1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines BugReporter, a utility class for generating
10 //  PathDiagnostics.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <memory>
67 #include <optional>
68 #include <queue>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73 
74 using namespace clang;
75 using namespace ento;
76 using namespace llvm;
77 
78 #define DEBUG_TYPE "BugReporter"
79 
80 STATISTIC(MaxBugClassSize,
81           "The maximum number of bug reports in the same equivalence class");
82 STATISTIC(MaxValidBugClassSize,
83           "The maximum number of bug reports in the same equivalence class "
84           "where at least one report is valid (not suppressed)");
85 
86 BugReporterVisitor::~BugReporterVisitor() = default;
87 
88 void BugReporterContext::anchor() {}
89 
90 //===----------------------------------------------------------------------===//
91 // PathDiagnosticBuilder and its associated routines and helper objects.
92 //===----------------------------------------------------------------------===//
93 
94 namespace {
95 
96 /// A (CallPiece, node assiciated with its CallEnter) pair.
97 using CallWithEntry =
98     std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
99 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
100 
101 /// Map from each node to the diagnostic pieces visitors emit for them.
102 using VisitorsDiagnosticsTy =
103     llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
104 
105 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
106 /// function call it represents.
107 using LocationContextMap =
108     llvm::DenseMap<const PathPieces *, const LocationContext *>;
109 
110 /// A helper class that contains everything needed to construct a
111 /// PathDiagnostic object. It does no much more then providing convenient
112 /// getters and some well placed asserts for extra security.
113 class PathDiagnosticConstruct {
114   /// The consumer we're constructing the bug report for.
115   const PathDiagnosticConsumer *Consumer;
116   /// Our current position in the bug path, which is owned by
117   /// PathDiagnosticBuilder.
118   const ExplodedNode *CurrentNode;
119   /// A mapping from parts of the bug path (for example, a function call, which
120   /// would span backwards from a CallExit to a CallEnter with the nodes in
121   /// between them) with the location contexts it is associated with.
122   LocationContextMap LCM;
123   const SourceManager &SM;
124 
125 public:
126   /// We keep stack of calls to functions as we're ascending the bug path.
127   /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
128   /// that instead?
129   CallWithEntryStack CallStack;
130   /// The bug report we're constructing. For ease of use, this field is kept
131   /// public, though some "shortcut" getters are provided for commonly used
132   /// methods of PathDiagnostic.
133   std::unique_ptr<PathDiagnostic> PD;
134 
135 public:
136   PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
137                           const ExplodedNode *ErrorNode,
138                           const PathSensitiveBugReport *R);
139 
140   /// \returns the location context associated with the current position in the
141   /// bug path.
142   const LocationContext *getCurrLocationContext() const {
143     assert(CurrentNode && "Already reached the root!");
144     return CurrentNode->getLocationContext();
145   }
146 
147   /// Same as getCurrLocationContext (they should always return the same
148   /// location context), but works after reaching the root of the bug path as
149   /// well.
150   const LocationContext *getLocationContextForActivePath() const {
151     return LCM.find(&PD->getActivePath())->getSecond();
152   }
153 
154   const ExplodedNode *getCurrentNode() const { return CurrentNode; }
155 
156   /// Steps the current node to its predecessor.
157   /// \returns whether we reached the root of the bug path.
158   bool ascendToPrevNode() {
159     CurrentNode = CurrentNode->getFirstPred();
160     return static_cast<bool>(CurrentNode);
161   }
162 
163   const ParentMap &getParentMap() const {
164     return getCurrLocationContext()->getParentMap();
165   }
166 
167   const SourceManager &getSourceManager() const { return SM; }
168 
169   const Stmt *getParent(const Stmt *S) const {
170     return getParentMap().getParent(S);
171   }
172 
173   void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
174     assert(Path && LC);
175     LCM[Path] = LC;
176   }
177 
178   const LocationContext *getLocationContextFor(const PathPieces *Path) const {
179     assert(LCM.count(Path) &&
180            "Failed to find the context associated with these pieces!");
181     return LCM.find(Path)->getSecond();
182   }
183 
184   bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
185 
186   PathPieces &getActivePath() { return PD->getActivePath(); }
187   PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
188 
189   bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
190   bool shouldAddControlNotes() const {
191     return Consumer->shouldAddControlNotes();
192   }
193   bool shouldGenerateDiagnostics() const {
194     return Consumer->shouldGenerateDiagnostics();
195   }
196   bool supportsLogicalOpControlFlow() const {
197     return Consumer->supportsLogicalOpControlFlow();
198   }
199 };
200 
201 /// Contains every contextual information needed for constructing a
202 /// PathDiagnostic object for a given bug report. This class and its fields are
203 /// immutable, and passes a BugReportConstruct object around during the
204 /// construction.
205 class PathDiagnosticBuilder : public BugReporterContext {
206   /// A linear path from the error node to the root.
207   std::unique_ptr<const ExplodedGraph> BugPath;
208   /// The bug report we're describing. Visitors create their diagnostics with
209   /// them being the last entities being able to modify it (for example,
210   /// changing interestingness here would cause inconsistencies as to how this
211   /// file and visitors construct diagnostics), hence its const.
212   const PathSensitiveBugReport *R;
213   /// The leaf of the bug path. This isn't the same as the bug reports error
214   /// node, which refers to the *original* graph, not the bug path.
215   const ExplodedNode *const ErrorNode;
216   /// The diagnostic pieces visitors emitted, which is expected to be collected
217   /// by the time this builder is constructed.
218   std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
219 
220 public:
221   /// Find a non-invalidated report for a given equivalence class,  and returns
222   /// a PathDiagnosticBuilder able to construct bug reports for different
223   /// consumers. Returns std::nullopt if no valid report is found.
224   static std::optional<PathDiagnosticBuilder>
225   findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
226                   PathSensitiveBugReporter &Reporter);
227 
228   PathDiagnosticBuilder(
229       BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
230       PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
231       std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
232 
233   /// This function is responsible for generating diagnostic pieces that are
234   /// *not* provided by bug report visitors.
235   /// These diagnostics may differ depending on the consumer's settings,
236   /// and are therefore constructed separately for each consumer.
237   ///
238   /// There are two path diagnostics generation modes: with adding edges (used
239   /// for plists) and without  (used for HTML and text). When edges are added,
240   /// the path is modified to insert artificially generated edges.
241   /// Otherwise, more detailed diagnostics is emitted for block edges,
242   /// explaining the transitions in words.
243   std::unique_ptr<PathDiagnostic>
244   generate(const PathDiagnosticConsumer *PDC) const;
245 
246 private:
247   void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
248                                     const CallWithEntryStack &CallStack) const;
249   void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
250                                       PathDiagnosticLocation &PrevLoc) const;
251 
252   void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
253                                        BlockEdge BE) const;
254 
255   PathDiagnosticPieceRef
256   generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
257                         PathDiagnosticLocation &Start) const;
258 
259   PathDiagnosticPieceRef
260   generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
261                           PathDiagnosticLocation &Start) const;
262 
263   PathDiagnosticPieceRef
264   generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
265                           const CFGBlock *Src, const CFGBlock *DstC) const;
266 
267   PathDiagnosticLocation
268   ExecutionContinues(const PathDiagnosticConstruct &C) const;
269 
270   PathDiagnosticLocation
271   ExecutionContinues(llvm::raw_string_ostream &os,
272                      const PathDiagnosticConstruct &C) const;
273 
274   const PathSensitiveBugReport *getBugReport() const { return R; }
275 };
276 
277 } // namespace
278 
279 //===----------------------------------------------------------------------===//
280 // Base implementation of stack hint generators.
