1 //===-- IteratorModeling.cpp --------------------------------------*- C++ -*--//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Defines a modeling-checker for modeling STL iterator-like iterators.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // In the code, iterator can be represented as a:
14 // * type-I: typedef-ed pointer. Operations over such iterator, such as
15 //           comparisons or increments, are modeled straightforwardly by the
16 //           analyzer.
17 // * type-II: structure with its method bodies available.  Operations over such
18 //            iterator are inlined by the analyzer, and results of modeling
19 //            these operations are exposing implementation details of the
20 //            iterators, which is not necessarily helping.
21 // * type-III: completely opaque structure. Operations over such iterator are
22 //             modeled conservatively, producing conjured symbols everywhere.
23 //
24 // To handle all these types in a common way we introduce a structure called
25 // IteratorPosition which is an abstraction of the position the iterator
26 // represents using symbolic expressions. The checker handles all the
27 // operations on this structure.
28 //
29 // Additionally, depending on the circumstances, operators of types II and III
30 // can be represented as:
31 // * type-IIa, type-IIIa: conjured structure symbols - when returned by value
32 //                        from conservatively evaluated methods such as
33 //                        `.begin()`.
34 // * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
35 //                        variables or temporaries, when the iterator object is
36 //                        currently treated as an lvalue.
37 // * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
38 //                        iterator object is treated as an rvalue taken of a
39 //                        particular lvalue, eg. a copy of "type-a" iterator
40 //                        object, or an iterator that existed before the
41 //                        analysis has started.
42 //
43 // To handle any of these three different representations stored in an SVal we
44 // use setter and getters functions which separate the three cases. To store
45 // them we use a pointer union of symbol and memory region.
46 //
47 // The checker works the following way: We record the begin and the
48 // past-end iterator for all containers whenever their `.begin()` and `.end()`
49 // are called. Since the Constraint Manager cannot handle such SVals we need
50 // to take over its role. We post-check equality and non-equality comparisons
51 // and record that the two sides are equal if we are in the 'equal' branch
52 // (true-branch for `==` and false-branch for `!=`).
53 //
54 // In case of type-I or type-II iterators we get a concrete integer as a result
55 // of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
56 // this latter case we record the symbol and reload it in evalAssume() and do
57 // the propagation there. We also handle (maybe double) negated comparisons
58 // which are represented in the form of (x == 0 or x != 0) where x is the
59 // comparison itself.
60 //
61 // Since `SimpleConstraintManager` cannot handle complex symbolic expressions
62 // we only use expressions of the format S, S+n or S-n for iterator positions
63 // where S is a conjured symbol and n is an unsigned concrete integer. When
64 // making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
65 // a constraint which we later retrieve when doing an actual comparison.
66 
67 #include "clang/AST/DeclTemplate.h"
68 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
69 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
70 #include "clang/StaticAnalyzer/Core/Checker.h"
71 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
72 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
73 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
74 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
75 #include "llvm/ADT/STLExtras.h"
76 
77 #include "Iterator.h"
78 
79 #include <utility>
80 
81 using namespace clang;
82 using namespace ento;
83 using namespace iterator;
84 
85 namespace {
86 
87 class IteratorModeling
88     : public Checker<check::PostCall, check::PostStmt<UnaryOperator>,
89                      check::PostStmt<BinaryOperator>,
90                      check::PostStmt<MaterializeTemporaryExpr>,
91                      check::Bind, check::LiveSymbols, check::DeadSymbols> {
92 
93   using AdvanceFn = void (IteratorModeling::*)(CheckerContext &, const Expr *,
94                                                SVal, SVal, SVal) const;
95 
96   void handleOverloadedOperator(CheckerContext &C, const CallEvent &Call,
97                                 OverloadedOperatorKind Op) const;
98   void handleAdvanceLikeFunction(CheckerContext &C, const CallEvent &Call,
99                                  const Expr *OrigExpr,
100                                  const AdvanceFn *Handler) const;
101 
102   void handleComparison(CheckerContext &C, const Expr *CE, SVal RetVal,
103                         const SVal &LVal, const SVal &RVal,
