr::MLV_IncompleteVoidType:
14361     return S.RequireCompleteType(Loc, E->getType(),
14362              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14363   case Expr::MLV_DuplicateVectorComponents:
14364     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14365     break;
14366   case Expr::MLV_NoSetterProperty:
14367     llvm_unreachable("readonly properties should be processed differently");
14368   case Expr::MLV_InvalidMessageExpression:
14369     DiagID = diag::err_readonly_message_assignment;
14370     break;
14371   case Expr::MLV_SubObjCPropertySetting:
14372     DiagID = diag::err_no_subobject_property_setting;
14373     break;
14374   }
14375 
14376   SourceRange Assign;
14377   if (Loc != OrigLoc)
14378     Assign = SourceRange(OrigLoc, OrigLoc);
14379   if (NeedType)
14380     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14381   else
14382     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14383   return true;
14384 }
14385 
14386 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14387                                          SourceLocation Loc,
14388                                          Sema &Sema) {
14389   if (Sema.inTemplateInstantiation())
14390     return;
14391   if (Sema.isUnevaluatedContext())
14392     return;
14393   if (Loc.isInvalid() || Loc.isMacroID())
14394     return;
14395   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14396     return;
14397 
14398   // C / C++ fields
14399   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14400   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14401   if (ML && MR) {
14402     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14403       return;
14404     const ValueDecl *LHSDecl =
14405         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14406     const ValueDecl *RHSDecl =
14407         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14408     if (LHSDecl != RHSDecl)
14409       return;
14410     if (LHSDecl->getType().isVolatileQualified())
14411       return;
14412     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14413       if (RefTy->getPointeeType().isVolatileQualified())
14414         return;
14415 
14416     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14417   }
14418 
14419   // Objective-C instance variables
14420   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14421   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14422   if (OL && OR && OL->getDecl() == OR->getDecl()) {
14423     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14424     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14425     if (RL && RR && RL->getDecl() == RR->getDecl())
14426       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14427   }
14428 }
14429 
14430 // C99 6.5.16.1
14431 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14432                                        SourceLocation Loc,
14433                                        QualType CompoundType,
14434                                        BinaryOperatorKind Opc) {
14435   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14436 
14437   // Verify that LHS is a modifiable lvalue, and emit error if not.
14438   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14439     return QualType();
14440 
14441   QualType LHSType = LHSExpr->getType();
14442   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14443                                              CompoundType;
14444   // OpenCL v1.2 s6.1.1.1 p2:
14445   // The half data type can only be used to declare a pointer to a buffer that
14446   // contains half values
14447   if (getLangOpts().OpenCL &&
14448       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14449       LHSType->isHalfType()) {
14450     Diag(Loc, diag::err_opencl_half_load_store) << 1
14451         << LHSType.getUnqualifiedType();
14452     return QualType();
14453   }
14454 
14455   // WebAssembly tables can't be used on RHS of an assignment expression.
14456   if (RHSType->isWebAssemblyTableType()) {
14457     Diag(Loc, diag::err_wasm_table_art) << 0;
14458     return QualType();
14459   }
14460 
14461   AssignConvertType ConvTy;
14462   if (CompoundType.isNull()) {
14463     Expr *RHSCheck = RHS.get();
14464 
14465     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14466 
14467     QualType LHSTy(LHSType);
14468     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14469     if (RHS.isInvalid())
14470       return QualType();
14471     // Special case of NSObject attributes on c-style pointer types.
14472     if (ConvTy == IncompatiblePointer &&
14473         ((Context.isObjCNSObjectType(LHSType) &&
14474           RHSType->isObjCObjectPointerType()) ||
14475          (Context.isObjCNSObjectType(RHSType) &&
14476           LHSType->isObjCObjectPointerType())))
14477       ConvTy = Compatible;
14478 
14479     if (ConvTy == Compatible &&
14480         LHSType->isObjCObjectType())
14481         Diag(Loc, diag::err_objc_object_assignment)
14482           << LHSType;
14483 
14484     // If the RHS is a unary plus or minus, check to see if they = and + are
14485     // right next to each other.  If so, the user may have typo'd "x =+ 4"
14486     // instead of "x += 4".
14487     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14488       RHSCheck = ICE->getSubExpr();
14489     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14490       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14491           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14492           // Only if the two operators are exactly adjacent.
14493           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14494           // And there is a space or other character before the subexpr of the
14495           // unary +/-.  We don't want to warn on "x=-1".
14496           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14497           UO->getSubExpr()->getBeginLoc().isFileID()) {
14498         Diag(Loc, diag::warn_not_compound_assign)
14499           << (UO->getOpcode() == UO_Plus ? "+" : "-")
14500           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14501       }
14502     }
14503 
14504     if (ConvTy == Compatible) {
14505       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14506         // Warn about retain cycles where a block captures the LHS, but
14507         // not if the LHS is a simple variable into which the block is
14508         // being stored...unless that variable can be captured by reference!
14509         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14510         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14511         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14512           checkRetainCycles(LHSExpr, RHS.get());
14513       }
14514 
14515       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14516           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14517         // It is safe to assign a weak reference into a strong variable.
14518         // Although this code can still have problems:
14519         //   id x = self.weakProp;
14520         //   id y = self.weakProp;
14521         // we do not warn to warn spuriously when 'x' and 'y' are on separate
14522         // paths through the function. This should be revisited if
14523         // -Wrepeated-use-of-weak is made flow-sensitive.
14524         // For ObjCWeak only, we do not warn if the assign is to a non-weak
14525         // variable, which will be valid for the current autorelease scope.
14526         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14527                              RHS.get()->getBeginLoc()))
14528           getCurFunction()->markSafeWeakUse(RHS.get());
14529 
14530       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14531         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14532       }
14533     }
14534   } else {
14535     // Compound assignment "x += y"
14536     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14537   }
14538 
14539   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14540                                RHS.get(), AA_Assigning))
14541     return QualType();
14542 
14543   CheckForNullPointerDereference(*this, LHSExpr);
14544 
14545   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14546     if (CompoundType.isNull()) {
14547       // C++2a [expr.ass]p5:
14548       //   A simple-assignment whose left operand is of a volatile-qualified
14549       //   type is deprecated unless the assignment is either a discarded-value
14550       //   expression or an unevaluated operand
14551       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14552     }
14553   }
14554 
14555   // C11 6.5.16p3: The type of an assignment expression is the type of the
14556   // left operand would have after lvalue conversion.
14557   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14558   // qualified type, the value has the unqualified version of the type of the
14559   // lvalue; additionally, if the lvalue has atomic type, the value has the
14560   // non-atomic version of the type of the lvalue.
14561   // C++ 5.17p1: the type of the assignment expression is that of its left
14562   // operand.
14563   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14564 }
14565 
14566 // Scenarios to ignore if expression E is:
14567 // 1. an explicit cast expression into void
14568 // 2. a function call expression that returns void
14569 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14570   E = E->IgnoreParens();
14571 
14572   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14573     if (CE->getCastKind() == CK_ToVoid) {
14574       return true;
14575     }
14576 
14577     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14578     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14579         CE->getSubExpr()->getType()->isDependentType()) {
14580       return true;
14581     }
14582   }
14583 
14584   if (const auto *CE = dyn_cast<CallExpr>(E))
14585     return CE->getCallReturnType(Context)->isVoidType();
14586   return false;
14587 }
14588 
14589 // Look for instances where it is likely the comma operator is confused with
14590 // another operator.  There is an explicit list of acceptable expressions for
14591 // the left hand side of the comma operator, otherwise emit a warning.
14592 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14593   // No warnings in macros
14594   if (Loc.isMacroID())
14595     return;
14596 
14597   // Don't warn in template instantiations.
14598   if (inTemplateInstantiation())
14599     return;
14600 
14601   // Scope isn't fine-grained enough to explicitly list the specific cases, so
14602   // instead, skip more than needed, then call back into here with the
14603   // CommaVisitor in SemaStmt.cpp.
14604   // The listed locations are the initialization and increment portions
14605   // of a for loop.  The additional checks are on the condition of
14606   // if statements, do/while loops, and for loops.
14607   // Differences in scope flags for C89 mode requires the extra logic.
14608   const unsigned ForIncrementFlags =
14609       getLangOpts().C99 || getLangOpts().CPlusPlus
14610           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14611           : Scope::ContinueScope | Scope::BreakScope;
14612   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14613   const unsigned ScopeFlags = getCurScope()->getFlags();
14614   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14615       (ScopeFlags & ForInitFlags) == ForInitFlags)
14616     return;
14617 
14618   // If there are multiple comma operators used together, get the RHS of the
14619   // of the comma operator as the LHS.
14620   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14621     if (BO->getOpcode() != BO_Comma)
14622       break;
14623     LHS = BO->getRHS();
14624   }
14625 
14626   // Only allow some expressions on LHS to not warn.
14627   if (IgnoreCommaOperand(LHS, Context))
14628     return;
14629 
14630   Diag(Loc, diag::warn_comma_operator);
14631   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14632       << LHS->getSourceRange()
14633       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14634                                     LangOpts.CPlusPlus ? "static_cast<void>("
14635                                                        : "(void)(")
14636       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14637                                     ")");
14638 }
14639 
14640 // C99 6.5.17
14641 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14642                                    SourceLocation Loc) {
14643   LHS = S.CheckPlaceholderExpr(LHS.get());
14644   RHS = S.CheckPlaceholderExpr(RHS.get());
14645   if (LHS.isInvalid() || RHS.isInvalid())
14646     return QualType();
14647 
14648   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14649   // operands, but not unary promotions.
14650   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14651 
14652   // So we treat the LHS as a ignored value, and in C++ we allow the
14653   // containing site to determine what should be done with the RHS.
14654   LHS = S.IgnoredValueConversions(LHS.get());
14655   if (LHS.isInvalid())
14656     return QualType();
14657 
14658   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14659 
14660   if (!S.getLangOpts().CPlusPlus) {
14661     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14662     if (RHS.isInvalid())
14663       return QualType();
14664     if (!RHS.get()->getType()->isVoidType())
14665       S.RequireCompleteType(Loc, RHS.get()->getType(),
14666                             diag::err_incomplete_type);
14667   }
14668 
14669   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14670     S.DiagnoseCommaOperator(LHS.get(), Loc);
14671 
14672   return RHS.get()->getType();
14673 }
14674 
14675 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14676 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14677 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14678                                                ExprValueKind &VK,
14679                                                ExprObjectKind &OK,
14680                                                SourceLocation OpLoc,
14681                                                bool IsInc, bool IsPrefix) {
14682   if (Op->isTypeDependent())
14683     return S.Context.DependentTy;
14684 
14685   QualType ResType = Op->getType();
14686   // Atomic types can be used for increment / decrement where the non-atomic
14687   // versions can, so ignore the _Atomic() specifier for the purpose of
14688   // checking.
14689   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14690     ResType = ResAtomicType->getValueType();
14691 
14692   assert(!ResType.isNull() && "no type for increment/decrement expression");
14693 
14694   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14695     // Decrement of bool is not allowed.
14696     if (!IsInc) {
14697       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14698       return QualType();
14699     }
14700     // Increment of bool sets it to true, but is deprecated.
14701     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14702                                               : diag::warn_increment_bool)
14703       << Op->getSourceRange();
14704   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14705     // Error on enum increments and decrements in C++ mode
14706     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14707     return QualType();
14708   } else if (ResType->isRealType()) {
14709     // OK!
14710   } else if (ResType->isPointerType()) {
14711     // C99 6.5.2.4p2, 6.5.6p2
14712     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14713       return QualType();
14714   } else if (ResType->isObjCObjectPointerType()) {
14715     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14716     // Otherwise, we just need a complete type.
14717     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14718         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14719       return QualType();
14720   } else if (ResType->isAnyComplexType()) {
14721     // C99 does not support ++/-- on complex types, we allow as an extension.
14722     S.Diag(OpLoc, diag::ext_integer_increment_complex)
14723       << ResType << Op->getSourceRange();
14724   } else if (ResType->isPlaceholderType()) {
14725     ExprResult PR = S.CheckPlaceholderExpr(Op);
14726     if (PR.isInvalid()) return QualType();
14727     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14728                                           IsInc, IsPrefix);
14729   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14730     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14731   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14732              (ResType->castAs<VectorType>()->getVectorKind() !=
14733               VectorType::AltiVecBool)) {
14734     // The z vector extensions allow ++ and -- for non-bool vectors.
14735   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14736             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14737     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14738   } else {
14739     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14740       << ResType << int(IsInc) << Op->getSourceRange();
14741     return QualType();
14742   }
14743   // At this point, we know we have a real, complex or pointer type.
14744   // Now make sure the operand is a modifiable lvalue.
14745   if (CheckForModifiableLvalue(Op, OpLoc, S))
14746     return QualType();
14747   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14748     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14749     //   An operand with volatile-qualified type is deprecated
14750     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14751         << IsInc << ResType;
14752   }
14753   // In C++, a prefix increment is the same type as the operand. Otherwise
14754   // (in C or with postfix), the increment is the unqualified type of the
14755   // operand.
14756   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14757     VK = VK_LValue;
14758     OK = Op->getObjectKind();
14759     return ResType;
14760   } else {
14761     VK = VK_PRValue;
14762     return ResType.getUnqualifiedType();
14763   }
14764 }
14765 
14766 
14767 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14768 /// This routine allows us to typecheck complex/recursive expressions
14769 /// where the declaration is needed for type checking. We only need to
14770 /// handle cases when the expression references a function designator
14771 /// or is an lvalue. Here are some examples:
14772 ///  - &(x) => x
14773 ///  - &*****f => f for f a function designator.
14774 ///  - &s.xx => s
14775 ///  - &s.zz[1].yy -> s, if zz is an array
14776 ///  - *(x + 1) -> x, if x is an array
14777 ///  - &"123"[2] -> 0
14778 ///  - & __real__ x -> x
14779 ///
14780 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14781 /// members.
14782 static ValueDecl *getPrimaryDecl(Expr *E) {
14783   switch (E->getStmtClass()) {
14784   case Stmt::DeclRefExprClass:
14785     return cast<DeclRefExpr>(E)->getDecl();
14786   case Stmt::MemberExprClass:
14787     // If this is an arrow operator, the address is an offset from
14788     // the base's value, so the object the base refers to is
14789     // irrelevant.
14790     if (cast<MemberExpr>(E)->isArrow())
14791       return nullptr;
14792     // Otherwise, the expression refers to a part of the base
14793     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14794   case Stmt::ArraySubscriptExprClass: {
14795     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14796     // promotion of register arrays earlier.
14797     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14798     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14799       if (ICE->getSubExpr()->getType()->isArrayType())
14800         return getPrimaryDecl(ICE->getSubExpr());
14801     }
14802     return nullptr;
14803   }
14804   case Stmt::UnaryOperatorClass: {
14805     UnaryOperator *UO = cast<UnaryOperator>(E);
14806 
14807     switch(UO->getOpcode()) {
14808     case UO_Real:
14809     case UO_Imag:
14810     case UO_Extension:
14811       return getPrimaryDecl(UO->getSubExpr());
14812     default:
14813       return nullptr;
14814     }
14815   }
14816   case Stmt::ParenExprClass:
14817     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14818   case Stmt::ImplicitCastExprClass:
14819     // If the result of an implicit cast is an l-value, we care about
14820     // the sub-expression; otherwise, the result here doesn't matter.
14821     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14822   case Stmt::CXXUuidofExprClass:
14823     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14824   default:
14825     return nullptr;
14826   }
14827 }
14828 
14829 namespace {
14830 enum {
14831   AO_Bit_Field = 0,
14832   AO_Vector_Element = 1,
14833   AO_Property_Expansion = 2,
14834   AO_Register_Variable = 3,
14835   AO_Matrix_Element = 4,
14836   AO_No_Error = 5
14837 };
14838 }
14839 /// Diagnose invalid operand for address of operations.
14840 ///
14841 /// \param Type The type of operand which cannot have its address taken.
14842 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14843                                          Expr *E, unsigned Type) {
14844   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14845 }
14846 
14847 /// CheckAddressOfOperand - The operand of & must be either a function
14848 /// designator or an lvalue designating an object. If it is an lvalue, the
14849 /// object cannot be declared with storage class register or be a bit field.
14850 /// Note: The usual conversions are *not* applied to the operand of the &
14851 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14852 /// In C++, the operand might be an overloaded function name, in which case
14853 /// we allow the '&' but retain the overloaded-function type.
14854 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14855   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14856     if (PTy->getKind() == BuiltinType::Overload) {
14857       Expr *E = OrigOp.get()->IgnoreParens();
14858       if (!isa<OverloadExpr>(E)) {
14859         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14860         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14861           << OrigOp.get()->getSourceRange();
14862         return QualType();
14863       }
14864 
14865       OverloadExpr *Ovl = cast<OverloadExpr>(E);
14866       if (isa<UnresolvedMemberExpr>(Ovl))
14867         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14868           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14869             << OrigOp.get()->getSourceRange();
14870           return QualType();
14871         }
14872 
14873       return Context.OverloadTy;
14874     }
14875 
14876     if (PTy->getKind() == BuiltinType::UnknownAny)
14877       return Context.UnknownAnyTy;
14878 
14879     if (PTy->getKind() == BuiltinType::BoundMember) {
14880       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14881         << OrigOp.get()->getSourceRange();
14882       return QualType();
14883     }
14884 
14885     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14886     if (OrigOp.isInvalid()) return QualType();
14887   }
14888 
14889   if (OrigOp.get()->isTypeDependent())
14890     return Context.DependentTy;
14891 
14892   assert(!OrigOp.get()->hasPlaceholderType());
14893 
14894   // Make sure to ignore parentheses in subsequent checks
14895   Expr *op = OrigOp.get()->IgnoreParens();
14896 
14897   // In OpenCL captures for blocks called as lambda functions
14898   // are located in the private address space. Blocks used in
14899   // enqueue_kernel can be located in a different address space
14900   // depending on a vendor implementation. Thus preventing
14901   // taking an address of the capture to avoid invalid AS casts.
14902   if (LangOpts.OpenCL) {
14903     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14904     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14905       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14906       return QualType();
14907     }
14908   }
14909 
14910   if (getLangOpts().C99) {
14911     // Implement C99-only parts of addressof rules.
14912     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14913       if (uOp->getOpcode() == UO_Deref)
14914         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14915         // (assuming the deref expression is valid).
14916         return uOp->getSubExpr()->getType();
14917     }
14918     // Technically, there should be a check for array subscript
14919     // expressions here, but the result of one is always an lvalue anyway.
14920   }
14921   ValueDecl *dcl = getPrimaryDecl(op);
14922 
14923   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14924     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14925                                            op->getBeginLoc()))
14926       return QualType();
14927 
14928   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14929   unsigned AddressOfError = AO_No_Error;
14930 
14931   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14932     bool sfinae = (bool)isSFINAEContext();
14933     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14934                                   : diag::ext_typecheck_addrof_temporary)
14935       << op->getType() << op->getSourceRange();
14936     if (sfinae)
14937       return QualType();
14938     // Materialize the temporary as an lvalue so that we can take its address.
14939     OrigOp = op =
14940         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14941   } else if (isa<ObjCSelectorExpr>(op)) {
14942     return Context.getPointerType(op->getType());
14943   } else if (lval == Expr::LV_MemberFunction) {
14944     // If it's an instance method, make a member pointer.
14945     // The expression must have exactly the form &A::foo.
14946 
14947     // If the underlying expression isn't a decl ref, give up.
14948     if (!isa<DeclRefExpr>(op)) {
14949       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14950         << OrigOp.get()->getSourceRange();
14951       return QualType();
14952     }
14953     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14954     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14955 
14956     // The id-expression was parenthesized.
14957     if (OrigOp.get() != DRE) {
14958       Diag(OpLoc, diag::err_parens_pointer_member_function)
14959         << OrigOp.get()->getSourceRange();
14960 
14961     // The method was named without a qualifier.
14962     } else if (!DRE->getQualifier()) {
14963       if (MD->getParent()->getName().empty())
14964         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14965           << op->getSourceRange();
14966       else {
14967         SmallString<32> Str;
14968         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14969         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14970           << op->getSourceRange()
14971           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14972       }
14973     }
14974 
14975     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14976     if (isa<CXXDestructorDecl>(MD))
14977       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14978 
14979     QualType MPTy = Context.getMemberPointerType(
14980         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14981     // Under the MS ABI, lock down the inheritance model now.
14982     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14983       (void)isCompleteType(OpLoc, MPTy);
14984     return MPTy;
14985   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14986     // C99 6.5.3.2p1
14987     // The operand must be either an l-value or a function designator
14988     if (!op->getType()->isFunctionType()) {
14989       // Use a special diagnostic for loads from property references.
14990       if (isa<PseudoObjectExpr>(op)) {
14991         AddressOfError = AO_Property_Expansion;
14992       } else {
14993         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14994           << op->getType() << op->getSourceRange();
14995         return QualType();
14996       }
14997     }
14998   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14999     // The operand cannot be a bit-field
15000     AddressOfError = AO_Bit_Field;
15001   } else if (op->getObjectKind() == OK_VectorComponent) {
15002     // The operand cannot be an element of a vector
15003     AddressOfError = AO_Vector_Element;
15004   } else if (op->getObjectKind() == OK_MatrixComponent) {
15005     // The operand cannot be an element of a matrix.
15006     AddressOfError = AO_Matrix_Element;
15007   } else if (dcl) { // C99 6.5.3.2p1
15008     // We have an lvalue with a decl. Make sure the decl is not declared
15009     // with the register storage-class specifier.
15010     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15011       // in C++ it is not error to take address of a register
15012       // variable (c++03 7.1.1P3)
15013       if (vd->getStorageClass() == SC_Register &&
15014           !getLangOpts().CPlusPlus) {
15015         AddressOfError = AO_Register_Variable;
15016       }
15017     } else if (isa<MSPropertyDecl>(dcl)) {
15018       AddressOfError = AO_Property_Expansion;
15019     } else if (isa<FunctionTemplateDecl>(dcl)) {
15020       return Context.OverloadTy;
15021     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15022       // Okay: we can take the address of a field.
15023       // Could be a pointer to member, though, if there is an explicit
15024       // scope qualifier for the class.
15025       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15026         DeclContext *Ctx = dcl->getDeclContext();
15027         if (Ctx && Ctx->isRecord()) {
15028           if (dcl->getType()->isReferenceType()) {
15029             Diag(OpLoc,
15030                  diag::err_cannot_form_pointer_to_member_of_reference_type)
15031               << dcl->getDeclName() << dcl->getType();
15032             return QualType();
15033           }
15034 
15035           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15036             Ctx = Ctx->getParent();
15037 
15038           QualType MPTy = Context.getMemberPointerType(
15039               op->getType(),
15040               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15041           // Under the MS ABI, lock down the inheritance model now.
15042           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15043             (void)isCompleteType(OpLoc, MPTy);
15044           return MPTy;
15045         }
15046       }
15047     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15048                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15049       llvm_unreachable("Unknown/unexpected decl type");
15050   }
15051 
15052   if (AddressOfError != AO_No_Error) {
15053     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15054     return QualType();
15055   }
15056 
15057   if (lval == Expr::LV_IncompleteVoidType) {
15058     // Taking the address of a void variable is technically illegal, but we
15059     // allow it in cases which are otherwise valid.
15060     // Example: "extern void x; void* y = &x;".
15061     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15062   }
15063 
15064   // If the operand has type "type", the result has type "pointer to type".
15065   if (op->getType()->isObjCObjectType())
15066     return Context.getObjCObjectPointerType(op->getType());
15067 
15068   // Cannot take the address of WebAssembly references or tables.
15069   if (Context.getTargetInfo().getTriple().isWasm()) {
15070     QualType OpTy = op->getType();
15071     if (OpTy.isWebAssemblyReferenceType()) {
15072       Diag(OpLoc, diag::err_wasm_ca_reference)
15073           << 1 << OrigOp.get()->getSourceRange();
15074       return QualType();
15075     }
15076     if (OpTy->isWebAssemblyTableType()) {
15077       Diag(OpLoc, diag::err_wasm_table_pr)
15078           << 1 << OrigOp.get()->getSourceRange();
15079       return QualType();
15080     }
15081   }
15082 
15083   CheckAddressOfPackedMember(op);
15084 
15085   return Context.getPointerType(op->getType());
15086 }
15087 
15088 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15089   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15090   if (!DRE)
15091     return;
15092   const Decl *D = DRE->getDecl();
15093   if (!D)
15094     return;
15095   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15096   if (!Param)
15097     return;
15098   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15099     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15100       return;
15101   if (FunctionScopeInfo *FD = S.getCurFunction())
15102     FD->ModifiedNonNullParams.insert(Param);
15103 }
15104 
15105 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15106 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15107                                         SourceLocation OpLoc,
15108                                         bool IsAfterAmp = false) {
15109   if (Op->isTypeDependent())
15110     return S.Context.DependentTy;
15111 
15112   ExprResult ConvResult = S.UsualUnaryConversions(Op);
15113   if (ConvResult.isInvalid())
15114     return QualType();
15115   Op = ConvResult.get();
15116   QualType OpTy = Op->getType();
15117   QualType Result;
15118 
15119   if (isa<CXXReinterpretCastExpr>(Op)) {
15120     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15121     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15122                                      Op->getSourceRange());
15123   }
15124 
15125   if (const PointerType *PT = OpTy->getAs<PointerType>())
15126   {
15127     Result = PT->getPointeeType();
15128   }
15129   else if (const ObjCObjectPointerType *OPT =
15130              OpTy->getAs<ObjCObjectPointerType>())
15131     Result = OPT->getPointeeType();
15132   else {
15133     ExprResult PR = S.CheckPlaceholderExpr(Op);
15134     if (PR.isInvalid()) return QualType();
15135     if (PR.get() != Op)
15136       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15137   }
15138 
15139   if (Result.isNull()) {
15140     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15141       << OpTy << Op->getSourceRange();
15142     return QualType();
15143   }
15144 
15145   if (Result->isVoidType()) {
15146     // C++ [expr.unary.op]p1:
15147     //   [...] the expression to which [the unary * operator] is applied shall
15148     //   be a pointer to an object type, or a pointer to a function type
15149     LangOptions LO = S.getLangOpts();
15150     if (LO.CPlusPlus)
15151       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15152           << OpTy << Op->getSourceRange();
15153     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15154       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15155           << OpTy << Op->getSourceRange();
15156   }
15157 
15158   // Dereferences are usually l-values...
15159   VK = VK_LValue;
15160 
15161   // ...except that certain expressions are never l-values in C.
15162   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15163     VK = VK_PRValue;
15164 
15165   return Result;
15166 }
15167 
15168 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15169   BinaryOperatorKind Opc;
15170   switch (Kind) {
15171   default: llvm_unreachable("Unknown binop!");
15172   case tok::periodstar:           Opc = BO_PtrMemD; break;
15173   case tok::arrowstar:            Opc = BO_PtrMemI; break;
15174   case tok::star:                 Opc = BO_Mul; break;
15175   case tok::slash:                Opc = BO_Div; break;
15176   case tok::percent:              Opc = BO_Rem; break;
15177   case tok::plus:                 Opc = BO_Add; break;
15178   case tok::minus:                Opc = BO_Sub; break;
15179   case tok::lessless:             Opc = BO_Shl; break;
15180   case tok::greatergreater:       Opc = BO_Shr; break;
15181   case tok::lessequal:            Opc = BO_LE; break;
15182   case tok::less:                 Opc = BO_LT; break;
15183   case tok::greaterequal:         Opc = BO_GE; break;
15184   case tok::greater:              Opc = BO_GT; break;
15185   case tok::exclaimequal:         Opc = BO_NE; break;
15186   case tok::equalequal:           Opc = BO_EQ; break;
15187   case tok::spaceship:            Opc = BO_Cmp; break;
15188   case tok::amp:                  Opc = BO_And; break;
15189   case tok::caret:                Opc = BO_Xor; break;
15190   case tok::pipe:                 Opc = BO_Or; break;
15191   case tok::ampamp:               Opc = BO_LAnd; break;
15192   case tok::pipepipe:             Opc = BO_LOr; break;
15193   case tok::equal:                Opc = BO_Assign; break;
15194   case tok::starequal:            Opc = BO_MulAssign; break;
15195   case tok::slashequal:           Opc = BO_DivAssign; break;
15196   case tok::percentequal:         Opc = BO_RemAssign; break;
15197   case tok::plusequal:            Opc = BO_AddAssign; break;
15198   case tok::minusequal:           Opc = BO_SubAssign; break;
15199   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
15200   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
15201   case tok::ampequal:             Opc = BO_AndAssign; break;
15202   case tok::caretequal:           Opc = BO_XorAssign; break;
15203   case tok::pipeequal:            Opc = BO_OrAssign; break;
15204   case tok::comma:                Opc = BO_Comma; break;
15205   }
15206   return Opc;
15207 }
15208 
15209 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15210   tok::TokenKind Kind) {
15211   UnaryOperatorKind Opc;
15212   switch (Kind) {
15213   default: llvm_unreachable("Unknown unary op!");
15214   case tok::plusplus:     Opc = UO_PreInc; break;
15215   case tok::minusminus:   Opc = UO_PreDec; break;
15216   case tok::amp:          Opc = UO_AddrOf; break;
15217   case tok::star:         Opc = UO_Deref; break;
15218   case tok::plus:         Opc = UO_Plus; break;
15219   case tok::minus:        Opc = UO_Minus; break;
15220   case tok::tilde:        Opc = UO_Not; break;
15221   case tok::exclaim:      Opc = UO_LNot; break;
15222   case tok::kw___real:    Opc = UO_Real; break;
15223   case tok::kw___imag:    Opc = UO_Imag; break;
15224   case tok::kw___extension__: Opc = UO_Extension; break;
15225   }
15226   return Opc;
15227 }
15228 
15229 const FieldDecl *
15230 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15231   // Explore the case for adding 'this->' to the LHS of a self assignment, very
15232   // common for setters.
15233   // struct A {
15234   // int X;
15235   // -void setX(int X) { X = X; }
15236   // +void setX(int X) { this->X = X; }
15237   // };
15238 
15239   // Only consider parameters for self assignment fixes.