281 //===----------------------------------------------------------------------===//
282 
283 StackHintGenerator::~StackHintGenerator() = default;
284 
285 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
286   if (!N)
287     return getMessageForSymbolNotFound();
288 
289   ProgramPoint P = N->getLocation();
290   CallExitEnd CExit = P.castAs<CallExitEnd>();
291 
292   // FIXME: Use CallEvent to abstract this over all calls.
293   const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
294   const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
295   if (!CE)
296     return {};
297 
298   // Check if one of the parameters are set to the interesting symbol.
299   for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) {
300     SVal SV = N->getSVal(ArgExpr);
301 
302     // Check if the variable corresponding to the symbol is passed by value.
303     SymbolRef AS = SV.getAsLocSymbol();
304     if (AS == Sym) {
305       return getMessageForArg(ArgExpr, Idx);
306     }
307 
308     // Check if the parameter is a pointer to the symbol.
309     if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
310       // Do not attempt to dereference void*.
311       if (ArgExpr->getType()->isVoidPointerType())
312         continue;
313       SVal PSV = N->getState()->getSVal(Reg->getRegion());
314       SymbolRef AS = PSV.getAsLocSymbol();
315       if (AS == Sym) {
316         return getMessageForArg(ArgExpr, Idx);
317       }
318     }
319   }
320 
321   // Check if we are returning the interesting symbol.
322   SVal SV = N->getSVal(CE);
323   SymbolRef RetSym = SV.getAsLocSymbol();
324   if (RetSym == Sym) {
325     return getMessageForReturn(CE);
326   }
327 
328   return getMessageForSymbolNotFound();
329 }
330 
331 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
332                                                           unsigned ArgIndex) {
333   // Printed parameters start at 1, not 0.
334   ++ArgIndex;
335 
336   return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
337           llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
338 }
339 
340 //===----------------------------------------------------------------------===//
341 // Diagnostic cleanup.
342 //===----------------------------------------------------------------------===//
343 
344 static PathDiagnosticEventPiece *
345 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
346                             PathDiagnosticEventPiece *Y) {
347   // Prefer diagnostics that come from ConditionBRVisitor over
348   // those that came from TrackConstraintBRVisitor,
349   // unless the one from ConditionBRVisitor is
350   // its generic fallback diagnostic.
351   const void *tagPreferred = ConditionBRVisitor::getTag();
352   const void *tagLesser = TrackConstraintBRVisitor::getTag();
353 
354   if (X->getLocation() != Y->getLocation())
355     return nullptr;
356 
357   if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
358     return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
359 
360   if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
361     return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
362 
363   return nullptr;
364 }
365 
366 /// An optimization pass over PathPieces that removes redundant diagnostics
367 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
368 /// BugReporterVisitors use different methods to generate diagnostics, with
369 /// one capable of emitting diagnostics in some cases but not in others.  This
370 /// can lead to redundant diagnostic pieces at the same point in a path.
371 static void removeRedundantMsgs(PathPieces &path) {
372   unsigned N = path.size();
373   if (N < 2)
374     return;
375   // NOTE: this loop intentionally is not using an iterator.  Instead, we
376   // are streaming the path and modifying it in place.  This is done by
377   // grabbing the front, processing it, and if we decide to keep it append
378   // it to the end of the path.  The entire path is processed in this way.
379   for (unsigned i = 0; i < N; ++i) {
380     auto piece = std::move(path.front());
381     path.pop_front();
382 
383     switch (piece->getKind()) {
384       case PathDiagnosticPiece::Call:
385         removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
386         break;
387       case PathDiagnosticPiece::Macro:
388         removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
389         break;
390       case PathDiagnosticPiece::Event: {
391         if (i == N-1)
392           break;
393 
394         if (auto *nextEvent =
395             dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
396           auto *event = cast<PathDiagnosticEventPiece>(piece.get());
397           // Check to see if we should keep one of the two pieces.  If we
398           // come up with a preference, record which piece to keep, and consume
399           // another piece from the path.
400           if (auto *pieceToKeep =
401                   eventsDescribeSameCondition(event, nextEvent)) {
402             piece = std::move(pieceToKeep == event ? piece : path.front());
403             path.pop_front();
404             ++i;
405           }
406         }
407         break;
408       }
409       case PathDiagnosticPiece::ControlFlow:
410       case PathDiagnosticPiece::Note:
411       case PathDiagnosticPiece::PopUp:
412         break;
413     }
414     path.push_back(std::move(piece));
415   }
416 }
417 
418 /// Recursively scan through a path and prune out calls and macros pieces
419 /// that aren't needed.  Return true if afterwards the path contains
420 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
421 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
422                                 PathPieces &pieces,
423                                 const PathSensitiveBugReport *R,
424                                 bool IsInteresting = false) {
425   bool containsSomethingInteresting = IsInteresting;
426   const unsigned N = pieces.size();
427 
428   for (unsigned i = 0 ; i < N ; ++i) {
429     // Remove the front piece from the path.  If it is still something we
430     // want to keep once we are done, we will push it back on the end.
431     auto piece = std::move(pieces.front());
432     pieces.pop_front();
433 
434     switch (piece->getKind()) {
435       case PathDiagnosticPiece::Call: {
436         auto &call = cast<PathDiagnosticCallPiece>(*piece);
437         // Check if the location context is interesting.
438         if (!removeUnneededCalls(
439                 C, call.path, R,
440                 R->isInteresting(C.getLocationContextFor(&call.path))))
441           continue;
442 
443         containsSomethingInteresting = true;
444         break;
445       }
446       case PathDiagnosticPiece::Macro: {
447         auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
448         if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
449           continue;
450         containsSomethingInteresting = true;
451         break;
452       }
453       case PathDiagnosticPiece::Event: {
454         auto &event = cast<PathDiagnosticEventPiece>(*piece);
455 
456         // We never throw away an event, but we do throw it away wholesale
457         // as part of a path if we throw the entire path away.
458         containsSomethingInteresting |= !event.isPrunable();
459         break;
460       }
461       case PathDiagnosticPiece::ControlFlow:
462       case PathDiagnosticPiece::Note:
463       case PathDiagnosticPiece::PopUp:
464         break;
465     }
466 
467     pieces.push_back(std::move(piece));
468   }
469 
470   return containsSomethingInteresting;
471 }
472 
473 /// Same logic as above to remove extra pieces.
474 static void removePopUpNotes(PathPieces &Path) {
475   for (unsigned int i = 0; i < Path.size(); ++i) {
476     auto Piece = std::move(Path.front());
477     Path.pop_front();
478     if (!isa<PathDiagnosticPopUpPiece>(*Piece))
479       Path.push_back(std::move(Piece));
480   }
481 }
482 
483 /// Returns true if the given decl has been implicitly given a body, either by
484 /// the analyzer or by the compiler proper.
485 static bool hasImplicitBody(const Decl *D) {
486   assert(D);
487   return D->isImplicit() || !D->hasBody();
488 }
489 
490 /// Recursively scan through a path and make sure that all call pieces have
491 /// valid locations.
492 static void
493 adjustCallLocations(PathPieces &Pieces,
494                     PathDiagnosticLocation *LastCallLocation = nullptr) {
495   for (const auto &I : Pieces) {
496     auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
497 
498     if (!Call)
499       continue;
500 
501     if (LastCallLocation) {
502       bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
503       if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
504         Call->callEnter = *LastCallLocation;
505       if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
506         Call->callReturn = *LastCallLocation;
507     }
508 
509     // Recursively clean out the subclass.  Keep this call around if
510     // it contains any informative diagnostics.