104                         OverloadedOperatorKind Op) const;
105   void processComparison(CheckerContext &C, ProgramStateRef State,
106                          SymbolRef Sym1, SymbolRef Sym2, const SVal &RetVal,
107                          OverloadedOperatorKind Op) const;
108   void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
109                        bool Postfix) const;
110   void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
111                        bool Postfix) const;
112   void handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
113                               OverloadedOperatorKind Op, const SVal &RetVal,
114                               const SVal &Iterator, const SVal &Amount) const;
115   void handlePtrIncrOrDecr(CheckerContext &C, const Expr *Iterator,
116                            OverloadedOperatorKind OK, SVal Offset) const;
117   void handleAdvance(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
118                      SVal Amount) const;
119   void handlePrev(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
120                   SVal Amount) const;
121   void handleNext(CheckerContext &C, const Expr *CE, SVal RetVal, SVal Iter,
122                   SVal Amount) const;
123   void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
124                          const MemRegion *Cont) const;
125   bool noChangeInAdvance(CheckerContext &C, SVal Iter, const Expr *CE) const;
126   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
127                   const char *Sep) const override;
128 
129   // std::advance, std::prev & std::next
130   CallDescriptionMap<AdvanceFn> AdvanceLikeFunctions = {
131       // template<class InputIt, class Distance>
132       // void advance(InputIt& it, Distance n);
133       {{{"std", "advance"}, 2}, &IteratorModeling::handleAdvance},
134 
135       // template<class BidirIt>
136       // BidirIt prev(
137       //   BidirIt it,
138       //   typename std::iterator_traits<BidirIt>::difference_type n = 1);
139       {{{"std", "prev"}, 2}, &IteratorModeling::handlePrev},
140 
141       // template<class ForwardIt>
142       // ForwardIt next(
143       //   ForwardIt it,
144       //   typename std::iterator_traits<ForwardIt>::difference_type n = 1);
145       {{{"std", "next"}, 2}, &IteratorModeling::handleNext},
146   };
147 
148 public:
149   IteratorModeling() = default;
150 
151   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
152   void checkBind(SVal Loc, SVal Val, const Stmt *S, CheckerContext &C) const;
153   void checkPostStmt(const UnaryOperator *UO, CheckerContext &C) const;
154   void checkPostStmt(const BinaryOperator *BO, CheckerContext &C) const;
155   void checkPostStmt(const MaterializeTemporaryExpr *MTE,
156                      CheckerContext &C) const;
157   void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
158   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
159 };
160 
161 bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
162 bool isSimpleComparisonOperator(BinaryOperatorKind OK);
163 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
164 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
165                               SymbolRef Sym2, bool Equal);
166 bool isBoundThroughLazyCompoundVal(const Environment &Env,
167                                    const MemRegion *Reg);
168 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call);
169 
170 } // namespace
171 
172 void IteratorModeling::checkPostCall(const CallEvent &Call,
173                                      CheckerContext &C) const {
174   // Record new iterator positions and iterator position changes
175   const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
176   if (!Func)
177     return;
178 
179   if (Func->isOverloadedOperator()) {
180     const auto Op = Func->getOverloadedOperator();
181     handleOverloadedOperator(C, Call, Op);
182     return;
183   }
184 
185   const auto *OrigExpr = Call.getOriginExpr();
186   if (!OrigExpr)
187     return;
188 
189   const AdvanceFn *Handler = AdvanceLikeFunctions.lookup(Call);
190   if (Handler) {
191     handleAdvanceLikeFunction(C, Call, OrigExpr, Handler);
192     return;
193   }
194 
195   if (!isIteratorType(Call.getResultType()))
196     return;
197 
198   auto State = C.getState();
199 
200   // Already bound to container?
201   if (getIteratorPosition(State, Call.getReturnValue()))
202     return;
203 
204   // Copy-like and move constructors
205   if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
206     if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
207       State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
208       if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
209         State = removeIteratorPosition(State, Call.getArgSVal(0));
210       }
211       C.addTransition(State);
212       return;
213     }
214   }
215 
216   // Assumption: if return value is an iterator which is not yet bound to a
217   //             container, then look for the first iterator argument of the
218   //             same type as the return value and bind the return value to
219   //             the same container. This approach works for STL algorithms.