15240   if (!isa<ParmVarDecl>(SelfAssigned))
15241     return nullptr;
15242   const auto *Method =
15243       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15244   if (!Method)
15245     return nullptr;
15246 
15247   const CXXRecordDecl *Parent = Method->getParent();
15248   // In theory this is fixable if the lambda explicitly captures this, but
15249   // that's added complexity that's rarely going to be used.
15250   if (Parent->isLambda())
15251     return nullptr;
15252 
15253   // FIXME: Use an actual Lookup operation instead of just traversing fields
15254   // in order to get base class fields.
15255   auto Field =
15256       llvm::find_if(Parent->fields(),
15257                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15258                       return F->getDeclName() == Name;
15259                     });
15260   return (Field != Parent->field_end()) ? *Field : nullptr;
15261 }
15262 
15263 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15264 /// This warning suppressed in the event of macro expansions.
15265 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15266                                    SourceLocation OpLoc, bool IsBuiltin) {
15267   if (S.inTemplateInstantiation())
15268     return;
15269   if (S.isUnevaluatedContext())
15270     return;
15271   if (OpLoc.isInvalid() || OpLoc.isMacroID())
15272     return;
15273   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15274   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15275   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15276   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15277   if (!LHSDeclRef || !RHSDeclRef ||
15278       LHSDeclRef->getLocation().isMacroID() ||
15279       RHSDeclRef->getLocation().isMacroID())
15280     return;
15281   const ValueDecl *LHSDecl =
15282     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15283   const ValueDecl *RHSDecl =
15284     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15285   if (LHSDecl != RHSDecl)
15286     return;
15287   if (LHSDecl->getType().isVolatileQualified())
15288     return;
15289   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15290     if (RefTy->getPointeeType().isVolatileQualified())
15291       return;
15292 
15293   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15294                                       : diag::warn_self_assignment_overloaded)
15295               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15296               << RHSExpr->getSourceRange();
15297   if (const FieldDecl *SelfAssignField =
15298           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15299     Diag << 1 << SelfAssignField
15300          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15301   else
15302     Diag << 0;
15303 }
15304 
15305 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
15306 /// is usually indicative of introspection within the Objective-C pointer.
15307 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15308                                           SourceLocation OpLoc) {
15309   if (!S.getLangOpts().ObjC)
15310     return;
15311 
15312   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15313   const Expr *LHS = L.get();
15314   const Expr *RHS = R.get();
15315 
15316   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15317     ObjCPointerExpr = LHS;
15318     OtherExpr = RHS;
15319   }
15320   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15321     ObjCPointerExpr = RHS;
15322     OtherExpr = LHS;
15323   }
15324 
15325   // This warning is deliberately made very specific to reduce false
15326   // positives with logic that uses '&' for hashing.  This logic mainly
15327   // looks for code trying to introspect into tagged pointers, which
15328   // code should generally never do.
15329   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15330     unsigned Diag = diag::warn_objc_pointer_masking;
15331     // Determine if we are introspecting the result of performSelectorXXX.
15332     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15333     // Special case messages to -performSelector and friends, which
15334     // can return non-pointer values boxed in a pointer value.
15335     // Some clients may wish to silence warnings in this subcase.
15336     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15337       Selector S = ME->getSelector();
15338       StringRef SelArg0 = S.getNameForSlot(0);
15339       if (SelArg0.startswith("performSelector"))
15340         Diag = diag::warn_objc_pointer_masking_performSelector;
15341     }
15342 
15343     S.Diag(OpLoc, Diag)
15344       << ObjCPointerExpr->getSourceRange();
15345   }
15346 }
15347 
15348 static NamedDecl *getDeclFromExpr(Expr *E) {
15349   if (!E)
15350     return nullptr;
15351   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15352     return DRE->getDecl();
15353   if (auto *ME = dyn_cast<MemberExpr>(E))
15354     return ME->getMemberDecl();
15355   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15356     return IRE->getDecl();
15357   return nullptr;
15358 }
15359 
15360 // This helper function promotes a binary operator's operands (which are of a
15361 // half vector type) to a vector of floats and then truncates the result to
15362 // a vector of either half or short.
15363 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15364                                       BinaryOperatorKind Opc, QualType ResultTy,
15365                                       ExprValueKind VK, ExprObjectKind OK,
15366                                       bool IsCompAssign, SourceLocation OpLoc,
15367                                       FPOptionsOverride FPFeatures) {
15368   auto &Context = S.getASTContext();
15369   assert((isVector(ResultTy, Context.HalfTy) ||
15370           isVector(ResultTy, Context.ShortTy)) &&
15371          "Result must be a vector of half or short");
15372   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15373          isVector(RHS.get()->getType(), Context.HalfTy) &&
15374          "both operands expected to be a half vector");
15375 
15376   RHS = convertVector(RHS.get(), Context.FloatTy, S);
15377   QualType BinOpResTy = RHS.get()->getType();
15378 
15379   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15380   // change BinOpResTy to a vector of ints.
15381   if (isVector(ResultTy, Context.ShortTy))
15382     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15383 
15384   if (IsCompAssign)
15385     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15386                                           ResultTy, VK, OK, OpLoc, FPFeatures,
15387                                           BinOpResTy, BinOpResTy);
15388 
15389   LHS = convertVector(LHS.get(), Context.FloatTy, S);
15390   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15391                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
15392   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15393 }
15394 
15395 static std::pair<ExprResult, ExprResult>
15396 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15397                            Expr *RHSExpr) {
15398   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15399   if (!S.Context.isDependenceAllowed()) {
15400     // C cannot handle TypoExpr nodes on either side of a binop because it
15401     // doesn't handle dependent types properly, so make sure any TypoExprs have
15402     // been dealt with before checking the operands.
15403     LHS = S.CorrectDelayedTyposInExpr(LHS);
15404     RHS = S.CorrectDelayedTyposInExpr(
15405         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15406         [Opc, LHS](Expr *E) {
15407           if (Opc != BO_Assign)
15408             return ExprResult(E);
15409           // Avoid correcting the RHS to the same Expr as the LHS.
15410           Decl *D = getDeclFromExpr(E);
15411           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15412         });
15413   }
15414   return std::make_pair(LHS, RHS);
15415 }
15416 
15417 /// Returns true if conversion between vectors of halfs and vectors of floats
15418 /// is needed.
15419 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15420                                      Expr *E0, Expr *E1 = nullptr) {
15421   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15422       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15423     return false;
15424 
15425   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15426     QualType Ty = E->IgnoreImplicit()->getType();
15427 
15428     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15429     // to vectors of floats. Although the element type of the vectors is __fp16,
15430     // the vectors shouldn't be treated as storage-only types. See the
15431     // discussion here: https://reviews.llvm.org/rG825235c140e7
15432     if (const VectorType *VT = Ty->getAs<VectorType>()) {
15433       if (VT->getVectorKind() == VectorType::NeonVector)
15434         return false;
15435       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15436     }
15437     return false;
15438   };
15439 
15440   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15441 }
15442 
15443 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15444 /// operator @p Opc at location @c TokLoc. This routine only supports
15445 /// built-in operations; ActOnBinOp handles overloaded operators.
15446 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15447                                     BinaryOperatorKind Opc,
15448                                     Expr *LHSExpr, Expr *RHSExpr) {
15449   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15450     // The syntax only allows initializer lists on the RHS of assignment,
15451     // so we don't need to worry about accepting invalid code for
15452     // non-assignment operators.
15453     // C++11 5.17p9:
15454     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15455     //   of x = {} is x = T().
15456     InitializationKind Kind = InitializationKind::CreateDirectList(
15457         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15458     InitializedEntity Entity =
15459         InitializedEntity::InitializeTemporary(LHSExpr->getType());
15460     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15461     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15462     if (Init.isInvalid())
15463       return Init;
15464     RHSExpr = Init.get();
15465   }
15466 
15467   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15468   QualType ResultTy;     // Result type of the binary operator.
15469   // The following two variables are used for compound assignment operators
15470   QualType CompLHSTy;    // Type of LHS after promotions for computation
15471   QualType CompResultTy; // Type of computation result
15472   ExprValueKind VK = VK_PRValue;
15473   ExprObjectKind OK = OK_Ordinary;
15474   bool ConvertHalfVec = false;
15475 
15476   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15477   if (!LHS.isUsable() || !RHS.isUsable())
15478     return ExprError();
15479 
15480   if (getLangOpts().OpenCL) {
15481     QualType LHSTy = LHSExpr->getType();
15482     QualType RHSTy = RHSExpr->getType();
15483     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15484     // the ATOMIC_VAR_INIT macro.
15485     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15486       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15487       if (BO_Assign == Opc)
15488         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15489       else
15490         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15491       return ExprError();
15492     }
15493 
15494     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15495     // only with a builtin functions and therefore should be disallowed here.
15496     if (LHSTy->isImageType() || RHSTy->isImageType() ||
15497         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15498         LHSTy->isPipeType() || RHSTy->isPipeType() ||
15499         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15500       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15501       return ExprError();
15502     }
15503   }
15504 
15505   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15506   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15507 
15508   switch (Opc) {
15509   case BO_Assign:
15510     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15511     if (getLangOpts().CPlusPlus &&
15512         LHS.get()->getObjectKind() != OK_ObjCProperty) {
15513       VK = LHS.get()->getValueKind();
15514       OK = LHS.get()->getObjectKind();
15515     }
15516     if (!ResultTy.isNull()) {
15517       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15518       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15519 
15520       // Avoid copying a block to the heap if the block is assigned to a local
15521       // auto variable that is declared in the same scope as the block. This
15522       // optimization is unsafe if the local variable is declared in an outer
15523       // scope. For example:
15524       //
15525       // BlockTy b;
15526       // {
15527       //   b = ^{...};
15528       // }
15529       // // It is unsafe to invoke the block here if it wasn't copied to the
15530       // // heap.
15531       // b();
15532 
15533       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15534         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15535           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15536             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15537               BE->getBlockDecl()->setCanAvoidCopyToHeap();
15538 
15539       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15540         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15541                               NTCUC_Assignment, NTCUK_Copy);
15542     }
15543     RecordModifiableNonNullParam(*this, LHS.get());
15544     break;
15545   case BO_PtrMemD:
15546   case BO_PtrMemI:
15547     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15548                                             Opc == BO_PtrMemI);
15549     break;
15550   case BO_Mul:
15551   case BO_Div:
15552     ConvertHalfVec = true;
15553     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15554                                            Opc == BO_Div);
15555     break;
15556   case BO_Rem:
15557     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15558     break;
15559   case BO_Add:
15560     ConvertHalfVec = true;
15561     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15562     break;
15563   case BO_Sub:
15564     ConvertHalfVec = true;
15565     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15566     break;
15567   case BO_Shl:
15568   case BO_Shr:
15569     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15570     break;
15571   case BO_LE:
15572   case BO_LT:
15573   case BO_GE:
15574   case BO_GT:
15575     ConvertHalfVec = true;
15576     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15577     break;
15578   case BO_EQ:
15579   case BO_NE:
15580     ConvertHalfVec = true;
15581     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15582     break;
15583   case BO_Cmp:
15584     ConvertHalfVec = true;
15585     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15586     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15587     break;
15588   case BO_And:
15589     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15590     [[fallthrough]];
15591   case BO_Xor:
15592   case BO_Or:
15593     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15594     break;
15595   case BO_LAnd:
15596   case BO_LOr:
15597     ConvertHalfVec = true;
15598     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15599     break;
15600   case BO_MulAssign:
15601   case BO_DivAssign:
15602     ConvertHalfVec = true;
15603     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15604                                                Opc == BO_DivAssign);
15605     CompLHSTy = CompResultTy;
15606     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15607       ResultTy =
15608           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15609     break;
15610   case BO_RemAssign:
15611     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15612     CompLHSTy = CompResultTy;
15613     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15614       ResultTy =
15615           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15616     break;
15617   case BO_AddAssign:
15618     ConvertHalfVec = true;
15619     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15620     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15621       ResultTy =
15622           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15623     break;
15624   case BO_SubAssign:
15625     ConvertHalfVec = true;
15626     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15627     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15628       ResultTy =
15629           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15630     break;
15631   case BO_ShlAssign:
15632   case BO_ShrAssign:
15633     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15634     CompLHSTy = CompResultTy;
15635     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15636       ResultTy =
15637           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15638     break;
15639   case BO_AndAssign:
15640   case BO_OrAssign: // fallthrough
15641     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15642     [[fallthrough]];
15643   case BO_XorAssign:
15644     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15645     CompLHSTy = CompResultTy;
15646     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15647       ResultTy =
15648           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15649     break;
15650   case BO_Comma:
15651     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15652     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15653       VK = RHS.get()->getValueKind();
15654       OK = RHS.get()->getObjectKind();
15655     }
15656     break;
15657   }
15658   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15659     return ExprError();
15660 
15661   // Some of the binary operations require promoting operands of half vector to
15662   // float vectors and truncating the result back to half vector. For now, we do
15663   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15664   // arm64).
15665   assert(
15666       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15667                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15668       "both sides are half vectors or neither sides are");
15669   ConvertHalfVec =
15670       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15671 
15672   // Check for array bounds violations for both sides of the BinaryOperator
15673   CheckArrayAccess(LHS.get());
15674   CheckArrayAccess(RHS.get());
15675 
15676   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15677     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15678                                                  &Context.Idents.get("object_setClass"),
15679                                                  SourceLocation(), LookupOrdinaryName);
15680     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15681       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15682       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15683           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15684                                         "object_setClass(")
15685           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15686                                           ",")
15687           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15688     }
15689     else
15690       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15691   }
15692   else if (const ObjCIvarRefExpr *OIRE =
15693            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15694     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15695 
15696   // Opc is not a compound assignment if CompResultTy is null.
15697   if (CompResultTy.isNull()) {
15698     if (ConvertHalfVec)
15699       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15700                                  OpLoc, CurFPFeatureOverrides());
15701     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15702                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15703   }
15704 
15705   // Handle compound assignments.
15706   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15707       OK_ObjCProperty) {
15708     VK = VK_LValue;
15709     OK = LHS.get()->getObjectKind();
15710   }
15711 
15712   // The LHS is not converted to the result type for fixed-point compound
15713   // assignment as the common type is computed on demand. Reset the CompLHSTy
15714   // to the LHS type we would have gotten after unary conversions.
15715   if (CompResultTy->isFixedPointType())
15716     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15717 
15718   if (ConvertHalfVec)
15719     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15720                                OpLoc, CurFPFeatureOverrides());
15721 
15722   return CompoundAssignOperator::Create(
15723       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15724       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15725 }
15726 
15727 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15728 /// operators are mixed in a way that suggests that the programmer forgot that
15729 /// comparison operators have higher precedence. The most typical example of
15730 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15731 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15732                                       SourceLocation OpLoc, Expr *LHSExpr,
15733                                       Expr *RHSExpr) {
15734   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15735   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15736 
15737   // Check that one of the sides is a comparison operator and the other isn't.
15738   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15739   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15740   if (isLeftComp == isRightComp)
15741     return;
15742 
15743   // Bitwise operations are sometimes used as eager logical ops.
15744   // Don't diagnose this.
15745   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15746   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15747   if (isLeftBitwise || isRightBitwise)
15748     return;
15749 
15750   SourceRange DiagRange = isLeftComp
15751                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15752                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15753   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15754   SourceRange ParensRange =
15755       isLeftComp
15756           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15757           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15758 
15759   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15760     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15761   SuggestParentheses(Self, OpLoc,
15762     Self.PDiag(diag::note_precedence_silence) << OpStr,
15763     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15764   SuggestParentheses(Self, OpLoc,
15765     Self.PDiag(diag::note_precedence_bitwise_first)
15766       << BinaryOperator::getOpcodeStr(Opc),
15767     ParensRange);
15768 }
15769 
15770 /// It accepts a '&&' expr that is inside a '||' one.
15771 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15772 /// in parentheses.
15773 static void
15774 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15775                                        BinaryOperator *Bop) {
15776   assert(Bop->getOpcode() == BO_LAnd);
15777   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15778       << Bop->getSourceRange() << OpLoc;
15779   SuggestParentheses(Self, Bop->getOperatorLoc(),
15780     Self.PDiag(diag::note_precedence_silence)
15781       << Bop->getOpcodeStr(),
15782     Bop->getSourceRange());
15783 }
15784 
15785 /// Look for '&&' in the left hand of a '||' expr.
15786 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15787                                              Expr *LHSExpr, Expr *RHSExpr) {
15788   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15789     if (Bop->getOpcode() == BO_LAnd) {
15790       // If it's "string_literal && a || b" don't warn since the precedence
15791       // doesn't matter.
15792       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15793         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15794     } else if (Bop->getOpcode() == BO_LOr) {
15795       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15796         // If it's "a || b && string_literal || c" we didn't warn earlier for
15797         // "a || b && string_literal", but warn now.
15798         if (RBop->getOpcode() == BO_LAnd &&
15799             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15800           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15801       }
15802     }
15803   }
15804 }
15805 
15806 /// Look for '&&' in the right hand of a '||' expr.
15807 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15808                                              Expr *LHSExpr, Expr *RHSExpr) {
15809   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15810     if (Bop->getOpcode() == BO_LAnd) {
15811       // If it's "a || b && string_literal" don't warn since the precedence
15812       // doesn't matter.
15813       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15814         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15815     }
15816   }
15817 }
15818 
15819 /// Look for bitwise op in the left or right hand of a bitwise op with
15820 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15821 /// the '&' expression in parentheses.
15822 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15823                                          SourceLocation OpLoc, Expr *SubExpr) {
15824   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15825     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15826       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15827         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15828         << Bop->getSourceRange() << OpLoc;
15829       SuggestParentheses(S, Bop->getOperatorLoc(),
15830         S.PDiag(diag::note_precedence_silence)
15831           << Bop->getOpcodeStr(),
15832         Bop->getSourceRange());
15833     }
15834   }
15835 }
15836 
15837 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15838                                     Expr *SubExpr, StringRef Shift) {
15839   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15840     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15841       StringRef Op = Bop->getOpcodeStr();
15842       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15843           << Bop->getSourceRange() << OpLoc << Shift << Op;
15844       SuggestParentheses(S, Bop->getOperatorLoc(),
15845           S.PDiag(diag::note_precedence_silence) << Op,
15846           Bop->getSourceRange());
15847     }
15848   }
15849 }
15850 
15851 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15852                                  Expr *LHSExpr, Expr *RHSExpr) {
15853   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15854   if (!OCE)
15855     return;
15856 
15857   FunctionDecl *FD = OCE->getDirectCallee();
15858   if (!FD || !FD->isOverloadedOperator())
15859     return;
15860 
15861   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15862   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15863     return;
15864 
15865   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15866       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15867       << (Kind == OO_LessLess);
15868   SuggestParentheses(S, OCE->getOperatorLoc(),
15869                      S.PDiag(diag::note_precedence_silence)
15870                          << (Kind == OO_LessLess ? "<<" : ">>"),
15871                      OCE->getSourceRange());
15872   SuggestParentheses(
15873       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15874       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15875 }
15876 
15877 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15878 /// precedence.
15879 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15880                                     SourceLocation OpLoc, Expr *LHSExpr,
15881                                     Expr *RHSExpr){
15882   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15883   if (BinaryOperator::isBitwiseOp(Opc))
15884     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15885 
15886   // Diagnose "arg1 & arg2 | arg3"
15887   if ((Opc == BO_Or || Opc == BO_Xor) &&
15888       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15889     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15890     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15891   }
15892 
15893   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15894   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15895   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15896     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15897     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15898   }
15899 
15900   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15901       || Opc == BO_Shr) {
15902     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15903     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15904     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15905   }
15906 
15907   // Warn on overloaded shift operators and comparisons, such as:
15908   // cout << 5 == 4;
15909   if (BinaryOperator::isComparisonOp(Opc))
15910     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15911 }
15912 
15913 // Binary Operators.  'Tok' is the token for the operator.
15914 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15915                             tok::TokenKind Kind,
15916                             Expr *LHSExpr, Expr *RHSExpr) {
15917   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15918   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15919   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15920 
15921   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15922   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15923 
15924   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15925 }
15926 
15927 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15928                        UnresolvedSetImpl &Functions) {
15929   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15930   if (OverOp != OO_None && OverOp != OO_Equal)
15931     LookupOverloadedOperatorName(OverOp, S, Functions);
15932 
15933   // In C++20 onwards, we may have a second operator to look up.
15934   if (getLangOpts().CPlusPlus20) {
15935     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15936       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15937   }
15938 }
15939 
15940 /// Build an overloaded binary operator expression in the given scope.
15941 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15942                                        BinaryOperatorKind Opc,
15943                                        Expr *LHS, Expr *RHS) {
15944   switch (Opc) {
15945   case BO_Assign:
15946     // In the non-overloaded case, we warn about self-assignment (x = x) for
15947     // both simple assignment and certain compound assignments where algebra
15948     // tells us the operation yields a constant result.  When the operator is
15949     // overloaded, we can't do the latter because we don't want to assume that
15950     // those algebraic identities still apply; for example, a path-building
15951     // library might use operator/= to append paths.  But it's still reasonable
15952     // to assume that simple assignment is just moving/copying values around
15953     // and so self-assignment is likely a bug.
15954     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15955     [[fallthrough]];
15956   case BO_DivAssign:
15957   case BO_RemAssign:
15958   case BO_SubAssign:
15959   case BO_AndAssign:
15960   case BO_OrAssign:
15961   case BO_XorAssign:
15962     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15963     break;
15964   default:
15965     break;
15966   }
15967 
15968   // Find all of the overloaded operators visible from this point.
15969   UnresolvedSet<16> Functions;
15970   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15971 
15972   // Build the (potentially-overloaded, potentially-dependent)
15973   // binary operation.
15974   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15975 }
15976 
15977 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15978                             BinaryOperatorKind Opc,
15979                             Expr *LHSExpr, Expr *RHSExpr) {
15980   ExprResult LHS, RHS;
15981   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15982   if (!LHS.isUsable() || !RHS.isUsable())
15983     return ExprError();
15984   LHSExpr = LHS.get();
15985   RHSExpr = RHS.get();
15986 
15987   // We want to end up calling one of checkPseudoObjectAssignment
15988   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15989   // both expressions are overloadable or either is type-dependent),
15990   // or CreateBuiltinBinOp (in any other case).  We also want to get
15991   // any placeholder types out of the way.
15992 
15993   // Handle pseudo-objects in the LHS.
15994   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15995     // Assignments with a pseudo-object l-value need special analysis.
15996     if (pty->getKind() == BuiltinType::PseudoObject &&
15997         BinaryOperator::isAssignmentOp(Opc))
15998       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15999 
16000     // Don't resolve overloads if the other type is overloadable.
16001     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16002       // We can't actually test that if we still have a placeholder,
16003       // though.  Fortunately, none of the exceptions we see in that
16004       // code below are valid when the LHS is an overload set.  Note
16005       // that an overload set can be dependently-typed, but it never
16006       // instantiates to having an overloadable type.
16007       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16008       if (resolvedRHS.isInvalid()) return ExprError();
16009       RHSExpr = resolvedRHS.get();
16010 
16011       if (RHSExpr->isTypeDependent() ||
16012           RHSExpr->getType()->isOverloadableType())
16013         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16014     }
16015 
16016     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16017     // template, diagnose the missing 'template' keyword instead of diagnosing
16018     // an invalid use of a bound member function.
16019     //
16020     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16021     // to C++1z [over.over]/1.4, but we already checked for that case above.
16022     if (Opc == BO_LT && inTemplateInstantiation() &&
16023         (pty->getKind() == BuiltinType::BoundMember ||
16024          pty->getKind() == BuiltinType::Overload)) {
16025       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16026       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16027           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16028             return isa<FunctionTemplateDecl>(ND);
16029           })) {
16030         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16031                                 : OE->getNameLoc(),
16032              diag::err_template_kw_missing)
16033           << OE->getName().getAsString() << "";
16034         return ExprError();
16035       }
16036     }
16037 
16038     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16039     if (LHS.isInvalid()) return ExprError();
16040     LHSExpr = LHS.get();
16041   }
16042 
16043   // Handle pseudo-objects in the RHS.
16044   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16045     // An overload in the RHS can potentially be resolved by the type
16046     // being assigned to.
16047     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16048       if (getLangOpts().CPlusPlus &&
16049           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16050            LHSExpr->getType()->isOverloadableType()))
16051         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16052 
16053       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16054     }
16055 
16056     // Don't resolve overloads if the other type is overloadable.
16057     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16058         LHSExpr->getType()->isOverloadableType())
16059       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16060 
16061     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16062     if (!resolvedRHS.isUsable()) return ExprError();
16063     RHSExpr = resolvedRHS.get();
16064   }
16065 
16066   if (getLangOpts().CPlusPlus) {
16067     // If either expression is type-dependent, always build an
16068     // overloaded op.
16069     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16070       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16071 
16072     // Otherwise, build an overloaded op if either expression has an
16073     // overloadable type.
16074     if (LHSExpr->getType()->isOverloadableType() ||
16075         RHSExpr->getType()->isOverloadableType())
16076       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16077   }
16078 
16079   if (getLangOpts().RecoveryAST &&
16080       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16081     assert(!getLangOpts().CPlusPlus);
16082     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16083            "Should only occur in error-recovery path.");
16084     if (BinaryOperator::isCompoundAssignmentOp(Opc))
16085       // C [6.15.16] p3:
16086       // An assignment expression has the value of the left operand after the
16087       // assignment, but is not an lvalue.
16088       return CompoundAssignOperator::Create(
16089           Context, LHSExpr, RHSExpr, Opc,
16090           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16091           OpLoc, CurFPFeatureOverrides());
16092     QualType ResultType;
16093     switch (Opc) {
16094     case BO_Assign:
16095       ResultType = LHSExpr->getType().getUnqualifiedType();
16096       break;
16097     case BO_LT:
16098     case BO_GT:
16099     case BO_LE:
16100     case BO_GE:
16101     case BO_EQ:
16102     case BO_NE:
16103     case BO_LAnd:
16104     case BO_LOr:
16105       // These operators have a fixed result type regardless of operands.
16106       ResultType = Context.IntTy;
16107       break;
16108     case BO_Comma:
16109       ResultType = RHSExpr->getType();
16110       break;
16111     default:
16112       ResultType = Context.DependentTy;
16113       break;
16114     }
16115     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16116                                   VK_PRValue, OK_Ordinary, OpLoc,
16117                                   CurFPFeatureOverrides());
16118   }
16119 
16120   // Build a built-in binary operation.
16121   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16122 }
16123 
16124 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16125   if (T.isNull() || T->isDependentType())
16126     return false;
16127 
16128   if (!Ctx.isPromotableIntegerType(T))
16129     return true;
16130 
16131   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16132 }
16133 
16134 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16135                                       UnaryOperatorKind Opc, Expr *InputExpr,
16136                                       bool IsAfterAmp) {
16137   ExprResult Input = InputExpr;
16138   ExprValueKind VK = VK_PRValue;
16139   ExprObjectKind OK = OK_Ordinary;
16140   QualType resultType;
16141   bool CanOverflow = false;
16142 
16143   bool ConvertHalfVec = false;
16144   if (getLangOpts().OpenCL) {
16145     QualType Ty = InputExpr->getType();
16146     // The only legal unary operation for atomics is '&'.
16147     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16148     // OpenCL special types - image, sampler, pipe, and blocks are to be used
16149     // only with a builtin functions and therefore should be disallowed here.
16150         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16151         || Ty->isBlockPointerType())) {
16152       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16153                        << InputExpr->getType()
16154                        << Input.get()->getSourceRange());
16155     }
16156   }
16157 
16158   if (getLangOpts().HLSL && OpLoc.isValid()) {
16159     if (Opc == UO_AddrOf)
16160       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16161     if (Opc == UO_Deref)
16162       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16163   }
16164 
16165   switch (Opc) {
16166   case UO_PreInc:
16167   case UO_PreDec:
16168   case UO_PostInc:
16169   case UO_PostDec:
16170     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16171                                                 OpLoc,
16172                                                 Opc == UO_PreInc ||
16173                                                 Opc == UO_PostInc,
16174                                                 Opc == UO_PreInc ||
16175                                                 Opc == UO_PreDec);
16176     CanOverflow = isOverflowingIntegerType(Context, resultType);
16177     break;
16178   case UO_AddrOf:
16179     resultType = CheckAddressOfOperand(Input, OpLoc);
16180     CheckAddressOfNoDeref(InputExpr);
16181     RecordModifiableNonNullParam(*this, InputExpr);
16182     break;
16183   case UO_Deref: {
16184     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16185     if (Input.isInvalid()) return ExprError();
16186     resultType =
16187         CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16188     break;
16189   }
16190   case UO_Plus:
16191   case UO_Minus:
16192     CanOverflow = Opc == UO_Minus &&
16193                   isOverflowingIntegerType(Context, Input.get()->getType());
16194     Input = UsualUnaryConversions(Input.get());
16195     if (Input.isInvalid()) return ExprError();
16196     // Unary plus and minus require promoting an operand of half vector to a
16197     // float vector and truncating the result back to a half vector. For now, we
16198     // do this only when HalfArgsAndReturns is set (that is, when the target is
16199     // arm or arm64).
16200     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16201 
16202     // If the operand is a half vector, promote it to a float vector.
16203     if (ConvertHalfVec)
16204       Input = convertVector(Input.get(), Context.FloatTy, *this);
16205     resultType = Input.get()->getType();
16206     if (resultType->isDependentType())
16207       break;
16208     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16209       break;
16210     else if (resultType->isVectorType() &&
16211              // The z vector extensions don't allow + or - with bool vectors.
16212              (!Context.getLangOpts().ZVector ||
16213               resultType->castAs<VectorType>()->getVectorKind() !=
16214               VectorType::AltiVecBool))
16215       break;
16216     else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and -
16217       break;
16218     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16219              Opc == UO_Plus &&
16220              resultType->isPointerType())
16221       break;
16222 
16223     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16224       << resultType << Input.get()->getSourceRange());
16225 
16226   case UO_Not: // bitwise complement
16227     Input = UsualUnaryConversions(Input.get());
16228     if (Input.isInvalid())
16229       return ExprError();
16230     resultType = Input.get()->getType();
16231     if (resultType->isDependentType())
16232       break;
16233     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16234     if (resultType->isComplexType() || resultType->isComplexIntegerType())
16235       // C99 does not support '~' for complex conjugation.