511     PathDiagnosticLocation *ThisCallLocation;
512     if (Call->callEnterWithin.asLocation().isValid() &&
513         !hasImplicitBody(Call->getCallee()))
514       ThisCallLocation = &Call->callEnterWithin;
515     else
516       ThisCallLocation = &Call->callEnter;
517 
518     assert(ThisCallLocation && "Outermost call has an invalid location");
519     adjustCallLocations(Call->path, ThisCallLocation);
520   }
521 }
522 
523 /// Remove edges in and out of C++ default initializer expressions. These are
524 /// for fields that have in-class initializers, as opposed to being initialized
525 /// explicitly in a constructor or braced list.
526 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
527   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
528     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
529       removeEdgesToDefaultInitializers(C->path);
530 
531     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
532       removeEdgesToDefaultInitializers(M->subPieces);
533 
534     if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
535       const Stmt *Start = CF->getStartLocation().asStmt();
536       const Stmt *End = CF->getEndLocation().asStmt();
537       if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
538         I = Pieces.erase(I);
539         continue;
540       } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
541         PathPieces::iterator Next = std::next(I);
542         if (Next != E) {
543           if (auto *NextCF =
544                   dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
545             NextCF->setStartLocation(CF->getStartLocation());
546           }
547         }
548         I = Pieces.erase(I);
549         continue;
550       }
551     }
552 
553     I++;
554   }
555 }
556 
557 /// Remove all pieces with invalid locations as these cannot be serialized.
558 /// We might have pieces with invalid locations as a result of inlining Body
559 /// Farm generated functions.
560 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
561   for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
562     if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
563       removePiecesWithInvalidLocations(C->path);
564 
565     if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
566       removePiecesWithInvalidLocations(M->subPieces);
567 
568     if (!(*I)->getLocation().isValid() ||
569         !(*I)->getLocation().asLocation().isValid()) {
570       I = Pieces.erase(I);
571       continue;
572     }
573     I++;
574   }
575 }
576 
577 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
578     const PathDiagnosticConstruct &C) const {
579   if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
580     return PathDiagnosticLocation(S, getSourceManager(),
581                                   C.getCurrLocationContext());
582 
583   return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
584                                                getSourceManager());
585 }
586 
587 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
588     llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
589   // Slow, but probably doesn't matter.
590   if (os.str().empty())
591     os << ' ';
592 
593   const PathDiagnosticLocation &Loc = ExecutionContinues(C);
594 
595   if (Loc.asStmt())
596     os << "Execution continues on line "
597        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
598        << '.';
599   else {
600     os << "Execution jumps to the end of the ";
601     const Decl *D = C.getCurrLocationContext()->getDecl();
602     if (isa<ObjCMethodDecl>(D))
603       os << "method";
604     else if (isa<FunctionDecl>(D))
605       os << "function";
606     else {
607       assert(isa<BlockDecl>(D));
608       os << "anonymous block";
609     }
610     os << '.';
611   }
612 
613   return Loc;
614 }
615 
616 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
617   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
618     return PM.getParentIgnoreParens(S);
619 
620   const Stmt *Parent = PM.getParentIgnoreParens(S);
621   if (!Parent)
622     return nullptr;
623 
624   switch (Parent->getStmtClass()) {
625   case Stmt::ForStmtClass:
626   case Stmt::DoStmtClass:
627   case Stmt::WhileStmtClass:
628   case Stmt::ObjCForCollectionStmtClass:
629   case Stmt::CXXForRangeStmtClass:
630     return Parent;
631   default:
632     break;
633   }
634 
635   return nullptr;
636 }
637 
638 static PathDiagnosticLocation
639 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
640                          bool allowNestedContexts = false) {
641   if (!S)
642     return {};
643 
644   const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
645 
646   while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
647     switch (Parent->getStmtClass()) {
648       case Stmt::BinaryOperatorClass: {
649         const auto *B = cast<BinaryOperator>(Parent);
650         if (B->isLogicalOp())
651           return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
652         break;
653       }
654       case Stmt::CompoundStmtClass:
655       case Stmt::StmtExprClass:
656         return PathDiagnosticLocation(S, SMgr, LC);
657       case Stmt::ChooseExprClass:
658         // Similar to '?' if we are referring to condition, just have the edge
659         // point to the entire choose expression.
660         if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
661           return PathDiagnosticLocation(Parent, SMgr, LC);
662         else
663           return PathDiagnosticLocation(S, SMgr, LC);
664       case Stmt::BinaryConditionalOperatorClass:
665       case Stmt::ConditionalOperatorClass:
666         // For '?', if we are referring to condition, just have the edge point
667         // to the entire '?' expression.
668         if (allowNestedContexts ||
669             cast<AbstractConditionalOperator>(Parent)->getCond() == S)
670           return PathDiagnosticLocation(Parent, SMgr, LC);
671         else
672           return PathDiagnosticLocation(S, SMgr, LC);
673       case Stmt::CXXForRangeStmtClass:
674         if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
675           return PathDiagnosticLocation(S, SMgr, LC);
676         break;
677       case Stmt::DoStmtClass:
678           return PathDiagnosticLocation(S, SMgr, LC);
679       case Stmt::ForStmtClass:
680         if (cast<ForStmt>(Parent)->getBody() == S)
681           return PathDiagnosticLocation(S, SMgr, LC);
682         break;
683       case Stmt::IfStmtClass:
684         if (cast<IfStmt>(Parent)->getCond() != S)
685           return PathDiagnosticLocation(S, SMgr, LC);
686         break;
687       case Stmt::ObjCForCollectionStmtClass:
688         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
689           return PathDiagnosticLocation(S, SMgr, LC);
690         break;
691       case Stmt::WhileStmtClass:
692         if (cast<WhileStmt>(Parent)->getCond() != S)
693           return PathDiagnosticLocation(S, SMgr, LC);
694         break;
695       default:
696         break;
697     }
698 
699     S = Parent;
700   }
701 
702   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
703 
704   return PathDiagnosticLocation(S, SMgr, LC);
705 }
706 
707 //===----------------------------------------------------------------------===//
708 // "Minimal" path diagnostic generation algorithm.
709 //===----------------------------------------------------------------------===//
710 
711 /// If the piece contains a special message, add it to all the call pieces on
712 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
713 /// will construct an event at the call to malloc(), and add a stack hint that
714 /// an allocated memory was returned. We'll use this hint to construct a message
715 /// when returning from the call to my_malloc
716 ///
717 ///   void *my_malloc() { return malloc(sizeof(int)); }
718 ///   void fishy() {
719 ///     void *ptr = my_malloc(); // returned allocated memory
720 ///   } // leak
721 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
722     PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
723   if (R->hasCallStackHint(P))
724     for (const auto &I : CallStack) {
725       PathDiagnosticCallPiece *CP = I.first;
726       const ExplodedNode *N = I.second;
727       std::string stackMsg = R->getCallStackMessage(P, N);
728 
729       // The last message on the path to final bug is the most important
730       // one. Since we traverse the path backwards, do not add the message
731       // if one has been previously added.
732       if (!CP->hasCallStackMessage())
733         CP->setCallStackMessage(stackMsg);
734     }
735 }
736 
737 static void CompactMacroExpandedPieces(PathPieces &path,
738                                        const SourceManager& SM);
739 
740 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
741     const PathDiagnosticConstruct &C, const CFGBlock *Dst,
742     PathDiagnosticLocation &Start) const {
743 
744   const SourceManager &SM = getSourceManager();
745   // Figure out what case arm we took.