220   // FIXME: Add a more conservative mode
221   for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
222     if (isIteratorType(Call.getArgExpr(i)->getType()) &&
223         Call.getArgExpr(i)->getType().getNonReferenceType().getDesugaredType(
224             C.getASTContext()).getTypePtr() ==
225         Call.getResultType().getDesugaredType(C.getASTContext()).getTypePtr()) {
226       if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
227         assignToContainer(C, OrigExpr, Call.getReturnValue(),
228                           Pos->getContainer());
229         return;
230       }
231     }
232   }
233 }
234 
235 void IteratorModeling::checkBind(SVal Loc, SVal Val, const Stmt *S,
236                                  CheckerContext &C) const {
237   auto State = C.getState();
238   const auto *Pos = getIteratorPosition(State, Val);
239   if (Pos) {
240     State = setIteratorPosition(State, Loc, *Pos);
241     C.addTransition(State);
242   } else {
243     const auto *OldPos = getIteratorPosition(State, Loc);
244     if (OldPos) {
245       State = removeIteratorPosition(State, Loc);
246       C.addTransition(State);
247     }
248   }
249 }
250 
251 void IteratorModeling::checkPostStmt(const UnaryOperator *UO,
252                                      CheckerContext &C) const {
253   UnaryOperatorKind OK = UO->getOpcode();
254   if (!isIncrementOperator(OK) && !isDecrementOperator(OK))
255     return;
256 
257   auto &SVB = C.getSValBuilder();
258   handlePtrIncrOrDecr(C, UO->getSubExpr(),
259                       isIncrementOperator(OK) ? OO_Plus : OO_Minus,
260                       SVB.makeArrayIndex(1));
261 }
262 
263 void IteratorModeling::checkPostStmt(const BinaryOperator *BO,
264                                      CheckerContext &C) const {
265   const ProgramStateRef State = C.getState();
266   const BinaryOperatorKind OK = BO->getOpcode();
267   const Expr *const LHS = BO->getLHS();
268   const Expr *const RHS = BO->getRHS();
269   const SVal LVal = State->getSVal(LHS, C.getLocationContext());
270   const SVal RVal = State->getSVal(RHS, C.getLocationContext());
271 
272   if (isSimpleComparisonOperator(BO->getOpcode())) {
273     SVal Result = State->getSVal(BO, C.getLocationContext());
274     handleComparison(C, BO, Result, LVal, RVal,
275                      BinaryOperator::getOverloadedOperator(OK));
276   } else if (isRandomIncrOrDecrOperator(OK)) {
277     // In case of operator+ the iterator can be either on the LHS (eg.: it + 1),
278     // or on the RHS (eg.: 1 + it). Both cases are modeled.
279     const bool IsIterOnLHS = BO->getLHS()->getType()->isPointerType();
280     const Expr *const &IterExpr = IsIterOnLHS ? LHS : RHS;
281     const Expr *const &AmountExpr = IsIterOnLHS ? RHS : LHS;
282 
283     // The non-iterator side must have an integral or enumeration type.
284     if (!AmountExpr->getType()->isIntegralOrEnumerationType())
285       return;
286     const SVal &AmountVal = IsIterOnLHS ? RVal : LVal;
287     handlePtrIncrOrDecr(C, IterExpr, BinaryOperator::getOverloadedOperator(OK),
288                         AmountVal);
289   }
290 }
291 
292 void IteratorModeling::checkPostStmt(const MaterializeTemporaryExpr *MTE,
293                                      CheckerContext &C) const {
294   /* Transfer iterator state to temporary objects */
295   auto State = C.getState();
296   const auto *Pos = getIteratorPosition(State, C.getSVal(MTE->getSubExpr()));
297   if (!Pos)
298     return;
299   State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
300   C.addTransition(State);
301 }
302 
303 void IteratorModeling::checkLiveSymbols(ProgramStateRef State,
304                                         SymbolReaper &SR) const {
305   // Keep symbolic expressions of iterator positions alive
306   auto RegionMap = State->get<IteratorRegionMap>();
307   for (const IteratorPosition &Pos : llvm::make_second_range(RegionMap)) {
308     for (SymbolRef Sym : Pos.getOffset()->symbols())
309       if (isa<SymbolData>(Sym))
310         SR.markLive(Sym);
311   }
312 
313   auto SymbolMap = State->get<IteratorSymbolMap>();
314   for (const IteratorPosition &Pos : llvm::make_second_range(SymbolMap)) {
315     for (SymbolRef Sym : Pos.getOffset()->symbols())
316       if (isa<SymbolData>(Sym))
317         SR.markLive(Sym);
318   }
319 }
320 
321 void IteratorModeling::checkDeadSymbols(SymbolReaper &SR,
322                                         CheckerContext &C) const {
323   // Cleanup
324   auto State = C.getState();
325 
326   auto RegionMap = State->get<IteratorRegionMap>();
327   for (const auto &Reg : RegionMap) {
328     if (!SR.isLiveRegion(Reg.first)) {
329       // The region behind the `LazyCompoundVal` is often cleaned up before
330       // the `LazyCompoundVal` itself. If there are iterator positions keyed
331       // by these regions their cleanup must be deferred.