16236       Diag(OpLoc, diag::ext_integer_complement_complex)
16237           << resultType << Input.get()->getSourceRange();
16238     else if (resultType->hasIntegerRepresentation())
16239       break;
16240     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16241       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16242       // on vector float types.
16243       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16244       if (!T->isIntegerType())
16245         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16246                           << resultType << Input.get()->getSourceRange());
16247     } else {
16248       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16249                        << resultType << Input.get()->getSourceRange());
16250     }
16251     break;
16252 
16253   case UO_LNot: // logical negation
16254     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16255     Input = DefaultFunctionArrayLvalueConversion(Input.get());
16256     if (Input.isInvalid()) return ExprError();
16257     resultType = Input.get()->getType();
16258 
16259     // Though we still have to promote half FP to float...
16260     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16261       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16262       resultType = Context.FloatTy;
16263     }
16264 
16265     // WebAsembly tables can't be used in unary expressions.
16266     if (resultType->isPointerType() &&
16267         resultType->getPointeeType().isWebAssemblyReferenceType()) {
16268       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16269                        << resultType << Input.get()->getSourceRange());
16270     }
16271 
16272     if (resultType->isDependentType())
16273       break;
16274     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16275       // C99 6.5.3.3p1: ok, fallthrough;
16276       if (Context.getLangOpts().CPlusPlus) {
16277         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16278         // operand contextually converted to bool.
16279         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16280                                   ScalarTypeToBooleanCastKind(resultType));
16281       } else if (Context.getLangOpts().OpenCL &&
16282                  Context.getLangOpts().OpenCLVersion < 120) {
16283         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16284         // operate on scalar float types.
16285         if (!resultType->isIntegerType() && !resultType->isPointerType())
16286           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16287                            << resultType << Input.get()->getSourceRange());
16288       }
16289     } else if (resultType->isExtVectorType()) {
16290       if (Context.getLangOpts().OpenCL &&
16291           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16292         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16293         // operate on vector float types.
16294         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16295         if (!T->isIntegerType())
16296           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16297                            << resultType << Input.get()->getSourceRange());
16298       }
16299       // Vector logical not returns the signed variant of the operand type.
16300       resultType = GetSignedVectorType(resultType);
16301       break;
16302     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16303       const VectorType *VTy = resultType->castAs<VectorType>();
16304       if (VTy->getVectorKind() != VectorType::GenericVector)
16305         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16306                          << resultType << Input.get()->getSourceRange());
16307 
16308       // Vector logical not returns the signed variant of the operand type.
16309       resultType = GetSignedVectorType(resultType);
16310       break;
16311     } else {
16312       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16313         << resultType << Input.get()->getSourceRange());
16314     }
16315 
16316     // LNot always has type int. C99 6.5.3.3p5.
16317     // In C++, it's bool. C++ 5.3.1p8
16318     resultType = Context.getLogicalOperationType();
16319     break;
16320   case UO_Real:
16321   case UO_Imag:
16322     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16323     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16324     // complex l-values to ordinary l-values and all other values to r-values.
16325     if (Input.isInvalid()) return ExprError();
16326     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16327       if (Input.get()->isGLValue() &&
16328           Input.get()->getObjectKind() == OK_Ordinary)
16329         VK = Input.get()->getValueKind();
16330     } else if (!getLangOpts().CPlusPlus) {
16331       // In C, a volatile scalar is read by __imag. In C++, it is not.
16332       Input = DefaultLvalueConversion(Input.get());
16333     }
16334     break;
16335   case UO_Extension:
16336     resultType = Input.get()->getType();
16337     VK = Input.get()->getValueKind();
16338     OK = Input.get()->getObjectKind();
16339     break;
16340   case UO_Coawait:
16341     // It's unnecessary to represent the pass-through operator co_await in the
16342     // AST; just return the input expression instead.
16343     assert(!Input.get()->getType()->isDependentType() &&
16344                    "the co_await expression must be non-dependant before "
16345                    "building operator co_await");
16346     return Input;
16347   }
16348   if (resultType.isNull() || Input.isInvalid())
16349     return ExprError();
16350 
16351   // Check for array bounds violations in the operand of the UnaryOperator,
16352   // except for the '*' and '&' operators that have to be handled specially
16353   // by CheckArrayAccess (as there are special cases like &array[arraysize]
16354   // that are explicitly defined as valid by the standard).
16355   if (Opc != UO_AddrOf && Opc != UO_Deref)
16356     CheckArrayAccess(Input.get());
16357 
16358   auto *UO =
16359       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16360                             OpLoc, CanOverflow, CurFPFeatureOverrides());
16361 
16362   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16363       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16364       !isUnevaluatedContext())
16365     ExprEvalContexts.back().PossibleDerefs.insert(UO);
16366 
16367   // Convert the result back to a half vector.
16368   if (ConvertHalfVec)
16369     return convertVector(UO, Context.HalfTy, *this);
16370   return UO;
16371 }
16372 
16373 /// Determine whether the given expression is a qualified member
16374 /// access expression, of a form that could be turned into a pointer to member
16375 /// with the address-of operator.
16376 bool Sema::isQualifiedMemberAccess(Expr *E) {
16377   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16378     if (!DRE->getQualifier())
16379       return false;
16380 
16381     ValueDecl *VD = DRE->getDecl();
16382     if (!VD->isCXXClassMember())
16383       return false;
16384 
16385     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16386       return true;
16387     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16388       return Method->isInstance();
16389 
16390     return false;
16391   }
16392 
16393   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16394     if (!ULE->getQualifier())
16395       return false;
16396 
16397     for (NamedDecl *D : ULE->decls()) {
16398       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16399         if (Method->isInstance())
16400           return true;
16401       } else {
16402         // Overload set does not contain methods.
16403         break;
16404       }
16405     }
16406 
16407     return false;
16408   }
16409 
16410   return false;
16411 }
16412 
16413 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16414                               UnaryOperatorKind Opc, Expr *Input,
16415                               bool IsAfterAmp) {
16416   // First things first: handle placeholders so that the
16417   // overloaded-operator check considers the right type.
16418   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16419     // Increment and decrement of pseudo-object references.
16420     if (pty->getKind() == BuiltinType::PseudoObject &&
16421         UnaryOperator::isIncrementDecrementOp(Opc))
16422       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16423 
16424     // extension is always a builtin operator.
16425     if (Opc == UO_Extension)
16426       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16427 
16428     // & gets special logic for several kinds of placeholder.
16429     // The builtin code knows what to do.
16430     if (Opc == UO_AddrOf &&
16431         (pty->getKind() == BuiltinType::Overload ||
16432          pty->getKind() == BuiltinType::UnknownAny ||
16433          pty->getKind() == BuiltinType::BoundMember))
16434       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16435 
16436     // Anything else needs to be handled now.
16437     ExprResult Result = CheckPlaceholderExpr(Input);
16438     if (Result.isInvalid()) return ExprError();
16439     Input = Result.get();
16440   }
16441 
16442   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16443       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16444       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16445     // Find all of the overloaded operators visible from this point.
16446     UnresolvedSet<16> Functions;
16447     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16448     if (S && OverOp != OO_None)
16449       LookupOverloadedOperatorName(OverOp, S, Functions);
16450 
16451     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16452   }
16453 
16454   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16455 }
16456 
16457 // Unary Operators.  'Tok' is the token for the operator.
16458 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16459                               Expr *Input, bool IsAfterAmp) {
16460   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16461                       IsAfterAmp);
16462 }
16463 
16464 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16465 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16466                                 LabelDecl *TheDecl) {
16467   TheDecl->markUsed(Context);
16468   // Create the AST node.  The address of a label always has type 'void*'.
16469   auto *Res = new (Context) AddrLabelExpr(
16470       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16471 
16472   if (getCurFunction())
16473     getCurFunction()->AddrLabels.push_back(Res);
16474 
16475   return Res;
16476 }
16477 
16478 void Sema::ActOnStartStmtExpr() {
16479   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16480   // Make sure we diagnose jumping into a statement expression.
16481   setFunctionHasBranchProtectedScope();
16482 }
16483 
16484 void Sema::ActOnStmtExprError() {
16485   // Note that function is also called by TreeTransform when leaving a
16486   // StmtExpr scope without rebuilding anything.
16487 
16488   DiscardCleanupsInEvaluationContext();
16489   PopExpressionEvaluationContext();
16490 }
16491 
16492 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16493                                SourceLocation RPLoc) {
16494   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16495 }
16496 
16497 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16498                                SourceLocation RPLoc, unsigned TemplateDepth) {
16499   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16500   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16501 
16502   if (hasAnyUnrecoverableErrorsInThisFunction())
16503     DiscardCleanupsInEvaluationContext();
16504   assert(!Cleanup.exprNeedsCleanups() &&
16505          "cleanups within StmtExpr not correctly bound!");
16506   PopExpressionEvaluationContext();
16507 
16508   // FIXME: there are a variety of strange constraints to enforce here, for
16509   // example, it is not possible to goto into a stmt expression apparently.
16510   // More semantic analysis is needed.
16511 
16512   // If there are sub-stmts in the compound stmt, take the type of the last one
16513   // as the type of the stmtexpr.
16514   QualType Ty = Context.VoidTy;
16515   bool StmtExprMayBindToTemp = false;
16516   if (!Compound->body_empty()) {
16517     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16518     if (const auto *LastStmt =
16519             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16520       if (const Expr *Value = LastStmt->getExprStmt()) {
16521         StmtExprMayBindToTemp = true;
16522         Ty = Value->getType();
16523       }
16524     }
16525   }
16526 
16527   // FIXME: Check that expression type is complete/non-abstract; statement
16528   // expressions are not lvalues.
16529   Expr *ResStmtExpr =
16530       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16531   if (StmtExprMayBindToTemp)
16532     return MaybeBindToTemporary(ResStmtExpr);
16533   return ResStmtExpr;
16534 }
16535 
16536 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16537   if (ER.isInvalid())
16538     return ExprError();
16539 
16540   // Do function/array conversion on the last expression, but not
16541   // lvalue-to-rvalue.  However, initialize an unqualified type.
16542   ER = DefaultFunctionArrayConversion(ER.get());
16543   if (ER.isInvalid())
16544     return ExprError();
16545   Expr *E = ER.get();
16546 
16547   if (E->isTypeDependent())
16548     return E;
16549 
16550   // In ARC, if the final expression ends in a consume, splice
16551   // the consume out and bind it later.  In the alternate case
16552   // (when dealing with a retainable type), the result
16553   // initialization will create a produce.  In both cases the
16554   // result will be +1, and we'll need to balance that out with
16555   // a bind.
16556   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16557   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16558     return Cast->getSubExpr();
16559 
16560   // FIXME: Provide a better location for the initialization.
16561   return PerformCopyInitialization(
16562       InitializedEntity::InitializeStmtExprResult(
16563           E->getBeginLoc(), E->getType().getUnqualifiedType()),
16564       SourceLocation(), E);
16565 }
16566 
16567 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16568                                       TypeSourceInfo *TInfo,
16569                                       ArrayRef<OffsetOfComponent> Components,
16570                                       SourceLocation RParenLoc) {
16571   QualType ArgTy = TInfo->getType();
16572   bool Dependent = ArgTy->isDependentType();
16573   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16574 
16575   // We must have at least one component that refers to the type, and the first
16576   // one is known to be a field designator.  Verify that the ArgTy represents
16577   // a struct/union/class.
16578   if (!Dependent && !ArgTy->isRecordType())
16579     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16580                        << ArgTy << TypeRange);
16581 
16582   // Type must be complete per C99 7.17p3 because a declaring a variable
16583   // with an incomplete type would be ill-formed.
16584   if (!Dependent
16585       && RequireCompleteType(BuiltinLoc, ArgTy,
16586                              diag::err_offsetof_incomplete_type, TypeRange))
16587     return ExprError();
16588 
16589   bool DidWarnAboutNonPOD = false;
16590   QualType CurrentType = ArgTy;
16591   SmallVector<OffsetOfNode, 4> Comps;
16592   SmallVector<Expr*, 4> Exprs;
16593   for (const OffsetOfComponent &OC : Components) {
16594     if (OC.isBrackets) {
16595       // Offset of an array sub-field.  TODO: Should we allow vector elements?
16596       if (!CurrentType->isDependentType()) {
16597         const ArrayType *AT = Context.getAsArrayType(CurrentType);
16598         if(!AT)
16599           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16600                            << CurrentType);
16601         CurrentType = AT->getElementType();
16602       } else
16603         CurrentType = Context.DependentTy;
16604 
16605       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16606       if (IdxRval.isInvalid())
16607         return ExprError();
16608       Expr *Idx = IdxRval.get();
16609 
16610       // The expression must be an integral expression.
16611       // FIXME: An integral constant expression?
16612       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16613           !Idx->getType()->isIntegerType())
16614         return ExprError(
16615             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16616             << Idx->getSourceRange());
16617 
16618       // Record this array index.
16619       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16620       Exprs.push_back(Idx);
16621       continue;
16622     }
16623 
16624     // Offset of a field.
16625     if (CurrentType->isDependentType()) {
16626       // We have the offset of a field, but we can't look into the dependent
16627       // type. Just record the identifier of the field.
16628       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16629       CurrentType = Context.DependentTy;
16630       continue;
16631     }
16632 
16633     // We need to have a complete type to look into.
16634     if (RequireCompleteType(OC.LocStart, CurrentType,
16635                             diag::err_offsetof_incomplete_type))
16636       return ExprError();
16637 
16638     // Look for the designated field.
16639     const RecordType *RC = CurrentType->getAs<RecordType>();
16640     if (!RC)
16641       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16642                        << CurrentType);
16643     RecordDecl *RD = RC->getDecl();
16644 
16645     // C++ [lib.support.types]p5:
16646     //   The macro offsetof accepts a restricted set of type arguments in this
16647     //   International Standard. type shall be a POD structure or a POD union
16648     //   (clause 9).
16649     // C++11 [support.types]p4:
16650     //   If type is not a standard-layout class (Clause 9), the results are
16651     //   undefined.
16652     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16653       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16654       unsigned DiagID =
16655         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16656                             : diag::ext_offsetof_non_pod_type;
16657 
16658       if (!IsSafe && !DidWarnAboutNonPOD &&
16659           DiagRuntimeBehavior(BuiltinLoc, nullptr,
16660                               PDiag(DiagID)
16661                               << SourceRange(Components[0].LocStart, OC.LocEnd)
16662                               << CurrentType))
16663         DidWarnAboutNonPOD = true;
16664     }
16665 
16666     // Look for the field.
16667     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16668     LookupQualifiedName(R, RD);
16669     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16670     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16671     if (!MemberDecl) {
16672       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16673         MemberDecl = IndirectMemberDecl->getAnonField();
16674     }
16675 
16676     if (!MemberDecl)
16677       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16678                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16679                                                               OC.LocEnd));
16680 
16681     // C99 7.17p3:
16682     //   (If the specified member is a bit-field, the behavior is undefined.)
16683     //
16684     // We diagnose this as an error.
16685     if (MemberDecl->isBitField()) {
16686       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16687         << MemberDecl->getDeclName()
16688         << SourceRange(BuiltinLoc, RParenLoc);
16689       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16690       return ExprError();
16691     }
16692 
16693     RecordDecl *Parent = MemberDecl->getParent();
16694     if (IndirectMemberDecl)
16695       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16696 
16697     // If the member was found in a base class, introduce OffsetOfNodes for
16698     // the base class indirections.
16699     CXXBasePaths Paths;
16700     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16701                       Paths)) {
16702       if (Paths.getDetectedVirtual()) {
16703         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16704           << MemberDecl->getDeclName()
16705           << SourceRange(BuiltinLoc, RParenLoc);
16706         return ExprError();
16707       }
16708 
16709       CXXBasePath &Path = Paths.front();
16710       for (const CXXBasePathElement &B : Path)
16711         Comps.push_back(OffsetOfNode(B.Base));
16712     }
16713 
16714     if (IndirectMemberDecl) {
16715       for (auto *FI : IndirectMemberDecl->chain()) {
16716         assert(isa<FieldDecl>(FI));
16717         Comps.push_back(OffsetOfNode(OC.LocStart,
16718                                      cast<FieldDecl>(FI), OC.LocEnd));
16719       }
16720     } else
16721       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16722 
16723     CurrentType = MemberDecl->getType().getNonReferenceType();
16724   }
16725 
16726   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16727                               Comps, Exprs, RParenLoc);
16728 }
16729 
16730 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16731                                       SourceLocation BuiltinLoc,
16732                                       SourceLocation TypeLoc,
16733                                       ParsedType ParsedArgTy,
16734                                       ArrayRef<OffsetOfComponent> Components,
16735                                       SourceLocation RParenLoc) {
16736 
16737   TypeSourceInfo *ArgTInfo;
16738   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16739   if (ArgTy.isNull())
16740     return ExprError();
16741 
16742   if (!ArgTInfo)
16743     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16744 
16745   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16746 }
16747 
16748 
16749 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16750                                  Expr *CondExpr,
16751                                  Expr *LHSExpr, Expr *RHSExpr,
16752                                  SourceLocation RPLoc) {
16753   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16754 
16755   ExprValueKind VK = VK_PRValue;
16756   ExprObjectKind OK = OK_Ordinary;
16757   QualType resType;
16758   bool CondIsTrue = false;
16759   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16760     resType = Context.DependentTy;
16761   } else {
16762     // The conditional expression is required to be a constant expression.
16763     llvm::APSInt condEval(32);
16764     ExprResult CondICE = VerifyIntegerConstantExpression(
16765         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16766     if (CondICE.isInvalid())
16767       return ExprError();
16768     CondExpr = CondICE.get();
16769     CondIsTrue = condEval.getZExtValue();
16770 
16771     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16772     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16773 
16774     resType = ActiveExpr->getType();
16775     VK = ActiveExpr->getValueKind();
16776     OK = ActiveExpr->getObjectKind();
16777   }
16778 
16779   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16780                                   resType, VK, OK, RPLoc, CondIsTrue);
16781 }
16782 
16783 //===----------------------------------------------------------------------===//
16784 // Clang Extensions.
16785 //===----------------------------------------------------------------------===//
16786 
16787 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16788 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16789   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16790 
16791   if (LangOpts.CPlusPlus) {
16792     MangleNumberingContext *MCtx;
16793     Decl *ManglingContextDecl;
16794     std::tie(MCtx, ManglingContextDecl) =
16795         getCurrentMangleNumberContext(Block->getDeclContext());
16796     if (MCtx) {
16797       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16798       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16799     }
16800   }
16801 
16802   PushBlockScope(CurScope, Block);
16803   CurContext->addDecl(Block);
16804   if (CurScope)
16805     PushDeclContext(CurScope, Block);
16806   else
16807     CurContext = Block;
16808 
16809   getCurBlock()->HasImplicitReturnType = true;
16810 
16811   // Enter a new evaluation context to insulate the block from any
16812   // cleanups from the enclosing full-expression.
16813   PushExpressionEvaluationContext(
16814       ExpressionEvaluationContext::PotentiallyEvaluated);
16815 }
16816 
16817 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16818                                Scope *CurScope) {
16819   assert(ParamInfo.getIdentifier() == nullptr &&
16820          "block-id should have no identifier!");
16821   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16822   BlockScopeInfo *CurBlock = getCurBlock();
16823 
16824   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16825   QualType T = Sig->getType();
16826 
16827   // FIXME: We should allow unexpanded parameter packs here, but that would,
16828   // in turn, make the block expression contain unexpanded parameter packs.
16829   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16830     // Drop the parameters.
16831     FunctionProtoType::ExtProtoInfo EPI;
16832     EPI.HasTrailingReturn = false;
16833     EPI.TypeQuals.addConst();
16834     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16835     Sig = Context.getTrivialTypeSourceInfo(T);
16836   }
16837 
16838   // GetTypeForDeclarator always produces a function type for a block
16839   // literal signature.  Furthermore, it is always a FunctionProtoType
16840   // unless the function was written with a typedef.
16841   assert(T->isFunctionType() &&
16842          "GetTypeForDeclarator made a non-function block signature");
16843 
16844   // Look for an explicit signature in that function type.
16845   FunctionProtoTypeLoc ExplicitSignature;
16846 
16847   if ((ExplicitSignature = Sig->getTypeLoc()
16848                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
16849 
16850     // Check whether that explicit signature was synthesized by
16851     // GetTypeForDeclarator.  If so, don't save that as part of the
16852     // written signature.
16853     if (ExplicitSignature.getLocalRangeBegin() ==
16854         ExplicitSignature.getLocalRangeEnd()) {
16855       // This would be much cheaper if we stored TypeLocs instead of
16856       // TypeSourceInfos.
16857       TypeLoc Result = ExplicitSignature.getReturnLoc();
16858       unsigned Size = Result.getFullDataSize();
16859       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16860       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16861 
16862       ExplicitSignature = FunctionProtoTypeLoc();
16863     }
16864   }
16865 
16866   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16867   CurBlock->FunctionType = T;
16868 
16869   const auto *Fn = T->castAs<FunctionType>();
16870   QualType RetTy = Fn->getReturnType();
16871   bool isVariadic =
16872       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16873 
16874   CurBlock->TheDecl->setIsVariadic(isVariadic);
16875 
16876   // Context.DependentTy is used as a placeholder for a missing block
16877   // return type.  TODO:  what should we do with declarators like:
16878   //   ^ * { ... }
16879   // If the answer is "apply template argument deduction"....
16880   if (RetTy != Context.DependentTy) {
16881     CurBlock->ReturnType = RetTy;
16882     CurBlock->TheDecl->setBlockMissingReturnType(false);
16883     CurBlock->HasImplicitReturnType = false;
16884   }
16885 
16886   // Push block parameters from the declarator if we had them.
16887   SmallVector<ParmVarDecl*, 8> Params;
16888   if (ExplicitSignature) {
16889     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16890       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16891       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16892           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16893         // Diagnose this as an extension in C17 and earlier.
16894         if (!getLangOpts().C2x)
16895           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16896       }
16897       Params.push_back(Param);
16898     }
16899 
16900   // Fake up parameter variables if we have a typedef, like
16901   //   ^ fntype { ... }
16902   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16903     for (const auto &I : Fn->param_types()) {
16904       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16905           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16906       Params.push_back(Param);
16907     }
16908   }
16909 
16910   // Set the parameters on the block decl.
16911   if (!Params.empty()) {
16912     CurBlock->TheDecl->setParams(Params);
16913     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16914                              /*CheckParameterNames=*/false);
16915   }
16916 
16917   // Finally we can process decl attributes.
16918   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16919 
16920   // Put the parameter variables in scope.
16921   for (auto *AI : CurBlock->TheDecl->parameters()) {
16922     AI->setOwningFunction(CurBlock->TheDecl);
16923 
16924     // If this has an identifier, add it to the scope stack.
16925     if (AI->getIdentifier()) {
16926       CheckShadow(CurBlock->TheScope, AI);
16927 
16928       PushOnScopeChains(AI, CurBlock->TheScope);
16929     }
16930 
16931     if (AI->isInvalidDecl())
16932       CurBlock->TheDecl->setInvalidDecl();
16933   }
16934 }
16935 
16936 /// ActOnBlockError - If there is an error parsing a block, this callback
16937 /// is invoked to pop the information about the block from the action impl.
16938 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16939   // Leave the expression-evaluation context.
16940   DiscardCleanupsInEvaluationContext();
16941   PopExpressionEvaluationContext();
16942 
16943   // Pop off CurBlock, handle nested blocks.
16944   PopDeclContext();
16945   PopFunctionScopeInfo();
16946 }
16947 
16948 /// ActOnBlockStmtExpr - This is called when the body of a block statement
16949 /// literal was successfully completed.  ^(int x){...}
16950 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16951                                     Stmt *Body, Scope *CurScope) {
16952   // If blocks are disabled, emit an error.
16953   if (!LangOpts.Blocks)
16954     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16955 
16956   // Leave the expression-evaluation context.
16957   if (hasAnyUnrecoverableErrorsInThisFunction())
16958     DiscardCleanupsInEvaluationContext();
16959   assert(!Cleanup.exprNeedsCleanups() &&
16960          "cleanups within block not correctly bound!");
16961   PopExpressionEvaluationContext();
16962 
16963   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16964   BlockDecl *BD = BSI->TheDecl;
16965 
16966   if (BSI->HasImplicitReturnType)
16967     deduceClosureReturnType(*BSI);
16968 
16969   QualType RetTy = Context.VoidTy;
16970   if (!BSI->ReturnType.isNull())
16971     RetTy = BSI->ReturnType;
16972 
16973   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16974   QualType BlockTy;
16975 
16976   // If the user wrote a function type in some form, try to use that.
16977   if (!BSI->FunctionType.isNull()) {
16978     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16979 
16980     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16981     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16982 
16983     // Turn protoless block types into nullary block types.
16984     if (isa<FunctionNoProtoType>(FTy)) {
16985       FunctionProtoType::ExtProtoInfo EPI;
16986       EPI.ExtInfo = Ext;
16987       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16988 
16989       // Otherwise, if we don't need to change anything about the function type,
16990       // preserve its sugar structure.
16991     } else if (FTy->getReturnType() == RetTy &&
16992                (!NoReturn || FTy->getNoReturnAttr())) {
16993       BlockTy = BSI->FunctionType;
16994 
16995     // Otherwise, make the minimal modifications to the function type.
16996     } else {
16997       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16998       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16999       EPI.TypeQuals = Qualifiers();
17000       EPI.ExtInfo = Ext;
17001       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17002     }
17003 
17004   // If we don't have a function type, just build one from nothing.
17005   } else {
17006     FunctionProtoType::ExtProtoInfo EPI;
17007     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17008     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17009   }
17010 
17011   DiagnoseUnusedParameters(BD->parameters());
17012   BlockTy = Context.getBlockPointerType(BlockTy);
17013 
17014   // If needed, diagnose invalid gotos and switches in the block.
17015   if (getCurFunction()->NeedsScopeChecking() &&
17016       !PP.isCodeCompletionEnabled())
17017     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17018 
17019   BD->setBody(cast<CompoundStmt>(Body));
17020 
17021   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17022     DiagnoseUnguardedAvailabilityViolations(BD);
17023 
17024   // Try to apply the named return value optimization. We have to check again
17025   // if we can do this, though, because blocks keep return statements around
17026   // to deduce an implicit return type.
17027   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17028       !BD->isDependentContext())
17029     computeNRVO(Body, BSI);
17030 
17031   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17032       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17033     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17034                           NTCUK_Destruct|NTCUK_Copy);
17035 
17036   PopDeclContext();
17037 
17038   // Set the captured variables on the block.
17039   SmallVector<BlockDecl::Capture, 4> Captures;
17040   for (Capture &Cap : BSI->Captures) {
17041     if (Cap.isInvalid() || Cap.isThisCapture())
17042       continue;
17043     // Cap.getVariable() is always a VarDecl because
17044     // blocks cannot capture structured bindings or other ValueDecl kinds.
17045     auto *Var = cast<VarDecl>(Cap.getVariable());
17046     Expr *CopyExpr = nullptr;
17047     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17048       if (const RecordType *Record =
17049               Cap.getCaptureType()->getAs<RecordType>()) {
17050         // The capture logic needs the destructor, so make sure we mark it.
17051         // Usually this is unnecessary because most local variables have
17052         // their destructors marked at declaration time, but parameters are
17053         // an exception because it's technically only the call site that
17054         // actually requires the destructor.
17055         if (isa<ParmVarDecl>(Var))
17056           FinalizeVarWithDestructor(Var, Record);
17057 
17058         // Enter a separate potentially-evaluated context while building block
17059         // initializers to isolate their cleanups from those of the block
17060         // itself.
17061         // FIXME: Is this appropriate even when the block itself occurs in an
17062         // unevaluated operand?
17063         EnterExpressionEvaluationContext EvalContext(
17064             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17065 
17066         SourceLocation Loc = Cap.getLocation();
17067 
17068         ExprResult Result = BuildDeclarationNameExpr(
17069             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17070 
17071         // According to the blocks spec, the capture of a variable from
17072         // the stack requires a const copy constructor.  This is not true
17073         // of the copy/move done to move a __block variable to the heap.
17074         if (!Result.isInvalid() &&
17075             !Result.get()->getType().isConstQualified()) {
17076           Result = ImpCastExprToType(Result.get(),
17077                                      Result.get()->getType().withConst(),
17078                                      CK_NoOp, VK_LValue);
17079         }
17080 
17081         if (!Result.isInvalid()) {
17082           Result = PerformCopyInitialization(
17083               InitializedEntity::InitializeBlock(Var->getLocation(),
17084                                                  Cap.getCaptureType()),
17085               Loc, Result.get());
17086         }
17087 
17088         // Build a full-expression copy expression if initialization
17089         // succeeded and used a non-trivial constructor.  Recover from
17090         // errors by pretending that the copy isn't necessary.
17091         if (!Result.isInvalid() &&
17092             !cast<CXXConstructExpr>(Result.get())->getConstructor()
17093                 ->isTrivial()) {
17094           Result = MaybeCreateExprWithCleanups(Result);
17095           CopyExpr = Result.get();
17096         }
17097       }
17098     }
17099 
17100     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17101                               CopyExpr);
17102     Captures.push_back(NewCap);
17103   }
17104   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17105 
17106   // Pop the block scope now but keep it alive to the end of this function.
17107   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17108   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17109 
17110   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17111 
17112   // If the block isn't obviously global, i.e. it captures anything at
17113   // all, then we need to do a few things in the surrounding context:
17114   if (Result->getBlockDecl()->hasCaptures()) {
17115     // First, this expression has a new cleanup object.
17116     ExprCleanupObjects.push_back(Result->getBlockDecl());
17117     Cleanup.setExprNeedsCleanups(true);
17118 
17119     // It also gets a branch-protected scope if any of the captured
17120     // variables needs destruction.