746   std::string sbuf;
747   llvm::raw_string_ostream os(sbuf);
748   PathDiagnosticLocation End;
749 
750   if (const Stmt *S = Dst->getLabel()) {
751     End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
752 
753     switch (S->getStmtClass()) {
754     default:
755       os << "No cases match in the switch statement. "
756         "Control jumps to line "
757         << End.asLocation().getExpansionLineNumber();
758       break;
759     case Stmt::DefaultStmtClass:
760       os << "Control jumps to the 'default' case at line "
761         << End.asLocation().getExpansionLineNumber();
762       break;
763 
764     case Stmt::CaseStmtClass: {
765       os << "Control jumps to 'case ";
766       const auto *Case = cast<CaseStmt>(S);
767       const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
768 
769       // Determine if it is an enum.
770       bool GetRawInt = true;
771 
772       if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
773         // FIXME: Maybe this should be an assertion.  Are there cases
774         // were it is not an EnumConstantDecl?
775         const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
776 
777         if (D) {
778           GetRawInt = false;
779           os << *D;
780         }
781       }
782 
783       if (GetRawInt)
784         os << LHS->EvaluateKnownConstInt(getASTContext());
785 
786       os << ":'  at line " << End.asLocation().getExpansionLineNumber();
787       break;
788     }
789     }
790   } else {
791     os << "'Default' branch taken. ";
792     End = ExecutionContinues(os, C);
793   }
794   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
795                                                        os.str());
796 }
797 
798 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
799     const PathDiagnosticConstruct &C, const Stmt *S,
800     PathDiagnosticLocation &Start) const {
801   std::string sbuf;
802   llvm::raw_string_ostream os(sbuf);
803   const PathDiagnosticLocation &End =
804       getEnclosingStmtLocation(S, C.getCurrLocationContext());
805   os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
806   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
807 }
808 
809 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
810     const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
811     const CFGBlock *Dst) const {
812 
813   const SourceManager &SM = getSourceManager();
814 
815   const auto *B = cast<BinaryOperator>(T);
816   std::string sbuf;
817   llvm::raw_string_ostream os(sbuf);
818   os << "Left side of '";
819   PathDiagnosticLocation Start, End;
820 
821   if (B->getOpcode() == BO_LAnd) {
822     os << "&&"
823       << "' is ";
824 
825     if (*(Src->succ_begin() + 1) == Dst) {
826       os << "false";
827       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
828       Start =
829         PathDiagnosticLocation::createOperatorLoc(B, SM);
830     } else {
831       os << "true";
832       Start =
833           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
834       End = ExecutionContinues(C);
835     }
836   } else {
837     assert(B->getOpcode() == BO_LOr);
838     os << "||"
839       << "' is ";
840 
841     if (*(Src->succ_begin() + 1) == Dst) {
842       os << "false";
843       Start =
844           PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
845       End = ExecutionContinues(C);
846     } else {
847       os << "true";
848       End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
849       Start =
850         PathDiagnosticLocation::createOperatorLoc(B, SM);
851     }
852   }
853   return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
854                                                          os.str());
855 }
856 
857 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
858     PathDiagnosticConstruct &C, BlockEdge BE) const {
859   const SourceManager &SM = getSourceManager();
860   const LocationContext *LC = C.getCurrLocationContext();
861   const CFGBlock *Src = BE.getSrc();
862   const CFGBlock *Dst = BE.getDst();
863   const Stmt *T = Src->getTerminatorStmt();
864   if (!T)
865     return;
866 
867   auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
868   switch (T->getStmtClass()) {
869   default:
870     break;
871 
872   case Stmt::GotoStmtClass:
873   case Stmt::IndirectGotoStmtClass: {
874     if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
875       C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
876     break;
877   }
878 
879   case Stmt::SwitchStmtClass: {
880     C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
881     break;
882   }
883 
884   case Stmt::BreakStmtClass:
885   case Stmt::ContinueStmtClass: {
886     std::string sbuf;
887     llvm::raw_string_ostream os(sbuf);
888     PathDiagnosticLocation End = ExecutionContinues(os, C);
889     C.getActivePath().push_front(
890         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
891     break;
892   }
893 
894   // Determine control-flow for ternary '?'.
895   case Stmt::BinaryConditionalOperatorClass:
896   case Stmt::ConditionalOperatorClass: {
897     std::string sbuf;
898     llvm::raw_string_ostream os(sbuf);
899     os << "'?' condition is ";
900 
901     if (*(Src->succ_begin() + 1) == Dst)
902       os << "false";
903     else
904       os << "true";
905 
906     PathDiagnosticLocation End = ExecutionContinues(C);
907 
908     if (const Stmt *S = End.asStmt())
909       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
910 
911     C.getActivePath().push_front(
912         std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
913     break;
914   }
915 
916   // Determine control-flow for short-circuited '&&' and '||'.
917   case Stmt::BinaryOperatorClass: {
918     if (!C.supportsLogicalOpControlFlow())
919       break;
920 
921     C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
922     break;
923   }
924 
925   case Stmt::DoStmtClass:
926     if (*(Src->succ_begin()) == Dst) {
927       std::string sbuf;
928       llvm::raw_string_ostream os(sbuf);
929 
930       os << "Loop condition is true. ";
931       PathDiagnosticLocation End = ExecutionContinues(os, C);
932 
933       if (const Stmt *S = End.asStmt())
934         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
935 
936       C.getActivePath().push_front(
937           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
938                                                            os.str()));
939     } else {
940       PathDiagnosticLocation End = ExecutionContinues(C);
941 
942       if (const Stmt *S = End.asStmt())
943         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
944 
945       C.getActivePath().push_front(
946           std::make_shared<PathDiagnosticControlFlowPiece>(
947               Start, End, "Loop condition is false.  Exiting loop"));
948     }
949     break;
950 
951   case Stmt::WhileStmtClass:
952   case Stmt::ForStmtClass:
953     if (*(Src->succ_begin() + 1) == Dst) {
954       std::string sbuf;
955       llvm::raw_string_ostream os(sbuf);
956 
957       os << "Loop condition is false. ";
958       PathDiagnosticLocation End = ExecutionContinues(os, C);
959       if (const Stmt *S = End.asStmt())
960         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
961 
962       C.getActivePath().push_front(
963           std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
964                                                            os.str()));
965     } else {
966       PathDiagnosticLocation End = ExecutionContinues(C);
967       if (const Stmt *S = End.asStmt())
968         End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
969 
970       C.getActivePath().push_front(
971           std::make_shared<PathDiagnosticControlFlowPiece>(
972               Start, End, "Loop condition is true.  Entering loop body"));
973     }
974 
975     break;
976 
977   case Stmt::IfStmtClass: {
978     PathDiagnosticLocation End = ExecutionContinues(C);
979 
980     if (const Stmt *S = End.asStmt())
981       End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
982 
983     if (*(Src->succ_begin() + 1) == Dst)
984       C.getActivePath().push_front(
985           std::make_shared<PathDiagnosticControlFlowPiece>(
986               Start, End, "Taking false branch"));
987     else
988       C.getActivePath().push_front(
989           std::make_shared<PathDiagnosticControlFlowPiece>(
990               Start, End, "Taking true branch"));
991 
992     break;
993   }
994   }
995 }
996 
997 //===----------------------------------------------------------------------===//
998 // Functions for determining if a loop was executed 0 times.
999 //===----------------------------------------------------------------------===//
1000 
1001 static bool isLoop(const Stmt *Term) {
1002   switch (Term->getStmtClass()) {
1003     case Stmt::ForStmtClass:
1004     case Stmt::WhileStmtClass:
1005     case Stmt::ObjCForCollectionStmtClass:
1006     case Stmt::CXXForRangeStmtClass:
1007       return true;
1008     default:
1009       // Note that we intentionally do not include do..while here.