332       if (!isBoundThroughLazyCompoundVal(State->getEnvironment(), Reg.first)) {
333         State = State->remove<IteratorRegionMap>(Reg.first);
334       }
335     }
336   }
337 
338   auto SymbolMap = State->get<IteratorSymbolMap>();
339   for (const auto &Sym : SymbolMap) {
340     if (!SR.isLive(Sym.first)) {
341       State = State->remove<IteratorSymbolMap>(Sym.first);
342     }
343   }
344 
345   C.addTransition(State);
346 }
347 
348 void
349 IteratorModeling::handleOverloadedOperator(CheckerContext &C,
350                                            const CallEvent &Call,
351                                            OverloadedOperatorKind Op) const {
352     if (isSimpleComparisonOperator(Op)) {
353       const auto *OrigExpr = Call.getOriginExpr();
354       if (!OrigExpr)
355         return;
356 
357       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
358         handleComparison(C, OrigExpr, Call.getReturnValue(),
359                          InstCall->getCXXThisVal(), Call.getArgSVal(0), Op);
360         return;
361       }
362 
363       handleComparison(C, OrigExpr, Call.getReturnValue(), Call.getArgSVal(0),
364                          Call.getArgSVal(1), Op);
365       return;
366     } else if (isRandomIncrOrDecrOperator(Op)) {
367       const auto *OrigExpr = Call.getOriginExpr();
368       if (!OrigExpr)
369         return;
370 
371       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
372         if (Call.getNumArgs() >= 1 &&
373               Call.getArgExpr(0)->getType()->isIntegralOrEnumerationType()) {
374           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
375                                  InstCall->getCXXThisVal(), Call.getArgSVal(0));
376           return;
377         }
378       } else if (Call.getNumArgs() >= 2) {
379         const Expr *FirstArg = Call.getArgExpr(0);
380         const Expr *SecondArg = Call.getArgExpr(1);
381         const QualType FirstType = FirstArg->getType();
382         const QualType SecondType = SecondArg->getType();
383 
384         if (FirstType->isIntegralOrEnumerationType() ||
385             SecondType->isIntegralOrEnumerationType()) {
386           // In case of operator+ the iterator can be either on the LHS (eg.:
387           // it + 1), or on the RHS (eg.: 1 + it). Both cases are modeled.