17121     for (const auto &CI : Result->getBlockDecl()->captures()) {
17122       const VarDecl *var = CI.getVariable();
17123       if (var->getType().isDestructedType() != QualType::DK_none) {
17124         setFunctionHasBranchProtectedScope();
17125         break;
17126       }
17127     }
17128   }
17129 
17130   if (getCurFunction())
17131     getCurFunction()->addBlock(BD);
17132 
17133   if (BD->isInvalidDecl())
17134     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17135                               {Result}, Result->getType());
17136   return Result;
17137 }
17138 
17139 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17140                             SourceLocation RPLoc) {
17141   TypeSourceInfo *TInfo;
17142   GetTypeFromParser(Ty, &TInfo);
17143   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17144 }
17145 
17146 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17147                                 Expr *E, TypeSourceInfo *TInfo,
17148                                 SourceLocation RPLoc) {
17149   Expr *OrigExpr = E;
17150   bool IsMS = false;
17151 
17152   // CUDA device code does not support varargs.
17153   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17154     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17155       CUDAFunctionTarget T = IdentifyCUDATarget(F);
17156       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17157         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17158     }
17159   }
17160 
17161   // NVPTX does not support va_arg expression.
17162   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17163       Context.getTargetInfo().getTriple().isNVPTX())
17164     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17165 
17166   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17167   // as Microsoft ABI on an actual Microsoft platform, where
17168   // __builtin_ms_va_list and __builtin_va_list are the same.)
17169   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17170       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17171     QualType MSVaListType = Context.getBuiltinMSVaListType();
17172     if (Context.hasSameType(MSVaListType, E->getType())) {
17173       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17174         return ExprError();
17175       IsMS = true;
17176     }
17177   }
17178 
17179   // Get the va_list type
17180   QualType VaListType = Context.getBuiltinVaListType();
17181   if (!IsMS) {
17182     if (VaListType->isArrayType()) {
17183       // Deal with implicit array decay; for example, on x86-64,
17184       // va_list is an array, but it's supposed to decay to
17185       // a pointer for va_arg.
17186       VaListType = Context.getArrayDecayedType(VaListType);
17187       // Make sure the input expression also decays appropriately.
17188       ExprResult Result = UsualUnaryConversions(E);
17189       if (Result.isInvalid())
17190         return ExprError();
17191       E = Result.get();
17192     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17193       // If va_list is a record type and we are compiling in C++ mode,
17194       // check the argument using reference binding.
17195       InitializedEntity Entity = InitializedEntity::InitializeParameter(
17196           Context, Context.getLValueReferenceType(VaListType), false);
17197       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17198       if (Init.isInvalid())
17199         return ExprError();
17200       E = Init.getAs<Expr>();
17201     } else {
17202       // Otherwise, the va_list argument must be an l-value because
17203       // it is modified by va_arg.
17204       if (!E->isTypeDependent() &&
17205           CheckForModifiableLvalue(E, BuiltinLoc, *this))
17206         return ExprError();
17207     }
17208   }
17209 
17210   if (!IsMS && !E->isTypeDependent() &&
17211       !Context.hasSameType(VaListType, E->getType()))
17212     return ExprError(
17213         Diag(E->getBeginLoc(),
17214              diag::err_first_argument_to_va_arg_not_of_type_va_list)
17215         << OrigExpr->getType() << E->getSourceRange());
17216 
17217   if (!TInfo->getType()->isDependentType()) {
17218     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17219                             diag::err_second_parameter_to_va_arg_incomplete,
17220                             TInfo->getTypeLoc()))
17221       return ExprError();
17222 
17223     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17224                                TInfo->getType(),
17225                                diag::err_second_parameter_to_va_arg_abstract,
17226                                TInfo->getTypeLoc()))
17227       return ExprError();
17228 
17229     if (!TInfo->getType().isPODType(Context)) {
17230       Diag(TInfo->getTypeLoc().getBeginLoc(),
17231            TInfo->getType()->isObjCLifetimeType()
17232              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17233              : diag::warn_second_parameter_to_va_arg_not_pod)
17234         << TInfo->getType()
17235         << TInfo->getTypeLoc().getSourceRange();
17236     }
17237 
17238     // Check for va_arg where arguments of the given type will be promoted
17239     // (i.e. this va_arg is guaranteed to have undefined behavior).
17240     QualType PromoteType;
17241     if (Context.isPromotableIntegerType(TInfo->getType())) {
17242       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17243       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17244       // and C2x 7.16.1.1p2 says, in part:
17245       //   If type is not compatible with the type of the actual next argument
17246       //   (as promoted according to the default argument promotions), the
17247       //   behavior is undefined, except for the following cases:
17248       //     - both types are pointers to qualified or unqualified versions of
17249       //       compatible types;
17250       //     - one type is a signed integer type, the other type is the
17251       //       corresponding unsigned integer type, and the value is
17252       //       representable in both types;
17253       //     - one type is pointer to qualified or unqualified void and the
17254       //       other is a pointer to a qualified or unqualified character type.
17255       // Given that type compatibility is the primary requirement (ignoring
17256       // qualifications), you would think we could call typesAreCompatible()
17257       // directly to test this. However, in C++, that checks for *same type*,
17258       // which causes false positives when passing an enumeration type to
17259       // va_arg. Instead, get the underlying type of the enumeration and pass
17260       // that.
17261       QualType UnderlyingType = TInfo->getType();
17262       if (const auto *ET = UnderlyingType->getAs<EnumType>())
17263         UnderlyingType = ET->getDecl()->getIntegerType();
17264       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17265                                      /*CompareUnqualified*/ true))
17266         PromoteType = QualType();
17267 
17268       // If the types are still not compatible, we need to test whether the
17269       // promoted type and the underlying type are the same except for
17270       // signedness. Ask the AST for the correctly corresponding type and see
17271       // if that's compatible.
17272       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17273           PromoteType->isUnsignedIntegerType() !=
17274               UnderlyingType->isUnsignedIntegerType()) {
17275         UnderlyingType =
17276             UnderlyingType->isUnsignedIntegerType()
17277                 ? Context.getCorrespondingSignedType(UnderlyingType)
17278                 : Context.getCorrespondingUnsignedType(UnderlyingType);
17279         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17280                                        /*CompareUnqualified*/ true))
17281           PromoteType = QualType();
17282       }
17283     }
17284     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17285       PromoteType = Context.DoubleTy;
17286     if (!PromoteType.isNull())
17287       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17288                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17289                           << TInfo->getType()
17290                           << PromoteType
17291                           << TInfo->getTypeLoc().getSourceRange());
17292   }
17293 
17294   QualType T = TInfo->getType().getNonLValueExprType(Context);
17295   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17296 }
17297 
17298 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17299   // The type of __null will be int or long, depending on the size of
17300   // pointers on the target.
17301   QualType Ty;
17302   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17303   if (pw == Context.getTargetInfo().getIntWidth())
17304     Ty = Context.IntTy;
17305   else if (pw == Context.getTargetInfo().getLongWidth())
17306     Ty = Context.LongTy;
17307   else if (pw == Context.getTargetInfo().getLongLongWidth())
17308     Ty = Context.LongLongTy;
17309   else {
17310     llvm_unreachable("I don't know size of pointer!");
17311   }
17312 
17313   return new (Context) GNUNullExpr(Ty, TokenLoc);
17314 }
17315 
17316 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17317   CXXRecordDecl *ImplDecl = nullptr;
17318 
17319   // Fetch the std::source_location::__impl decl.
17320   if (NamespaceDecl *Std = S.getStdNamespace()) {
17321     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17322                           Loc, Sema::LookupOrdinaryName);
17323     if (S.LookupQualifiedName(ResultSL, Std)) {
17324       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17325         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17326                                 Loc, Sema::LookupOrdinaryName);
17327         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17328             S.LookupQualifiedName(ResultImpl, SLDecl)) {
17329           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17330         }
17331       }
17332     }
17333   }
17334 
17335   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17336     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17337     return nullptr;
17338   }
17339 
17340   // Verify that __impl is a trivial struct type, with no base classes, and with
17341   // only the four expected fields.
17342   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17343       ImplDecl->getNumBases() != 0) {
17344     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17345     return nullptr;
17346   }
17347 
17348   unsigned Count = 0;
17349   for (FieldDecl *F : ImplDecl->fields()) {
17350     StringRef Name = F->getName();
17351 
17352     if (Name == "_M_file_name") {
17353       if (F->getType() !=
17354           S.Context.getPointerType(S.Context.CharTy.withConst()))
17355         break;
17356       Count++;
17357     } else if (Name == "_M_function_name") {
17358       if (F->getType() !=
17359           S.Context.getPointerType(S.Context.CharTy.withConst()))
17360         break;
17361       Count++;
17362     } else if (Name == "_M_line") {
17363       if (!F->getType()->isIntegerType())
17364         break;
17365       Count++;
17366     } else if (Name == "_M_column") {
17367       if (!F->getType()->isIntegerType())
17368         break;
17369       Count++;
17370     } else {
17371       Count = 100; // invalid
17372       break;
17373     }
17374   }
17375   if (Count != 4) {
17376     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17377     return nullptr;
17378   }
17379 
17380   return ImplDecl;
17381 }
17382 
17383 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
17384                                     SourceLocation BuiltinLoc,
17385                                     SourceLocation RPLoc) {
17386   QualType ResultTy;
17387   switch (Kind) {
17388   case SourceLocExpr::File:
17389   case SourceLocExpr::FileName:
17390   case SourceLocExpr::Function:
17391   case SourceLocExpr::FuncSig: {
17392     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17393     ResultTy =
17394         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17395     break;
17396   }
17397   case SourceLocExpr::Line:
17398   case SourceLocExpr::Column:
17399     ResultTy = Context.UnsignedIntTy;
17400     break;
17401   case SourceLocExpr::SourceLocStruct:
17402     if (!StdSourceLocationImplDecl) {
17403       StdSourceLocationImplDecl =
17404           LookupStdSourceLocationImpl(*this, BuiltinLoc);
17405       if (!StdSourceLocationImplDecl)
17406         return ExprError();
17407     }
17408     ResultTy = Context.getPointerType(
17409         Context.getRecordType(StdSourceLocationImplDecl).withConst());
17410     break;
17411   }
17412 
17413   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17414 }
17415 
17416 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
17417                                     QualType ResultTy,
17418                                     SourceLocation BuiltinLoc,
17419                                     SourceLocation RPLoc,
17420                                     DeclContext *ParentContext) {
17421   return new (Context)
17422       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17423 }
17424 
17425 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17426                                         bool Diagnose) {
17427   if (!getLangOpts().ObjC)
17428     return false;
17429 
17430   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17431   if (!PT)
17432     return false;
17433   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17434 
17435   // Ignore any parens, implicit casts (should only be
17436   // array-to-pointer decays), and not-so-opaque values.  The last is
17437   // important for making this trigger for property assignments.
17438   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17439   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17440     if (OV->getSourceExpr())
17441       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17442 
17443   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17444     if (!PT->isObjCIdType() &&
17445         !(ID && ID->getIdentifier()->isStr("NSString")))
17446       return false;
17447     if (!SL->isOrdinary())
17448       return false;
17449 
17450     if (Diagnose) {
17451       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17452           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17453       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17454     }
17455     return true;
17456   }
17457 
17458   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17459       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17460       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17461       !SrcExpr->isNullPointerConstant(
17462           getASTContext(), Expr::NPC_NeverValueDependent)) {
17463     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17464       return false;
17465     if (Diagnose) {
17466       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17467           << /*number*/1
17468           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17469       Expr *NumLit =
17470           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17471       if (NumLit)
17472         Exp = NumLit;
17473     }
17474     return true;
17475   }
17476 
17477   return false;
17478 }
17479 
17480 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17481                                               const Expr *SrcExpr) {
17482   if (!DstType->isFunctionPointerType() ||
17483       !SrcExpr->getType()->isFunctionType())
17484     return false;
17485 
17486   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17487   if (!DRE)
17488     return false;
17489 
17490   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17491   if (!FD)
17492     return false;
17493 
17494   return !S.checkAddressOfFunctionIsAvailable(FD,
17495                                               /*Complain=*/true,
17496                                               SrcExpr->getBeginLoc());
17497 }
17498 
17499 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17500                                     SourceLocation Loc,
17501                                     QualType DstType, QualType SrcType,
17502                                     Expr *SrcExpr, AssignmentAction Action,
17503                                     bool *Complained) {
17504   if (Complained)
17505     *Complained = false;
17506 
17507   // Decode the result (notice that AST's are still created for extensions).
17508   bool CheckInferredResultType = false;
17509   bool isInvalid = false;
17510   unsigned DiagKind = 0;
17511   ConversionFixItGenerator ConvHints;
17512   bool MayHaveConvFixit = false;
17513   bool MayHaveFunctionDiff = false;
17514   const ObjCInterfaceDecl *IFace = nullptr;
17515   const ObjCProtocolDecl *PDecl = nullptr;
17516 
17517   switch (ConvTy) {
17518   case Compatible:
17519       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17520       return false;
17521 
17522   case PointerToInt:
17523     if (getLangOpts().CPlusPlus) {
17524       DiagKind = diag::err_typecheck_convert_pointer_int;
17525       isInvalid = true;
17526     } else {
17527       DiagKind = diag::ext_typecheck_convert_pointer_int;
17528     }
17529     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17530     MayHaveConvFixit = true;
17531     break;
17532   case IntToPointer:
17533     if (getLangOpts().CPlusPlus) {
17534       DiagKind = diag::err_typecheck_convert_int_pointer;
17535       isInvalid = true;
17536     } else {
17537       DiagKind = diag::ext_typecheck_convert_int_pointer;
17538     }
17539     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17540     MayHaveConvFixit = true;
17541     break;
17542   case IncompatibleFunctionPointerStrict:
17543     DiagKind =
17544         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17545     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17546     MayHaveConvFixit = true;
17547     break;
17548   case IncompatibleFunctionPointer:
17549     if (getLangOpts().CPlusPlus) {
17550       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17551       isInvalid = true;
17552     } else {
17553       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17554     }
17555     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17556     MayHaveConvFixit = true;
17557     break;
17558   case IncompatiblePointer:
17559     if (Action == AA_Passing_CFAudited) {
17560       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17561     } else if (getLangOpts().CPlusPlus) {
17562       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17563       isInvalid = true;
17564     } else {
17565       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17566     }
17567     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17568       SrcType->isObjCObjectPointerType();
17569     if (!CheckInferredResultType) {
17570       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17571     } else if (CheckInferredResultType) {
17572       SrcType = SrcType.getUnqualifiedType();
17573       DstType = DstType.getUnqualifiedType();
17574     }
17575     MayHaveConvFixit = true;
17576     break;
17577   case IncompatiblePointerSign:
17578     if (getLangOpts().CPlusPlus) {
17579       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17580       isInvalid = true;
17581     } else {
17582       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17583     }
17584     break;
17585   case FunctionVoidPointer:
17586     if (getLangOpts().CPlusPlus) {
17587       DiagKind = diag::err_typecheck_convert_pointer_void_func;
17588       isInvalid = true;
17589     } else {
17590       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17591     }
17592     break;
17593   case IncompatiblePointerDiscardsQualifiers: {
17594     // Perform array-to-pointer decay if necessary.
17595     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17596 
17597     isInvalid = true;
17598 
17599     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17600     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17601     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17602       DiagKind = diag::err_typecheck_incompatible_address_space;
17603       break;
17604 
17605     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17606       DiagKind = diag::err_typecheck_incompatible_ownership;
17607       break;
17608     }
17609 
17610     llvm_unreachable("unknown error case for discarding qualifiers!");
17611     // fallthrough
17612   }
17613   case CompatiblePointerDiscardsQualifiers:
17614     // If the qualifiers lost were because we were applying the
17615     // (deprecated) C++ conversion from a string literal to a char*
17616     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
17617     // Ideally, this check would be performed in
17618     // checkPointerTypesForAssignment. However, that would require a
17619     // bit of refactoring (so that the second argument is an
17620     // expression, rather than a type), which should be done as part
17621     // of a larger effort to fix checkPointerTypesForAssignment for
17622     // C++ semantics.
17623     if (getLangOpts().CPlusPlus &&
17624         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17625       return false;
17626     if (getLangOpts().CPlusPlus) {
17627       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
17628       isInvalid = true;
17629     } else {
17630       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
17631     }
17632 
17633     break;
17634   case IncompatibleNestedPointerQualifiers:
17635     if (getLangOpts().CPlusPlus) {
17636       isInvalid = true;
17637       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17638     } else {
17639       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17640     }
17641     break;
17642   case IncompatibleNestedPointerAddressSpaceMismatch:
17643     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17644     isInvalid = true;
17645     break;
17646   case IntToBlockPointer:
17647     DiagKind = diag::err_int_to_block_pointer;
17648     isInvalid = true;
17649     break;
17650   case IncompatibleBlockPointer:
17651     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17652     isInvalid = true;
17653     break;
17654   case IncompatibleObjCQualifiedId: {
17655     if (SrcType->isObjCQualifiedIdType()) {
17656       const ObjCObjectPointerType *srcOPT =
17657                 SrcType->castAs<ObjCObjectPointerType>();
17658       for (auto *srcProto : srcOPT->quals()) {
17659         PDecl = srcProto;
17660         break;
17661       }
17662       if (const ObjCInterfaceType *IFaceT =
17663             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17664         IFace = IFaceT->getDecl();
17665     }
17666     else if (DstType->isObjCQualifiedIdType()) {
17667       const ObjCObjectPointerType *dstOPT =
17668         DstType->castAs<ObjCObjectPointerType>();
17669       for (auto *dstProto : dstOPT->quals()) {
17670         PDecl = dstProto;
17671         break;
17672       }
17673       if (const ObjCInterfaceType *IFaceT =
17674             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17675         IFace = IFaceT->getDecl();
17676     }
17677     if (getLangOpts().CPlusPlus) {
17678       DiagKind = diag::err_incompatible_qualified_id;
17679       isInvalid = true;
17680     } else {
17681       DiagKind = diag::warn_incompatible_qualified_id;
17682     }
17683     break;
17684   }
17685   case IncompatibleVectors:
17686     if (getLangOpts().CPlusPlus) {
17687       DiagKind = diag::err_incompatible_vectors;
17688       isInvalid = true;
17689     } else {
17690       DiagKind = diag::warn_incompatible_vectors;
17691     }
17692     break;
17693   case IncompatibleObjCWeakRef:
17694     DiagKind = diag::err_arc_weak_unavailable_assign;
17695     isInvalid = true;
17696     break;
17697   case Incompatible:
17698     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17699       if (Complained)
17700         *Complained = true;
17701       return true;
17702     }
17703 
17704     DiagKind = diag::err_typecheck_convert_incompatible;
17705     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17706     MayHaveConvFixit = true;
17707     isInvalid = true;
17708     MayHaveFunctionDiff = true;
17709     break;
17710   }
17711 
17712   QualType FirstType, SecondType;
17713   switch (Action) {
17714   case AA_Assigning:
17715   case AA_Initializing:
17716     // The destination type comes first.
17717     FirstType = DstType;
17718     SecondType = SrcType;
17719     break;
17720 
17721   case AA_Returning:
17722   case AA_Passing:
17723   case AA_Passing_CFAudited:
17724   case AA_Converting:
17725   case AA_Sending:
17726   case AA_Casting:
17727     // The source type comes first.
17728     FirstType = SrcType;
17729     SecondType = DstType;
17730     break;
17731   }
17732 
17733   PartialDiagnostic FDiag = PDiag(DiagKind);
17734   AssignmentAction ActionForDiag = Action;
17735   if (Action == AA_Passing_CFAudited)
17736     ActionForDiag = AA_Passing;
17737 
17738   FDiag << FirstType << SecondType << ActionForDiag
17739         << SrcExpr->getSourceRange();
17740 
17741   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17742       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17743     auto isPlainChar = [](const clang::Type *Type) {
17744       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17745              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17746     };
17747     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17748               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17749   }
17750 
17751   // If we can fix the conversion, suggest the FixIts.
17752   if (!ConvHints.isNull()) {
17753     for (FixItHint &H : ConvHints.Hints)
17754       FDiag << H;
17755   }
17756 
17757   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17758 
17759   if (MayHaveFunctionDiff)
17760     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17761 
17762   Diag(Loc, FDiag);
17763   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17764        DiagKind == diag::err_incompatible_qualified_id) &&
17765       PDecl && IFace && !IFace->hasDefinition())
17766     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17767         << IFace << PDecl;
17768 
17769   if (SecondType == Context.OverloadTy)
17770     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17771                               FirstType, /*TakingAddress=*/true);
17772 
17773   if (CheckInferredResultType)
17774     EmitRelatedResultTypeNote(SrcExpr);
17775 
17776   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17777     EmitRelatedResultTypeNoteForReturn(DstType);
17778 
17779   if (Complained)
17780     *Complained = true;
17781   return isInvalid;
17782 }
17783 
17784 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17785                                                  llvm::APSInt *Result,
17786                                                  AllowFoldKind CanFold) {
17787   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17788   public:
17789     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17790                                              QualType T) override {
17791       return S.Diag(Loc, diag::err_ice_not_integral)
17792              << T << S.LangOpts.CPlusPlus;
17793     }
17794     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17795       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17796     }
17797   } Diagnoser;
17798 
17799   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17800 }
17801 
17802 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17803                                                  llvm::APSInt *Result,
17804                                                  unsigned DiagID,
17805                                                  AllowFoldKind CanFold) {
17806   class IDDiagnoser : public VerifyICEDiagnoser {
17807     unsigned DiagID;
17808 
17809   public:
17810     IDDiagnoser(unsigned DiagID)
17811       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17812 
17813     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17814       return S.Diag(Loc, DiagID);
17815     }
17816   } Diagnoser(DiagID);
17817 
17818   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17819 }
17820 
17821 Sema::SemaDiagnosticBuilder
17822 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17823                                              QualType T) {
17824   return diagnoseNotICE(S, Loc);
17825 }
17826 
17827 Sema::SemaDiagnosticBuilder
17828 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17829   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17830 }
17831 
17832 ExprResult
17833 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17834                                       VerifyICEDiagnoser &Diagnoser,
17835                                       AllowFoldKind CanFold) {
17836   SourceLocation DiagLoc = E->getBeginLoc();
17837 
17838   if (getLangOpts().CPlusPlus11) {
17839     // C++11 [expr.const]p5:
17840     //   If an expression of literal class type is used in a context where an
17841     //   integral constant expression is required, then that class type shall
17842     //   have a single non-explicit conversion function to an integral or
17843     //   unscoped enumeration type
17844     ExprResult Converted;
17845     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17846       VerifyICEDiagnoser &BaseDiagnoser;
17847     public:
17848       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17849           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17850                                 BaseDiagnoser.Suppress, true),
17851             BaseDiagnoser(BaseDiagnoser) {}
17852 
17853       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17854                                            QualType T) override {
17855         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17856       }
17857 
17858       SemaDiagnosticBuilder diagnoseIncomplete(
17859           Sema &S, SourceLocation Loc, QualType T) override {
17860         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17861       }
17862 
17863       SemaDiagnosticBuilder diagnoseExplicitConv(
17864           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17865         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17866       }
17867 
17868       SemaDiagnosticBuilder noteExplicitConv(
17869           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17870         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17871                  << ConvTy->isEnumeralType() << ConvTy;
17872       }
17873 
17874       SemaDiagnosticBuilder diagnoseAmbiguous(
17875           Sema &S, SourceLocation Loc, QualType T) override {
17876         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17877       }
17878 
17879       SemaDiagnosticBuilder noteAmbiguous(
17880           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17881         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17882                  << ConvTy->isEnumeralType() << ConvTy;
17883       }
17884 
17885       SemaDiagnosticBuilder diagnoseConversion(
17886           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17887         llvm_unreachable("conversion functions are permitted");
17888       }
17889     } ConvertDiagnoser(Diagnoser);
17890 
17891     Converted = PerformContextualImplicitConversion(DiagLoc, E,
17892                                                     ConvertDiagnoser);
17893     if (Converted.isInvalid())
17894       return Converted;
17895     E = Converted.get();
17896     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17897       return ExprError();
17898   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17899     // An ICE must be of integral or unscoped enumeration type.
17900     if (!Diagnoser.Suppress)
17901       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17902           << E->getSourceRange();
17903     return ExprError();
17904   }
17905 
17906   ExprResult RValueExpr = DefaultLvalueConversion(E);
17907   if (RValueExpr.isInvalid())
17908     return ExprError();
17909 
17910   E = RValueExpr.get();
17911 
17912   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17913   // in the non-ICE case.
17914   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17915     if (Result)
17916       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17917     if (!isa<ConstantExpr>(E))
17918       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17919                  : ConstantExpr::Create(Context, E);
17920     return E;
17921   }
17922 
17923   Expr::EvalResult EvalResult;
17924   SmallVector<PartialDiagnosticAt, 8> Notes;
17925   EvalResult.Diag = &Notes;
17926 
17927   // Try to evaluate the expression, and produce diagnostics explaining why it's
17928   // not a constant expression as a side-effect.
17929   bool Folded =
17930       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17931       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17932 
17933   if (!isa<ConstantExpr>(E))
17934     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17935 
17936   // In C++11, we can rely on diagnostics being produced for any expression
17937   // which is not a constant expression. If no diagnostics were produced, then
17938   // this is a constant expression.
17939   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17940     if (Result)
17941       *Result = EvalResult.Val.getInt();
17942     return E;
17943   }
17944 
17945   // If our only note is the usual "invalid subexpression" note, just point
17946   // the caret at its location rather than producing an essentially
17947   // redundant note.
17948   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17949         diag::note_invalid_subexpr_in_const_expr) {
17950     DiagLoc = Notes[0].first;
17951     Notes.clear();
17952   }
17953 
17954   if (!Folded || !CanFold) {
17955     if (!Diagnoser.Suppress) {
17956       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17957       for (const PartialDiagnosticAt &Note : Notes)
17958         Diag(Note.first, Note.second);
17959     }
17960 
17961     return ExprError();
17962   }
17963 
17964   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17965   for (const PartialDiagnosticAt &Note : Notes)
17966     Diag(Note.first, Note.second);
17967 
17968   if (Result)
17969     *Result = EvalResult.Val.getInt();
17970   return E;
17971 }
17972 
17973 namespace {
17974   // Handle the case where we conclude a expression which we speculatively
17975   // considered to be unevaluated is actually evaluated.
17976   class TransformToPE : public TreeTransform<TransformToPE> {
17977     typedef TreeTransform<TransformToPE> BaseTransform;
17978 
17979   public:
17980     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17981 
17982     // Make sure we redo semantic analysis
17983     bool AlwaysRebuild() { return true; }
17984     bool ReplacingOriginal() { return true; }
17985 
17986     // We need to special-case DeclRefExprs referring to FieldDecls which
17987     // are not part of a member pointer formation; normal TreeTransforming
17988     // doesn't catch this case because of the way we represent them in the AST.
17989     // FIXME: This is a bit ugly; is it really the best way to handle this
17990     // case?
17991     //
17992     // Error on DeclRefExprs referring to FieldDecls.
17993     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17994       if (isa<FieldDecl>(E->getDecl()) &&
17995           !SemaRef.isUnevaluatedContext())
17996         return SemaRef.Diag(E->getLocation(),
17997                             diag::err_invalid_non_static_member_use)
17998             << E->getDecl() << E->getSourceRange();
17999 
18000       return BaseTransform::TransformDeclRefExpr(E);
18001     }
18002 
18003     // Exception: filter out member pointer formation
18004     ExprResult TransformUnaryOperator(UnaryOperator *E) {
18005       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18006         return E;
18007 
18008       return BaseTransform::TransformUnaryOperator(E);
18009     }
18010 
18011     // The body of a lambda-expression is in a separate expression evaluation
18012     // context so never needs to be transformed.
18013     // FIXME: Ideally we wouldn't transform the closure type either, and would
18014     // just recreate the capture expressions and lambda expression.
18015     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18016       return SkipLambdaBody(E, Body);
18017     }
18018   };
18019 }
18020 
18021 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18022   assert(isUnevaluatedContext() &&
18023          "Should only transform unevaluated expressions");
18024   ExprEvalContexts.back().Context =
18025       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18026   if (isUnevaluatedContext())
18027     return E;
18028   return TransformToPE(*this).TransformExpr(E);
18029 }
18030 
18031 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18032   assert(isUnevaluatedContext() &&
18033          "Should only transform unevaluated expressions");
18034   ExprEvalContexts.back().Context =
18035       ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18036   if (isUnevaluatedContext())
18037     return TInfo;
18038   return TransformToPE(*this).TransformType(TInfo);
18039 }
18040 
18041 void
18042 Sema::PushExpressionEvaluationContext(
18043     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18044     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18045   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18046                                 LambdaContextDecl, ExprContext);
18047 
18048   // Discarded statements and immediate contexts nested in other
18049   // discarded statements or immediate context are themselves
18050   // a discarded statement or an immediate context, respectively.
18051   ExprEvalContexts.back().InDiscardedStatement =
18052       ExprEvalContexts[ExprEvalContexts.size() - 2]
18053           .isDiscardedStatementContext();
18054 
18055   // C++23 [expr.const]/p15
18056   // An expression or conversion is in an immediate function context if [...]
18057   // it is a subexpression of a manifestly constant-evaluated expression or
18058   // conversion.
18059   const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18060   ExprEvalContexts.back().InImmediateFunctionContext =
18061       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18062 
18063   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18064       Prev.InImmediateEscalatingFunctionContext;
18065 
18066   Cleanup.reset();
18067   if (!MaybeODRUseExprs.empty())
18068     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18069 }
18070 
18071 void
18072 Sema::PushExpressionEvaluationContext(
18073     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18074     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18075   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18076   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18077 }
18078 
18079 namespace {
18080 
18081 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18082   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18083   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18084     if (E->getOpcode() == UO_Deref)
18085       return CheckPossibleDeref(S, E->getSubExpr());
18086   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18087     return CheckPossibleDeref(S, E->getBase());
18088   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18089     return CheckPossibleDeref(S, E->getBase());
18090   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18091     QualType Inner;
18092     QualType Ty = E->getType();
18093     if (const auto *Ptr = Ty->getAs<PointerType>())
18094       Inner = Ptr->getPointeeType();
18095     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18096       Inner = Arr->getElementType();
18097     else
18098       return nullptr;
18099 
18100     if (Inner->hasAttr(attr::NoDeref))
18101       return E;
18102   }
18103   return nullptr;
18104 }
18105 
18106 } // namespace
18107 
18108 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18109   for (const Expr *E : Rec.PossibleDerefs) {
18110     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18111     if (DeclRef) {
18112       const ValueDecl *Decl = DeclRef->getDecl();
18113       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18114           << Decl->getName() << E->getSourceRange();
18115       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18116     } else {
18117       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18118           << E->getSourceRange();
18119     }
18120   }
18121   Rec.PossibleDerefs.clear();
18122 }
18123 
18124 /// Check whether E, which is either a discarded-value expression or an
18125 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18126 /// and if so, remove it from the list of volatile-qualified assignments that
18127 /// we are going to warn are deprecated.
