1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/EnterExpressionEvaluationContext.h"
24 #include "clang/Sema/Initialization.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/FoldingSet.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/SmallString.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 
36 using namespace clang;
37 
38 //===----------------------------------------------------------------------===//
39 // Sema Initialization Checking
40 //===----------------------------------------------------------------------===//
41 
42 /// Check whether T is compatible with a wide character type (wchar_t,
43 /// char16_t or char32_t).
44 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
45   if (Context.typesAreCompatible(Context.getWideCharType(), T))
46     return true;
47   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
48     return Context.typesAreCompatible(Context.Char16Ty, T) ||
49            Context.typesAreCompatible(Context.Char32Ty, T);
50   }
51   return false;
52 }
53 
54 enum StringInitFailureKind {
55   SIF_None,
56   SIF_NarrowStringIntoWideChar,
57   SIF_WideStringIntoChar,
58   SIF_IncompatWideStringIntoWideChar,
59   SIF_UTF8StringIntoPlainChar,
60   SIF_PlainStringIntoUTF8Char,
61   SIF_Other
62 };
63 
64 /// Check whether the array of type AT can be initialized by the Init
65 /// expression by means of string initialization. Returns SIF_None if so,
66 /// otherwise returns a StringInitFailureKind that describes why the
67 /// initialization would not work.
68 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
69                                           ASTContext &Context) {
70   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
71     return SIF_Other;
72 
73   // See if this is a string literal or @encode.
74   Init = Init->IgnoreParens();
75 
76   // Handle @encode, which is a narrow string.
77   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
78     return SIF_None;
79 
80   // Otherwise we can only handle string literals.
81   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
82   if (!SL)
83     return SIF_Other;
84 
85   const QualType ElemTy =
86       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
87 
88   auto IsCharOrUnsignedChar = [](const QualType &T) {
89     const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr());
90     return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar;
91   };
92 
93   switch (SL->getKind()) {
94   case StringLiteral::UTF8:
95     // char8_t array can be initialized with a UTF-8 string.
96     // - C++20 [dcl.init.string] (DR)
97     //   Additionally, an array of char or unsigned char may be initialized
98     //   by a UTF-8 string literal.
99     if (ElemTy->isChar8Type() ||
100         (Context.getLangOpts().Char8 &&
101          IsCharOrUnsignedChar(ElemTy.getCanonicalType())))
102       return SIF_None;
103     [[fallthrough]];
104   case StringLiteral::Ordinary:
105     // char array can be initialized with a narrow string.
106     // Only allow char x[] = "foo";  not char x[] = L"foo";
107     if (ElemTy->isCharType())
108       return (SL->getKind() == StringLiteral::UTF8 &&
109               Context.getLangOpts().Char8)
110                  ? SIF_UTF8StringIntoPlainChar
111                  : SIF_None;
112     if (ElemTy->isChar8Type())
113       return SIF_PlainStringIntoUTF8Char;
114     if (IsWideCharCompatible(ElemTy, Context))
115       return SIF_NarrowStringIntoWideChar;
116     return SIF_Other;
117   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
118   // "An array with element type compatible with a qualified or unqualified
119   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
120   // string literal with the corresponding encoding prefix (L, u, or U,
121   // respectively), optionally enclosed in braces.
122   case StringLiteral::UTF16:
123     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
124       return SIF_None;
125     if (ElemTy->isCharType() || ElemTy->isChar8Type())
126       return SIF_WideStringIntoChar;
127     if (IsWideCharCompatible(ElemTy, Context))
128       return SIF_IncompatWideStringIntoWideChar;
129     return SIF_Other;
130   case StringLiteral::UTF32:
131     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
132       return SIF_None;
133     if (ElemTy->isCharType() || ElemTy->isChar8Type())
134       return SIF_WideStringIntoChar;
135     if (IsWideCharCompatible(ElemTy, Context))
136       return SIF_IncompatWideStringIntoWideChar;
137     return SIF_Other;
138   case StringLiteral::Wide:
139     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
140       return SIF_None;
141     if (ElemTy->isCharType() || ElemTy->isChar8Type())
142       return SIF_WideStringIntoChar;
143     if (IsWideCharCompatible(ElemTy, Context))
144       return SIF_IncompatWideStringIntoWideChar;
145     return SIF_Other;
146   case StringLiteral::Unevaluated:
147     assert(false && "Unevaluated string literal in initialization");
148     break;
149   }
150 
151   llvm_unreachable("missed a StringLiteral kind?");
152 }
153 
154 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
155                                           ASTContext &Context) {
156   const ArrayType *arrayType = Context.getAsArrayType(declType);
157   if (!arrayType)
158     return SIF_Other;
159   return IsStringInit(init, arrayType, Context);
160 }
161 
162 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
163   return ::IsStringInit(Init, AT, Context) == SIF_None;
164 }
165 
166 /// Update the type of a string literal, including any surrounding parentheses,
167 /// to match the type of the object which it is initializing.
168 static void updateStringLiteralType(Expr *E, QualType Ty) {
169   while (true) {
170     E->setType(Ty);
171     E->setValueKind(VK_PRValue);
172     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
173       break;
174     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
175       E = PE->getSubExpr();
176     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
177       assert(UO->getOpcode() == UO_Extension);
178       E = UO->getSubExpr();
179     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
180       E = GSE->getResultExpr();
181     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
182       E = CE->getChosenSubExpr();
183     } else if (PredefinedExpr *PE = dyn_cast<PredefinedExpr>(E)) {
184       E = PE->getFunctionName();
185     } else {
186       llvm_unreachable("unexpected expr in string literal init");
187     }
188   }
189 }
190 
191 /// Fix a compound literal initializing an array so it's correctly marked
192 /// as an rvalue.
193 static void updateGNUCompoundLiteralRValue(Expr *E) {
194   while (true) {
195     E->setValueKind(VK_PRValue);
196     if (isa<CompoundLiteralExpr>(E)) {
197       break;
198     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
199       E = PE->getSubExpr();
200     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
201       assert(UO->getOpcode() == UO_Extension);
202       E = UO->getSubExpr();
203     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
204       E = GSE->getResultExpr();
205     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
206       E = CE->getChosenSubExpr();
207     } else {
208       llvm_unreachable("unexpected expr in array compound literal init");
209     }
210   }
211 }
212 
213 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
214                             Sema &S) {
215   // Get the length of the string as parsed.
216   auto *ConstantArrayTy =
217       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
218   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
219 
220   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
221     // C99 6.7.8p14. We have an array of character type with unknown size
222     // being initialized to a string literal.
223     llvm::APInt ConstVal(32, StrLength);
224     // Return a new array type (C99 6.7.8p22).
225     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
226                                            ConstVal, nullptr,
227                                            ArrayType::Normal, 0);
228     updateStringLiteralType(Str, DeclT);
229     return;
230   }
231 
232   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
233 
234   // We have an array of character type with known size.  However,
235   // the size may be smaller or larger than the string we are initializing.
236   // FIXME: Avoid truncation for 64-bit length strings.
237   if (S.getLangOpts().CPlusPlus) {
238     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
239       // For Pascal strings it's OK to strip off the terminating null character,
240       // so the example below is valid:
241       //
242       // unsigned char a[2] = "\pa";
243       if (SL->isPascal())
244         StrLength--;
245     }
246 
247     // [dcl.init.string]p2
248     if (StrLength > CAT->getSize().getZExtValue())
249       S.Diag(Str->getBeginLoc(),
250              diag::err_initializer_string_for_char_array_too_long)
251           << CAT->getSize().getZExtValue() << StrLength
252           << Str->getSourceRange();
253   } else {
254     // C99 6.7.8p14.
255     if (StrLength-1 > CAT->getSize().getZExtValue())
256       S.Diag(Str->getBeginLoc(),
257              diag::ext_initializer_string_for_char_array_too_long)
258           << Str->getSourceRange();
259   }
260 
261   // Set the type to the actual size that we are initializing.  If we have
262   // something like:
263   //   char x[1] = "foo";
264   // then this will set the string literal's type to char[1].
265   updateStringLiteralType(Str, DeclT);
266 }
267 
268 //===----------------------------------------------------------------------===//
269 // Semantic checking for initializer lists.
270 //===----------------------------------------------------------------------===//
271 
272 namespace {
273 
274 /// Semantic checking for initializer lists.
275 ///
276 /// The InitListChecker class contains a set of routines that each
277 /// handle the initialization of a certain kind of entity, e.g.,
278 /// arrays, vectors, struct/union types, scalars, etc. The
279 /// InitListChecker itself performs a recursive walk of the subobject
280 /// structure of the type to be initialized, while stepping through
281 /// the initializer list one element at a time. The IList and Index
282 /// parameters to each of the Check* routines contain the active
283 /// (syntactic) initializer list and the index into that initializer
284 /// list that represents the current initializer. Each routine is
285 /// responsible for moving that Index forward as it consumes elements.
286 ///
287 /// Each Check* routine also has a StructuredList/StructuredIndex
288 /// arguments, which contains the current "structured" (semantic)
289 /// initializer list and the index into that initializer list where we
290 /// are copying initializers as we map them over to the semantic
291 /// list. Once we have completed our recursive walk of the subobject
292 /// structure, we will have constructed a full semantic initializer
293 /// list.
294 ///
295 /// C99 designators cause changes in the initializer list traversal,
296 /// because they make the initialization "jump" into a specific
297 /// subobject and then continue the initialization from that
298 /// point. CheckDesignatedInitializer() recursively steps into the
299 /// designated subobject and manages backing out the recursion to
300 /// initialize the subobjects after the one designated.
301 ///
302 /// If an initializer list contains any designators, we build a placeholder
303 /// structured list even in 'verify only' mode, so that we can track which
304 /// elements need 'empty' initializtion.
305 class InitListChecker {
306   Sema &SemaRef;
307   bool hadError = false;
308   bool VerifyOnly; // No diagnostics.
309   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
310   bool InOverloadResolution;
311   InitListExpr *FullyStructuredList = nullptr;
312   NoInitExpr *DummyExpr = nullptr;
313   SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr;
314 
315   NoInitExpr *getDummyInit() {
316     if (!DummyExpr)
317       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
318     return DummyExpr;
319   }
320 
321   void CheckImplicitInitList(const InitializedEntity &Entity,
322                              InitListExpr *ParentIList, QualType T,
323                              unsigned &Index, InitListExpr *StructuredList,
324                              unsigned &StructuredIndex);
325   void CheckExplicitInitList(const InitializedEntity &Entity,
326                              InitListExpr *IList, QualType &T,
327                              InitListExpr *StructuredList,
328                              bool TopLevelObject = false);
329   void CheckListElementTypes(const InitializedEntity &Entity,
330                              InitListExpr *IList, QualType &DeclType,
331                              bool SubobjectIsDesignatorContext,
332                              unsigned &Index,
333                              InitListExpr *StructuredList,
334                              unsigned &StructuredIndex,
335                              bool TopLevelObject = false);
336   void CheckSubElementType(const InitializedEntity &Entity,
337                            InitListExpr *IList, QualType ElemType,
338                            unsigned &Index,
339                            InitListExpr *StructuredList,
340                            unsigned &StructuredIndex,
341                            bool DirectlyDesignated = false);
342   void CheckComplexType(const InitializedEntity &Entity,
343                         InitListExpr *IList, QualType DeclType,
344                         unsigned &Index,
345                         InitListExpr *StructuredList,
346                         unsigned &StructuredIndex);
347   void CheckScalarType(const InitializedEntity &Entity,
348                        InitListExpr *IList, QualType DeclType,
349                        unsigned &Index,
350                        InitListExpr *StructuredList,
351                        unsigned &StructuredIndex);
352   void CheckReferenceType(const InitializedEntity &Entity,
353                           InitListExpr *IList, QualType DeclType,
354                           unsigned &Index,
355                           InitListExpr *StructuredList,
356                           unsigned &StructuredIndex);
357   void CheckVectorType(const InitializedEntity &Entity,
358                        InitListExpr *IList, QualType DeclType, unsigned &Index,
359                        InitListExpr *StructuredList,
360                        unsigned &StructuredIndex);
361   void CheckStructUnionTypes(const InitializedEntity &Entity,
362                              InitListExpr *IList, QualType DeclType,
363                              CXXRecordDecl::base_class_const_range Bases,
364                              RecordDecl::field_iterator Field,
365                              bool SubobjectIsDesignatorContext, unsigned &Index,
366                              InitListExpr *StructuredList,
367                              unsigned &StructuredIndex,
368                              bool TopLevelObject = false);
369   void CheckArrayType(const InitializedEntity &Entity,
370                       InitListExpr *IList, QualType &DeclType,
371                       llvm::APSInt elementIndex,
372                       bool SubobjectIsDesignatorContext, unsigned &Index,
373                       InitListExpr *StructuredList,
374                       unsigned &StructuredIndex);
375   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
376                                   InitListExpr *IList, DesignatedInitExpr *DIE,
377                                   unsigned DesigIdx,
378                                   QualType &CurrentObjectType,
379                                   RecordDecl::field_iterator *NextField,
380                                   llvm::APSInt *NextElementIndex,
381                                   unsigned &Index,
382                                   InitListExpr *StructuredList,
383                                   unsigned &StructuredIndex,
384                                   bool FinishSubobjectInit,
385                                   bool TopLevelObject);
386   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
387                                            QualType CurrentObjectType,
388                                            InitListExpr *StructuredList,
389                                            unsigned StructuredIndex,
390                                            SourceRange InitRange,
391                                            bool IsFullyOverwritten = false);
392   void UpdateStructuredListElement(InitListExpr *StructuredList,
393                                    unsigned &StructuredIndex,
394                                    Expr *expr);
395   InitListExpr *createInitListExpr(QualType CurrentObjectType,
396                                    SourceRange InitRange,
397                                    unsigned ExpectedNumInits);
398   int numArrayElements(QualType DeclType);
399   int numStructUnionElements(QualType DeclType);
400   static RecordDecl *getRecordDecl(QualType DeclType);
401 
402   ExprResult PerformEmptyInit(SourceLocation Loc,
403                               const InitializedEntity &Entity);
404 
405   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
406   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
407                             bool UnionOverride = false,
408                             bool FullyOverwritten = true) {
409     // Overriding an initializer via a designator is valid with C99 designated
410     // initializers, but ill-formed with C++20 designated initializers.
411     unsigned DiagID =
412         SemaRef.getLangOpts().CPlusPlus
413             ? (UnionOverride ? diag::ext_initializer_union_overrides
414                              : diag::ext_initializer_overrides)
415             : diag::warn_initializer_overrides;
416 
417     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
418       // In overload resolution, we have to strictly enforce the rules, and so
419       // don't allow any overriding of prior initializers. This matters for a
420       // case such as:
421       //
422       //   union U { int a, b; };
423       //   struct S { int a, b; };
424       //   void f(U), f(S);
425       //
426       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
427       // consistency, we disallow all overriding of prior initializers in
428       // overload resolution, not only overriding of union members.
429       hadError = true;
430     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
431       // If we'll be keeping around the old initializer but overwriting part of
432       // the object it initialized, and that object is not trivially
433       // destructible, this can leak. Don't allow that, not even as an
434       // extension.
435       //
436       // FIXME: It might be reasonable to allow this in cases where the part of
437       // the initializer that we're overriding has trivial destruction.
438       DiagID = diag::err_initializer_overrides_destructed;
439     } else if (!OldInit->getSourceRange().isValid()) {
440       // We need to check on source range validity because the previous
441       // initializer does not have to be an explicit initializer. e.g.,
442       //
443       // struct P { int a, b; };
444       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
445       //
446       // There is an overwrite taking place because the first braced initializer
447       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
448       //
449       // Such overwrites are harmless, so we don't diagnose them. (Note that in
450       // C++, this cannot be reached unless we've already seen and diagnosed a
451       // different conformance issue, such as a mixture of designated and
452       // non-designated initializers or a multi-level designator.)
453       return;
454     }
455 
456     if (!VerifyOnly) {
457       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
458           << NewInitRange << FullyOverwritten << OldInit->getType();
459       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
460           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
461           << OldInit->getSourceRange();
462     }
463   }
464 
465   // Explanation on the "FillWithNoInit" mode:
466   //
467   // Assume we have the following definitions (Case#1):
468   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
469   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
470   //
471   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
472   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
473   //
474   // But if we have (Case#2):
475   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
476   //
477   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
478   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
479   //
480   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
481   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
482   // initializers but with special "NoInitExpr" place holders, which tells the
483   // CodeGen not to generate any initializers for these parts.
484   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
485                               const InitializedEntity &ParentEntity,
486                               InitListExpr *ILE, bool &RequiresSecondPass,
487                               bool FillWithNoInit);
488   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
489                                const InitializedEntity &ParentEntity,
490                                InitListExpr *ILE, bool &RequiresSecondPass,
491                                bool FillWithNoInit = false);
492   void FillInEmptyInitializations(const InitializedEntity &Entity,
493                                   InitListExpr *ILE, bool &RequiresSecondPass,
494                                   InitListExpr *OuterILE, unsigned OuterIndex,
495                                   bool FillWithNoInit = false);
496   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
497                               Expr *InitExpr, FieldDecl *Field,
498                               bool TopLevelObject);
499   void CheckEmptyInitializable(const InitializedEntity &Entity,
500                                SourceLocation Loc);
501 
502 public:
503   InitListChecker(
504       Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T,
505       bool VerifyOnly, bool TreatUnavailableAsInvalid,
506       bool InOverloadResolution = false,
507       SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr);
508   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
509                   QualType &T,
510                   SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes)
511       : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true,
512                         /*TreatUnavailableAsInvalid=*/false,
513                         /*InOverloadResolution=*/false,
514                         &AggrDeductionCandidateParamTypes){};
515 
516   bool HadError() { return hadError; }
517 
518   // Retrieves the fully-structured initializer list used for
519   // semantic analysis and code generation.
520   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
521 };
522 
523 } // end anonymous namespace
524 
525 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
526                                              const InitializedEntity &Entity) {
527   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
528                                                             true);
529   MultiExprArg SubInit;
530   Expr *InitExpr;
531   InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc);
532 
533   // C++ [dcl.init.aggr]p7:
534   //   If there are fewer initializer-clauses in the list than there are
535   //   members in the aggregate, then each member not explicitly initialized
536   //   ...
537   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
538       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
539   if (EmptyInitList) {
540     // C++1y / DR1070:
541     //   shall be initialized [...] from an empty initializer list.
542     //
543     // We apply the resolution of this DR to C++11 but not C++98, since C++98
544     // does not have useful semantics for initialization from an init list.
545     // We treat this as copy-initialization, because aggregate initialization
546     // always performs copy-initialization on its elements.
547     //
548     // Only do this if we're initializing a class type, to avoid filling in
549     // the initializer list where possible.
550     InitExpr = VerifyOnly
551                    ? &DummyInitList
552                    : new (SemaRef.Context)
553                          InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc);
554     InitExpr->setType(SemaRef.Context.VoidTy);
555     SubInit = InitExpr;
556     Kind = InitializationKind::CreateCopy(Loc, Loc);
557   } else {
558     // C++03:
559     //   shall be value-initialized.
560   }
561 
562   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
563   // libstdc++4.6 marks the vector default constructor as explicit in
564   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
565   // stlport does so too. Look for std::__debug for libstdc++, and for
566   // std:: for stlport.  This is effectively a compiler-side implementation of
567   // LWG2193.
568   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
569           InitializationSequence::FK_ExplicitConstructor) {
570     OverloadCandidateSet::iterator Best;
571     OverloadingResult O =
572         InitSeq.getFailedCandidateSet()
573             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
574     (void)O;
575     assert(O == OR_Success && "Inconsistent overload resolution");
576     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
577     CXXRecordDecl *R = CtorDecl->getParent();
578 
579     if (CtorDecl->getMinRequiredArguments() == 0 &&
580         CtorDecl->isExplicit() && R->getDeclName() &&
581         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
582       bool IsInStd = false;
583       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
584            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
585         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
586           IsInStd = true;
587       }
588 
589       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
590               .Cases("basic_string", "deque", "forward_list", true)
591               .Cases("list", "map", "multimap", "multiset", true)
592               .Cases("priority_queue", "queue", "set", "stack", true)
593               .Cases("unordered_map", "unordered_set", "vector", true)
594               .Default(false)) {
595         InitSeq.InitializeFrom(
596             SemaRef, Entity,
597             InitializationKind::CreateValue(Loc, Loc, Loc, true),
598             MultiExprArg(), /*TopLevelOfInitList=*/false,
599             TreatUnavailableAsInvalid);
600         // Emit a warning for this.  System header warnings aren't shown
601         // by default, but people working on system headers should see it.
602         if (!VerifyOnly) {
603           SemaRef.Diag(CtorDecl->getLocation(),
604                        diag::warn_invalid_initializer_from_system_header);
605           if (Entity.getKind() == InitializedEntity::EK_Member)
606             SemaRef.Diag(Entity.getDecl()->getLocation(),
607                          diag::note_used_in_initialization_here);
608           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
609             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
610         }
611       }
612     }
613   }
614   if (!InitSeq) {
615     if (!VerifyOnly) {
616       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
617       if (Entity.getKind() == InitializedEntity::EK_Member)
618         SemaRef.Diag(Entity.getDecl()->getLocation(),
619                      diag::note_in_omitted_aggregate_initializer)
620           << /*field*/1 << Entity.getDecl();
621       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
622         bool IsTrailingArrayNewMember =
623             Entity.getParent() &&
624             Entity.getParent()->isVariableLengthArrayNew();
625         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
626           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
627           << Entity.getElementIndex();
628       }
629     }
630     hadError = true;
631     return ExprError();
632   }
633 
634   return VerifyOnly ? ExprResult()
635                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
636 }
637 
638 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
639                                               SourceLocation Loc) {
640   // If we're building a fully-structured list, we'll check this at the end
641   // once we know which elements are actually initialized. Otherwise, we know
642   // that there are no designators so we can just check now.
643   if (FullyStructuredList)
644     return;
645   PerformEmptyInit(Loc, Entity);
646 }
647 
648 void InitListChecker::FillInEmptyInitForBase(
649     unsigned Init, const CXXBaseSpecifier &Base,
650     const InitializedEntity &ParentEntity, InitListExpr *ILE,
651     bool &RequiresSecondPass, bool FillWithNoInit) {
652   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
653       SemaRef.Context, &Base, false, &ParentEntity);
654 
655   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
656     ExprResult BaseInit = FillWithNoInit
657                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
658                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
659     if (BaseInit.isInvalid()) {
660       hadError = true;
661       return;
662     }
663 
664     if (!VerifyOnly) {
665       assert(Init < ILE->getNumInits() && "should have been expanded");
666       ILE->setInit(Init, BaseInit.getAs<Expr>());
667     }
668   } else if (InitListExpr *InnerILE =
669                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
670     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
671                                ILE, Init, FillWithNoInit);
672   } else if (DesignatedInitUpdateExpr *InnerDIUE =
673                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
674     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
675                                RequiresSecondPass, ILE, Init,
676                                /*FillWithNoInit =*/true);
677   }
678 }
679 
680 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
681                                         const InitializedEntity &ParentEntity,
682                                               InitListExpr *ILE,
683                                               bool &RequiresSecondPass,
684                                               bool FillWithNoInit) {
685   SourceLocation Loc = ILE->getEndLoc();
686   unsigned NumInits = ILE->getNumInits();
687   InitializedEntity MemberEntity
688     = InitializedEntity::InitializeMember(Field, &ParentEntity);
689 
690   if (Init >= NumInits || !ILE->getInit(Init)) {
691     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
692       if (!RType->getDecl()->isUnion())
693         assert((Init < NumInits || VerifyOnly) &&
694                "This ILE should have been expanded");
695 
696     if (FillWithNoInit) {
697       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
698       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
699       if (Init < NumInits)
700         ILE->setInit(Init, Filler);
701       else
702         ILE->updateInit(SemaRef.Context, Init, Filler);
703       return;
704     }
705     // C++1y [dcl.init.aggr]p7:
706     //   If there are fewer initializer-clauses in the list than there are
707     //   members in the aggregate, then each member not explicitly initialized
708     //   shall be initialized from its brace-or-equal-initializer [...]
709     if (Field->hasInClassInitializer()) {
710       if (VerifyOnly)
711         return;
712 
713       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
714       if (DIE.isInvalid()) {
715         hadError = true;
716         return;
717       }
718       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
719       if (Init < NumInits)
720         ILE->setInit(Init, DIE.get());
721       else {
722         ILE->updateInit(SemaRef.Context, Init, DIE.get());
723         RequiresSecondPass = true;
724       }
725       return;
726     }
727 
728     if (Field->getType()->isReferenceType()) {
729       if (!VerifyOnly) {
730         // C++ [dcl.init.aggr]p9:
731         //   If an incomplete or empty initializer-list leaves a
732         //   member of reference type uninitialized, the program is
733         //   ill-formed.
734         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
735             << Field->getType()
736             << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm())
737                    ->getSourceRange();
738         SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member);
739       }
740       hadError = true;
741       return;
742     }
743 
744     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
745     if (MemberInit.isInvalid()) {
746       hadError = true;
747       return;
748     }
749 
750     if (hadError || VerifyOnly) {
751       // Do nothing
752     } else if (Init < NumInits) {
753       ILE->setInit(Init, MemberInit.getAs<Expr>());
754     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
755       // Empty initialization requires a constructor call, so
756       // extend the initializer list to include the constructor
757       // call and make a note that we'll need to take another pass
758       // through the initializer list.
759       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
760       RequiresSecondPass = true;
761     }
762   } else if (InitListExpr *InnerILE
763                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
764     FillInEmptyInitializations(MemberEntity, InnerILE,
765                                RequiresSecondPass, ILE, Init, FillWithNoInit);
766   } else if (DesignatedInitUpdateExpr *InnerDIUE =
767                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
768     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
769                                RequiresSecondPass, ILE, Init,
770                                /*FillWithNoInit =*/true);
771   }
772 }
773 
774 /// Recursively replaces NULL values within the given initializer list
775 /// with expressions that perform value-initialization of the
776 /// appropriate type, and finish off the InitListExpr formation.
777 void
778 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
779                                             InitListExpr *ILE,
780                                             bool &RequiresSecondPass,
781                                             InitListExpr *OuterILE,
782                                             unsigned OuterIndex,
783                                             bool FillWithNoInit) {
784   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
785          "Should not have void type");
786 
787   // We don't need to do any checks when just filling NoInitExprs; that can't
788   // fail.
789   if (FillWithNoInit && VerifyOnly)
790     return;
791 
792   // If this is a nested initializer list, we might have changed its contents
793   // (and therefore some of its properties, such as instantiation-dependence)
794   // while filling it in. Inform the outer initializer list so that its state
795   // can be updated to match.
796   // FIXME: We should fully build the inner initializers before constructing
797   // the outer InitListExpr instead of mutating AST nodes after they have
798   // been used as subexpressions of other nodes.
799   struct UpdateOuterILEWithUpdatedInit {
800     InitListExpr *Outer;
801     unsigned OuterIndex;
802     ~UpdateOuterILEWithUpdatedInit() {
803       if (Outer)
804         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
805     }
806   } UpdateOuterRAII = {OuterILE, OuterIndex};
807 
808   // A transparent ILE is not performing aggregate initialization and should
809   // not be filled in.
810   if (ILE->isTransparent())
811     return;
812 
813   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
814     const RecordDecl *RDecl = RType->getDecl();
815     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
816       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
817                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
818     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
819              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
820       for (auto *Field : RDecl->fields()) {
821         if (Field->hasInClassInitializer()) {
822           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
823                                   FillWithNoInit);
824           break;
825         }
826       }
827     } else {
828       // The fields beyond ILE->getNumInits() are default initialized, so in
829       // order to leave them uninitialized, the ILE is expanded and the extra
830       // fields are then filled with NoInitExpr.
831       unsigned NumElems = numStructUnionElements(ILE->getType());
832       if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember())
833         ++NumElems;
834       if (!VerifyOnly && ILE->getNumInits() < NumElems)
835         ILE->resizeInits(SemaRef.Context, NumElems);
836 
837       unsigned Init = 0;
838 
839       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
840         for (auto &Base : CXXRD->bases()) {
841           if (hadError)
842             return;
843 
844           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
845                                  FillWithNoInit);
846           ++Init;
847         }
848       }
849 
850       for (auto *Field : RDecl->fields()) {
851         if (Field->isUnnamedBitfield())
852           continue;
853 
854         if (hadError)
855           return;
856 
857         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
858                                 FillWithNoInit);
859         if (hadError)
860           return;
861 
862         ++Init;
863 
864         // Only look at the first initialization of a union.
865         if (RDecl->isUnion())
866           break;
867       }
868     }
869 
870     return;
871   }
872 
873   QualType ElementType;
874 
875   InitializedEntity ElementEntity = Entity;
876   unsigned NumInits = ILE->getNumInits();
877   unsigned NumElements = NumInits;
878   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
879     ElementType = AType->getElementType();
880     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
881       NumElements = CAType->getSize().getZExtValue();
882     // For an array new with an unknown bound, ask for one additional element
883     // in order to populate the array filler.
884     if (Entity.isVariableLengthArrayNew())
885       ++NumElements;
886     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
887                                                          0, Entity);
888   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
889     ElementType = VType->getElementType();
890     NumElements = VType->getNumElements();
891     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
892                                                          0, Entity);
893   } else
894     ElementType = ILE->getType();
895 
896   bool SkipEmptyInitChecks = false;
897   for (unsigned Init = 0; Init != NumElements; ++Init) {
898     if (hadError)
899       return;
900 
901     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
902         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
903       ElementEntity.setElementIndex(Init);
904 
905     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
906       return;
907 
908     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
909     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
910       ILE->setInit(Init, ILE->getArrayFiller());
911     else if (!InitExpr && !ILE->hasArrayFiller()) {
912       // In VerifyOnly mode, there's no point performing empty initialization
913       // more than once.
914       if (SkipEmptyInitChecks)
915         continue;
916 
917       Expr *Filler = nullptr;
918 
919       if (FillWithNoInit)
920         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
921       else {
922         ExprResult ElementInit =
923             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
924         if (ElementInit.isInvalid()) {
925           hadError = true;
926           return;
927         }
928 
929         Filler = ElementInit.getAs<Expr>();
930       }
931 
932       if (hadError) {
933         // Do nothing
934       } else if (VerifyOnly) {
935         SkipEmptyInitChecks = true;
936       } else if (Init < NumInits) {
937         // For arrays, just set the expression used for value-initialization
938         // of the "holes" in the array.
939         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
940           ILE->setArrayFiller(Filler);
941         else
942           ILE->setInit(Init, Filler);
943       } else {
944         // For arrays, just set the expression used for value-initialization
945         // of the rest of elements and exit.
946         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
947           ILE->setArrayFiller(Filler);
948           return;
949         }
950 
951         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
952           // Empty initialization requires a constructor call, so
953           // extend the initializer list to include the constructor
954           // call and make a note that we'll need to take another pass
955           // through the initializer list.
956           ILE->updateInit(SemaRef.Context, Init, Filler);
957           RequiresSecondPass = true;
958         }
959       }
960     } else if (InitListExpr *InnerILE
961                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
962       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
963                                  ILE, Init, FillWithNoInit);
964     } else if (DesignatedInitUpdateExpr *InnerDIUE =
965                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
966       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
967                                  RequiresSecondPass, ILE, Init,
968                                  /*FillWithNoInit =*/true);
969     }
970   }
971 }
972 
973 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
974   for (const Stmt *Init : *IL)
975     if (isa_and_nonnull<DesignatedInitExpr>(Init))
976       return true;
977   return false;
978 }
979 
980 InitListChecker::InitListChecker(
981     Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T,
982     bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution,
983     SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes)
984     : SemaRef(S), VerifyOnly(VerifyOnly),
985       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
986       InOverloadResolution(InOverloadResolution),
987       AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) {
988   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
989     FullyStructuredList =
990         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
991 
992     // FIXME: Check that IL isn't already the semantic form of some other
993     // InitListExpr. If it is, we'd create a broken AST.
994     if (!VerifyOnly)
995       FullyStructuredList->setSyntacticForm(IL);
996   }
997 
998   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
999                         /*TopLevelObject=*/true);
1000 
1001   if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) {
1002     bool RequiresSecondPass = false;
1003     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
1004                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
1005     if (RequiresSecondPass && !hadError)
1006       FillInEmptyInitializations(Entity, FullyStructuredList,
1007                                  RequiresSecondPass, nullptr, 0);
1008   }
1009   if (hadError && FullyStructuredList)
1010     FullyStructuredList->markError();
1011 }
1012 
1013 int InitListChecker::numArrayElements(QualType DeclType) {
1014   // FIXME: use a proper constant
1015   int maxElements = 0x7FFFFFFF;
1016   if (const ConstantArrayType *CAT =
1017         SemaRef.Context.getAsConstantArrayType(DeclType)) {
1018     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
1019   }
1020   return maxElements;
1021 }
1022 
1023 int InitListChecker::numStructUnionElements(QualType DeclType) {
1024   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
1025   int InitializableMembers = 0;
1026   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
1027     InitializableMembers += CXXRD->getNumBases();
1028   for (const auto *Field : structDecl->fields())
1029     if (!Field->isUnnamedBitfield())
1030       ++InitializableMembers;
1031 
1032   if (structDecl->isUnion())
1033     return std::min(InitializableMembers, 1);
1034   return InitializableMembers - structDecl->hasFlexibleArrayMember();
1035 }
1036 
1037 RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) {
1038   if (const auto *RT = DeclType->getAs<RecordType>())
1039     return RT->getDecl();
1040   if (const auto *Inject = DeclType->getAs<InjectedClassNameType>())
1041     return Inject->getDecl();
1042   return nullptr;
1043 }
1044 
1045 /// Determine whether Entity is an entity for which it is idiomatic to elide
1046 /// the braces in aggregate initialization.
1047 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1048   // Recursive initialization of the one and only field within an aggregate
1049   // class is considered idiomatic. This case arises in particular for
1050   // initialization of std::array, where the C++ standard suggests the idiom of
1051   //
1052   //   std::array<T, N> arr = {1, 2, 3};
1053   //
1054   // (where std::array is an aggregate struct containing a single array field.
1055 
1056   if (!Entity.getParent())
1057     return false;
1058 
1059   // Allows elide brace initialization for aggregates with empty base.
1060   if (Entity.getKind() == InitializedEntity::EK_Base) {
1061     auto *ParentRD =
1062         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1063     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1064     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1065   }
1066 
1067   // Allow brace elision if the only subobject is a field.
1068   if (Entity.getKind() == InitializedEntity::EK_Member) {
1069     auto *ParentRD =
1070         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1071     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1072       if (CXXRD->getNumBases()) {
1073         return false;
1074       }
1075     }
1076     auto FieldIt = ParentRD->field_begin();
1077     assert(FieldIt != ParentRD->field_end() &&
1078            "no fields but have initializer for member?");
1079     return ++FieldIt == ParentRD->field_end();
1080   }
1081 
1082   return false;
1083 }
1084 
1085 /// Check whether the range of the initializer \p ParentIList from element
1086 /// \p Index onwards can be used to initialize an object of type \p T. Update
1087 /// \p Index to indicate how many elements of the list were consumed.
1088 ///
1089 /// This also fills in \p StructuredList, from element \p StructuredIndex
1090 /// onwards, with the fully-braced, desugared form of the initialization.
1091 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1092                                             InitListExpr *ParentIList,
1093                                             QualType T, unsigned &Index,
1094                                             InitListExpr *StructuredList,
1095                                             unsigned &StructuredIndex) {
1096   int maxElements = 0;
1097 
1098   if (T->isArrayType())
1099     maxElements = numArrayElements(T);
1100   else if (T->isRecordType())
1101     maxElements = numStructUnionElements(T);
1102   else if (T->isVectorType())
1103     maxElements = T->castAs<VectorType>()->getNumElements();
1104   else
1105     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1106 
1107   if (maxElements == 0) {
1108     if (!VerifyOnly)
1109       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1110                    diag::err_implicit_empty_initializer);
1111     ++Index;
1112     hadError = true;
1113     return;
1114   }
1115 
1116   // Build a structured initializer list corresponding to this subobject.
1117   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1118       ParentIList, Index, T, StructuredList, StructuredIndex,
1119       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1120                   ParentIList->getSourceRange().getEnd()));
1121   unsigned StructuredSubobjectInitIndex = 0;
1122 
1123   // Check the element types and build the structural subobject.
1124   unsigned StartIndex = Index;
1125   CheckListElementTypes(Entity, ParentIList, T,
1126                         /*SubobjectIsDesignatorContext=*/false, Index,
1127                         StructuredSubobjectInitList,
1128                         StructuredSubobjectInitIndex);
1129 
1130   if (StructuredSubobjectInitList) {
1131     StructuredSubobjectInitList->setType(T);
1132 
1133     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1134     // Update the structured sub-object initializer so that it's ending
1135     // range corresponds with the end of the last initializer it used.
1136     if (EndIndex < ParentIList->getNumInits() &&
1137         ParentIList->getInit(EndIndex)) {
1138       SourceLocation EndLoc
1139         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1140       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1141     }
1142 
1143     // Complain about missing braces.
1144     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1145         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1146         !isIdiomaticBraceElisionEntity(Entity)) {
1147       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1148                    diag::warn_missing_braces)
1149           << StructuredSubobjectInitList->getSourceRange()
1150           << FixItHint::CreateInsertion(
1151                  StructuredSubobjectInitList->getBeginLoc(), "{")
1152           << FixItHint::CreateInsertion(
1153                  SemaRef.getLocForEndOfToken(
1154                      StructuredSubobjectInitList->getEndLoc()),
1155                  "}");
1156     }
1157 
1158     // Warn if this type won't be an aggregate in future versions of C++.
1159     auto *CXXRD = T->getAsCXXRecordDecl();
1160     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1161       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1162                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1163           << StructuredSubobjectInitList->getSourceRange() << T;
1164     }
1165   }
1166 }
1167 
1168 /// Warn that \p Entity was of scalar type and was initialized by a
1169 /// single-element braced initializer list.
1170 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1171                                  SourceRange Braces) {
1172   // Don't warn during template instantiation. If the initialization was
1173   // non-dependent, we warned during the initial parse; otherwise, the
1174   // type might not be scalar in some uses of the template.
1175   if (S.inTemplateInstantiation())
1176     return;
1177 
1178   unsigned DiagID = 0;
1179 
1180   switch (Entity.getKind()) {
1181   case InitializedEntity::EK_VectorElement:
1182   case InitializedEntity::EK_ComplexElement:
1183   case InitializedEntity::EK_ArrayElement:
1184   case InitializedEntity::EK_Parameter:
1185   case InitializedEntity::EK_Parameter_CF_Audited:
1186   case InitializedEntity::EK_TemplateParameter:
1187   case InitializedEntity::EK_Result:
1188   case InitializedEntity::EK_ParenAggInitMember:
1189     // Extra braces here are suspicious.
1190     DiagID = diag::warn_braces_around_init;
1191     break;
1192 
1193   case InitializedEntity::EK_Member:
1194     // Warn on aggregate initialization but not on ctor init list or
1195     // default member initializer.
1196     if (Entity.getParent())
1197       DiagID = diag::warn_braces_around_init;
1198     break;
1199 
1200   case InitializedEntity::EK_Variable:
1201   case InitializedEntity::EK_LambdaCapture:
1202     // No warning, might be direct-list-initialization.
1203     // FIXME: Should we warn for copy-list-initialization in these cases?
1204     break;
1205 
1206   case InitializedEntity::EK_New:
1207   case InitializedEntity::EK_Temporary:
1208   case InitializedEntity::EK_CompoundLiteralInit:
1209     // No warning, braces are part of the syntax of the underlying construct.
1210     break;
1211 
1212   case InitializedEntity::EK_RelatedResult:
1213     // No warning, we already warned when initializing the result.
1214     break;
1215 
1216   case InitializedEntity::EK_Exception:
1217   case InitializedEntity::EK_Base:
1218   case InitializedEntity::EK_Delegating:
1219   case InitializedEntity::EK_BlockElement:
1220   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1221   case InitializedEntity::EK_Binding:
1222   case InitializedEntity::EK_StmtExprResult:
1223     llvm_unreachable("unexpected braced scalar init");
1224   }
1225 
1226   if (DiagID) {
1227     S.Diag(Braces.getBegin(), DiagID)
1228         << Entity.getType()->isSizelessBuiltinType() << Braces
1229         << FixItHint::CreateRemoval(Braces.getBegin())
1230         << FixItHint::CreateRemoval(Braces.getEnd());
1231   }
1232 }
1233 
1234 /// Check whether the initializer \p IList (that was written with explicit
1235 /// braces) can be used to initialize an object of type \p T.
1236 ///
1237 /// This also fills in \p StructuredList with the fully-braced, desugared
1238 /// form of the initialization.
1239 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1240                                             InitListExpr *IList, QualType &T,
1241                                             InitListExpr *StructuredList,
1242                                             bool TopLevelObject) {
1243   unsigned Index = 0, StructuredIndex = 0;
1244   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1245                         Index, StructuredList, StructuredIndex, TopLevelObject);
1246   if (StructuredList) {
1247     QualType ExprTy = T;
1248     if (!ExprTy->isArrayType())
1249       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1250     if (!VerifyOnly)
1251       IList->setType(ExprTy);
1252     StructuredList->setType(ExprTy);
1253   }
1254   if (hadError)
1255     return;
1256 
1257   // Don't complain for incomplete types, since we'll get an error elsewhere.
1258   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1259     // We have leftover initializers
1260     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1261           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1262     hadError = ExtraInitsIsError;
1263     if (VerifyOnly) {
1264       return;
1265     } else if (StructuredIndex == 1 &&
1266                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1267                    SIF_None) {
1268       unsigned DK =
1269           ExtraInitsIsError
1270               ? diag::err_excess_initializers_in_char_array_initializer
1271               : diag::ext_excess_initializers_in_char_array_initializer;
1272       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1273           << IList->getInit(Index)->getSourceRange();
1274     } else if (T->isSizelessBuiltinType()) {
1275       unsigned DK = ExtraInitsIsError
1276                         ? diag::err_excess_initializers_for_sizeless_type
1277                         : diag::ext_excess_initializers_for_sizeless_type;
1278       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1279           << T << IList->getInit(Index)->getSourceRange();
1280     } else {
1281       int initKind = T->isArrayType() ? 0 :
1282                      T->isVectorType() ? 1 :
1283                      T->isScalarType() ? 2 :
1284                      T->isUnionType() ? 3 :
1285                      4;
1286 
1287       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1288                                       : diag::ext_excess_initializers;
1289       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1290           << initKind << IList->getInit(Index)->getSourceRange();
1291     }
1292   }
1293 
1294   if (!VerifyOnly) {
1295     if (T->isScalarType() && IList->getNumInits() == 1 &&
1296         !isa<InitListExpr>(IList->getInit(0)))
1297       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1298 
1299     // Warn if this is a class type that won't be an aggregate in future
1300     // versions of C++.
1301     auto *CXXRD = T->getAsCXXRecordDecl();
1302     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1303       // Don't warn if there's an equivalent default constructor that would be
1304       // used instead.
1305       bool HasEquivCtor = false;
1306       if (IList->getNumInits() == 0) {
1307         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1308         HasEquivCtor = CD && !CD->isDeleted();
1309       }
1310 
1311       if (!HasEquivCtor) {
1312         SemaRef.Diag(IList->getBeginLoc(),
1313                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1314             << IList->getSourceRange() << T;
1315       }
1316     }
1317   }
1318 }
1319 
1320 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1321                                             InitListExpr *IList,
1322                                             QualType &DeclType,
1323                                             bool SubobjectIsDesignatorContext,
1324                                             unsigned &Index,
1325                                             InitListExpr *StructuredList,
1326                                             unsigned &StructuredIndex,
1327                                             bool TopLevelObject) {
1328   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1329     // Explicitly braced initializer for complex type can be real+imaginary
1330     // parts.
1331     CheckComplexType(Entity, IList, DeclType, Index,
1332                      StructuredList, StructuredIndex);
1333   } else if (DeclType->isScalarType()) {
1334     CheckScalarType(Entity, IList, DeclType, Index,
1335                     StructuredList, StructuredIndex);
1336   } else if (DeclType->isVectorType()) {
1337     CheckVectorType(Entity, IList, DeclType, Index,
1338                     StructuredList, StructuredIndex);
1339   } else if (const RecordDecl *RD = getRecordDecl(DeclType)) {
1340     auto Bases =
1341         CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(),
1342                                         CXXRecordDecl::base_class_const_iterator());
1343     if (DeclType->isRecordType()) {
1344       assert(DeclType->isAggregateType() &&
1345              "non-aggregate records should be handed in CheckSubElementType");
1346       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1347         Bases = CXXRD->bases();
1348     } else {
1349       Bases = cast<CXXRecordDecl>(RD)->bases();
1350     }
1351     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1352                           SubobjectIsDesignatorContext, Index, StructuredList,
1353                           StructuredIndex, TopLevelObject);
1354   } else if (DeclType->isArrayType()) {
1355     llvm::APSInt Zero(
1356                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1357                     false);
1358     CheckArrayType(Entity, IList, DeclType, Zero,
1359                    SubobjectIsDesignatorContext, Index,
1360                    StructuredList, StructuredIndex);
1361   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1362     // This type is invalid, issue a diagnostic.
1363     ++Index;
1364     if (!VerifyOnly)
1365       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1366           << DeclType;
1367     hadError = true;
1368   } else if (DeclType->isReferenceType()) {
1369     CheckReferenceType(Entity, IList, DeclType, Index,
1370                        StructuredList, StructuredIndex);
1371   } else if (DeclType->isObjCObjectType()) {
1372     if (!VerifyOnly)
1373       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1374     hadError = true;
1375   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1376              DeclType->isSizelessBuiltinType()) {
1377     // Checks for scalar type are sufficient for these types too.
1378     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1379                     StructuredIndex);
1380   } else if (DeclType->isDependentType()) {
1381     // C++ [over.match.class.deduct]p1.5:
1382     //   brace elision is not considered for any aggregate element that has a
1383     //   dependent non-array type or an array type with a value-dependent bound
1384     ++Index;
1385     assert(AggrDeductionCandidateParamTypes);
1386     AggrDeductionCandidateParamTypes->push_back(DeclType);
1387   } else {
1388     if (!VerifyOnly)
1389       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1390           << DeclType;
1391     hadError = true;
1392   }
1393 }
1394 
1395 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1396                                           InitListExpr *IList,
1397                                           QualType ElemType,
1398                                           unsigned &Index,
1399                                           InitListExpr *StructuredList,
1400                                           unsigned &StructuredIndex,
1401                                           bool DirectlyDesignated) {
1402   Expr *expr = IList->getInit(Index);
1403 
1404   if (ElemType->isReferenceType())
1405     return CheckReferenceType(Entity, IList, ElemType, Index,
1406                               StructuredList, StructuredIndex);
1407 
1408   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1409     if (SubInitList->getNumInits() == 1 &&
1410         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1411         SIF_None) {
1412       // FIXME: It would be more faithful and no less correct to include an
1413       // InitListExpr in the semantic form of the initializer list in this case.