1010       return false;
1011   }
1012 }
1013 
1014 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1015   const CFGBlock *Src = BE->getSrc();
1016   assert(Src->succ_size() == 2);
1017   return (*(Src->succ_begin()+1) == BE->getDst());
1018 }
1019 
1020 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1021                               const Stmt *SubS) {
1022   while (SubS) {
1023     if (SubS == S)
1024       return true;
1025     SubS = PM.getParent(SubS);
1026   }
1027   return false;
1028 }
1029 
1030 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1031                                      const ExplodedNode *N) {
1032   while (N) {
1033     std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1034     if (SP) {
1035       const Stmt *S = SP->getStmt();
1036       if (!isContainedByStmt(PM, Term, S))
1037         return S;
1038     }
1039     N = N->getFirstPred();
1040   }
1041   return nullptr;
1042 }
1043 
1044 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1045   const Stmt *LoopBody = nullptr;
1046   switch (Term->getStmtClass()) {
1047     case Stmt::CXXForRangeStmtClass: {
1048       const auto *FR = cast<CXXForRangeStmt>(Term);
1049       if (isContainedByStmt(PM, FR->getInc(), S))
1050         return true;
1051       if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1052         return true;
1053       LoopBody = FR->getBody();
1054       break;
1055     }
1056     case Stmt::ForStmtClass: {
1057       const auto *FS = cast<ForStmt>(Term);
1058       if (isContainedByStmt(PM, FS->getInc(), S))
1059         return true;
1060       LoopBody = FS->getBody();
1061       break;
1062     }
1063     case Stmt::ObjCForCollectionStmtClass: {
1064       const auto *FC = cast<ObjCForCollectionStmt>(Term);
1065       LoopBody = FC->getBody();
1066       break;
1067     }
1068     case Stmt::WhileStmtClass:
1069       LoopBody = cast<WhileStmt>(Term)->getBody();
1070       break;
1071     default:
1072       return false;
1073   }
1074   return isContainedByStmt(PM, LoopBody, S);
1075 }
1076 
1077 /// Adds a sanitized control-flow diagnostic edge to a path.
1078 static void addEdgeToPath(PathPieces &path,
1079                           PathDiagnosticLocation &PrevLoc,
1080                           PathDiagnosticLocation NewLoc) {
1081   if (!NewLoc.isValid())
1082     return;
1083 
1084   SourceLocation NewLocL = NewLoc.asLocation();
1085   if (NewLocL.isInvalid())
1086     return;
1087 
1088   if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1089     PrevLoc = NewLoc;
1090     return;
1091   }
1092 
1093   // Ignore self-edges, which occur when there are multiple nodes at the same
1094   // statement.
1095   if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1096     return;
1097 
1098   path.push_front(
1099       std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1100   PrevLoc = NewLoc;
1101 }
1102 
1103 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1104 /// which returns the element for ObjCForCollectionStmts.
1105 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1106   const Stmt *S = B->getTerminatorCondition();
1107   if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1108     return FS->getElement();
1109   return S;
1110 }
1111 
1112 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1113 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1114 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1115     "Loop body skipped when range is empty";
1116 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1117     "Loop body skipped when collection is empty";
1118 
1119 static std::unique_ptr<FilesToLineNumsMap>
1120 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1121 
1122 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1123     PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1124   ProgramPoint P = C.getCurrentNode()->getLocation();
1125   const SourceManager &SM = getSourceManager();
1126 
1127   // Have we encountered an entrance to a call?  It may be
1128   // the case that we have not encountered a matching
1129   // call exit before this point.  This means that the path
1130   // terminated within the call itself.
1131   if (auto CE = P.getAs<CallEnter>()) {
1132 
1133     if (C.shouldAddPathEdges()) {
1134       // Add an edge to the start of the function.
1135       const StackFrameContext *CalleeLC = CE->getCalleeContext();
1136       const Decl *D = CalleeLC->getDecl();
1137       // Add the edge only when the callee has body. We jump to the beginning
1138       // of the *declaration*, however we expect it to be followed by the
1139       // body. This isn't the case for autosynthesized property accessors in
1140       // Objective-C. No need for a similar extra check for CallExit points
1141       // because the exit edge comes from a statement (i.e. return),
1142       // not from declaration.
1143       if (D->hasBody())
1144         addEdgeToPath(C.getActivePath(), PrevLoc,
1145                       PathDiagnosticLocation::createBegin(D, SM));
1146     }
1147 
1148     // Did we visit an entire call?
1149     bool VisitedEntireCall = C.PD->isWithinCall();
1150     C.PD->popActivePath();
1151 
1152     PathDiagnosticCallPiece *Call;
1153     if (VisitedEntireCall) {
1154       Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1155     } else {
1156       // The path terminated within a nested location context, create a new
1157       // call piece to encapsulate the rest of the path pieces.
1158       const Decl *Caller = CE->getLocationContext()->getDecl();
1159       Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1160       assert(C.getActivePath().size() == 1 &&
1161              C.getActivePath().front().get() == Call);
1162 
1163       // Since we just transferred the path over to the call piece, reset the
1164       // mapping of the active path to the current location context.
1165       assert(C.isInLocCtxMap(&C.getActivePath()) &&
1166              "When we ascend to a previously unvisited call, the active path's "
1167              "address shouldn't change, but rather should be compacted into "
1168              "a single CallEvent!");
1169       C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1170 
1171       // Record the location context mapping for the path within the call.
1172       assert(!C.isInLocCtxMap(&Call->path) &&
1173              "When we ascend to a previously unvisited call, this must be the "
1174              "first time we encounter the caller context!");
1175       C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1176     }
1177     Call->setCallee(*CE, SM);
1178 
1179     // Update the previous location in the active path.
1180     PrevLoc = Call->getLocation();
1181 
1182     if (!C.CallStack.empty()) {
1183       assert(C.CallStack.back().first == Call);
1184       C.CallStack.pop_back();
1185     }
1186     return;
1187   }
1188 
1189   assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1190          "The current position in the bug path is out of sync with the "
1191          "location context associated with the active path!");
1192 
1193   // Have we encountered an exit from a function call?
1194   if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1195 
1196     // We are descending into a call (backwards).  Construct
1197     // a new call piece to contain the path pieces for that call.
1198     auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1199     // Record the mapping from call piece to LocationContext.
1200     assert(!C.isInLocCtxMap(&Call->path) &&
1201            "We just entered a call, this must've been the first time we "
1202            "encounter its context!");
1203     C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1204 
1205     if (C.shouldAddPathEdges()) {
1206       // Add the edge to the return site.
1207       addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1208       PrevLoc.invalidate();
1209     }
1210 
1211     auto *P = Call.get();
1212     C.getActivePath().push_front(std::move(Call));
1213 
1214     // Make the contents of the call the active path for now.
1215     C.PD->pushActivePath(&P->path);
1216     C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1217     return;
1218   }
1219 
1220   if (auto PS = P.getAs<PostStmt>()) {
1221     if (!C.shouldAddPathEdges())
1222       return;
1223 
1224     // Add an edge.  If this is an ObjCForCollectionStmt do
1225     // not add an edge here as it appears in the CFG both
1226     // as a terminator and as a terminator condition.
1227     if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1228       PathDiagnosticLocation L =
1229           PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1230       addEdgeToPath(C.getActivePath(), PrevLoc, L);
1231     }
1232 
1233   } else if (auto BE = P.getAs<BlockEdge>()) {
1234 
1235     if (C.shouldAddControlNotes()) {
1236       generateMinimalDiagForBlockEdge(C, *BE);
1237     }
1238 
1239     if (!C.shouldAddPathEdges()) {
1240       return;
1241     }
1242 
1243     // Are we jumping to the head of a loop?  Add a special diagnostic.