18128 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18129   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18130     return;
18131 
18132   // Note: ignoring parens here is not justified by the standard rules, but
18133   // ignoring parentheses seems like a more reasonable approach, and this only
18134   // drives a deprecation warning so doesn't affect conformance.
18135   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18136     if (BO->getOpcode() == BO_Assign) {
18137       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18138       llvm::erase_value(LHSs, BO->getLHS());
18139     }
18140   }
18141 }
18142 
18143 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18144   assert(!FunctionScopes.empty() && "Expected a function scope");
18145   assert(getLangOpts().CPlusPlus20 &&
18146          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18147          "Cannot mark an immediate escalating expression outside of an "
18148          "immediate escalating context");
18149   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18150       Call && Call->getCallee()) {
18151     if (auto *DeclRef =
18152             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18153       DeclRef->setIsImmediateEscalating(true);
18154   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18155     Ctr->setIsImmediateEscalating(true);
18156   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18157     DeclRef->setIsImmediateEscalating(true);
18158   } else {
18159     assert(false && "expected an immediately escalating expression");
18160   }
18161   getCurFunction()->FoundImmediateEscalatingExpression = true;
18162 }
18163 
18164 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18165   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18166       !Decl->isImmediateFunction() || isConstantEvaluated() ||
18167       isCheckingDefaultArgumentOrInitializer() ||
18168       RebuildingImmediateInvocation || isImmediateFunctionContext())
18169     return E;
18170 
18171   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18172   /// It's OK if this fails; we'll also remove this in
18173   /// HandleImmediateInvocations, but catching it here allows us to avoid
18174   /// walking the AST looking for it in simple cases.
18175   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18176     if (auto *DeclRef =
18177             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18178       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18179 
18180   // C++23 [expr.const]/p16
18181   // An expression or conversion is immediate-escalating if it is not initially
18182   // in an immediate function context and it is [...] an immediate invocation
18183   // that is not a constant expression and is not a subexpression of an
18184   // immediate invocation.
18185   APValue Cached;
18186   auto CheckConstantExpressionAndKeepResult = [&]() {
18187     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18188     Expr::EvalResult Eval;
18189     Eval.Diag = &Notes;
18190     bool Res = E.get()->EvaluateAsConstantExpr(
18191         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18192     if (Res && Notes.empty()) {
18193       Cached = std::move(Eval.Val);
18194       return true;
18195     }
18196     return false;
18197   };
18198 
18199   if (!E.get()->isValueDependent() &&
18200       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18201       !CheckConstantExpressionAndKeepResult()) {
18202     MarkExpressionAsImmediateEscalating(E.get());
18203     return E;
18204   }
18205 
18206   if (Cleanup.exprNeedsCleanups()) {
18207     // Since an immediate invocation is a full expression itself - it requires
18208     // an additional ExprWithCleanups node, but it can participate to a bigger
18209     // full expression which actually requires cleanups to be run after so
18210     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18211     // may discard cleanups for outer expression too early.
18212 
18213     // Note that ExprWithCleanups created here must always have empty cleanup
18214     // objects:
18215     // - compound literals do not create cleanup objects in C++ and immediate
18216     // invocations are C++-only.
18217     // - blocks are not allowed inside constant expressions and compiler will
18218     // issue an error if they appear there.
18219     //
18220     // Hence, in correct code any cleanup objects created inside current
18221     // evaluation context must be outside the immediate invocation.
18222     E = ExprWithCleanups::Create(getASTContext(), E.get(),
18223                                  Cleanup.cleanupsHaveSideEffects(), {});
18224   }
18225 
18226   ConstantExpr *Res = ConstantExpr::Create(
18227       getASTContext(), E.get(),
18228       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18229                                    getASTContext()),
18230       /*IsImmediateInvocation*/ true);
18231   if (Cached.hasValue())
18232     Res->MoveIntoResult(Cached, getASTContext());
18233   /// Value-dependent constant expressions should not be immediately
18234   /// evaluated until they are instantiated.
18235   if (!Res->isValueDependent())
18236     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18237   return Res;
18238 }
18239 
18240 static void EvaluateAndDiagnoseImmediateInvocation(
18241     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18242   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18243   Expr::EvalResult Eval;
18244   Eval.Diag = &Notes;
18245   ConstantExpr *CE = Candidate.getPointer();
18246   bool Result = CE->EvaluateAsConstantExpr(
18247       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18248   if (!Result || !Notes.empty()) {
18249     SemaRef.FailedImmediateInvocations.insert(CE);
18250     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18251     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18252       InnerExpr = FunctionalCast->getSubExpr();
18253     FunctionDecl *FD = nullptr;
18254     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18255       FD = cast<FunctionDecl>(Call->getCalleeDecl());
18256     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18257       FD = Call->getConstructor();
18258     else
18259       llvm_unreachable("unhandled decl kind");
18260     assert(FD && FD->isImmediateFunction());
18261     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18262         << FD << FD->isConsteval();
18263     if (auto Context =
18264             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18265       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18266           << Context->Decl;
18267       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18268     }
18269     if (!FD->isConsteval())
18270       SemaRef.DiagnoseImmediateEscalatingReason(FD);
18271     for (auto &Note : Notes)
18272       SemaRef.Diag(Note.first, Note.second);
18273     return;
18274   }
18275   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18276 }
18277 
18278 static void RemoveNestedImmediateInvocation(
18279     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18280     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18281   struct ComplexRemove : TreeTransform<ComplexRemove> {
18282     using Base = TreeTransform<ComplexRemove>;
18283     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18284     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18285     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18286         CurrentII;
18287     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18288                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18289                   SmallVector<Sema::ImmediateInvocationCandidate,
18290                               4>::reverse_iterator Current)
18291         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18292     void RemoveImmediateInvocation(ConstantExpr* E) {
18293       auto It = std::find_if(CurrentII, IISet.rend(),
18294                              [E](Sema::ImmediateInvocationCandidate Elem) {
18295                                return Elem.getPointer() == E;
18296                              });
18297       // It is possible that some subexpression of the current immediate
18298       // invocation was handled from another expression evaluation context. Do
18299       // not handle the current immediate invocation if some of its
18300       // subexpressions failed before.
18301       if (It == IISet.rend()) {
18302         if (SemaRef.FailedImmediateInvocations.contains(E))
18303           CurrentII->setInt(1);
18304       } else {
18305         It->setInt(1); // Mark as deleted
18306       }
18307     }
18308     ExprResult TransformConstantExpr(ConstantExpr *E) {
18309       if (!E->isImmediateInvocation())
18310         return Base::TransformConstantExpr(E);
18311       RemoveImmediateInvocation(E);
18312       return Base::TransformExpr(E->getSubExpr());
18313     }
18314     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18315     /// we need to remove its DeclRefExpr from the DRSet.
18316     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18317       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18318       return Base::TransformCXXOperatorCallExpr(E);
18319     }
18320     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
18321     /// here.
18322     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18323       if (!Init)
18324         return Init;
18325       /// ConstantExpr are the first layer of implicit node to be removed so if
18326       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18327       if (auto *CE = dyn_cast<ConstantExpr>(Init))
18328         if (CE->isImmediateInvocation())
18329           RemoveImmediateInvocation(CE);
18330       return Base::TransformInitializer(Init, NotCopyInit);
18331     }
18332     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18333       DRSet.erase(E);
18334       return E;
18335     }
18336     ExprResult TransformLambdaExpr(LambdaExpr *E) {
18337       // Do not rebuild lambdas to avoid creating a new type.
18338       // Lambdas have already been processed inside their eval context.
18339       return E;
18340     }
18341     bool AlwaysRebuild() { return false; }
18342     bool ReplacingOriginal() { return true; }
18343     bool AllowSkippingCXXConstructExpr() {
18344       bool Res = AllowSkippingFirstCXXConstructExpr;
18345       AllowSkippingFirstCXXConstructExpr = true;
18346       return Res;
18347     }
18348     bool AllowSkippingFirstCXXConstructExpr = true;
18349   } Transformer(SemaRef, Rec.ReferenceToConsteval,
18350                 Rec.ImmediateInvocationCandidates, It);
18351 
18352   /// CXXConstructExpr with a single argument are getting skipped by
18353   /// TreeTransform in some situtation because they could be implicit. This
18354   /// can only occur for the top-level CXXConstructExpr because it is used
18355   /// nowhere in the expression being transformed therefore will not be rebuilt.
18356   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18357   /// skipping the first CXXConstructExpr.
18358   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18359     Transformer.AllowSkippingFirstCXXConstructExpr = false;
18360 
18361   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18362   // The result may not be usable in case of previous compilation errors.
18363   // In this case evaluation of the expression may result in crash so just
18364   // don't do anything further with the result.
18365   if (Res.isUsable()) {
18366     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18367     It->getPointer()->setSubExpr(Res.get());
18368   }
18369 }
18370 
18371 static void
18372 HandleImmediateInvocations(Sema &SemaRef,
18373                            Sema::ExpressionEvaluationContextRecord &Rec) {
18374   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18375        Rec.ReferenceToConsteval.size() == 0) ||
18376       SemaRef.RebuildingImmediateInvocation)
18377     return;
18378 
18379   /// When we have more than 1 ImmediateInvocationCandidates or previously
18380   /// failed immediate invocations, we need to check for nested
18381   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18382   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18383   /// invocation.
18384   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18385       !SemaRef.FailedImmediateInvocations.empty()) {
18386 
18387     /// Prevent sema calls during the tree transform from adding pointers that
18388     /// are already in the sets.
18389     llvm::SaveAndRestore DisableIITracking(
18390         SemaRef.RebuildingImmediateInvocation, true);
18391 
18392     /// Prevent diagnostic during tree transfrom as they are duplicates
18393     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18394 
18395     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18396          It != Rec.ImmediateInvocationCandidates.rend(); It++)
18397       if (!It->getInt())
18398         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18399   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18400              Rec.ReferenceToConsteval.size()) {
18401     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18402       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18403       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18404       bool VisitDeclRefExpr(DeclRefExpr *E) {
18405         DRSet.erase(E);
18406         return DRSet.size();
18407       }
18408     } Visitor(Rec.ReferenceToConsteval);
18409     Visitor.TraverseStmt(
18410         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18411   }
18412   for (auto CE : Rec.ImmediateInvocationCandidates)
18413     if (!CE.getInt())
18414       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18415   for (auto *DR : Rec.ReferenceToConsteval) {
18416     // If the expression is immediate escalating, it is not an error;
18417     // The outer context itself becomes immediate and further errors,
18418     // if any, will be handled by DiagnoseImmediateEscalatingReason.
18419     if (DR->isImmediateEscalating())
18420       continue;
18421     auto *FD = cast<FunctionDecl>(DR->getDecl());
18422     const NamedDecl *ND = FD;
18423     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18424         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18425       ND = MD->getParent();
18426 
18427     // C++23 [expr.const]/p16
18428     // An expression or conversion is immediate-escalating if it is not
18429     // initially in an immediate function context and it is [...] a
18430     // potentially-evaluated id-expression that denotes an immediate function
18431     // that is not a subexpression of an immediate invocation.
18432     bool ImmediateEscalating = false;
18433     bool IsPotentiallyEvaluated =
18434         Rec.Context ==
18435             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18436         Rec.Context ==
18437             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18438     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18439       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18440 
18441     if (!Rec.InImmediateEscalatingFunctionContext ||
18442         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18443       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18444           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18445       SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18446       if (auto Context =
18447               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18448         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18449             << Context->Decl;
18450         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18451       }
18452       if (FD->isImmediateEscalating() && !FD->isConsteval())
18453         SemaRef.DiagnoseImmediateEscalatingReason(FD);
18454 
18455     } else {
18456       SemaRef.MarkExpressionAsImmediateEscalating(DR);
18457     }
18458   }
18459 }
18460 
18461 void Sema::PopExpressionEvaluationContext() {
18462   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18463   unsigned NumTypos = Rec.NumTypos;
18464 
18465   if (!Rec.Lambdas.empty()) {
18466     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18467     if (!getLangOpts().CPlusPlus20 &&
18468         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18469          Rec.isUnevaluated() ||
18470          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18471       unsigned D;
18472       if (Rec.isUnevaluated()) {
18473         // C++11 [expr.prim.lambda]p2:
18474         //   A lambda-expression shall not appear in an unevaluated operand
18475         //   (Clause 5).
18476         D = diag::err_lambda_unevaluated_operand;
18477       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18478         // C++1y [expr.const]p2:
18479         //   A conditional-expression e is a core constant expression unless the
18480         //   evaluation of e, following the rules of the abstract machine, would
18481         //   evaluate [...] a lambda-expression.
18482         D = diag::err_lambda_in_constant_expression;
18483       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18484         // C++17 [expr.prim.lamda]p2:
18485         // A lambda-expression shall not appear [...] in a template-argument.
18486         D = diag::err_lambda_in_invalid_context;
18487       } else
18488         llvm_unreachable("Couldn't infer lambda error message.");
18489 
18490       for (const auto *L : Rec.Lambdas)
18491         Diag(L->getBeginLoc(), D);
18492     }
18493   }
18494 
18495   WarnOnPendingNoDerefs(Rec);
18496   HandleImmediateInvocations(*this, Rec);
18497 
18498   // Warn on any volatile-qualified simple-assignments that are not discarded-
18499   // value expressions nor unevaluated operands (those cases get removed from
18500   // this list by CheckUnusedVolatileAssignment).
18501   for (auto *BO : Rec.VolatileAssignmentLHSs)
18502     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18503         << BO->getType();
18504 
18505   // When are coming out of an unevaluated context, clear out any
18506   // temporaries that we may have created as part of the evaluation of
18507   // the expression in that context: they aren't relevant because they
18508   // will never be constructed.
18509   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18510     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18511                              ExprCleanupObjects.end());
18512     Cleanup = Rec.ParentCleanup;
18513     CleanupVarDeclMarking();
18514     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18515   // Otherwise, merge the contexts together.
18516   } else {
18517     Cleanup.mergeFrom(Rec.ParentCleanup);
18518     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18519                             Rec.SavedMaybeODRUseExprs.end());
18520   }
18521 
18522   // Pop the current expression evaluation context off the stack.
18523   ExprEvalContexts.pop_back();
18524 
18525   // The global expression evaluation context record is never popped.
18526   ExprEvalContexts.back().NumTypos += NumTypos;
18527 }
18528 
18529 void Sema::DiscardCleanupsInEvaluationContext() {
18530   ExprCleanupObjects.erase(
18531          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18532          ExprCleanupObjects.end());
18533   Cleanup.reset();
18534   MaybeODRUseExprs.clear();
18535 }
18536 
18537 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18538   ExprResult Result = CheckPlaceholderExpr(E);
18539   if (Result.isInvalid())
18540     return ExprError();
18541   E = Result.get();
18542   if (!E->getType()->isVariablyModifiedType())
18543     return E;
18544   return TransformToPotentiallyEvaluated(E);
18545 }
18546 
18547 /// Are we in a context that is potentially constant evaluated per C++20
18548 /// [expr.const]p12?
18549 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18550   /// C++2a [expr.const]p12:
18551   //   An expression or conversion is potentially constant evaluated if it is
18552   switch (SemaRef.ExprEvalContexts.back().Context) {
18553     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18554     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18555 
18556       // -- a manifestly constant-evaluated expression,
18557     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18558     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18559     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18560       // -- a potentially-evaluated expression,
18561     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18562       // -- an immediate subexpression of a braced-init-list,
18563 
18564       // -- [FIXME] an expression of the form & cast-expression that occurs
18565       //    within a templated entity
18566       // -- a subexpression of one of the above that is not a subexpression of
18567       // a nested unevaluated operand.
18568       return true;
18569 
18570     case Sema::ExpressionEvaluationContext::Unevaluated:
18571     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18572       // Expressions in this context are never evaluated.
18573       return false;
18574   }
18575   llvm_unreachable("Invalid context");
18576 }
18577 
18578 /// Return true if this function has a calling convention that requires mangling
18579 /// in the size of the parameter pack.
18580 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18581   // These manglings don't do anything on non-Windows or non-x86 platforms, so
18582   // we don't need parameter type sizes.
18583   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18584   if (!TT.isOSWindows() || !TT.isX86())
18585     return false;
18586 
18587   // If this is C++ and this isn't an extern "C" function, parameters do not
18588   // need to be complete. In this case, C++ mangling will apply, which doesn't
18589   // use the size of the parameters.
18590   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18591     return false;
18592 
18593   // Stdcall, fastcall, and vectorcall need this special treatment.
18594   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18595   switch (CC) {
18596   case CC_X86StdCall:
18597   case CC_X86FastCall:
18598   case CC_X86VectorCall:
18599     return true;
18600   default:
18601     break;
18602   }
18603   return false;
18604 }
18605 
18606 /// Require that all of the parameter types of function be complete. Normally,
18607 /// parameter types are only required to be complete when a function is called
18608 /// or defined, but to mangle functions with certain calling conventions, the
18609 /// mangler needs to know the size of the parameter list. In this situation,
18610 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18611 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18612 /// result in a linker error. Clang doesn't implement this behavior, and instead
18613 /// attempts to error at compile time.
18614 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18615                                                   SourceLocation Loc) {
18616   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18617     FunctionDecl *FD;
18618     ParmVarDecl *Param;
18619 
18620   public:
18621     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18622         : FD(FD), Param(Param) {}
18623 
18624     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18625       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18626       StringRef CCName;
18627       switch (CC) {
18628       case CC_X86StdCall:
18629         CCName = "stdcall";
18630         break;
18631       case CC_X86FastCall:
18632         CCName = "fastcall";
18633         break;
18634       case CC_X86VectorCall:
18635         CCName = "vectorcall";
18636         break;
18637       default:
18638         llvm_unreachable("CC does not need mangling");
18639       }
18640 
18641       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18642           << Param->getDeclName() << FD->getDeclName() << CCName;
18643     }
18644   };
18645 
18646   for (ParmVarDecl *Param : FD->parameters()) {
18647     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18648     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18649   }
18650 }
18651 
18652 namespace {
18653 enum class OdrUseContext {
18654   /// Declarations in this context are not odr-used.
18655   None,
18656   /// Declarations in this context are formally odr-used, but this is a
18657   /// dependent context.
18658   Dependent,
18659   /// Declarations in this context are odr-used but not actually used (yet).
18660   FormallyOdrUsed,
18661   /// Declarations in this context are used.
18662   Used
18663 };
18664 }
18665 
18666 /// Are we within a context in which references to resolved functions or to
18667 /// variables result in odr-use?
18668 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18669   OdrUseContext Result;
18670 
18671   switch (SemaRef.ExprEvalContexts.back().Context) {
18672     case Sema::ExpressionEvaluationContext::Unevaluated:
18673     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18674     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18675       return OdrUseContext::None;
18676 
18677     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18678     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18679     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18680       Result = OdrUseContext::Used;
18681       break;
18682 
18683     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18684       Result = OdrUseContext::FormallyOdrUsed;
18685       break;
18686 
18687     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18688       // A default argument formally results in odr-use, but doesn't actually
18689       // result in a use in any real sense until it itself is used.
18690       Result = OdrUseContext::FormallyOdrUsed;
18691       break;
18692   }
18693 
18694   if (SemaRef.CurContext->isDependentContext())
18695     return OdrUseContext::Dependent;
18696 
18697   return Result;
18698 }
18699 
18700 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18701   if (!Func->isConstexpr())
18702     return false;
18703 
18704   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18705     return true;
18706   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18707   return CCD && CCD->getInheritedConstructor();
18708 }
18709 
18710 /// Mark a function referenced, and check whether it is odr-used
18711 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18712 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18713                                   bool MightBeOdrUse) {
18714   assert(Func && "No function?");
18715 
18716   Func->setReferenced();
18717 
18718   // Recursive functions aren't really used until they're used from some other
18719   // context.
18720   bool IsRecursiveCall = CurContext == Func;
18721 
18722   // C++11 [basic.def.odr]p3:
18723   //   A function whose name appears as a potentially-evaluated expression is
18724   //   odr-used if it is the unique lookup result or the selected member of a
18725   //   set of overloaded functions [...].
18726   //
18727   // We (incorrectly) mark overload resolution as an unevaluated context, so we
18728   // can just check that here.
18729   OdrUseContext OdrUse =
18730       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18731   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18732     OdrUse = OdrUseContext::FormallyOdrUsed;
18733 
18734   // Trivial default constructors and destructors are never actually used.
18735   // FIXME: What about other special members?
18736   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18737       OdrUse == OdrUseContext::Used) {
18738     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18739       if (Constructor->isDefaultConstructor())
18740         OdrUse = OdrUseContext::FormallyOdrUsed;
18741     if (isa<CXXDestructorDecl>(Func))
18742       OdrUse = OdrUseContext::FormallyOdrUsed;
18743   }
18744 
18745   // C++20 [expr.const]p12:
18746   //   A function [...] is needed for constant evaluation if it is [...] a
18747   //   constexpr function that is named by an expression that is potentially
18748   //   constant evaluated
18749   bool NeededForConstantEvaluation =
18750       isPotentiallyConstantEvaluatedContext(*this) &&
18751       isImplicitlyDefinableConstexprFunction(Func);
18752 
18753   // Determine whether we require a function definition to exist, per
18754   // C++11 [temp.inst]p3:
18755   //   Unless a function template specialization has been explicitly
18756   //   instantiated or explicitly specialized, the function template
18757   //   specialization is implicitly instantiated when the specialization is
18758   //   referenced in a context that requires a function definition to exist.
18759   // C++20 [temp.inst]p7:
18760   //   The existence of a definition of a [...] function is considered to
18761   //   affect the semantics of the program if the [...] function is needed for
18762   //   constant evaluation by an expression
18763   // C++20 [basic.def.odr]p10:
18764   //   Every program shall contain exactly one definition of every non-inline
18765   //   function or variable that is odr-used in that program outside of a
18766   //   discarded statement
18767   // C++20 [special]p1:
18768   //   The implementation will implicitly define [defaulted special members]
18769   //   if they are odr-used or needed for constant evaluation.
18770   //
18771   // Note that we skip the implicit instantiation of templates that are only
18772   // used in unused default arguments or by recursive calls to themselves.
18773   // This is formally non-conforming, but seems reasonable in practice.
18774   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18775                                              NeededForConstantEvaluation);
18776 
18777   // C++14 [temp.expl.spec]p6:
18778   //   If a template [...] is explicitly specialized then that specialization
18779   //   shall be declared before the first use of that specialization that would
18780   //   cause an implicit instantiation to take place, in every translation unit
18781   //   in which such a use occurs
18782   if (NeedDefinition &&
18783       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18784        Func->getMemberSpecializationInfo()))
18785     checkSpecializationReachability(Loc, Func);
18786 
18787   if (getLangOpts().CUDA)
18788     CheckCUDACall(Loc, Func);
18789 
18790   // If we need a definition, try to create one.
18791   if (NeedDefinition && !Func->getBody()) {
18792     runWithSufficientStackSpace(Loc, [&] {
18793       if (CXXConstructorDecl *Constructor =
18794               dyn_cast<CXXConstructorDecl>(Func)) {
18795         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18796         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18797           if (Constructor->isDefaultConstructor()) {
18798             if (Constructor->isTrivial() &&
18799                 !Constructor->hasAttr<DLLExportAttr>())
18800               return;
18801             DefineImplicitDefaultConstructor(Loc, Constructor);
18802           } else if (Constructor->isCopyConstructor()) {
18803             DefineImplicitCopyConstructor(Loc, Constructor);
18804           } else if (Constructor->isMoveConstructor()) {
18805             DefineImplicitMoveConstructor(Loc, Constructor);
18806           }
18807         } else if (Constructor->getInheritedConstructor()) {
18808           DefineInheritingConstructor(Loc, Constructor);
18809         }
18810       } else if (CXXDestructorDecl *Destructor =
18811                      dyn_cast<CXXDestructorDecl>(Func)) {
18812         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18813         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18814           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18815             return;
18816           DefineImplicitDestructor(Loc, Destructor);
18817         }
18818         if (Destructor->isVirtual() && getLangOpts().AppleKext)
18819           MarkVTableUsed(Loc, Destructor->getParent());
18820       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18821         if (MethodDecl->isOverloadedOperator() &&
18822             MethodDecl->getOverloadedOperator() == OO_Equal) {
18823           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18824           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18825             if (MethodDecl->isCopyAssignmentOperator())
18826               DefineImplicitCopyAssignment(Loc, MethodDecl);
18827             else if (MethodDecl->isMoveAssignmentOperator())
18828               DefineImplicitMoveAssignment(Loc, MethodDecl);
18829           }
18830         } else if (isa<CXXConversionDecl>(MethodDecl) &&
18831                    MethodDecl->getParent()->isLambda()) {
18832           CXXConversionDecl *Conversion =
18833               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18834           if (Conversion->isLambdaToBlockPointerConversion())
18835             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18836           else
18837             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18838         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18839           MarkVTableUsed(Loc, MethodDecl->getParent());
18840       }
18841 
18842       if (Func->isDefaulted() && !Func->isDeleted()) {
18843         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18844         if (DCK != DefaultedComparisonKind::None)
18845           DefineDefaultedComparison(Loc, Func, DCK);
18846       }
18847 
18848       // Implicit instantiation of function templates and member functions of
18849       // class templates.
18850       if (Func->isImplicitlyInstantiable()) {
18851         TemplateSpecializationKind TSK =
18852             Func->getTemplateSpecializationKindForInstantiation();
18853         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18854         bool FirstInstantiation = PointOfInstantiation.isInvalid();
18855         if (FirstInstantiation) {
18856           PointOfInstantiation = Loc;
18857           if (auto *MSI = Func->getMemberSpecializationInfo())
18858             MSI->setPointOfInstantiation(Loc);
18859             // FIXME: Notify listener.
18860           else
18861             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18862         } else if (TSK != TSK_ImplicitInstantiation) {
18863           // Use the point of use as the point of instantiation, instead of the
18864           // point of explicit instantiation (which we track as the actual point
18865           // of instantiation). This gives better backtraces in diagnostics.
18866           PointOfInstantiation = Loc;
18867         }
18868 
18869         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18870             Func->isConstexpr()) {
18871           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18872               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18873               CodeSynthesisContexts.size())
18874             PendingLocalImplicitInstantiations.push_back(
18875                 std::make_pair(Func, PointOfInstantiation));
18876           else if (Func->isConstexpr())
18877             // Do not defer instantiations of constexpr functions, to avoid the
18878             // expression evaluator needing to call back into Sema if it sees a
18879             // call to such a function.
18880             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18881           else {
18882             Func->setInstantiationIsPending(true);
18883             PendingInstantiations.push_back(
18884                 std::make_pair(Func, PointOfInstantiation));
18885             // Notify the consumer that a function was implicitly instantiated.
18886             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18887           }
18888         }
18889       } else {
18890         // Walk redefinitions, as some of them may be instantiable.
18891         for (auto *i : Func->redecls()) {
18892           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18893             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18894         }
18895       }
18896     });
18897   }
18898 
18899   // If a constructor was defined in the context of a default parameter
18900   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18901   // context), its initializers may not be referenced yet.
18902   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18903     EnterExpressionEvaluationContext EvalContext(
18904         *this,
18905         Constructor->isImmediateFunction()
18906             ? ExpressionEvaluationContext::ImmediateFunctionContext
18907             : ExpressionEvaluationContext::PotentiallyEvaluated,
18908         Constructor);
18909     for (CXXCtorInitializer *Init : Constructor->inits()) {
18910       if (Init->isInClassMemberInitializer())
18911         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
18912           MarkDeclarationsReferencedInExpr(Init->getInit());
18913         });
18914     }
18915   }
18916 
18917   // C++14 [except.spec]p17:
18918   //   An exception-specification is considered to be needed when:
18919   //   - the function is odr-used or, if it appears in an unevaluated operand,
18920   //     would be odr-used if the expression were potentially-evaluated;
18921   //
18922   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18923   // function is a pure virtual function we're calling, and in that case the
18924   // function was selected by overload resolution and we need to resolve its
18925   // exception specification for a different reason.
18926   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18927   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18928     ResolveExceptionSpec(Loc, FPT);
18929 
18930   // If this is the first "real" use, act on that.
18931   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18932     // Keep track of used but undefined functions.
18933     if (!Func->isDefined()) {
18934       if (mightHaveNonExternalLinkage(Func))
18935         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18936       else if (Func->getMostRecentDecl()->isInlined() &&
18937                !LangOpts.GNUInline &&
18938                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18939         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18940       else if (isExternalWithNoLinkageType(Func))
18941         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18942     }
18943 
18944     // Some x86 Windows calling conventions mangle the size of the parameter
18945     // pack into the name. Computing the size of the parameters requires the
18946     // parameter types to be complete. Check that now.
18947     if (funcHasParameterSizeMangling(*this, Func))
18948       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18949 
18950     // In the MS C++ ABI, the compiler emits destructor variants where they are
18951     // used. If the destructor is used here but defined elsewhere, mark the
18952     // virtual base destructors referenced. If those virtual base destructors
18953     // are inline, this will ensure they are defined when emitting the complete
18954     // destructor variant. This checking may be redundant if the destructor is
18955     // provided later in this TU.
18956     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18957       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18958         CXXRecordDecl *Parent = Dtor->getParent();
18959         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18960           CheckCompleteDestructorVariant(Loc, Dtor);
18961       }
18962     }
18963 
18964     Func->markUsed(Context);
18965   }
18966 }
18967 
18968 /// Directly mark a variable odr-used. Given a choice, prefer to use
18969 /// MarkVariableReferenced since it does additional checks and then
18970 /// calls MarkVarDeclODRUsed.