1414       expr = SubInitList->getInit(0);
1415     }
1416     // Nested aggregate initialization and C++ initialization are handled later.
1417   } else if (isa<ImplicitValueInitExpr>(expr)) {
1418     // This happens during template instantiation when we see an InitListExpr
1419     // that we've already checked once.
1420     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1421            "found implicit initialization for the wrong type");
1422     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1423     ++Index;
1424     return;
1425   }
1426 
1427   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1428     // C++ [dcl.init.aggr]p2:
1429     //   Each member is copy-initialized from the corresponding
1430     //   initializer-clause.
1431 
1432     // FIXME: Better EqualLoc?
1433     InitializationKind Kind =
1434         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1435 
1436     // Vector elements can be initialized from other vectors in which case
1437     // we need initialization entity with a type of a vector (and not a vector
1438     // element!) initializing multiple vector elements.
1439     auto TmpEntity =
1440         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1441             ? InitializedEntity::InitializeTemporary(ElemType)
1442             : Entity;
1443 
1444     if (TmpEntity.getType()->isDependentType()) {
1445       // C++ [over.match.class.deduct]p1.5:
1446       //   brace elision is not considered for any aggregate element that has a
1447       //   dependent non-array type or an array type with a value-dependent
1448       //   bound
1449       assert(AggrDeductionCandidateParamTypes);
1450       if (!isa_and_nonnull<ConstantArrayType>(
1451               SemaRef.Context.getAsArrayType(ElemType))) {
1452         ++Index;
1453         AggrDeductionCandidateParamTypes->push_back(ElemType);
1454         return;
1455       }
1456     } else {
1457       InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1458                                  /*TopLevelOfInitList*/ true);
1459       // C++14 [dcl.init.aggr]p13:
1460       //   If the assignment-expression can initialize a member, the member is
1461       //   initialized. Otherwise [...] brace elision is assumed
1462       //
1463       // Brace elision is never performed if the element is not an
1464       // assignment-expression.
1465       if (Seq || isa<InitListExpr>(expr)) {
1466         if (!VerifyOnly) {
1467           ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1468           if (Result.isInvalid())
1469             hadError = true;
1470 
1471           UpdateStructuredListElement(StructuredList, StructuredIndex,
1472                                       Result.getAs<Expr>());
1473         } else if (!Seq) {
1474           hadError = true;
1475         } else if (StructuredList) {
1476           UpdateStructuredListElement(StructuredList, StructuredIndex,
1477                                       getDummyInit());
1478         }
1479         ++Index;
1480         if (AggrDeductionCandidateParamTypes)
1481           AggrDeductionCandidateParamTypes->push_back(ElemType);
1482         return;
1483       }
1484     }
1485 
1486     // Fall through for subaggregate initialization
1487   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1488     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1489     return CheckScalarType(Entity, IList, ElemType, Index,
1490                            StructuredList, StructuredIndex);
1491   } else if (const ArrayType *arrayType =
1492                  SemaRef.Context.getAsArrayType(ElemType)) {
1493     // arrayType can be incomplete if we're initializing a flexible
1494     // array member.  There's nothing we can do with the completed
1495     // type here, though.
1496 
1497     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1498       // FIXME: Should we do this checking in verify-only mode?
1499       if (!VerifyOnly)
1500         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1501       if (StructuredList)
1502         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1503       ++Index;
1504       return;
1505     }
1506 
1507     // Fall through for subaggregate initialization.
1508 
1509   } else {
1510     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1511             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1512 
1513     // C99 6.7.8p13:
1514     //
1515     //   The initializer for a structure or union object that has
1516     //   automatic storage duration shall be either an initializer
1517     //   list as described below, or a single expression that has
1518     //   compatible structure or union type. In the latter case, the
1519     //   initial value of the object, including unnamed members, is
1520     //   that of the expression.
1521     ExprResult ExprRes = expr;
1522     if (SemaRef.CheckSingleAssignmentConstraints(
1523             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1524       if (ExprRes.isInvalid())
1525         hadError = true;
1526       else {
1527         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1528         if (ExprRes.isInvalid())
1529           hadError = true;
1530       }
1531       UpdateStructuredListElement(StructuredList, StructuredIndex,
1532                                   ExprRes.getAs<Expr>());
1533       ++Index;
1534       return;
1535     }
1536     ExprRes.get();
1537     // Fall through for subaggregate initialization
1538   }
1539 
1540   // C++ [dcl.init.aggr]p12:
1541   //
1542   //   [...] Otherwise, if the member is itself a non-empty
1543   //   subaggregate, brace elision is assumed and the initializer is
1544   //   considered for the initialization of the first member of
1545   //   the subaggregate.
1546   // OpenCL vector initializer is handled elsewhere.
1547   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1548       ElemType->isAggregateType()) {
1549     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1550                           StructuredIndex);
1551     ++StructuredIndex;
1552 
1553     // In C++20, brace elision is not permitted for a designated initializer.
1554     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1555       if (InOverloadResolution)
1556         hadError = true;
1557       if (!VerifyOnly) {
1558         SemaRef.Diag(expr->getBeginLoc(),
1559                      diag::ext_designated_init_brace_elision)
1560             << expr->getSourceRange()
1561             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1562             << FixItHint::CreateInsertion(
1563                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1564       }
1565     }
1566   } else {
1567     if (!VerifyOnly) {
1568       // We cannot initialize this element, so let PerformCopyInitialization
1569       // produce the appropriate diagnostic. We already checked that this
1570       // initialization will fail.
1571       ExprResult Copy =
1572           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1573                                             /*TopLevelOfInitList=*/true);
1574       (void)Copy;
1575       assert(Copy.isInvalid() &&
1576              "expected non-aggregate initialization to fail");
1577     }
1578     hadError = true;
1579     ++Index;
1580     ++StructuredIndex;
1581   }
1582 }
1583 
1584 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1585                                        InitListExpr *IList, QualType DeclType,
1586                                        unsigned &Index,
1587                                        InitListExpr *StructuredList,
1588                                        unsigned &StructuredIndex) {
1589   assert(Index == 0 && "Index in explicit init list must be zero");
1590 
1591   // As an extension, clang supports complex initializers, which initialize
1592   // a complex number component-wise.  When an explicit initializer list for
1593   // a complex number contains two initializers, this extension kicks in:
1594   // it expects the initializer list to contain two elements convertible to
1595   // the element type of the complex type. The first element initializes
1596   // the real part, and the second element intitializes the imaginary part.
1597 
1598   if (IList->getNumInits() < 2)
1599     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1600                            StructuredIndex);
1601 
1602   // This is an extension in C.  (The builtin _Complex type does not exist
1603   // in the C++ standard.)
1604   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1605     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1606         << IList->getSourceRange();
1607 
1608   // Initialize the complex number.
1609   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1610   InitializedEntity ElementEntity =
1611     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613   for (unsigned i = 0; i < 2; ++i) {
1614     ElementEntity.setElementIndex(Index);
1615     CheckSubElementType(ElementEntity, IList, elementType, Index,
1616                         StructuredList, StructuredIndex);
1617   }
1618 }
1619 
1620 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1621                                       InitListExpr *IList, QualType DeclType,
1622                                       unsigned &Index,
1623                                       InitListExpr *StructuredList,
1624                                       unsigned &StructuredIndex) {
1625   if (Index >= IList->getNumInits()) {
1626     if (!VerifyOnly) {
1627       if (SemaRef.getLangOpts().CPlusPlus) {
1628         if (DeclType->isSizelessBuiltinType())
1629           SemaRef.Diag(IList->getBeginLoc(),
1630                        SemaRef.getLangOpts().CPlusPlus11
1631                            ? diag::warn_cxx98_compat_empty_sizeless_initializer
1632                            : diag::err_empty_sizeless_initializer)
1633               << DeclType << IList->getSourceRange();
1634         else
1635           SemaRef.Diag(IList->getBeginLoc(),
1636                        SemaRef.getLangOpts().CPlusPlus11
1637                            ? diag::warn_cxx98_compat_empty_scalar_initializer
1638                            : diag::err_empty_scalar_initializer)
1639               << IList->getSourceRange();
1640       }
1641     }
1642     hadError =
1643         SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11;
1644     ++Index;
1645     ++StructuredIndex;
1646     return;
1647   }
1648 
1649   Expr *expr = IList->getInit(Index);
1650   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1651     // FIXME: This is invalid, and accepting it causes overload resolution
1652     // to pick the wrong overload in some corner cases.
1653     if (!VerifyOnly)
1654       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1655           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1656 
1657     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1658                     StructuredIndex);
1659     return;
1660   } else if (isa<DesignatedInitExpr>(expr)) {
1661     if (!VerifyOnly)
1662       SemaRef.Diag(expr->getBeginLoc(),
1663                    diag::err_designator_for_scalar_or_sizeless_init)
1664           << DeclType->isSizelessBuiltinType() << DeclType
1665           << expr->getSourceRange();
1666     hadError = true;
1667     ++Index;
1668     ++StructuredIndex;
1669     return;
1670   }
1671 
1672   ExprResult Result;
1673   if (VerifyOnly) {
1674     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1675       Result = getDummyInit();
1676     else
1677       Result = ExprError();
1678   } else {
1679     Result =
1680         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1681                                           /*TopLevelOfInitList=*/true);
1682   }
1683 
1684   Expr *ResultExpr = nullptr;
1685 
1686   if (Result.isInvalid())
1687     hadError = true; // types weren't compatible.
1688   else {
1689     ResultExpr = Result.getAs<Expr>();
1690 
1691     if (ResultExpr != expr && !VerifyOnly) {
1692       // The type was promoted, update initializer list.
1693       // FIXME: Why are we updating the syntactic init list?
1694       IList->setInit(Index, ResultExpr);
1695     }
1696   }
1697   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1698   ++Index;
1699   if (AggrDeductionCandidateParamTypes)
1700     AggrDeductionCandidateParamTypes->push_back(DeclType);
1701 }
1702 
1703 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1704                                          InitListExpr *IList, QualType DeclType,
1705                                          unsigned &Index,
1706                                          InitListExpr *StructuredList,
1707                                          unsigned &StructuredIndex) {
1708   if (Index >= IList->getNumInits()) {
1709     // FIXME: It would be wonderful if we could point at the actual member. In
1710     // general, it would be useful to pass location information down the stack,
1711     // so that we know the location (or decl) of the "current object" being
1712     // initialized.
1713     if (!VerifyOnly)
1714       SemaRef.Diag(IList->getBeginLoc(),
1715                    diag::err_init_reference_member_uninitialized)
1716           << DeclType << IList->getSourceRange();
1717     hadError = true;
1718     ++Index;
1719     ++StructuredIndex;
1720     return;
1721   }
1722 
1723   Expr *expr = IList->getInit(Index);
1724   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1725     if (!VerifyOnly)
1726       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1727           << DeclType << IList->getSourceRange();
1728     hadError = true;
1729     ++Index;
1730     ++StructuredIndex;
1731     return;
1732   }
1733 
1734   ExprResult Result;
1735   if (VerifyOnly) {
1736     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1737       Result = getDummyInit();
1738     else
1739       Result = ExprError();
1740   } else {
1741     Result =
1742         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1743                                           /*TopLevelOfInitList=*/true);
1744   }
1745 
1746   if (Result.isInvalid())
1747     hadError = true;
1748 
1749   expr = Result.getAs<Expr>();
1750   // FIXME: Why are we updating the syntactic init list?
1751   if (!VerifyOnly && expr)
1752     IList->setInit(Index, expr);
1753 
1754   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1755   ++Index;
1756   if (AggrDeductionCandidateParamTypes)
1757     AggrDeductionCandidateParamTypes->push_back(DeclType);
1758 }
1759 
1760 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1761                                       InitListExpr *IList, QualType DeclType,
1762                                       unsigned &Index,
1763                                       InitListExpr *StructuredList,
1764                                       unsigned &StructuredIndex) {
1765   const VectorType *VT = DeclType->castAs<VectorType>();
1766   unsigned maxElements = VT->getNumElements();
1767   unsigned numEltsInit = 0;
1768   QualType elementType = VT->getElementType();
1769 
1770   if (Index >= IList->getNumInits()) {
1771     // Make sure the element type can be value-initialized.
1772     CheckEmptyInitializable(
1773         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1774         IList->getEndLoc());
1775     return;
1776   }
1777 
1778   if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) {
1779     // If the initializing element is a vector, try to copy-initialize
1780     // instead of breaking it apart (which is doomed to failure anyway).
1781     Expr *Init = IList->getInit(Index);
1782     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1783       ExprResult Result;
1784       if (VerifyOnly) {
1785         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1786           Result = getDummyInit();
1787         else
1788           Result = ExprError();
1789       } else {
1790         Result =
1791             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1792                                               /*TopLevelOfInitList=*/true);
1793       }
1794 
1795       Expr *ResultExpr = nullptr;
1796       if (Result.isInvalid())
1797         hadError = true; // types weren't compatible.
1798       else {
1799         ResultExpr = Result.getAs<Expr>();
1800 
1801         if (ResultExpr != Init && !VerifyOnly) {
1802           // The type was promoted, update initializer list.
1803           // FIXME: Why are we updating the syntactic init list?
1804           IList->setInit(Index, ResultExpr);
1805         }
1806       }
1807       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1808       ++Index;
1809       if (AggrDeductionCandidateParamTypes)
1810         AggrDeductionCandidateParamTypes->push_back(elementType);
1811       return;
1812     }
1813 
1814     InitializedEntity ElementEntity =
1815       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1816 
1817     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1818       // Don't attempt to go past the end of the init list
1819       if (Index >= IList->getNumInits()) {
1820         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1821         break;
1822       }
1823 
1824       ElementEntity.setElementIndex(Index);
1825       CheckSubElementType(ElementEntity, IList, elementType, Index,
1826                           StructuredList, StructuredIndex);
1827     }
1828 
1829     if (VerifyOnly)
1830       return;
1831 
1832     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1833     const VectorType *T = Entity.getType()->castAs<VectorType>();
1834     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1835                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1836       // The ability to use vector initializer lists is a GNU vector extension
1837       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1838       // endian machines it works fine, however on big endian machines it
1839       // exhibits surprising behaviour:
1840       //
1841       //   uint32x2_t x = {42, 64};
1842       //   return vget_lane_u32(x, 0); // Will return 64.
1843       //
1844       // Because of this, explicitly call out that it is non-portable.
1845       //
1846       SemaRef.Diag(IList->getBeginLoc(),
1847                    diag::warn_neon_vector_initializer_non_portable);
1848 
1849       const char *typeCode;
1850       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1851 
1852       if (elementType->isFloatingType())
1853         typeCode = "f";
1854       else if (elementType->isSignedIntegerType())
1855         typeCode = "s";
1856       else if (elementType->isUnsignedIntegerType())
1857         typeCode = "u";
1858       else
1859         llvm_unreachable("Invalid element type!");
1860 
1861       SemaRef.Diag(IList->getBeginLoc(),
1862                    SemaRef.Context.getTypeSize(VT) > 64
1863                        ? diag::note_neon_vector_initializer_non_portable_q
1864                        : diag::note_neon_vector_initializer_non_portable)
1865           << typeCode << typeSize;
1866     }
1867 
1868     return;
1869   }
1870 
1871   InitializedEntity ElementEntity =
1872     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1873 
1874   // OpenCL and HLSL initializers allow vectors to be constructed from vectors.
1875   for (unsigned i = 0; i < maxElements; ++i) {
1876     // Don't attempt to go past the end of the init list
1877     if (Index >= IList->getNumInits())
1878       break;
1879 
1880     ElementEntity.setElementIndex(Index);
1881 
1882     QualType IType = IList->getInit(Index)->getType();
1883     if (!IType->isVectorType()) {
1884       CheckSubElementType(ElementEntity, IList, elementType, Index,
1885                           StructuredList, StructuredIndex);
1886       ++numEltsInit;
1887     } else {
1888       QualType VecType;
1889       const VectorType *IVT = IType->castAs<VectorType>();
1890       unsigned numIElts = IVT->getNumElements();
1891 
1892       if (IType->isExtVectorType())
1893         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1894       else
1895         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1896                                                 IVT->getVectorKind());
1897       CheckSubElementType(ElementEntity, IList, VecType, Index,
1898                           StructuredList, StructuredIndex);
1899       numEltsInit += numIElts;
1900     }
1901   }
1902 
1903   // OpenCL and HLSL require all elements to be initialized.
1904   if (numEltsInit != maxElements) {
1905     if (!VerifyOnly)
1906       SemaRef.Diag(IList->getBeginLoc(),
1907                    diag::err_vector_incorrect_num_initializers)
1908           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1909     hadError = true;
1910   }
1911 }
1912 
1913 /// Check if the type of a class element has an accessible destructor, and marks
1914 /// it referenced. Returns true if we shouldn't form a reference to the
1915 /// destructor.
1916 ///
1917 /// Aggregate initialization requires a class element's destructor be
1918 /// accessible per 11.6.1 [dcl.init.aggr]:
1919 ///
1920 /// The destructor for each element of class type is potentially invoked
1921 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1922 /// occurs.
1923 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1924                                      Sema &SemaRef) {
1925   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1926   if (!CXXRD)
1927     return false;
1928 
1929   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1930   SemaRef.CheckDestructorAccess(Loc, Destructor,
1931                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1932                                 << ElementType);
1933   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1934   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1935 }
1936 
1937 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1938                                      InitListExpr *IList, QualType &DeclType,
1939                                      llvm::APSInt elementIndex,
1940                                      bool SubobjectIsDesignatorContext,
1941                                      unsigned &Index,
1942                                      InitListExpr *StructuredList,
1943                                      unsigned &StructuredIndex) {
1944   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1945 
1946   if (!VerifyOnly) {
1947     if (checkDestructorReference(arrayType->getElementType(),
1948                                  IList->getEndLoc(), SemaRef)) {
1949       hadError = true;
1950       return;
1951     }
1952   }
1953 
1954   // Check for the special-case of initializing an array with a string.
1955   if (Index < IList->getNumInits()) {
1956     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1957         SIF_None) {
1958       // We place the string literal directly into the resulting
1959       // initializer list. This is the only place where the structure
1960       // of the structured initializer list doesn't match exactly,
1961       // because doing so would involve allocating one character
1962       // constant for each string.
1963       // FIXME: Should we do these checks in verify-only mode too?
1964       if (!VerifyOnly)
1965         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1966       if (StructuredList) {
1967         UpdateStructuredListElement(StructuredList, StructuredIndex,
1968                                     IList->getInit(Index));
1969         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1970       }
1971       ++Index;
1972       if (AggrDeductionCandidateParamTypes)
1973         AggrDeductionCandidateParamTypes->push_back(DeclType);
1974       return;
1975     }
1976   }
1977   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1978     // Check for VLAs; in standard C it would be possible to check this
1979     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1980     // them in all sorts of strange places).
1981     bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus;
1982     if (!VerifyOnly) {
1983       // C2x 6.7.9p4: An entity of variable length array type shall not be
1984       // initialized except by an empty initializer.
1985       //
1986       // The C extension warnings are issued from ParseBraceInitializer() and
1987       // do not need to be issued here. However, we continue to issue an error
1988       // in the case there are initializers or we are compiling C++. We allow
1989       // use of VLAs in C++, but it's not clear we want to allow {} to zero
1990       // init a VLA in C++ in all cases (such as with non-trivial constructors).
1991       // FIXME: should we allow this construct in C++ when it makes sense to do
1992       // so?
1993       if (HasErr)
1994         SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1995                      diag::err_variable_object_no_init)
1996             << VAT->getSizeExpr()->getSourceRange();
1997     }
1998     hadError = HasErr;
1999     ++Index;
2000     ++StructuredIndex;
2001     return;
2002   }
2003 
2004   // We might know the maximum number of elements in advance.
2005   llvm::APSInt maxElements(elementIndex.getBitWidth(),
2006                            elementIndex.isUnsigned());
2007   bool maxElementsKnown = false;
2008   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
2009     maxElements = CAT->getSize();
2010     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
2011     elementIndex.setIsUnsigned(maxElements.isUnsigned());
2012     maxElementsKnown = true;
2013   }
2014 
2015   QualType elementType = arrayType->getElementType();
2016   while (Index < IList->getNumInits()) {
2017     Expr *Init = IList->getInit(Index);
2018     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2019       // If we're not the subobject that matches up with the '{' for
2020       // the designator, we shouldn't be handling the
2021       // designator. Return immediately.
2022       if (!SubobjectIsDesignatorContext)
2023         return;
2024 
2025       // Handle this designated initializer. elementIndex will be
2026       // updated to be the next array element we'll initialize.
2027       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2028                                      DeclType, nullptr, &elementIndex, Index,
2029                                      StructuredList, StructuredIndex, true,
2030                                      false)) {
2031         hadError = true;
2032         continue;
2033       }
2034 
2035       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
2036         maxElements = maxElements.extend(elementIndex.getBitWidth());
2037       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
2038         elementIndex = elementIndex.extend(maxElements.getBitWidth());
2039       elementIndex.setIsUnsigned(maxElements.isUnsigned());
2040 
2041       // If the array is of incomplete type, keep track of the number of
2042       // elements in the initializer.
2043       if (!maxElementsKnown && elementIndex > maxElements)
2044         maxElements = elementIndex;
2045 
2046       continue;
2047     }
2048 
2049     // If we know the maximum number of elements, and we've already
2050     // hit it, stop consuming elements in the initializer list.
2051     if (maxElementsKnown && elementIndex == maxElements)
2052       break;
2053 
2054     InitializedEntity ElementEntity =
2055       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
2056                                            Entity);
2057     // Check this element.
2058     CheckSubElementType(ElementEntity, IList, elementType, Index,
2059                         StructuredList, StructuredIndex);
2060     ++elementIndex;
2061 
2062     // If the array is of incomplete type, keep track of the number of
2063     // elements in the initializer.
2064     if (!maxElementsKnown && elementIndex > maxElements)
2065       maxElements = elementIndex;
2066   }
2067   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
2068     // If this is an incomplete array type, the actual type needs to
2069     // be calculated here.
2070     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
2071     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
2072       // Sizing an array implicitly to zero is not allowed by ISO C,
2073       // but is supported by GNU.
2074       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
2075     }
2076 
2077     DeclType = SemaRef.Context.getConstantArrayType(
2078         elementType, maxElements, nullptr, ArrayType::Normal, 0);
2079   }
2080   if (!hadError) {
2081     // If there are any members of the array that get value-initialized, check
2082     // that is possible. That happens if we know the bound and don't have
2083     // enough elements, or if we're performing an array new with an unknown
2084     // bound.
2085     if ((maxElementsKnown && elementIndex < maxElements) ||
2086         Entity.isVariableLengthArrayNew())
2087       CheckEmptyInitializable(
2088           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
2089           IList->getEndLoc());
2090   }
2091 }
2092 
2093 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
2094                                              Expr *InitExpr,
2095                                              FieldDecl *Field,
2096                                              bool TopLevelObject) {
2097   // Handle GNU flexible array initializers.
2098   unsigned FlexArrayDiag;
2099   if (isa<InitListExpr>(InitExpr) &&
2100       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2101     // Empty flexible array init always allowed as an extension
2102     FlexArrayDiag = diag::ext_flexible_array_init;
2103   } else if (!TopLevelObject) {
2104     // Disallow flexible array init on non-top-level object
2105     FlexArrayDiag = diag::err_flexible_array_init;
2106   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2107     // Disallow flexible array init on anything which is not a variable.
2108     FlexArrayDiag = diag::err_flexible_array_init;
2109   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2110     // Disallow flexible array init on local variables.
2111     FlexArrayDiag = diag::err_flexible_array_init;
2112   } else {
2113     // Allow other cases.
2114     FlexArrayDiag = diag::ext_flexible_array_init;
2115   }
2116 
2117   if (!VerifyOnly) {
2118     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2119         << InitExpr->getBeginLoc();
2120     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2121       << Field;
2122   }
2123 
2124   return FlexArrayDiag != diag::ext_flexible_array_init;
2125 }
2126 
2127 void InitListChecker::CheckStructUnionTypes(
2128     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2129     CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field,
2130     bool SubobjectIsDesignatorContext, unsigned &Index,
2131     InitListExpr *StructuredList, unsigned &StructuredIndex,
2132     bool TopLevelObject) {
2133   const RecordDecl *RD = getRecordDecl(DeclType);
2134 
2135   // If the record is invalid, some of it's members are invalid. To avoid
2136   // confusion, we forgo checking the initializer for the entire record.
2137   if (RD->isInvalidDecl()) {
2138     // Assume it was supposed to consume a single initializer.
2139     ++Index;
2140     hadError = true;
2141     return;
2142   }
2143 
2144   if (RD->isUnion() && IList->getNumInits() == 0) {
2145     if (!VerifyOnly)
2146       for (FieldDecl *FD : RD->fields()) {
2147         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2148         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2149           hadError = true;
2150           return;
2151         }
2152       }
2153 
2154     // If there's a default initializer, use it.
2155     if (isa<CXXRecordDecl>(RD) &&
2156         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2157       if (!StructuredList)
2158         return;
2159       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2160            Field != FieldEnd; ++Field) {
2161         if (Field->hasInClassInitializer()) {
2162           StructuredList->setInitializedFieldInUnion(*Field);
2163           // FIXME: Actually build a CXXDefaultInitExpr?
2164           return;
2165         }
2166       }
2167     }
2168 
2169     // Value-initialize the first member of the union that isn't an unnamed
2170     // bitfield.
2171     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2172          Field != FieldEnd; ++Field) {
2173       if (!Field->isUnnamedBitfield()) {
2174         CheckEmptyInitializable(
2175             InitializedEntity::InitializeMember(*Field, &Entity),
2176             IList->getEndLoc());
2177         if (StructuredList)
2178           StructuredList->setInitializedFieldInUnion(*Field);
2179         break;
2180       }
2181     }
2182     return;
2183   }
2184 
2185   bool InitializedSomething = false;
2186 
2187   // If we have any base classes, they are initialized prior to the fields.
2188   for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) {
2189     auto &Base = *I;
2190     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2191 
2192     // Designated inits always initialize fields, so if we see one, all
2193     // remaining base classes have no explicit initializer.
2194     if (Init && isa<DesignatedInitExpr>(Init))
2195       Init = nullptr;
2196 
2197     // C++ [over.match.class.deduct]p1.6:
2198     //   each non-trailing aggregate element that is a pack expansion is assumed
2199     //   to correspond to no elements of the initializer list, and (1.7) a
2200     //   trailing aggregate element that is a pack expansion is assumed to
2201     //   correspond to all remaining elements of the initializer list (if any).
2202 
2203     // C++ [over.match.class.deduct]p1.9:
2204     //   ... except that additional parameter packs of the form P_j... are
2205     //   inserted into the parameter list in their original aggregate element
2206     //   position corresponding to each non-trailing aggregate element of
2207     //   type P_j that was skipped because it was a parameter pack, and the
2208     //   trailing sequence of parameters corresponding to a trailing
2209     //   aggregate element that is a pack expansion (if any) is replaced
2210     //   by a single parameter of the form T_n....
2211     if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) {
2212       AggrDeductionCandidateParamTypes->push_back(
2213           SemaRef.Context.getPackExpansionType(Base.getType(), std::nullopt));
2214 
2215       // Trailing pack expansion
2216       if (I + 1 == E && RD->field_empty()) {
2217         if (Index < IList->getNumInits())
2218           Index = IList->getNumInits();
2219         return;
2220       }
2221 
2222       continue;
2223     }
2224 
2225     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2226     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2227         SemaRef.Context, &Base, false, &Entity);
2228     if (Init) {
2229       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2230                           StructuredList, StructuredIndex);
2231       InitializedSomething = true;
2232     } else {
2233       CheckEmptyInitializable(BaseEntity, InitLoc);
2234     }
2235 
2236     if (!VerifyOnly)
2237       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2238         hadError = true;
2239         return;
2240       }
2241   }
2242 
2243   // If structDecl is a forward declaration, this loop won't do
2244   // anything except look at designated initializers; That's okay,
2245   // because an error should get printed out elsewhere. It might be
2246   // worthwhile to skip over the rest of the initializer, though.
2247   RecordDecl::field_iterator FieldEnd = RD->field_end();
2248   size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
2249     return isa<FieldDecl>(D) || isa<RecordDecl>(D);
2250   });
2251   bool CheckForMissingFields =
2252     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2253   bool HasDesignatedInit = false;
2254 
2255   while (Index < IList->getNumInits()) {
2256     Expr *Init = IList->getInit(Index);
2257     SourceLocation InitLoc = Init->getBeginLoc();
2258 
2259     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2260       // If we're not the subobject that matches up with the '{' for
2261       // the designator, we shouldn't be handling the
2262       // designator. Return immediately.
2263       if (!SubobjectIsDesignatorContext)
2264         return;
2265 
2266       HasDesignatedInit = true;
2267 
2268       // Handle this designated initializer. Field will be updated to
2269       // the next field that we'll be initializing.
2270       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2271                                      DeclType, &Field, nullptr, Index,
2272                                      StructuredList, StructuredIndex,
2273                                      true, TopLevelObject))
2274         hadError = true;
2275       else if (!VerifyOnly) {
2276         // Find the field named by the designated initializer.
2277         RecordDecl::field_iterator F = RD->field_begin();
2278         while (std::next(F) != Field)
2279           ++F;
2280         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2281         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2282           hadError = true;
2283           return;
2284         }
2285       }
2286 
2287       InitializedSomething = true;
2288 
2289       // Disable check for missing fields when designators are used.
2290       // This matches gcc behaviour.
2291       CheckForMissingFields = false;
2292       continue;
2293     }
2294 
2295     // Check if this is an initializer of forms:
2296     //
2297     //   struct foo f = {};
2298     //   struct foo g = {0};
2299     //
2300     // These are okay for randomized structures. [C99 6.7.8p19]
2301     //
2302     // Also, if there is only one element in the structure, we allow something
2303     // like this, because it's really not randomized in the tranditional sense.
2304     //
2305     //   struct foo h = {bar};
2306     auto IsZeroInitializer = [&](const Expr *I) {
2307       if (IList->getNumInits() == 1) {
2308         if (NumRecordDecls == 1)
2309           return true;
2310         if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2311           return IL->getValue().isZero();
2312       }
2313       return false;
2314     };
2315 
2316     // Don't allow non-designated initializers on randomized structures.
2317     if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2318       if (!VerifyOnly)
2319         SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2320       hadError = true;
2321       break;
2322     }
2323 
2324     if (Field == FieldEnd) {
2325       // We've run out of fields. We're done.
2326       break;
2327     }
2328 
2329     // We've already initialized a member of a union. We're done.
2330     if (InitializedSomething && RD->isUnion())
2331       break;
2332 
2333     // If we've hit the flexible array member at the end, we're done.
2334     if (Field->getType()->isIncompleteArrayType())
2335       break;
2336 
2337     if (Field->isUnnamedBitfield()) {
2338       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2339       ++Field;
2340       continue;
2341     }
2342 
2343     // Make sure we can use this declaration.
2344     bool InvalidUse;
2345     if (VerifyOnly)
2346       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2347     else
2348       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2349           *Field, IList->getInit(Index)->getBeginLoc());
2350     if (InvalidUse) {
2351       ++Index;
2352       ++Field;
2353       hadError = true;
2354       continue;
2355     }
2356 
2357     if (!VerifyOnly) {
2358       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2359       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2360         hadError = true;
2361         return;
2362       }
2363     }
2364 
2365     InitializedEntity MemberEntity =
2366       InitializedEntity::InitializeMember(*Field, &Entity);
2367     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2368                         StructuredList, StructuredIndex);
2369     InitializedSomething = true;
2370 
2371     if (RD->isUnion() && StructuredList) {
2372       // Initialize the first field within the union.
2373       StructuredList->setInitializedFieldInUnion(*Field);
2374     }
2375 
2376     ++Field;
2377   }
2378 
2379   // Emit warnings for missing struct field initializers.
2380   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2381       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2382       !RD->isUnion()) {
2383     // It is possible we have one or more unnamed bitfields remaining.
2384     // Find first (if any) named field and emit warning.
2385     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2386          it != end; ++it) {
2387       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2388         SemaRef.Diag(IList->getSourceRange().getEnd(),
2389                      diag::warn_missing_field_initializers) << *it;
2390         break;
2391       }
2392     }
2393   }
2394 
2395   // Check that any remaining fields can be value-initialized if we're not
2396   // building a structured list. (If we are, we'll check this later.)
2397   if (!StructuredList && Field != FieldEnd && !RD->isUnion() &&
2398       !Field->getType()->isIncompleteArrayType()) {
2399     for (; Field != FieldEnd && !hadError; ++Field) {
2400       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2401         CheckEmptyInitializable(
2402             InitializedEntity::InitializeMember(*Field, &Entity),
2403             IList->getEndLoc());
2404     }
2405   }
2406 
2407   // Check that the types of the remaining fields have accessible destructors.
2408   if (!VerifyOnly) {
2409     // If the initializer expression has a designated initializer, check the
2410     // elements for which a designated initializer is not provided too.
2411     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2412                                                      : Field;
2413     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2414       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2415       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2416         hadError = true;
2417         return;
2418       }
2419     }
2420   }
2421 
2422   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2423       Index >= IList->getNumInits())
2424     return;
2425 
2426   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2427                              TopLevelObject)) {
2428     hadError = true;
2429     ++Index;
2430     return;
2431   }
2432 
2433   InitializedEntity MemberEntity =
2434     InitializedEntity::InitializeMember(*Field, &Entity);
2435 
2436   if (isa<InitListExpr>(IList->getInit(Index)) ||
2437       AggrDeductionCandidateParamTypes)
2438     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2439                         StructuredList, StructuredIndex);
2440   else
2441     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2442                           StructuredList, StructuredIndex);
2443 }
2444 
2445 /// Expand a field designator that refers to a member of an
2446 /// anonymous struct or union into a series of field designators that
2447 /// refers to the field within the appropriate subobject.
2448 ///
2449 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2450                                            DesignatedInitExpr *DIE,
2451                                            unsigned DesigIdx,
2452                                            IndirectFieldDecl *IndirectField) {
2453   typedef DesignatedInitExpr::Designator Designator;
2454 
2455   // Build the replacement designators.
2456   SmallVector<Designator, 4> Replacements;
2457   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2458        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2459     if (PI + 1 == PE)
2460       Replacements.push_back(Designator::CreateFieldDesignator(
2461           (IdentifierInfo *)nullptr, DIE->getDesignator(DesigIdx)->getDotLoc(),
2462           DIE->getDesignator(DesigIdx)->getFieldLoc()));
2463     else
2464       Replacements.push_back(Designator::CreateFieldDesignator(
2465           (IdentifierInfo *)nullptr, SourceLocation(), SourceLocation()));
2466     assert(isa<FieldDecl>(*PI));
2467     Replacements.back().setFieldDecl(cast<FieldDecl>(*PI));
2468   }
2469 
2470   // Expand the current designator into the set of replacement
2471   // designators, so we have a full subobject path down to where the
2472   // member of the anonymous struct/union is actually stored.
2473   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2474                         &Replacements[0] + Replacements.size());
2475 }
2476 
2477 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2478                                                    DesignatedInitExpr *DIE) {
2479   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2480   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2481   for (unsigned I = 0; I < NumIndexExprs; ++I)
2482     IndexExprs[I] = DIE->getSubExpr(I + 1);
2483   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2484                                     IndexExprs,
2485                                     DIE->getEqualOrColonLoc(),
2486                                     DIE->usesGNUSyntax(), DIE->getInit());
2487 }
2488 
2489 namespace {
2490 
2491 // Callback to only accept typo corrections that are for field members of
2492 // the given struct or union.
2493 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2494  public:
2495   explicit FieldInitializerValidatorCCC(const RecordDecl *RD)
2496       : Record(RD) {}
2497 
2498   bool ValidateCandidate(const TypoCorrection &candidate) override {
2499     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2500     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2501   }
2502 
2503   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2504     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2505   }
2506 
2507  private:
2508   const RecordDecl *Record;
2509 };
2510 
2511 } // end anonymous namespace
2512 
2513 /// Check the well-formedness of a C99 designated initializer.
2514 ///
2515 /// Determines whether the designated initializer @p DIE, which
2516 /// resides at the given @p Index within the initializer list @p
2517 /// IList, is well-formed for a current object of type @p DeclType
2518 /// (C99 6.7.8). The actual subobject that this designator refers to
2519 /// within the current subobject is returned in either
2520 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2521 ///
2522 /// @param IList  The initializer list in which this designated
2523 /// initializer occurs.
2524 ///
2525 /// @param DIE The designated initializer expression.
2526 ///
2527 /// @param DesigIdx  The index of the current designator.
2528 ///
2529 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2530 /// into which the designation in @p DIE should refer.
2531 ///
2532 /// @param NextField  If non-NULL and the first designator in @p DIE is
2533 /// a field, this will be set to the field declaration corresponding
2534 /// to the field named by the designator. On input, this is expected to be
2535 /// the next field that would be initialized in the absence of designation,
2536 /// if the complete object being initialized is a struct.
2537 ///
2538 /// @param NextElementIndex  If non-NULL and the first designator in @p
2539 /// DIE is an array designator or GNU array-range designator, this
2540 /// will be set to the last index initialized by this designator.
2541 ///
2542 /// @param Index  Index into @p IList where the designated initializer
2543 /// @p DIE occurs.
2544 ///
2545 /// @param StructuredList  The initializer list expression that
2546 /// describes all of the subobject initializers in the order they'll
2547 /// actually be initialized.
2548 ///
2549 /// @returns true if there was an error, false otherwise.
2550 bool
2551 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2552                                             InitListExpr *IList,
2553                                             DesignatedInitExpr *DIE,
2554                                             unsigned DesigIdx,
2555                                             QualType &CurrentObjectType,
2556                                           RecordDecl::field_iterator *NextField,
2557                                             llvm::APSInt *NextElementIndex,
2558                                             unsigned &Index,
2559                                             InitListExpr *StructuredList,
2560                                             unsigned &StructuredIndex,
2561                                             bool FinishSubobjectInit,
2562                                             bool TopLevelObject) {
2563   if (DesigIdx == DIE->size()) {
2564     // C++20 designated initialization can result in direct-list-initialization
2565     // of the designated subobject. This is the only way that we can end up
2566     // performing direct initialization as part of aggregate initialization, so
2567     // it needs special handling.
2568     if (DIE->isDirectInit()) {
2569       Expr *Init = DIE->getInit();
2570       assert(isa<InitListExpr>(Init) &&
2571              "designator result in direct non-list initialization?");
2572       InitializationKind Kind = InitializationKind::CreateDirectList(
2573           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2574       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2575                                  /*TopLevelOfInitList*/ true);
2576       if (StructuredList) {
2577         ExprResult Result = VerifyOnly
2578                                 ? getDummyInit()
2579                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2580         UpdateStructuredListElement(StructuredList, StructuredIndex,
2581                                     Result.get());
2582       }
2583       ++Index;
2584       if (AggrDeductionCandidateParamTypes)
2585         AggrDeductionCandidateParamTypes->push_back(CurrentObjectType);
2586       return !Seq;
2587     }
2588 
2589     // Check the actual initialization for the designated object type.
2590     bool prevHadError = hadError;
2591 
2592     // Temporarily remove the designator expression from the
2593     // initializer list that the child calls see, so that we don't try
2594     // to re-process the designator.
2595     unsigned OldIndex = Index;
2596     IList->setInit(OldIndex, DIE->getInit());
2597 
2598     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2599                         StructuredIndex, /*DirectlyDesignated=*/true);
2600 
2601     // Restore the designated initializer expression in the syntactic
2602     // form of the initializer list.
2603     if (IList->getInit(OldIndex) != DIE->getInit())
2604       DIE->setInit(IList->getInit(OldIndex));
2605     IList->setInit(OldIndex, DIE);
2606 
2607     return hadError && !prevHadError;
2608   }
2609 
2610   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2611   bool IsFirstDesignator = (DesigIdx == 0);
2612   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2613     // Determine the structural initializer list that corresponds to the
2614     // current subobject.
2615     if (IsFirstDesignator)
2616       StructuredList = FullyStructuredList;
2617     else {
2618       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2619           StructuredList->getInit(StructuredIndex) : nullptr;
2620       if (!ExistingInit && StructuredList->hasArrayFiller())
2621         ExistingInit = StructuredList->getArrayFiller();
2622 
2623       if (!ExistingInit)
2624         StructuredList = getStructuredSubobjectInit(
2625             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2626             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2627       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2628         StructuredList = Result;
2629       else {
2630         // We are creating an initializer list that initializes the
2631         // subobjects of the current object, but there was already an
2632         // initialization that completely initialized the current
2633         // subobject, e.g., by a compound literal:
2634         //
2635         // struct X { int a, b; };
2636         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2637         //
2638         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2639         // designated initializer re-initializes only its current object
2640         // subobject [0].b.
2641         diagnoseInitOverride(ExistingInit,
2642                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2643                              /*UnionOverride=*/false,
2644                              /*FullyOverwritten=*/false);
2645 
2646         if (!VerifyOnly) {
2647           if (DesignatedInitUpdateExpr *E =
2648                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2649             StructuredList = E->getUpdater();
2650           else {
2651             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2652                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2653                                          ExistingInit, DIE->getEndLoc());
2654             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2655             StructuredList = DIUE->getUpdater();
2656           }
2657         } else {
2658           // We don't need to track the structured representation of a
2659           // designated init update of an already-fully-initialized object in
2660           // verify-only mode. The only reason we would need the structure is
2661           // to determine where the uninitialized "holes" are, and in this
2662           // case, we know there aren't any and we can't introduce any.
2663           StructuredList = nullptr;
2664         }
2665       }
2666     }
2667   }
2668 
2669   if (D->isFieldDesignator()) {
2670     // C99 6.7.8p7:
2671     //
2672     //   If a designator has the form
2673     //
2674     //      . identifier
2675     //
2676     //   then the current object (defined below) shall have
2677     //   structure or union type and the identifier shall be the
2678     //   name of a member of that type.
2679     RecordDecl *RD = getRecordDecl(CurrentObjectType);
2680     if (!RD) {
2681       SourceLocation Loc = D->getDotLoc();
2682       if (Loc.isInvalid())
2683         Loc = D->getFieldLoc();
2684       if (!VerifyOnly)
2685         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2686           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2687       ++Index;
2688       return true;
2689     }
2690 
2691     FieldDecl *KnownField = D->getFieldDecl();
2692     if (!KnownField) {
2693       const IdentifierInfo *FieldName = D->getFieldName();
2694       DeclContext::lookup_result Lookup = RD->lookup(FieldName);
2695       for (NamedDecl *ND : Lookup) {
2696         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2697           KnownField = FD;
2698           break;
2699         }
2700         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2701           // In verify mode, don't modify the original.
2702           if (VerifyOnly)
2703             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2704           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2705           D = DIE->getDesignator(DesigIdx);
2706           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2707           break;
2708         }
2709       }
2710       if (!KnownField) {
2711         if (VerifyOnly) {
2712           ++Index;
2713           return true;  // No typo correction when just trying this out.
2714         }
2715 
2716         // Name lookup found something, but it wasn't a field.
2717         if (!Lookup.empty()) {
2718           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2719             << FieldName;
2720           SemaRef.Diag(Lookup.front()->getLocation(),
2721                        diag::note_field_designator_found);
2722           ++Index;
2723           return true;
2724         }
2725 
2726         // Name lookup didn't find anything.
2727         // Determine whether this was a typo for another field name.
2728         FieldInitializerValidatorCCC CCC(RD);
2729         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2730                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2731                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2732                 Sema::CTK_ErrorRecovery, RD)) {
2733           SemaRef.diagnoseTypo(
2734               Corrected,
2735               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2736                 << FieldName << CurrentObjectType);
2737           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2738           hadError = true;
2739         } else {
2740           // Typo correction didn't find anything.
2741           SourceLocation Loc = D->getFieldLoc();
2742 
2743           // The loc can be invalid with a "null" designator (i.e. an anonymous
2744           // union/struct). Do our best to approximate the location.
2745           if (Loc.isInvalid())
2746             Loc = IList->getBeginLoc();
2747 
2748           SemaRef.Diag(Loc, diag::err_field_designator_unknown)
2749             << FieldName << CurrentObjectType << DIE->getSourceRange();
2750           ++Index;
2751           return true;
2752         }
2753       }
2754     }
2755 
2756     unsigned NumBases = 0;
2757     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
2758       NumBases = CXXRD->getNumBases();
2759 
2760     unsigned FieldIndex = NumBases;
2761 
2762     for (auto *FI : RD->fields()) {
2763       if (FI->isUnnamedBitfield())
2764         continue;
2765       if (declaresSameEntity(KnownField, FI)) {
2766         KnownField = FI;
2767         break;
2768       }
2769       ++FieldIndex;
2770     }
2771 
2772     RecordDecl::field_iterator Field =
2773         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2774 
2775     // All of the fields of a union are located at the same place in
2776     // the initializer list.
2777     if (RD->isUnion()) {
2778       FieldIndex = 0;
2779       if (StructuredList) {
2780         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2781         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2782           assert(StructuredList->getNumInits() == 1
2783                  && "A union should never have more than one initializer!");
2784 
2785           Expr *ExistingInit = StructuredList->getInit(0);
2786           if (ExistingInit) {
2787             // We're about to throw away an initializer, emit warning.
2788             diagnoseInitOverride(
2789                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2790                 /*UnionOverride=*/true,
2791                 /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false
2792                                                                      : true);
2793           }
2794 
2795           // remove existing initializer
2796           StructuredList->resizeInits(SemaRef.Context, 0);
2797           StructuredList->setInitializedFieldInUnion(nullptr);
2798         }
2799 
2800         StructuredList->setInitializedFieldInUnion(*Field);
2801       }
2802     }
2803 
2804     // Make sure we can use this declaration.