388           const bool IsIterFirst = FirstType->isStructureOrClassType();
389           const SVal FirstArg = Call.getArgSVal(0);
390           const SVal SecondArg = Call.getArgSVal(1);
391           const SVal &Iterator = IsIterFirst ? FirstArg : SecondArg;
392           const SVal &Amount = IsIterFirst ? SecondArg : FirstArg;
393 
394           handleRandomIncrOrDecr(C, OrigExpr, Op, Call.getReturnValue(),
395                                  Iterator, Amount);
396           return;
397         }
398       }
399     } else if (isIncrementOperator(Op)) {
400       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
401         handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
402                         Call.getNumArgs());
403         return;
404       }
405 
406       handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
407                       Call.getNumArgs());
408       return;
409     } else if (isDecrementOperator(Op)) {
410       if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
411         handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
412                         Call.getNumArgs());
413         return;
414       }
415 
416       handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
417                         Call.getNumArgs());
418       return;
419     }
420 }
421 
422 void
423 IteratorModeling::handleAdvanceLikeFunction(CheckerContext &C,
424                                             const CallEvent &Call,
425                                             const Expr *OrigExpr,
426                                             const AdvanceFn *Handler) const {
427   if (!C.wasInlined) {
428     (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
429                       Call.getArgSVal(0), Call.getArgSVal(1));
430     return;
431   }
432 
433   // If std::advance() was inlined, but a non-standard function it calls inside
434   // was not, then we have to model it explicitly
435   const auto *IdInfo = cast<FunctionDecl>(Call.getDecl())->getIdentifier();
436   if (IdInfo) {
437     if (IdInfo->getName() == "advance") {
438       if (noChangeInAdvance(C, Call.getArgSVal(0), OrigExpr)) {
439         (this->**Handler)(C, OrigExpr, Call.getReturnValue(),
440                           Call.getArgSVal(0), Call.getArgSVal(1));
441       }
442     }
443   }
444 }
445 
446 void IteratorModeling::handleComparison(CheckerContext &C, const Expr *CE,
447                                        SVal RetVal, const SVal &LVal,
448                                        const SVal &RVal,
449                                        OverloadedOperatorKind Op) const {
450   // Record the operands and the operator of the comparison for the next
451   // evalAssume, if the result is a symbolic expression. If it is a concrete
452   // value (only one branch is possible), then transfer the state between
453   // the operands according to the operator and the result
454    auto State = C.getState();
455   const auto *LPos = getIteratorPosition(State, LVal);
456   const auto *RPos = getIteratorPosition(State, RVal);
457   const MemRegion *Cont = nullptr;
458   if (LPos) {
459     Cont = LPos->getContainer();
460   } else if (RPos) {
461     Cont = RPos->getContainer();
462   }
463   if (!Cont)
464     return;
465 
466   // At least one of the iterators has recorded positions. If one of them does
467   // not then create a new symbol for the offset.
468   SymbolRef Sym;
469   if (!LPos || !RPos) {
470     auto &SymMgr = C.getSymbolManager();
471     Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
472                                C.getASTContext().LongTy, C.blockCount());
473     State = assumeNoOverflow(State, Sym, 4);
474   }
475 
476   if (!LPos) {
477     State = setIteratorPosition(State, LVal,
478                                 IteratorPosition::getPosition(Cont, Sym));
479     LPos = getIteratorPosition(State, LVal);
480   } else if (!RPos) {
481     State = setIteratorPosition(State, RVal,
482                                 IteratorPosition::getPosition(Cont, Sym));
483     RPos = getIteratorPosition(State, RVal);
484   }
485 
486   // If the value for which we just tried to set a new iterator position is
487   // an `SVal`for which no iterator position can be set then the setting was
488   // unsuccessful. We cannot handle the comparison in this case.
489   if (!LPos || !RPos)
490     return;
491 
492   // We cannot make assumptions on `UnknownVal`. Let us conjure a symbol
493   // instead.
494   if (RetVal.isUnknown()) {
495     auto &SymMgr = C.getSymbolManager();
496     auto *LCtx = C.getLocationContext();
497     RetVal = nonloc::SymbolVal(SymMgr.conjureSymbol(
498         CE, LCtx, C.getASTContext().BoolTy, C.blockCount()));
499     State = State->BindExpr(CE, LCtx, RetVal);
500   }
501 
502   processComparison(C, State, LPos->getOffset(), RPos->getOffset(), RetVal, Op);
503 }
504 
505 void IteratorModeling::processComparison(CheckerContext &C,
506                                          ProgramStateRef State, SymbolRef Sym1,
507                                          SymbolRef Sym2, const SVal &RetVal,
508                                          OverloadedOperatorKind Op) const {
509   if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
510     if ((State = relateSymbols(State, Sym1, Sym2,
511                               (Op == OO_EqualEqual) ==
512                                (TruthVal->getValue() != 0)))) {
513       C.addTransition(State);
514     } else {