18971 /// If the variable must be captured:
18972 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18973 ///  - else capture it in the DeclContext that maps to the
18974 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18975 static void
18976 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18977                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18978   // Keep track of used but undefined variables.
18979   // FIXME: We shouldn't suppress this warning for static data members.
18980   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18981   assert(Var && "expected a capturable variable");
18982 
18983   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18984       (!Var->isExternallyVisible() || Var->isInline() ||
18985        SemaRef.isExternalWithNoLinkageType(Var)) &&
18986       !(Var->isStaticDataMember() && Var->hasInit())) {
18987     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18988     if (old.isInvalid())
18989       old = Loc;
18990   }
18991   QualType CaptureType, DeclRefType;
18992   if (SemaRef.LangOpts.OpenMP)
18993     SemaRef.tryCaptureOpenMPLambdas(V);
18994   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18995                              /*EllipsisLoc*/ SourceLocation(),
18996                              /*BuildAndDiagnose*/ true, CaptureType,
18997                              DeclRefType, FunctionScopeIndexToStopAt);
18998 
18999   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19000     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19001     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19002     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19003     if (VarTarget == Sema::CVT_Host &&
19004         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19005          UserTarget == Sema::CFT_Global)) {
19006       // Diagnose ODR-use of host global variables in device functions.
19007       // Reference of device global variables in host functions is allowed
19008       // through shadow variables therefore it is not diagnosed.
19009       if (SemaRef.LangOpts.CUDAIsDevice) {
19010         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19011             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19012         SemaRef.targetDiag(Var->getLocation(),
19013                            Var->getType().isConstQualified()
19014                                ? diag::note_cuda_const_var_unpromoted
19015                                : diag::note_cuda_host_var);
19016       }
19017     } else if (VarTarget == Sema::CVT_Device &&
19018                (UserTarget == Sema::CFT_Host ||
19019                 UserTarget == Sema::CFT_HostDevice)) {
19020       // Record a CUDA/HIP device side variable if it is ODR-used
19021       // by host code. This is done conservatively, when the variable is
19022       // referenced in any of the following contexts:
19023       //   - a non-function context
19024       //   - a host function
19025       //   - a host device function
19026       // This makes the ODR-use of the device side variable by host code to
19027       // be visible in the device compilation for the compiler to be able to
19028       // emit template variables instantiated by host code only and to
19029       // externalize the static device side variable ODR-used by host code.
19030       if (!Var->hasExternalStorage())
19031         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19032       else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19033         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19034     }
19035   }
19036 
19037   V->markUsed(SemaRef.Context);
19038 }
19039 
19040 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19041                                              SourceLocation Loc,
19042                                              unsigned CapturingScopeIndex) {
19043   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19044 }
19045 
19046 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19047                                                  ValueDecl *var) {
19048   DeclContext *VarDC = var->getDeclContext();
19049 
19050   //  If the parameter still belongs to the translation unit, then
19051   //  we're actually just using one parameter in the declaration of
19052   //  the next.
19053   if (isa<ParmVarDecl>(var) &&
19054       isa<TranslationUnitDecl>(VarDC))
19055     return;
19056 
19057   // For C code, don't diagnose about capture if we're not actually in code
19058   // right now; it's impossible to write a non-constant expression outside of
19059   // function context, so we'll get other (more useful) diagnostics later.
19060   //
19061   // For C++, things get a bit more nasty... it would be nice to suppress this
19062   // diagnostic for certain cases like using a local variable in an array bound
19063   // for a member of a local class, but the correct predicate is not obvious.
19064   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19065     return;
19066 
19067   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19068   unsigned ContextKind = 3; // unknown
19069   if (isa<CXXMethodDecl>(VarDC) &&
19070       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19071     ContextKind = 2;
19072   } else if (isa<FunctionDecl>(VarDC)) {
19073     ContextKind = 0;
19074   } else if (isa<BlockDecl>(VarDC)) {
19075     ContextKind = 1;
19076   }
19077 
19078   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19079     << var << ValueKind << ContextKind << VarDC;
19080   S.Diag(var->getLocation(), diag::note_entity_declared_at)
19081       << var;
19082 
19083   // FIXME: Add additional diagnostic info about class etc. which prevents
19084   // capture.
19085 }
19086 
19087 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19088                                                  ValueDecl *Var,
19089                                                  bool &SubCapturesAreNested,
19090                                                  QualType &CaptureType,
19091                                                  QualType &DeclRefType) {
19092   // Check whether we've already captured it.
19093   if (CSI->CaptureMap.count(Var)) {
19094     // If we found a capture, any subcaptures are nested.
19095     SubCapturesAreNested = true;
19096 
19097     // Retrieve the capture type for this variable.
19098     CaptureType = CSI->getCapture(Var).getCaptureType();
19099 
19100     // Compute the type of an expression that refers to this variable.
19101     DeclRefType = CaptureType.getNonReferenceType();
19102 
19103     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19104     // are mutable in the sense that user can change their value - they are
19105     // private instances of the captured declarations.
19106     const Capture &Cap = CSI->getCapture(Var);
19107     if (Cap.isCopyCapture() &&
19108         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
19109         !(isa<CapturedRegionScopeInfo>(CSI) &&
19110           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19111       DeclRefType.addConst();
19112     return true;
19113   }
19114   return false;
19115 }
19116 
19117 // Only block literals, captured statements, and lambda expressions can
19118 // capture; other scopes don't work.
19119 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19120                                                       ValueDecl *Var,
19121                                                       SourceLocation Loc,
19122                                                       const bool Diagnose,
19123                                                       Sema &S) {
19124   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19125     return getLambdaAwareParentOfDeclContext(DC);
19126 
19127   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19128   if (Underlying) {
19129     if (Underlying->hasLocalStorage() && Diagnose)
19130       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19131   }
19132   return nullptr;
19133 }
19134 
19135 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19136 // certain types of variables (unnamed, variably modified types etc.)
19137 // so check for eligibility.
19138 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19139                                  SourceLocation Loc, const bool Diagnose,
19140                                  Sema &S) {
19141 
19142   assert((isa<VarDecl, BindingDecl>(Var)) &&
19143          "Only variables and structured bindings can be captured");
19144 
19145   bool IsBlock = isa<BlockScopeInfo>(CSI);
19146   bool IsLambda = isa<LambdaScopeInfo>(CSI);
19147 
19148   // Lambdas are not allowed to capture unnamed variables
19149   // (e.g. anonymous unions).
19150   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19151   // assuming that's the intent.
19152   if (IsLambda && !Var->getDeclName()) {
19153     if (Diagnose) {
19154       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19155       S.Diag(Var->getLocation(), diag::note_declared_at);
19156     }
19157     return false;
19158   }
19159 
19160   // Prohibit variably-modified types in blocks; they're difficult to deal with.
19161   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19162     if (Diagnose) {
19163       S.Diag(Loc, diag::err_ref_vm_type);
19164       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19165     }
19166     return false;
19167   }
19168   // Prohibit structs with flexible array members too.
19169   // We cannot capture what is in the tail end of the struct.
19170   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19171     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19172       if (Diagnose) {
19173         if (IsBlock)
19174           S.Diag(Loc, diag::err_ref_flexarray_type);
19175         else
19176           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19177         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19178       }
19179       return false;
19180     }
19181   }
19182   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19183   // Lambdas and captured statements are not allowed to capture __block
19184   // variables; they don't support the expected semantics.
19185   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19186     if (Diagnose) {
19187       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19188       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19189     }
19190     return false;
19191   }
19192   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19193   if (S.getLangOpts().OpenCL && IsBlock &&
19194       Var->getType()->isBlockPointerType()) {
19195     if (Diagnose)
19196       S.Diag(Loc, diag::err_opencl_block_ref_block);
19197     return false;
19198   }
19199 
19200   if (isa<BindingDecl>(Var)) {
19201     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19202       if (Diagnose)
19203         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19204       return false;
19205     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19206       S.Diag(Loc, S.LangOpts.CPlusPlus20
19207                       ? diag::warn_cxx17_compat_capture_binding
19208                       : diag::ext_capture_binding)
19209           << Var;
19210       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19211     }
19212   }
19213 
19214   return true;
19215 }
19216 
19217 // Returns true if the capture by block was successful.
19218 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19219                            SourceLocation Loc, const bool BuildAndDiagnose,
19220                            QualType &CaptureType, QualType &DeclRefType,
19221                            const bool Nested, Sema &S, bool Invalid) {
19222   bool ByRef = false;
19223 
19224   // Blocks are not allowed to capture arrays, excepting OpenCL.
19225   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19226   // (decayed to pointers).
19227   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19228     if (BuildAndDiagnose) {
19229       S.Diag(Loc, diag::err_ref_array_type);
19230       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19231       Invalid = true;
19232     } else {
19233       return false;
19234     }
19235   }
19236 
19237   // Forbid the block-capture of autoreleasing variables.
19238   if (!Invalid &&
19239       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19240     if (BuildAndDiagnose) {
19241       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19242         << /*block*/ 0;
19243       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19244       Invalid = true;
19245     } else {
19246       return false;
19247     }
19248   }
19249 
19250   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19251   if (const auto *PT = CaptureType->getAs<PointerType>()) {
19252     QualType PointeeTy = PT->getPointeeType();
19253 
19254     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19255         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19256         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19257       if (BuildAndDiagnose) {
19258         SourceLocation VarLoc = Var->getLocation();
19259         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19260         S.Diag(VarLoc, diag::note_declare_parameter_strong);
19261       }
19262     }
19263   }
19264 
19265   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19266   if (HasBlocksAttr || CaptureType->isReferenceType() ||
19267       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19268     // Block capture by reference does not change the capture or
19269     // declaration reference types.
19270     ByRef = true;
19271   } else {
19272     // Block capture by copy introduces 'const'.
19273     CaptureType = CaptureType.getNonReferenceType().withConst();
19274     DeclRefType = CaptureType;
19275   }
19276 
19277   // Actually capture the variable.
19278   if (BuildAndDiagnose)
19279     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19280                     CaptureType, Invalid);
19281 
19282   return !Invalid;
19283 }
19284 
19285 /// Capture the given variable in the captured region.
19286 static bool captureInCapturedRegion(
19287     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19288     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19289     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19290     bool IsTopScope, Sema &S, bool Invalid) {
19291   // By default, capture variables by reference.
19292   bool ByRef = true;
19293   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19294     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19295   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19296     // Using an LValue reference type is consistent with Lambdas (see below).
19297     if (S.isOpenMPCapturedDecl(Var)) {
19298       bool HasConst = DeclRefType.isConstQualified();
19299       DeclRefType = DeclRefType.getUnqualifiedType();
19300       // Don't lose diagnostics about assignments to const.
19301       if (HasConst)
19302         DeclRefType.addConst();
19303     }
19304     // Do not capture firstprivates in tasks.
19305     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19306         OMPC_unknown)
19307       return true;
19308     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19309                                     RSI->OpenMPCaptureLevel);
19310   }
19311 
19312   if (ByRef)
19313     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19314   else
19315     CaptureType = DeclRefType;
19316 
19317   // Actually capture the variable.
19318   if (BuildAndDiagnose)
19319     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19320                     Loc, SourceLocation(), CaptureType, Invalid);
19321 
19322   return !Invalid;
19323 }
19324 
19325 /// Capture the given variable in the lambda.
19326 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19327                             SourceLocation Loc, const bool BuildAndDiagnose,
19328                             QualType &CaptureType, QualType &DeclRefType,
19329                             const bool RefersToCapturedVariable,
19330                             const Sema::TryCaptureKind Kind,
19331                             SourceLocation EllipsisLoc, const bool IsTopScope,
19332                             Sema &S, bool Invalid) {
19333   // Determine whether we are capturing by reference or by value.
19334   bool ByRef = false;
19335   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19336     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19337   } else {
19338     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19339   }
19340 
19341   BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19342   // FIXME: We should support capturing structured bindings in OpenMP.
19343   if (!Invalid && BD && S.LangOpts.OpenMP) {
19344     if (BuildAndDiagnose) {
19345       S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19346       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19347     }
19348     Invalid = true;
19349   }
19350 
19351   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19352       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19353     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19354     Invalid = true;
19355   }
19356 
19357   // Compute the type of the field that will capture this variable.
19358   if (ByRef) {
19359     // C++11 [expr.prim.lambda]p15:
19360     //   An entity is captured by reference if it is implicitly or
19361     //   explicitly captured but not captured by copy. It is
19362     //   unspecified whether additional unnamed non-static data
19363     //   members are declared in the closure type for entities
19364     //   captured by reference.
19365     //
19366     // FIXME: It is not clear whether we want to build an lvalue reference
19367     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19368     // to do the former, while EDG does the latter. Core issue 1249 will
19369     // clarify, but for now we follow GCC because it's a more permissive and
19370     // easily defensible position.
19371     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19372   } else {
19373     // C++11 [expr.prim.lambda]p14:
19374     //   For each entity captured by copy, an unnamed non-static
19375     //   data member is declared in the closure type. The
19376     //   declaration order of these members is unspecified. The type
19377     //   of such a data member is the type of the corresponding
19378     //   captured entity if the entity is not a reference to an
19379     //   object, or the referenced type otherwise. [Note: If the
19380     //   captured entity is a reference to a function, the
19381     //   corresponding data member is also a reference to a
19382     //   function. - end note ]
19383     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19384       if (!RefType->getPointeeType()->isFunctionType())
19385         CaptureType = RefType->getPointeeType();
19386     }
19387 
19388     // Forbid the lambda copy-capture of autoreleasing variables.
19389     if (!Invalid &&
19390         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19391       if (BuildAndDiagnose) {
19392         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19393         S.Diag(Var->getLocation(), diag::note_previous_decl)
19394           << Var->getDeclName();
19395         Invalid = true;
19396       } else {
19397         return false;
19398       }
19399     }
19400 
19401     // Make sure that by-copy captures are of a complete and non-abstract type.
19402     if (!Invalid && BuildAndDiagnose) {
19403       if (!CaptureType->isDependentType() &&
19404           S.RequireCompleteSizedType(
19405               Loc, CaptureType,
19406               diag::err_capture_of_incomplete_or_sizeless_type,
19407               Var->getDeclName()))
19408         Invalid = true;
19409       else if (S.RequireNonAbstractType(Loc, CaptureType,
19410                                         diag::err_capture_of_abstract_type))
19411         Invalid = true;
19412     }
19413   }
19414 
19415   // Compute the type of a reference to this captured variable.
19416   if (ByRef)
19417     DeclRefType = CaptureType.getNonReferenceType();
19418   else {
19419     // C++ [expr.prim.lambda]p5:
19420     //   The closure type for a lambda-expression has a public inline
19421     //   function call operator [...]. This function call operator is
19422     //   declared const (9.3.1) if and only if the lambda-expression's
19423     //   parameter-declaration-clause is not followed by mutable.
19424     DeclRefType = CaptureType.getNonReferenceType();
19425     if (!LSI->Mutable && !CaptureType->isReferenceType())
19426       DeclRefType.addConst();
19427   }
19428 
19429   // Add the capture.
19430   if (BuildAndDiagnose)
19431     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19432                     Loc, EllipsisLoc, CaptureType, Invalid);
19433 
19434   return !Invalid;
19435 }
19436 
19437 static bool canCaptureVariableByCopy(ValueDecl *Var,
19438                                      const ASTContext &Context) {
19439   // Offer a Copy fix even if the type is dependent.
19440   if (Var->getType()->isDependentType())
19441     return true;
19442   QualType T = Var->getType().getNonReferenceType();
19443   if (T.isTriviallyCopyableType(Context))
19444     return true;
19445   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19446 
19447     if (!(RD = RD->getDefinition()))
19448       return false;
19449     if (RD->hasSimpleCopyConstructor())
19450       return true;
19451     if (RD->hasUserDeclaredCopyConstructor())
19452       for (CXXConstructorDecl *Ctor : RD->ctors())
19453         if (Ctor->isCopyConstructor())
19454           return !Ctor->isDeleted();
19455   }
19456   return false;
19457 }
19458 
19459 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19460 /// default capture. Fixes may be omitted if they aren't allowed by the
19461 /// standard, for example we can't emit a default copy capture fix-it if we
19462 /// already explicitly copy capture capture another variable.
19463 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19464                                     ValueDecl *Var) {
19465   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19466   // Don't offer Capture by copy of default capture by copy fixes if Var is
19467   // known not to be copy constructible.
19468   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19469 
19470   SmallString<32> FixBuffer;
19471   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19472   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19473     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19474     if (ShouldOfferCopyFix) {
19475       // Offer fixes to insert an explicit capture for the variable.
19476       // [] -> [VarName]
19477       // [OtherCapture] -> [OtherCapture, VarName]
19478       FixBuffer.assign({Separator, Var->getName()});
19479       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19480           << Var << /*value*/ 0
19481           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19482     }
19483     // As above but capture by reference.
19484     FixBuffer.assign({Separator, "&", Var->getName()});
19485     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19486         << Var << /*reference*/ 1
19487         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19488   }
19489 
19490   // Only try to offer default capture if there are no captures excluding this
19491   // and init captures.
19492   // [this]: OK.
19493   // [X = Y]: OK.
19494   // [&A, &B]: Don't offer.
19495   // [A, B]: Don't offer.
19496   if (llvm::any_of(LSI->Captures, [](Capture &C) {
19497         return !C.isThisCapture() && !C.isInitCapture();
19498       }))
19499     return;
19500 
19501   // The default capture specifiers, '=' or '&', must appear first in the
19502   // capture body.
19503   SourceLocation DefaultInsertLoc =
19504       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19505 
19506   if (ShouldOfferCopyFix) {
19507     bool CanDefaultCopyCapture = true;
19508     // [=, *this] OK since c++17
19509     // [=, this] OK since c++20
19510     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19511       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19512                                   ? LSI->getCXXThisCapture().isCopyCapture()
19513                                   : false;
19514     // We can't use default capture by copy if any captures already specified
19515     // capture by copy.
19516     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19517           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19518         })) {
19519       FixBuffer.assign({"=", Separator});
19520       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19521           << /*value*/ 0
19522           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19523     }
19524   }
19525 
19526   // We can't use default capture by reference if any captures already specified
19527   // capture by reference.
19528   if (llvm::none_of(LSI->Captures, [](Capture &C) {
19529         return !C.isInitCapture() && C.isReferenceCapture() &&
19530                !C.isThisCapture();
19531       })) {
19532     FixBuffer.assign({"&", Separator});
19533     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19534         << /*reference*/ 1
19535         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19536   }
19537 }
19538 
19539 bool Sema::tryCaptureVariable(
19540     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19541     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19542     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19543   // An init-capture is notionally from the context surrounding its
19544   // declaration, but its parent DC is the lambda class.
19545   DeclContext *VarDC = Var->getDeclContext();
19546   DeclContext *DC = CurContext;
19547 
19548   // tryCaptureVariable is called every time a DeclRef is formed,
19549   // it can therefore have non-negigible impact on performances.
19550   // For local variables and when there is no capturing scope,
19551   // we can bailout early.
19552   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19553     return true;
19554 
19555   const auto *VD = dyn_cast<VarDecl>(Var);
19556   if (VD) {
19557     if (VD->isInitCapture())
19558       VarDC = VarDC->getParent();
19559   } else {
19560     VD = Var->getPotentiallyDecomposedVarDecl();
19561   }
19562   assert(VD && "Cannot capture a null variable");
19563 
19564   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19565       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19566   // We need to sync up the Declaration Context with the
19567   // FunctionScopeIndexToStopAt
19568   if (FunctionScopeIndexToStopAt) {
19569     unsigned FSIndex = FunctionScopes.size() - 1;
19570     while (FSIndex != MaxFunctionScopesIndex) {
19571       DC = getLambdaAwareParentOfDeclContext(DC);
19572       --FSIndex;
19573     }
19574   }
19575 
19576   // Capture global variables if it is required to use private copy of this
19577   // variable.
19578   bool IsGlobal = !VD->hasLocalStorage();
19579   if (IsGlobal &&
19580       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19581                                                 MaxFunctionScopesIndex)))
19582     return true;
19583 
19584   if (isa<VarDecl>(Var))
19585     Var = cast<VarDecl>(Var->getCanonicalDecl());
19586 
19587   // Walk up the stack to determine whether we can capture the variable,
19588   // performing the "simple" checks that don't depend on type. We stop when
19589   // we've either hit the declared scope of the variable or find an existing
19590   // capture of that variable.  We start from the innermost capturing-entity
19591   // (the DC) and ensure that all intervening capturing-entities
19592   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19593   // declcontext can either capture the variable or have already captured
19594   // the variable.
19595   CaptureType = Var->getType();
19596   DeclRefType = CaptureType.getNonReferenceType();
19597   bool Nested = false;
19598   bool Explicit = (Kind != TryCapture_Implicit);
19599   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19600   do {
19601 
19602     LambdaScopeInfo *LSI = nullptr;
19603     if (!FunctionScopes.empty())
19604       LSI = dyn_cast_or_null<LambdaScopeInfo>(
19605           FunctionScopes[FunctionScopesIndex]);
19606 
19607     bool IsInScopeDeclarationContext =
19608         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19609 
19610     if (LSI && !LSI->AfterParameterList) {
19611       // This allows capturing parameters from a default value which does not
19612       // seems correct
19613       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19614         return true;
19615     }
19616     // If the variable is declared in the current context, there is no need to
19617     // capture it.
19618     if (IsInScopeDeclarationContext &&
19619         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19620       return true;
19621 
19622     // Only block literals, captured statements, and lambda expressions can
19623     // capture; other scopes don't work.
19624     DeclContext *ParentDC =
19625         !IsInScopeDeclarationContext
19626             ? DC->getParent()
19627             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19628                                                 BuildAndDiagnose, *this);
19629     // We need to check for the parent *first* because, if we *have*
19630     // private-captured a global variable, we need to recursively capture it in
19631     // intermediate blocks, lambdas, etc.
19632     if (!ParentDC) {
19633       if (IsGlobal) {
19634         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19635         break;
19636       }
19637       return true;
19638     }
19639 
19640     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19641     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19642 
19643     // Check whether we've already captured it.
19644     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19645                                              DeclRefType)) {
19646       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19647       break;
19648     }
19649 
19650     // When evaluating some attributes (like enable_if) we might refer to a
19651     // function parameter appertaining to the same declaration as that
19652     // attribute.
19653     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19654         Parm && Parm->getDeclContext() == DC)
19655       return true;
19656 
19657     // If we are instantiating a generic lambda call operator body,
19658     // we do not want to capture new variables.  What was captured
19659     // during either a lambdas transformation or initial parsing
19660     // should be used.
19661     if (isGenericLambdaCallOperatorSpecialization(DC)) {
19662       if (BuildAndDiagnose) {
19663         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19664         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19665           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19666           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19667           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19668           buildLambdaCaptureFixit(*this, LSI, Var);
19669         } else
19670           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19671       }
19672       return true;
19673     }
19674 
19675     // Try to capture variable-length arrays types.
19676     if (Var->getType()->isVariablyModifiedType()) {
19677       // We're going to walk down into the type and look for VLA
19678       // expressions.
19679       QualType QTy = Var->getType();
19680       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19681         QTy = PVD->getOriginalType();
19682       captureVariablyModifiedType(Context, QTy, CSI);
19683     }
19684 
19685     if (getLangOpts().OpenMP) {
19686       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19687         // OpenMP private variables should not be captured in outer scope, so
19688         // just break here. Similarly, global variables that are captured in a
19689         // target region should not be captured outside the scope of the region.
19690         if (RSI->CapRegionKind == CR_OpenMP) {
19691           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19692               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19693           // If the variable is private (i.e. not captured) and has variably
19694           // modified type, we still need to capture the type for correct
19695           // codegen in all regions, associated with the construct. Currently,
19696           // it is captured in the innermost captured region only.
19697           if (IsOpenMPPrivateDecl != OMPC_unknown &&
19698               Var->getType()->isVariablyModifiedType()) {
19699             QualType QTy = Var->getType();
19700             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19701               QTy = PVD->getOriginalType();
19702             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19703                  I < E; ++I) {
19704               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19705                   FunctionScopes[FunctionScopesIndex - I]);
19706               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19707                      "Wrong number of captured regions associated with the "
19708                      "OpenMP construct.");
19709               captureVariablyModifiedType(Context, QTy, OuterRSI);
19710             }
19711           }
19712           bool IsTargetCap =
19713               IsOpenMPPrivateDecl != OMPC_private &&
19714               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19715                                          RSI->OpenMPCaptureLevel);
19716           // Do not capture global if it is not privatized in outer regions.
19717           bool IsGlobalCap =
19718               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19719                                                      RSI->OpenMPCaptureLevel);
19720 
19721           // When we detect target captures we are looking from inside the
19722           // target region, therefore we need to propagate the capture from the
19723           // enclosing region. Therefore, the capture is not initially nested.
19724           if (IsTargetCap)
19725             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19726 
19727           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19728               (IsGlobal && !IsGlobalCap)) {
19729             Nested = !IsTargetCap;
19730             bool HasConst = DeclRefType.isConstQualified();
19731             DeclRefType = DeclRefType.getUnqualifiedType();
19732             // Don't lose diagnostics about assignments to const.
19733             if (HasConst)
19734               DeclRefType.addConst();
19735             CaptureType = Context.getLValueReferenceType(DeclRefType);
19736             break;
19737           }
19738         }
19739       }
19740     }
19741     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19742       // No capture-default, and this is not an explicit capture
19743       // so cannot capture this variable.
19744       if (BuildAndDiagnose) {
19745         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19746         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19747         auto *LSI = cast<LambdaScopeInfo>(CSI);
19748         if (LSI->Lambda) {
19749           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19750           buildLambdaCaptureFixit(*this, LSI, Var);
19751         }
19752         // FIXME: If we error out because an outer lambda can not implicitly
19753         // capture a variable that an inner lambda explicitly captures, we
19754         // should have the inner lambda do the explicit capture - because
19755         // it makes for cleaner diagnostics later.  This would purely be done
19756         // so that the diagnostic does not misleadingly claim that a variable
19757         // can not be captured by a lambda implicitly even though it is captured
19758         // explicitly.  Suggestion:
19759         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19760         //    at the function head
19761         //  - cache the StartingDeclContext - this must be a lambda
19762         //  - captureInLambda in the innermost lambda the variable.
19763       }
19764       return true;
19765     }
19766     Explicit = false;
19767     FunctionScopesIndex--;
19768     if (IsInScopeDeclarationContext)
19769       DC = ParentDC;
19770   } while (!VarDC->Equals(DC));
19771 
19772   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19773   // computing the type of the capture at each step, checking type-specific
19774   // requirements, and adding captures if requested.
19775   // If the variable had already been captured previously, we start capturing
19776   // at the lambda nested within that one.
19777   bool Invalid = false;
19778   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19779        ++I) {
19780     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19781 
19782     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19783     // certain types of variables (unnamed, variably modified types etc.)
19784     // so check for eligibility.
19785     if (!Invalid)
19786       Invalid =
19787           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19788 
19789     // After encountering an error, if we're actually supposed to capture, keep
19790     // capturing in nested contexts to suppress any follow-on diagnostics.
19791     if (Invalid && !BuildAndDiagnose)
19792       return true;
19793 
19794     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19795       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19796                                DeclRefType, Nested, *this, Invalid);
19797       Nested = true;
19798     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19799       Invalid = !captureInCapturedRegion(
19800           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19801           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19802       Nested = true;
19803     } else {
19804       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19805       Invalid =
19806           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19807                            DeclRefType, Nested, Kind, EllipsisLoc,
19808                            /*IsTopScope*/ I == N - 1, *this, Invalid);
19809       Nested = true;
19810     }
19811 
19812     if (Invalid && !BuildAndDiagnose)
19813       return true;
19814   }
19815   return Invalid;
19816 }
19817 
19818 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19819                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19820   QualType CaptureType;
19821   QualType DeclRefType;
19822   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19823                             /*BuildAndDiagnose=*/true, CaptureType,
19824                             DeclRefType, nullptr);
19825 }
19826 
19827 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19828   QualType CaptureType;
19829   QualType DeclRefType;
19830   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19831                              /*BuildAndDiagnose=*/false, CaptureType,
19832                              DeclRefType, nullptr);
19833 }
19834 
19835 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19836   QualType CaptureType;
19837   QualType DeclRefType;
19838 
19839   // Determine whether we can capture this variable.
19840   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19841                          /*BuildAndDiagnose=*/false, CaptureType,
19842                          DeclRefType, nullptr))
19843     return QualType();
19844 
19845   return DeclRefType;
19846 }
19847 
19848 namespace {
19849 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19850 // The produced TemplateArgumentListInfo* points to data stored within this
19851 // object, so should only be used in contexts where the pointer will not be
19852 // used after the CopiedTemplateArgs object is destroyed.
19853 class CopiedTemplateArgs {
19854   bool HasArgs;
19855   TemplateArgumentListInfo TemplateArgStorage;
19856 public:
19857   template<typename RefExpr>
19858   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19859     if (HasArgs)
19860       E->copyTemplateArgumentsInto(TemplateArgStorage);
19861   }
19862   operator TemplateArgumentListInfo*()
19863 #ifdef __has_cpp_attribute
19864 #if __has_cpp_attribute(clang::lifetimebound)
19865   [[clang::lifetimebound]]
19866 #endif
19867 #endif
19868   {
19869     return HasArgs ? &TemplateArgStorage : nullptr;
19870   }
19871 };
19872 }
19873 
19874 /// Walk the set of potential results of an expression and mark them all as
19875 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19876 ///
19877 /// \return A new expression if we found any potential results, ExprEmpty() if
19878 ///         not, and ExprError() if we diagnosed an error.
19879 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19880                                                       NonOdrUseReason NOUR) {
19881   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19882   // an object that satisfies the requirements for appearing in a
19883   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19884   // is immediately applied."  This function handles the lvalue-to-rvalue
19885   // conversion part.
19886   //
19887   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19888   // transform it into the relevant kind of non-odr-use node and rebuild the
19889   // tree of nodes leading to it.
19890   //
19891   // This is a mini-TreeTransform that only transforms a restricted subset of
19892   // nodes (and only certain operands of them).
19893 
19894   // Rebuild a subexpression.
19895   auto Rebuild = [&](Expr *Sub) {
19896     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19897   };
19898 
19899   // Check whether a potential result satisfies the requirements of NOUR.