2805     bool InvalidUse;
2806     if (VerifyOnly)
2807       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2808     else
2809       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2810     if (InvalidUse) {
2811       ++Index;
2812       return true;
2813     }
2814 
2815     // C++20 [dcl.init.list]p3:
2816     //   The ordered identifiers in the designators of the designated-
2817     //   initializer-list shall form a subsequence of the ordered identifiers
2818     //   in the direct non-static data members of T.
2819     //
2820     // Note that this is not a condition on forming the aggregate
2821     // initialization, only on actually performing initialization,
2822     // so it is not checked in VerifyOnly mode.
2823     //
2824     // FIXME: This is the only reordering diagnostic we produce, and it only
2825     // catches cases where we have a top-level field designator that jumps
2826     // backwards. This is the only such case that is reachable in an
2827     // otherwise-valid C++20 program, so is the only case that's required for
2828     // conformance, but for consistency, we should diagnose all the other
2829     // cases where a designator takes us backwards too.
2830     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2831         NextField &&
2832         (*NextField == RD->field_end() ||
2833          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2834       // Find the field that we just initialized.
2835       FieldDecl *PrevField = nullptr;
2836       for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) {
2837         if (FI->isUnnamedBitfield())
2838           continue;
2839         if (*NextField != RD->field_end() &&
2840             declaresSameEntity(*FI, **NextField))
2841           break;
2842         PrevField = *FI;
2843       }
2844 
2845       if (PrevField &&
2846           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2847         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2848             << KnownField << PrevField << DIE->getSourceRange();
2849 
2850         unsigned OldIndex = StructuredIndex - 1;
2851         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2852           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2853             SemaRef.Diag(PrevInit->getBeginLoc(),
2854                          diag::note_previous_field_init)
2855                 << PrevField << PrevInit->getSourceRange();
2856           }
2857         }
2858       }
2859     }
2860 
2861 
2862     // Update the designator with the field declaration.
2863     if (!VerifyOnly)
2864       D->setFieldDecl(*Field);
2865 
2866     // Make sure that our non-designated initializer list has space
2867     // for a subobject corresponding to this field.
2868     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2869       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2870 
2871     // This designator names a flexible array member.
2872     if (Field->getType()->isIncompleteArrayType()) {
2873       bool Invalid = false;
2874       if ((DesigIdx + 1) != DIE->size()) {
2875         // We can't designate an object within the flexible array
2876         // member (because GCC doesn't allow it).
2877         if (!VerifyOnly) {
2878           DesignatedInitExpr::Designator *NextD
2879             = DIE->getDesignator(DesigIdx + 1);
2880           SemaRef.Diag(NextD->getBeginLoc(),
2881                        diag::err_designator_into_flexible_array_member)
2882               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2883           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2884             << *Field;
2885         }
2886         Invalid = true;
2887       }
2888 
2889       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2890           !isa<StringLiteral>(DIE->getInit())) {
2891         // The initializer is not an initializer list.
2892         if (!VerifyOnly) {
2893           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2894                        diag::err_flexible_array_init_needs_braces)
2895               << DIE->getInit()->getSourceRange();
2896           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2897             << *Field;
2898         }
2899         Invalid = true;
2900       }
2901 
2902       // Check GNU flexible array initializer.
2903       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2904                                              TopLevelObject))
2905         Invalid = true;
2906 
2907       if (Invalid) {
2908         ++Index;
2909         return true;
2910       }
2911 
2912       // Initialize the array.
2913       bool prevHadError = hadError;
2914       unsigned newStructuredIndex = FieldIndex;
2915       unsigned OldIndex = Index;
2916       IList->setInit(Index, DIE->getInit());
2917 
2918       InitializedEntity MemberEntity =
2919         InitializedEntity::InitializeMember(*Field, &Entity);
2920       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2921                           StructuredList, newStructuredIndex);
2922 
2923       IList->setInit(OldIndex, DIE);
2924       if (hadError && !prevHadError) {
2925         ++Field;
2926         ++FieldIndex;
2927         if (NextField)
2928           *NextField = Field;
2929         StructuredIndex = FieldIndex;
2930         return true;
2931       }
2932     } else {
2933       // Recurse to check later designated subobjects.
2934       QualType FieldType = Field->getType();
2935       unsigned newStructuredIndex = FieldIndex;
2936 
2937       InitializedEntity MemberEntity =
2938         InitializedEntity::InitializeMember(*Field, &Entity);
2939       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2940                                      FieldType, nullptr, nullptr, Index,
2941                                      StructuredList, newStructuredIndex,
2942                                      FinishSubobjectInit, false))
2943         return true;
2944     }
2945 
2946     // Find the position of the next field to be initialized in this
2947     // subobject.
2948     ++Field;
2949     ++FieldIndex;
2950 
2951     // If this the first designator, our caller will continue checking
2952     // the rest of this struct/class/union subobject.
2953     if (IsFirstDesignator) {
2954       if (Field != RD->field_end() && Field->isUnnamedBitfield())
2955         ++Field;
2956 
2957       if (NextField)
2958         *NextField = Field;
2959 
2960       StructuredIndex = FieldIndex;
2961       return false;
2962     }
2963 
2964     if (!FinishSubobjectInit)
2965       return false;
2966 
2967     // We've already initialized something in the union; we're done.
2968     if (RD->isUnion())
2969       return hadError;
2970 
2971     // Check the remaining fields within this class/struct/union subobject.
2972     bool prevHadError = hadError;
2973 
2974     auto NoBases =
2975         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2976                                         CXXRecordDecl::base_class_iterator());
2977     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2978                           false, Index, StructuredList, FieldIndex);
2979     return hadError && !prevHadError;
2980   }
2981 
2982   // C99 6.7.8p6:
2983   //
2984   //   If a designator has the form
2985   //
2986   //      [ constant-expression ]
2987   //
2988   //   then the current object (defined below) shall have array
2989   //   type and the expression shall be an integer constant
2990   //   expression. If the array is of unknown size, any
2991   //   nonnegative value is valid.
2992   //
2993   // Additionally, cope with the GNU extension that permits
2994   // designators of the form
2995   //
2996   //      [ constant-expression ... constant-expression ]
2997   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2998   if (!AT) {
2999     if (!VerifyOnly)
3000       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
3001         << CurrentObjectType;
3002     ++Index;
3003     return true;
3004   }
3005 
3006   Expr *IndexExpr = nullptr;
3007   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
3008   if (D->isArrayDesignator()) {
3009     IndexExpr = DIE->getArrayIndex(*D);
3010     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
3011     DesignatedEndIndex = DesignatedStartIndex;
3012   } else {
3013     assert(D->isArrayRangeDesignator() && "Need array-range designator");
3014 
3015     DesignatedStartIndex =
3016       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
3017     DesignatedEndIndex =
3018       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
3019     IndexExpr = DIE->getArrayRangeEnd(*D);
3020 
3021     // Codegen can't handle evaluating array range designators that have side
3022     // effects, because we replicate the AST value for each initialized element.
3023     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
3024     // elements with something that has a side effect, so codegen can emit an
3025     // "error unsupported" error instead of miscompiling the app.
3026     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
3027         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
3028       FullyStructuredList->sawArrayRangeDesignator();
3029   }
3030 
3031   if (isa<ConstantArrayType>(AT)) {
3032     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
3033     DesignatedStartIndex
3034       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
3035     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
3036     DesignatedEndIndex
3037       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
3038     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
3039     if (DesignatedEndIndex >= MaxElements) {
3040       if (!VerifyOnly)
3041         SemaRef.Diag(IndexExpr->getBeginLoc(),
3042                      diag::err_array_designator_too_large)
3043             << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
3044             << IndexExpr->getSourceRange();
3045       ++Index;
3046       return true;
3047     }
3048   } else {
3049     unsigned DesignatedIndexBitWidth =
3050       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
3051     DesignatedStartIndex =
3052       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
3053     DesignatedEndIndex =
3054       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
3055     DesignatedStartIndex.setIsUnsigned(true);
3056     DesignatedEndIndex.setIsUnsigned(true);
3057   }
3058 
3059   bool IsStringLiteralInitUpdate =
3060       StructuredList && StructuredList->isStringLiteralInit();
3061   if (IsStringLiteralInitUpdate && VerifyOnly) {
3062     // We're just verifying an update to a string literal init. We don't need
3063     // to split the string up into individual characters to do that.
3064     StructuredList = nullptr;
3065   } else if (IsStringLiteralInitUpdate) {
3066     // We're modifying a string literal init; we have to decompose the string
3067     // so we can modify the individual characters.
3068     ASTContext &Context = SemaRef.Context;
3069     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
3070 
3071     // Compute the character type
3072     QualType CharTy = AT->getElementType();
3073 
3074     // Compute the type of the integer literals.
3075     QualType PromotedCharTy = CharTy;
3076     if (Context.isPromotableIntegerType(CharTy))
3077       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
3078     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
3079 
3080     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
3081       // Get the length of the string.
3082       uint64_t StrLen = SL->getLength();
3083       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
3084         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
3085       StructuredList->resizeInits(Context, StrLen);
3086 
3087       // Build a literal for each character in the string, and put them into
3088       // the init list.
3089       for (unsigned i = 0, e = StrLen; i != e; ++i) {
3090         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
3091         Expr *Init = new (Context) IntegerLiteral(
3092             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
3093         if (CharTy != PromotedCharTy)
3094           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
3095                                           Init, nullptr, VK_PRValue,
3096                                           FPOptionsOverride());
3097         StructuredList->updateInit(Context, i, Init);
3098       }
3099     } else {
3100       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
3101       std::string Str;
3102       Context.getObjCEncodingForType(E->getEncodedType(), Str);
3103 
3104       // Get the length of the string.
3105       uint64_t StrLen = Str.size();
3106       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
3107         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
3108       StructuredList->resizeInits(Context, StrLen);
3109 
3110       // Build a literal for each character in the string, and put them into
3111       // the init list.
3112       for (unsigned i = 0, e = StrLen; i != e; ++i) {
3113         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
3114         Expr *Init = new (Context) IntegerLiteral(
3115             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
3116         if (CharTy != PromotedCharTy)
3117           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
3118                                           Init, nullptr, VK_PRValue,
3119                                           FPOptionsOverride());
3120         StructuredList->updateInit(Context, i, Init);
3121       }
3122     }
3123   }
3124 
3125   // Make sure that our non-designated initializer list has space
3126   // for a subobject corresponding to this array element.
3127   if (StructuredList &&
3128       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
3129     StructuredList->resizeInits(SemaRef.Context,
3130                                 DesignatedEndIndex.getZExtValue() + 1);
3131 
3132   // Repeatedly perform subobject initializations in the range
3133   // [DesignatedStartIndex, DesignatedEndIndex].
3134 
3135   // Move to the next designator
3136   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
3137   unsigned OldIndex = Index;
3138 
3139   InitializedEntity ElementEntity =
3140     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3141 
3142   while (DesignatedStartIndex <= DesignatedEndIndex) {
3143     // Recurse to check later designated subobjects.
3144     QualType ElementType = AT->getElementType();
3145     Index = OldIndex;
3146 
3147     ElementEntity.setElementIndex(ElementIndex);
3148     if (CheckDesignatedInitializer(
3149             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3150             nullptr, Index, StructuredList, ElementIndex,
3151             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3152             false))
3153       return true;
3154 
3155     // Move to the next index in the array that we'll be initializing.
3156     ++DesignatedStartIndex;
3157     ElementIndex = DesignatedStartIndex.getZExtValue();
3158   }
3159 
3160   // If this the first designator, our caller will continue checking
3161   // the rest of this array subobject.
3162   if (IsFirstDesignator) {
3163     if (NextElementIndex)
3164       *NextElementIndex = DesignatedStartIndex;
3165     StructuredIndex = ElementIndex;
3166     return false;
3167   }
3168 
3169   if (!FinishSubobjectInit)
3170     return false;
3171 
3172   // Check the remaining elements within this array subobject.
3173   bool prevHadError = hadError;
3174   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3175                  /*SubobjectIsDesignatorContext=*/false, Index,
3176                  StructuredList, ElementIndex);
3177   return hadError && !prevHadError;
3178 }
3179 
3180 // Get the structured initializer list for a subobject of type
3181 // @p CurrentObjectType.
3182 InitListExpr *
3183 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3184                                             QualType CurrentObjectType,
3185                                             InitListExpr *StructuredList,
3186                                             unsigned StructuredIndex,
3187                                             SourceRange InitRange,
3188                                             bool IsFullyOverwritten) {
3189   if (!StructuredList)
3190     return nullptr;
3191 
3192   Expr *ExistingInit = nullptr;
3193   if (StructuredIndex < StructuredList->getNumInits())
3194     ExistingInit = StructuredList->getInit(StructuredIndex);
3195 
3196   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3197     // There might have already been initializers for subobjects of the current
3198     // object, but a subsequent initializer list will overwrite the entirety
3199     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3200     //
3201     // struct P { char x[6]; };
3202     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3203     //
3204     // The first designated initializer is ignored, and l.x is just "f".
3205     if (!IsFullyOverwritten)
3206       return Result;
3207 
3208   if (ExistingInit) {
3209     // We are creating an initializer list that initializes the
3210     // subobjects of the current object, but there was already an
3211     // initialization that completely initialized the current
3212     // subobject:
3213     //
3214     // struct X { int a, b; };
3215     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3216     //
3217     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3218     // designated initializer overwrites the [0].b initializer
3219     // from the prior initialization.
3220     //
3221     // When the existing initializer is an expression rather than an
3222     // initializer list, we cannot decompose and update it in this way.
3223     // For example:
3224     //
3225     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3226     //
3227     // This case is handled by CheckDesignatedInitializer.
3228     diagnoseInitOverride(ExistingInit, InitRange);
3229   }
3230 
3231   unsigned ExpectedNumInits = 0;
3232   if (Index < IList->getNumInits()) {
3233     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3234       ExpectedNumInits = Init->getNumInits();
3235     else
3236       ExpectedNumInits = IList->getNumInits() - Index;
3237   }
3238 
3239   InitListExpr *Result =
3240       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3241 
3242   // Link this new initializer list into the structured initializer
3243   // lists.
3244   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3245   return Result;
3246 }
3247 
3248 InitListExpr *
3249 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3250                                     SourceRange InitRange,
3251                                     unsigned ExpectedNumInits) {
3252   InitListExpr *Result = new (SemaRef.Context) InitListExpr(
3253       SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd());
3254 
3255   QualType ResultType = CurrentObjectType;
3256   if (!ResultType->isArrayType())
3257     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3258   Result->setType(ResultType);
3259 
3260   // Pre-allocate storage for the structured initializer list.
3261   unsigned NumElements = 0;
3262 
3263   if (const ArrayType *AType
3264       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3265     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3266       NumElements = CAType->getSize().getZExtValue();
3267       // Simple heuristic so that we don't allocate a very large
3268       // initializer with many empty entries at the end.
3269       if (NumElements > ExpectedNumInits)
3270         NumElements = 0;
3271     }
3272   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3273     NumElements = VType->getNumElements();
3274   } else if (CurrentObjectType->isRecordType()) {
3275     NumElements = numStructUnionElements(CurrentObjectType);
3276   } else if (CurrentObjectType->isDependentType()) {
3277     NumElements = 1;
3278   }
3279 
3280   Result->reserveInits(SemaRef.Context, NumElements);
3281 
3282   return Result;
3283 }
3284 
3285 /// Update the initializer at index @p StructuredIndex within the
3286 /// structured initializer list to the value @p expr.
3287 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3288                                                   unsigned &StructuredIndex,
3289                                                   Expr *expr) {
3290   // No structured initializer list to update
3291   if (!StructuredList)
3292     return;
3293 
3294   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3295                                                   StructuredIndex, expr)) {
3296     // This initializer overwrites a previous initializer.
3297     // No need to diagnose when `expr` is nullptr because a more relevant
3298     // diagnostic has already been issued and this diagnostic is potentially
3299     // noise.
3300     if (expr)
3301       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3302   }
3303 
3304   ++StructuredIndex;
3305 }
3306 
3307 /// Determine whether we can perform aggregate initialization for the purposes
3308 /// of overload resolution.
3309 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3310     const InitializedEntity &Entity, InitListExpr *From) {
3311   QualType Type = Entity.getType();
3312   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3313                         /*TreatUnavailableAsInvalid=*/false,
3314                         /*InOverloadResolution=*/true);
3315   return !Check.HadError();
3316 }
3317 
3318 /// Check that the given Index expression is a valid array designator
3319 /// value. This is essentially just a wrapper around
3320 /// VerifyIntegerConstantExpression that also checks for negative values
3321 /// and produces a reasonable diagnostic if there is a
3322 /// failure. Returns the index expression, possibly with an implicit cast
3323 /// added, on success.  If everything went okay, Value will receive the
3324 /// value of the constant expression.
3325 static ExprResult
3326 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3327   SourceLocation Loc = Index->getBeginLoc();
3328 
3329   // Make sure this is an integer constant expression.
3330   ExprResult Result =
3331       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3332   if (Result.isInvalid())
3333     return Result;
3334 
3335   if (Value.isSigned() && Value.isNegative())
3336     return S.Diag(Loc, diag::err_array_designator_negative)
3337            << toString(Value, 10) << Index->getSourceRange();
3338 
3339   Value.setIsUnsigned(true);
3340   return Result;
3341 }
3342 
3343 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3344                                             SourceLocation EqualOrColonLoc,
3345                                             bool GNUSyntax,
3346                                             ExprResult Init) {
3347   typedef DesignatedInitExpr::Designator ASTDesignator;
3348 
3349   bool Invalid = false;
3350   SmallVector<ASTDesignator, 32> Designators;
3351   SmallVector<Expr *, 32> InitExpressions;
3352 
3353   // Build designators and check array designator expressions.
3354   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3355     const Designator &D = Desig.getDesignator(Idx);
3356 
3357     if (D.isFieldDesignator()) {
3358       Designators.push_back(ASTDesignator::CreateFieldDesignator(
3359           D.getFieldDecl(), D.getDotLoc(), D.getFieldLoc()));
3360     } else if (D.isArrayDesignator()) {
3361       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3362       llvm::APSInt IndexValue;
3363       if (!Index->isTypeDependent() && !Index->isValueDependent())
3364         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3365       if (!Index)
3366         Invalid = true;
3367       else {
3368         Designators.push_back(ASTDesignator::CreateArrayDesignator(
3369             InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc()));
3370         InitExpressions.push_back(Index);
3371       }
3372     } else if (D.isArrayRangeDesignator()) {
3373       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3374       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3375       llvm::APSInt StartValue;
3376       llvm::APSInt EndValue;
3377       bool StartDependent = StartIndex->isTypeDependent() ||
3378                             StartIndex->isValueDependent();
3379       bool EndDependent = EndIndex->isTypeDependent() ||
3380                           EndIndex->isValueDependent();
3381       if (!StartDependent)
3382         StartIndex =
3383             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3384       if (!EndDependent)
3385         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3386 
3387       if (!StartIndex || !EndIndex)
3388         Invalid = true;
3389       else {
3390         // Make sure we're comparing values with the same bit width.
3391         if (StartDependent || EndDependent) {
3392           // Nothing to compute.
3393         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3394           EndValue = EndValue.extend(StartValue.getBitWidth());
3395         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3396           StartValue = StartValue.extend(EndValue.getBitWidth());
3397 
3398         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3399           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3400             << toString(StartValue, 10) << toString(EndValue, 10)
3401             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3402           Invalid = true;
3403         } else {
3404           Designators.push_back(ASTDesignator::CreateArrayRangeDesignator(
3405               InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(),
3406               D.getRBracketLoc()));
3407           InitExpressions.push_back(StartIndex);
3408           InitExpressions.push_back(EndIndex);
3409         }
3410       }
3411     }
3412   }
3413 
3414   if (Invalid || Init.isInvalid())
3415     return ExprError();
3416 
3417   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3418                                     EqualOrColonLoc, GNUSyntax,
3419                                     Init.getAs<Expr>());
3420 }
3421 
3422 //===----------------------------------------------------------------------===//
3423 // Initialization entity
3424 //===----------------------------------------------------------------------===//
3425 
3426 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3427                                      const InitializedEntity &Parent)
3428   : Parent(&Parent), Index(Index)
3429 {
3430   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3431     Kind = EK_ArrayElement;
3432     Type = AT->getElementType();
3433   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3434     Kind = EK_VectorElement;
3435     Type = VT->getElementType();
3436   } else {
3437     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3438     assert(CT && "Unexpected type");
3439     Kind = EK_ComplexElement;
3440     Type = CT->getElementType();
3441   }
3442 }
3443 
3444 InitializedEntity
3445 InitializedEntity::InitializeBase(ASTContext &Context,
3446                                   const CXXBaseSpecifier *Base,
3447                                   bool IsInheritedVirtualBase,
3448                                   const InitializedEntity *Parent) {
3449   InitializedEntity Result;
3450   Result.Kind = EK_Base;
3451   Result.Parent = Parent;
3452   Result.Base = {Base, IsInheritedVirtualBase};
3453   Result.Type = Base->getType();
3454   return Result;
3455 }
3456 
3457 DeclarationName InitializedEntity::getName() const {
3458   switch (getKind()) {
3459   case EK_Parameter:
3460   case EK_Parameter_CF_Audited: {
3461     ParmVarDecl *D = Parameter.getPointer();
3462     return (D ? D->getDeclName() : DeclarationName());
3463   }
3464 
3465   case EK_Variable:
3466   case EK_Member:
3467   case EK_ParenAggInitMember:
3468   case EK_Binding:
3469   case EK_TemplateParameter:
3470     return Variable.VariableOrMember->getDeclName();
3471 
3472   case EK_LambdaCapture:
3473     return DeclarationName(Capture.VarID);
3474 
3475   case EK_Result:
3476   case EK_StmtExprResult:
3477   case EK_Exception:
3478   case EK_New:
3479   case EK_Temporary:
3480   case EK_Base:
3481   case EK_Delegating:
3482   case EK_ArrayElement:
3483   case EK_VectorElement:
3484   case EK_ComplexElement:
3485   case EK_BlockElement:
3486   case EK_LambdaToBlockConversionBlockElement:
3487   case EK_CompoundLiteralInit:
3488   case EK_RelatedResult:
3489     return DeclarationName();
3490   }
3491 
3492   llvm_unreachable("Invalid EntityKind!");
3493 }
3494 
3495 ValueDecl *InitializedEntity::getDecl() const {
3496   switch (getKind()) {
3497   case EK_Variable:
3498   case EK_Member:
3499   case EK_ParenAggInitMember:
3500   case EK_Binding:
3501   case EK_TemplateParameter:
3502     return Variable.VariableOrMember;
3503 
3504   case EK_Parameter:
3505   case EK_Parameter_CF_Audited:
3506     return Parameter.getPointer();
3507 
3508   case EK_Result:
3509   case EK_StmtExprResult:
3510   case EK_Exception:
3511   case EK_New:
3512   case EK_Temporary:
3513   case EK_Base:
3514   case EK_Delegating:
3515   case EK_ArrayElement:
3516   case EK_VectorElement:
3517   case EK_ComplexElement:
3518   case EK_BlockElement:
3519   case EK_LambdaToBlockConversionBlockElement:
3520   case EK_LambdaCapture:
3521   case EK_CompoundLiteralInit:
3522   case EK_RelatedResult:
3523     return nullptr;
3524   }
3525 
3526   llvm_unreachable("Invalid EntityKind!");
3527 }
3528 
3529 bool InitializedEntity::allowsNRVO() const {
3530   switch (getKind()) {
3531   case EK_Result:
3532   case EK_Exception:
3533     return LocAndNRVO.NRVO;
3534 
3535   case EK_StmtExprResult:
3536   case EK_Variable:
3537   case EK_Parameter:
3538   case EK_Parameter_CF_Audited:
3539   case EK_TemplateParameter:
3540   case EK_Member:
3541   case EK_ParenAggInitMember:
3542   case EK_Binding:
3543   case EK_New:
3544   case EK_Temporary:
3545   case EK_CompoundLiteralInit:
3546   case EK_Base:
3547   case EK_Delegating:
3548   case EK_ArrayElement:
3549   case EK_VectorElement:
3550   case EK_ComplexElement:
3551   case EK_BlockElement:
3552   case EK_LambdaToBlockConversionBlockElement:
3553   case EK_LambdaCapture:
3554   case EK_RelatedResult:
3555     break;
3556   }
3557 
3558   return false;
3559 }
3560 
3561 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3562   assert(getParent() != this);
3563   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3564   for (unsigned I = 0; I != Depth; ++I)
3565     OS << "`-";
3566 
3567   switch (getKind()) {
3568   case EK_Variable: OS << "Variable"; break;
3569   case EK_Parameter: OS << "Parameter"; break;
3570   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3571     break;
3572   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3573   case EK_Result: OS << "Result"; break;
3574   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3575   case EK_Exception: OS << "Exception"; break;
3576   case EK_Member:
3577   case EK_ParenAggInitMember:
3578     OS << "Member";
3579     break;
3580   case EK_Binding: OS << "Binding"; break;
3581   case EK_New: OS << "New"; break;
3582   case EK_Temporary: OS << "Temporary"; break;
3583   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3584   case EK_RelatedResult: OS << "RelatedResult"; break;
3585   case EK_Base: OS << "Base"; break;
3586   case EK_Delegating: OS << "Delegating"; break;
3587   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3588   case EK_VectorElement: OS << "VectorElement " << Index; break;
3589   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3590   case EK_BlockElement: OS << "Block"; break;
3591   case EK_LambdaToBlockConversionBlockElement:
3592     OS << "Block (lambda)";
3593     break;
3594   case EK_LambdaCapture:
3595     OS << "LambdaCapture ";
3596     OS << DeclarationName(Capture.VarID);
3597     break;
3598   }
3599 
3600   if (auto *D = getDecl()) {
3601     OS << " ";
3602     D->printQualifiedName(OS);
3603   }
3604 
3605   OS << " '" << getType() << "'\n";
3606 
3607   return Depth + 1;
3608 }
3609 
3610 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3611   dumpImpl(llvm::errs());
3612 }
3613 
3614 //===----------------------------------------------------------------------===//
3615 // Initialization sequence
3616 //===----------------------------------------------------------------------===//
3617 
3618 void InitializationSequence::Step::Destroy() {
3619   switch (Kind) {
3620   case SK_ResolveAddressOfOverloadedFunction:
3621   case SK_CastDerivedToBasePRValue:
3622   case SK_CastDerivedToBaseXValue:
3623   case SK_CastDerivedToBaseLValue:
3624   case SK_BindReference:
3625   case SK_BindReferenceToTemporary:
3626   case SK_FinalCopy:
3627   case SK_ExtraneousCopyToTemporary:
3628   case SK_UserConversion:
3629   case SK_QualificationConversionPRValue:
3630   case SK_QualificationConversionXValue:
3631   case SK_QualificationConversionLValue:
3632   case SK_FunctionReferenceConversion:
3633   case SK_AtomicConversion:
3634   case SK_ListInitialization:
3635   case SK_UnwrapInitList:
3636   case SK_RewrapInitList:
3637   case SK_ConstructorInitialization:
3638   case SK_ConstructorInitializationFromList:
3639   case SK_ZeroInitialization:
3640   case SK_CAssignment:
3641   case SK_StringInit:
3642   case SK_ObjCObjectConversion:
3643   case SK_ArrayLoopIndex:
3644   case SK_ArrayLoopInit:
3645   case SK_ArrayInit:
3646   case SK_GNUArrayInit:
3647   case SK_ParenthesizedArrayInit:
3648   case SK_PassByIndirectCopyRestore:
3649   case SK_PassByIndirectRestore:
3650   case SK_ProduceObjCObject:
3651   case SK_StdInitializerList:
3652   case SK_StdInitializerListConstructorCall:
3653   case SK_OCLSamplerInit:
3654   case SK_OCLZeroOpaqueType:
3655   case SK_ParenthesizedListInit:
3656     break;
3657 
3658   case SK_ConversionSequence:
3659   case SK_ConversionSequenceNoNarrowing:
3660     delete ICS;
3661   }
3662 }
3663 
3664 bool InitializationSequence::isDirectReferenceBinding() const {
3665   // There can be some lvalue adjustments after the SK_BindReference step.
3666   for (const Step &S : llvm::reverse(Steps)) {
3667     if (S.Kind == SK_BindReference)
3668       return true;
3669     if (S.Kind == SK_BindReferenceToTemporary)
3670       return false;
3671   }
3672   return false;
3673 }
3674 
3675 bool InitializationSequence::isAmbiguous() const {
3676   if (!Failed())
3677     return false;
3678 
3679   switch (getFailureKind()) {
3680   case FK_TooManyInitsForReference:
3681   case FK_ParenthesizedListInitForReference:
3682   case FK_ArrayNeedsInitList:
3683   case FK_ArrayNeedsInitListOrStringLiteral:
3684   case FK_ArrayNeedsInitListOrWideStringLiteral:
3685   case FK_NarrowStringIntoWideCharArray:
3686   case FK_WideStringIntoCharArray:
3687   case FK_IncompatWideStringIntoWideChar:
3688   case FK_PlainStringIntoUTF8Char:
3689   case FK_UTF8StringIntoPlainChar:
3690   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3691   case FK_NonConstLValueReferenceBindingToTemporary:
3692   case FK_NonConstLValueReferenceBindingToBitfield:
3693   case FK_NonConstLValueReferenceBindingToVectorElement:
3694   case FK_NonConstLValueReferenceBindingToMatrixElement:
3695   case FK_NonConstLValueReferenceBindingToUnrelated:
3696   case FK_RValueReferenceBindingToLValue:
3697   case FK_ReferenceAddrspaceMismatchTemporary:
3698   case FK_ReferenceInitDropsQualifiers:
3699   case FK_ReferenceInitFailed:
3700   case FK_ConversionFailed:
3701   case FK_ConversionFromPropertyFailed:
3702   case FK_TooManyInitsForScalar:
3703   case FK_ParenthesizedListInitForScalar:
3704   case FK_ReferenceBindingToInitList:
3705   case FK_InitListBadDestinationType:
3706   case FK_DefaultInitOfConst:
3707   case FK_Incomplete:
3708   case FK_ArrayTypeMismatch:
3709   case FK_NonConstantArrayInit:
3710   case FK_ListInitializationFailed:
3711   case FK_VariableLengthArrayHasInitializer:
3712   case FK_PlaceholderType:
3713   case FK_ExplicitConstructor:
3714   case FK_AddressOfUnaddressableFunction:
3715   case FK_ParenthesizedListInitFailed:
3716   case FK_DesignatedInitForNonAggregate:
3717     return false;
3718 
3719   case FK_ReferenceInitOverloadFailed:
3720   case FK_UserConversionOverloadFailed:
3721   case FK_ConstructorOverloadFailed:
3722   case FK_ListConstructorOverloadFailed:
3723     return FailedOverloadResult == OR_Ambiguous;
3724   }
3725 
3726   llvm_unreachable("Invalid EntityKind!");
3727 }
3728 
3729 bool InitializationSequence::isConstructorInitialization() const {
3730   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3731 }
3732 
3733 void
3734 InitializationSequence
3735 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3736                                    DeclAccessPair Found,
3737                                    bool HadMultipleCandidates) {
3738   Step S;
3739   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3740   S.Type = Function->getType();
3741   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3742   S.Function.Function = Function;
3743   S.Function.FoundDecl = Found;
3744   Steps.push_back(S);
3745 }
3746 
3747 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3748                                                       ExprValueKind VK) {
3749   Step S;
3750   switch (VK) {
3751   case VK_PRValue:
3752     S.Kind = SK_CastDerivedToBasePRValue;
3753     break;
3754   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3755   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3756   }
3757   S.Type = BaseType;
3758   Steps.push_back(S);
3759 }
3760 
3761 void InitializationSequence::AddReferenceBindingStep(QualType T,
3762                                                      bool BindingTemporary) {
3763   Step S;
3764   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3765   S.Type = T;
3766   Steps.push_back(S);
3767 }
3768 
3769 void InitializationSequence::AddFinalCopy(QualType T) {
3770   Step S;
3771   S.Kind = SK_FinalCopy;
3772   S.Type = T;
3773   Steps.push_back(S);
3774 }
3775 
3776 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3777   Step S;
3778   S.Kind = SK_ExtraneousCopyToTemporary;
3779   S.Type = T;
3780   Steps.push_back(S);
3781 }
3782 
3783 void
3784 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3785                                               DeclAccessPair FoundDecl,
3786                                               QualType T,
3787                                               bool HadMultipleCandidates) {
3788   Step S;
3789   S.Kind = SK_UserConversion;
3790   S.Type = T;
3791   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3792   S.Function.Function = Function;
3793   S.Function.FoundDecl = FoundDecl;
3794   Steps.push_back(S);
3795 }
3796 
3797 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3798                                                             ExprValueKind VK) {
3799   Step S;
3800   S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3801   switch (VK) {
3802   case VK_PRValue:
3803     S.Kind = SK_QualificationConversionPRValue;
3804     break;
3805   case VK_XValue:
3806     S.Kind = SK_QualificationConversionXValue;
3807     break;
3808   case VK_LValue:
3809     S.Kind = SK_QualificationConversionLValue;
3810     break;
3811   }
3812   S.Type = Ty;
3813   Steps.push_back(S);
3814 }
3815 
3816 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3817   Step S;
3818   S.Kind = SK_FunctionReferenceConversion;
3819   S.Type = Ty;
3820   Steps.push_back(S);
3821 }
3822 
3823 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3824   Step S;
3825   S.Kind = SK_AtomicConversion;
3826   S.Type = Ty;
3827   Steps.push_back(S);
3828 }
3829 
3830 void InitializationSequence::AddConversionSequenceStep(
3831     const ImplicitConversionSequence &ICS, QualType T,
3832     bool TopLevelOfInitList) {
3833   Step S;
3834   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3835                               : SK_ConversionSequence;
3836   S.Type = T;
3837   S.ICS = new ImplicitConversionSequence(ICS);
3838   Steps.push_back(S);
3839 }
3840 
3841 void InitializationSequence::AddListInitializationStep(QualType T) {
3842   Step S;
3843   S.Kind = SK_ListInitialization;
3844   S.Type = T;
3845   Steps.push_back(S);
3846 }
3847 
3848 void InitializationSequence::AddConstructorInitializationStep(
3849     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3850     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3851   Step S;
3852   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3853                                      : SK_ConstructorInitializationFromList
3854                         : SK_ConstructorInitialization;
3855   S.Type = T;
3856   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3857   S.Function.Function = Constructor;
3858   S.Function.FoundDecl = FoundDecl;
3859   Steps.push_back(S);
3860 }
3861 
3862 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3863   Step S;
3864   S.Kind = SK_ZeroInitialization;
3865   S.Type = T;
3866   Steps.push_back(S);
3867 }
3868 
3869 void InitializationSequence::AddCAssignmentStep(QualType T) {
3870   Step S;
3871   S.Kind = SK_CAssignment;
3872   S.Type = T;
3873   Steps.push_back(S);
3874 }
3875 
3876 void InitializationSequence::AddStringInitStep(QualType T) {
3877   Step S;
3878   S.Kind = SK_StringInit;
3879   S.Type = T;
3880   Steps.push_back(S);
3881 }
3882 
3883 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3884   Step S;
3885   S.Kind = SK_ObjCObjectConversion;
3886   S.Type = T;
3887   Steps.push_back(S);
3888 }
3889 
3890 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3891   Step S;
3892   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3893   S.Type = T;
3894   Steps.push_back(S);
3895 }
3896 
3897 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3898   Step S;
3899   S.Kind = SK_ArrayLoopIndex;
3900   S.Type = EltT;
3901   Steps.insert(Steps.begin(), S);
3902 
3903   S.Kind = SK_ArrayLoopInit;
3904   S.Type = T;
3905   Steps.push_back(S);
3906 }
3907 
3908 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3909   Step S;
3910   S.Kind = SK_ParenthesizedArrayInit;
3911   S.Type = T;
3912   Steps.push_back(S);
3913 }
3914 
3915 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3916                                                               bool shouldCopy) {
3917   Step s;
3918   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3919                        : SK_PassByIndirectRestore);
3920   s.Type = type;
3921   Steps.push_back(s);
3922 }
3923 
3924 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3925   Step S;
3926   S.Kind = SK_ProduceObjCObject;
3927   S.Type = T;
3928   Steps.push_back(S);
3929 }
3930 
3931 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3932   Step S;
3933   S.Kind = SK_StdInitializerList;
3934   S.Type = T;
3935   Steps.push_back(S);
3936 }
3937 
3938 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3939   Step S;
3940   S.Kind = SK_OCLSamplerInit;
3941   S.Type = T;
3942   Steps.push_back(S);
3943 }
3944 
3945 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3946   Step S;
3947   S.Kind = SK_OCLZeroOpaqueType;
3948   S.Type = T;
3949   Steps.push_back(S);
3950 }
3951 
3952 void InitializationSequence::AddParenthesizedListInitStep(QualType T) {
3953   Step S;
3954   S.Kind = SK_ParenthesizedListInit;
3955   S.Type = T;
3956   Steps.push_back(S);
3957 }
3958 
3959 void InitializationSequence::RewrapReferenceInitList(QualType T,
3960                                                      InitListExpr *Syntactic) {
3961   assert(Syntactic->getNumInits() == 1 &&
3962          "Can only rewrap trivial init lists.");
3963   Step S;
3964   S.Kind = SK_UnwrapInitList;
3965   S.Type = Syntactic->getInit(0)->getType();
3966   Steps.insert(Steps.begin(), S);
3967 
3968   S.Kind = SK_RewrapInitList;
3969   S.Type = T;
3970   S.WrappingSyntacticList = Syntactic;
3971   Steps.push_back(S);
3972 }
3973 
3974 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3975                                                 OverloadingResult Result) {
3976   setSequenceKind(FailedSequence);
3977   this->Failure = Failure;
3978   this->FailedOverloadResult = Result;
3979 }
3980 
3981 //===----------------------------------------------------------------------===//
3982 // Attempt initialization
3983 //===----------------------------------------------------------------------===//
3984 
3985 /// Tries to add a zero initializer. Returns true if that worked.
3986 static bool
3987 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3988                                    const InitializedEntity &Entity) {
3989   if (Entity.getKind() != InitializedEntity::EK_Variable)
3990     return false;
3991 
3992   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3993   if (VD->getInit() || VD->getEndLoc().isMacroID())
3994     return false;
3995 
3996   QualType VariableTy = VD->getType().getCanonicalType();
3997   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3998   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3999   if (!Init.empty()) {
4000     Sequence.AddZeroInitializationStep(Entity.getType());
4001     Sequence.SetZeroInitializationFixit(Init, Loc);
4002     return true;
4003   }
4004   return false;
4005 }
4006 
4007 static void MaybeProduceObjCObject(Sema &S,
4008                                    InitializationSequence &Sequence,
4009                                    const InitializedEntity &Entity) {
4010   if (!S.getLangOpts().ObjCAutoRefCount) return;
4011 
4012   /// When initializing a parameter, produce the value if it's marked
4013   /// __attribute__((ns_consumed)).
4014   if (Entity.isParameterKind()) {
4015     if (!Entity.isParameterConsumed())
4016       return;
4017 
4018     assert(Entity.getType()->isObjCRetainableType() &&
4019            "consuming an object of unretainable type?");
4020     Sequence.AddProduceObjCObjectStep(Entity.getType());
4021 
4022   /// When initializing a return value, if the return type is a
4023   /// retainable type, then returns need to immediately retain the
4024   /// object.  If an autorelease is required, it will be done at the
4025   /// last instant.
4026   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
4027              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
4028     if (!Entity.getType()->isObjCRetainableType())
4029       return;
4030 
4031     Sequence.AddProduceObjCObjectStep(Entity.getType());
4032   }
4033 }
4034 
4035 static void TryListInitialization(Sema &S,
4036                                   const InitializedEntity &Entity,
4037                                   const InitializationKind &Kind,
4038                                   InitListExpr *InitList,
4039                                   InitializationSequence &Sequence,
4040                                   bool TreatUnavailableAsInvalid);
4041 
4042 /// When initializing from init list via constructor, handle
4043 /// initialization of an object of type std::initializer_list<T>.
4044 ///
4045 /// \return true if we have handled initialization of an object of type
4046 /// std::initializer_list<T>, false otherwise.
4047 static bool TryInitializerListConstruction(Sema &S,
4048                                            InitListExpr *List,
4049                                            QualType DestType,
4050                                            InitializationSequence &Sequence,
4051                                            bool TreatUnavailableAsInvalid) {
4052   QualType E;
4053   if (!S.isStdInitializerList(DestType, &E))
4054     return false;
4055 
4056   if (!S.isCompleteType(List->getExprLoc(), E)) {
4057     Sequence.setIncompleteTypeFailure(E);
4058     return true;
4059   }
4060 
4061   // Try initializing a temporary array from the init list.
4062   QualType ArrayType = S.Context.getConstantArrayType(
4063       E.withConst(),
4064       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
4065                   List->getNumInits()),
4066       nullptr, clang::ArrayType::Normal, 0);
4067   InitializedEntity HiddenArray =
4068       InitializedEntity::InitializeTemporary(ArrayType);
4069   InitializationKind Kind = InitializationKind::CreateDirectList(
4070       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
4071   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
4072                         TreatUnavailableAsInvalid);
4073   if (Sequence)
4074     Sequence.AddStdInitializerListConstructionStep(DestType);
4075   return true;
4076 }
4077 
4078 /// Determine if the constructor has the signature of a copy or move
4079 /// constructor for the type T of the class in which it was found. That is,
4080 /// determine if its first parameter is of type T or reference to (possibly
4081 /// cv-qualified) T.
4082 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
4083                                    const ConstructorInfo &Info) {
4084   if (Info.Constructor->getNumParams() == 0)
4085     return false;
4086 
4087   QualType ParmT =
4088       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
4089   QualType ClassT =
4090       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
4091 
4092   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
4093 }
4094 
4095 static OverloadingResult
4096 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
4097                            MultiExprArg Args,
4098                            OverloadCandidateSet &CandidateSet,
4099                            QualType DestType,
4100                            DeclContext::lookup_result Ctors,
4101                            OverloadCandidateSet::iterator &Best,
4102                            bool CopyInitializing, bool AllowExplicit,
4103                            bool OnlyListConstructors, bool IsListInit,
4104                            bool SecondStepOfCopyInit = false) {
4105   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
4106   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
4107 
4108   for (NamedDecl *D : Ctors) {
4109     auto Info = getConstructorInfo(D);
4110     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
4111       continue;
4112 
4113     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
4114       continue;
4115 
4116     // C++11 [over.best.ics]p4:
4117     //   ... and the constructor or user-defined conversion function is a
4118     //   candidate by
4119     //   - 13.3.1.3, when the argument is the temporary in the second step
4120     //     of a class copy-initialization, or
4121     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
4122     //   - the second phase of 13.3.1.7 when the initializer list has exactly
4123     //     one element that is itself an initializer list, and the target is
4124     //     the first parameter of a constructor of class X, and the conversion
4125     //     is to X or reference to (possibly cv-qualified X),
4126     //   user-defined conversion sequences are not considered.
4127     bool SuppressUserConversions =
4128         SecondStepOfCopyInit ||
4129         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4130          hasCopyOrMoveCtorParam(S.Context, Info));
4131 
4132     if (Info.ConstructorTmpl)
4133       S.AddTemplateOverloadCandidate(
4134           Info.ConstructorTmpl, Info.FoundDecl,
4135           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
4136           /*PartialOverloading=*/false, AllowExplicit);
4137     else {
4138       // C++ [over.match.copy]p1:
4139       //   - When initializing a temporary to be bound to the first parameter
4140       //     of a constructor [for type T] that takes a reference to possibly
4141       //     cv-qualified T as its first argument, called with a single
4142       //     argument in the context of direct-initialization, explicit
4143       //     conversion functions are also considered.
4144       // FIXME: What if a constructor template instantiates to such a signature?
4145       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4146                                Args.size() == 1 &&
4147                                hasCopyOrMoveCtorParam(S.Context, Info);
4148       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4149                              CandidateSet, SuppressUserConversions,
4150                              /*PartialOverloading=*/false, AllowExplicit,
4151                              AllowExplicitConv);
4152     }
4153   }
4154 
4155   // FIXME: Work around a bug in C++17 guaranteed copy elision.
4156   //
4157   // When initializing an object of class type T by constructor
4158   // ([over.match.ctor]) or by list-initialization ([over.match.list])
4159   // from a single expression of class type U, conversion functions of
4160   // U that convert to the non-reference type cv T are candidates.
4161   // Explicit conversion functions are only candidates during
4162   // direct-initialization.
4163   //
4164   // Note: SecondStepOfCopyInit is only ever true in this case when
4165   // evaluating whether to produce a C++98 compatibility warning.
4166   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4167       !SecondStepOfCopyInit) {
4168     Expr *Initializer = Args[0];
4169     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4170     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4171       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4172       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4173         NamedDecl *D = *I;
4174         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4175         D = D->getUnderlyingDecl();
4176 
4177         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4178         CXXConversionDecl *Conv;
4179         if (ConvTemplate)
4180           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4181         else
4182           Conv = cast<CXXConversionDecl>(D);
4183 
4184         if (ConvTemplate)
4185           S.AddTemplateConversionCandidate(
4186               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4187               CandidateSet, AllowExplicit, AllowExplicit,
4188               /*AllowResultConversion*/ false);
4189         else
4190           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4191                                    DestType, CandidateSet, AllowExplicit,
4192                                    AllowExplicit,
4193                                    /*AllowResultConversion*/ false);
4194       }
4195     }
4196   }
4197 
4198   // Perform overload resolution and return the result.
4199   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4200 }
4201 
4202 /// Attempt initialization by constructor (C++ [dcl.init]), which
4203 /// enumerates the constructors of the initialized entity and performs overload
4204 /// resolution to select the best.
4205 /// \param DestType       The destination class type.
4206 /// \param DestArrayType  The destination type, which is either DestType or
4207 ///                       a (possibly multidimensional) array of DestType.
4208 /// \param IsListInit     Is this list-initialization?
4209 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4210 ///                       list-initialization from {x} where x is the same
4211 ///                       type as the entity?
4212 static void TryConstructorInitialization(Sema &S,
4213                                          const InitializedEntity &Entity,
4214                                          const InitializationKind &Kind,
4215                                          MultiExprArg Args, QualType DestType,
4216                                          QualType DestArrayType,
4217                                          InitializationSequence &Sequence,
4218                                          bool IsListInit = false,
4219                                          bool IsInitListCopy = false) {
4220   assert(((!IsListInit && !IsInitListCopy) ||
4221           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4222          "IsListInit/IsInitListCopy must come with a single initializer list "
4223          "argument.");
4224   InitListExpr *ILE =
4225       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4226   MultiExprArg UnwrappedArgs =
4227       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4228 
4229   // The type we're constructing needs to be complete.