1244     if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1245       PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1246       const Stmt *Body = nullptr;
1247 
1248       if (const auto *FS = dyn_cast<ForStmt>(Loop))
1249         Body = FS->getBody();
1250       else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1251         Body = WS->getBody();
1252       else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1253         Body = OFS->getBody();
1254       } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1255         Body = FRS->getBody();
1256       }
1257       // do-while statements are explicitly excluded here
1258 
1259       auto p = std::make_shared<PathDiagnosticEventPiece>(
1260           L, "Looping back to the head of the loop");
1261       p->setPrunable(true);
1262 
1263       addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1264       // We might've added a very similar control node already
1265       if (!C.shouldAddControlNotes()) {
1266         C.getActivePath().push_front(std::move(p));
1267       }
1268 
1269       if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1270         addEdgeToPath(C.getActivePath(), PrevLoc,
1271                       PathDiagnosticLocation::createEndBrace(CS, SM));
1272       }
1273     }
1274 
1275     const CFGBlock *BSrc = BE->getSrc();
1276     const ParentMap &PM = C.getParentMap();
1277 
1278     if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1279       // Are we jumping past the loop body without ever executing the
1280       // loop (because the condition was false)?
1281       if (isLoop(Term)) {
1282         const Stmt *TermCond = getTerminatorCondition(BSrc);
1283         bool IsInLoopBody = isInLoopBody(
1284             PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1285 
1286         StringRef str;
1287 
1288         if (isJumpToFalseBranch(&*BE)) {
1289           if (!IsInLoopBody) {
1290             if (isa<ObjCForCollectionStmt>(Term)) {
1291               str = StrLoopCollectionEmpty;
1292             } else if (isa<CXXForRangeStmt>(Term)) {
1293               str = StrLoopRangeEmpty;
1294             } else {
1295               str = StrLoopBodyZero;
1296             }
1297           }
1298         } else {
1299           str = StrEnteringLoop;
1300         }
1301 
1302         if (!str.empty()) {
1303           PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1304                                    C.getCurrLocationContext());
1305           auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1306           PE->setPrunable(true);
1307           addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1308 
1309           // We might've added a very similar control node already
1310           if (!C.shouldAddControlNotes()) {
1311             C.getActivePath().push_front(std::move(PE));
1312           }
1313         }
1314       } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1315         PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1316         addEdgeToPath(C.getActivePath(), PrevLoc, L);
1317       }
1318     }
1319   }
1320 }
1321 
1322 static std::unique_ptr<PathDiagnostic>
1323 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1324   const BugType &BT = R->getBugType();
1325   return std::make_unique<PathDiagnostic>(
1326       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1327       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1328       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1329       std::make_unique<FilesToLineNumsMap>());
1330 }
1331 
1332 static std::unique_ptr<PathDiagnostic>
1333 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1334                                  const SourceManager &SM) {
1335   const BugType &BT = R->getBugType();
1336   return std::make_unique<PathDiagnostic>(
1337       BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1338       R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1339       BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1340       findExecutedLines(SM, R->getErrorNode()));
1341 }
1342 
1343 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1344   if (!S)
1345     return nullptr;
1346 
1347   while (true) {
1348     S = PM.getParentIgnoreParens(S);
1349 
1350     if (!S)
1351       break;
1352 
1353     if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1354       continue;
1355 
1356     break;
1357   }
1358 
1359   return S;
1360 }
1361 
1362 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1363   switch (S->getStmtClass()) {
1364     case Stmt::BinaryOperatorClass: {
1365       const auto *BO = cast<BinaryOperator>(S);
1366       if (!BO->isLogicalOp())
1367         return false;
1368       return BO->getLHS() == Cond || BO->getRHS() == Cond;
1369     }
1370     case Stmt::IfStmtClass:
1371       return cast<IfStmt>(S)->getCond() == Cond;
1372     case Stmt::ForStmtClass:
1373       return cast<ForStmt>(S)->getCond() == Cond;
1374     case Stmt::WhileStmtClass:
1375       return cast<WhileStmt>(S)->getCond() == Cond;
1376     case Stmt::DoStmtClass:
1377       return cast<DoStmt>(S)->getCond() == Cond;
1378     case Stmt::ChooseExprClass:
1379       return cast<ChooseExpr>(S)->getCond() == Cond;
1380     case Stmt::IndirectGotoStmtClass:
1381       return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1382     case Stmt::SwitchStmtClass:
1383       return cast<SwitchStmt>(S)->getCond() == Cond;
1384     case Stmt::BinaryConditionalOperatorClass:
1385       return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1386     case Stmt::ConditionalOperatorClass: {
1387       const auto *CO = cast<ConditionalOperator>(S);
1388       return CO->getCond() == Cond ||
1389              CO->getLHS() == Cond ||
1390              CO->getRHS() == Cond;
1391     }
1392     case Stmt::ObjCForCollectionStmtClass:
1393       return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1394     case Stmt::CXXForRangeStmtClass: {
1395       const auto *FRS = cast<CXXForRangeStmt>(S);
1396       return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1397     }
1398     default:
1399       return false;
1400   }
1401 }
1402 
1403 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1404   if (const auto *FS = dyn_cast<ForStmt>(FL))
1405     return FS->getInc() == S || FS->getInit() == S;
1406   if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1407     return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1408            FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1409   return false;
1410 }
1411 
1412 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1413 
1414 /// Adds synthetic edges from top-level statements to their subexpressions.
1415 ///
1416 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1417 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1418 /// we'd like to see an edge from A to B, then another one from B to B.1.
1419 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1420   const ParentMap &PM = LC->getParentMap();
1421   PathPieces::iterator Prev = pieces.end();
1422   for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1423        Prev = I, ++I) {
1424     auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1425 
1426     if (!Piece)
1427       continue;
1428 
1429     PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1430     SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1431 
1432     PathDiagnosticLocation NextSrcContext = SrcLoc;
1433     const Stmt *InnerStmt = nullptr;
1434     while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1435       SrcContexts.push_back(NextSrcContext);
1436       InnerStmt = NextSrcContext.asStmt();
1437       NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1438                                                 /*allowNested=*/true);
1439     }
1440 
1441     // Repeatedly split the edge as necessary.
1442     // This is important for nested logical expressions (||, &&, ?:) where we
1443     // want to show all the levels of context.
1444     while (true) {
1445       const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1446 
1447       // We are looking at an edge. Is the destination within a larger
1448       // expression?
1449       PathDiagnosticLocation DstContext =
1450           getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1451       if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1452         break;
1453 
1454       // If the source is in the same context, we're already good.
1455       if (llvm::is_contained(SrcContexts, DstContext))
1456         break;
1457 
1458       // Update the subexpression node to point to the context edge.
1459       Piece->setStartLocation(DstContext);
1460 
1461       // Try to extend the previous edge if it's at the same level as the source
1462       // context.
1463       if (Prev != E) {
1464         auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1465 
1466         if (PrevPiece) {
1467           if (const Stmt *PrevSrc =
1468                   PrevPiece->getStartLocation().getStmtOrNull()) {
1469             const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1470             if (PrevSrcParent ==
1471                 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1472               PrevPiece->setEndLocation(DstContext);
1473               break;
1474             }
1475           }
1476         }
1477       }
1478 
1479       // Otherwise, split the current edge into a context edge and a
1480       // subexpression edge. Note that the context statement may itself have
1481       // context.
1482       auto P =
1483           std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1484       Piece = P.get();
1485       I = pieces.insert(I, std::move(P));
1486     }
1487   }
1488 }
1489 
1490 /// Move edges from a branch condition to a branch target
1491 ///        when the condition is simple.