19900   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19901     // Any entity other than a VarDecl is always odr-used whenever it's named
19902     // in a potentially-evaluated expression.
19903     auto *VD = dyn_cast<VarDecl>(D);
19904     if (!VD)
19905       return true;
19906 
19907     // C++2a [basic.def.odr]p4:
19908     //   A variable x whose name appears as a potentially-evalauted expression
19909     //   e is odr-used by e unless
19910     //   -- x is a reference that is usable in constant expressions, or
19911     //   -- x is a variable of non-reference type that is usable in constant
19912     //      expressions and has no mutable subobjects, and e is an element of
19913     //      the set of potential results of an expression of
19914     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19915     //      conversion is applied, or
19916     //   -- x is a variable of non-reference type, and e is an element of the
19917     //      set of potential results of a discarded-value expression to which
19918     //      the lvalue-to-rvalue conversion is not applied
19919     //
19920     // We check the first bullet and the "potentially-evaluated" condition in
19921     // BuildDeclRefExpr. We check the type requirements in the second bullet
19922     // in CheckLValueToRValueConversionOperand below.
19923     switch (NOUR) {
19924     case NOUR_None:
19925     case NOUR_Unevaluated:
19926       llvm_unreachable("unexpected non-odr-use-reason");
19927 
19928     case NOUR_Constant:
19929       // Constant references were handled when they were built.
19930       if (VD->getType()->isReferenceType())
19931         return true;
19932       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19933         if (RD->hasMutableFields())
19934           return true;
19935       if (!VD->isUsableInConstantExpressions(S.Context))
19936         return true;
19937       break;
19938 
19939     case NOUR_Discarded:
19940       if (VD->getType()->isReferenceType())
19941         return true;
19942       break;
19943     }
19944     return false;
19945   };
19946 
19947   // Mark that this expression does not constitute an odr-use.
19948   auto MarkNotOdrUsed = [&] {
19949     S.MaybeODRUseExprs.remove(E);
19950     if (LambdaScopeInfo *LSI = S.getCurLambda())
19951       LSI->markVariableExprAsNonODRUsed(E);
19952   };
19953 
19954   // C++2a [basic.def.odr]p2:
19955   //   The set of potential results of an expression e is defined as follows:
19956   switch (E->getStmtClass()) {
19957   //   -- If e is an id-expression, ...
19958   case Expr::DeclRefExprClass: {
19959     auto *DRE = cast<DeclRefExpr>(E);
19960     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19961       break;
19962 
19963     // Rebuild as a non-odr-use DeclRefExpr.
19964     MarkNotOdrUsed();
19965     return DeclRefExpr::Create(
19966         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19967         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19968         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19969         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19970   }
19971 
19972   case Expr::FunctionParmPackExprClass: {
19973     auto *FPPE = cast<FunctionParmPackExpr>(E);
19974     // If any of the declarations in the pack is odr-used, then the expression
19975     // as a whole constitutes an odr-use.
19976     for (VarDecl *D : *FPPE)
19977       if (IsPotentialResultOdrUsed(D))
19978         return ExprEmpty();
19979 
19980     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19981     // nothing cares about whether we marked this as an odr-use, but it might
19982     // be useful for non-compiler tools.
19983     MarkNotOdrUsed();
19984     break;
19985   }
19986 
19987   //   -- If e is a subscripting operation with an array operand...
19988   case Expr::ArraySubscriptExprClass: {
19989     auto *ASE = cast<ArraySubscriptExpr>(E);
19990     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19991     if (!OldBase->getType()->isArrayType())
19992       break;
19993     ExprResult Base = Rebuild(OldBase);
19994     if (!Base.isUsable())
19995       return Base;
19996     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19997     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19998     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19999     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20000                                      ASE->getRBracketLoc());
20001   }
20002 
20003   case Expr::MemberExprClass: {
20004     auto *ME = cast<MemberExpr>(E);
20005     // -- If e is a class member access expression [...] naming a non-static
20006     //    data member...
20007     if (isa<FieldDecl>(ME->getMemberDecl())) {
20008       ExprResult Base = Rebuild(ME->getBase());
20009       if (!Base.isUsable())
20010         return Base;
20011       return MemberExpr::Create(
20012           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20013           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20014           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20015           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20016           ME->getObjectKind(), ME->isNonOdrUse());
20017     }
20018 
20019     if (ME->getMemberDecl()->isCXXInstanceMember())
20020       break;
20021 
20022     // -- If e is a class member access expression naming a static data member,
20023     //    ...
20024     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20025       break;
20026 
20027     // Rebuild as a non-odr-use MemberExpr.
20028     MarkNotOdrUsed();
20029     return MemberExpr::Create(
20030         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20031         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20032         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20033         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20034   }
20035 
20036   case Expr::BinaryOperatorClass: {
20037     auto *BO = cast<BinaryOperator>(E);
20038     Expr *LHS = BO->getLHS();
20039     Expr *RHS = BO->getRHS();
20040     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20041     if (BO->getOpcode() == BO_PtrMemD) {
20042       ExprResult Sub = Rebuild(LHS);
20043       if (!Sub.isUsable())
20044         return Sub;
20045       LHS = Sub.get();
20046     //   -- If e is a comma expression, ...
20047     } else if (BO->getOpcode() == BO_Comma) {
20048       ExprResult Sub = Rebuild(RHS);
20049       if (!Sub.isUsable())
20050         return Sub;
20051       RHS = Sub.get();
20052     } else {
20053       break;
20054     }
20055     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20056                         LHS, RHS);
20057   }
20058 
20059   //   -- If e has the form (e1)...
20060   case Expr::ParenExprClass: {
20061     auto *PE = cast<ParenExpr>(E);
20062     ExprResult Sub = Rebuild(PE->getSubExpr());
20063     if (!Sub.isUsable())
20064       return Sub;
20065     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20066   }
20067 
20068   //   -- If e is a glvalue conditional expression, ...
20069   // We don't apply this to a binary conditional operator. FIXME: Should we?
20070   case Expr::ConditionalOperatorClass: {
20071     auto *CO = cast<ConditionalOperator>(E);
20072     ExprResult LHS = Rebuild(CO->getLHS());
20073     if (LHS.isInvalid())
20074       return ExprError();
20075     ExprResult RHS = Rebuild(CO->getRHS());
20076     if (RHS.isInvalid())
20077       return ExprError();
20078     if (!LHS.isUsable() && !RHS.isUsable())
20079       return ExprEmpty();
20080     if (!LHS.isUsable())
20081       LHS = CO->getLHS();
20082     if (!RHS.isUsable())
20083       RHS = CO->getRHS();
20084     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20085                                 CO->getCond(), LHS.get(), RHS.get());
20086   }
20087 
20088   // [Clang extension]
20089   //   -- If e has the form __extension__ e1...
20090   case Expr::UnaryOperatorClass: {
20091     auto *UO = cast<UnaryOperator>(E);
20092     if (UO->getOpcode() != UO_Extension)
20093       break;
20094     ExprResult Sub = Rebuild(UO->getSubExpr());
20095     if (!Sub.isUsable())
20096       return Sub;
20097     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20098                           Sub.get());
20099   }
20100 
20101   // [Clang extension]
20102   //   -- If e has the form _Generic(...), the set of potential results is the
20103   //      union of the sets of potential results of the associated expressions.
20104   case Expr::GenericSelectionExprClass: {
20105     auto *GSE = cast<GenericSelectionExpr>(E);
20106 
20107     SmallVector<Expr *, 4> AssocExprs;
20108     bool AnyChanged = false;
20109     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20110       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20111       if (AssocExpr.isInvalid())
20112         return ExprError();
20113       if (AssocExpr.isUsable()) {
20114         AssocExprs.push_back(AssocExpr.get());
20115         AnyChanged = true;
20116       } else {
20117         AssocExprs.push_back(OrigAssocExpr);
20118       }
20119     }
20120 
20121     void *ExOrTy = nullptr;
20122     bool IsExpr = GSE->isExprPredicate();
20123     if (IsExpr)
20124       ExOrTy = GSE->getControllingExpr();
20125     else
20126       ExOrTy = GSE->getControllingType();
20127     return AnyChanged ? S.CreateGenericSelectionExpr(
20128                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
20129                             GSE->getRParenLoc(), IsExpr, ExOrTy,
20130                             GSE->getAssocTypeSourceInfos(), AssocExprs)
20131                       : ExprEmpty();
20132   }
20133 
20134   // [Clang extension]
20135   //   -- If e has the form __builtin_choose_expr(...), the set of potential
20136   //      results is the union of the sets of potential results of the
20137   //      second and third subexpressions.
20138   case Expr::ChooseExprClass: {
20139     auto *CE = cast<ChooseExpr>(E);
20140 
20141     ExprResult LHS = Rebuild(CE->getLHS());
20142     if (LHS.isInvalid())
20143       return ExprError();
20144 
20145     ExprResult RHS = Rebuild(CE->getLHS());
20146     if (RHS.isInvalid())
20147       return ExprError();
20148 
20149     if (!LHS.get() && !RHS.get())
20150       return ExprEmpty();
20151     if (!LHS.isUsable())
20152       LHS = CE->getLHS();
20153     if (!RHS.isUsable())
20154       RHS = CE->getRHS();
20155 
20156     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20157                              RHS.get(), CE->getRParenLoc());
20158   }
20159 
20160   // Step through non-syntactic nodes.
20161   case Expr::ConstantExprClass: {
20162     auto *CE = cast<ConstantExpr>(E);
20163     ExprResult Sub = Rebuild(CE->getSubExpr());
20164     if (!Sub.isUsable())
20165       return Sub;
20166     return ConstantExpr::Create(S.Context, Sub.get());
20167   }
20168 
20169   // We could mostly rely on the recursive rebuilding to rebuild implicit
20170   // casts, but not at the top level, so rebuild them here.
20171   case Expr::ImplicitCastExprClass: {
20172     auto *ICE = cast<ImplicitCastExpr>(E);
20173     // Only step through the narrow set of cast kinds we expect to encounter.
20174     // Anything else suggests we've left the region in which potential results
20175     // can be found.
20176     switch (ICE->getCastKind()) {
20177     case CK_NoOp:
20178     case CK_DerivedToBase:
20179     case CK_UncheckedDerivedToBase: {
20180       ExprResult Sub = Rebuild(ICE->getSubExpr());
20181       if (!Sub.isUsable())
20182         return Sub;
20183       CXXCastPath Path(ICE->path());
20184       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20185                                  ICE->getValueKind(), &Path);
20186     }
20187 
20188     default:
20189       break;
20190     }
20191     break;
20192   }
20193 
20194   default:
20195     break;
20196   }
20197 
20198   // Can't traverse through this node. Nothing to do.
20199   return ExprEmpty();
20200 }
20201 
20202 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20203   // Check whether the operand is or contains an object of non-trivial C union
20204   // type.
20205   if (E->getType().isVolatileQualified() &&
20206       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20207        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20208     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20209                           Sema::NTCUC_LValueToRValueVolatile,
20210                           NTCUK_Destruct|NTCUK_Copy);
20211 
20212   // C++2a [basic.def.odr]p4:
20213   //   [...] an expression of non-volatile-qualified non-class type to which
20214   //   the lvalue-to-rvalue conversion is applied [...]
20215   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20216     return E;
20217 
20218   ExprResult Result =
20219       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20220   if (Result.isInvalid())
20221     return ExprError();
20222   return Result.get() ? Result : E;
20223 }
20224 
20225 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20226   Res = CorrectDelayedTyposInExpr(Res);
20227 
20228   if (!Res.isUsable())
20229     return Res;
20230 
20231   // If a constant-expression is a reference to a variable where we delay
20232   // deciding whether it is an odr-use, just assume we will apply the
20233   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
20234   // (a non-type template argument), we have special handling anyway.
20235   return CheckLValueToRValueConversionOperand(Res.get());
20236 }
20237 
20238 void Sema::CleanupVarDeclMarking() {
20239   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20240   // call.
20241   MaybeODRUseExprSet LocalMaybeODRUseExprs;
20242   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20243 
20244   for (Expr *E : LocalMaybeODRUseExprs) {
20245     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20246       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20247                          DRE->getLocation(), *this);
20248     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20249       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20250                          *this);
20251     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20252       for (VarDecl *VD : *FP)
20253         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20254     } else {
20255       llvm_unreachable("Unexpected expression");
20256     }
20257   }
20258 
20259   assert(MaybeODRUseExprs.empty() &&
20260          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20261 }
20262 
20263 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20264                                    ValueDecl *Var, Expr *E) {
20265   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20266   if (!VD)
20267     return;
20268 
20269   const bool RefersToEnclosingScope =
20270       (SemaRef.CurContext != VD->getDeclContext() &&
20271        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20272   if (RefersToEnclosingScope) {
20273     LambdaScopeInfo *const LSI =
20274         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20275     if (LSI && (!LSI->CallOperator ||
20276                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20277       // If a variable could potentially be odr-used, defer marking it so
20278       // until we finish analyzing the full expression for any
20279       // lvalue-to-rvalue
20280       // or discarded value conversions that would obviate odr-use.
20281       // Add it to the list of potential captures that will be analyzed
20282       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20283       // unless the variable is a reference that was initialized by a constant
20284       // expression (this will never need to be captured or odr-used).
20285       //
20286       // FIXME: We can simplify this a lot after implementing P0588R1.
20287       assert(E && "Capture variable should be used in an expression.");
20288       if (!Var->getType()->isReferenceType() ||
20289           !VD->isUsableInConstantExpressions(SemaRef.Context))
20290         LSI->addPotentialCapture(E->IgnoreParens());
20291     }
20292   }
20293 }
20294 
20295 static void DoMarkVarDeclReferenced(
20296     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20297     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20298   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20299           isa<FunctionParmPackExpr>(E)) &&
20300          "Invalid Expr argument to DoMarkVarDeclReferenced");
20301   Var->setReferenced();
20302 
20303   if (Var->isInvalidDecl())
20304     return;
20305 
20306   auto *MSI = Var->getMemberSpecializationInfo();
20307   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20308                                        : Var->getTemplateSpecializationKind();
20309 
20310   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20311   bool UsableInConstantExpr =
20312       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20313 
20314   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20315     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20316   }
20317 
20318   // C++20 [expr.const]p12:
20319   //   A variable [...] is needed for constant evaluation if it is [...] a
20320   //   variable whose name appears as a potentially constant evaluated
20321   //   expression that is either a contexpr variable or is of non-volatile
20322   //   const-qualified integral type or of reference type
20323   bool NeededForConstantEvaluation =
20324       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20325 
20326   bool NeedDefinition =
20327       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20328 
20329   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20330          "Can't instantiate a partial template specialization.");
20331 
20332   // If this might be a member specialization of a static data member, check
20333   // the specialization is visible. We already did the checks for variable
20334   // template specializations when we created them.
20335   if (NeedDefinition && TSK != TSK_Undeclared &&
20336       !isa<VarTemplateSpecializationDecl>(Var))
20337     SemaRef.checkSpecializationVisibility(Loc, Var);
20338 
20339   // Perform implicit instantiation of static data members, static data member
20340   // templates of class templates, and variable template specializations. Delay
20341   // instantiations of variable templates, except for those that could be used
20342   // in a constant expression.
20343   if (NeedDefinition && isTemplateInstantiation(TSK)) {
20344     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20345     // instantiation declaration if a variable is usable in a constant
20346     // expression (among other cases).
20347     bool TryInstantiating =
20348         TSK == TSK_ImplicitInstantiation ||
20349         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20350 
20351     if (TryInstantiating) {
20352       SourceLocation PointOfInstantiation =
20353           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20354       bool FirstInstantiation = PointOfInstantiation.isInvalid();
20355       if (FirstInstantiation) {
20356         PointOfInstantiation = Loc;
20357         if (MSI)
20358           MSI->setPointOfInstantiation(PointOfInstantiation);
20359           // FIXME: Notify listener.
20360         else
20361           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20362       }
20363 
20364       if (UsableInConstantExpr) {
20365         // Do not defer instantiations of variables that could be used in a
20366         // constant expression.
20367         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20368           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20369         });
20370 
20371         // Re-set the member to trigger a recomputation of the dependence bits
20372         // for the expression.
20373         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20374           DRE->setDecl(DRE->getDecl());
20375         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20376           ME->setMemberDecl(ME->getMemberDecl());
20377       } else if (FirstInstantiation) {
20378         SemaRef.PendingInstantiations
20379             .push_back(std::make_pair(Var, PointOfInstantiation));
20380       } else {
20381         bool Inserted = false;
20382         for (auto &I : SemaRef.SavedPendingInstantiations) {
20383           auto Iter = llvm::find_if(
20384               I, [Var](const Sema::PendingImplicitInstantiation &P) {
20385                 return P.first == Var;
20386               });
20387           if (Iter != I.end()) {
20388             SemaRef.PendingInstantiations.push_back(*Iter);
20389             I.erase(Iter);
20390             Inserted = true;
20391             break;
20392           }
20393         }
20394 
20395         // FIXME: For a specialization of a variable template, we don't
20396         // distinguish between "declaration and type implicitly instantiated"
20397         // and "implicit instantiation of definition requested", so we have
20398         // no direct way to avoid enqueueing the pending instantiation
20399         // multiple times.
20400         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20401           SemaRef.PendingInstantiations
20402             .push_back(std::make_pair(Var, PointOfInstantiation));
20403       }
20404     }
20405   }
20406 
20407   // C++2a [basic.def.odr]p4:
20408   //   A variable x whose name appears as a potentially-evaluated expression e
20409   //   is odr-used by e unless
20410   //   -- x is a reference that is usable in constant expressions
20411   //   -- x is a variable of non-reference type that is usable in constant
20412   //      expressions and has no mutable subobjects [FIXME], and e is an
20413   //      element of the set of potential results of an expression of
20414   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
20415   //      conversion is applied
20416   //   -- x is a variable of non-reference type, and e is an element of the set
20417   //      of potential results of a discarded-value expression to which the
20418   //      lvalue-to-rvalue conversion is not applied [FIXME]
20419   //
20420   // We check the first part of the second bullet here, and
20421   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20422   // FIXME: To get the third bullet right, we need to delay this even for
20423   // variables that are not usable in constant expressions.
20424 
20425   // If we already know this isn't an odr-use, there's nothing more to do.
20426   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20427     if (DRE->isNonOdrUse())
20428       return;
20429   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20430     if (ME->isNonOdrUse())
20431       return;
20432 
20433   switch (OdrUse) {
20434   case OdrUseContext::None:
20435     // In some cases, a variable may not have been marked unevaluated, if it
20436     // appears in a defaukt initializer.
20437     assert((!E || isa<FunctionParmPackExpr>(E) ||
20438             SemaRef.isUnevaluatedContext()) &&
20439            "missing non-odr-use marking for unevaluated decl ref");
20440     break;
20441 
20442   case OdrUseContext::FormallyOdrUsed:
20443     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20444     // behavior.
20445     break;
20446 
20447   case OdrUseContext::Used:
20448     // If we might later find that this expression isn't actually an odr-use,
20449     // delay the marking.
20450     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20451       SemaRef.MaybeODRUseExprs.insert(E);
20452     else
20453       MarkVarDeclODRUsed(Var, Loc, SemaRef);
20454     break;
20455 
20456   case OdrUseContext::Dependent:
20457     // If this is a dependent context, we don't need to mark variables as
20458     // odr-used, but we may still need to track them for lambda capture.
20459     // FIXME: Do we also need to do this inside dependent typeid expressions
20460     // (which are modeled as unevaluated at this point)?
20461     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20462     break;
20463   }
20464 }
20465 
20466 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20467                                         BindingDecl *BD, Expr *E) {
20468   BD->setReferenced();
20469 
20470   if (BD->isInvalidDecl())
20471     return;
20472 
20473   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20474   if (OdrUse == OdrUseContext::Used) {
20475     QualType CaptureType, DeclRefType;
20476     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20477                                /*EllipsisLoc*/ SourceLocation(),
20478                                /*BuildAndDiagnose*/ true, CaptureType,
20479                                DeclRefType,
20480                                /*FunctionScopeIndexToStopAt*/ nullptr);
20481   } else if (OdrUse == OdrUseContext::Dependent) {
20482     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20483   }
20484 }
20485 
20486 /// Mark a variable referenced, and check whether it is odr-used
20487 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
20488 /// used directly for normal expressions referring to VarDecl.
20489 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20490   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20491 }
20492 
20493 static void
20494 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20495                    bool MightBeOdrUse,
20496                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20497   if (SemaRef.isInOpenMPDeclareTargetContext())
20498     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20499 
20500   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20501     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20502     return;
20503   }
20504 
20505   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20506     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20507     return;
20508   }
20509 
20510   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20511 
20512   // If this is a call to a method via a cast, also mark the method in the
20513   // derived class used in case codegen can devirtualize the call.
20514   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20515   if (!ME)
20516     return;
20517   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20518   if (!MD)
20519     return;
20520   // Only attempt to devirtualize if this is truly a virtual call.
20521   bool IsVirtualCall = MD->isVirtual() &&
20522                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
20523   if (!IsVirtualCall)
20524     return;
20525 
20526   // If it's possible to devirtualize the call, mark the called function
20527   // referenced.
20528   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20529       ME->getBase(), SemaRef.getLangOpts().AppleKext);
20530   if (DM)
20531     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20532 }
20533 
20534 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20535 ///
20536 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20537 /// handled with care if the DeclRefExpr is not newly-created.
20538 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20539   // TODO: update this with DR# once a defect report is filed.
20540   // C++11 defect. The address of a pure member should not be an ODR use, even
20541   // if it's a qualified reference.
20542   bool OdrUse = true;
20543   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20544     if (Method->isVirtual() &&
20545         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20546       OdrUse = false;
20547 
20548   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20549     if (!isUnevaluatedContext() && !isConstantEvaluated() &&
20550         !isImmediateFunctionContext() &&
20551         !isCheckingDefaultArgumentOrInitializer() &&
20552         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20553         !FD->isDependentContext())
20554       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20555   }
20556   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20557                      RefsMinusAssignments);
20558 }
20559 
20560 /// Perform reference-marking and odr-use handling for a MemberExpr.
20561 void Sema::MarkMemberReferenced(MemberExpr *E) {
20562   // C++11 [basic.def.odr]p2:
20563   //   A non-overloaded function whose name appears as a potentially-evaluated
20564   //   expression or a member of a set of candidate functions, if selected by
20565   //   overload resolution when referred to from a potentially-evaluated
20566   //   expression, is odr-used, unless it is a pure virtual function and its
20567   //   name is not explicitly qualified.
20568   bool MightBeOdrUse = true;
20569   if (E->performsVirtualDispatch(getLangOpts())) {
20570     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20571       if (Method->isPure())
20572         MightBeOdrUse = false;
20573   }
20574   SourceLocation Loc =
20575       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20576   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20577                      RefsMinusAssignments);
20578 }
20579 
20580 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20581 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20582   for (VarDecl *VD : *E)
20583     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20584                        RefsMinusAssignments);
20585 }
20586 
20587 /// Perform marking for a reference to an arbitrary declaration.  It
20588 /// marks the declaration referenced, and performs odr-use checking for
20589 /// functions and variables. This method should not be used when building a
20590 /// normal expression which refers to a variable.
20591 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20592                                  bool MightBeOdrUse) {
20593   if (MightBeOdrUse) {
20594     if (auto *VD = dyn_cast<VarDecl>(D)) {
20595       MarkVariableReferenced(Loc, VD);
20596       return;
20597     }
20598   }
20599   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20600     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20601     return;
20602   }
20603   D->setReferenced();
20604 }
20605 
20606 namespace {
20607   // Mark all of the declarations used by a type as referenced.
20608   // FIXME: Not fully implemented yet! We need to have a better understanding
20609   // of when we're entering a context we should not recurse into.
20610   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20611   // TreeTransforms rebuilding the type in a new context. Rather than
20612   // duplicating the TreeTransform logic, we should consider reusing it here.
20613   // Currently that causes problems when rebuilding LambdaExprs.
20614   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20615     Sema &S;
20616     SourceLocation Loc;
20617 
20618   public:
20619     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20620 
20621     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20622 
20623     bool TraverseTemplateArgument(const TemplateArgument &Arg);
20624   };
20625 }
20626 
20627 bool MarkReferencedDecls::TraverseTemplateArgument(
20628     const TemplateArgument &Arg) {
20629   {
20630     // A non-type template argument is a constant-evaluated context.
20631     EnterExpressionEvaluationContext Evaluated(
20632         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20633     if (Arg.getKind() == TemplateArgument::Declaration) {
20634       if (Decl *D = Arg.getAsDecl())
20635         S.MarkAnyDeclReferenced(Loc, D, true);
20636     } else if (Arg.getKind() == TemplateArgument::Expression) {
20637       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20638     }
20639   }
20640 
20641   return Inherited::TraverseTemplateArgument(Arg);
20642 }
20643 
20644 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20645   MarkReferencedDecls Marker(*this, Loc);
20646   Marker.TraverseType(T);
20647 }
20648 
20649 namespace {
20650 /// Helper class that marks all of the declarations referenced by
20651 /// potentially-evaluated subexpressions as "referenced".
20652 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20653 public:
20654   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20655   bool SkipLocalVariables;
20656   ArrayRef<const Expr *> StopAt;
20657 
20658   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20659                       ArrayRef<const Expr *> StopAt)
20660       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20661 
20662   void visitUsedDecl(SourceLocation Loc, Decl *D) {
20663     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20664   }
20665 
20666   void Visit(Expr *E) {
20667     if (llvm::is_contained(StopAt, E))
20668       return;
20669     Inherited::Visit(E);
20670   }
20671 
20672   void VisitConstantExpr(ConstantExpr *E) {
20673     // Don't mark declarations within a ConstantExpression, as this expression
20674     // will be evaluated and folded to a value.
20675   }
20676 
20677   void VisitDeclRefExpr(DeclRefExpr *E) {
20678     // If we were asked not to visit local variables, don't.
20679     if (SkipLocalVariables) {
20680       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20681         if (VD->hasLocalStorage())
20682           return;
20683     }
20684 
20685     // FIXME: This can trigger the instantiation of the initializer of a
20686     // variable, which can cause the expression to become value-dependent
20687     // or error-dependent. Do we need to propagate the new dependence bits?
20688     S.MarkDeclRefReferenced(E);
20689   }
20690 
20691   void VisitMemberExpr(MemberExpr *E) {
20692     S.MarkMemberReferenced(E);
20693     Visit(E->getBase());
20694   }
20695 };
20696 } // namespace
20697 
20698 /// Mark any declarations that appear within this expression or any
20699 /// potentially-evaluated subexpressions as "referenced".
20700 ///
20701 /// \param SkipLocalVariables If true, don't mark local variables as
20702 /// 'referenced'.
20703 /// \param StopAt Subexpressions that we shouldn't recurse into.
20704 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20705                                             bool SkipLocalVariables,
20706                                             ArrayRef<const Expr*> StopAt) {
20707   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20708 }
20709 
20710 /// Emit a diagnostic when statements are reachable.
20711 /// FIXME: check for reachability even in expressions for which we don't build a
20712 ///        CFG (eg, in the initializer of a global or in a constant expression).
20713 ///        For example,
20714 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20715 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20716                            const PartialDiagnostic &PD) {
20717   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20718     if (!FunctionScopes.empty())
20719       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20720           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20721     return true;
20722   }
20723 
20724   // The initializer of a constexpr variable or of the first declaration of a
20725   // static data member is not syntactically a constant evaluated constant,
20726   // but nonetheless is always required to be a constant expression, so we
20727   // can skip diagnosing.
20728   // FIXME: Using the mangling context here is a hack.
20729   if (auto *VD = dyn_cast_or_null<VarDecl>(
20730           ExprEvalContexts.back().ManglingContextDecl)) {
20731     if (VD->isConstexpr() ||
20732         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20733       return false;
20734     // FIXME: For any other kind of variable, we should build a CFG for its
20735     // initializer and check whether the context in question is reachable.
20736   }
20737 
20738   Diag(Loc, PD);
20739   return true;
20740 }
20741 
20742 /// Emit a diagnostic that describes an effect on the run-time behavior
20743 /// of the program being compiled.
20744 ///
20745 /// This routine emits the given diagnostic when the code currently being
20746 /// type-checked is "potentially evaluated", meaning that there is a
20747 /// possibility that the code will actually be executable. Code in sizeof()
20748 /// expressions, code used only during overload resolution, etc., are not
20749 /// potentially evaluated. This routine will suppress such diagnostics or,
20750 /// in the absolutely nutty case of potentially potentially evaluated
20751 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20752 /// later.
20753 ///
20754 /// This routine should be used for all diagnostics that describe the run-time
20755 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20756 /// Failure to do so will likely result in spurious diagnostics or failures
20757 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20758 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20759                                const PartialDiagnostic &PD) {
20760 
20761   if (ExprEvalContexts.back().isDiscardedStatementContext())
20762     return false;
20763 
20764   switch (ExprEvalContexts.back().Context) {
20765   case ExpressionEvaluationContext::Unevaluated:
20766   case ExpressionEvaluationContext::UnevaluatedList:
20767   case ExpressionEvaluationContext::UnevaluatedAbstract:
20768   case ExpressionEvaluationContext::DiscardedStatement:
20769     // The argument will never be evaluated, so don't complain.
20770     break;
20771 
20772   case ExpressionEvaluationContext::ConstantEvaluated:
20773   case ExpressionEvaluationContext::ImmediateFunctionContext:
20774     // Relevant diagnostics should be produced by constant evaluation.
20775     break;
20776 
20777   case ExpressionEvaluationContext::PotentiallyEvaluated:
20778   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20779     return DiagIfReachable(Loc, Stmts, PD);
20780   }
20781 
20782   return false;
20783 }
20784 
20785 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20786                                const PartialDiagnostic &PD) {
20787   return DiagRuntimeBehavior(
20788       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20789 }
20790 
20791 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20792                                CallExpr *CE, FunctionDecl *FD) {
20793   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20794     return false;
20795 
20796   // If we're inside a decltype's expression, don't check for a valid return
20797   // type or construct temporaries until we know whether this is the last call.