4230   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4231     Sequence.setIncompleteTypeFailure(DestType);
4232     return;
4233   }
4234 
4235   // C++17 [dcl.init]p17:
4236   //     - If the initializer expression is a prvalue and the cv-unqualified
4237   //       version of the source type is the same class as the class of the
4238   //       destination, the initializer expression is used to initialize the
4239   //       destination object.
4240   // Per DR (no number yet), this does not apply when initializing a base
4241   // class or delegating to another constructor from a mem-initializer.
4242   // ObjC++: Lambda captured by the block in the lambda to block conversion
4243   // should avoid copy elision.
4244   if (S.getLangOpts().CPlusPlus17 &&
4245       Entity.getKind() != InitializedEntity::EK_Base &&
4246       Entity.getKind() != InitializedEntity::EK_Delegating &&
4247       Entity.getKind() !=
4248           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4249       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4250       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4251     // Convert qualifications if necessary.
4252     Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4253     if (ILE)
4254       Sequence.RewrapReferenceInitList(DestType, ILE);
4255     return;
4256   }
4257 
4258   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4259   assert(DestRecordType && "Constructor initialization requires record type");
4260   CXXRecordDecl *DestRecordDecl
4261     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4262 
4263   // Build the candidate set directly in the initialization sequence
4264   // structure, so that it will persist if we fail.
4265   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4266 
4267   // Determine whether we are allowed to call explicit constructors or
4268   // explicit conversion operators.
4269   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4270   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4271 
4272   //   - Otherwise, if T is a class type, constructors are considered. The
4273   //     applicable constructors are enumerated, and the best one is chosen
4274   //     through overload resolution.
4275   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4276 
4277   OverloadingResult Result = OR_No_Viable_Function;
4278   OverloadCandidateSet::iterator Best;
4279   bool AsInitializerList = false;
4280 
4281   // C++11 [over.match.list]p1, per DR1467:
4282   //   When objects of non-aggregate type T are list-initialized, such that
4283   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4284   //   according to the rules in this section, overload resolution selects
4285   //   the constructor in two phases:
4286   //
4287   //   - Initially, the candidate functions are the initializer-list
4288   //     constructors of the class T and the argument list consists of the
4289   //     initializer list as a single argument.
4290   if (IsListInit) {
4291     AsInitializerList = true;
4292 
4293     // If the initializer list has no elements and T has a default constructor,
4294     // the first phase is omitted.
4295     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4296       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4297                                           CandidateSet, DestType, Ctors, Best,
4298                                           CopyInitialization, AllowExplicit,
4299                                           /*OnlyListConstructors=*/true,
4300                                           IsListInit);
4301   }
4302 
4303   // C++11 [over.match.list]p1:
4304   //   - If no viable initializer-list constructor is found, overload resolution
4305   //     is performed again, where the candidate functions are all the
4306   //     constructors of the class T and the argument list consists of the
4307   //     elements of the initializer list.
4308   if (Result == OR_No_Viable_Function) {
4309     AsInitializerList = false;
4310     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4311                                         CandidateSet, DestType, Ctors, Best,
4312                                         CopyInitialization, AllowExplicit,
4313                                         /*OnlyListConstructors=*/false,
4314                                         IsListInit);
4315   }
4316   if (Result) {
4317     Sequence.SetOverloadFailure(
4318         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4319                    : InitializationSequence::FK_ConstructorOverloadFailed,
4320         Result);
4321 
4322     if (Result != OR_Deleted)
4323       return;
4324   }
4325 
4326   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4327 
4328   // In C++17, ResolveConstructorOverload can select a conversion function
4329   // instead of a constructor.
4330   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4331     // Add the user-defined conversion step that calls the conversion function.
4332     QualType ConvType = CD->getConversionType();
4333     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4334            "should not have selected this conversion function");
4335     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4336                                    HadMultipleCandidates);
4337     if (!S.Context.hasSameType(ConvType, DestType))
4338       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4339     if (IsListInit)
4340       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4341     return;
4342   }
4343 
4344   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4345   if (Result != OR_Deleted) {
4346     // C++11 [dcl.init]p6:
4347     //   If a program calls for the default initialization of an object
4348     //   of a const-qualified type T, T shall be a class type with a
4349     //   user-provided default constructor.
4350     // C++ core issue 253 proposal:
4351     //   If the implicit default constructor initializes all subobjects, no
4352     //   initializer should be required.
4353     // The 253 proposal is for example needed to process libstdc++ headers
4354     // in 5.x.
4355     if (Kind.getKind() == InitializationKind::IK_Default &&
4356         Entity.getType().isConstQualified()) {
4357       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4358         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4359           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4360         return;
4361       }
4362     }
4363 
4364     // C++11 [over.match.list]p1:
4365     //   In copy-list-initialization, if an explicit constructor is chosen, the
4366     //   initializer is ill-formed.
4367     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4368       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4369       return;
4370     }
4371   }
4372 
4373   // [class.copy.elision]p3:
4374   // In some copy-initialization contexts, a two-stage overload resolution
4375   // is performed.
4376   // If the first overload resolution selects a deleted function, we also
4377   // need the initialization sequence to decide whether to perform the second
4378   // overload resolution.
4379   // For deleted functions in other contexts, there is no need to get the
4380   // initialization sequence.
4381   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4382     return;
4383 
4384   // Add the constructor initialization step. Any cv-qualification conversion is
4385   // subsumed by the initialization.
4386   Sequence.AddConstructorInitializationStep(
4387       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4388       IsListInit | IsInitListCopy, AsInitializerList);
4389 }
4390 
4391 static bool
4392 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4393                                              Expr *Initializer,
4394                                              QualType &SourceType,
4395                                              QualType &UnqualifiedSourceType,
4396                                              QualType UnqualifiedTargetType,
4397                                              InitializationSequence &Sequence) {
4398   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4399         S.Context.OverloadTy) {
4400     DeclAccessPair Found;
4401     bool HadMultipleCandidates = false;
4402     if (FunctionDecl *Fn
4403         = S.ResolveAddressOfOverloadedFunction(Initializer,
4404                                                UnqualifiedTargetType,
4405                                                false, Found,
4406                                                &HadMultipleCandidates)) {
4407       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4408                                                 HadMultipleCandidates);
4409       SourceType = Fn->getType();
4410       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4411     } else if (!UnqualifiedTargetType->isRecordType()) {
4412       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4413       return true;
4414     }
4415   }
4416   return false;
4417 }
4418 
4419 static void TryReferenceInitializationCore(Sema &S,
4420                                            const InitializedEntity &Entity,
4421                                            const InitializationKind &Kind,
4422                                            Expr *Initializer,
4423                                            QualType cv1T1, QualType T1,
4424                                            Qualifiers T1Quals,
4425                                            QualType cv2T2, QualType T2,
4426                                            Qualifiers T2Quals,
4427                                            InitializationSequence &Sequence);
4428 
4429 static void TryValueInitialization(Sema &S,
4430                                    const InitializedEntity &Entity,
4431                                    const InitializationKind &Kind,
4432                                    InitializationSequence &Sequence,
4433                                    InitListExpr *InitList = nullptr);
4434 
4435 /// Attempt list initialization of a reference.
4436 static void TryReferenceListInitialization(Sema &S,
4437                                            const InitializedEntity &Entity,
4438                                            const InitializationKind &Kind,
4439                                            InitListExpr *InitList,
4440                                            InitializationSequence &Sequence,
4441                                            bool TreatUnavailableAsInvalid) {
4442   // First, catch C++03 where this isn't possible.
4443   if (!S.getLangOpts().CPlusPlus11) {
4444     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4445     return;
4446   }
4447   // Can't reference initialize a compound literal.
4448   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4449     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4450     return;
4451   }
4452 
4453   QualType DestType = Entity.getType();
4454   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4455   Qualifiers T1Quals;
4456   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4457 
4458   // Reference initialization via an initializer list works thus:
4459   // If the initializer list consists of a single element that is
4460   // reference-related to the referenced type, bind directly to that element
4461   // (possibly creating temporaries).
4462   // Otherwise, initialize a temporary with the initializer list and
4463   // bind to that.
4464   if (InitList->getNumInits() == 1) {
4465     Expr *Initializer = InitList->getInit(0);
4466     QualType cv2T2 = S.getCompletedType(Initializer);
4467     Qualifiers T2Quals;
4468     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4469 
4470     // If this fails, creating a temporary wouldn't work either.
4471     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4472                                                      T1, Sequence))
4473       return;
4474 
4475     SourceLocation DeclLoc = Initializer->getBeginLoc();
4476     Sema::ReferenceCompareResult RefRelationship
4477       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4478     if (RefRelationship >= Sema::Ref_Related) {
4479       // Try to bind the reference here.
4480       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4481                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4482       if (Sequence)
4483         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4484       return;
4485     }
4486 
4487     // Update the initializer if we've resolved an overloaded function.
4488     if (Sequence.step_begin() != Sequence.step_end())
4489       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4490   }
4491   // Perform address space compatibility check.
4492   QualType cv1T1IgnoreAS = cv1T1;
4493   if (T1Quals.hasAddressSpace()) {
4494     Qualifiers T2Quals;
4495     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4496     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4497       Sequence.SetFailed(
4498           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4499       return;
4500     }
4501     // Ignore address space of reference type at this point and perform address
4502     // space conversion after the reference binding step.
4503     cv1T1IgnoreAS =
4504         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4505   }
4506   // Not reference-related. Create a temporary and bind to that.
4507   InitializedEntity TempEntity =
4508       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4509 
4510   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4511                         TreatUnavailableAsInvalid);
4512   if (Sequence) {
4513     if (DestType->isRValueReferenceType() ||
4514         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4515       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4516                                        /*BindingTemporary=*/true);
4517       if (T1Quals.hasAddressSpace())
4518         Sequence.AddQualificationConversionStep(
4519             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4520     } else
4521       Sequence.SetFailed(
4522           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4523   }
4524 }
4525 
4526 /// Attempt list initialization (C++0x [dcl.init.list])
4527 static void TryListInitialization(Sema &S,
4528                                   const InitializedEntity &Entity,
4529                                   const InitializationKind &Kind,
4530                                   InitListExpr *InitList,
4531                                   InitializationSequence &Sequence,
4532                                   bool TreatUnavailableAsInvalid) {
4533   QualType DestType = Entity.getType();
4534 
4535   // C++ doesn't allow scalar initialization with more than one argument.
4536   // But C99 complex numbers are scalars and it makes sense there.
4537   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4538       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4539     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4540     return;
4541   }
4542   if (DestType->isReferenceType()) {
4543     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4544                                    TreatUnavailableAsInvalid);
4545     return;
4546   }
4547 
4548   if (DestType->isRecordType() &&
4549       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4550     Sequence.setIncompleteTypeFailure(DestType);
4551     return;
4552   }
4553 
4554   // C++20 [dcl.init.list]p3:
4555   // - If the braced-init-list contains a designated-initializer-list, T shall
4556   //   be an aggregate class. [...] Aggregate initialization is performed.
4557   //
4558   // We allow arrays here too in order to support array designators.
4559   //
4560   // FIXME: This check should precede the handling of reference initialization.
4561   // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};'
4562   // as a tentative DR resolution.
4563   bool IsDesignatedInit = InitList->hasDesignatedInit();
4564   if (!DestType->isAggregateType() && IsDesignatedInit) {
4565     Sequence.SetFailed(
4566         InitializationSequence::FK_DesignatedInitForNonAggregate);
4567     return;
4568   }
4569 
4570   // C++11 [dcl.init.list]p3, per DR1467:
4571   // - If T is a class type and the initializer list has a single element of
4572   //   type cv U, where U is T or a class derived from T, the object is
4573   //   initialized from that element (by copy-initialization for
4574   //   copy-list-initialization, or by direct-initialization for
4575   //   direct-list-initialization).
4576   // - Otherwise, if T is a character array and the initializer list has a
4577   //   single element that is an appropriately-typed string literal
4578   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4579   //   in that section.
4580   // - Otherwise, if T is an aggregate, [...] (continue below).
4581   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 &&
4582       !IsDesignatedInit) {
4583     if (DestType->isRecordType()) {
4584       QualType InitType = InitList->getInit(0)->getType();
4585       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4586           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4587         Expr *InitListAsExpr = InitList;
4588         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4589                                      DestType, Sequence,
4590                                      /*InitListSyntax*/false,
4591                                      /*IsInitListCopy*/true);
4592         return;
4593       }
4594     }
4595     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4596       Expr *SubInit[1] = {InitList->getInit(0)};
4597       if (!isa<VariableArrayType>(DestAT) &&
4598           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4599         InitializationKind SubKind =
4600             Kind.getKind() == InitializationKind::IK_DirectList
4601                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4602                                                    InitList->getLBraceLoc(),
4603                                                    InitList->getRBraceLoc())
4604                 : Kind;
4605         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4606                                 /*TopLevelOfInitList*/ true,
4607                                 TreatUnavailableAsInvalid);
4608 
4609         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4610         // the element is not an appropriately-typed string literal, in which
4611         // case we should proceed as in C++11 (below).
4612         if (Sequence) {
4613           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4614           return;
4615         }
4616       }
4617     }
4618   }
4619 
4620   // C++11 [dcl.init.list]p3:
4621   //   - If T is an aggregate, aggregate initialization is performed.
4622   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4623       (S.getLangOpts().CPlusPlus11 &&
4624        S.isStdInitializerList(DestType, nullptr) && !IsDesignatedInit)) {
4625     if (S.getLangOpts().CPlusPlus11) {
4626       //   - Otherwise, if the initializer list has no elements and T is a
4627       //     class type with a default constructor, the object is
4628       //     value-initialized.
4629       if (InitList->getNumInits() == 0) {
4630         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4631         if (S.LookupDefaultConstructor(RD)) {
4632           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4633           return;
4634         }
4635       }
4636 
4637       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4638       //     an initializer_list object constructed [...]
4639       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4640                                          TreatUnavailableAsInvalid))
4641         return;
4642 
4643       //   - Otherwise, if T is a class type, constructors are considered.
4644       Expr *InitListAsExpr = InitList;
4645       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4646                                    DestType, Sequence, /*InitListSyntax*/true);
4647     } else
4648       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4649     return;
4650   }
4651 
4652   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4653       InitList->getNumInits() == 1) {
4654     Expr *E = InitList->getInit(0);
4655 
4656     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4657     //     the initializer-list has a single element v, and the initialization
4658     //     is direct-list-initialization, the object is initialized with the
4659     //     value T(v); if a narrowing conversion is required to convert v to
4660     //     the underlying type of T, the program is ill-formed.
4661     auto *ET = DestType->getAs<EnumType>();
4662     if (S.getLangOpts().CPlusPlus17 &&
4663         Kind.getKind() == InitializationKind::IK_DirectList &&
4664         ET && ET->getDecl()->isFixed() &&
4665         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4666         (E->getType()->isIntegralOrUnscopedEnumerationType() ||
4667          E->getType()->isFloatingType())) {
4668       // There are two ways that T(v) can work when T is an enumeration type.
4669       // If there is either an implicit conversion sequence from v to T or
4670       // a conversion function that can convert from v to T, then we use that.
4671       // Otherwise, if v is of integral, unscoped enumeration, or floating-point
4672       // type, it is converted to the enumeration type via its underlying type.
4673       // There is no overlap possible between these two cases (except when the
4674       // source value is already of the destination type), and the first
4675       // case is handled by the general case for single-element lists below.
4676       ImplicitConversionSequence ICS;
4677       ICS.setStandard();
4678       ICS.Standard.setAsIdentityConversion();
4679       if (!E->isPRValue())
4680         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4681       // If E is of a floating-point type, then the conversion is ill-formed
4682       // due to narrowing, but go through the motions in order to produce the
4683       // right diagnostic.
4684       ICS.Standard.Second = E->getType()->isFloatingType()
4685                                 ? ICK_Floating_Integral
4686                                 : ICK_Integral_Conversion;
4687       ICS.Standard.setFromType(E->getType());
4688       ICS.Standard.setToType(0, E->getType());
4689       ICS.Standard.setToType(1, DestType);
4690       ICS.Standard.setToType(2, DestType);
4691       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4692                                          /*TopLevelOfInitList*/true);
4693       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4694       return;
4695     }
4696 
4697     //   - Otherwise, if the initializer list has a single element of type E
4698     //     [...references are handled above...], the object or reference is
4699     //     initialized from that element (by copy-initialization for
4700     //     copy-list-initialization, or by direct-initialization for
4701     //     direct-list-initialization); if a narrowing conversion is required
4702     //     to convert the element to T, the program is ill-formed.
4703     //
4704     // Per core-24034, this is direct-initialization if we were performing
4705     // direct-list-initialization and copy-initialization otherwise.
4706     // We can't use InitListChecker for this, because it always performs
4707     // copy-initialization. This only matters if we might use an 'explicit'
4708     // conversion operator, or for the special case conversion of nullptr_t to
4709     // bool, so we only need to handle those cases.
4710     //
4711     // FIXME: Why not do this in all cases?
4712     Expr *Init = InitList->getInit(0);
4713     if (Init->getType()->isRecordType() ||
4714         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4715       InitializationKind SubKind =
4716           Kind.getKind() == InitializationKind::IK_DirectList
4717               ? InitializationKind::CreateDirect(Kind.getLocation(),
4718                                                  InitList->getLBraceLoc(),
4719                                                  InitList->getRBraceLoc())
4720               : Kind;
4721       Expr *SubInit[1] = { Init };
4722       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4723                               /*TopLevelOfInitList*/true,
4724                               TreatUnavailableAsInvalid);
4725       if (Sequence)
4726         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4727       return;
4728     }
4729   }
4730 
4731   InitListChecker CheckInitList(S, Entity, InitList,
4732           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4733   if (CheckInitList.HadError()) {
4734     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4735     return;
4736   }
4737 
4738   // Add the list initialization step with the built init list.
4739   Sequence.AddListInitializationStep(DestType);
4740 }
4741 
4742 /// Try a reference initialization that involves calling a conversion
4743 /// function.
4744 static OverloadingResult TryRefInitWithConversionFunction(
4745     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4746     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4747     InitializationSequence &Sequence) {
4748   QualType DestType = Entity.getType();
4749   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4750   QualType T1 = cv1T1.getUnqualifiedType();
4751   QualType cv2T2 = Initializer->getType();
4752   QualType T2 = cv2T2.getUnqualifiedType();
4753 
4754   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4755          "Must have incompatible references when binding via conversion");
4756 
4757   // Build the candidate set directly in the initialization sequence
4758   // structure, so that it will persist if we fail.
4759   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4760   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4761 
4762   // Determine whether we are allowed to call explicit conversion operators.
4763   // Note that none of [over.match.copy], [over.match.conv], nor
4764   // [over.match.ref] permit an explicit constructor to be chosen when
4765   // initializing a reference, not even for direct-initialization.
4766   bool AllowExplicitCtors = false;
4767   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4768 
4769   const RecordType *T1RecordType = nullptr;
4770   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4771       S.isCompleteType(Kind.getLocation(), T1)) {
4772     // The type we're converting to is a class type. Enumerate its constructors
4773     // to see if there is a suitable conversion.
4774     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4775 
4776     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4777       auto Info = getConstructorInfo(D);
4778       if (!Info.Constructor)
4779         continue;
4780 
4781       if (!Info.Constructor->isInvalidDecl() &&
4782           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4783         if (Info.ConstructorTmpl)
4784           S.AddTemplateOverloadCandidate(
4785               Info.ConstructorTmpl, Info.FoundDecl,
4786               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4787               /*SuppressUserConversions=*/true,
4788               /*PartialOverloading*/ false, AllowExplicitCtors);
4789         else
4790           S.AddOverloadCandidate(
4791               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4792               /*SuppressUserConversions=*/true,
4793               /*PartialOverloading*/ false, AllowExplicitCtors);
4794       }
4795     }
4796   }
4797   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4798     return OR_No_Viable_Function;
4799 
4800   const RecordType *T2RecordType = nullptr;
4801   if ((T2RecordType = T2->getAs<RecordType>()) &&
4802       S.isCompleteType(Kind.getLocation(), T2)) {
4803     // The type we're converting from is a class type, enumerate its conversion
4804     // functions.
4805     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4806 
4807     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4808     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4809       NamedDecl *D = *I;
4810       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4811       if (isa<UsingShadowDecl>(D))
4812         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4813 
4814       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4815       CXXConversionDecl *Conv;
4816       if (ConvTemplate)
4817         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4818       else
4819         Conv = cast<CXXConversionDecl>(D);
4820 
4821       // If the conversion function doesn't return a reference type,
4822       // it can't be considered for this conversion unless we're allowed to
4823       // consider rvalues.
4824       // FIXME: Do we need to make sure that we only consider conversion
4825       // candidates with reference-compatible results? That might be needed to
4826       // break recursion.
4827       if ((AllowRValues ||
4828            Conv->getConversionType()->isLValueReferenceType())) {
4829         if (ConvTemplate)
4830           S.AddTemplateConversionCandidate(
4831               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4832               CandidateSet,
4833               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4834         else
4835           S.AddConversionCandidate(
4836               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4837               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4838       }
4839     }
4840   }
4841   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4842     return OR_No_Viable_Function;
4843 
4844   SourceLocation DeclLoc = Initializer->getBeginLoc();
4845 
4846   // Perform overload resolution. If it fails, return the failed result.
4847   OverloadCandidateSet::iterator Best;
4848   if (OverloadingResult Result
4849         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4850     return Result;
4851 
4852   FunctionDecl *Function = Best->Function;
4853   // This is the overload that will be used for this initialization step if we
4854   // use this initialization. Mark it as referenced.
4855   Function->setReferenced();
4856 
4857   // Compute the returned type and value kind of the conversion.
4858   QualType cv3T3;
4859   if (isa<CXXConversionDecl>(Function))
4860     cv3T3 = Function->getReturnType();
4861   else
4862     cv3T3 = T1;
4863 
4864   ExprValueKind VK = VK_PRValue;
4865   if (cv3T3->isLValueReferenceType())
4866     VK = VK_LValue;
4867   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4868     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4869   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4870 
4871   // Add the user-defined conversion step.
4872   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4873   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4874                                  HadMultipleCandidates);
4875 
4876   // Determine whether we'll need to perform derived-to-base adjustments or
4877   // other conversions.
4878   Sema::ReferenceConversions RefConv;
4879   Sema::ReferenceCompareResult NewRefRelationship =
4880       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4881 
4882   // Add the final conversion sequence, if necessary.
4883   if (NewRefRelationship == Sema::Ref_Incompatible) {
4884     assert(!isa<CXXConstructorDecl>(Function) &&
4885            "should not have conversion after constructor");
4886 
4887     ImplicitConversionSequence ICS;
4888     ICS.setStandard();
4889     ICS.Standard = Best->FinalConversion;
4890     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4891 
4892     // Every implicit conversion results in a prvalue, except for a glvalue
4893     // derived-to-base conversion, which we handle below.
4894     cv3T3 = ICS.Standard.getToType(2);
4895     VK = VK_PRValue;
4896   }
4897 
4898   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4899   //   type "cv1 T4" and the temporary materialization conversion is applied.
4900   //
4901   // We adjust the cv-qualifications to match the reference regardless of
4902   // whether we have a prvalue so that the AST records the change. In this
4903   // case, T4 is "cv3 T3".
4904   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4905   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4906     Sequence.AddQualificationConversionStep(cv1T4, VK);
4907   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4908   VK = IsLValueRef ? VK_LValue : VK_XValue;
4909 
4910   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4911     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4912   else if (RefConv & Sema::ReferenceConversions::ObjC)
4913     Sequence.AddObjCObjectConversionStep(cv1T1);
4914   else if (RefConv & Sema::ReferenceConversions::Function)
4915     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4916   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4917     if (!S.Context.hasSameType(cv1T4, cv1T1))
4918       Sequence.AddQualificationConversionStep(cv1T1, VK);
4919   }
4920 
4921   return OR_Success;
4922 }
4923 
4924 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4925                                            const InitializedEntity &Entity,
4926                                            Expr *CurInitExpr);
4927 
4928 /// Attempt reference initialization (C++0x [dcl.init.ref])
4929 static void TryReferenceInitialization(Sema &S,
4930                                        const InitializedEntity &Entity,
4931                                        const InitializationKind &Kind,
4932                                        Expr *Initializer,
4933                                        InitializationSequence &Sequence) {
4934   QualType DestType = Entity.getType();
4935   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4936   Qualifiers T1Quals;
4937   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4938   QualType cv2T2 = S.getCompletedType(Initializer);
4939   Qualifiers T2Quals;
4940   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4941 
4942   // If the initializer is the address of an overloaded function, try
4943   // to resolve the overloaded function. If all goes well, T2 is the
4944   // type of the resulting function.
4945   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4946                                                    T1, Sequence))
4947     return;
4948 
4949   // Delegate everything else to a subfunction.
4950   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4951                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4952 }
4953 
4954 /// Determine whether an expression is a non-referenceable glvalue (one to
4955 /// which a reference can never bind). Attempting to bind a reference to
4956 /// such a glvalue will always create a temporary.
4957 static bool isNonReferenceableGLValue(Expr *E) {
4958   return E->refersToBitField() || E->refersToVectorElement() ||
4959          E->refersToMatrixElement();
4960 }
4961 
4962 /// Reference initialization without resolving overloaded functions.
4963 ///
4964 /// We also can get here in C if we call a builtin which is declared as
4965 /// a function with a parameter of reference type (such as __builtin_va_end()).
4966 static void TryReferenceInitializationCore(Sema &S,
4967                                            const InitializedEntity &Entity,
4968                                            const InitializationKind &Kind,
4969                                            Expr *Initializer,
4970                                            QualType cv1T1, QualType T1,
4971                                            Qualifiers T1Quals,
4972                                            QualType cv2T2, QualType T2,
4973                                            Qualifiers T2Quals,
4974                                            InitializationSequence &Sequence) {
4975   QualType DestType = Entity.getType();
4976   SourceLocation DeclLoc = Initializer->getBeginLoc();
4977 
4978   // Compute some basic properties of the types and the initializer.
4979   bool isLValueRef = DestType->isLValueReferenceType();
4980   bool isRValueRef = !isLValueRef;
4981   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4982 
4983   Sema::ReferenceConversions RefConv;
4984   Sema::ReferenceCompareResult RefRelationship =
4985       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4986 
4987   // C++0x [dcl.init.ref]p5:
4988   //   A reference to type "cv1 T1" is initialized by an expression of type
4989   //   "cv2 T2" as follows:
4990   //
4991   //     - If the reference is an lvalue reference and the initializer
4992   //       expression
4993   // Note the analogous bullet points for rvalue refs to functions. Because
4994   // there are no function rvalues in C++, rvalue refs to functions are treated
4995   // like lvalue refs.
4996   OverloadingResult ConvOvlResult = OR_Success;
4997   bool T1Function = T1->isFunctionType();
4998   if (isLValueRef || T1Function) {
4999     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
5000         (RefRelationship == Sema::Ref_Compatible ||
5001          (Kind.isCStyleOrFunctionalCast() &&
5002           RefRelationship == Sema::Ref_Related))) {
5003       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
5004       //     reference-compatible with "cv2 T2," or
5005       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
5006                      Sema::ReferenceConversions::ObjC)) {
5007         // If we're converting the pointee, add any qualifiers first;
5008         // these qualifiers must all be top-level, so just convert to "cv1 T2".
5009         if (RefConv & (Sema::ReferenceConversions::Qualification))
5010           Sequence.AddQualificationConversionStep(
5011               S.Context.getQualifiedType(T2, T1Quals),
5012               Initializer->getValueKind());
5013         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5014           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
5015         else
5016           Sequence.AddObjCObjectConversionStep(cv1T1);
5017       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
5018         // Perform a (possibly multi-level) qualification conversion.
5019         Sequence.AddQualificationConversionStep(cv1T1,
5020                                                 Initializer->getValueKind());
5021       } else if (RefConv & Sema::ReferenceConversions::Function) {
5022         Sequence.AddFunctionReferenceConversionStep(cv1T1);
5023       }
5024 
5025       // We only create a temporary here when binding a reference to a
5026       // bit-field or vector element. Those cases are't supposed to be
5027       // handled by this bullet, but the outcome is the same either way.
5028       Sequence.AddReferenceBindingStep(cv1T1, false);
5029       return;
5030     }
5031 
5032     //     - has a class type (i.e., T2 is a class type), where T1 is not
5033     //       reference-related to T2, and can be implicitly converted to an
5034     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
5035     //       with "cv3 T3" (this conversion is selected by enumerating the
5036     //       applicable conversion functions (13.3.1.6) and choosing the best
5037     //       one through overload resolution (13.3)),
5038     // If we have an rvalue ref to function type here, the rhs must be
5039     // an rvalue. DR1287 removed the "implicitly" here.
5040     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
5041         (isLValueRef || InitCategory.isRValue())) {
5042       if (S.getLangOpts().CPlusPlus) {
5043         // Try conversion functions only for C++.
5044         ConvOvlResult = TryRefInitWithConversionFunction(
5045             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
5046             /*IsLValueRef*/ isLValueRef, Sequence);
5047         if (ConvOvlResult == OR_Success)
5048           return;
5049         if (ConvOvlResult != OR_No_Viable_Function)
5050           Sequence.SetOverloadFailure(
5051               InitializationSequence::FK_ReferenceInitOverloadFailed,
5052               ConvOvlResult);
5053       } else {
5054         ConvOvlResult = OR_No_Viable_Function;
5055       }
5056     }
5057   }
5058 
5059   //     - Otherwise, the reference shall be an lvalue reference to a
5060   //       non-volatile const type (i.e., cv1 shall be const), or the reference
5061   //       shall be an rvalue reference.
5062   //       For address spaces, we interpret this to mean that an addr space
5063   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
5064   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
5065                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5066     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5067       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5068     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5069       Sequence.SetOverloadFailure(
5070                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5071                                   ConvOvlResult);
5072     else if (!InitCategory.isLValue())
5073       Sequence.SetFailed(
5074           T1Quals.isAddressSpaceSupersetOf(T2Quals)
5075               ? InitializationSequence::
5076                     FK_NonConstLValueReferenceBindingToTemporary
5077               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
5078     else {
5079       InitializationSequence::FailureKind FK;
5080       switch (RefRelationship) {
5081       case Sema::Ref_Compatible:
5082         if (Initializer->refersToBitField())
5083           FK = InitializationSequence::
5084               FK_NonConstLValueReferenceBindingToBitfield;
5085         else if (Initializer->refersToVectorElement())
5086           FK = InitializationSequence::
5087               FK_NonConstLValueReferenceBindingToVectorElement;
5088         else if (Initializer->refersToMatrixElement())
5089           FK = InitializationSequence::
5090               FK_NonConstLValueReferenceBindingToMatrixElement;
5091         else
5092           llvm_unreachable("unexpected kind of compatible initializer");
5093         break;
5094       case Sema::Ref_Related:
5095         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
5096         break;
5097       case Sema::Ref_Incompatible:
5098         FK = InitializationSequence::
5099             FK_NonConstLValueReferenceBindingToUnrelated;
5100         break;
5101       }
5102       Sequence.SetFailed(FK);
5103     }
5104     return;
5105   }
5106 
5107   //    - If the initializer expression
5108   //      - is an
5109   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
5110   // [1z]   rvalue (but not a bit-field) or
5111   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
5112   //
5113   // Note: functions are handled above and below rather than here...
5114   if (!T1Function &&
5115       (RefRelationship == Sema::Ref_Compatible ||
5116        (Kind.isCStyleOrFunctionalCast() &&
5117         RefRelationship == Sema::Ref_Related)) &&
5118       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
5119        (InitCategory.isPRValue() &&
5120         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
5121          T2->isArrayType())))) {
5122     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
5123     if (InitCategory.isPRValue() && T2->isRecordType()) {
5124       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
5125       // compiler the freedom to perform a copy here or bind to the
5126       // object, while C++0x requires that we bind directly to the
5127       // object. Hence, we always bind to the object without making an
5128       // extra copy. However, in C++03 requires that we check for the
5129       // presence of a suitable copy constructor:
5130       //
5131       //   The constructor that would be used to make the copy shall
5132       //   be callable whether or not the copy is actually done.
5133       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
5134         Sequence.AddExtraneousCopyToTemporary(cv2T2);
5135       else if (S.getLangOpts().CPlusPlus11)
5136         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
5137     }
5138 
5139     // C++1z [dcl.init.ref]/5.2.1.2:
5140     //   If the converted initializer is a prvalue, its type T4 is adjusted
5141     //   to type "cv1 T4" and the temporary materialization conversion is
5142     //   applied.
5143     // Postpone address space conversions to after the temporary materialization
5144     // conversion to allow creating temporaries in the alloca address space.
5145     auto T1QualsIgnoreAS = T1Quals;
5146     auto T2QualsIgnoreAS = T2Quals;
5147     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5148       T1QualsIgnoreAS.removeAddressSpace();
5149       T2QualsIgnoreAS.removeAddressSpace();
5150     }
5151     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
5152     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
5153       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
5154     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
5155     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
5156     // Add addr space conversion if required.
5157     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
5158       auto T4Quals = cv1T4.getQualifiers();
5159       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
5160       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
5161       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5162       cv1T4 = cv1T4WithAS;
5163     }
5164 
5165     //   In any case, the reference is bound to the resulting glvalue (or to
5166     //   an appropriate base class subobject).
5167     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5168       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5169     else if (RefConv & Sema::ReferenceConversions::ObjC)
5170       Sequence.AddObjCObjectConversionStep(cv1T1);
5171     else if (RefConv & Sema::ReferenceConversions::Qualification) {
5172       if (!S.Context.hasSameType(cv1T4, cv1T1))
5173         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5174     }
5175     return;
5176   }
5177 
5178   //       - has a class type (i.e., T2 is a class type), where T1 is not
5179   //         reference-related to T2, and can be implicitly converted to an
5180   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
5181   //         where "cv1 T1" is reference-compatible with "cv3 T3",
5182   //
5183   // DR1287 removes the "implicitly" here.
5184   if (T2->isRecordType()) {
5185     if (RefRelationship == Sema::Ref_Incompatible) {
5186       ConvOvlResult = TryRefInitWithConversionFunction(
5187           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5188           /*IsLValueRef*/ isLValueRef, Sequence);
5189       if (ConvOvlResult)
5190         Sequence.SetOverloadFailure(
5191             InitializationSequence::FK_ReferenceInitOverloadFailed,
5192             ConvOvlResult);
5193 
5194       return;
5195     }
5196 
5197     if (RefRelationship == Sema::Ref_Compatible &&
5198         isRValueRef && InitCategory.isLValue()) {
5199       Sequence.SetFailed(
5200         InitializationSequence::FK_RValueReferenceBindingToLValue);
5201       return;
5202     }
5203 
5204     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5205     return;
5206   }
5207 
5208   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5209   //        from the initializer expression using the rules for a non-reference
5210   //        copy-initialization (8.5). The reference is then bound to the
5211   //        temporary. [...]
5212 
5213   // Ignore address space of reference type at this point and perform address
5214   // space conversion after the reference binding step.
5215   QualType cv1T1IgnoreAS =
5216       T1Quals.hasAddressSpace()
5217           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5218           : cv1T1;
5219 
5220   InitializedEntity TempEntity =
5221       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5222 
5223   // FIXME: Why do we use an implicit conversion here rather than trying
5224   // copy-initialization?
5225   ImplicitConversionSequence ICS
5226     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5227                               /*SuppressUserConversions=*/false,
5228                               Sema::AllowedExplicit::None,
5229                               /*FIXME:InOverloadResolution=*/false,
5230                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5231                               /*AllowObjCWritebackConversion=*/false);
5232 
5233   if (ICS.isBad()) {
5234     // FIXME: Use the conversion function set stored in ICS to turn
5235     // this into an overloading ambiguity diagnostic. However, we need
5236     // to keep that set as an OverloadCandidateSet rather than as some
5237     // other kind of set.
5238     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5239       Sequence.SetOverloadFailure(
5240                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5241                                   ConvOvlResult);
5242     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5243       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5244     else
5245       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5246     return;
5247   } else {
5248     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5249   }
5250 
5251   //        [...] If T1 is reference-related to T2, cv1 must be the
5252   //        same cv-qualification as, or greater cv-qualification
5253   //        than, cv2; otherwise, the program is ill-formed.
5254   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5255   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5256   if (RefRelationship == Sema::Ref_Related &&
5257       ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5258        !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5259     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5260     return;
5261   }
5262 
5263   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5264   //   reference, the initializer expression shall not be an lvalue.
5265   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5266       InitCategory.isLValue()) {
5267     Sequence.SetFailed(
5268                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5269     return;
5270   }
5271 
5272   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5273 
5274   if (T1Quals.hasAddressSpace()) {
5275     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5276                                               LangAS::Default)) {
5277       Sequence.SetFailed(
5278           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5279       return;
5280     }
5281     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5282                                                                : VK_XValue);
5283   }
5284 }
5285 
5286 /// Attempt character array initialization from a string literal
5287 /// (C++ [dcl.init.string], C99 6.7.8).
5288 static void TryStringLiteralInitialization(Sema &S,
5289                                            const InitializedEntity &Entity,
5290                                            const InitializationKind &Kind,
5291                                            Expr *Initializer,
5292                                        InitializationSequence &Sequence) {
5293   Sequence.AddStringInitStep(Entity.getType());
5294 }
5295 
5296 /// Attempt value initialization (C++ [dcl.init]p7).
5297 static void TryValueInitialization(Sema &S,
5298                                    const InitializedEntity &Entity,
5299                                    const InitializationKind &Kind,
5300                                    InitializationSequence &Sequence,
5301                                    InitListExpr *InitList) {
5302   assert((!InitList || InitList->getNumInits() == 0) &&
5303          "Shouldn't use value-init for non-empty init lists");
5304 
5305   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5306   //
5307   //   To value-initialize an object of type T means:
5308   QualType T = Entity.getType();
5309 
5310   //     -- if T is an array type, then each element is value-initialized;
5311   T = S.Context.getBaseElementType(T);
5312 
5313   if (const RecordType *RT = T->getAs<RecordType>()) {
5314     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5315       bool NeedZeroInitialization = true;
5316       // C++98:
5317       // -- if T is a class type (clause 9) with a user-declared constructor
5318       //    (12.1), then the default constructor for T is called (and the
5319       //    initialization is ill-formed if T has no accessible default
5320       //    constructor);
5321       // C++11:
5322       // -- if T is a class type (clause 9) with either no default constructor
5323       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5324       //    or deleted, then the object is default-initialized;
5325       //
5326       // Note that the C++11 rule is the same as the C++98 rule if there are no
5327       // defaulted or deleted constructors, so we just use it unconditionally.
5328       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5329       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5330         NeedZeroInitialization = false;
5331 
5332       // -- if T is a (possibly cv-qualified) non-union class type without a
5333       //    user-provided or deleted default constructor, then the object is
5334       //    zero-initialized and, if T has a non-trivial default constructor,
5335       //    default-initialized;
5336       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5337       // constructor' part was removed by DR1507.
5338       if (NeedZeroInitialization)
5339         Sequence.AddZeroInitializationStep(Entity.getType());
5340 
5341       // C++03:
5342       // -- if T is a non-union class type without a user-declared constructor,
5343       //    then every non-static data member and base class component of T is
5344       //    value-initialized;
5345       // [...] A program that calls for [...] value-initialization of an
5346       // entity of reference type is ill-formed.
5347       //
5348       // C++11 doesn't need this handling, because value-initialization does not
5349       // occur recursively there, and the implicit default constructor is
5350       // defined as deleted in the problematic cases.
5351       if (!S.getLangOpts().CPlusPlus11 &&
5352           ClassDecl->hasUninitializedReferenceMember()) {
5353         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5354         return;
5355       }
5356 
5357       // If this is list-value-initialization, pass the empty init list on when
5358       // building the constructor call. This affects the semantics of a few
5359       // things (such as whether an explicit default constructor can be called).
5360       Expr *InitListAsExpr = InitList;
5361       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5362       bool InitListSyntax = InitList;
5363 
5364       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5365       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5366       return TryConstructorInitialization(
5367           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5368     }
5369   }
5370 
5371   Sequence.AddZeroInitializationStep(Entity.getType());
5372 }
5373 
5374 /// Attempt default initialization (C++ [dcl.init]p6).
5375 static void TryDefaultInitialization(Sema &S,
5376                                      const InitializedEntity &Entity,
5377                                      const InitializationKind &Kind,
5378                                      InitializationSequence &Sequence) {
5379   assert(Kind.getKind() == InitializationKind::IK_Default);
5380 
5381   // C++ [dcl.init]p6:
5382   //   To default-initialize an object of type T means:
5383   //     - if T is an array type, each element is default-initialized;
5384   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5385 
5386   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5387   //       constructor for T is called (and the initialization is ill-formed if
5388   //       T has no accessible default constructor);
5389   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5390     TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType,
5391                                  Entity.getType(), Sequence);
5392     return;
5393   }
5394 
5395   //     - otherwise, no initialization is performed.
5396 
5397   //   If a program calls for the default initialization of an object of
5398   //   a const-qualified type T, T shall be a class type with a user-provided
5399   //   default constructor.
5400   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5401     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5402       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5403     return;
5404   }
5405 
5406   // If the destination type has a lifetime property, zero-initialize it.
5407   if (DestType.getQualifiers().hasObjCLifetime()) {
5408     Sequence.AddZeroInitializationStep(Entity.getType());
5409     return;
5410   }
5411 }
5412 
5413 static void TryOrBuildParenListInitialization(
5414     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5415     ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly,
5416     ExprResult *Result = nullptr) {
5417   unsigned EntityIndexToProcess = 0;
5418   SmallVector<Expr *, 4> InitExprs;
5419   QualType ResultType;
5420   Expr *ArrayFiller = nullptr;
5421   FieldDecl *InitializedFieldInUnion = nullptr;
5422 
5423   auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity,
5424                                      const InitializationKind &SubKind,
5425                                      Expr *Arg, Expr **InitExpr = nullptr) {
5426     InitializationSequence IS = [&]() {
5427       if (Arg)
5428         return InitializationSequence(S, SubEntity, SubKind, Arg);
5429       return InitializationSequence(S, SubEntity, SubKind, std::nullopt);
5430     }();
5431 
5432     if (IS.Failed()) {
5433       if (!VerifyOnly) {
5434         if (Arg)
5435           IS.Diagnose(S, SubEntity, SubKind, Arg);
5436         else
5437           IS.Diagnose(S, SubEntity, SubKind, std::nullopt);
5438       } else {
5439         Sequence.SetFailed(
5440             InitializationSequence::FK_ParenthesizedListInitFailed);
5441       }
5442 
5443       return false;
5444     }
5445     if (!VerifyOnly) {
5446       ExprResult ER;
5447       if (Arg)
5448         ER = IS.Perform(S, SubEntity, SubKind, Arg);
5449       else
5450         ER = IS.Perform(S, SubEntity, SubKind, std::nullopt);
5451       if (InitExpr)
5452         *InitExpr = ER.get();
5453       else
5454         InitExprs.push_back(ER.get());
5455     }
5456     return true;
5457   };
5458 
5459   if (const ArrayType *AT =
5460           S.getASTContext().getAsArrayType(Entity.getType())) {
5461     SmallVector<InitializedEntity, 4> ElementEntities;
5462     uint64_t ArrayLength;
5463     // C++ [dcl.init]p16.5
5464     //   if the destination type is an array, the object is initialized as
5465     //   follows. Let x1, . . . , xk be the elements of the expression-list. If
5466     //   the destination type is an array of unknown bound, it is defined as
5467     //   having k elements.
5468     if (const ConstantArrayType *CAT =
5469             S.getASTContext().getAsConstantArrayType(Entity.getType())) {
5470       ArrayLength = CAT->getSize().getZExtValue();
5471       ResultType = Entity.getType();
5472     } else if (const VariableArrayType *VAT =
5473                    S.getASTContext().getAsVariableArrayType(Entity.getType())) {
5474       // Braced-initialization of variable array types is not allowed, even if
5475       // the size is greater than or equal to the number of args, so we don't
5476       // allow them to be initialized via parenthesized aggregate initialization
5477       // either.
5478       const Expr *SE = VAT->getSizeExpr();
5479       S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init)
5480           << SE->getSourceRange();
5481       return;
5482     } else {
5483       assert(isa<IncompleteArrayType>(Entity.getType()));
5484       ArrayLength = Args.size();
5485     }
5486     EntityIndexToProcess = ArrayLength;
5487 
5488     //   ...the ith array element is copy-initialized with xi for each
5489     //   1 <= i <= k
5490     for (Expr *E : Args) {
5491       InitializedEntity SubEntity = InitializedEntity::InitializeElement(
5492           S.getASTContext(), EntityIndexToProcess, Entity);
5493       InitializationKind SubKind = InitializationKind::CreateForInit(
5494           E->getExprLoc(), /*isDirectInit=*/false, E);
5495       if (!HandleInitializedEntity(SubEntity, SubKind, E))
5496         return;
5497     }
5498     //   ...and value-initialized for each k < i <= n;
5499     if (ArrayLength > Args.size()) {
5500       InitializedEntity SubEntity = InitializedEntity::InitializeElement(
5501           S.getASTContext(), Args.size(), Entity);
5502       InitializationKind SubKind = InitializationKind::CreateValue(
5503           Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true);
5504       if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller))
5505         return;
5506     }
5507 
5508     if (ResultType.isNull()) {
5509       ResultType = S.Context.getConstantArrayType(
5510           AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength),
5511           /*SizeExpr=*/nullptr, ArrayType::Normal, 0);
5512     }
5513   } else if (auto *RT = Entity.getType()->getAs<RecordType>()) {
5514     bool IsUnion = RT->isUnionType();
5515     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5516 
5517     if (!IsUnion) {
5518       for (const CXXBaseSpecifier &Base : RD->bases()) {
5519         InitializedEntity SubEntity = InitializedEntity::InitializeBase(
5520             S.getASTContext(), &Base, false, &Entity);
5521         if (EntityIndexToProcess < Args.size()) {
5522           // C++ [dcl.init]p16.6.2.2.
5523           //   ...the object is initialized is follows. Let e1, ..., en be the
5524           //   elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be
5525           //   the elements of the expression-list...The element ei is
5526           //   copy-initialized with xi for 1 <= i <= k.