1492 ///
1493 /// This restructures some of the work of addContextEdges.  That function
1494 /// creates edges this may destroy, but they work together to create a more
1495 /// aesthetically set of edges around branches.  After the call to
1496 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1497 /// the branch to the branch condition, and (3) an edge from the branch
1498 /// condition to the branch target.  We keep (1), but may wish to remove (2)
1499 /// and move the source of (3) to the branch if the branch condition is simple.
1500 static void simplifySimpleBranches(PathPieces &pieces) {
1501   for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1502     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1503 
1504     if (!PieceI)
1505       continue;
1506 
1507     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1508     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1509 
1510     if (!s1Start || !s1End)
1511       continue;
1512 
1513     PathPieces::iterator NextI = I; ++NextI;
1514     if (NextI == E)
1515       break;
1516 
1517     PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1518 
1519     while (true) {
1520       if (NextI == E)
1521         break;
1522 
1523       const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1524       if (EV) {
1525         StringRef S = EV->getString();
1526         if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1527             S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1528           ++NextI;
1529           continue;
1530         }
1531         break;
1532       }
1533 
1534       PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1535       break;
1536     }
1537 
1538     if (!PieceNextI)
1539       continue;
1540 
1541     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1542     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1543 
1544     if (!s2Start || !s2End || s1End != s2Start)
1545       continue;
1546 
1547     // We only perform this transformation for specific branch kinds.
1548     // We don't want to do this for do..while, for example.
1549     if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1550              CXXForRangeStmt>(s1Start))
1551       continue;
1552 
1553     // Is s1End the branch condition?
1554     if (!isConditionForTerminator(s1Start, s1End))
1555       continue;
1556 
1557     // Perform the hoisting by eliminating (2) and changing the start
1558     // location of (3).
1559     PieceNextI->setStartLocation(PieceI->getStartLocation());
1560     I = pieces.erase(I);
1561   }
1562 }
1563 
1564 /// Returns the number of bytes in the given (character-based) SourceRange.
1565 ///
1566 /// If the locations in the range are not on the same line, returns
1567 /// std::nullopt.
1568 ///
1569 /// Note that this does not do a precise user-visible character or column count.
1570 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1571                                                    SourceRange Range) {
1572   SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1573                              SM.getExpansionRange(Range.getEnd()).getEnd());
1574 
1575   FileID FID = SM.getFileID(ExpansionRange.getBegin());
1576   if (FID != SM.getFileID(ExpansionRange.getEnd()))
1577     return std::nullopt;
1578 
1579   std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1580   if (!Buffer)
1581     return std::nullopt;
1582 
1583   unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1584   unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1585   StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1586 
1587   // We're searching the raw bytes of the buffer here, which might include
1588   // escaped newlines and such. That's okay; we're trying to decide whether the
1589   // SourceRange is covering a large or small amount of space in the user's
1590   // editor.
1591   if (Snippet.find_first_of("\r\n") != StringRef::npos)
1592     return std::nullopt;
1593 
1594   // This isn't Unicode-aware, but it doesn't need to be.
1595   return Snippet.size();
1596 }
1597 
1598 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1599 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1600                                                    const Stmt *S) {
1601   return getLengthOnSingleLine(SM, S->getSourceRange());
1602 }
1603 
1604 /// Eliminate two-edge cycles created by addContextEdges().
1605 ///
1606 /// Once all the context edges are in place, there are plenty of cases where
1607 /// there's a single edge from a top-level statement to a subexpression,
1608 /// followed by a single path note, and then a reverse edge to get back out to
1609 /// the top level. If the statement is simple enough, the subexpression edges
1610 /// just add noise and make it harder to understand what's going on.
1611 ///
1612 /// This function only removes edges in pairs, because removing only one edge
1613 /// might leave other edges dangling.
1614 ///
1615 /// This will not remove edges in more complicated situations:
1616 /// - if there is more than one "hop" leading to or from a subexpression.
1617 /// - if there is an inlined call between the edges instead of a single event.
1618 /// - if the whole statement is large enough that having subexpression arrows
1619 ///   might be helpful.
1620 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1621   for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1622     // Pattern match the current piece and its successor.
1623     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1624 
1625     if (!PieceI) {
1626       ++I;
1627       continue;
1628     }
1629 
1630     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1631     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1632 
1633     PathPieces::iterator NextI = I; ++NextI;
1634     if (NextI == E)
1635       break;
1636 
1637     const auto *PieceNextI =
1638         dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1639 
1640     if (!PieceNextI) {
1641       if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1642         ++NextI;
1643         if (NextI == E)
1644           break;
1645         PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1646       }
1647 
1648       if (!PieceNextI) {
1649         ++I;
1650         continue;
1651       }
1652     }
1653 
1654     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1655     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1656 
1657     if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1658       const size_t MAX_SHORT_LINE_LENGTH = 80;
1659       std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1660       if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1661         std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1662         if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1663           Path.erase(I);
1664           I = Path.erase(NextI);
1665           continue;
1666         }
1667       }
1668     }
1669 
1670     ++I;
1671   }
1672 }
1673 
1674 /// Return true if X is contained by Y.
1675 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1676   while (X) {
1677     if (X == Y)
1678       return true;
1679     X = PM.getParent(X);
1680   }
1681   return false;
1682 }
1683 
1684 // Remove short edges on the same line less than 3 columns in difference.
1685 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1686                             const ParentMap &PM) {
1687   bool erased = false;
1688 
1689   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1690        erased ? I : ++I) {
1691     erased = false;
1692 
1693     const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1694 
1695     if (!PieceI)
1696       continue;
1697 
1698     const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1699     const Stmt *end   = PieceI->getEndLocation().getStmtOrNull();
1700 
1701     if (!start || !end)
1702       continue;
1703 
1704     const Stmt *endParent = PM.getParent(end);
1705     if (!endParent)
1706       continue;
1707 
1708     if (isConditionForTerminator(end, endParent))
1709       continue;
1710 
1711     SourceLocation FirstLoc = start->getBeginLoc();
1712     SourceLocation SecondLoc = end->getBeginLoc();
1713 
1714     if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1715       continue;
1716     if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1717       std::swap(SecondLoc, FirstLoc);
1718 
1719     SourceRange EdgeRange(FirstLoc, SecondLoc);
1720     std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1721 
1722     // If the statements are on different lines, continue.
1723     if (!ByteWidth)
1724       continue;
1725 
1726     const size_t MAX_PUNY_EDGE_LENGTH = 2;
1727     if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1728       // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1729       // there might not be enough /columns/. A proper user-visible column count
1730       // is probably too expensive, though.
1731       I = path.erase(I);
1732       erased = true;
1733       continue;
1734     }
1735   }
1736 }
1737 
1738 static void removeIdenticalEvents(PathPieces &path) {
1739   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1740     const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1741 
1742     if (!PieceI)
1743       continue;
1744 
1745     PathPieces::iterator NextI = I; ++NextI;
1746     if (NextI == E)
1747       return;
1748 
1749     const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1750 
1751     if (!PieceNextI)
1752       continue;
1753 
1754     // Erase the second piece if it has the same exact message text.
1755     if (PieceI->getString() == PieceNextI->getString()) {
1756       path.erase(NextI);
1757     }
1758   }
1759 }
1760 
1761 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1762                           OptimizedCallsSet &OCS) {
1763   bool hasChanges = false;
1764   const LocationContext *LC = C.getLocationContextFor(&path);
1765   assert(LC);
1766   const ParentMap &PM = LC->getParentMap();
1767   const SourceManager &SM = C.getSourceManager();
1768 
1769   for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1770     // Optimize subpaths.
1771     if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1772       // Record the fact that a call has been optimized so we only do the
1773       // effort once.