515       C.generateSink(State, C.getPredecessor());
516     }
517     return;
518   }
519 
520   const auto ConditionVal = RetVal.getAs<DefinedSVal>();
521   if (!ConditionVal)
522     return;
523 
524   if (auto StateTrue = relateSymbols(State, Sym1, Sym2, Op == OO_EqualEqual)) {
525     StateTrue = StateTrue->assume(*ConditionVal, true);
526     C.addTransition(StateTrue);
527   }
528 
529   if (auto StateFalse = relateSymbols(State, Sym1, Sym2, Op != OO_EqualEqual)) {
530     StateFalse = StateFalse->assume(*ConditionVal, false);
531     C.addTransition(StateFalse);
532   }
533 }
534 
535 void IteratorModeling::handleIncrement(CheckerContext &C, const SVal &RetVal,
536                                        const SVal &Iter, bool Postfix) const {
537   // Increment the symbolic expressions which represents the position of the
538   // iterator
539   auto State = C.getState();
540   auto &BVF = C.getSymbolManager().getBasicVals();
541 
542   const auto *Pos = getIteratorPosition(State, Iter);
543   if (!Pos)
544     return;
545 
546   auto NewState =
547     advancePosition(State, Iter, OO_Plus,
548                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
549   assert(NewState &&
550          "Advancing position by concrete int should always be successful");
551 
552   const auto *NewPos = getIteratorPosition(NewState, Iter);
553   assert(NewPos &&
554          "Iterator should have position after successful advancement");
555 
556   State = setIteratorPosition(State, Iter, *NewPos);
557   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
558   C.addTransition(State);
559 }
560 
561 void IteratorModeling::handleDecrement(CheckerContext &C, const SVal &RetVal,
562                                        const SVal &Iter, bool Postfix) const {
563   // Decrement the symbolic expressions which represents the position of the
564   // iterator
565   auto State = C.getState();
566   auto &BVF = C.getSymbolManager().getBasicVals();
567 
568   const auto *Pos = getIteratorPosition(State, Iter);
569   if (!Pos)
570     return;
571 
572   auto NewState =
573     advancePosition(State, Iter, OO_Minus,
574                     nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))));
575   assert(NewState &&
576          "Advancing position by concrete int should always be successful");
577 
578   const auto *NewPos = getIteratorPosition(NewState, Iter);
579   assert(NewPos &&
580          "Iterator should have position after successful advancement");
581 
582   State = setIteratorPosition(State, Iter, *NewPos);
583   State = setIteratorPosition(State, RetVal, Postfix ? *Pos : *NewPos);
584   C.addTransition(State);
585 }
586 
587 void IteratorModeling::handleRandomIncrOrDecr(CheckerContext &C, const Expr *CE,
588                                               OverloadedOperatorKind Op,
589                                               const SVal &RetVal,
590                                               const SVal &Iterator,
591                                               const SVal &Amount) const {
592   // Increment or decrement the symbolic expressions which represents the
593   // position of the iterator
594   auto State = C.getState();
595 
596   const auto *Pos = getIteratorPosition(State, Iterator);
597   if (!Pos)
598     return;
599 
600   const auto *Value = &Amount;
601   SVal Val;
602   if (auto LocAmount = Amount.getAs<Loc>()) {
603     Val = State->getRawSVal(*LocAmount);
604     Value = &Val;
605   }
606 
607   const auto &TgtVal =
608       (Op == OO_PlusEqual || Op == OO_MinusEqual) ? Iterator : RetVal;
609 
610   // `AdvancedState` is a state where the position of `LHS` is advanced. We
611   // only need this state to retrieve the new position, but we do not want
612   // to change the position of `LHS` (in every case).
613   auto AdvancedState = advancePosition(State, Iterator, Op, *Value);
614   if (AdvancedState) {
615     const auto *NewPos = getIteratorPosition(AdvancedState, Iterator);
616     assert(NewPos &&
617            "Iterator should have position after successful advancement");
618 
619     State = setIteratorPosition(State, TgtVal, *NewPos);
620     C.addTransition(State);
621   } else {
622     assignToContainer(C, CE, TgtVal, Pos->getContainer());
623   }
624 }
625 
626 void IteratorModeling::handlePtrIncrOrDecr(CheckerContext &C,
627                                            const Expr *Iterator,
628                                            OverloadedOperatorKind OK,
629                                            SVal Offset) const {
630   if (!isa<DefinedSVal>(Offset))
631     return;
632 
633   QualType PtrType = Iterator->getType();
634   if (!PtrType->isPointerType())
635     return;
636   QualType ElementType = PtrType->getPointeeType();
637 
638   ProgramStateRef State = C.getState();
639   SVal OldVal = State->getSVal(Iterator, C.getLocationContext());
640 
641   const IteratorPosition *OldPos = getIteratorPosition(State, OldVal);
642   if (!OldPos)
643     return;
644 
645   SVal NewVal;
646   if (OK == OO_Plus || OK == OO_PlusEqual) {
647     NewVal = State->getLValue(ElementType, Offset, OldVal);
648   } else {
649     auto &SVB = C.getSValBuilder();
650     SVal NegatedOffset = SVB.evalMinus(Offset.castAs<NonLoc>());
651     NewVal = State->getLValue(ElementType, NegatedOffset, OldVal);
652   }
653 
654   // `AdvancedState` is a state where the position of `Old` is advanced. We
655   // only need this state to retrieve the new position, but we do not want
656   // ever to change the position of `OldVal`.