5527           Expr *E = Args[EntityIndexToProcess];
5528           InitializationKind SubKind = InitializationKind::CreateForInit(
5529               E->getExprLoc(), /*isDirectInit=*/false, E);
5530           if (!HandleInitializedEntity(SubEntity, SubKind, E))
5531             return;
5532         } else {
5533           // We've processed all of the args, but there are still base classes
5534           // that have to be initialized.
5535           // C++ [dcl.init]p17.6.2.2
5536           //   The remaining elements...otherwise are value initialzed
5537           InitializationKind SubKind = InitializationKind::CreateValue(
5538               Kind.getLocation(), Kind.getLocation(), Kind.getLocation(),
5539               /*IsImplicit=*/true);
5540           if (!HandleInitializedEntity(SubEntity, SubKind, nullptr))
5541             return;
5542         }
5543         EntityIndexToProcess++;
5544       }
5545     }
5546 
5547     for (FieldDecl *FD : RD->fields()) {
5548       // Unnamed bitfields should not be initialized at all, either with an arg
5549       // or by default.
5550       if (FD->isUnnamedBitfield())
5551         continue;
5552 
5553       InitializedEntity SubEntity =
5554           InitializedEntity::InitializeMemberFromParenAggInit(FD);
5555 
5556       if (EntityIndexToProcess < Args.size()) {
5557         //   ...The element ei is copy-initialized with xi for 1 <= i <= k.
5558         Expr *E = Args[EntityIndexToProcess];
5559 
5560         // Incomplete array types indicate flexible array members. Do not allow
5561         // paren list initializations of structs with these members, as GCC
5562         // doesn't either.
5563         if (FD->getType()->isIncompleteArrayType()) {
5564           if (!VerifyOnly) {
5565             S.Diag(E->getBeginLoc(), diag::err_flexible_array_init)
5566                 << SourceRange(E->getBeginLoc(), E->getEndLoc());
5567             S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD;
5568           }
5569           Sequence.SetFailed(
5570               InitializationSequence::FK_ParenthesizedListInitFailed);
5571           return;
5572         }
5573 
5574         InitializationKind SubKind = InitializationKind::CreateForInit(
5575             E->getExprLoc(), /*isDirectInit=*/false, E);
5576         if (!HandleInitializedEntity(SubEntity, SubKind, E))
5577           return;
5578 
5579         // Unions should have only one initializer expression, so we bail out
5580         // after processing the first field. If there are more initializers then
5581         // it will be caught when we later check whether EntityIndexToProcess is
5582         // less than Args.size();
5583         if (IsUnion) {
5584           InitializedFieldInUnion = FD;
5585           EntityIndexToProcess = 1;
5586           break;
5587         }
5588       } else {
5589         // We've processed all of the args, but there are still members that
5590         // have to be initialized.
5591         if (FD->hasInClassInitializer()) {
5592           if (!VerifyOnly) {
5593             // C++ [dcl.init]p16.6.2.2
5594             //   The remaining elements are initialized with their default
5595             //   member initializers, if any
5596             ExprResult DIE = S.BuildCXXDefaultInitExpr(
5597                 Kind.getParenOrBraceRange().getEnd(), FD);
5598             if (DIE.isInvalid())
5599               return;
5600             S.checkInitializerLifetime(SubEntity, DIE.get());
5601             InitExprs.push_back(DIE.get());
5602           }
5603         } else {
5604           // C++ [dcl.init]p17.6.2.2
5605           //   The remaining elements...otherwise are value initialzed
5606           if (FD->getType()->isReferenceType()) {
5607             Sequence.SetFailed(
5608                 InitializationSequence::FK_ParenthesizedListInitFailed);
5609             if (!VerifyOnly) {
5610               SourceRange SR = Kind.getParenOrBraceRange();
5611               S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized)
5612                   << FD->getType() << SR;
5613               S.Diag(FD->getLocation(), diag::note_uninit_reference_member);
5614             }
5615             return;
5616           }
5617           InitializationKind SubKind = InitializationKind::CreateValue(
5618               Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true);
5619           if (!HandleInitializedEntity(SubEntity, SubKind, nullptr))
5620             return;
5621         }
5622       }
5623       EntityIndexToProcess++;
5624     }
5625     ResultType = Entity.getType();
5626   }
5627 
5628   // Not all of the args have been processed, so there must've been more args
5629   // than were required to initialize the element.
5630   if (EntityIndexToProcess < Args.size()) {
5631     Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed);
5632     if (!VerifyOnly) {
5633       QualType T = Entity.getType();
5634       int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4;
5635       SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(),
5636                                Args.back()->getEndLoc());
5637       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5638           << InitKind << ExcessInitSR;
5639     }
5640     return;
5641   }
5642 
5643   if (VerifyOnly) {
5644     Sequence.setSequenceKind(InitializationSequence::NormalSequence);
5645     Sequence.AddParenthesizedListInitStep(Entity.getType());
5646   } else if (Result) {
5647     SourceRange SR = Kind.getParenOrBraceRange();
5648     auto *CPLIE = CXXParenListInitExpr::Create(
5649         S.getASTContext(), InitExprs, ResultType, Args.size(),
5650         Kind.getLocation(), SR.getBegin(), SR.getEnd());
5651     if (ArrayFiller)
5652       CPLIE->setArrayFiller(ArrayFiller);
5653     if (InitializedFieldInUnion)
5654       CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion);
5655     *Result = CPLIE;
5656     S.Diag(Kind.getLocation(),
5657            diag::warn_cxx17_compat_aggregate_init_paren_list)
5658         << Kind.getLocation() << SR << ResultType;
5659   }
5660 
5661   return;
5662 }
5663 
5664 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5665 /// which enumerates all conversion functions and performs overload resolution
5666 /// to select the best.
5667 static void TryUserDefinedConversion(Sema &S,
5668                                      QualType DestType,
5669                                      const InitializationKind &Kind,
5670                                      Expr *Initializer,
5671                                      InitializationSequence &Sequence,
5672                                      bool TopLevelOfInitList) {
5673   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5674   QualType SourceType = Initializer->getType();
5675   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5676          "Must have a class type to perform a user-defined conversion");
5677 
5678   // Build the candidate set directly in the initialization sequence
5679   // structure, so that it will persist if we fail.
5680   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5681   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5682   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5683 
5684   // Determine whether we are allowed to call explicit constructors or
5685   // explicit conversion operators.
5686   bool AllowExplicit = Kind.AllowExplicit();
5687 
5688   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5689     // The type we're converting to is a class type. Enumerate its constructors
5690     // to see if there is a suitable conversion.
5691     CXXRecordDecl *DestRecordDecl
5692       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5693 
5694     // Try to complete the type we're converting to.
5695     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5696       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5697         auto Info = getConstructorInfo(D);
5698         if (!Info.Constructor)
5699           continue;
5700 
5701         if (!Info.Constructor->isInvalidDecl() &&
5702             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5703           if (Info.ConstructorTmpl)
5704             S.AddTemplateOverloadCandidate(
5705                 Info.ConstructorTmpl, Info.FoundDecl,
5706                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5707                 /*SuppressUserConversions=*/true,
5708                 /*PartialOverloading*/ false, AllowExplicit);
5709           else
5710             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5711                                    Initializer, CandidateSet,
5712                                    /*SuppressUserConversions=*/true,
5713                                    /*PartialOverloading*/ false, AllowExplicit);
5714         }
5715       }
5716     }
5717   }
5718 
5719   SourceLocation DeclLoc = Initializer->getBeginLoc();
5720 
5721   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5722     // The type we're converting from is a class type, enumerate its conversion
5723     // functions.
5724 
5725     // We can only enumerate the conversion functions for a complete type; if
5726     // the type isn't complete, simply skip this step.
5727     if (S.isCompleteType(DeclLoc, SourceType)) {
5728       CXXRecordDecl *SourceRecordDecl
5729         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5730 
5731       const auto &Conversions =
5732           SourceRecordDecl->getVisibleConversionFunctions();
5733       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5734         NamedDecl *D = *I;
5735         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5736         if (isa<UsingShadowDecl>(D))
5737           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5738 
5739         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5740         CXXConversionDecl *Conv;
5741         if (ConvTemplate)
5742           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5743         else
5744           Conv = cast<CXXConversionDecl>(D);
5745 
5746         if (ConvTemplate)
5747           S.AddTemplateConversionCandidate(
5748               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5749               CandidateSet, AllowExplicit, AllowExplicit);
5750         else
5751           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5752                                    DestType, CandidateSet, AllowExplicit,
5753                                    AllowExplicit);
5754       }
5755     }
5756   }
5757 
5758   // Perform overload resolution. If it fails, return the failed result.
5759   OverloadCandidateSet::iterator Best;
5760   if (OverloadingResult Result
5761         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5762     Sequence.SetOverloadFailure(
5763         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5764 
5765     // [class.copy.elision]p3:
5766     // In some copy-initialization contexts, a two-stage overload resolution
5767     // is performed.
5768     // If the first overload resolution selects a deleted function, we also
5769     // need the initialization sequence to decide whether to perform the second
5770     // overload resolution.
5771     if (!(Result == OR_Deleted &&
5772           Kind.getKind() == InitializationKind::IK_Copy))
5773       return;
5774   }
5775 
5776   FunctionDecl *Function = Best->Function;
5777   Function->setReferenced();
5778   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5779 
5780   if (isa<CXXConstructorDecl>(Function)) {
5781     // Add the user-defined conversion step. Any cv-qualification conversion is
5782     // subsumed by the initialization. Per DR5, the created temporary is of the
5783     // cv-unqualified type of the destination.
5784     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5785                                    DestType.getUnqualifiedType(),
5786                                    HadMultipleCandidates);
5787 
5788     // C++14 and before:
5789     //   - if the function is a constructor, the call initializes a temporary
5790     //     of the cv-unqualified version of the destination type. The [...]
5791     //     temporary [...] is then used to direct-initialize, according to the
5792     //     rules above, the object that is the destination of the
5793     //     copy-initialization.
5794     // Note that this just performs a simple object copy from the temporary.
5795     //
5796     // C++17:
5797     //   - if the function is a constructor, the call is a prvalue of the
5798     //     cv-unqualified version of the destination type whose return object
5799     //     is initialized by the constructor. The call is used to
5800     //     direct-initialize, according to the rules above, the object that
5801     //     is the destination of the copy-initialization.
5802     // Therefore we need to do nothing further.
5803     //
5804     // FIXME: Mark this copy as extraneous.
5805     if (!S.getLangOpts().CPlusPlus17)
5806       Sequence.AddFinalCopy(DestType);
5807     else if (DestType.hasQualifiers())
5808       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5809     return;
5810   }
5811 
5812   // Add the user-defined conversion step that calls the conversion function.
5813   QualType ConvType = Function->getCallResultType();
5814   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5815                                  HadMultipleCandidates);
5816 
5817   if (ConvType->getAs<RecordType>()) {
5818     //   The call is used to direct-initialize [...] the object that is the
5819     //   destination of the copy-initialization.
5820     //
5821     // In C++17, this does not call a constructor if we enter /17.6.1:
5822     //   - If the initializer expression is a prvalue and the cv-unqualified
5823     //     version of the source type is the same as the class of the
5824     //     destination [... do not make an extra copy]
5825     //
5826     // FIXME: Mark this copy as extraneous.
5827     if (!S.getLangOpts().CPlusPlus17 ||
5828         Function->getReturnType()->isReferenceType() ||
5829         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5830       Sequence.AddFinalCopy(DestType);
5831     else if (!S.Context.hasSameType(ConvType, DestType))
5832       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5833     return;
5834   }
5835 
5836   // If the conversion following the call to the conversion function
5837   // is interesting, add it as a separate step.
5838   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5839       Best->FinalConversion.Third) {
5840     ImplicitConversionSequence ICS;
5841     ICS.setStandard();
5842     ICS.Standard = Best->FinalConversion;
5843     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5844   }
5845 }
5846 
5847 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5848 /// a function with a pointer return type contains a 'return false;' statement.
5849 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5850 /// code using that header.
5851 ///
5852 /// Work around this by treating 'return false;' as zero-initializing the result
5853 /// if it's used in a pointer-returning function in a system header.
5854 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5855                                               const InitializedEntity &Entity,
5856                                               const Expr *Init) {
5857   return S.getLangOpts().CPlusPlus11 &&
5858          Entity.getKind() == InitializedEntity::EK_Result &&
5859          Entity.getType()->isPointerType() &&
5860          isa<CXXBoolLiteralExpr>(Init) &&
5861          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5862          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5863 }
5864 
5865 /// The non-zero enum values here are indexes into diagnostic alternatives.
5866 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5867 
5868 /// Determines whether this expression is an acceptable ICR source.
5869 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5870                                          bool isAddressOf, bool &isWeakAccess) {
5871   // Skip parens.
5872   e = e->IgnoreParens();
5873 
5874   // Skip address-of nodes.
5875   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5876     if (op->getOpcode() == UO_AddrOf)
5877       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5878                                 isWeakAccess);
5879 
5880   // Skip certain casts.
5881   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5882     switch (ce->getCastKind()) {
5883     case CK_Dependent:
5884     case CK_BitCast:
5885     case CK_LValueBitCast:
5886     case CK_NoOp:
5887       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5888 
5889     case CK_ArrayToPointerDecay:
5890       return IIK_nonscalar;
5891 
5892     case CK_NullToPointer:
5893       return IIK_okay;
5894 
5895     default:
5896       break;
5897     }
5898 
5899   // If we have a declaration reference, it had better be a local variable.
5900   } else if (isa<DeclRefExpr>(e)) {
5901     // set isWeakAccess to true, to mean that there will be an implicit
5902     // load which requires a cleanup.
5903     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5904       isWeakAccess = true;
5905 
5906     if (!isAddressOf) return IIK_nonlocal;
5907 
5908     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5909     if (!var) return IIK_nonlocal;
5910 
5911     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5912 
5913   // If we have a conditional operator, check both sides.
5914   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5915     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5916                                                 isWeakAccess))
5917       return iik;
5918 
5919     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5920 
5921   // These are never scalar.
5922   } else if (isa<ArraySubscriptExpr>(e)) {
5923     return IIK_nonscalar;
5924 
5925   // Otherwise, it needs to be a null pointer constant.
5926   } else {
5927     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5928             ? IIK_okay : IIK_nonlocal);
5929   }
5930 
5931   return IIK_nonlocal;
5932 }
5933 
5934 /// Check whether the given expression is a valid operand for an
5935 /// indirect copy/restore.
5936 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5937   assert(src->isPRValue());
5938   bool isWeakAccess = false;
5939   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5940   // If isWeakAccess to true, there will be an implicit
5941   // load which requires a cleanup.
5942   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5943     S.Cleanup.setExprNeedsCleanups(true);
5944 
5945   if (iik == IIK_okay) return;
5946 
5947   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5948     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5949     << src->getSourceRange();
5950 }
5951 
5952 /// Determine whether we have compatible array types for the
5953 /// purposes of GNU by-copy array initialization.
5954 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5955                                     const ArrayType *Source) {
5956   // If the source and destination array types are equivalent, we're
5957   // done.
5958   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5959     return true;
5960 
5961   // Make sure that the element types are the same.
5962   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5963     return false;
5964 
5965   // The only mismatch we allow is when the destination is an
5966   // incomplete array type and the source is a constant array type.
5967   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5968 }
5969 
5970 static bool tryObjCWritebackConversion(Sema &S,
5971                                        InitializationSequence &Sequence,
5972                                        const InitializedEntity &Entity,
5973                                        Expr *Initializer) {
5974   bool ArrayDecay = false;
5975   QualType ArgType = Initializer->getType();
5976   QualType ArgPointee;
5977   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5978     ArrayDecay = true;
5979     ArgPointee = ArgArrayType->getElementType();
5980     ArgType = S.Context.getPointerType(ArgPointee);
5981   }
5982 
5983   // Handle write-back conversion.
5984   QualType ConvertedArgType;
5985   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5986                                    ConvertedArgType))
5987     return false;
5988 
5989   // We should copy unless we're passing to an argument explicitly
5990   // marked 'out'.
5991   bool ShouldCopy = true;
5992   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5993     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5994 
5995   // Do we need an lvalue conversion?
5996   if (ArrayDecay || Initializer->isGLValue()) {
5997     ImplicitConversionSequence ICS;
5998     ICS.setStandard();
5999     ICS.Standard.setAsIdentityConversion();
6000 
6001     QualType ResultType;
6002     if (ArrayDecay) {
6003       ICS.Standard.First = ICK_Array_To_Pointer;
6004       ResultType = S.Context.getPointerType(ArgPointee);
6005     } else {
6006       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
6007       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
6008     }
6009 
6010     Sequence.AddConversionSequenceStep(ICS, ResultType);
6011   }
6012 
6013   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
6014   return true;
6015 }
6016 
6017 static bool TryOCLSamplerInitialization(Sema &S,
6018                                         InitializationSequence &Sequence,
6019                                         QualType DestType,
6020                                         Expr *Initializer) {
6021   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
6022       (!Initializer->isIntegerConstantExpr(S.Context) &&
6023       !Initializer->getType()->isSamplerT()))
6024     return false;
6025 
6026   Sequence.AddOCLSamplerInitStep(DestType);
6027   return true;
6028 }
6029 
6030 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
6031   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
6032     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
6033 }
6034 
6035 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
6036                                                InitializationSequence &Sequence,
6037                                                QualType DestType,
6038                                                Expr *Initializer) {
6039   if (!S.getLangOpts().OpenCL)
6040     return false;
6041 
6042   //
6043   // OpenCL 1.2 spec, s6.12.10
6044   //
6045   // The event argument can also be used to associate the
6046   // async_work_group_copy with a previous async copy allowing
6047   // an event to be shared by multiple async copies; otherwise
6048   // event should be zero.
6049   //
6050   if (DestType->isEventT() || DestType->isQueueT()) {
6051     if (!IsZeroInitializer(Initializer, S))
6052       return false;
6053 
6054     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
6055     return true;
6056   }
6057 
6058   // We should allow zero initialization for all types defined in the
6059   // cl_intel_device_side_avc_motion_estimation extension, except
6060   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
6061   if (S.getOpenCLOptions().isAvailableOption(
6062           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
6063       DestType->isOCLIntelSubgroupAVCType()) {
6064     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
6065         DestType->isOCLIntelSubgroupAVCMceResultType())
6066       return false;
6067     if (!IsZeroInitializer(Initializer, S))
6068       return false;
6069 
6070     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
6071     return true;
6072   }
6073 
6074   return false;
6075 }
6076 
6077 InitializationSequence::InitializationSequence(
6078     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
6079     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
6080     : FailedOverloadResult(OR_Success),
6081       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
6082   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
6083                  TreatUnavailableAsInvalid);
6084 }
6085 
6086 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
6087 /// address of that function, this returns true. Otherwise, it returns false.
6088 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
6089   auto *DRE = dyn_cast<DeclRefExpr>(E);
6090   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
6091     return false;
6092 
6093   return !S.checkAddressOfFunctionIsAvailable(
6094       cast<FunctionDecl>(DRE->getDecl()));
6095 }
6096 
6097 /// Determine whether we can perform an elementwise array copy for this kind
6098 /// of entity.
6099 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
6100   switch (Entity.getKind()) {
6101   case InitializedEntity::EK_LambdaCapture:
6102     // C++ [expr.prim.lambda]p24:
6103     //   For array members, the array elements are direct-initialized in
6104     //   increasing subscript order.
6105     return true;
6106 
6107   case InitializedEntity::EK_Variable:
6108     // C++ [dcl.decomp]p1:
6109     //   [...] each element is copy-initialized or direct-initialized from the
6110     //   corresponding element of the assignment-expression [...]
6111     return isa<DecompositionDecl>(Entity.getDecl());
6112 
6113   case InitializedEntity::EK_Member:
6114     // C++ [class.copy.ctor]p14:
6115     //   - if the member is an array, each element is direct-initialized with
6116     //     the corresponding subobject of x
6117     return Entity.isImplicitMemberInitializer();
6118 
6119   case InitializedEntity::EK_ArrayElement:
6120     // All the above cases are intended to apply recursively, even though none
6121     // of them actually say that.
6122     if (auto *E = Entity.getParent())
6123       return canPerformArrayCopy(*E);
6124     break;
6125 
6126   default:
6127     break;
6128   }
6129 
6130   return false;
6131 }
6132 
6133 void InitializationSequence::InitializeFrom(Sema &S,
6134                                             const InitializedEntity &Entity,
6135                                             const InitializationKind &Kind,
6136                                             MultiExprArg Args,
6137                                             bool TopLevelOfInitList,
6138                                             bool TreatUnavailableAsInvalid) {
6139   ASTContext &Context = S.Context;
6140 
6141   // Eliminate non-overload placeholder types in the arguments.  We
6142   // need to do this before checking whether types are dependent
6143   // because lowering a pseudo-object expression might well give us
6144   // something of dependent type.
6145   for (unsigned I = 0, E = Args.size(); I != E; ++I)
6146     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
6147       // FIXME: should we be doing this here?
6148       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
6149       if (result.isInvalid()) {
6150         SetFailed(FK_PlaceholderType);
6151         return;
6152       }
6153       Args[I] = result.get();
6154     }
6155 
6156   // C++0x [dcl.init]p16:
6157   //   The semantics of initializers are as follows. The destination type is
6158   //   the type of the object or reference being initialized and the source
6159   //   type is the type of the initializer expression. The source type is not
6160   //   defined when the initializer is a braced-init-list or when it is a
6161   //   parenthesized list of expressions.
6162   QualType DestType = Entity.getType();
6163 
6164   if (DestType->isDependentType() ||
6165       Expr::hasAnyTypeDependentArguments(Args)) {
6166     SequenceKind = DependentSequence;
6167     return;
6168   }
6169 
6170   // Almost everything is a normal sequence.
6171   setSequenceKind(NormalSequence);
6172 
6173   QualType SourceType;
6174   Expr *Initializer = nullptr;
6175   if (Args.size() == 1) {
6176     Initializer = Args[0];
6177     if (S.getLangOpts().ObjC) {
6178       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
6179                                               DestType, Initializer->getType(),
6180                                               Initializer) ||
6181           S.CheckConversionToObjCLiteral(DestType, Initializer))
6182         Args[0] = Initializer;
6183     }
6184     if (!isa<InitListExpr>(Initializer))
6185       SourceType = Initializer->getType();
6186   }
6187 
6188   //     - If the initializer is a (non-parenthesized) braced-init-list, the
6189   //       object is list-initialized (8.5.4).
6190   if (Kind.getKind() != InitializationKind::IK_Direct) {
6191     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
6192       TryListInitialization(S, Entity, Kind, InitList, *this,
6193                             TreatUnavailableAsInvalid);
6194       return;
6195     }
6196   }
6197 
6198   //     - If the destination type is a reference type, see 8.5.3.
6199   if (DestType->isReferenceType()) {
6200     // C++0x [dcl.init.ref]p1:
6201     //   A variable declared to be a T& or T&&, that is, "reference to type T"
6202     //   (8.3.2), shall be initialized by an object, or function, of type T or
6203     //   by an object that can be converted into a T.
6204     // (Therefore, multiple arguments are not permitted.)
6205     if (Args.size() != 1)
6206       SetFailed(FK_TooManyInitsForReference);
6207     // C++17 [dcl.init.ref]p5:
6208     //   A reference [...] is initialized by an expression [...] as follows:
6209     // If the initializer is not an expression, presumably we should reject,
6210     // but the standard fails to actually say so.
6211     else if (isa<InitListExpr>(Args[0]))
6212       SetFailed(FK_ParenthesizedListInitForReference);
6213     else
6214       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
6215     return;
6216   }
6217 
6218   //     - If the initializer is (), the object is value-initialized.
6219   if (Kind.getKind() == InitializationKind::IK_Value ||
6220       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
6221     TryValueInitialization(S, Entity, Kind, *this);
6222     return;
6223   }
6224 
6225   // Handle default initialization.
6226   if (Kind.getKind() == InitializationKind::IK_Default) {
6227     TryDefaultInitialization(S, Entity, Kind, *this);
6228     return;
6229   }
6230 
6231   //     - If the destination type is an array of characters, an array of
6232   //       char16_t, an array of char32_t, or an array of wchar_t, and the
6233   //       initializer is a string literal, see 8.5.2.
6234   //     - Otherwise, if the destination type is an array, the program is
6235   //       ill-formed.
6236   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
6237     if (Initializer && isa<VariableArrayType>(DestAT)) {
6238       SetFailed(FK_VariableLengthArrayHasInitializer);
6239       return;
6240     }
6241 
6242     if (Initializer) {
6243       switch (IsStringInit(Initializer, DestAT, Context)) {
6244       case SIF_None:
6245         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
6246         return;
6247       case SIF_NarrowStringIntoWideChar:
6248         SetFailed(FK_NarrowStringIntoWideCharArray);
6249         return;
6250       case SIF_WideStringIntoChar:
6251         SetFailed(FK_WideStringIntoCharArray);
6252         return;
6253       case SIF_IncompatWideStringIntoWideChar:
6254         SetFailed(FK_IncompatWideStringIntoWideChar);
6255         return;
6256       case SIF_PlainStringIntoUTF8Char:
6257         SetFailed(FK_PlainStringIntoUTF8Char);
6258         return;
6259       case SIF_UTF8StringIntoPlainChar:
6260         SetFailed(FK_UTF8StringIntoPlainChar);
6261         return;
6262       case SIF_Other:
6263         break;
6264       }
6265     }
6266 
6267     // Some kinds of initialization permit an array to be initialized from
6268     // another array of the same type, and perform elementwise initialization.
6269     if (Initializer && isa<ConstantArrayType>(DestAT) &&
6270         S.Context.hasSameUnqualifiedType(Initializer->getType(),
6271                                          Entity.getType()) &&
6272         canPerformArrayCopy(Entity)) {
6273       // If source is a prvalue, use it directly.
6274       if (Initializer->isPRValue()) {
6275         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
6276         return;
6277       }
6278 
6279       // Emit element-at-a-time copy loop.
6280       InitializedEntity Element =
6281           InitializedEntity::InitializeElement(S.Context, 0, Entity);
6282       QualType InitEltT =
6283           Context.getAsArrayType(Initializer->getType())->getElementType();
6284       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
6285                           Initializer->getValueKind(),
6286                           Initializer->getObjectKind());
6287       Expr *OVEAsExpr = &OVE;
6288       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
6289                      TreatUnavailableAsInvalid);
6290       if (!Failed())
6291         AddArrayInitLoopStep(Entity.getType(), InitEltT);
6292       return;
6293     }
6294 
6295     // Note: as an GNU C extension, we allow initialization of an
6296     // array from a compound literal that creates an array of the same
6297     // type, so long as the initializer has no side effects.
6298     if (!S.getLangOpts().CPlusPlus && Initializer &&
6299         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
6300         Initializer->getType()->isArrayType()) {
6301       const ArrayType *SourceAT
6302         = Context.getAsArrayType(Initializer->getType());
6303       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
6304         SetFailed(FK_ArrayTypeMismatch);
6305       else if (Initializer->HasSideEffects(S.Context))
6306         SetFailed(FK_NonConstantArrayInit);
6307       else {
6308         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
6309       }
6310     }
6311     // Note: as a GNU C++ extension, we allow list-initialization of a
6312     // class member of array type from a parenthesized initializer list.
6313     else if (S.getLangOpts().CPlusPlus &&
6314              Entity.getKind() == InitializedEntity::EK_Member &&
6315              Initializer && isa<InitListExpr>(Initializer)) {
6316       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
6317                             *this, TreatUnavailableAsInvalid);
6318       AddParenthesizedArrayInitStep(DestType);
6319     } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList &&
6320                Kind.getKind() == InitializationKind::IK_Direct)
6321       TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6322                                         /*VerifyOnly=*/true);
6323     else if (DestAT->getElementType()->isCharType())
6324       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
6325     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
6326       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
6327     else
6328       SetFailed(FK_ArrayNeedsInitList);
6329 
6330     return;
6331   }
6332 
6333   // Determine whether we should consider writeback conversions for
6334   // Objective-C ARC.
6335   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
6336          Entity.isParameterKind();
6337 
6338   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
6339     return;
6340 
6341   // We're at the end of the line for C: it's either a write-back conversion
6342   // or it's a C assignment. There's no need to check anything else.
6343   if (!S.getLangOpts().CPlusPlus) {
6344     assert(Initializer && "Initializer must be non-null");
6345     // If allowed, check whether this is an Objective-C writeback conversion.
6346     if (allowObjCWritebackConversion &&
6347         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
6348       return;
6349     }
6350 
6351     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
6352       return;
6353 
6354     // Handle initialization in C
6355     AddCAssignmentStep(DestType);
6356     MaybeProduceObjCObject(S, *this, Entity);
6357     return;
6358   }
6359 
6360   assert(S.getLangOpts().CPlusPlus);
6361 
6362   //     - If the destination type is a (possibly cv-qualified) class type:
6363   if (DestType->isRecordType()) {
6364     //     - If the initialization is direct-initialization, or if it is
6365     //       copy-initialization where the cv-unqualified version of the
6366     //       source type is the same class as, or a derived class of, the
6367     //       class of the destination, constructors are considered. [...]
6368     if (Kind.getKind() == InitializationKind::IK_Direct ||
6369         (Kind.getKind() == InitializationKind::IK_Copy &&
6370          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
6371           (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(),
6372                                           SourceType, DestType))))) {
6373       TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType,
6374                                    *this);
6375 
6376       // We fall back to the "no matching constructor" path if the
6377       // failed candidate set has functions other than the three default
6378       // constructors. For example, conversion function.
6379       if (const auto *RD =
6380               dyn_cast<CXXRecordDecl>(DestType->getAs<RecordType>()->getDecl());
6381           // In general, we should call isCompleteType for RD to check its
6382           // completeness, we don't call it here as it was already called in the
6383           // above TryConstructorInitialization.
6384           S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() &&
6385           RD->isAggregate() && Failed() &&
6386           getFailureKind() == FK_ConstructorOverloadFailed) {
6387         // Do not attempt paren list initialization if overload resolution
6388         // resolves to a deleted function .
6389         //
6390         // We may reach this condition if we have a union wrapping a class with
6391         // a non-trivial copy or move constructor and we call one of those two
6392         // constructors. The union is an aggregate, but the matched constructor
6393         // is implicitly deleted, so we need to prevent aggregate initialization
6394         // (otherwise, it'll attempt aggregate initialization by initializing
6395         // the first element with a reference to the union).
6396         OverloadCandidateSet::iterator Best;
6397         OverloadingResult OR = getFailedCandidateSet().BestViableFunction(
6398             S, Kind.getLocation(), Best);
6399         if (OR != OverloadingResult::OR_Deleted) {
6400           // C++20 [dcl.init] 17.6.2.2:
6401           //   - Otherwise, if no constructor is viable, the destination type is
6402           //   an
6403           //      aggregate class, and the initializer is a parenthesized
6404           //      expression-list.
6405           TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
6406                                             /*VerifyOnly=*/true);
6407         }
6408       }
6409     } else {
6410       //     - Otherwise (i.e., for the remaining copy-initialization cases),
6411       //       user-defined conversion sequences that can convert from the
6412       //       source type to the destination type or (when a conversion
6413       //       function is used) to a derived class thereof are enumerated as
6414       //       described in 13.3.1.4, and the best one is chosen through
6415       //       overload resolution (13.3).
6416       assert(Initializer && "Initializer must be non-null");
6417       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6418                                TopLevelOfInitList);
6419     }
6420     return;
6421   }
6422 
6423   assert(Args.size() >= 1 && "Zero-argument case handled above");
6424 
6425   // For HLSL ext vector types we allow list initialization behavior for C++
6426   // constructor syntax. This is accomplished by converting initialization
6427   // arguments an InitListExpr late.
6428   if (S.getLangOpts().HLSL && DestType->isExtVectorType() &&
6429       (SourceType.isNull() ||
6430        !Context.hasSameUnqualifiedType(SourceType, DestType))) {
6431 
6432     llvm::SmallVector<Expr *> InitArgs;
6433     for (auto *Arg : Args) {
6434       if (Arg->getType()->isExtVectorType()) {
6435         const auto *VTy = Arg->getType()->castAs<ExtVectorType>();
6436         unsigned Elm = VTy->getNumElements();
6437         for (unsigned Idx = 0; Idx < Elm; ++Idx) {
6438           InitArgs.emplace_back(new (Context) ArraySubscriptExpr(
6439               Arg,
6440               IntegerLiteral::Create(
6441                   Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx),
6442                   Context.IntTy, SourceLocation()),
6443               VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(),
6444               SourceLocation()));
6445         }
6446       } else
6447         InitArgs.emplace_back(Arg);
6448     }
6449     InitListExpr *ILE = new (Context) InitListExpr(
6450         S.getASTContext(), SourceLocation(), InitArgs, SourceLocation());
6451     Args[0] = ILE;
6452     AddListInitializationStep(DestType);
6453     return;
6454   }
6455 
6456   // The remaining cases all need a source type.
6457   if (Args.size() > 1) {
6458     SetFailed(FK_TooManyInitsForScalar);
6459     return;
6460   } else if (isa<InitListExpr>(Args[0])) {
6461     SetFailed(FK_ParenthesizedListInitForScalar);
6462     return;
6463   }
6464 
6465   //    - Otherwise, if the source type is a (possibly cv-qualified) class
6466   //      type, conversion functions are considered.
6467   if (!SourceType.isNull() && SourceType->isRecordType()) {
6468     assert(Initializer && "Initializer must be non-null");
6469     // For a conversion to _Atomic(T) from either T or a class type derived
6470     // from T, initialize the T object then convert to _Atomic type.
6471     bool NeedAtomicConversion = false;
6472     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
6473       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
6474           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
6475                           Atomic->getValueType())) {
6476         DestType = Atomic->getValueType();
6477         NeedAtomicConversion = true;
6478       }
6479     }
6480 
6481     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
6482                              TopLevelOfInitList);
6483     MaybeProduceObjCObject(S, *this, Entity);
6484     if (!Failed() && NeedAtomicConversion)
6485       AddAtomicConversionStep(Entity.getType());
6486     return;
6487   }
6488 
6489   //    - Otherwise, if the initialization is direct-initialization, the source
6490   //    type is std::nullptr_t, and the destination type is bool, the initial
6491   //    value of the object being initialized is false.
6492   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6493       DestType->isBooleanType() &&
6494       Kind.getKind() == InitializationKind::IK_Direct) {
6495     AddConversionSequenceStep(
6496         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6497                                                      Initializer->isGLValue()),
6498         DestType);
6499     return;
6500   }
6501 
6502   //    - Otherwise, the initial value of the object being initialized is the
6503   //      (possibly converted) value of the initializer expression. Standard
6504   //      conversions (Clause 4) will be used, if necessary, to convert the
6505   //      initializer expression to the cv-unqualified version of the
6506   //      destination type; no user-defined conversions are considered.
6507 
6508   ImplicitConversionSequence ICS
6509     = S.TryImplicitConversion(Initializer, DestType,
6510                               /*SuppressUserConversions*/true,
6511                               Sema::AllowedExplicit::None,
6512                               /*InOverloadResolution*/ false,
6513                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6514                               allowObjCWritebackConversion);
6515 
6516   if (ICS.isStandard() &&
6517       ICS.Standard.Second == ICK_Writeback_Conversion) {
6518     // Objective-C ARC writeback conversion.
6519 
6520     // We should copy unless we're passing to an argument explicitly
6521     // marked 'out'.
6522     bool ShouldCopy = true;
6523     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6524       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6525 
6526     // If there was an lvalue adjustment, add it as a separate conversion.
6527     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6528         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6529       ImplicitConversionSequence LvalueICS;
6530       LvalueICS.setStandard();
6531       LvalueICS.Standard.setAsIdentityConversion();
6532       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6533       LvalueICS.Standard.First = ICS.Standard.First;
6534       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6535     }
6536 
6537     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6538   } else if (ICS.isBad()) {
6539     DeclAccessPair dap;
6540     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6541       AddZeroInitializationStep(Entity.getType());
6542     } else if (Initializer->getType() == Context.OverloadTy &&
6543                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6544                                                      false, dap))
6545       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6546     else if (Initializer->getType()->isFunctionType() &&
6547              isExprAnUnaddressableFunction(S, Initializer))
6548       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6549     else
6550       SetFailed(InitializationSequence::FK_ConversionFailed);
6551   } else {
6552     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6553 
6554     MaybeProduceObjCObject(S, *this, Entity);
6555   }
6556 }
6557 
6558 InitializationSequence::~InitializationSequence() {
6559   for (auto &S : Steps)
6560     S.Destroy();
6561 }
6562 
6563 //===----------------------------------------------------------------------===//
6564 // Perform initialization
6565 //===----------------------------------------------------------------------===//
6566 static Sema::AssignmentAction
6567 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6568   switch(Entity.getKind()) {
6569   case InitializedEntity::EK_Variable:
6570   case InitializedEntity::EK_New:
6571   case InitializedEntity::EK_Exception:
6572   case InitializedEntity::EK_Base:
6573   case InitializedEntity::EK_Delegating:
6574     return Sema::AA_Initializing;
6575 
6576   case InitializedEntity::EK_Parameter:
6577     if (Entity.getDecl() &&
6578         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6579       return Sema::AA_Sending;
6580 
6581     return Sema::AA_Passing;
6582 
6583   case InitializedEntity::EK_Parameter_CF_Audited:
6584     if (Entity.getDecl() &&
6585       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6586       return Sema::AA_Sending;
6587 
6588     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6589 
6590   case InitializedEntity::EK_Result:
6591   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6592     return Sema::AA_Returning;
6593 
6594   case InitializedEntity::EK_Temporary:
6595   case InitializedEntity::EK_RelatedResult:
6596     // FIXME: Can we tell apart casting vs. converting?
6597     return Sema::AA_Casting;
6598 
6599   case InitializedEntity::EK_TemplateParameter:
6600     // This is really initialization, but refer to it as conversion for
6601     // consistency with CheckConvertedConstantExpression.
6602     return Sema::AA_Converting;
6603 
6604   case InitializedEntity::EK_Member:
6605   case InitializedEntity::EK_ParenAggInitMember:
6606   case InitializedEntity::EK_Binding:
6607   case InitializedEntity::EK_ArrayElement:
6608   case InitializedEntity::EK_VectorElement:
6609   case InitializedEntity::EK_ComplexElement:
6610   case InitializedEntity::EK_BlockElement:
6611   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6612   case InitializedEntity::EK_LambdaCapture:
6613   case InitializedEntity::EK_CompoundLiteralInit:
6614     return Sema::AA_Initializing;
6615   }
6616 
6617   llvm_unreachable("Invalid EntityKind!");
6618 }
6619 
6620 /// Whether we should bind a created object as a temporary when
6621 /// initializing the given entity.
6622 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6623   switch (Entity.getKind()) {
6624   case InitializedEntity::EK_ArrayElement:
6625   case InitializedEntity::EK_Member:
6626   case InitializedEntity::EK_ParenAggInitMember:
6627   case InitializedEntity::EK_Result:
6628   case InitializedEntity::EK_StmtExprResult:
6629   case InitializedEntity::EK_New:
6630   case InitializedEntity::EK_Variable:
6631   case InitializedEntity::EK_Base:
6632   case InitializedEntity::EK_Delegating:
6633   case InitializedEntity::EK_VectorElement:
6634   case InitializedEntity::EK_ComplexElement:
6635   case InitializedEntity::EK_Exception:
6636   case InitializedEntity::EK_BlockElement:
6637   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6638   case InitializedEntity::EK_LambdaCapture:
6639   case InitializedEntity::EK_CompoundLiteralInit:
6640   case InitializedEntity::EK_TemplateParameter:
6641     return false;
6642 
6643   case InitializedEntity::EK_Parameter:
6644   case InitializedEntity::EK_Parameter_CF_Audited:
6645   case InitializedEntity::EK_Temporary:
6646   case InitializedEntity::EK_RelatedResult:
6647   case InitializedEntity::EK_Binding:
6648     return true;
6649   }
6650 
6651   llvm_unreachable("missed an InitializedEntity kind?");
6652 }
6653 
6654 /// Whether the given entity, when initialized with an object
6655 /// created for that initialization, requires destruction.
6656 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6657   switch (Entity.getKind()) {
6658     case InitializedEntity::EK_Result:
6659     case InitializedEntity::EK_StmtExprResult:
6660     case InitializedEntity::EK_New:
6661     case InitializedEntity::EK_Base:
6662     case InitializedEntity::EK_Delegating:
6663     case InitializedEntity::EK_VectorElement:
6664     case InitializedEntity::EK_ComplexElement:
6665     case InitializedEntity::EK_BlockElement:
6666     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6667     case InitializedEntity::EK_LambdaCapture:
6668       return false;
6669 
6670     case InitializedEntity::EK_Member:
6671     case InitializedEntity::EK_ParenAggInitMember:
6672     case InitializedEntity::EK_Binding:
6673     case InitializedEntity::EK_Variable:
6674     case InitializedEntity::EK_Parameter:
6675     case InitializedEntity::EK_Parameter_CF_Audited:
6676     case InitializedEntity::EK_TemplateParameter:
6677     case InitializedEntity::EK_Temporary:
6678     case InitializedEntity::EK_ArrayElement:
6679     case InitializedEntity::EK_Exception:
6680     case InitializedEntity::EK_CompoundLiteralInit:
6681     case InitializedEntity::EK_RelatedResult:
6682       return true;
6683   }
6684 
6685   llvm_unreachable("missed an InitializedEntity kind?");
6686 }
6687 
6688 /// Get the location at which initialization diagnostics should appear.
6689 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6690                                            Expr *Initializer) {
6691   switch (Entity.getKind()) {
6692   case InitializedEntity::EK_Result:
6693   case InitializedEntity::EK_StmtExprResult:
6694     return Entity.getReturnLoc();
6695 
6696   case InitializedEntity::EK_Exception:
6697     return Entity.getThrowLoc();
6698 
6699   case InitializedEntity::EK_Variable:
6700   case InitializedEntity::EK_Binding:
6701     return Entity.getDecl()->getLocation();
6702 
6703   case InitializedEntity::EK_LambdaCapture:
6704     return Entity.getCaptureLoc();
6705 
6706   case InitializedEntity::EK_ArrayElement:
6707   case InitializedEntity::EK_Member:
6708   case InitializedEntity::EK_ParenAggInitMember:
6709   case InitializedEntity::EK_Parameter:
6710   case InitializedEntity::EK_Parameter_CF_Audited:
6711   case InitializedEntity::EK_TemplateParameter:
6712   case InitializedEntity::EK_Temporary:
6713   case InitializedEntity::EK_New:
6714   case InitializedEntity::EK_Base:
6715   case InitializedEntity::EK_Delegating:
6716   case InitializedEntity::EK_VectorElement:
6717   case InitializedEntity::EK_ComplexElement:
6718   case InitializedEntity::EK_BlockElement:
6719   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6720   case InitializedEntity::EK_CompoundLiteralInit:
6721   case InitializedEntity::EK_RelatedResult:
6722     return Initializer->getBeginLoc();
6723   }
6724   llvm_unreachable("missed an InitializedEntity kind?");
6725 }
6726 
6727 /// Make a (potentially elidable) temporary copy of the object
6728 /// provided by the given initializer by calling the appropriate copy
6729 /// constructor.
6730 ///
6731 /// \param S The Sema object used for type-checking.
6732 ///
6733 /// \param T The type of the temporary object, which must either be
6734 /// the type of the initializer expression or a superclass thereof.
6735 ///
6736 /// \param Entity The entity being initialized.
6737 ///
6738 /// \param CurInit The initializer expression.
6739 ///
6740 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6741 /// is permitted in C++03 (but not C++0x) when binding a reference to
6742 /// an rvalue.
6743 ///
6744 /// \returns An expression that copies the initializer expression into
6745 /// a temporary object, or an error expression if a copy could not be
6746 /// created.
6747 static ExprResult CopyObject(Sema &S,
6748                              QualType T,
6749                              const InitializedEntity &Entity,
6750                              ExprResult CurInit,
6751                              bool IsExtraneousCopy) {
6752   if (CurInit.isInvalid())
6753     return CurInit;
6754   // Determine which class type we're copying to.
6755   Expr *CurInitExpr = (Expr *)CurInit.get();
6756   CXXRecordDecl *Class = nullptr;
6757   if (const RecordType *Record = T->getAs<RecordType>())
6758     Class = cast<CXXRecordDecl>(Record->getDecl());
6759   if (!Class)
6760     return CurInit;
6761 
6762   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6763 
6764   // Make sure that the type we are copying is complete.
6765   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6766     return CurInit;
6767 
6768   // Perform overload resolution using the class's constructors. Per
6769   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6770   // is direct-initialization.
6771   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6772   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6773 
6774   OverloadCandidateSet::iterator Best;
6775   switch (ResolveConstructorOverload(
6776       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6777       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6778       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6779       /*SecondStepOfCopyInit=*/true)) {
6780   case OR_Success:
6781     break;
6782 
6783   case OR_No_Viable_Function:
6784     CandidateSet.NoteCandidates(
6785         PartialDiagnosticAt(
6786             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6787                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6788                              : diag::err_temp_copy_no_viable)
6789                      << (int)Entity.getKind() << CurInitExpr->getType()
6790                      << CurInitExpr->getSourceRange()),
6791         S, OCD_AllCandidates, CurInitExpr);
6792     if (!IsExtraneousCopy || S.isSFINAEContext())
6793       return ExprError();
6794     return CurInit;
6795 
6796   case OR_Ambiguous:
6797     CandidateSet.NoteCandidates(
6798         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6799                                      << (int)Entity.getKind()
6800                                      << CurInitExpr->getType()
6801                                      << CurInitExpr->getSourceRange()),
6802         S, OCD_AmbiguousCandidates, CurInitExpr);
6803     return ExprError();
6804 
6805   case OR_Deleted:
6806     S.Diag(Loc, diag::err_temp_copy_deleted)
6807       << (int)Entity.getKind() << CurInitExpr->getType()
6808       << CurInitExpr->getSourceRange();
6809     S.NoteDeletedFunction(Best->Function);
6810     return ExprError();
6811   }
6812 
6813   bool HadMultipleCandidates = CandidateSet.size() > 1;
6814 
6815   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6816   SmallVector<Expr*, 8> ConstructorArgs;
6817   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6818 
6819   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6820                            IsExtraneousCopy);
6821 
6822   if (IsExtraneousCopy) {
6823     // If this is a totally extraneous copy for C++03 reference
6824     // binding purposes, just return the original initialization
6825     // expression. We don't generate an (elided) copy operation here
6826     // because doing so would require us to pass down a flag to avoid
6827     // infinite recursion, where each step adds another extraneous,
6828     // elidable copy.