20798   if (ExprEvalContexts.back().ExprContext ==
20799       ExpressionEvaluationContextRecord::EK_Decltype) {
20800     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20801     return false;
20802   }
20803 
20804   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20805     FunctionDecl *FD;
20806     CallExpr *CE;
20807 
20808   public:
20809     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20810       : FD(FD), CE(CE) { }
20811 
20812     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20813       if (!FD) {
20814         S.Diag(Loc, diag::err_call_incomplete_return)
20815           << T << CE->getSourceRange();
20816         return;
20817       }
20818 
20819       S.Diag(Loc, diag::err_call_function_incomplete_return)
20820           << CE->getSourceRange() << FD << T;
20821       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20822           << FD->getDeclName();
20823     }
20824   } Diagnoser(FD, CE);
20825 
20826   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20827     return true;
20828 
20829   return false;
20830 }
20831 
20832 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20833 // will prevent this condition from triggering, which is what we want.
20834 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20835   SourceLocation Loc;
20836 
20837   unsigned diagnostic = diag::warn_condition_is_assignment;
20838   bool IsOrAssign = false;
20839 
20840   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20841     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20842       return;
20843 
20844     IsOrAssign = Op->getOpcode() == BO_OrAssign;
20845 
20846     // Greylist some idioms by putting them into a warning subcategory.
20847     if (ObjCMessageExpr *ME
20848           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20849       Selector Sel = ME->getSelector();
20850 
20851       // self = [<foo> init...]
20852       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20853         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20854 
20855       // <foo> = [<bar> nextObject]
20856       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20857         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20858     }
20859 
20860     Loc = Op->getOperatorLoc();
20861   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20862     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20863       return;
20864 
20865     IsOrAssign = Op->getOperator() == OO_PipeEqual;
20866     Loc = Op->getOperatorLoc();
20867   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20868     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20869   else {
20870     // Not an assignment.
20871     return;
20872   }
20873 
20874   Diag(Loc, diagnostic) << E->getSourceRange();
20875 
20876   SourceLocation Open = E->getBeginLoc();
20877   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20878   Diag(Loc, diag::note_condition_assign_silence)
20879         << FixItHint::CreateInsertion(Open, "(")
20880         << FixItHint::CreateInsertion(Close, ")");
20881 
20882   if (IsOrAssign)
20883     Diag(Loc, diag::note_condition_or_assign_to_comparison)
20884       << FixItHint::CreateReplacement(Loc, "!=");
20885   else
20886     Diag(Loc, diag::note_condition_assign_to_comparison)
20887       << FixItHint::CreateReplacement(Loc, "==");
20888 }
20889 
20890 /// Redundant parentheses over an equality comparison can indicate
20891 /// that the user intended an assignment used as condition.
20892 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20893   // Don't warn if the parens came from a macro.
20894   SourceLocation parenLoc = ParenE->getBeginLoc();
20895   if (parenLoc.isInvalid() || parenLoc.isMacroID())
20896     return;
20897   // Don't warn for dependent expressions.
20898   if (ParenE->isTypeDependent())
20899     return;
20900 
20901   Expr *E = ParenE->IgnoreParens();
20902 
20903   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20904     if (opE->getOpcode() == BO_EQ &&
20905         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20906                                                            == Expr::MLV_Valid) {
20907       SourceLocation Loc = opE->getOperatorLoc();
20908 
20909       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20910       SourceRange ParenERange = ParenE->getSourceRange();
20911       Diag(Loc, diag::note_equality_comparison_silence)
20912         << FixItHint::CreateRemoval(ParenERange.getBegin())
20913         << FixItHint::CreateRemoval(ParenERange.getEnd());
20914       Diag(Loc, diag::note_equality_comparison_to_assign)
20915         << FixItHint::CreateReplacement(Loc, "=");
20916     }
20917 }
20918 
20919 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20920                                        bool IsConstexpr) {
20921   DiagnoseAssignmentAsCondition(E);
20922   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20923     DiagnoseEqualityWithExtraParens(parenE);
20924 
20925   ExprResult result = CheckPlaceholderExpr(E);
20926   if (result.isInvalid()) return ExprError();
20927   E = result.get();
20928 
20929   if (!E->isTypeDependent()) {
20930     if (getLangOpts().CPlusPlus)
20931       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20932 
20933     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20934     if (ERes.isInvalid())
20935       return ExprError();
20936     E = ERes.get();
20937 
20938     QualType T = E->getType();
20939     if (!T->isScalarType()) { // C99 6.8.4.1p1
20940       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20941         << T << E->getSourceRange();
20942       return ExprError();
20943     }
20944     CheckBoolLikeConversion(E, Loc);
20945   }
20946 
20947   return E;
20948 }
20949 
20950 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20951                                            Expr *SubExpr, ConditionKind CK,
20952                                            bool MissingOK) {
20953   // MissingOK indicates whether having no condition expression is valid
20954   // (for loop) or invalid (e.g. while loop).
20955   if (!SubExpr)
20956     return MissingOK ? ConditionResult() : ConditionError();
20957 
20958   ExprResult Cond;
20959   switch (CK) {
20960   case ConditionKind::Boolean:
20961     Cond = CheckBooleanCondition(Loc, SubExpr);
20962     break;
20963 
20964   case ConditionKind::ConstexprIf:
20965     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20966     break;
20967 
20968   case ConditionKind::Switch:
20969     Cond = CheckSwitchCondition(Loc, SubExpr);
20970     break;
20971   }
20972   if (Cond.isInvalid()) {
20973     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20974                               {SubExpr}, PreferredConditionType(CK));
20975     if (!Cond.get())
20976       return ConditionError();
20977   }
20978   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20979   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20980   if (!FullExpr.get())
20981     return ConditionError();
20982 
20983   return ConditionResult(*this, nullptr, FullExpr,
20984                          CK == ConditionKind::ConstexprIf);
20985 }
20986 
20987 namespace {
20988   /// A visitor for rebuilding a call to an __unknown_any expression
20989   /// to have an appropriate type.
20990   struct RebuildUnknownAnyFunction
20991     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20992 
20993     Sema &S;
20994 
20995     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20996 
20997     ExprResult VisitStmt(Stmt *S) {
20998       llvm_unreachable("unexpected statement!");
20999     }
21000 
21001     ExprResult VisitExpr(Expr *E) {
21002       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21003         << E->getSourceRange();
21004       return ExprError();
21005     }
21006 
21007     /// Rebuild an expression which simply semantically wraps another
21008     /// expression which it shares the type and value kind of.
21009     template <class T> ExprResult rebuildSugarExpr(T *E) {
21010       ExprResult SubResult = Visit(E->getSubExpr());
21011       if (SubResult.isInvalid()) return ExprError();
21012 
21013       Expr *SubExpr = SubResult.get();
21014       E->setSubExpr(SubExpr);
21015       E->setType(SubExpr->getType());
21016       E->setValueKind(SubExpr->getValueKind());
21017       assert(E->getObjectKind() == OK_Ordinary);
21018       return E;
21019     }
21020 
21021     ExprResult VisitParenExpr(ParenExpr *E) {
21022       return rebuildSugarExpr(E);
21023     }
21024 
21025     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21026       return rebuildSugarExpr(E);
21027     }
21028 
21029     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21030       ExprResult SubResult = Visit(E->getSubExpr());
21031       if (SubResult.isInvalid()) return ExprError();
21032 
21033       Expr *SubExpr = SubResult.get();
21034       E->setSubExpr(SubExpr);
21035       E->setType(S.Context.getPointerType(SubExpr->getType()));
21036       assert(E->isPRValue());
21037       assert(E->getObjectKind() == OK_Ordinary);
21038       return E;
21039     }
21040 
21041     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21042       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21043 
21044       E->setType(VD->getType());
21045 
21046       assert(E->isPRValue());
21047       if (S.getLangOpts().CPlusPlus &&
21048           !(isa<CXXMethodDecl>(VD) &&
21049             cast<CXXMethodDecl>(VD)->isInstance()))
21050         E->setValueKind(VK_LValue);
21051 
21052       return E;
21053     }
21054 
21055     ExprResult VisitMemberExpr(MemberExpr *E) {
21056       return resolveDecl(E, E->getMemberDecl());
21057     }
21058 
21059     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21060       return resolveDecl(E, E->getDecl());
21061     }
21062   };
21063 }
21064 
21065 /// Given a function expression of unknown-any type, try to rebuild it
21066 /// to have a function type.
21067 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21068   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21069   if (Result.isInvalid()) return ExprError();
21070   return S.DefaultFunctionArrayConversion(Result.get());
21071 }
21072 
21073 namespace {
21074   /// A visitor for rebuilding an expression of type __unknown_anytype
21075   /// into one which resolves the type directly on the referring
21076   /// expression.  Strict preservation of the original source
21077   /// structure is not a goal.
21078   struct RebuildUnknownAnyExpr
21079     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21080 
21081     Sema &S;
21082 
21083     /// The current destination type.
21084     QualType DestType;
21085 
21086     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21087       : S(S), DestType(CastType) {}
21088 
21089     ExprResult VisitStmt(Stmt *S) {
21090       llvm_unreachable("unexpected statement!");
21091     }
21092 
21093     ExprResult VisitExpr(Expr *E) {
21094       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21095         << E->getSourceRange();
21096       return ExprError();
21097     }
21098 
21099     ExprResult VisitCallExpr(CallExpr *E);
21100     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21101 
21102     /// Rebuild an expression which simply semantically wraps another
21103     /// expression which it shares the type and value kind of.
21104     template <class T> ExprResult rebuildSugarExpr(T *E) {
21105       ExprResult SubResult = Visit(E->getSubExpr());
21106       if (SubResult.isInvalid()) return ExprError();
21107       Expr *SubExpr = SubResult.get();
21108       E->setSubExpr(SubExpr);
21109       E->setType(SubExpr->getType());
21110       E->setValueKind(SubExpr->getValueKind());
21111       assert(E->getObjectKind() == OK_Ordinary);
21112       return E;
21113     }
21114 
21115     ExprResult VisitParenExpr(ParenExpr *E) {
21116       return rebuildSugarExpr(E);
21117     }
21118 
21119     ExprResult VisitUnaryExtension(UnaryOperator *E) {
21120       return rebuildSugarExpr(E);
21121     }
21122 
21123     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21124       const PointerType *Ptr = DestType->getAs<PointerType>();
21125       if (!Ptr) {
21126         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21127           << E->getSourceRange();
21128         return ExprError();
21129       }
21130 
21131       if (isa<CallExpr>(E->getSubExpr())) {
21132         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21133           << E->getSourceRange();
21134         return ExprError();
21135       }
21136 
21137       assert(E->isPRValue());
21138       assert(E->getObjectKind() == OK_Ordinary);
21139       E->setType(DestType);
21140 
21141       // Build the sub-expression as if it were an object of the pointee type.
21142       DestType = Ptr->getPointeeType();
21143       ExprResult SubResult = Visit(E->getSubExpr());
21144       if (SubResult.isInvalid()) return ExprError();
21145       E->setSubExpr(SubResult.get());
21146       return E;
21147     }
21148 
21149     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21150 
21151     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21152 
21153     ExprResult VisitMemberExpr(MemberExpr *E) {
21154       return resolveDecl(E, E->getMemberDecl());
21155     }
21156 
21157     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21158       return resolveDecl(E, E->getDecl());
21159     }
21160   };
21161 }
21162 
21163 /// Rebuilds a call expression which yielded __unknown_anytype.
21164 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21165   Expr *CalleeExpr = E->getCallee();
21166 
21167   enum FnKind {
21168     FK_MemberFunction,
21169     FK_FunctionPointer,
21170     FK_BlockPointer
21171   };
21172 
21173   FnKind Kind;
21174   QualType CalleeType = CalleeExpr->getType();
21175   if (CalleeType == S.Context.BoundMemberTy) {
21176     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21177     Kind = FK_MemberFunction;
21178     CalleeType = Expr::findBoundMemberType(CalleeExpr);
21179   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21180     CalleeType = Ptr->getPointeeType();
21181     Kind = FK_FunctionPointer;
21182   } else {
21183     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21184     Kind = FK_BlockPointer;
21185   }
21186   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21187 
21188   // Verify that this is a legal result type of a function.
21189   if (DestType->isArrayType() || DestType->isFunctionType()) {
21190     unsigned diagID = diag::err_func_returning_array_function;
21191     if (Kind == FK_BlockPointer)
21192       diagID = diag::err_block_returning_array_function;
21193 
21194     S.Diag(E->getExprLoc(), diagID)
21195       << DestType->isFunctionType() << DestType;
21196     return ExprError();
21197   }
21198 
21199   // Otherwise, go ahead and set DestType as the call's result.
21200   E->setType(DestType.getNonLValueExprType(S.Context));
21201   E->setValueKind(Expr::getValueKindForType(DestType));
21202   assert(E->getObjectKind() == OK_Ordinary);
21203 
21204   // Rebuild the function type, replacing the result type with DestType.
21205   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21206   if (Proto) {
21207     // __unknown_anytype(...) is a special case used by the debugger when
21208     // it has no idea what a function's signature is.
21209     //
21210     // We want to build this call essentially under the K&R
21211     // unprototyped rules, but making a FunctionNoProtoType in C++
21212     // would foul up all sorts of assumptions.  However, we cannot
21213     // simply pass all arguments as variadic arguments, nor can we
21214     // portably just call the function under a non-variadic type; see
21215     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21216     // However, it turns out that in practice it is generally safe to
21217     // call a function declared as "A foo(B,C,D);" under the prototype
21218     // "A foo(B,C,D,...);".  The only known exception is with the
21219     // Windows ABI, where any variadic function is implicitly cdecl
21220     // regardless of its normal CC.  Therefore we change the parameter
21221     // types to match the types of the arguments.
21222     //
21223     // This is a hack, but it is far superior to moving the
21224     // corresponding target-specific code from IR-gen to Sema/AST.
21225 
21226     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21227     SmallVector<QualType, 8> ArgTypes;
21228     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21229       ArgTypes.reserve(E->getNumArgs());
21230       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21231         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21232       }
21233       ParamTypes = ArgTypes;
21234     }
21235     DestType = S.Context.getFunctionType(DestType, ParamTypes,
21236                                          Proto->getExtProtoInfo());
21237   } else {
21238     DestType = S.Context.getFunctionNoProtoType(DestType,
21239                                                 FnType->getExtInfo());
21240   }
21241 
21242   // Rebuild the appropriate pointer-to-function type.
21243   switch (Kind) {
21244   case FK_MemberFunction:
21245     // Nothing to do.
21246     break;
21247 
21248   case FK_FunctionPointer:
21249     DestType = S.Context.getPointerType(DestType);
21250     break;
21251 
21252   case FK_BlockPointer:
21253     DestType = S.Context.getBlockPointerType(DestType);
21254     break;
21255   }
21256 
21257   // Finally, we can recurse.
21258   ExprResult CalleeResult = Visit(CalleeExpr);
21259   if (!CalleeResult.isUsable()) return ExprError();
21260   E->setCallee(CalleeResult.get());
21261 
21262   // Bind a temporary if necessary.
21263   return S.MaybeBindToTemporary(E);
21264 }
21265 
21266 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21267   // Verify that this is a legal result type of a call.
21268   if (DestType->isArrayType() || DestType->isFunctionType()) {
21269     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21270       << DestType->isFunctionType() << DestType;
21271     return ExprError();
21272   }
21273 
21274   // Rewrite the method result type if available.
21275   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21276     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21277     Method->setReturnType(DestType);
21278   }
21279 
21280   // Change the type of the message.
21281   E->setType(DestType.getNonReferenceType());
21282   E->setValueKind(Expr::getValueKindForType(DestType));
21283 
21284   return S.MaybeBindToTemporary(E);
21285 }
21286 
21287 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21288   // The only case we should ever see here is a function-to-pointer decay.
21289   if (E->getCastKind() == CK_FunctionToPointerDecay) {
21290     assert(E->isPRValue());
21291     assert(E->getObjectKind() == OK_Ordinary);
21292 
21293     E->setType(DestType);
21294 
21295     // Rebuild the sub-expression as the pointee (function) type.
21296     DestType = DestType->castAs<PointerType>()->getPointeeType();
21297 
21298     ExprResult Result = Visit(E->getSubExpr());
21299     if (!Result.isUsable()) return ExprError();
21300 
21301     E->setSubExpr(Result.get());
21302     return E;
21303   } else if (E->getCastKind() == CK_LValueToRValue) {
21304     assert(E->isPRValue());
21305     assert(E->getObjectKind() == OK_Ordinary);
21306 
21307     assert(isa<BlockPointerType>(E->getType()));
21308 
21309     E->setType(DestType);
21310 
21311     // The sub-expression has to be a lvalue reference, so rebuild it as such.
21312     DestType = S.Context.getLValueReferenceType(DestType);
21313 
21314     ExprResult Result = Visit(E->getSubExpr());
21315     if (!Result.isUsable()) return ExprError();
21316 
21317     E->setSubExpr(Result.get());
21318     return E;
21319   } else {
21320     llvm_unreachable("Unhandled cast type!");
21321   }
21322 }
21323 
21324 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21325   ExprValueKind ValueKind = VK_LValue;
21326   QualType Type = DestType;
21327 
21328   // We know how to make this work for certain kinds of decls:
21329 
21330   //  - functions
21331   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21332     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21333       DestType = Ptr->getPointeeType();
21334       ExprResult Result = resolveDecl(E, VD);
21335       if (Result.isInvalid()) return ExprError();
21336       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21337                                  VK_PRValue);
21338     }
21339 
21340     if (!Type->isFunctionType()) {
21341       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21342         << VD << E->getSourceRange();
21343       return ExprError();
21344     }
21345     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21346       // We must match the FunctionDecl's type to the hack introduced in
21347       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21348       // type. See the lengthy commentary in that routine.
21349       QualType FDT = FD->getType();
21350       const FunctionType *FnType = FDT->castAs<FunctionType>();
21351       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21352       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21353       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21354         SourceLocation Loc = FD->getLocation();
21355         FunctionDecl *NewFD = FunctionDecl::Create(
21356             S.Context, FD->getDeclContext(), Loc, Loc,
21357             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21358             SC_None, S.getCurFPFeatures().isFPConstrained(),
21359             false /*isInlineSpecified*/, FD->hasPrototype(),
21360             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21361 
21362         if (FD->getQualifier())
21363           NewFD->setQualifierInfo(FD->getQualifierLoc());
21364 
21365         SmallVector<ParmVarDecl*, 16> Params;
21366         for (const auto &AI : FT->param_types()) {
21367           ParmVarDecl *Param =
21368             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21369           Param->setScopeInfo(0, Params.size());
21370           Params.push_back(Param);
21371         }
21372         NewFD->setParams(Params);
21373         DRE->setDecl(NewFD);
21374         VD = DRE->getDecl();
21375       }
21376     }
21377 
21378     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21379       if (MD->isInstance()) {
21380         ValueKind = VK_PRValue;
21381         Type = S.Context.BoundMemberTy;
21382       }
21383 
21384     // Function references aren't l-values in C.
21385     if (!S.getLangOpts().CPlusPlus)
21386       ValueKind = VK_PRValue;
21387 
21388   //  - variables
21389   } else if (isa<VarDecl>(VD)) {
21390     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21391       Type = RefTy->getPointeeType();
21392     } else if (Type->isFunctionType()) {
21393       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21394         << VD << E->getSourceRange();
21395       return ExprError();
21396     }
21397 
21398   //  - nothing else
21399   } else {
21400     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21401       << VD << E->getSourceRange();
21402     return ExprError();
21403   }
21404 
21405   // Modifying the declaration like this is friendly to IR-gen but
21406   // also really dangerous.
21407   VD->setType(DestType);
21408   E->setType(Type);
21409   E->setValueKind(ValueKind);
21410   return E;
21411 }
21412 
21413 /// Check a cast of an unknown-any type.  We intentionally only
21414 /// trigger this for C-style casts.
21415 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21416                                      Expr *CastExpr, CastKind &CastKind,
21417                                      ExprValueKind &VK, CXXCastPath &Path) {
21418   // The type we're casting to must be either void or complete.
21419   if (!CastType->isVoidType() &&
21420       RequireCompleteType(TypeRange.getBegin(), CastType,
21421                           diag::err_typecheck_cast_to_incomplete))
21422     return ExprError();
21423 
21424   // Rewrite the casted expression from scratch.
21425   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21426   if (!result.isUsable()) return ExprError();
21427 
21428   CastExpr = result.get();
21429   VK = CastExpr->getValueKind();
21430   CastKind = CK_NoOp;
21431 
21432   return CastExpr;
21433 }
21434 
21435 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21436   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21437 }
21438 
21439 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21440                                     Expr *arg, QualType &paramType) {
21441   // If the syntactic form of the argument is not an explicit cast of
21442   // any sort, just do default argument promotion.
21443   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21444   if (!castArg) {
21445     ExprResult result = DefaultArgumentPromotion(arg);
21446     if (result.isInvalid()) return ExprError();
21447     paramType = result.get()->getType();
21448     return result;
21449   }
21450 
21451   // Otherwise, use the type that was written in the explicit cast.
21452   assert(!arg->hasPlaceholderType());
21453   paramType = castArg->getTypeAsWritten();
21454 
21455   // Copy-initialize a parameter of that type.
21456   InitializedEntity entity =
21457     InitializedEntity::InitializeParameter(Context, paramType,
21458                                            /*consumed*/ false);
21459   return PerformCopyInitialization(entity, callLoc, arg);
21460 }
21461 
21462 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21463   Expr *orig = E;
21464   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21465   while (true) {
21466     E = E->IgnoreParenImpCasts();
21467     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21468       E = call->getCallee();
21469       diagID = diag::err_uncasted_call_of_unknown_any;
21470     } else {
21471       break;
21472     }
21473   }
21474 
21475   SourceLocation loc;
21476   NamedDecl *d;
21477   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21478     loc = ref->getLocation();
21479     d = ref->getDecl();
21480   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21481     loc = mem->getMemberLoc();
21482     d = mem->getMemberDecl();
21483   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21484     diagID = diag::err_uncasted_call_of_unknown_any;
21485     loc = msg->getSelectorStartLoc();
21486     d = msg->getMethodDecl();
21487     if (!d) {
21488       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21489         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21490         << orig->getSourceRange();
21491       return ExprError();
21492     }
21493   } else {
21494     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21495       << E->getSourceRange();
21496     return ExprError();
21497   }
21498 
21499   S.Diag(loc, diagID) << d << orig->getSourceRange();
21500 
21501   // Never recoverable.
21502   return ExprError();
21503 }
21504 
21505 /// Check for operands with placeholder types and complain if found.
21506 /// Returns ExprError() if there was an error and no recovery was possible.
21507 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21508   if (!Context.isDependenceAllowed()) {
21509     // C cannot handle TypoExpr nodes on either side of a binop because it
21510     // doesn't handle dependent types properly, so make sure any TypoExprs have
21511     // been dealt with before checking the operands.
21512     ExprResult Result = CorrectDelayedTyposInExpr(E);
21513     if (!Result.isUsable()) return ExprError();
21514     E = Result.get();
21515   }
21516 
21517   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21518   if (!placeholderType) return E;
21519 
21520   switch (placeholderType->getKind()) {
21521 
21522   // Overloaded expressions.
21523   case BuiltinType::Overload: {
21524     // Try to resolve a single function template specialization.
21525     // This is obligatory.
21526     ExprResult Result = E;
21527     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21528       return Result;
21529 
21530     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21531     // leaves Result unchanged on failure.
21532     Result = E;
21533     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21534       return Result;
21535 
21536     // If that failed, try to recover with a call.
21537     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21538                          /*complain*/ true);
21539     return Result;
21540   }
21541 
21542   // Bound member functions.
21543   case BuiltinType::BoundMember: {
21544     ExprResult result = E;
21545     const Expr *BME = E->IgnoreParens();
21546     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21547     // Try to give a nicer diagnostic if it is a bound member that we recognize.
21548     if (isa<CXXPseudoDestructorExpr>(BME)) {
21549       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21550     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21551       if (ME->getMemberNameInfo().getName().getNameKind() ==
21552           DeclarationName::CXXDestructorName)
21553         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21554     }
21555     tryToRecoverWithCall(result, PD,
21556                          /*complain*/ true);
21557     return result;
21558   }
21559 
21560   // ARC unbridged casts.
21561   case BuiltinType::ARCUnbridgedCast: {
21562     Expr *realCast = stripARCUnbridgedCast(E);
21563     diagnoseARCUnbridgedCast(realCast);
21564     return realCast;
21565   }
21566 
21567   // Expressions of unknown type.
21568   case BuiltinType::UnknownAny:
21569     return diagnoseUnknownAnyExpr(*this, E);
21570 
21571   // Pseudo-objects.
21572   case BuiltinType::PseudoObject:
21573     return checkPseudoObjectRValue(E);
21574 
21575   case BuiltinType::BuiltinFn: {
21576     // Accept __noop without parens by implicitly converting it to a call expr.
21577     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21578     if (DRE) {
21579       auto *FD = cast<FunctionDecl>(DRE->getDecl());
21580       unsigned BuiltinID = FD->getBuiltinID();
21581       if (BuiltinID == Builtin::BI__noop) {
21582         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21583                               CK_BuiltinFnToFnPtr)
21584                 .get();
21585         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21586                                 VK_PRValue, SourceLocation(),
21587                                 FPOptionsOverride());
21588       }
21589 
21590       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21591         // Any use of these other than a direct call is ill-formed as of C++20,
21592         // because they are not addressable functions. In earlier language
21593         // modes, warn and force an instantiation of the real body.
21594         Diag(E->getBeginLoc(),
21595              getLangOpts().CPlusPlus20
21596                  ? diag::err_use_of_unaddressable_function
21597                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
21598         if (FD->isImplicitlyInstantiable()) {
21599           // Require a definition here because a normal attempt at
21600           // instantiation for a builtin will be ignored, and we won't try
21601           // again later. We assume that the definition of the template
21602           // precedes this use.
21603           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21604                                         /*Recursive=*/false,
21605                                         /*DefinitionRequired=*/true,
21606                                         /*AtEndOfTU=*/false);
21607         }
21608         // Produce a properly-typed reference to the function.
21609         CXXScopeSpec SS;
21610         SS.Adopt(DRE->getQualifierLoc());
21611         TemplateArgumentListInfo TemplateArgs;
21612         DRE->copyTemplateArgumentsInto(TemplateArgs);
21613         return BuildDeclRefExpr(
21614             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21615             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21616             DRE->getTemplateKeywordLoc(),
21617             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21618       }
21619     }
21620 
21621     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21622     return ExprError();
21623   }
21624 
21625   case BuiltinType::IncompleteMatrixIdx:
21626     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21627              ->getRowIdx()
21628              ->getBeginLoc(),
21629          diag::err_matrix_incomplete_index);
21630     return ExprError();
21631 
21632   // Expressions of unknown type.
21633   case BuiltinType::OMPArraySection:
21634     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21635     return ExprError();
21636 
21637   // Expressions of unknown type.
21638   case BuiltinType::OMPArrayShaping:
21639     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21640 
21641   case BuiltinType::OMPIterator:
21642     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21643 
21644   // Everything else should be impossible.
21645 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21646   case BuiltinType::Id:
21647 #include "clang/Basic/OpenCLImageTypes.def"
21648 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21649   case BuiltinType::Id:
21650 #include "clang/Basic/OpenCLExtensionTypes.def"
21651 #define SVE_TYPE(Name, Id, SingletonId) \
21652   case BuiltinType::Id:
21653 #include "clang/Basic/AArch64SVEACLETypes.def"
21654 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21655   case BuiltinType::Id:
21656 #include "clang/Basic/PPCTypes.def"
21657 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21658 #include "clang/Basic/RISCVVTypes.def"
21659 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21660 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21661 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21662 #define PLACEHOLDER_TYPE(Id, SingletonId)
21663 #include "clang/AST/BuiltinTypes.def"
21664     break;
21665   }
21666 
21667   llvm_unreachable("invalid placeholder type!");
21668 }
21669 
21670 bool Sema::CheckCaseExpression(Expr *E) {
21671   if (E->isTypeDependent())
21672     return true;
21673   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21674     return E->getType()->isIntegralOrEnumerationType();
21675   return false;
21676 }
21677 
21678 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21679 ExprResult
21680 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21681   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21682          "Unknown Objective-C Boolean value!");
21683   QualType BoolT = Context.ObjCBuiltinBoolTy;
21684   if (!Context.getBOOLDecl()) {
21685     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21686                         Sema::LookupOrdinaryName);
21687     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21688       NamedDecl *ND = Result.getFoundDecl();
21689       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21690         Context.setBOOLDecl(TD);
21691     }
21692   }
21693   if (Context.getBOOLDecl())
21694     BoolT = Context.getBOOLType();
21695   return new (Context)
21696       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21697 }
21698 
21699 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21700     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21701     SourceLocation RParen) {
21702   auto FindSpecVersion =
21703       [&](StringRef Platform) -> std::optional<VersionTuple> {
21704     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21705       return Spec.getPlatform() == Platform;
21706     });
21707     // Transcribe the "ios" availability check to "maccatalyst" when compiling
21708     // for "maccatalyst" if "maccatalyst" is not specified.
21709     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21710       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21711         return Spec.getPlatform() == "ios";
21712       });
21713     }
21714     if (Spec == AvailSpecs.end())
21715       return std::nullopt;
21716     return Spec->getVersion();
21717   };
21718 
21719   VersionTuple Version;
21720   if (auto MaybeVersion =
21721           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21722     Version = *MaybeVersion;
21723 
21724   // The use of `@available` in the enclosing context should be analyzed to
21725   // warn when it's used inappropriately (i.e. not if(@available)).
21726   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21727     Context->HasPotentialAvailabilityViolations = true;
21728 
21729   return new (Context)
21730       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21731 }
21732 
21733 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21734                                     ArrayRef<Expr *> SubExprs, QualType T) {
21735   if (!Context.getLangOpts().RecoveryAST)
21736     return ExprError();
21737 
21738   if (isSFINAEContext())
21739     return ExprError();
21740 
21741   if (T.isNull() || T->isUndeducedType() ||
21742       !Context.getLangOpts().RecoveryASTType)
21743     // We don't know the concrete type, fallback to dependent type.
21744     T = Context.DependentTy;
21745 
21746   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21747 }
21748