657   auto AdvancedState = advancePosition(State, OldVal, OK, Offset);
658   if (AdvancedState) {
659     const IteratorPosition *NewPos = getIteratorPosition(AdvancedState, OldVal);
660     assert(NewPos &&
661            "Iterator should have position after successful advancement");
662 
663     ProgramStateRef NewState = setIteratorPosition(State, NewVal, *NewPos);
664     C.addTransition(NewState);
665   } else {
666     assignToContainer(C, Iterator, NewVal, OldPos->getContainer());
667   }
668 }
669 
670 void IteratorModeling::handleAdvance(CheckerContext &C, const Expr *CE,
671                                      SVal RetVal, SVal Iter,
672                                      SVal Amount) const {
673   handleRandomIncrOrDecr(C, CE, OO_PlusEqual, RetVal, Iter, Amount);
674 }
675 
676 void IteratorModeling::handlePrev(CheckerContext &C, const Expr *CE,
677                                   SVal RetVal, SVal Iter, SVal Amount) const {
678   handleRandomIncrOrDecr(C, CE, OO_Minus, RetVal, Iter, Amount);
679 }
680 
681 void IteratorModeling::handleNext(CheckerContext &C, const Expr *CE,
682                                   SVal RetVal, SVal Iter, SVal Amount) const {
683   handleRandomIncrOrDecr(C, CE, OO_Plus, RetVal, Iter, Amount);
684 }
685 
686 void IteratorModeling::assignToContainer(CheckerContext &C, const Expr *CE,
687                                          const SVal &RetVal,
688                                          const MemRegion *Cont) const {
689   Cont = Cont->getMostDerivedObjectRegion();
690 
691   auto State = C.getState();
692   const auto *LCtx = C.getLocationContext();
693   State = createIteratorPosition(State, RetVal, Cont, CE, LCtx, C.blockCount());
694 
695   C.addTransition(State);
696 }
697 
698 bool IteratorModeling::noChangeInAdvance(CheckerContext &C, SVal Iter,
699                                          const Expr *CE) const {
700   // Compare the iterator position before and after the call. (To be called
701   // from `checkPostCall()`.)
702   const auto StateAfter = C.getState();
703 
704   const auto *PosAfter = getIteratorPosition(StateAfter, Iter);
705   // If we have no position after the call of `std::advance`, then we are not
706   // interested. (Modeling of an inlined `std::advance()` should not remove the
707   // position in any case.)
708   if (!PosAfter)
709     return false;
710 
711   const ExplodedNode *N = findCallEnter(C.getPredecessor(), CE);
712   assert(N && "Any call should have a `CallEnter` node.");
713 
714   const auto StateBefore = N->getState();
715   const auto *PosBefore = getIteratorPosition(StateBefore, Iter);
716   // FIXME: `std::advance()` should not create a new iterator position but
717   //        change existing ones. However, in case of iterators implemented as
718   //        pointers the handling of parameters in `std::advance()`-like
719   //        functions is still incomplete which may result in cases where
720   //        the new position is assigned to the wrong pointer. This causes
721   //        crash if we use an assertion here.
722   if (!PosBefore)
723     return false;
724 
725   return PosBefore->getOffset() == PosAfter->getOffset();
726 }
727 
728 void IteratorModeling::printState(raw_ostream &Out, ProgramStateRef State,
729                                   const char *NL, const char *Sep) const {
730   auto SymbolMap = State->get<IteratorSymbolMap>();
731   auto RegionMap = State->get<IteratorRegionMap>();
732   // Use a counter to add newlines before every line except the first one.