6829 
6830     // Instantiate the default arguments of any extra parameters in
6831     // the selected copy constructor, as if we were going to create a
6832     // proper call to the copy constructor.
6833     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6834       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6835       if (S.RequireCompleteType(Loc, Parm->getType(),
6836                                 diag::err_call_incomplete_argument))
6837         break;
6838 
6839       // Build the default argument expression; we don't actually care
6840       // if this succeeds or not, because this routine will complain
6841       // if there was a problem.
6842       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6843     }
6844 
6845     return CurInitExpr;
6846   }
6847 
6848   // Determine the arguments required to actually perform the
6849   // constructor call (we might have derived-to-base conversions, or
6850   // the copy constructor may have default arguments).
6851   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6852                                 ConstructorArgs))
6853     return ExprError();
6854 
6855   // C++0x [class.copy]p32:
6856   //   When certain criteria are met, an implementation is allowed to
6857   //   omit the copy/move construction of a class object, even if the
6858   //   copy/move constructor and/or destructor for the object have
6859   //   side effects. [...]
6860   //     - when a temporary class object that has not been bound to a
6861   //       reference (12.2) would be copied/moved to a class object
6862   //       with the same cv-unqualified type, the copy/move operation
6863   //       can be omitted by constructing the temporary object
6864   //       directly into the target of the omitted copy/move
6865   //
6866   // Note that the other three bullets are handled elsewhere. Copy
6867   // elision for return statements and throw expressions are handled as part
6868   // of constructor initialization, while copy elision for exception handlers
6869   // is handled by the run-time.
6870   //
6871   // FIXME: If the function parameter is not the same type as the temporary, we
6872   // should still be able to elide the copy, but we don't have a way to
6873   // represent in the AST how much should be elided in this case.
6874   bool Elidable =
6875       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6876       S.Context.hasSameUnqualifiedType(
6877           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6878           CurInitExpr->getType());
6879 
6880   // Actually perform the constructor call.
6881   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6882                                     Elidable,
6883                                     ConstructorArgs,
6884                                     HadMultipleCandidates,
6885                                     /*ListInit*/ false,
6886                                     /*StdInitListInit*/ false,
6887                                     /*ZeroInit*/ false,
6888                                     CXXConstructExpr::CK_Complete,
6889                                     SourceRange());
6890 
6891   // If we're supposed to bind temporaries, do so.
6892   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6893     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6894   return CurInit;
6895 }
6896 
6897 /// Check whether elidable copy construction for binding a reference to
6898 /// a temporary would have succeeded if we were building in C++98 mode, for
6899 /// -Wc++98-compat.
6900 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6901                                            const InitializedEntity &Entity,
6902                                            Expr *CurInitExpr) {
6903   assert(S.getLangOpts().CPlusPlus11);
6904 
6905   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6906   if (!Record)
6907     return;
6908 
6909   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6910   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6911     return;
6912 
6913   // Find constructors which would have been considered.
6914   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6915   DeclContext::lookup_result Ctors =
6916       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6917 
6918   // Perform overload resolution.
6919   OverloadCandidateSet::iterator Best;
6920   OverloadingResult OR = ResolveConstructorOverload(
6921       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6922       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6923       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6924       /*SecondStepOfCopyInit=*/true);
6925 
6926   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6927     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6928     << CurInitExpr->getSourceRange();
6929 
6930   switch (OR) {
6931   case OR_Success:
6932     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6933                              Best->FoundDecl, Entity, Diag);
6934     // FIXME: Check default arguments as far as that's possible.
6935     break;
6936 
6937   case OR_No_Viable_Function:
6938     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6939                                 OCD_AllCandidates, CurInitExpr);
6940     break;
6941 
6942   case OR_Ambiguous:
6943     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6944                                 OCD_AmbiguousCandidates, CurInitExpr);
6945     break;
6946 
6947   case OR_Deleted:
6948     S.Diag(Loc, Diag);
6949     S.NoteDeletedFunction(Best->Function);
6950     break;
6951   }
6952 }
6953 
6954 void InitializationSequence::PrintInitLocationNote(Sema &S,
6955                                               const InitializedEntity &Entity) {
6956   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6957     if (Entity.getDecl()->getLocation().isInvalid())
6958       return;
6959 
6960     if (Entity.getDecl()->getDeclName())
6961       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6962         << Entity.getDecl()->getDeclName();
6963     else
6964       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6965   }
6966   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6967            Entity.getMethodDecl())
6968     S.Diag(Entity.getMethodDecl()->getLocation(),
6969            diag::note_method_return_type_change)
6970       << Entity.getMethodDecl()->getDeclName();
6971 }
6972 
6973 /// Returns true if the parameters describe a constructor initialization of
6974 /// an explicit temporary object, e.g. "Point(x, y)".
6975 static bool isExplicitTemporary(const InitializedEntity &Entity,
6976                                 const InitializationKind &Kind,
6977                                 unsigned NumArgs) {
6978   switch (Entity.getKind()) {
6979   case InitializedEntity::EK_Temporary:
6980   case InitializedEntity::EK_CompoundLiteralInit:
6981   case InitializedEntity::EK_RelatedResult:
6982     break;
6983   default:
6984     return false;
6985   }
6986 
6987   switch (Kind.getKind()) {
6988   case InitializationKind::IK_DirectList:
6989     return true;
6990   // FIXME: Hack to work around cast weirdness.
6991   case InitializationKind::IK_Direct:
6992   case InitializationKind::IK_Value:
6993     return NumArgs != 1;
6994   default:
6995     return false;
6996   }
6997 }
6998 
6999 static ExprResult
7000 PerformConstructorInitialization(Sema &S,
7001                                  const InitializedEntity &Entity,
7002                                  const InitializationKind &Kind,
7003                                  MultiExprArg Args,
7004                                  const InitializationSequence::Step& Step,
7005                                  bool &ConstructorInitRequiresZeroInit,
7006                                  bool IsListInitialization,
7007                                  bool IsStdInitListInitialization,
7008                                  SourceLocation LBraceLoc,
7009                                  SourceLocation RBraceLoc) {
7010   unsigned NumArgs = Args.size();
7011   CXXConstructorDecl *Constructor
7012     = cast<CXXConstructorDecl>(Step.Function.Function);
7013   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
7014 
7015   // Build a call to the selected constructor.
7016   SmallVector<Expr*, 8> ConstructorArgs;
7017   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
7018                          ? Kind.getEqualLoc()
7019                          : Kind.getLocation();
7020 
7021   if (Kind.getKind() == InitializationKind::IK_Default) {
7022     // Force even a trivial, implicit default constructor to be
7023     // semantically checked. We do this explicitly because we don't build
7024     // the definition for completely trivial constructors.
7025     assert(Constructor->getParent() && "No parent class for constructor.");
7026     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7027         Constructor->isTrivial() && !Constructor->isUsed(false)) {
7028       S.runWithSufficientStackSpace(Loc, [&] {
7029         S.DefineImplicitDefaultConstructor(Loc, Constructor);
7030       });
7031     }
7032   }
7033 
7034   ExprResult CurInit((Expr *)nullptr);
7035 
7036   // C++ [over.match.copy]p1:
7037   //   - When initializing a temporary to be bound to the first parameter
7038   //     of a constructor that takes a reference to possibly cv-qualified
7039   //     T as its first argument, called with a single argument in the
7040   //     context of direct-initialization, explicit conversion functions
7041   //     are also considered.
7042   bool AllowExplicitConv =
7043       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
7044       hasCopyOrMoveCtorParam(S.Context,
7045                              getConstructorInfo(Step.Function.FoundDecl));
7046 
7047   // Determine the arguments required to actually perform the constructor
7048   // call.
7049   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
7050                                 ConstructorArgs, AllowExplicitConv,
7051                                 IsListInitialization))
7052     return ExprError();
7053 
7054   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
7055     // An explicitly-constructed temporary, e.g., X(1, 2).
7056     if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
7057       return ExprError();
7058 
7059     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7060     if (!TSInfo)
7061       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
7062     SourceRange ParenOrBraceRange =
7063         (Kind.getKind() == InitializationKind::IK_DirectList)
7064         ? SourceRange(LBraceLoc, RBraceLoc)
7065         : Kind.getParenOrBraceRange();
7066 
7067     CXXConstructorDecl *CalleeDecl = Constructor;
7068     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
7069             Step.Function.FoundDecl.getDecl())) {
7070       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
7071     }
7072     S.MarkFunctionReferenced(Loc, CalleeDecl);
7073 
7074     CurInit = S.CheckForImmediateInvocation(
7075         CXXTemporaryObjectExpr::Create(
7076             S.Context, CalleeDecl,
7077             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7078             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
7079             IsListInitialization, IsStdInitListInitialization,
7080             ConstructorInitRequiresZeroInit),
7081         CalleeDecl);
7082   } else {
7083     CXXConstructExpr::ConstructionKind ConstructKind =
7084       CXXConstructExpr::CK_Complete;
7085 
7086     if (Entity.getKind() == InitializedEntity::EK_Base) {
7087       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
7088         CXXConstructExpr::CK_VirtualBase :
7089         CXXConstructExpr::CK_NonVirtualBase;
7090     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
7091       ConstructKind = CXXConstructExpr::CK_Delegating;
7092     }
7093 
7094     // Only get the parenthesis or brace range if it is a list initialization or
7095     // direct construction.
7096     SourceRange ParenOrBraceRange;
7097     if (IsListInitialization)
7098       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
7099     else if (Kind.getKind() == InitializationKind::IK_Direct)
7100       ParenOrBraceRange = Kind.getParenOrBraceRange();
7101 
7102     // If the entity allows NRVO, mark the construction as elidable
7103     // unconditionally.
7104     if (Entity.allowsNRVO())
7105       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
7106                                         Step.Function.FoundDecl,
7107                                         Constructor, /*Elidable=*/true,
7108                                         ConstructorArgs,
7109                                         HadMultipleCandidates,
7110                                         IsListInitialization,
7111                                         IsStdInitListInitialization,
7112                                         ConstructorInitRequiresZeroInit,
7113                                         ConstructKind,
7114                                         ParenOrBraceRange);
7115     else
7116       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
7117                                         Step.Function.FoundDecl,
7118                                         Constructor,
7119                                         ConstructorArgs,
7120                                         HadMultipleCandidates,
7121                                         IsListInitialization,
7122                                         IsStdInitListInitialization,
7123                                         ConstructorInitRequiresZeroInit,
7124                                         ConstructKind,
7125                                         ParenOrBraceRange);
7126   }
7127   if (CurInit.isInvalid())
7128     return ExprError();
7129 
7130   // Only check access if all of that succeeded.
7131   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
7132   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
7133     return ExprError();
7134 
7135   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
7136     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
7137       return ExprError();
7138 
7139   if (shouldBindAsTemporary(Entity))
7140     CurInit = S.MaybeBindToTemporary(CurInit.get());
7141 
7142   return CurInit;
7143 }
7144 
7145 namespace {
7146 enum LifetimeKind {
7147   /// The lifetime of a temporary bound to this entity ends at the end of the
7148   /// full-expression, and that's (probably) fine.
7149   LK_FullExpression,
7150 
7151   /// The lifetime of a temporary bound to this entity is extended to the
7152   /// lifeitme of the entity itself.
7153   LK_Extended,
7154 
7155   /// The lifetime of a temporary bound to this entity probably ends too soon,
7156   /// because the entity is allocated in a new-expression.
7157   LK_New,
7158 
7159   /// The lifetime of a temporary bound to this entity ends too soon, because
7160   /// the entity is a return object.
7161   LK_Return,
7162 
7163   /// The lifetime of a temporary bound to this entity ends too soon, because
7164   /// the entity is the result of a statement expression.
7165   LK_StmtExprResult,
7166 
7167   /// This is a mem-initializer: if it would extend a temporary (other than via
7168   /// a default member initializer), the program is ill-formed.
7169   LK_MemInitializer,
7170 };
7171 using LifetimeResult =
7172     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
7173 }
7174 
7175 /// Determine the declaration which an initialized entity ultimately refers to,
7176 /// for the purpose of lifetime-extending a temporary bound to a reference in
7177 /// the initialization of \p Entity.
7178 static LifetimeResult getEntityLifetime(
7179     const InitializedEntity *Entity,
7180     const InitializedEntity *InitField = nullptr) {
7181   // C++11 [class.temporary]p5:
7182   switch (Entity->getKind()) {
7183   case InitializedEntity::EK_Variable:
7184     //   The temporary [...] persists for the lifetime of the reference
7185     return {Entity, LK_Extended};
7186 
7187   case InitializedEntity::EK_Member:
7188     // For subobjects, we look at the complete object.
7189     if (Entity->getParent())
7190       return getEntityLifetime(Entity->getParent(), Entity);
7191 
7192     //   except:
7193     // C++17 [class.base.init]p8:
7194     //   A temporary expression bound to a reference member in a
7195     //   mem-initializer is ill-formed.
7196     // C++17 [class.base.init]p11:
7197     //   A temporary expression bound to a reference member from a
7198     //   default member initializer is ill-formed.
7199     //
7200     // The context of p11 and its example suggest that it's only the use of a
7201     // default member initializer from a constructor that makes the program
7202     // ill-formed, not its mere existence, and that it can even be used by
7203     // aggregate initialization.
7204     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
7205                                                          : LK_MemInitializer};
7206 
7207   case InitializedEntity::EK_Binding:
7208     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
7209     // type.
7210     return {Entity, LK_Extended};
7211 
7212   case InitializedEntity::EK_Parameter:
7213   case InitializedEntity::EK_Parameter_CF_Audited:
7214     //   -- A temporary bound to a reference parameter in a function call
7215     //      persists until the completion of the full-expression containing
7216     //      the call.
7217     return {nullptr, LK_FullExpression};
7218 
7219   case InitializedEntity::EK_TemplateParameter:
7220     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
7221     return {nullptr, LK_FullExpression};
7222 
7223   case InitializedEntity::EK_Result:
7224     //   -- The lifetime of a temporary bound to the returned value in a
7225     //      function return statement is not extended; the temporary is
7226     //      destroyed at the end of the full-expression in the return statement.
7227     return {nullptr, LK_Return};
7228 
7229   case InitializedEntity::EK_StmtExprResult:
7230     // FIXME: Should we lifetime-extend through the result of a statement
7231     // expression?
7232     return {nullptr, LK_StmtExprResult};
7233 
7234   case InitializedEntity::EK_New:
7235     //   -- A temporary bound to a reference in a new-initializer persists
7236     //      until the completion of the full-expression containing the
7237     //      new-initializer.
7238     return {nullptr, LK_New};
7239 
7240   case InitializedEntity::EK_Temporary:
7241   case InitializedEntity::EK_CompoundLiteralInit:
7242   case InitializedEntity::EK_RelatedResult:
7243     // We don't yet know the storage duration of the surrounding temporary.
7244     // Assume it's got full-expression duration for now, it will patch up our
7245     // storage duration if that's not correct.
7246     return {nullptr, LK_FullExpression};
7247 
7248   case InitializedEntity::EK_ArrayElement:
7249     // For subobjects, we look at the complete object.
7250     return getEntityLifetime(Entity->getParent(), InitField);
7251 
7252   case InitializedEntity::EK_Base:
7253     // For subobjects, we look at the complete object.
7254     if (Entity->getParent())
7255       return getEntityLifetime(Entity->getParent(), InitField);
7256     return {InitField, LK_MemInitializer};
7257 
7258   case InitializedEntity::EK_Delegating:
7259     // We can reach this case for aggregate initialization in a constructor:
7260     //   struct A { int &&r; };
7261     //   struct B : A { B() : A{0} {} };
7262     // In this case, use the outermost field decl as the context.
7263     return {InitField, LK_MemInitializer};
7264 
7265   case InitializedEntity::EK_BlockElement:
7266   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
7267   case InitializedEntity::EK_LambdaCapture:
7268   case InitializedEntity::EK_VectorElement:
7269   case InitializedEntity::EK_ComplexElement:
7270     return {nullptr, LK_FullExpression};
7271 
7272   case InitializedEntity::EK_Exception:
7273     // FIXME: Can we diagnose lifetime problems with exceptions?
7274     return {nullptr, LK_FullExpression};
7275 
7276   case InitializedEntity::EK_ParenAggInitMember:
7277     //   -- A temporary object bound to a reference element of an aggregate of
7278     //      class type initialized from a parenthesized expression-list
7279     //      [dcl.init, 9.3] persists until the completion of the full-expression
7280     //      containing the expression-list.
7281     return {nullptr, LK_FullExpression};
7282   }
7283 
7284   llvm_unreachable("unknown entity kind");
7285 }
7286 
7287 namespace {
7288 enum ReferenceKind {
7289   /// Lifetime would be extended by a reference binding to a temporary.
7290   RK_ReferenceBinding,
7291   /// Lifetime would be extended by a std::initializer_list object binding to
7292   /// its backing array.
7293   RK_StdInitializerList,
7294 };
7295 
7296 /// A temporary or local variable. This will be one of:
7297 ///  * A MaterializeTemporaryExpr.
7298 ///  * A DeclRefExpr whose declaration is a local.
7299 ///  * An AddrLabelExpr.
7300 ///  * A BlockExpr for a block with captures.
7301 using Local = Expr*;
7302 
7303 /// Expressions we stepped over when looking for the local state. Any steps
7304 /// that would inhibit lifetime extension or take us out of subexpressions of
7305 /// the initializer are included.
7306 struct IndirectLocalPathEntry {
7307   enum EntryKind {
7308     DefaultInit,
7309     AddressOf,
7310     VarInit,
7311     LValToRVal,
7312     LifetimeBoundCall,
7313     TemporaryCopy,
7314     LambdaCaptureInit,
7315     GslReferenceInit,
7316     GslPointerInit
7317   } Kind;
7318   Expr *E;
7319   union {
7320     const Decl *D = nullptr;
7321     const LambdaCapture *Capture;
7322   };
7323   IndirectLocalPathEntry() {}
7324   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
7325   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
7326       : Kind(K), E(E), D(D) {}
7327   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
7328       : Kind(K), E(E), Capture(Capture) {}
7329 };
7330 
7331 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
7332 
7333 struct RevertToOldSizeRAII {
7334   IndirectLocalPath &Path;
7335   unsigned OldSize = Path.size();
7336   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
7337   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
7338 };
7339 
7340 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
7341                                              ReferenceKind RK)>;
7342 }
7343 
7344 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
7345   for (auto E : Path)
7346     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
7347       return true;
7348   return false;
7349 }
7350 
7351 static bool pathContainsInit(IndirectLocalPath &Path) {
7352   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
7353     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
7354            E.Kind == IndirectLocalPathEntry::VarInit;
7355   });
7356 }
7357 
7358 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7359                                              Expr *Init, LocalVisitor Visit,
7360                                              bool RevisitSubinits,
7361                                              bool EnableLifetimeWarnings);
7362 
7363 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7364                                                   Expr *Init, ReferenceKind RK,
7365                                                   LocalVisitor Visit,
7366                                                   bool EnableLifetimeWarnings);
7367 
7368 template <typename T> static bool isRecordWithAttr(QualType Type) {
7369   if (auto *RD = Type->getAsCXXRecordDecl())
7370     return RD->hasAttr<T>();
7371   return false;
7372 }
7373 
7374 // Decl::isInStdNamespace will return false for iterators in some STL
7375 // implementations due to them being defined in a namespace outside of the std
7376 // namespace.
7377 static bool isInStlNamespace(const Decl *D) {
7378   const DeclContext *DC = D->getDeclContext();
7379   if (!DC)
7380     return false;
7381   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
7382     if (const IdentifierInfo *II = ND->getIdentifier()) {
7383       StringRef Name = II->getName();
7384       if (Name.size() >= 2 && Name.front() == '_' &&
7385           (Name[1] == '_' || isUppercase(Name[1])))
7386         return true;
7387     }
7388 
7389   return DC->isStdNamespace();
7390 }
7391 
7392 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
7393   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
7394     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
7395       return true;
7396   if (!isInStlNamespace(Callee->getParent()))
7397     return false;
7398   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
7399       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
7400     return false;
7401   if (Callee->getReturnType()->isPointerType() ||
7402       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
7403     if (!Callee->getIdentifier())
7404       return false;
7405     return llvm::StringSwitch<bool>(Callee->getName())
7406         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7407         .Cases("end", "rend", "cend", "crend", true)
7408         .Cases("c_str", "data", "get", true)
7409         // Map and set types.
7410         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
7411         .Default(false);
7412   } else if (Callee->getReturnType()->isReferenceType()) {
7413     if (!Callee->getIdentifier()) {
7414       auto OO = Callee->getOverloadedOperator();
7415       return OO == OverloadedOperatorKind::OO_Subscript ||
7416              OO == OverloadedOperatorKind::OO_Star;
7417     }
7418     return llvm::StringSwitch<bool>(Callee->getName())
7419         .Cases("front", "back", "at", "top", "value", true)
7420         .Default(false);
7421   }
7422   return false;
7423 }
7424 
7425 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
7426   if (!FD->getIdentifier() || FD->getNumParams() != 1)
7427     return false;
7428   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
7429   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
7430     return false;
7431   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
7432       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
7433     return false;
7434   if (FD->getReturnType()->isPointerType() ||
7435       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
7436     return llvm::StringSwitch<bool>(FD->getName())
7437         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
7438         .Cases("end", "rend", "cend", "crend", true)
7439         .Case("data", true)
7440         .Default(false);
7441   } else if (FD->getReturnType()->isReferenceType()) {
7442     return llvm::StringSwitch<bool>(FD->getName())
7443         .Cases("get", "any_cast", true)
7444         .Default(false);
7445   }
7446   return false;
7447 }
7448 
7449 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
7450                                     LocalVisitor Visit) {
7451   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
7452     // We are not interested in the temporary base objects of gsl Pointers:
7453     //   Temp().ptr; // Here ptr might not dangle.
7454     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
7455       return;
7456     // Once we initialized a value with a reference, it can no longer dangle.
7457     if (!Value) {
7458       for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
7459         if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
7460           continue;
7461         if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
7462           return;
7463         break;
7464       }
7465     }
7466     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
7467                           : IndirectLocalPathEntry::GslReferenceInit,
7468                     Arg, D});
7469     if (Arg->isGLValue())
7470       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7471                                             Visit,
7472                                             /*EnableLifetimeWarnings=*/true);
7473     else
7474       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7475                                        /*EnableLifetimeWarnings=*/true);
7476     Path.pop_back();
7477   };
7478 
7479   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7480     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
7481     if (MD && shouldTrackImplicitObjectArg(MD))
7482       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
7483                       !MD->getReturnType()->isReferenceType());
7484     return;
7485   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
7486     FunctionDecl *Callee = OCE->getDirectCallee();
7487     if (Callee && Callee->isCXXInstanceMember() &&
7488         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
7489       VisitPointerArg(Callee, OCE->getArg(0),
7490                       !Callee->getReturnType()->isReferenceType());
7491     return;
7492   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
7493     FunctionDecl *Callee = CE->getDirectCallee();
7494     if (Callee && shouldTrackFirstArgument(Callee))
7495       VisitPointerArg(Callee, CE->getArg(0),
7496                       !Callee->getReturnType()->isReferenceType());
7497     return;
7498   }
7499 
7500   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7501     const auto *Ctor = CCE->getConstructor();
7502     const CXXRecordDecl *RD = Ctor->getParent();
7503     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7504       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7505   }
7506 }
7507 
7508 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7509   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7510   if (!TSI)
7511     return false;
7512   // Don't declare this variable in the second operand of the for-statement;
7513   // GCC miscompiles that by ending its lifetime before evaluating the
7514   // third operand. See gcc.gnu.org/PR86769.
7515   AttributedTypeLoc ATL;
7516   for (TypeLoc TL = TSI->getTypeLoc();
7517        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7518        TL = ATL.getModifiedLoc()) {
7519     if (ATL.getAttrAs<LifetimeBoundAttr>())
7520       return true;
7521   }
7522 
7523   // Assume that all assignment operators with a "normal" return type return
7524   // *this, that is, an lvalue reference that is the same type as the implicit
7525   // object parameter (or the LHS for a non-member operator$=).
7526   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7527   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7528     QualType RetT = FD->getReturnType();
7529     if (RetT->isLValueReferenceType()) {
7530       ASTContext &Ctx = FD->getASTContext();
7531       QualType LHST;
7532       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7533       if (MD && MD->isCXXInstanceMember())
7534         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7535       else
7536         LHST = MD->getParamDecl(0)->getType();
7537       if (Ctx.hasSameType(RetT, LHST))
7538         return true;
7539     }
7540   }
7541 
7542   return false;
7543 }
7544 
7545 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7546                                         LocalVisitor Visit) {
7547   const FunctionDecl *Callee;
7548   ArrayRef<Expr*> Args;
7549 
7550   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7551     Callee = CE->getDirectCallee();
7552     Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
7553   } else {
7554     auto *CCE = cast<CXXConstructExpr>(Call);
7555     Callee = CCE->getConstructor();
7556     Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs());
7557   }
7558   if (!Callee)
7559     return;
7560 
7561   Expr *ObjectArg = nullptr;
7562   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7563     ObjectArg = Args[0];
7564     Args = Args.slice(1);
7565   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7566     ObjectArg = MCE->getImplicitObjectArgument();
7567   }
7568 
7569   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7570     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7571     if (Arg->isGLValue())
7572       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7573                                             Visit,
7574                                             /*EnableLifetimeWarnings=*/false);
7575     else
7576       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7577                                        /*EnableLifetimeWarnings=*/false);
7578     Path.pop_back();
7579   };
7580 
7581   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7582     VisitLifetimeBoundArg(Callee, ObjectArg);
7583 
7584   for (unsigned I = 0,
7585                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7586        I != N; ++I) {
7587     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7588       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7589   }
7590 }
7591 
7592 /// Visit the locals that would be reachable through a reference bound to the
7593 /// glvalue expression \c Init.
7594 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7595                                                   Expr *Init, ReferenceKind RK,
7596                                                   LocalVisitor Visit,
7597                                                   bool EnableLifetimeWarnings) {
7598   RevertToOldSizeRAII RAII(Path);
7599 
7600   // Walk past any constructs which we can lifetime-extend across.
7601   Expr *Old;
7602   do {
7603     Old = Init;
7604 
7605     if (auto *FE = dyn_cast<FullExpr>(Init))
7606       Init = FE->getSubExpr();
7607 
7608     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7609       // If this is just redundant braces around an initializer, step over it.
7610       if (ILE->isTransparent())
7611         Init = ILE->getInit(0);
7612     }
7613 
7614     // Step over any subobject adjustments; we may have a materialized
7615     // temporary inside them.
7616     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7617 
7618     // Per current approach for DR1376, look through casts to reference type
7619     // when performing lifetime extension.
7620     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7621       if (CE->getSubExpr()->isGLValue())
7622         Init = CE->getSubExpr();
7623 
7624     // Per the current approach for DR1299, look through array element access
7625     // on array glvalues when performing lifetime extension.
7626     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7627       Init = ASE->getBase();
7628       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7629       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7630         Init = ICE->getSubExpr();
7631       else
7632         // We can't lifetime extend through this but we might still find some
7633         // retained temporaries.
7634         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7635                                                 EnableLifetimeWarnings);
7636     }
7637 
7638     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7639     // constructor inherits one as an implicit mem-initializer.
7640     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7641       Path.push_back(
7642           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7643       Init = DIE->getExpr();
7644     }
7645   } while (Init != Old);
7646 
7647   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7648     if (Visit(Path, Local(MTE), RK))
7649       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7650                                        EnableLifetimeWarnings);
7651   }
7652 
7653   if (isa<CallExpr>(Init)) {
7654     if (EnableLifetimeWarnings)
7655       handleGslAnnotatedTypes(Path, Init, Visit);
7656     return visitLifetimeBoundArguments(Path, Init, Visit);
7657   }
7658 
7659   switch (Init->getStmtClass()) {
7660   case Stmt::DeclRefExprClass: {
7661     // If we find the name of a local non-reference parameter, we could have a
7662     // lifetime problem.
7663     auto *DRE = cast<DeclRefExpr>(Init);
7664     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7665     if (VD && VD->hasLocalStorage() &&
7666         !DRE->refersToEnclosingVariableOrCapture()) {
7667       if (!VD->getType()->isReferenceType()) {
7668         Visit(Path, Local(DRE), RK);
7669       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7670         // The lifetime of a reference parameter is unknown; assume it's OK
7671         // for now.
7672         break;
7673       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7674         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7675         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7676                                               RK_ReferenceBinding, Visit,
7677                                               EnableLifetimeWarnings);
7678       }
7679     }
7680     break;
7681   }
7682 
7683   case Stmt::UnaryOperatorClass: {
7684     // The only unary operator that make sense to handle here
7685     // is Deref.  All others don't resolve to a "name."  This includes
7686     // handling all sorts of rvalues passed to a unary operator.
7687     const UnaryOperator *U = cast<UnaryOperator>(Init);
7688     if (U->getOpcode() == UO_Deref)
7689       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7690                                        EnableLifetimeWarnings);
7691     break;
7692   }
7693 
7694   case Stmt::OMPArraySectionExprClass: {
7695     visitLocalsRetainedByInitializer(Path,
7696                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7697                                      Visit, true, EnableLifetimeWarnings);
7698     break;
7699   }
7700 
7701   case Stmt::ConditionalOperatorClass:
7702   case Stmt::BinaryConditionalOperatorClass: {
7703     auto *C = cast<AbstractConditionalOperator>(Init);
7704     if (!C->getTrueExpr()->getType()->isVoidType())
7705       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7706                                             EnableLifetimeWarnings);
7707     if (!C->getFalseExpr()->getType()->isVoidType())
7708       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7709                                             EnableLifetimeWarnings);
7710     break;
7711   }
7712 
7713   // FIXME: Visit the left-hand side of an -> or ->*.
7714 
7715   default:
7716     break;
7717   }
7718 }
7719 
7720 /// Visit the locals that would be reachable through an object initialized by
7721 /// the prvalue expression \c Init.
7722 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7723                                              Expr *Init, LocalVisitor Visit,
7724                                              bool RevisitSubinits,
7725                                              bool EnableLifetimeWarnings) {
7726   RevertToOldSizeRAII RAII(Path);
7727 
7728   Expr *Old;
7729   do {
7730     Old = Init;
7731 
7732     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7733     // constructor inherits one as an implicit mem-initializer.
7734     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7735       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7736       Init = DIE->getExpr();
7737     }
7738 
7739     if (auto *FE = dyn_cast<FullExpr>(Init))
7740       Init = FE->getSubExpr();
7741 
7742     // Dig out the expression which constructs the extended temporary.
7743     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7744 
7745     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7746       Init = BTE->getSubExpr();
7747 
7748     Init = Init->IgnoreParens();
7749 
7750     // Step over value-preserving rvalue casts.
7751     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7752       switch (CE->getCastKind()) {
7753       case CK_LValueToRValue:
7754         // If we can match the lvalue to a const object, we can look at its
7755         // initializer.
7756         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7757         return visitLocalsRetainedByReferenceBinding(
7758             Path, Init, RK_ReferenceBinding,
7759             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7760           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7761             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7762             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7763                 !isVarOnPath(Path, VD)) {
7764               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7765               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7766                                                EnableLifetimeWarnings);
7767             }
7768           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7769             if (MTE->getType().isConstQualified())
7770               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7771                                                true, EnableLifetimeWarnings);
7772           }
7773           return false;
7774         }, EnableLifetimeWarnings);
7775 
7776         // We assume that objects can be retained by pointers cast to integers,
7777         // but not if the integer is cast to floating-point type or to _Complex.
7778         // We assume that casts to 'bool' do not preserve enough information to
7779         // retain a local object.
7780       case CK_NoOp:
7781       case CK_BitCast:
7782       case CK_BaseToDerived:
7783       case CK_DerivedToBase:
7784       case CK_UncheckedDerivedToBase:
7785       case CK_Dynamic:
7786       case CK_ToUnion:
7787       case CK_UserDefinedConversion:
7788       case CK_ConstructorConversion:
7789       case CK_IntegralToPointer:
7790       case CK_PointerToIntegral:
7791       case CK_VectorSplat:
7792       case CK_IntegralCast:
7793       case CK_CPointerToObjCPointerCast:
7794       case CK_BlockPointerToObjCPointerCast:
7795       case CK_AnyPointerToBlockPointerCast:
7796       case CK_AddressSpaceConversion:
7797         break;
7798 
7799       case CK_ArrayToPointerDecay:
7800         // Model array-to-pointer decay as taking the address of the array
7801         // lvalue.
7802         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7803         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7804                                                      RK_ReferenceBinding, Visit,
7805                                                      EnableLifetimeWarnings);
7806 
7807       default:
7808         return;
7809       }
7810 
7811       Init = CE->getSubExpr();
7812     }
7813   } while (Old != Init);
7814 
7815   // C++17 [dcl.init.list]p6:
7816   //   initializing an initializer_list object from the array extends the
7817   //   lifetime of the array exactly like binding a reference to a temporary.
7818   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7819     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7820                                                  RK_StdInitializerList, Visit,
7821                                                  EnableLifetimeWarnings);
7822 
7823   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7824     // We already visited the elements of this initializer list while
7825     // performing the initialization. Don't visit them again unless we've
7826     // changed the lifetime of the initialized entity.
7827     if (!RevisitSubinits)
7828       return;
7829 
7830     if (ILE->isTransparent())
7831       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7832                                               RevisitSubinits,
7833                                               EnableLifetimeWarnings);
7834 
7835     if (ILE->getType()->isArrayType()) {
7836       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7837         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7838                                          RevisitSubinits,
7839                                          EnableLifetimeWarnings);
7840       return;
7841     }
7842 
7843     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7844       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7845 
7846       // If we lifetime-extend a braced initializer which is initializing an
7847       // aggregate, and that aggregate contains reference members which are
7848       // bound to temporaries, those temporaries are also lifetime-extended.
7849       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7850           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7851         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7852                                               RK_ReferenceBinding, Visit,
7853                                               EnableLifetimeWarnings);
7854       else {
7855         unsigned Index = 0;
7856         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7857           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7858                                            RevisitSubinits,
7859                                            EnableLifetimeWarnings);
7860         for (const auto *I : RD->fields()) {
7861           if (Index >= ILE->getNumInits())
7862             break;
7863           if (I->isUnnamedBitfield())
7864             continue;
7865           Expr *SubInit = ILE->getInit(Index);
7866           if (I->getType()->isReferenceType())
7867             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7868                                                   RK_ReferenceBinding, Visit,
7869                                                   EnableLifetimeWarnings);
7870           else
7871             // This might be either aggregate-initialization of a member or
7872             // initialization of a std::initializer_list object. Regardless,
7873             // we should recursively lifetime-extend that initializer.
7874             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7875                                              RevisitSubinits,
7876                                              EnableLifetimeWarnings);
7877           ++Index;
7878         }
7879       }
7880     }
7881     return;
7882   }
7883 
7884   // The lifetime of an init-capture is that of the closure object constructed
7885   // by a lambda-expression.
7886   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7887     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7888     for (Expr *E : LE->capture_inits()) {
7889       assert(CapI != LE->capture_end());
7890       const LambdaCapture &Cap = *CapI++;
7891       if (!E)
7892         continue;
7893       if (Cap.capturesVariable())
7894         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7895       if (E->isGLValue())
7896         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7897                                               Visit, EnableLifetimeWarnings);
7898       else
7899         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7900                                          EnableLifetimeWarnings);
7901       if (Cap.capturesVariable())
7902         Path.pop_back();
7903     }
7904   }
7905 
7906   // Assume that a copy or move from a temporary references the same objects
7907   // that the temporary does.
7908   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7909     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7910       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7911         Expr *Arg = MTE->getSubExpr();
7912         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7913                         CCE->getConstructor()});
7914         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7915                                          /*EnableLifetimeWarnings*/false);
7916         Path.pop_back();
7917       }
7918     }
7919   }
7920 
7921   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7922     if (EnableLifetimeWarnings)
7923       handleGslAnnotatedTypes(Path, Init, Visit);
7924     return visitLifetimeBoundArguments(Path, Init, Visit);
7925   }
7926 
7927   switch (Init->getStmtClass()) {
7928   case Stmt::UnaryOperatorClass: {
7929     auto *UO = cast<UnaryOperator>(Init);
7930     // If the initializer is the address of a local, we could have a lifetime
7931     // problem.
7932     if (UO->getOpcode() == UO_AddrOf) {
7933       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7934       // it. Don't produce a redundant warning about the lifetime of the
7935       // temporary.
7936       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7937         return;
7938 
7939       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7940       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7941                                             RK_ReferenceBinding, Visit,
7942                                             EnableLifetimeWarnings);
7943     }
7944     break;
7945   }
7946 
7947   case Stmt::BinaryOperatorClass: {
7948     // Handle pointer arithmetic.
7949     auto *BO = cast<BinaryOperator>(Init);
7950     BinaryOperatorKind BOK = BO->getOpcode();
7951     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7952       break;
7953 
7954     if (BO->getLHS()->getType()->isPointerType())
7955       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7956                                        EnableLifetimeWarnings);
7957     else if (BO->getRHS()->getType()->isPointerType())
7958       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7959                                        EnableLifetimeWarnings);
7960     break;
7961   }
7962 
7963   case Stmt::ConditionalOperatorClass:
7964   case Stmt::BinaryConditionalOperatorClass: {
7965     auto *C = cast<AbstractConditionalOperator>(Init);
7966     // In C++, we can have a throw-expression operand, which has 'void' type
7967     // and isn't interesting from a lifetime perspective.
7968     if (!C->getTrueExpr()->getType()->isVoidType())
7969       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7970                                        EnableLifetimeWarnings);
7971     if (!C->getFalseExpr()->getType()->isVoidType())
7972       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7973                                        EnableLifetimeWarnings);
7974     break;
7975   }
7976 
7977   case Stmt::BlockExprClass:
7978     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7979       // This is a local block, whose lifetime is that of the function.
7980       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7981     }
7982     break;
7983 
7984   case Stmt::AddrLabelExprClass:
7985     // We want to warn if the address of a label would escape the function.
7986     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7987     break;
7988 
7989   default:
7990     break;
7991   }
7992 }
7993 
7994 /// Whether a path to an object supports lifetime extension.
7995 enum PathLifetimeKind {
7996   /// Lifetime-extend along this path.
7997   Extend,
7998   /// We should lifetime-extend, but we don't because (due to technical
7999   /// limitations) we can't. This happens for default member initializers,
8000   /// which we don't clone for every use, so we don't have a unique
8001   /// MaterializeTemporaryExpr to update.
8002   ShouldExtend,
8003   /// Do not lifetime extend along this path.
8004   NoExtend
8005 };
8006 
8007 /// Determine whether this is an indirect path to a temporary that we are
8008 /// supposed to lifetime-extend along.
8009 static PathLifetimeKind
8010 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
8011   PathLifetimeKind Kind = PathLifetimeKind::Extend;
8012   for (auto Elem : Path) {
8013     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
8014       Kind = PathLifetimeKind::ShouldExtend;
8015     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
8016       return PathLifetimeKind::NoExtend;
8017   }
8018   return Kind;
8019 }
8020 
8021 /// Find the range for the first interesting entry in the path at or after I.
8022 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
8023                                       Expr *E) {
8024   for (unsigned N = Path.size(); I != N; ++I) {
8025     switch (Path[I].Kind) {
8026     case IndirectLocalPathEntry::AddressOf:
8027     case IndirectLocalPathEntry::LValToRVal:
8028     case IndirectLocalPathEntry::LifetimeBoundCall:
8029     case IndirectLocalPathEntry::TemporaryCopy:
8030     case IndirectLocalPathEntry::GslReferenceInit:
8031     case IndirectLocalPathEntry::GslPointerInit:
8032       // These exist primarily to mark the path as not permitting or
8033       // supporting lifetime extension.
8034       break;
8035 
8036     case IndirectLocalPathEntry::VarInit:
8037       if (cast<VarDecl>(Path[I].D)->isImplicit())
8038         return SourceRange();
8039       [[fallthrough]];
8040     case IndirectLocalPathEntry::DefaultInit:
8041       return Path[I].E->getSourceRange();
8042 
8043     case IndirectLocalPathEntry::LambdaCaptureInit:
8044       if (!Path[I].Capture->capturesVariable())
8045         continue;
8046       return Path[I].E->getSourceRange();
8047     }
8048   }
8049   return E->getSourceRange();
8050 }
8051 
8052 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
8053   for (const auto &It : llvm::reverse(Path)) {
8054     if (It.Kind == IndirectLocalPathEntry::VarInit)
8055       continue;
8056     if (It.Kind == IndirectLocalPathEntry::AddressOf)
8057       continue;
8058     if (It.Kind == IndirectLocalPathEntry::LifetimeBoundCall)
8059       continue;
8060     return It.Kind == IndirectLocalPathEntry::GslPointerInit ||
8061            It.Kind == IndirectLocalPathEntry::GslReferenceInit;
8062   }
8063   return false;
8064 }
8065 
8066 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
8067                                     Expr *Init) {
8068   LifetimeResult LR = getEntityLifetime(&Entity);
8069   LifetimeKind LK = LR.getInt();
8070   const InitializedEntity *ExtendingEntity = LR.getPointer();
8071 
8072   // If this entity doesn't have an interesting lifetime, don't bother looking
8073   // for temporaries within its initializer.
8074   if (LK == LK_FullExpression)
8075     return;
8076 
8077   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
8078                               ReferenceKind RK) -> bool {
8079     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
8080     SourceLocation DiagLoc = DiagRange.getBegin();
8081 
8082     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
8083 
8084     bool IsGslPtrInitWithGslTempOwner = false;
8085     bool IsLocalGslOwner = false;
8086     if (pathOnlyInitializesGslPointer(Path)) {
8087       if (isa<DeclRefExpr>(L)) {
8088         // We do not want to follow the references when returning a pointer originating
8089         // from a local owner to avoid the following false positive:
8090         //   int &p = *localUniquePtr;
8091         //   someContainer.add(std::move(localUniquePtr));
8092         //   return p;
8093         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
8094         if (pathContainsInit(Path) || !IsLocalGslOwner)
8095           return false;
8096       } else {
8097         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
8098                             isRecordWithAttr<OwnerAttr>(MTE->getType());
8099         // Skipping a chain of initializing gsl::Pointer annotated objects.
8100         // We are looking only for the final source to find out if it was
8101         // a local or temporary owner or the address of a local variable/param.
8102         if (!IsGslPtrInitWithGslTempOwner)
8103           return true;
8104       }
8105     }
8106 
8107     switch (LK) {
8108     case LK_FullExpression:
8109       llvm_unreachable("already handled this");
8110 
8111     case LK_Extended: {
8112       if (!MTE) {
8113         // The initialized entity has lifetime beyond the full-expression,
8114         // and the local entity does too, so don't warn.
8115         //
8116         // FIXME: We should consider warning if a static / thread storage
8117         // duration variable retains an automatic storage duration local.
8118         return false;
8119       }
8120 
8121       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
8122         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
8123         return false;
8124       }
8125 
8126       switch (shouldLifetimeExtendThroughPath(Path)) {
8127       case PathLifetimeKind::Extend:
8128         // Update the storage duration of the materialized temporary.
8129         // FIXME: Rebuild the expression instead of mutating it.
8130         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
8131                               ExtendingEntity->allocateManglingNumber());
8132         // Also visit the temporaries lifetime-extended by this initializer.
8133         return true;
8134 
8135       case PathLifetimeKind::ShouldExtend:
8136         // We're supposed to lifetime-extend the temporary along this path (per
8137         // the resolution of DR1815), but we don't support that yet.
8138         //
8139         // FIXME: Properly handle this situation. Perhaps the easiest approach
8140         // would be to clone the initializer expression on each use that would
8141         // lifetime extend its temporaries.
8142         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
8143             << RK << DiagRange;
8144         break;
8145 
8146       case PathLifetimeKind::NoExtend:
8147         // If the path goes through the initialization of a variable or field,
8148         // it can't possibly reach a temporary created in this full-expression.
8149         // We will have already diagnosed any problems with the initializer.
8150         if (pathContainsInit(Path))
8151           return false;
8152 
8153         Diag(DiagLoc, diag::warn_dangling_variable)
8154             << RK << !Entity.getParent()
8155             << ExtendingEntity->getDecl()->isImplicit()
8156             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
8157         break;
8158       }
8159       break;
8160     }
8161 
8162     case LK_MemInitializer: {
8163       if (isa<MaterializeTemporaryExpr>(L)) {
8164         // Under C++ DR1696, if a mem-initializer (or a default member
8165         // initializer used by the absence of one) would lifetime-extend a
8166         // temporary, the program is ill-formed.
8167         if (auto *ExtendingDecl =
8168                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
8169           if (IsGslPtrInitWithGslTempOwner) {
8170             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
8171                 << ExtendingDecl << DiagRange;
8172             Diag(ExtendingDecl->getLocation(),
8173                  diag::note_ref_or_ptr_member_declared_here)
8174                 << true;
8175             return false;
8176           }
8177           bool IsSubobjectMember = ExtendingEntity != &Entity;
8178           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
8179                                 PathLifetimeKind::NoExtend
8180                             ? diag::err_dangling_member
8181                             : diag::warn_dangling_member)
8182               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
8183           // Don't bother adding a note pointing to the field if we're inside
8184           // its default member initializer; our primary diagnostic points to
8185           // the same place in that case.
8186           if (Path.empty() ||
8187               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
8188             Diag(ExtendingDecl->getLocation(),
8189                  diag::note_lifetime_extending_member_declared_here)
8190                 << RK << IsSubobjectMember;
8191           }
8192         } else {
8193           // We have a mem-initializer but no particular field within it; this
8194           // is either a base class or a delegating initializer directly
8195           // initializing the base-class from something that doesn't live long
8196           // enough.
8197           //
8198           // FIXME: Warn on this.
8199           return false;
8200         }
8201       } else {
8202         // Paths via a default initializer can only occur during error recovery
8203         // (there's no other way that a default initializer can refer to a
8204         // local). Don't produce a bogus warning on those cases.
8205         if (pathContainsInit(Path))
8206           return false;
8207 
8208         // Suppress false positives for code like the one below:
8209         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
8210         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
8211           return false;
8212 
8213         auto *DRE = dyn_cast<DeclRefExpr>(L);
8214         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
8215         if (!VD) {
8216           // A member was initialized to a local block.
8217           // FIXME: Warn on this.
8218           return false;
8219         }
8220 
8221         if (auto *Member =
8222                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
8223           bool IsPointer = !Member->getType()->isReferenceType();
8224           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
8225                                   : diag::warn_bind_ref_member_to_parameter)
8226               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
8227           Diag(Member->getLocation(),
8228                diag::note_ref_or_ptr_member_declared_here)
8229               << (unsigned)IsPointer;
8230         }
8231       }
8232       break;
8233     }
8234 
8235     case LK_New:
8236       if (isa<MaterializeTemporaryExpr>(L)) {
8237         if (IsGslPtrInitWithGslTempOwner)
8238           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
8239         else
8240           Diag(DiagLoc, RK == RK_ReferenceBinding
8241                             ? diag::warn_new_dangling_reference
8242                             : diag::warn_new_dangling_initializer_list)
8243               << !Entity.getParent() << DiagRange;
8244       } else {
8245         // We can't determine if the allocation outlives the local declaration.
8246         return false;
8247       }
8248       break;
8249 
8250     case LK_Return:
8251     case LK_StmtExprResult:
8252       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
8253         // We can't determine if the local variable outlives the statement
8254         // expression.
8255         if (LK == LK_StmtExprResult)
8256           return false;
8257         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
8258             << Entity.getType()->isReferenceType() << DRE->getDecl()
8259             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
8260       } else if (isa<BlockExpr>(L)) {
8261         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
8262       } else if (isa<AddrLabelExpr>(L)) {
8263         // Don't warn when returning a label from a statement expression.
8264         // Leaving the scope doesn't end its lifetime.
8265         if (LK == LK_StmtExprResult)
8266           return false;
8267         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
8268       } else {
8269         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
8270          << Entity.getType()->isReferenceType() << DiagRange;
8271       }
8272       break;
8273     }
8274 
8275     for (unsigned I = 0; I != Path.size(); ++I) {
8276       auto Elem = Path[I];
8277 
8278       switch (Elem.Kind) {
8279       case IndirectLocalPathEntry::AddressOf:
8280       case IndirectLocalPathEntry::LValToRVal:
8281         // These exist primarily to mark the path as not permitting or
8282         // supporting lifetime extension.
8283         break;
8284 
8285       case IndirectLocalPathEntry::LifetimeBoundCall:
8286       case IndirectLocalPathEntry::TemporaryCopy:
8287       case IndirectLocalPathEntry::GslPointerInit:
8288       case IndirectLocalPathEntry::GslReferenceInit:
8289         // FIXME: Consider adding a note for these.
8290         break;
8291 
8292       case IndirectLocalPathEntry::DefaultInit: {
8293         auto *FD = cast<FieldDecl>(Elem.D);
8294         Diag(FD->getLocation(), diag::note_init_with_default_member_initializer)
8295             << FD << nextPathEntryRange(Path, I + 1, L);
8296         break;
8297       }
8298 
8299       case IndirectLocalPathEntry::VarInit: {
8300         const VarDecl *VD = cast<VarDecl>(Elem.D);
8301         Diag(VD->getLocation(), diag::note_local_var_initializer)
8302             << VD->getType()->isReferenceType()
8303             << VD->isImplicit() << VD->getDeclName()
8304             << nextPathEntryRange(Path, I + 1, L);
8305         break;
8306       }
8307 
8308       case IndirectLocalPathEntry::LambdaCaptureInit:
8309         if (!Elem.Capture->capturesVariable())
8310           break;
8311         // FIXME: We can't easily tell apart an init-capture from a nested
8312         // capture of an init-capture.
8313         const ValueDecl *VD = Elem.Capture->getCapturedVar();
8314         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
8315             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
8316             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
8317             << nextPathEntryRange(Path, I + 1, L);
8318         break;
8319       }
8320     }
8321 
8322     // We didn't lifetime-extend, so don't go any further; we don't need more
8323     // warnings or errors on inner temporaries within this one's initializer.
8324     return false;
8325   };
8326 
8327   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
8328       diag::warn_dangling_lifetime_pointer, SourceLocation());
8329   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
8330   if (Init->isGLValue())
8331     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
8332                                           TemporaryVisitor,
8333                                           EnableLifetimeWarnings);
8334   else
8335     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
8336                                      EnableLifetimeWarnings);
8337 }
8338 
8339 static void DiagnoseNarrowingInInitList(Sema &S,
8340                                         const ImplicitConversionSequence &ICS,
8341                                         QualType PreNarrowingType,
8342                                         QualType EntityType,
8343                                         const Expr *PostInit);
8344 
8345 /// Provide warnings when std::move is used on construction.
8346 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
8347                                     bool IsReturnStmt) {
8348   if (!InitExpr)
8349     return;
8350 
8351   if (S.inTemplateInstantiation())
8352     return;
8353 
8354   QualType DestType = InitExpr->getType();
8355   if (!DestType->isRecordType())
8356     return;
8357 
8358   unsigned DiagID = 0;
8359   if (IsReturnStmt) {
8360     const CXXConstructExpr *CCE =
8361         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
8362     if (!CCE || CCE->getNumArgs() != 1)
8363       return;
8364 
8365     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
8366       return;
8367 
8368     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
8369   }
8370 
8371   // Find the std::move call and get the argument.
8372   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
8373   if (!CE || !CE->isCallToStdMove())
8374     return;
8375 
8376   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
8377 
8378   if (IsReturnStmt) {
8379     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
8380     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
8381       return;
8382 
8383     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
8384     if (!VD || !VD->hasLocalStorage())
8385       return;
8386 
8387     // __block variables are not moved implicitly.
8388     if (VD->hasAttr<BlocksAttr>())
8389       return;
8390 
8391     QualType SourceType = VD->getType();
8392     if (!SourceType->isRecordType())
8393       return;
8394 
8395     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
8396       return;
8397     }
8398 
8399     // If we're returning a function parameter, copy elision
8400     // is not possible.
8401     if (isa<ParmVarDecl>(VD))
8402       DiagID = diag::warn_redundant_move_on_return;
8403     else
8404       DiagID = diag::warn_pessimizing_move_on_return;
8405   } else {
8406     DiagID = diag::warn_pessimizing_move_on_initialization;
8407     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
8408     if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
8409       return;
8410   }
8411 
8412   S.Diag(CE->getBeginLoc(), DiagID);
8413 
8414   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
8415   // is within a macro.
8416   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
8417   if (CallBegin.isMacroID())
8418     return;
8419   SourceLocation RParen = CE->getRParenLoc();
8420   if (RParen.isMacroID())
8421     return;
8422   SourceLocation LParen;
8423   SourceLocation ArgLoc = Arg->getBeginLoc();
8424 
8425   // Special testing for the argument location.  Since the fix-it needs the
8426   // location right before the argument, the argument location can be in a
8427   // macro only if it is at the beginning of the macro.
8428   while (ArgLoc.isMacroID() &&
8429          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
8430     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
8431   }
8432 
8433   if (LParen.isMacroID())
8434     return;
8435 
8436   LParen = ArgLoc.getLocWithOffset(-1);
8437 
8438   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
8439       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
8440       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
8441 }
8442 
8443 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
8444   // Check to see if we are dereferencing a null pointer.  If so, this is
8445   // undefined behavior, so warn about it.  This only handles the pattern
8446   // "*null", which is a very syntactic check.
8447   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
8448     if (UO->getOpcode() == UO_Deref &&
8449         UO->getSubExpr()->IgnoreParenCasts()->
8450         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
8451     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
8452                           S.PDiag(diag::warn_binding_null_to_reference)
8453                             << UO->getSubExpr()->getSourceRange());
8454   }
8455 }
8456 
8457 MaterializeTemporaryExpr *
8458 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
8459                                      bool BoundToLvalueReference) {
8460   auto MTE = new (Context)
8461       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
8462 
8463   // Order an ExprWithCleanups for lifetime marks.
8464   //
8465   // TODO: It'll be good to have a single place to check the access of the
8466   // destructor and generate ExprWithCleanups for various uses. Currently these
8467   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
8468   // but there may be a chance to merge them.
8469   Cleanup.setExprNeedsCleanups(false);
8470   return MTE;
8471 }
8472 
8473 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
8474   // In C++98, we don't want to implicitly create an xvalue.
8475   // FIXME: This means that AST consumers need to deal with "prvalues" that
8476   // denote materialized temporaries. Maybe we should add another ValueKind
8477   // for "xvalue pretending to be a prvalue" for C++98 support.
8478   if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
8479     return E;
8480 
8481   // C++1z [conv.rval]/1: T shall be a complete type.
8482   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
8483   // If so, we should check for a non-abstract class type here too.
8484   QualType T = E->getType();
8485   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
8486     return ExprError();
8487 
8488   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
8489 }
8490 
8491 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
8492                                                 ExprValueKind VK,
8493                                                 CheckedConversionKind CCK) {
8494 
8495   CastKind CK = CK_NoOp;
8496 
8497   if (VK == VK_PRValue) {
8498     auto PointeeTy = Ty->getPointeeType();
8499     auto ExprPointeeTy = E->getType()->getPointeeType();
8500     if (!PointeeTy.isNull() &&
8501         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8502       CK = CK_AddressSpaceConversion;
8503   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8504     CK = CK_AddressSpaceConversion;
8505   }
8506 
8507   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8508 }
8509 
8510 ExprResult InitializationSequence::Perform(Sema &S,
8511                                            const InitializedEntity &Entity,
8512                                            const InitializationKind &Kind,
8513                                            MultiExprArg Args,
8514                                            QualType *ResultType) {
8515   if (Failed()) {
8516     Diagnose(S, Entity, Kind, Args);
8517     return ExprError();
8518   }
8519   if (!ZeroInitializationFixit.empty()) {
8520     const Decl *D = Entity.getDecl();
8521     const auto *VD = dyn_cast_or_null<VarDecl>(D);
8522     QualType DestType = Entity.getType();
8523 
8524     // The initialization would have succeeded with this fixit. Since the fixit
8525     // is on the error, we need to build a valid AST in this case, so this isn't
8526     // handled in the Failed() branch above.
8527     if (!DestType->isRecordType() && VD && VD->isConstexpr()) {
8528       // Use a more useful diagnostic for constexpr variables.
8529       S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
8530           << VD
8531           << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8532                                         ZeroInitializationFixit);
8533     } else {
8534       unsigned DiagID = diag::err_default_init_const;
8535       if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>())
8536         DiagID = diag::ext_default_init_const;
8537 
8538       S.Diag(Kind.getLocation(), DiagID)
8539           << DestType << (bool)DestType->getAs<RecordType>()
8540           << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8541                                         ZeroInitializationFixit);
8542     }
8543   }
8544 
8545   if (getKind() == DependentSequence) {
8546     // If the declaration is a non-dependent, incomplete array type
8547     // that has an initializer, then its type will be completed once
8548     // the initializer is instantiated.
8549     if (ResultType && !Entity.getType()->isDependentType() &&
8550         Args.size() == 1) {
8551       QualType DeclType = Entity.getType();
8552       if (const IncompleteArrayType *ArrayT
8553                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8554         // FIXME: We don't currently have the ability to accurately
8555         // compute the length of an initializer list without
8556         // performing full type-checking of the initializer list
8557         // (since we have to determine where braces are implicitly
8558         // introduced and such).  So, we fall back to making the array
8559         // type a dependently-sized array type with no specified
8560         // bound.
8561         if (isa<InitListExpr>((Expr *)Args[0])) {
8562           SourceRange Brackets;
8563 
8564           // Scavange the location of the brackets from the entity, if we can.
8565           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8566             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8567               TypeLoc TL = TInfo->getTypeLoc();
8568               if (IncompleteArrayTypeLoc ArrayLoc =
8569                       TL.getAs<IncompleteArrayTypeLoc>())
8570                 Brackets = ArrayLoc.getBracketsRange();
8571             }
8572           }
8573 
8574           *ResultType
8575             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8576                                                    /*NumElts=*/nullptr,
8577                                                    ArrayT->getSizeModifier(),
8578                                        ArrayT->getIndexTypeCVRQualifiers(),
8579                                                    Brackets);
8580         }
8581 
8582       }
8583     }
8584     if (Kind.getKind() == InitializationKind::IK_Direct &&
8585         !Kind.isExplicitCast()) {
8586       // Rebuild the ParenListExpr.
8587       SourceRange ParenRange = Kind.getParenOrBraceRange();
8588       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8589                                   Args);
8590     }
8591     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8592            Kind.isExplicitCast() ||
8593            Kind.getKind() == InitializationKind::IK_DirectList);
8594     return ExprResult(Args[0]);
8595   }
8596 
8597   // No steps means no initialization.
8598   if (Steps.empty())
8599     return ExprResult((Expr *)nullptr);
8600 
8601   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8602       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8603       !Entity.isParamOrTemplateParamKind()) {
8604     // Produce a C++98 compatibility warning if we are initializing a reference
8605     // from an initializer list. For parameters, we produce a better warning
8606     // elsewhere.
8607     Expr *Init = Args[0];
8608     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8609         << Init->getSourceRange();
8610   }
8611 
8612   if (S.getLangOpts().MicrosoftExt && Args.size() == 1 &&
8613       isa<PredefinedExpr>(Args[0]) && Entity.getType()->isArrayType()) {
8614     // Produce a Microsoft compatibility warning when initializing from a
8615     // predefined expression since MSVC treats predefined expressions as string
8616     // literals.
8617     Expr *Init = Args[0];
8618     S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init;
8619   }
8620 
8621   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8622   QualType ETy = Entity.getType();
8623   bool HasGlobalAS = ETy.hasAddressSpace() &&
8624                      ETy.getAddressSpace() == LangAS::opencl_global;
8625 
8626   if (S.getLangOpts().OpenCLVersion >= 200 &&
8627       ETy->isAtomicType() && !HasGlobalAS &&
8628       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8629     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8630         << 1
8631         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8632     return ExprError();
8633   }
8634 
8635   QualType DestType = Entity.getType().getNonReferenceType();
8636   // FIXME: Ugly hack around the fact that Entity.getType() is not
8637   // the same as Entity.getDecl()->getType() in cases involving type merging,
8638   //  and we want latter when it makes sense.
8639   if (ResultType)
8640     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8641                                      Entity.getType();
8642 
8643   ExprResult CurInit((Expr *)nullptr);
8644   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8645 
8646   // HLSL allows vector initialization to function like list initialization, but
8647   // use the syntax of a C++-like constructor.
8648   bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() &&
8649                           isa<InitListExpr>(Args[0]);
8650   (void)IsHLSLVectorInit;
8651 
8652   // For initialization steps that start with a single initializer,
8653   // grab the only argument out the Args and place it into the "current"
8654   // initializer.
8655   switch (Steps.front().Kind) {
8656   case SK_ResolveAddressOfOverloadedFunction:
8657   case SK_CastDerivedToBasePRValue:
8658   case SK_CastDerivedToBaseXValue:
8659   case SK_CastDerivedToBaseLValue:
8660   case SK_BindReference:
8661   case SK_BindReferenceToTemporary:
8662   case SK_FinalCopy:
8663   case SK_ExtraneousCopyToTemporary:
8664   case SK_UserConversion:
8665   case SK_QualificationConversionLValue:
8666   case SK_QualificationConversionXValue:
8667   case SK_QualificationConversionPRValue:
8668   case SK_FunctionReferenceConversion:
8669   case SK_AtomicConversion:
8670   case SK_ConversionSequence:
8671   case SK_ConversionSequenceNoNarrowing:
8672   case SK_ListInitialization:
8673   case SK_UnwrapInitList:
8674   case SK_RewrapInitList:
8675   case SK_CAssignment:
8676   case SK_StringInit:
8677   case SK_ObjCObjectConversion:
8678   case SK_ArrayLoopIndex:
8679   case SK_ArrayLoopInit:
8680   case SK_ArrayInit:
8681   case SK_GNUArrayInit:
8682   case SK_ParenthesizedArrayInit:
8683   case SK_PassByIndirectCopyRestore:
8684   case SK_PassByIndirectRestore:
8685   case SK_ProduceObjCObject:
8686   case SK_StdInitializerList:
8687   case SK_OCLSamplerInit:
8688   case SK_OCLZeroOpaqueType: {
8689     assert(Args.size() == 1 || IsHLSLVectorInit);
8690     CurInit = Args[0];
8691     if (!CurInit.get()) return ExprError();
8692     break;
8693   }
8694 
8695   case SK_ConstructorInitialization:
8696   case SK_ConstructorInitializationFromList:
8697   case SK_StdInitializerListConstructorCall:
8698   case SK_ZeroInitialization:
8699   case SK_ParenthesizedListInit:
8700     break;
8701   }
8702 
8703   // Promote from an unevaluated context to an unevaluated list context in
8704   // C++11 list-initialization; we need to instantiate entities usable in
8705   // constant expressions here in order to perform narrowing checks =(
8706   EnterExpressionEvaluationContext Evaluated(
8707       S, EnterExpressionEvaluationContext::InitList,
8708       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8709 
8710   // C++ [class.abstract]p2:
8711   //   no objects of an abstract class can be created except as subobjects
8712   //   of a class derived from it
8713   auto checkAbstractType = [&](QualType T) -> bool {
8714     if (Entity.getKind() == InitializedEntity::EK_Base ||
8715         Entity.getKind() == InitializedEntity::EK_Delegating)
8716       return false;
8717     return S.RequireNonAbstractType(Kind.getLocation(), T,
8718                                     diag::err_allocation_of_abstract_type);
8719   };
8720 
8721   // Walk through the computed steps for the initialization sequence,
8722   // performing the specified conversions along the way.
8723   bool ConstructorInitRequiresZeroInit = false;
8724   for (step_iterator Step = step_begin(), StepEnd = step_end();
8725        Step != StepEnd; ++Step) {
8726     if (CurInit.isInvalid())
8727       return ExprError();
8728 
8729     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8730 
8731     switch (Step->Kind) {
8732     case SK_ResolveAddressOfOverloadedFunction:
8733       // Overload resolution determined which function invoke; update the
8734       // initializer to reflect that choice.
8735       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8736       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8737         return ExprError();
8738       CurInit = S.FixOverloadedFunctionReference(CurInit,
8739                                                  Step->Function.FoundDecl,
8740                                                  Step->Function.Function);
8741       // We might get back another placeholder expression if we resolved to a
8742       // builtin.
8743       if (!CurInit.isInvalid())
8744         CurInit = S.CheckPlaceholderExpr(CurInit.get());
8745       break;
8746 
8747     case SK_CastDerivedToBasePRValue:
8748     case SK_CastDerivedToBaseXValue:
8749     case SK_CastDerivedToBaseLValue: {
8750       // We have a derived-to-base cast that produces either an rvalue or an
8751       // lvalue. Perform that cast.
8752 
8753       CXXCastPath BasePath;
8754 
8755       // Casts to inaccessible base classes are allowed with C-style casts.
8756       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8757       if (S.CheckDerivedToBaseConversion(
8758               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8759               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8760         return ExprError();
8761 
8762       ExprValueKind VK =
8763           Step->Kind == SK_CastDerivedToBaseLValue
8764               ? VK_LValue
8765               : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8766                                                           : VK_PRValue);
8767       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8768                                          CK_DerivedToBase, CurInit.get(),
8769                                          &BasePath, VK, FPOptionsOverride());
8770       break;
8771     }
8772 
8773     case SK_BindReference:
8774       // Reference binding does not have any corresponding ASTs.
8775 
8776       // Check exception specifications
8777       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8778         return ExprError();
8779 
8780       // We don't check for e.g. function pointers here, since address
8781       // availability checks should only occur when the function first decays
8782       // into a pointer or reference.
8783       if (CurInit.get()->getType()->isFunctionProtoType()) {
8784         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8785           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8786             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8787                                                      DRE->getBeginLoc()))
8788               return ExprError();
8789           }
8790         }
8791       }
8792 
8793       CheckForNullPointerDereference(S, CurInit.get());
8794       break;
8795 
8796     case SK_BindReferenceToTemporary: {
8797       // Make sure the "temporary" is actually an rvalue.
8798       assert(CurInit.get()->isPRValue() && "not a temporary");
8799 
8800       // Check exception specifications
8801       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8802         return ExprError();
8803 
8804       QualType MTETy = Step->Type;
8805 
8806       // When this is an incomplete array type (such as when this is
8807       // initializing an array of unknown bounds from an init list), use THAT
8808       // type instead so that we propagate the array bounds.
8809       if (MTETy->isIncompleteArrayType() &&
8810           !CurInit.get()->getType()->isIncompleteArrayType() &&
8811           S.Context.hasSameType(
8812               MTETy->getPointeeOrArrayElementType(),
8813               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8814         MTETy = CurInit.get()->getType();
8815 
8816       // Materialize the temporary into memory.
8817       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8818           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8819       CurInit = MTE;
8820 
8821       // If we're extending this temporary to automatic storage duration -- we
8822       // need to register its cleanup during the full-expression's cleanups.
8823       if (MTE->getStorageDuration() == SD_Automatic &&
8824           MTE->getType().isDestructedType())
8825         S.Cleanup.setExprNeedsCleanups(true);
8826       break;
8827     }
8828 
8829     case SK_FinalCopy:
8830       if (checkAbstractType(Step->Type))
8831         return ExprError();
8832 
8833       // If the overall initialization is initializing a temporary, we already
8834       // bound our argument if it was necessary to do so. If not (if we're
8835       // ultimately initializing a non-temporary), our argument needs to be
8836       // bound since it's initializing a function parameter.
8837       // FIXME: This is a mess. Rationalize temporary destruction.
8838       if (!shouldBindAsTemporary(Entity))
8839         CurInit = S.MaybeBindToTemporary(CurInit.get());
8840       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8841                            /*IsExtraneousCopy=*/false);
8842       break;
8843 
8844     case SK_ExtraneousCopyToTemporary:
8845       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8846                            /*IsExtraneousCopy=*/true);
8847       break;
8848 
8849     case SK_UserConversion: {
8850       // We have a user-defined conversion that invokes either a constructor
8851       // or a conversion function.
8852       CastKind CastKind;
8853       FunctionDecl *Fn = Step->Function.Function;
8854       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8855       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8856       bool CreatedObject = false;
8857       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8858         // Build a call to the selected constructor.
8859         SmallVector<Expr*, 8> ConstructorArgs;
8860         SourceLocation Loc = CurInit.get()->getBeginLoc();
8861 
8862         // Determine the arguments required to actually perform the constructor
8863         // call.
8864         Expr *Arg = CurInit.get();
8865         if (S.CompleteConstructorCall(Constructor, Step->Type,
8866                                       MultiExprArg(&Arg, 1), Loc,
8867                                       ConstructorArgs))
8868           return ExprError();
8869 
8870         // Build an expression that constructs a temporary.
8871         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8872                                           FoundFn, Constructor,
8873                                           ConstructorArgs,
8874                                           HadMultipleCandidates,
8875                                           /*ListInit*/ false,
8876                                           /*StdInitListInit*/ false,
8877                                           /*ZeroInit*/ false,
8878                                           CXXConstructExpr::CK_Complete,
8879                                           SourceRange());
8880         if (CurInit.isInvalid())
8881           return ExprError();
8882 
8883         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8884                                  Entity);
8885         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8886           return ExprError();
8887 
8888         CastKind = CK_ConstructorConversion;
8889         CreatedObject = true;
8890       } else {
8891         // Build a call to the conversion function.
8892         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8893         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8894                                     FoundFn);
8895         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8896           return ExprError();
8897 
8898         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8899                                            HadMultipleCandidates);
8900         if (CurInit.isInvalid())
8901           return ExprError();
8902 
8903         CastKind = CK_UserDefinedConversion;
8904         CreatedObject = Conversion->getReturnType()->isRecordType();
8905       }
8906 
8907       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8908         return ExprError();
8909 
8910       CurInit = ImplicitCastExpr::Create(
8911           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8912           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8913 
8914       if (shouldBindAsTemporary(Entity))
8915         // The overall entity is temporary, so this expression should be
8916         // destroyed at the end of its full-expression.
8917         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8918       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8919         // The object outlasts the full-expression, but we need to prepare for
8920         // a destructor being run on it.
8921         // FIXME: It makes no sense to do this here. This should happen
8922         // regardless of how we initialized the entity.
8923         QualType T = CurInit.get()->getType();
8924         if (const RecordType *Record = T->getAs<RecordType>()) {
8925           CXXDestructorDecl *Destructor
8926             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8927           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8928                                   S.PDiag(diag::err_access_dtor_temp) << T);
8929           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8930           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8931             return ExprError();
8932         }
8933       }
8934       break;
8935     }
8936 
8937     case SK_QualificationConversionLValue:
8938     case SK_QualificationConversionXValue:
8939     case SK_QualificationConversionPRValue: {
8940       // Perform a qualification conversion; these can never go wrong.
8941       ExprValueKind VK =
8942           Step->Kind == SK_QualificationConversionLValue
8943               ? VK_LValue
8944               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8945                                                                 : VK_PRValue);
8946       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8947       break;
8948     }
8949 
8950     case SK_FunctionReferenceConversion:
8951       assert(CurInit.get()->isLValue() &&
8952              "function reference should be lvalue");
8953       CurInit =
8954           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8955       break;
8956 
8957     case SK_AtomicConversion: {
8958       assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8959       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8960                                     CK_NonAtomicToAtomic, VK_PRValue);
8961       break;
8962     }
8963 
8964     case SK_ConversionSequence:
8965     case SK_ConversionSequenceNoNarrowing: {
8966       if (const auto *FromPtrType =
8967               CurInit.get()->getType()->getAs<PointerType>()) {
8968         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8969           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8970               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8971             // Do not check static casts here because they are checked earlier
8972             // in Sema::ActOnCXXNamedCast()
8973             if (!Kind.isStaticCast()) {
8974               S.Diag(CurInit.get()->getExprLoc(),
8975                      diag::warn_noderef_to_dereferenceable_pointer)
8976                   << CurInit.get()->getSourceRange();
8977             }
8978           }
8979         }
8980       }
8981 
8982       Sema::CheckedConversionKind CCK
8983         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8984         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8985         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8986         : Sema::CCK_ImplicitConversion;
8987       ExprResult CurInitExprRes =
8988         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8989                                     getAssignmentAction(Entity), CCK);
8990       if (CurInitExprRes.isInvalid())
8991         return ExprError();
8992 
8993       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8994 
8995       CurInit = CurInitExprRes;
8996 
8997       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8998           S.getLangOpts().CPlusPlus)
8999         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
9000                                     CurInit.get());
9001 
9002       break;
9003     }
9004 
9005     case SK_ListInitialization: {
9006       if (checkAbstractType(Step->Type))
9007         return ExprError();
9008 
9009       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
9010       // If we're not initializing the top-level entity, we need to create an
9011       // InitializeTemporary entity for our target type.
9012       QualType Ty = Step->Type;
9013       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
9014       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
9015       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
9016       InitListChecker PerformInitList(S, InitEntity,
9017           InitList, Ty, /*VerifyOnly=*/false,
9018           /*TreatUnavailableAsInvalid=*/false);
9019       if (PerformInitList.HadError())
9020         return ExprError();
9021 
9022       // Hack: We must update *ResultType if available in order to set the
9023       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
9024       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
9025       if (ResultType &&
9026           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
9027         if ((*ResultType)->isRValueReferenceType())
9028           Ty = S.Context.getRValueReferenceType(Ty);
9029         else if ((*ResultType)->isLValueReferenceType())
9030           Ty = S.Context.getLValueReferenceType(Ty,
9031             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
9032         *ResultType = Ty;
9033       }
9034 
9035       InitListExpr *StructuredInitList =
9036           PerformInitList.getFullyStructuredList();
9037       CurInit.get();
9038       CurInit = shouldBindAsTemporary(InitEntity)
9039           ? S.MaybeBindToTemporary(StructuredInitList)
9040           : StructuredInitList;
9041       break;
9042     }
9043 
9044     case SK_ConstructorInitializationFromList: {
9045       if (checkAbstractType(Step->Type))
9046         return ExprError();
9047 
9048       // When an initializer list is passed for a parameter of type "reference
9049       // to object", we don't get an EK_Temporary entity, but instead an
9050       // EK_Parameter entity with reference type.
9051       // FIXME: This is a hack. What we really should do is create a user
9052       // conversion step for this case, but this makes it considerably more
9053       // complicated. For now, this will do.
9054       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
9055                                         Entity.getType().getNonReferenceType());
9056       bool UseTemporary = Entity.getType()->isReferenceType();
9057       assert(Args.size() == 1 && "expected a single argument for list init");
9058       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9059       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
9060         << InitList->getSourceRange();
9061       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
9062       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
9063                                                                    Entity,
9064                                                  Kind, Arg, *Step,
9065                                                ConstructorInitRequiresZeroInit,
9066                                                /*IsListInitialization*/true,
9067                                                /*IsStdInitListInit*/false,
9068                                                InitList->getLBraceLoc(),
9069                                                InitList->getRBraceLoc());
9070       break;
9071     }
9072 
9073     case SK_UnwrapInitList:
9074       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
9075       break;
9076 
9077     case SK_RewrapInitList: {
9078       Expr *E = CurInit.get();
9079       InitListExpr *Syntactic = Step->WrappingSyntacticList;
9080       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
9081           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
9082       ILE->setSyntacticForm(Syntactic);
9083       ILE->setType(E->getType());
9084       ILE->setValueKind(E->getValueKind());
9085       CurInit = ILE;
9086       break;
9087     }
9088 
9089     case SK_ConstructorInitialization:
9090     case SK_StdInitializerListConstructorCall: {
9091       if (checkAbstractType(Step->Type))
9092         return ExprError();
9093 
9094       // When an initializer list is passed for a parameter of type "reference
9095       // to object", we don't get an EK_Temporary entity, but instead an
9096       // EK_Parameter entity with reference type.
9097       // FIXME: This is a hack. What we really should do is create a user
9098       // conversion step for this case, but this makes it considerably more
9099       // complicated. For now, this will do.
9100       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
9101                                         Entity.getType().getNonReferenceType());
9102       bool UseTemporary = Entity.getType()->isReferenceType();
9103       bool IsStdInitListInit =
9104           Step->Kind == SK_StdInitializerListConstructorCall;
9105       Expr *Source = CurInit.get();
9106       SourceRange Range = Kind.hasParenOrBraceRange()
9107                               ? Kind.getParenOrBraceRange()
9108                               : SourceRange();
9109       CurInit = PerformConstructorInitialization(
9110           S, UseTemporary ? TempEntity : Entity, Kind,
9111           Source ? MultiExprArg(Source) : Args, *Step,
9112           ConstructorInitRequiresZeroInit,
9113           /*IsListInitialization*/ IsStdInitListInit,
9114           /*IsStdInitListInitialization*/ IsStdInitListInit,
9115           /*LBraceLoc*/ Range.getBegin(),
9116           /*RBraceLoc*/ Range.getEnd());
9117       break;
9118     }
9119 
9120     case SK_ZeroInitialization: {
9121       step_iterator NextStep = Step;
9122       ++NextStep;
9123       if (NextStep != StepEnd &&
9124           (NextStep->Kind == SK_ConstructorInitialization ||
9125            NextStep->Kind == SK_ConstructorInitializationFromList)) {
9126         // The need for zero-initialization is recorded directly into
9127         // the call to the object's constructor within the next step.
9128         ConstructorInitRequiresZeroInit = true;
9129       } else if (Kind.getKind() == InitializationKind::IK_Value &&
9130                  S.getLangOpts().CPlusPlus &&
9131                  !Kind.isImplicitValueInit()) {
9132         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
9133         if (!TSInfo)
9134           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
9135                                                     Kind.getRange().getBegin());
9136 
9137         CurInit = new (S.Context) CXXScalarValueInitExpr(
9138             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
9139             Kind.getRange().getEnd());
9140       } else {
9141         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
9142       }
9143       break;
9144     }
9145 
9146     case SK_CAssignment: {
9147       QualType SourceType = CurInit.get()->getType();
9148 
9149       // Save off the initial CurInit in case we need to emit a diagnostic
9150       ExprResult InitialCurInit = CurInit;
9151       ExprResult Result = CurInit;
9152       Sema::AssignConvertType ConvTy =
9153         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
9154             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
9155       if (Result.isInvalid())
9156         return ExprError();
9157       CurInit = Result;
9158 
9159       // If this is a call, allow conversion to a transparent union.
9160       ExprResult CurInitExprRes = CurInit;
9161       if (ConvTy != Sema::Compatible &&
9162           Entity.isParameterKind() &&
9163           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
9164             == Sema::Compatible)
9165         ConvTy = Sema::Compatible;
9166       if (CurInitExprRes.isInvalid())
9167         return ExprError();
9168       CurInit = CurInitExprRes;
9169 
9170       bool Complained;
9171       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
9172                                      Step->Type, SourceType,
9173                                      InitialCurInit.get(),
9174                                      getAssignmentAction(Entity, true),
9175                                      &Complained)) {
9176         PrintInitLocationNote(S, Entity);
9177         return ExprError();
9178       } else if (Complained)
9179         PrintInitLocationNote(S, Entity);
9180       break;
9181     }
9182 
9183     case SK_StringInit: {
9184       QualType Ty = Step->Type;
9185       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
9186       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
9187                       S.Context.getAsArrayType(Ty), S);
9188       break;
9189     }
9190 
9191     case SK_ObjCObjectConversion:
9192       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
9193                           CK_ObjCObjectLValueCast,
9194                           CurInit.get()->getValueKind());
9195       break;
9196 
9197     case SK_ArrayLoopIndex: {
9198       Expr *Cur = CurInit.get();
9199       Expr *BaseExpr = new (S.Context)
9200           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
9201                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
9202       Expr *IndexExpr =
9203           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
9204       CurInit = S.CreateBuiltinArraySubscriptExpr(
9205           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
9206       ArrayLoopCommonExprs.push_back(BaseExpr);
9207       break;
9208     }
9209 
9210     case SK_ArrayLoopInit: {
9211       assert(!ArrayLoopCommonExprs.empty() &&
9212              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
9213       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
9214       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
9215                                                   CurInit.get());
9216       break;
9217     }
9218 
9219     case SK_GNUArrayInit:
9220       // Okay: we checked everything before creating this step. Note that
9221       // this is a GNU extension.
9222       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
9223         << Step->Type << CurInit.get()->getType()
9224         << CurInit.get()->getSourceRange();
9225       updateGNUCompoundLiteralRValue(CurInit.get());
9226       [[fallthrough]];
9227     case SK_ArrayInit:
9228       // If the destination type is an incomplete array type, update the
9229       // type accordingly.
9230       if (ResultType) {
9231         if (const IncompleteArrayType *IncompleteDest
9232                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
9233           if (const ConstantArrayType *ConstantSource
9234                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
9235             *ResultType = S.Context.getConstantArrayType(
9236                                              IncompleteDest->getElementType(),
9237                                              ConstantSource->getSize(),
9238                                              ConstantSource->getSizeExpr(),
9239                                              ArrayType::Normal, 0);
9240           }
9241         }
9242       }
9243       break;
9244 
9245     case SK_ParenthesizedArrayInit:
9246       // Okay: we checked everything before creating this step. Note that
9247       // this is a GNU extension.
9248       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
9249         << CurInit.get()->getSourceRange();
9250       break;
9251 
9252     case SK_PassByIndirectCopyRestore:
9253     case SK_PassByIndirectRestore:
9254       checkIndirectCopyRestoreSource(S, CurInit.get());
9255       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
9256           CurInit.get(), Step->Type,
9257           Step->Kind == SK_PassByIndirectCopyRestore);
9258       break;
9259 
9260     case SK_ProduceObjCObject:
9261       CurInit = ImplicitCastExpr::Create(
9262           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
9263           VK_PRValue, FPOptionsOverride());
9264       break;
9265 
9266     case SK_StdInitializerList: {
9267       S.Diag(CurInit.get()->getExprLoc(),
9268              diag::warn_cxx98_compat_initializer_list_init)
9269         << CurInit.get()->getSourceRange();
9270 
9271       // Materialize the temporary into memory.
9272       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
9273           CurInit.get()->getType(), CurInit.get(),
9274           /*BoundToLvalueReference=*/false);
9275 
9276       // Wrap it in a construction of a std::initializer_list<T>.
9277       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
9278 
9279       // Bind the result, in case the library has given initializer_list a
9280       // non-trivial destructor.
9281       if (shouldBindAsTemporary(Entity))
9282         CurInit = S.MaybeBindToTemporary(CurInit.get());
9283       break;
9284     }
9285 
9286     case SK_OCLSamplerInit: {
9287       // Sampler initialization have 5 cases:
9288       //   1. function argument passing
9289       //      1a. argument is a file-scope variable
9290       //      1b. argument is a function-scope variable
9291       //      1c. argument is one of caller function's parameters
9292       //   2. variable initialization
9293       //      2a. initializing a file-scope variable
9294       //      2b. initializing a function-scope variable
9295       //
9296       // For file-scope variables, since they cannot be initialized by function
9297       // call of __translate_sampler_initializer in LLVM IR, their references
9298       // need to be replaced by a cast from their literal initializers to
9299       // sampler type. Since sampler variables can only be used in function
9300       // calls as arguments, we only need to replace them when handling the
9301       // argument passing.
9302       assert(Step->Type->isSamplerT() &&
9303              "Sampler initialization on non-sampler type.");
9304       Expr *Init = CurInit.get()->IgnoreParens();
9305       QualType SourceType = Init->getType();
9306       // Case 1
9307       if (Entity.isParameterKind()) {
9308         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
9309           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
9310             << SourceType;
9311           break;
9312         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
9313           auto Var = cast<VarDecl>(DRE->getDecl());
9314           // Case 1b and 1c
9315           // No cast from integer to sampler is needed.
9316           if (!Var->hasGlobalStorage()) {
9317             CurInit = ImplicitCastExpr::Create(
9318                 S.Context, Step->Type, CK_LValueToRValue, Init,
9319                 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
9320             break;
9321           }
9322           // Case 1a
9323           // For function call with a file-scope sampler variable as argument,
9324           // get the integer literal.
9325           // Do not diagnose if the file-scope variable does not have initializer
9326           // since this has already been diagnosed when parsing the variable
9327           // declaration.
9328           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
9329             break;
9330           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
9331             Var->getInit()))->getSubExpr();
9332           SourceType = Init->getType();
9333         }
9334       } else {
9335         // Case 2
9336         // Check initializer is 32 bit integer constant.
9337         // If the initializer is taken from global variable, do not diagnose since
9338         // this has already been done when parsing the variable declaration.
9339         if (!Init->isConstantInitializer(S.Context, false))
9340           break;
9341 
9342         if (!SourceType->isIntegerType() ||
9343             32 != S.Context.getIntWidth(SourceType)) {
9344           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
9345             << SourceType;
9346           break;
9347         }
9348 
9349         Expr::EvalResult EVResult;
9350         Init->EvaluateAsInt(EVResult, S.Context);
9351         llvm::APSInt Result = EVResult.Val.getInt();
9352         const uint64_t SamplerValue = Result.getLimitedValue();
9353         // 32-bit value of sampler's initializer is interpreted as
9354         // bit-field with the following structure:
9355         // |unspecified|Filter|Addressing Mode| Normalized Coords|
9356         // |31        6|5    4|3             1|                 0|
9357         // This structure corresponds to enum values of sampler properties
9358         // defined in SPIR spec v1.2 and also opencl-c.h
9359         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
9360         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
9361         if (FilterMode != 1 && FilterMode != 2 &&
9362             !S.getOpenCLOptions().isAvailableOption(
9363                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
9364           S.Diag(Kind.getLocation(),
9365                  diag::warn_sampler_initializer_invalid_bits)
9366                  << "Filter Mode";
9367         if (AddressingMode > 4)
9368           S.Diag(Kind.getLocation(),
9369                  diag::warn_sampler_initializer_invalid_bits)
9370                  << "Addressing Mode";
9371       }
9372 
9373       // Cases 1a, 2a and 2b
9374       // Insert cast from integer to sampler.
9375       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
9376                                       CK_IntToOCLSampler);
9377       break;
9378     }
9379     case SK_OCLZeroOpaqueType: {
9380       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
9381               Step->Type->isOCLIntelSubgroupAVCType()) &&
9382              "Wrong type for initialization of OpenCL opaque type.");
9383 
9384       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
9385                                     CK_ZeroToOCLOpaqueType,
9386                                     CurInit.get()->getValueKind());
9387       break;
9388     }
9389     case SK_ParenthesizedListInit: {
9390       CurInit = nullptr;
9391       TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
9392                                         /*VerifyOnly=*/false, &CurInit);
9393       if (CurInit.get() && ResultType)
9394         *ResultType = CurInit.get()->getType();
9395       if (shouldBindAsTemporary(Entity))
9396         CurInit = S.MaybeBindToTemporary(CurInit.get());
9397       break;
9398     }
9399     }
9400   }
9401 
9402   Expr *Init = CurInit.get();
9403   if (!Init)
9404     return ExprError();
9405 
9406   // Check whether the initializer has a shorter lifetime than the initialized
9407   // entity, and if not, either lifetime-extend or warn as appropriate.
9408   S.checkInitializerLifetime(Entity, Init);
9409 
9410   // Diagnose non-fatal problems with the completed initialization.
9411   if (InitializedEntity::EntityKind EK = Entity.getKind();
9412       (EK == InitializedEntity::EK_Member ||
9413        EK == InitializedEntity::EK_ParenAggInitMember) &&
9414       cast<FieldDecl>(Entity.getDecl())->isBitField())
9415     S.CheckBitFieldInitialization(Kind.getLocation(),
9416                                   cast<FieldDecl>(Entity.getDecl()), Init);
9417 
9418   // Check for std::move on construction.
9419   CheckMoveOnConstruction(S, Init,
9420                           Entity.getKind() == InitializedEntity::EK_Result);
9421 
9422   return Init;
9423 }
9424 
9425 /// Somewhere within T there is an uninitialized reference subobject.
9426 /// Dig it out and diagnose it.
9427 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
9428                                            QualType T) {
9429   if (T->isReferenceType()) {
9430     S.Diag(Loc, diag::err_reference_without_init)
9431       << T.getNonReferenceType();
9432     return true;
9433   }
9434 
9435   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
9436   if (!RD || !RD->hasUninitializedReferenceMember())
9437     return false;
9438 
9439   for (const auto *FI : RD->fields()) {
9440     if (FI->isUnnamedBitfield())
9441       continue;
9442 
9443     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
9444       S.Diag(Loc, diag::note_value_initialization_here) << RD;
9445       return true;
9446     }
9447   }
9448 
9449   for (const auto &BI : RD->bases()) {
9450     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
9451       S.Diag(Loc, diag::note_value_initialization_here) << RD;
9452       return true;
9453     }
9454   }
9455 
9456   return false;
9457 }
9458 
9459 
9460 //===----------------------------------------------------------------------===//
9461 // Diagnose initialization failures
9462 //===----------------------------------------------------------------------===//
9463 
9464 /// Emit notes associated with an initialization that failed due to a
9465 /// "simple" conversion failure.
9466 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
9467                                    Expr *op) {
9468   QualType destType = entity.getType();
9469   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
9470       op->getType()->isObjCObjectPointerType()) {
9471 
9472     // Emit a possible note about the conversion failing because the
9473     // operand is a message send with a related result type.
9474     S.EmitRelatedResultTypeNote(op);
9475 
9476     // Emit a possible note about a return failing because we're
9477     // expecting a related result type.
9478     if (entity.getKind() == InitializedEntity::EK_Result)
9479       S.EmitRelatedResultTypeNoteForReturn(destType);
9480   }
9481   QualType fromType = op->getType();
9482   QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
9483   QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
9484   auto *fromDecl = fromType->getPointeeCXXRecordDecl();
9485   auto *destDecl = destType->getPointeeCXXRecordDecl();
9486   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
9487       destDecl->getDeclKind() == Decl::CXXRecord &&
9488       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
9489       !fromDecl->hasDefinition() &&
9490       destPointeeType.getQualifiers().compatiblyIncludes(
9491           fromPointeeType.getQualifiers()))
9492     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
9493         << S.getASTContext().getTagDeclType(fromDecl)
9494         << S.getASTContext().getTagDeclType(destDecl);
9495 }
9496 
9497 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
9498                              InitListExpr *InitList) {
9499   QualType DestType = Entity.getType();
9500 
9501   QualType E;
9502   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
9503     QualType ArrayType = S.Context.getConstantArrayType(
9504         E.withConst(),
9505         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
9506                     InitList->getNumInits()),
9507         nullptr, clang::ArrayType::Normal, 0);
9508     InitializedEntity HiddenArray =
9509         InitializedEntity::InitializeTemporary(ArrayType);
9510     return diagnoseListInit(S, HiddenArray, InitList);
9511   }
9512 
9513   if (DestType->isReferenceType()) {
9514     // A list-initialization failure for a reference means that we tried to
9515     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
9516     // inner initialization failed.
9517     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
9518     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
9519     SourceLocation Loc = InitList->getBeginLoc();
9520     if (auto *D = Entity.getDecl())
9521       Loc = D->getLocation();
9522     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
9523     return;
9524   }
9525 
9526   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
9527                                    /*VerifyOnly=*/false,
9528                                    /*TreatUnavailableAsInvalid=*/false);
9529   assert(DiagnoseInitList.HadError() &&
9530          "Inconsistent init list check result.");
9531 }
9532 
9533 bool InitializationSequence::Diagnose(Sema &S,
9534                                       const InitializedEntity &Entity,
9535                                       const InitializationKind &Kind,
9536                                       ArrayRef<Expr *> Args) {
9537   if (!Failed())
9538     return false;
9539 
9540   // When we want to diagnose only one element of a braced-init-list,
9541   // we need to factor it out.
9542   Expr *OnlyArg;
9543   if (Args.size() == 1) {
9544     auto *List = dyn_cast<InitListExpr>(Args[0]);
9545     if (List && List->getNumInits() == 1)
9546       OnlyArg = List->getInit(0);
9547     else
9548       OnlyArg = Args[0];
9549   }
9550   else
9551     OnlyArg = nullptr;
9552 
9553   QualType DestType = Entity.getType();
9554   switch (Failure) {
9555   case FK_TooManyInitsForReference:
9556     // FIXME: Customize for the initialized entity?
9557     if (Args.empty()) {
9558       // Dig out the reference subobject which is uninitialized and diagnose it.
9559       // If this is value-initialization, this could be nested some way within
9560       // the target type.
9561       assert(Kind.getKind() == InitializationKind::IK_Value ||
9562              DestType->isReferenceType());
9563       bool Diagnosed =
9564         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9565       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9566       (void)Diagnosed;
9567     } else  // FIXME: diagnostic below could be better!