733   unsigned Count = 0;
734 
735   if (!SymbolMap.isEmpty() || !RegionMap.isEmpty()) {
736     Out << Sep << "Iterator Positions :" << NL;
737     for (const auto &Sym : SymbolMap) {
738       if (Count++)
739         Out << NL;
740 
741       Sym.first->dumpToStream(Out);
742       Out << " : ";
743       const auto Pos = Sym.second;
744       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
745       Pos.getContainer()->dumpToStream(Out);
746       Out<<" ; Offset == ";
747       Pos.getOffset()->dumpToStream(Out);
748     }
749 
750     for (const auto &Reg : RegionMap) {
751       if (Count++)
752         Out << NL;
753 
754       Reg.first->dumpToStream(Out);
755       Out << " : ";
756       const auto Pos = Reg.second;
757       Out << (Pos.isValid() ? "Valid" : "Invalid") << " ; Container == ";
758       Pos.getContainer()->dumpToStream(Out);
759       Out<<" ; Offset == ";
760       Pos.getOffset()->dumpToStream(Out);
761     }
762   }
763 }
764 
765 namespace {
766 
767 bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
768   return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
769 }
770 
771 bool isSimpleComparisonOperator(BinaryOperatorKind OK) {
772   return OK == BO_EQ || OK == BO_NE;
773 }
774 
775 ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
776   if (auto Reg = Val.getAsRegion()) {
777     Reg = Reg->getMostDerivedObjectRegion();
778     return State->remove<IteratorRegionMap>(Reg);
779   } else if (const auto Sym = Val.getAsSymbol()) {
780     return State->remove<IteratorSymbolMap>(Sym);
781   } else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
782     return State->remove<IteratorRegionMap>(LCVal->getRegion());
783   }
784   return nullptr;
785 }
786 
787 ProgramStateRef relateSymbols(ProgramStateRef State, SymbolRef Sym1,
788                               SymbolRef Sym2, bool Equal) {
789   auto &SVB = State->getStateManager().getSValBuilder();
790 
791   // FIXME: This code should be reworked as follows:
792   // 1. Subtract the operands using evalBinOp().
793   // 2. Assume that the result doesn't overflow.
794   // 3. Compare the result to 0.
795   // 4. Assume the result of the comparison.
796   const auto comparison =
797     SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Sym1),
798                   nonloc::SymbolVal(Sym2), SVB.getConditionType());
799 
800   assert(isa<DefinedSVal>(comparison) &&
801          "Symbol comparison must be a `DefinedSVal`");
802 
803   auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
804   if (!NewState)
805     return nullptr;
806 
807   if (const auto CompSym = comparison.getAsSymbol()) {
808     assert(isa<SymIntExpr>(CompSym) &&
809            "Symbol comparison must be a `SymIntExpr`");
810     assert(BinaryOperator::isComparisonOp(
811                cast<SymIntExpr>(CompSym)->getOpcode()) &&
812            "Symbol comparison must be a comparison");
813     return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
814   }
815 
816   return NewState;
817 }
818 
819 bool isBoundThroughLazyCompoundVal(const Environment &Env,
820                                    const MemRegion *Reg) {
821   for (const auto &Binding : Env) {
822     if (const auto LCVal = Binding.second.getAs<nonloc::LazyCompoundVal>()) {
823       if (LCVal->getRegion() == Reg)
824         return true;
825     }
826   }
827 
828   return false;
829 }
830 
831 const ExplodedNode *findCallEnter(const ExplodedNode *Node, const Expr *Call) {
832   while (Node) {
833     ProgramPoint PP = Node->getLocation();
834     if (auto Enter = PP.getAs<CallEnter>()) {
835       if (Enter->getCallExpr() == Call)
836         break;
837     }
838 
839     Node = Node->getFirstPred();
840   }
841 
842   return Node;
843 }
844 
845 } // namespace
846 
847 void ento::registerIteratorModeling(CheckerManager &mgr) {
848   mgr.registerChecker<IteratorModeling>();
849 }
850 
851 bool ento::shouldRegisterIteratorModeling(const CheckerManager &mgr) {
852   return true;
853 }
854