9568       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9569           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9570     break;
9571   case FK_ParenthesizedListInitForReference:
9572     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9573       << 1 << Entity.getType() << Args[0]->getSourceRange();
9574     break;
9575 
9576   case FK_ArrayNeedsInitList:
9577     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9578     break;
9579   case FK_ArrayNeedsInitListOrStringLiteral:
9580     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9581     break;
9582   case FK_ArrayNeedsInitListOrWideStringLiteral:
9583     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9584     break;
9585   case FK_NarrowStringIntoWideCharArray:
9586     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9587     break;
9588   case FK_WideStringIntoCharArray:
9589     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9590     break;
9591   case FK_IncompatWideStringIntoWideChar:
9592     S.Diag(Kind.getLocation(),
9593            diag::err_array_init_incompat_wide_string_into_wchar);
9594     break;
9595   case FK_PlainStringIntoUTF8Char:
9596     S.Diag(Kind.getLocation(),
9597            diag::err_array_init_plain_string_into_char8_t);
9598     S.Diag(Args.front()->getBeginLoc(),
9599            diag::note_array_init_plain_string_into_char8_t)
9600         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9601     break;
9602   case FK_UTF8StringIntoPlainChar:
9603     S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char)
9604         << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20;
9605     break;
9606   case FK_ArrayTypeMismatch:
9607   case FK_NonConstantArrayInit:
9608     S.Diag(Kind.getLocation(),
9609            (Failure == FK_ArrayTypeMismatch
9610               ? diag::err_array_init_different_type
9611               : diag::err_array_init_non_constant_array))
9612       << DestType.getNonReferenceType()
9613       << OnlyArg->getType()
9614       << Args[0]->getSourceRange();
9615     break;
9616 
9617   case FK_VariableLengthArrayHasInitializer:
9618     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9619       << Args[0]->getSourceRange();
9620     break;
9621 
9622   case FK_AddressOfOverloadFailed: {
9623     DeclAccessPair Found;
9624     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9625                                          DestType.getNonReferenceType(),
9626                                          true,
9627                                          Found);
9628     break;
9629   }
9630 
9631   case FK_AddressOfUnaddressableFunction: {
9632     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9633     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9634                                         OnlyArg->getBeginLoc());
9635     break;
9636   }
9637 
9638   case FK_ReferenceInitOverloadFailed:
9639   case FK_UserConversionOverloadFailed:
9640     switch (FailedOverloadResult) {
9641     case OR_Ambiguous:
9642 
9643       FailedCandidateSet.NoteCandidates(
9644           PartialDiagnosticAt(
9645               Kind.getLocation(),
9646               Failure == FK_UserConversionOverloadFailed
9647                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9648                      << OnlyArg->getType() << DestType
9649                      << Args[0]->getSourceRange())
9650                   : (S.PDiag(diag::err_ref_init_ambiguous)
9651                      << DestType << OnlyArg->getType()
9652                      << Args[0]->getSourceRange())),
9653           S, OCD_AmbiguousCandidates, Args);
9654       break;
9655 
9656     case OR_No_Viable_Function: {
9657       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9658       if (!S.RequireCompleteType(Kind.getLocation(),
9659                                  DestType.getNonReferenceType(),
9660                           diag::err_typecheck_nonviable_condition_incomplete,
9661                                OnlyArg->getType(), Args[0]->getSourceRange()))
9662         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9663           << (Entity.getKind() == InitializedEntity::EK_Result)
9664           << OnlyArg->getType() << Args[0]->getSourceRange()
9665           << DestType.getNonReferenceType();
9666 
9667       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9668       break;
9669     }
9670     case OR_Deleted: {
9671       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9672         << OnlyArg->getType() << DestType.getNonReferenceType()
9673         << Args[0]->getSourceRange();
9674       OverloadCandidateSet::iterator Best;
9675       OverloadingResult Ovl
9676         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9677       if (Ovl == OR_Deleted) {
9678         S.NoteDeletedFunction(Best->Function);
9679       } else {
9680         llvm_unreachable("Inconsistent overload resolution?");
9681       }
9682       break;
9683     }
9684 
9685     case OR_Success:
9686       llvm_unreachable("Conversion did not fail!");
9687     }
9688     break;
9689 
9690   case FK_NonConstLValueReferenceBindingToTemporary:
9691     if (isa<InitListExpr>(Args[0])) {
9692       S.Diag(Kind.getLocation(),
9693              diag::err_lvalue_reference_bind_to_initlist)
9694       << DestType.getNonReferenceType().isVolatileQualified()
9695       << DestType.getNonReferenceType()
9696       << Args[0]->getSourceRange();
9697       break;
9698     }
9699     [[fallthrough]];
9700 
9701   case FK_NonConstLValueReferenceBindingToUnrelated:
9702     S.Diag(Kind.getLocation(),
9703            Failure == FK_NonConstLValueReferenceBindingToTemporary
9704              ? diag::err_lvalue_reference_bind_to_temporary
9705              : diag::err_lvalue_reference_bind_to_unrelated)
9706       << DestType.getNonReferenceType().isVolatileQualified()
9707       << DestType.getNonReferenceType()
9708       << OnlyArg->getType()
9709       << Args[0]->getSourceRange();
9710     break;
9711 
9712   case FK_NonConstLValueReferenceBindingToBitfield: {
9713     // We don't necessarily have an unambiguous source bit-field.
9714     FieldDecl *BitField = Args[0]->getSourceBitField();
9715     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9716       << DestType.isVolatileQualified()
9717       << (BitField ? BitField->getDeclName() : DeclarationName())
9718       << (BitField != nullptr)
9719       << Args[0]->getSourceRange();
9720     if (BitField)
9721       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9722     break;
9723   }
9724 
9725   case FK_NonConstLValueReferenceBindingToVectorElement:
9726     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9727       << DestType.isVolatileQualified()
9728       << Args[0]->getSourceRange();
9729     break;
9730 
9731   case FK_NonConstLValueReferenceBindingToMatrixElement:
9732     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9733         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9734     break;
9735 
9736   case FK_RValueReferenceBindingToLValue:
9737     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9738       << DestType.getNonReferenceType() << OnlyArg->getType()
9739       << Args[0]->getSourceRange();
9740     break;
9741 
9742   case FK_ReferenceAddrspaceMismatchTemporary:
9743     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9744         << DestType << Args[0]->getSourceRange();
9745     break;
9746 
9747   case FK_ReferenceInitDropsQualifiers: {
9748     QualType SourceType = OnlyArg->getType();
9749     QualType NonRefType = DestType.getNonReferenceType();
9750     Qualifiers DroppedQualifiers =
9751         SourceType.getQualifiers() - NonRefType.getQualifiers();
9752 
9753     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9754             SourceType.getQualifiers()))
9755       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9756           << NonRefType << SourceType << 1 /*addr space*/
9757           << Args[0]->getSourceRange();
9758     else if (DroppedQualifiers.hasQualifiers())
9759       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9760           << NonRefType << SourceType << 0 /*cv quals*/
9761           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9762           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9763     else
9764       // FIXME: Consider decomposing the type and explaining which qualifiers
9765       // were dropped where, or on which level a 'const' is missing, etc.
9766       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9767           << NonRefType << SourceType << 2 /*incompatible quals*/
9768           << Args[0]->getSourceRange();
9769     break;
9770   }
9771 
9772   case FK_ReferenceInitFailed:
9773     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9774       << DestType.getNonReferenceType()
9775       << DestType.getNonReferenceType()->isIncompleteType()
9776       << OnlyArg->isLValue()
9777       << OnlyArg->getType()
9778       << Args[0]->getSourceRange();
9779     emitBadConversionNotes(S, Entity, Args[0]);
9780     break;
9781 
9782   case FK_ConversionFailed: {
9783     QualType FromType = OnlyArg->getType();
9784     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9785       << (int)Entity.getKind()
9786       << DestType
9787       << OnlyArg->isLValue()
9788       << FromType
9789       << Args[0]->getSourceRange();
9790     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9791     S.Diag(Kind.getLocation(), PDiag);
9792     emitBadConversionNotes(S, Entity, Args[0]);
9793     break;
9794   }
9795 
9796   case FK_ConversionFromPropertyFailed:
9797     // No-op. This error has already been reported.
9798     break;
9799 
9800   case FK_TooManyInitsForScalar: {
9801     SourceRange R;
9802 
9803     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9804     if (InitList && InitList->getNumInits() >= 1) {
9805       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9806     } else {
9807       assert(Args.size() > 1 && "Expected multiple initializers!");
9808       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9809     }
9810 
9811     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9812     if (Kind.isCStyleOrFunctionalCast())
9813       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9814         << R;
9815     else
9816       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9817         << /*scalar=*/2 << R;
9818     break;
9819   }
9820 
9821   case FK_ParenthesizedListInitForScalar:
9822     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9823       << 0 << Entity.getType() << Args[0]->getSourceRange();
9824     break;
9825 
9826   case FK_ReferenceBindingToInitList:
9827     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9828       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9829     break;
9830 
9831   case FK_InitListBadDestinationType:
9832     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9833       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9834     break;
9835 
9836   case FK_ListConstructorOverloadFailed:
9837   case FK_ConstructorOverloadFailed: {
9838     SourceRange ArgsRange;
9839     if (Args.size())
9840       ArgsRange =
9841           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9842 
9843     if (Failure == FK_ListConstructorOverloadFailed) {
9844       assert(Args.size() == 1 &&
9845              "List construction from other than 1 argument.");
9846       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9847       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9848     }
9849 
9850     // FIXME: Using "DestType" for the entity we're printing is probably
9851     // bad.
9852     switch (FailedOverloadResult) {
9853       case OR_Ambiguous:
9854         FailedCandidateSet.NoteCandidates(
9855             PartialDiagnosticAt(Kind.getLocation(),
9856                                 S.PDiag(diag::err_ovl_ambiguous_init)
9857                                     << DestType << ArgsRange),
9858             S, OCD_AmbiguousCandidates, Args);
9859         break;
9860 
9861       case OR_No_Viable_Function:
9862         if (Kind.getKind() == InitializationKind::IK_Default &&
9863             (Entity.getKind() == InitializedEntity::EK_Base ||
9864              Entity.getKind() == InitializedEntity::EK_Member ||
9865              Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) &&
9866             isa<CXXConstructorDecl>(S.CurContext)) {
9867           // This is implicit default initialization of a member or
9868           // base within a constructor. If no viable function was
9869           // found, notify the user that they need to explicitly
9870           // initialize this base/member.
9871           CXXConstructorDecl *Constructor
9872             = cast<CXXConstructorDecl>(S.CurContext);
9873           const CXXRecordDecl *InheritedFrom = nullptr;
9874           if (auto Inherited = Constructor->getInheritedConstructor())
9875             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9876           if (Entity.getKind() == InitializedEntity::EK_Base) {
9877             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9878               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9879               << S.Context.getTypeDeclType(Constructor->getParent())
9880               << /*base=*/0
9881               << Entity.getType()
9882               << InheritedFrom;
9883 
9884             RecordDecl *BaseDecl
9885               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9886                                                                   ->getDecl();
9887             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9888               << S.Context.getTagDeclType(BaseDecl);
9889           } else {
9890             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9891               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9892               << S.Context.getTypeDeclType(Constructor->getParent())
9893               << /*member=*/1
9894               << Entity.getName()
9895               << InheritedFrom;
9896             S.Diag(Entity.getDecl()->getLocation(),
9897                    diag::note_member_declared_at);
9898 
9899             if (const RecordType *Record
9900                                  = Entity.getType()->getAs<RecordType>())
9901               S.Diag(Record->getDecl()->getLocation(),
9902                      diag::note_previous_decl)
9903                 << S.Context.getTagDeclType(Record->getDecl());
9904           }
9905           break;
9906         }
9907 
9908         FailedCandidateSet.NoteCandidates(
9909             PartialDiagnosticAt(
9910                 Kind.getLocation(),
9911                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9912                     << DestType << ArgsRange),
9913             S, OCD_AllCandidates, Args);
9914         break;
9915 
9916       case OR_Deleted: {
9917         OverloadCandidateSet::iterator Best;
9918         OverloadingResult Ovl
9919           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9920         if (Ovl != OR_Deleted) {
9921           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9922               << DestType << ArgsRange;
9923           llvm_unreachable("Inconsistent overload resolution?");
9924           break;
9925         }
9926 
9927         // If this is a defaulted or implicitly-declared function, then
9928         // it was implicitly deleted. Make it clear that the deletion was
9929         // implicit.
9930         if (S.isImplicitlyDeleted(Best->Function))
9931           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9932             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9933             << DestType << ArgsRange;
9934         else
9935           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9936               << DestType << ArgsRange;
9937 
9938         S.NoteDeletedFunction(Best->Function);
9939         break;
9940       }
9941 
9942       case OR_Success:
9943         llvm_unreachable("Conversion did not fail!");
9944     }
9945   }
9946   break;
9947 
9948   case FK_DefaultInitOfConst:
9949     if (Entity.getKind() == InitializedEntity::EK_Member &&
9950         isa<CXXConstructorDecl>(S.CurContext)) {
9951       // This is implicit default-initialization of a const member in
9952       // a constructor. Complain that it needs to be explicitly
9953       // initialized.
9954       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9955       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9956         << (Constructor->getInheritedConstructor() ? 2 :
9957             Constructor->isImplicit() ? 1 : 0)
9958         << S.Context.getTypeDeclType(Constructor->getParent())
9959         << /*const=*/1
9960         << Entity.getName();
9961       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9962         << Entity.getName();
9963     } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Entity.getDecl());
9964                VD && VD->isConstexpr()) {
9965       S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init)
9966           << VD;
9967     } else {
9968       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9969           << DestType << (bool)DestType->getAs<RecordType>();
9970     }
9971     break;
9972 
9973   case FK_Incomplete:
9974     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9975                           diag::err_init_incomplete_type);
9976     break;
9977 
9978   case FK_ListInitializationFailed: {
9979     // Run the init list checker again to emit diagnostics.
9980     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9981     diagnoseListInit(S, Entity, InitList);
9982     break;
9983   }
9984 
9985   case FK_PlaceholderType: {
9986     // FIXME: Already diagnosed!
9987     break;
9988   }
9989 
9990   case FK_ExplicitConstructor: {
9991     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9992       << Args[0]->getSourceRange();
9993     OverloadCandidateSet::iterator Best;
9994     OverloadingResult Ovl
9995       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9996     (void)Ovl;
9997     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9998     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9999     S.Diag(CtorDecl->getLocation(),
10000            diag::note_explicit_ctor_deduction_guide_here) << false;
10001     break;
10002   }
10003 
10004   case FK_ParenthesizedListInitFailed:
10005     TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this,
10006                                       /*VerifyOnly=*/false);
10007     break;
10008 
10009   case FK_DesignatedInitForNonAggregate:
10010     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
10011     S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate)
10012         << Entity.getType() << InitList->getSourceRange();
10013     break;
10014   }
10015 
10016   PrintInitLocationNote(S, Entity);
10017   return true;
10018 }
10019 
10020 void InitializationSequence::dump(raw_ostream &OS) const {
10021   switch (SequenceKind) {
10022   case FailedSequence: {
10023     OS << "Failed sequence: ";
10024     switch (Failure) {
10025     case FK_TooManyInitsForReference:
10026       OS << "too many initializers for reference";
10027       break;
10028 
10029     case FK_ParenthesizedListInitForReference:
10030       OS << "parenthesized list init for reference";
10031       break;
10032 
10033     case FK_ArrayNeedsInitList:
10034       OS << "array requires initializer list";
10035       break;
10036 
10037     case FK_AddressOfUnaddressableFunction:
10038       OS << "address of unaddressable function was taken";
10039       break;
10040 
10041     case FK_ArrayNeedsInitListOrStringLiteral:
10042       OS << "array requires initializer list or string literal";
10043       break;
10044 
10045     case FK_ArrayNeedsInitListOrWideStringLiteral:
10046       OS << "array requires initializer list or wide string literal";
10047       break;
10048 
10049     case FK_NarrowStringIntoWideCharArray:
10050       OS << "narrow string into wide char array";
10051       break;
10052 
10053     case FK_WideStringIntoCharArray:
10054       OS << "wide string into char array";
10055       break;
10056 
10057     case FK_IncompatWideStringIntoWideChar:
10058       OS << "incompatible wide string into wide char array";
10059       break;
10060 
10061     case FK_PlainStringIntoUTF8Char:
10062       OS << "plain string literal into char8_t array";
10063       break;
10064 
10065     case FK_UTF8StringIntoPlainChar:
10066       OS << "u8 string literal into char array";
10067       break;
10068 
10069     case FK_ArrayTypeMismatch:
10070       OS << "array type mismatch";
10071       break;
10072 
10073     case FK_NonConstantArrayInit:
10074       OS << "non-constant array initializer";
10075       break;
10076 
10077     case FK_AddressOfOverloadFailed:
10078       OS << "address of overloaded function failed";
10079       break;
10080 
10081     case FK_ReferenceInitOverloadFailed:
10082       OS << "overload resolution for reference initialization failed";
10083       break;
10084 
10085     case FK_NonConstLValueReferenceBindingToTemporary:
10086       OS << "non-const lvalue reference bound to temporary";
10087       break;
10088 
10089     case FK_NonConstLValueReferenceBindingToBitfield:
10090       OS << "non-const lvalue reference bound to bit-field";
10091       break;
10092 
10093     case FK_NonConstLValueReferenceBindingToVectorElement:
10094       OS << "non-const lvalue reference bound to vector element";
10095       break;
10096 
10097     case FK_NonConstLValueReferenceBindingToMatrixElement:
10098       OS << "non-const lvalue reference bound to matrix element";
10099       break;
10100 
10101     case FK_NonConstLValueReferenceBindingToUnrelated:
10102       OS << "non-const lvalue reference bound to unrelated type";
10103       break;
10104 
10105     case FK_RValueReferenceBindingToLValue:
10106       OS << "rvalue reference bound to an lvalue";
10107       break;
10108 
10109     case FK_ReferenceInitDropsQualifiers:
10110       OS << "reference initialization drops qualifiers";
10111       break;
10112 
10113     case FK_ReferenceAddrspaceMismatchTemporary:
10114       OS << "reference with mismatching address space bound to temporary";
10115       break;
10116 
10117     case FK_ReferenceInitFailed:
10118       OS << "reference initialization failed";
10119       break;
10120 
10121     case FK_ConversionFailed:
10122       OS << "conversion failed";
10123       break;
10124 
10125     case FK_ConversionFromPropertyFailed:
10126       OS << "conversion from property failed";
10127       break;
10128 
10129     case FK_TooManyInitsForScalar:
10130       OS << "too many initializers for scalar";
10131       break;
10132 
10133     case FK_ParenthesizedListInitForScalar:
10134       OS << "parenthesized list init for reference";
10135       break;
10136 
10137     case FK_ReferenceBindingToInitList:
10138       OS << "referencing binding to initializer list";
10139       break;
10140 
10141     case FK_InitListBadDestinationType:
10142       OS << "initializer list for non-aggregate, non-scalar type";
10143       break;
10144 
10145     case FK_UserConversionOverloadFailed:
10146       OS << "overloading failed for user-defined conversion";
10147       break;
10148 
10149     case FK_ConstructorOverloadFailed:
10150       OS << "constructor overloading failed";
10151       break;
10152 
10153     case FK_DefaultInitOfConst:
10154       OS << "default initialization of a const variable";
10155       break;
10156 
10157     case FK_Incomplete:
10158       OS << "initialization of incomplete type";
10159       break;
10160 
10161     case FK_ListInitializationFailed:
10162       OS << "list initialization checker failure";
10163       break;
10164 
10165     case FK_VariableLengthArrayHasInitializer:
10166       OS << "variable length array has an initializer";
10167       break;
10168 
10169     case FK_PlaceholderType:
10170       OS << "initializer expression isn't contextually valid";
10171       break;
10172 
10173     case FK_ListConstructorOverloadFailed:
10174       OS << "list constructor overloading failed";
10175       break;
10176 
10177     case FK_ExplicitConstructor:
10178       OS << "list copy initialization chose explicit constructor";
10179       break;
10180 
10181     case FK_ParenthesizedListInitFailed:
10182       OS << "parenthesized list initialization failed";
10183       break;
10184 
10185     case FK_DesignatedInitForNonAggregate:
10186       OS << "designated initializer for non-aggregate type";
10187       break;
10188     }
10189     OS << '\n';
10190     return;
10191   }
10192 
10193   case DependentSequence:
10194     OS << "Dependent sequence\n";
10195     return;
10196 
10197   case NormalSequence:
10198     OS << "Normal sequence: ";
10199     break;
10200   }
10201 
10202   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
10203     if (S != step_begin()) {
10204       OS << " -> ";
10205     }
10206 
10207     switch (S->Kind) {
10208     case SK_ResolveAddressOfOverloadedFunction:
10209       OS << "resolve address of overloaded function";
10210       break;
10211 
10212     case SK_CastDerivedToBasePRValue:
10213       OS << "derived-to-base (prvalue)";
10214       break;
10215 
10216     case SK_CastDerivedToBaseXValue:
10217       OS << "derived-to-base (xvalue)";
10218       break;
10219 
10220     case SK_CastDerivedToBaseLValue:
10221       OS << "derived-to-base (lvalue)";
10222       break;
10223 
10224     case SK_BindReference:
10225       OS << "bind reference to lvalue";
10226       break;
10227 
10228     case SK_BindReferenceToTemporary:
10229       OS << "bind reference to a temporary";
10230       break;
10231 
10232     case SK_FinalCopy:
10233       OS << "final copy in class direct-initialization";
10234       break;
10235 
10236     case SK_ExtraneousCopyToTemporary:
10237       OS << "extraneous C++03 copy to temporary";
10238       break;
10239 
10240     case SK_UserConversion:
10241       OS << "user-defined conversion via " << *S->Function.Function;
10242       break;
10243 
10244     case SK_QualificationConversionPRValue:
10245       OS << "qualification conversion (prvalue)";
10246       break;
10247 
10248     case SK_QualificationConversionXValue:
10249       OS << "qualification conversion (xvalue)";
10250       break;
10251 
10252     case SK_QualificationConversionLValue:
10253       OS << "qualification conversion (lvalue)";
10254       break;
10255 
10256     case SK_FunctionReferenceConversion:
10257       OS << "function reference conversion";
10258       break;
10259 
10260     case SK_AtomicConversion:
10261       OS << "non-atomic-to-atomic conversion";
10262       break;
10263 
10264     case SK_ConversionSequence:
10265       OS << "implicit conversion sequence (";
10266       S->ICS->dump(); // FIXME: use OS
10267       OS << ")";
10268       break;
10269 
10270     case SK_ConversionSequenceNoNarrowing:
10271       OS << "implicit conversion sequence with narrowing prohibited (";
10272       S->ICS->dump(); // FIXME: use OS
10273       OS << ")";
10274       break;
10275 
10276     case SK_ListInitialization:
10277       OS << "list aggregate initialization";
10278       break;
10279 
10280     case SK_UnwrapInitList:
10281       OS << "unwrap reference initializer list";
10282       break;
10283 
10284     case SK_RewrapInitList:
10285       OS << "rewrap reference initializer list";
10286       break;
10287 
10288     case SK_ConstructorInitialization:
10289       OS << "constructor initialization";
10290       break;
10291 
10292     case SK_ConstructorInitializationFromList:
10293       OS << "list initialization via constructor";
10294       break;
10295 
10296     case SK_ZeroInitialization:
10297       OS << "zero initialization";
10298       break;
10299 
10300     case SK_CAssignment:
10301       OS << "C assignment";
10302       break;
10303 
10304     case SK_StringInit:
10305       OS << "string initialization";
10306       break;
10307 
10308     case SK_ObjCObjectConversion:
10309       OS << "Objective-C object conversion";
10310       break;
10311 
10312     case SK_ArrayLoopIndex:
10313       OS << "indexing for array initialization loop";
10314       break;
10315 
10316     case SK_ArrayLoopInit:
10317       OS << "array initialization loop";
10318       break;
10319 
10320     case SK_ArrayInit:
10321       OS << "array initialization";
10322       break;
10323 
10324     case SK_GNUArrayInit:
10325       OS << "array initialization (GNU extension)";
10326       break;
10327 
10328     case SK_ParenthesizedArrayInit:
10329       OS << "parenthesized array initialization";
10330       break;
10331 
10332     case SK_PassByIndirectCopyRestore:
10333       OS << "pass by indirect copy and restore";
10334       break;
10335 
10336     case SK_PassByIndirectRestore:
10337       OS << "pass by indirect restore";
10338       break;
10339 
10340     case SK_ProduceObjCObject:
10341       OS << "Objective-C object retension";
10342       break;
10343 
10344     case SK_StdInitializerList:
10345       OS << "std::initializer_list from initializer list";
10346       break;
10347 
10348     case SK_StdInitializerListConstructorCall:
10349       OS << "list initialization from std::initializer_list";
10350       break;
10351 
10352     case SK_OCLSamplerInit:
10353       OS << "OpenCL sampler_t from integer constant";
10354       break;
10355 
10356     case SK_OCLZeroOpaqueType:
10357       OS << "OpenCL opaque type from zero";
10358       break;
10359     case SK_ParenthesizedListInit:
10360       OS << "initialization from a parenthesized list of values";
10361       break;
10362     }
10363 
10364     OS << " [" << S->Type << ']';
10365   }
10366 
10367   OS << '\n';
10368 }
10369 
10370 void InitializationSequence::dump() const {
10371   dump(llvm::errs());
10372 }
10373 
10374 static bool NarrowingErrs(const LangOptions &L) {
10375   return L.CPlusPlus11 &&
10376          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
10377 }
10378 
10379 static void DiagnoseNarrowingInInitList(Sema &S,
10380                                         const ImplicitConversionSequence &ICS,
10381                                         QualType PreNarrowingType,
10382                                         QualType EntityType,
10383                                         const Expr *PostInit) {
10384   const StandardConversionSequence *SCS = nullptr;
10385   switch (ICS.getKind()) {
10386   case ImplicitConversionSequence::StandardConversion:
10387     SCS = &ICS.Standard;
10388     break;
10389   case ImplicitConversionSequence::UserDefinedConversion:
10390     SCS = &ICS.UserDefined.After;
10391     break;
10392   case ImplicitConversionSequence::AmbiguousConversion:
10393   case ImplicitConversionSequence::StaticObjectArgumentConversion:
10394   case ImplicitConversionSequence::EllipsisConversion:
10395   case ImplicitConversionSequence::BadConversion:
10396     return;
10397   }
10398 
10399   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
10400   APValue ConstantValue;
10401   QualType ConstantType;
10402   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
10403                                 ConstantType)) {
10404   case NK_Not_Narrowing:
10405   case NK_Dependent_Narrowing:
10406     // No narrowing occurred.
10407     return;
10408 
10409   case NK_Type_Narrowing:
10410     // This was a floating-to-integer conversion, which is always considered a
10411     // narrowing conversion even if the value is a constant and can be
10412     // represented exactly as an integer.
10413     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
10414                                         ? diag::ext_init_list_type_narrowing
10415                                         : diag::warn_init_list_type_narrowing)
10416         << PostInit->getSourceRange()
10417         << PreNarrowingType.getLocalUnqualifiedType()
10418         << EntityType.getLocalUnqualifiedType();
10419     break;
10420 
10421   case NK_Constant_Narrowing:
10422     // A constant value was narrowed.
10423     S.Diag(PostInit->getBeginLoc(),
10424            NarrowingErrs(S.getLangOpts())
10425                ? diag::ext_init_list_constant_narrowing
10426                : diag::warn_init_list_constant_narrowing)
10427         << PostInit->getSourceRange()
10428         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
10429         << EntityType.getLocalUnqualifiedType();
10430     break;
10431 
10432   case NK_Variable_Narrowing:
10433     // A variable's value may have been narrowed.
10434     S.Diag(PostInit->getBeginLoc(),
10435            NarrowingErrs(S.getLangOpts())
10436                ? diag::ext_init_list_variable_narrowing
10437                : diag::warn_init_list_variable_narrowing)
10438         << PostInit->getSourceRange()
10439         << PreNarrowingType.getLocalUnqualifiedType()
10440         << EntityType.getLocalUnqualifiedType();
10441     break;
10442   }
10443 
10444   SmallString<128> StaticCast;
10445   llvm::raw_svector_ostream OS(StaticCast);
10446   OS << "static_cast<";
10447   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
10448     // It's important to use the typedef's name if there is one so that the
10449     // fixit doesn't break code using types like int64_t.
10450     //
10451     // FIXME: This will break if the typedef requires qualification.  But
10452     // getQualifiedNameAsString() includes non-machine-parsable components.
10453     OS << *TT->getDecl();
10454   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
10455     OS << BT->getName(S.getLangOpts());
10456   else {
10457     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
10458     // with a broken cast.
10459     return;
10460   }
10461   OS << ">(";
10462   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
10463       << PostInit->getSourceRange()
10464       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
10465       << FixItHint::CreateInsertion(
10466              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
10467 }
10468 
10469 //===----------------------------------------------------------------------===//
10470 // Initialization helper functions
10471 //===----------------------------------------------------------------------===//
10472 bool
10473 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
10474                                    ExprResult Init) {
10475   if (Init.isInvalid())
10476     return false;
10477 
10478   Expr *InitE = Init.get();
10479   assert(InitE && "No initialization expression");
10480 
10481   InitializationKind Kind =
10482       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
10483   InitializationSequence Seq(*this, Entity, Kind, InitE);
10484   return !Seq.Failed();
10485 }
10486 
10487 ExprResult
10488 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
10489                                 SourceLocation EqualLoc,
10490                                 ExprResult Init,
10491                                 bool TopLevelOfInitList,
10492                                 bool AllowExplicit) {
10493   if (Init.isInvalid())
10494     return ExprError();
10495 
10496   Expr *InitE = Init.get();
10497   assert(InitE && "No initialization expression?");
10498 
10499   if (EqualLoc.isInvalid())
10500     EqualLoc = InitE->getBeginLoc();
10501 
10502   InitializationKind Kind = InitializationKind::CreateCopy(
10503       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
10504   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
10505 
10506   // Prevent infinite recursion when performing parameter copy-initialization.
10507   const bool ShouldTrackCopy =
10508       Entity.isParameterKind() && Seq.isConstructorInitialization();
10509   if (ShouldTrackCopy) {
10510     if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
10511       Seq.SetOverloadFailure(
10512           InitializationSequence::FK_ConstructorOverloadFailed,
10513           OR_No_Viable_Function);
10514 
10515       // Try to give a meaningful diagnostic note for the problematic
10516       // constructor.
10517       const auto LastStep = Seq.step_end() - 1;
10518       assert(LastStep->Kind ==
10519              InitializationSequence::SK_ConstructorInitialization);
10520       const FunctionDecl *Function = LastStep->Function.Function;
10521       auto Candidate =
10522           llvm::find_if(Seq.getFailedCandidateSet(),
10523                         [Function](const OverloadCandidate &Candidate) -> bool {
10524                           return Candidate.Viable &&
10525                                  Candidate.Function == Function &&
10526                                  Candidate.Conversions.size() > 0;
10527                         });
10528       if (Candidate != Seq.getFailedCandidateSet().end() &&
10529           Function->getNumParams() > 0) {
10530         Candidate->Viable = false;
10531         Candidate->FailureKind = ovl_fail_bad_conversion;
10532         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
10533                                          InitE,
10534                                          Function->getParamDecl(0)->getType());
10535       }
10536     }
10537     CurrentParameterCopyTypes.push_back(Entity.getType());
10538   }
10539 
10540   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
10541 
10542   if (ShouldTrackCopy)
10543     CurrentParameterCopyTypes.pop_back();
10544 
10545   return Result;
10546 }
10547 
10548 /// Determine whether RD is, or is derived from, a specialization of CTD.
10549 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
10550                                               ClassTemplateDecl *CTD) {
10551   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
10552     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
10553     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
10554   };
10555   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
10556 }
10557 
10558 QualType Sema::DeduceTemplateSpecializationFromInitializer(
10559     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
10560     const InitializationKind &Kind, MultiExprArg Inits, ParenListExpr *PL) {
10561   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10562       TSInfo->getType()->getContainedDeducedType());
10563   assert(DeducedTST && "not a deduced template specialization type");
10564 
10565   auto TemplateName = DeducedTST->getTemplateName();
10566   if (TemplateName.isDependent())
10567     return SubstAutoTypeDependent(TSInfo->getType());
10568 
10569   // We can only perform deduction for class templates.
10570   auto *Template =
10571       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10572   if (!Template) {
10573     Diag(Kind.getLocation(),
10574          diag::err_deduced_non_class_template_specialization_type)
10575       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10576     if (auto *TD = TemplateName.getAsTemplateDecl())
10577       Diag(TD->getLocation(), diag::note_template_decl_here);
10578     return QualType();
10579   }
10580 
10581   // Can't deduce from dependent arguments.
10582   if (Expr::hasAnyTypeDependentArguments(Inits)) {
10583     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10584          diag::warn_cxx14_compat_class_template_argument_deduction)
10585         << TSInfo->getTypeLoc().getSourceRange() << 0;
10586     return SubstAutoTypeDependent(TSInfo->getType());
10587   }
10588 
10589   // FIXME: Perform "exact type" matching first, per CWG discussion?
10590   //        Or implement this via an implied 'T(T) -> T' deduction guide?
10591 
10592   // FIXME: Do we need/want a std::initializer_list<T> special case?
10593 
10594   // Look up deduction guides, including those synthesized from constructors.
10595   //
10596   // C++1z [over.match.class.deduct]p1:
10597   //   A set of functions and function templates is formed comprising:
10598   //   - For each constructor of the class template designated by the
10599   //     template-name, a function template [...]
10600   //  - For each deduction-guide, a function or function template [...]
10601   DeclarationNameInfo NameInfo(
10602       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10603       TSInfo->getTypeLoc().getEndLoc());
10604   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10605   LookupQualifiedName(Guides, Template->getDeclContext());
10606 
10607   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10608   // clear on this, but they're not found by name so access does not apply.
10609   Guides.suppressDiagnostics();
10610 
10611   // Figure out if this is list-initialization.
10612   InitListExpr *ListInit =
10613       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10614           ? dyn_cast<InitListExpr>(Inits[0])
10615           : nullptr;
10616 
10617   // C++1z [over.match.class.deduct]p1:
10618   //   Initialization and overload resolution are performed as described in
10619   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10620   //   (as appropriate for the type of initialization performed) for an object
10621   //   of a hypothetical class type, where the selected functions and function
10622   //   templates are considered to be the constructors of that class type
10623   //
10624   // Since we know we're initializing a class type of a type unrelated to that
10625   // of the initializer, this reduces to something fairly reasonable.
10626   OverloadCandidateSet Candidates(Kind.getLocation(),
10627                                   OverloadCandidateSet::CSK_Normal);
10628   OverloadCandidateSet::iterator Best;
10629 
10630   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10631 
10632   // Return true is the candidate is added successfully, false otherwise.
10633   auto addDeductionCandidate = [&](FunctionTemplateDecl *TD,
10634                                    CXXDeductionGuideDecl *GD,
10635                                    DeclAccessPair FoundDecl,
10636                                    bool OnlyListConstructors,
10637                                    bool AllowAggregateDeductionCandidate) {
10638     // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10639     //   For copy-initialization, the candidate functions are all the
10640     //   converting constructors (12.3.1) of that class.
10641     // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10642     //   The converting constructors of T are candidate functions.
10643     if (!AllowExplicit) {
10644       // Overload resolution checks whether the deduction guide is declared
10645       // explicit for us.
10646 
10647       // When looking for a converting constructor, deduction guides that
10648       // could never be called with one argument are not interesting to
10649       // check or note.
10650       if (GD->getMinRequiredArguments() > 1 ||
10651           (GD->getNumParams() == 0 && !GD->isVariadic()))
10652         return;
10653     }
10654 
10655     // C++ [over.match.list]p1.1: (first phase list initialization)
10656     //   Initially, the candidate functions are the initializer-list
10657     //   constructors of the class T
10658     if (OnlyListConstructors && !isInitListConstructor(GD))
10659       return;
10660 
10661     if (!AllowAggregateDeductionCandidate &&
10662         GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate)
10663       return;
10664 
10665     // C++ [over.match.list]p1.2: (second phase list initialization)
10666     //   the candidate functions are all the constructors of the class T
10667     // C++ [over.match.ctor]p1: (all other cases)
10668     //   the candidate functions are all the constructors of the class of
10669     //   the object being initialized
10670 
10671     // C++ [over.best.ics]p4:
10672     //   When [...] the constructor [...] is a candidate by
10673     //    - [over.match.copy] (in all cases)
10674     // FIXME: The "second phase of [over.match.list] case can also
10675     // theoretically happen here, but it's not clear whether we can
10676     // ever have a parameter of the right type.
10677     bool SuppressUserConversions = Kind.isCopyInit();
10678 
10679     if (TD) {
10680       SmallVector<Expr *, 8> TmpInits;
10681       for (Expr *E : Inits)
10682         if (auto *DI = dyn_cast<DesignatedInitExpr>(E))
10683           TmpInits.push_back(DI->getInit());
10684         else
10685           TmpInits.push_back(E);
10686       AddTemplateOverloadCandidate(
10687           TD, FoundDecl, /*ExplicitArgs=*/nullptr, TmpInits, Candidates,
10688           SuppressUserConversions,
10689           /*PartialOverloading=*/false, AllowExplicit, ADLCallKind::NotADL,
10690           /*PO=*/{}, AllowAggregateDeductionCandidate);
10691     } else {
10692       AddOverloadCandidate(GD, FoundDecl, Inits, Candidates,
10693                            SuppressUserConversions,
10694                            /*PartialOverloading=*/false, AllowExplicit);
10695     }
10696   };
10697 
10698   bool FoundDeductionGuide = false;
10699 
10700   auto TryToResolveOverload =
10701       [&](bool OnlyListConstructors) -> OverloadingResult {
10702     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10703     bool HasAnyDeductionGuide = false;
10704 
10705     auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) {
10706       auto *RD = cast<CXXRecordDecl>(Template->getTemplatedDecl());
10707       if (!(RD->getDefinition() && RD->isAggregate()))
10708         return;
10709       QualType Ty = Context.getRecordType(RD);
10710       SmallVector<QualType, 8> ElementTypes;
10711 
10712       InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes);
10713       if (!CheckInitList.HadError()) {
10714         // C++ [over.match.class.deduct]p1.8:
10715         //   if e_i is of array type and x_i is a braced-init-list, T_i is an
10716         //   rvalue reference to the declared type of e_i and
10717         // C++ [over.match.class.deduct]p1.9:
10718         //   if e_i is of array type and x_i is a bstring-literal, T_i is an
10719         //   lvalue reference to the const-qualified declared type of e_i and
10720         // C++ [over.match.class.deduct]p1.10:
10721         //   otherwise, T_i is the declared type of e_i
10722         for (int I = 0, E = ListInit->getNumInits();
10723              I < E && !isa<PackExpansionType>(ElementTypes[I]); ++I)
10724           if (ElementTypes[I]->isArrayType()) {
10725             if (isa<InitListExpr>(ListInit->getInit(I)))
10726               ElementTypes[I] = Context.getRValueReferenceType(ElementTypes[I]);
10727             else if (isa<StringLiteral>(
10728                          ListInit->getInit(I)->IgnoreParenImpCasts()))
10729               ElementTypes[I] =
10730                   Context.getLValueReferenceType(ElementTypes[I].withConst());
10731           }
10732 
10733         llvm::FoldingSetNodeID ID;
10734         ID.AddPointer(Template);
10735         for (auto &T : ElementTypes)
10736           T.getCanonicalType().Profile(ID);
10737         unsigned Hash = ID.ComputeHash();
10738         if (AggregateDeductionCandidates.count(Hash) == 0) {
10739           if (FunctionTemplateDecl *TD =
10740                   DeclareImplicitDeductionGuideFromInitList(
10741                       Template, ElementTypes,
10742                       TSInfo->getTypeLoc().getEndLoc())) {
10743             auto *GD = cast<CXXDeductionGuideDecl>(TD->getTemplatedDecl());
10744             GD->setDeductionCandidateKind(DeductionCandidate::Aggregate);
10745             AggregateDeductionCandidates[Hash] = GD;
10746             addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public),
10747                                   OnlyListConstructors,
10748                                   /*AllowAggregateDeductionCandidate=*/true);
10749           }
10750         } else {
10751           CXXDeductionGuideDecl *GD = AggregateDeductionCandidates[Hash];
10752           FunctionTemplateDecl *TD = GD->getDescribedFunctionTemplate();
10753           assert(TD && "aggregate deduction candidate is function template");
10754           addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public),
10755                                 OnlyListConstructors,
10756                                 /*AllowAggregateDeductionCandidate=*/true);
10757         }
10758         HasAnyDeductionGuide = true;
10759       }
10760     };
10761 
10762     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10763       NamedDecl *D = (*I)->getUnderlyingDecl();
10764       if (D->isInvalidDecl())
10765         continue;
10766 
10767       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10768       auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>(
10769           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10770       if (!GD)
10771         continue;
10772 
10773       if (!GD->isImplicit())
10774         HasAnyDeductionGuide = true;
10775 
10776       addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors,
10777                             /*AllowAggregateDeductionCandidate=*/false);
10778     }
10779 
10780     // C++ [over.match.class.deduct]p1.4:
10781     //   if C is defined and its definition satisfies the conditions for an
10782     //   aggregate class ([dcl.init.aggr]) with the assumption that any
10783     //   dependent base class has no virtual functions and no virtual base
10784     //   classes, and the initializer is a non-empty braced-init-list or
10785     //   parenthesized expression-list, and there are no deduction-guides for
10786     //   C, the set contains an additional function template, called the
10787     //   aggregate deduction candidate, defined as follows.
10788     if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) {
10789       if (ListInit && ListInit->getNumInits()) {
10790         SynthesizeAggrGuide(ListInit);
10791       } else if (PL && PL->getNumExprs()) {
10792         InitListExpr TempListInit(getASTContext(), PL->getLParenLoc(),
10793                                   PL->exprs(), PL->getRParenLoc());
10794         SynthesizeAggrGuide(&TempListInit);
10795       }
10796     }
10797 
10798     FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide;
10799 
10800     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10801   };
10802 
10803   OverloadingResult Result = OR_No_Viable_Function;
10804 
10805   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10806   // try initializer-list constructors.
10807   if (ListInit) {
10808     bool TryListConstructors = true;
10809 
10810     // Try list constructors unless the list is empty and the class has one or
10811     // more default constructors, in which case those constructors win.
10812     if (!ListInit->getNumInits()) {
10813       for (NamedDecl *D : Guides) {
10814         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10815         if (FD && FD->getMinRequiredArguments() == 0) {
10816           TryListConstructors = false;
10817           break;
10818         }
10819       }
10820     } else if (ListInit->getNumInits() == 1) {
10821       // C++ [over.match.class.deduct]:
10822       //   As an exception, the first phase in [over.match.list] (considering
10823       //   initializer-list constructors) is omitted if the initializer list
10824       //   consists of a single expression of type cv U, where U is a
10825       //   specialization of C or a class derived from a specialization of C.
10826       Expr *E = ListInit->getInit(0);
10827       auto *RD = E->getType()->getAsCXXRecordDecl();
10828       if (!isa<InitListExpr>(E) && RD &&
10829           isCompleteType(Kind.getLocation(), E->getType()) &&
10830           isOrIsDerivedFromSpecializationOf(RD, Template))
10831         TryListConstructors = false;
10832     }
10833 
10834     if (TryListConstructors)
10835       Result = TryToResolveOverload(/*OnlyListConstructor*/true);
10836     // Then unwrap the initializer list and try again considering all
10837     // constructors.
10838     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10839   }
10840 
10841   // If list-initialization fails, or if we're doing any other kind of
10842   // initialization, we (eventually) consider constructors.
10843   if (Result == OR_No_Viable_Function)
10844     Result = TryToResolveOverload(/*OnlyListConstructor*/false);
10845 
10846   switch (Result) {
10847   case OR_Ambiguous:
10848     // FIXME: For list-initialization candidates, it'd usually be better to
10849     // list why they were not viable when given the initializer list itself as
10850     // an argument.
10851     Candidates.NoteCandidates(
10852         PartialDiagnosticAt(
10853             Kind.getLocation(),
10854             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10855                 << TemplateName),
10856         *this, OCD_AmbiguousCandidates, Inits);
10857     return QualType();
10858 
10859   case OR_No_Viable_Function: {
10860     CXXRecordDecl *Primary =
10861         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10862     bool Complete =
10863         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10864     Candidates.NoteCandidates(
10865         PartialDiagnosticAt(
10866             Kind.getLocation(),
10867             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10868                            : diag::err_deduced_class_template_incomplete)
10869                 << TemplateName << !Guides.empty()),
10870         *this, OCD_AllCandidates, Inits);
10871     return QualType();
10872   }
10873 
10874   case OR_Deleted: {
10875     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10876       << TemplateName;
10877     NoteDeletedFunction(Best->Function);
10878     return QualType();
10879   }
10880 
10881   case OR_Success:
10882     // C++ [over.match.list]p1:
10883     //   In copy-list-initialization, if an explicit constructor is chosen, the
10884     //   initialization is ill-formed.
10885     if (Kind.isCopyInit() && ListInit &&
10886         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10887       bool IsDeductionGuide = !Best->Function->isImplicit();
10888       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10889           << TemplateName << IsDeductionGuide;
10890       Diag(Best->Function->getLocation(),
10891            diag::note_explicit_ctor_deduction_guide_here)
10892           << IsDeductionGuide;
10893       return QualType();
10894     }
10895 
10896     // Make sure we didn't select an unusable deduction guide, and mark it
10897     // as referenced.
10898     DiagnoseUseOfDecl(Best->FoundDecl, Kind.getLocation());
10899     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10900     break;
10901   }
10902 
10903   // C++ [dcl.type.class.deduct]p1:
10904   //  The placeholder is replaced by the return type of the function selected
10905   //  by overload resolution for class template deduction.
10906   QualType DeducedType =
10907       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10908   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10909        diag::warn_cxx14_compat_class_template_argument_deduction)
10910       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10911 
10912   // Warn if CTAD was used on a type that does not have any user-defined
10913   // deduction guides.
10914   if (!FoundDeductionGuide) {
10915     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10916          diag::warn_ctad_maybe_unsupported)
10917         << TemplateName;
10918     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10919   }
10920 
10921   return DeducedType;
10922 }
10923