1774       if (!OCS.count(CallI)) {
1775         while (optimizeEdges(C, CallI->path, OCS)) {
1776         }
1777         OCS.insert(CallI);
1778       }
1779       ++I;
1780       continue;
1781     }
1782 
1783     // Pattern match the current piece and its successor.
1784     auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1785 
1786     if (!PieceI) {
1787       ++I;
1788       continue;
1789     }
1790 
1791     const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1792     const Stmt *s1End   = PieceI->getEndLocation().getStmtOrNull();
1793     const Stmt *level1 = getStmtParent(s1Start, PM);
1794     const Stmt *level2 = getStmtParent(s1End, PM);
1795 
1796     PathPieces::iterator NextI = I; ++NextI;
1797     if (NextI == E)
1798       break;
1799 
1800     const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1801 
1802     if (!PieceNextI) {
1803       ++I;
1804       continue;
1805     }
1806 
1807     const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1808     const Stmt *s2End   = PieceNextI->getEndLocation().getStmtOrNull();
1809     const Stmt *level3 = getStmtParent(s2Start, PM);
1810     const Stmt *level4 = getStmtParent(s2End, PM);
1811 
1812     // Rule I.
1813     //
1814     // If we have two consecutive control edges whose end/begin locations
1815     // are at the same level (e.g. statements or top-level expressions within
1816     // a compound statement, or siblings share a single ancestor expression),
1817     // then merge them if they have no interesting intermediate event.
1818     //
1819     // For example:
1820     //
1821     // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1822     // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
1823     //
1824     // NOTE: this will be limited later in cases where we add barriers
1825     // to prevent this optimization.
1826     if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1827       PieceI->setEndLocation(PieceNextI->getEndLocation());
1828       path.erase(NextI);
1829       hasChanges = true;
1830       continue;
1831     }
1832 
1833     // Rule II.
1834     //
1835     // Eliminate edges between subexpressions and parent expressions
1836     // when the subexpression is consumed.
1837     //
1838     // NOTE: this will be limited later in cases where we add barriers
1839     // to prevent this optimization.
1840     if (s1End && s1End == s2Start && level2) {
1841       bool removeEdge = false;
1842       // Remove edges into the increment or initialization of a
1843       // loop that have no interleaving event.  This means that
1844       // they aren't interesting.
1845       if (isIncrementOrInitInForLoop(s1End, level2))
1846         removeEdge = true;
1847       // Next only consider edges that are not anchored on
1848       // the condition of a terminator.  This are intermediate edges
1849       // that we might want to trim.
1850       else if (!isConditionForTerminator(level2, s1End)) {
1851         // Trim edges on expressions that are consumed by
1852         // the parent expression.
1853         if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1854           removeEdge = true;
1855         }
1856         // Trim edges where a lexical containment doesn't exist.
1857         // For example:
1858         //
1859         //  X -> Y -> Z
1860         //
1861         // If 'Z' lexically contains Y (it is an ancestor) and
1862         // 'X' does not lexically contain Y (it is a descendant OR
1863         // it has no lexical relationship at all) then trim.
1864         //
1865         // This can eliminate edges where we dive into a subexpression
1866         // and then pop back out, etc.
1867         else if (s1Start && s2End &&
1868                  lexicalContains(PM, s2Start, s2End) &&
1869                  !lexicalContains(PM, s1End, s1Start)) {
1870           removeEdge = true;
1871         }
1872         // Trim edges from a subexpression back to the top level if the
1873         // subexpression is on a different line.
1874         //
1875         // A.1 -> A -> B
1876         // becomes
1877         // A.1 -> B
1878         //
1879         // These edges just look ugly and don't usually add anything.
1880         else if (s1Start && s2End &&
1881                  lexicalContains(PM, s1Start, s1End)) {
1882           SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1883                                 PieceI->getStartLocation().asLocation());
1884           if (!getLengthOnSingleLine(SM, EdgeRange))
1885             removeEdge = true;
1886         }
1887       }
1888 
1889       if (removeEdge) {
1890         PieceI->setEndLocation(PieceNextI->getEndLocation());
1891         path.erase(NextI);
1892         hasChanges = true;
1893         continue;
1894       }
1895     }
1896 
1897     // Optimize edges for ObjC fast-enumeration loops.
1898     //
1899     // (X -> collection) -> (collection -> element)
1900     //
1901     // becomes:
1902     //
1903     // (X -> element)
1904     if (s1End == s2Start) {
1905       const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1906       if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1907           s2End == FS->getElement()) {
1908         PieceI->setEndLocation(PieceNextI->getEndLocation());
1909         path.erase(NextI);
1910         hasChanges = true;
1911         continue;
1912       }
1913     }
1914 
1915     // No changes at this index?  Move to the next one.
1916     ++I;
1917   }
1918 
1919   if (!hasChanges) {
1920     // Adjust edges into subexpressions to make them more uniform
1921     // and aesthetically pleasing.
1922     addContextEdges(path, LC);
1923     // Remove "cyclical" edges that include one or more context edges.
1924     removeContextCycles(path, SM);
1925     // Hoist edges originating from branch conditions to branches
1926     // for simple branches.
1927     simplifySimpleBranches(path);
1928     // Remove any puny edges left over after primary optimization pass.
1929     removePunyEdges(path, SM, PM);
1930     // Remove identical events.
1931     removeIdenticalEvents(path);
1932   }
1933 
1934   return hasChanges;
1935 }
1936 
1937 /// Drop the very first edge in a path, which should be a function entry edge.
1938 ///
1939 /// If the first edge is not a function entry edge (say, because the first
1940 /// statement had an invalid source location), this function does nothing.
1941 // FIXME: We should just generate invalid edges anyway and have the optimizer
1942 // deal with them.
1943 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1944                                   PathPieces &Path) {
1945   const auto *FirstEdge =
1946       dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1947   if (!FirstEdge)
1948     return;
1949 
1950   const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1951   PathDiagnosticLocation EntryLoc =
1952       PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1953   if (FirstEdge->getStartLocation() != EntryLoc)
1954     return;
1955 
1956   Path.pop_front();
1957 }
1958 
1959 /// Populate executes lines with lines containing at least one diagnostics.
1960 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1961 
1962   PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1963   FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1964 
1965   for (const auto &P : path) {
1966     FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1967     FileID FID = Loc.getFileID();
1968     unsigned LineNo = Loc.getLineNumber();
1969     assert(FID.isValid());
1970     ExecutedLines[FID].insert(LineNo);
1971   }
1972 }
1973 
1974 PathDiagnosticConstruct::PathDiagnosticConstruct(
1975     const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1976     const PathSensitiveBugReport *R)
1977     : Consumer(PDC), CurrentNode(ErrorNode),
1978       SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1979       PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1980   LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1981 }
1982 
1983 PathDiagnosticBuilder::PathDiagnosticBuilder(
1984     BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1985     PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1986     std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1987     : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1988       ErrorNode(ErrorNode),
1989       VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1990 
1991 std::unique_ptr<PathDiagnostic>
1992 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1993   PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1994 
1995   const SourceManager &SM = getSourceManager();
1996   const AnalyzerOptions &Opts = getAnalyzerOptions();
1997 
1998   if (!PDC->shouldGenerateDiagnostics())
1999     return generateEmptyDiagnosticForReport(R, getSourceManager());
2000 
2001   // Construct the final (warning) event for the bug report.
2002   auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2003   PathDiagnosticPieceRef LastPiece;
2004   if (EndNotes != VisitorsDiagnostics->end()) {
2005     assert(!EndNotes->second.empty());
2006     LastPiece = EndNotes->second[0];
2007   } else {
2008     LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2009                                                       *getBugReport());
2010   }
2011   Construct.PD->setEndOfPath(LastPiece);
2012 
2013   PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2014   // From the error node to the root, ascend the bug path and construct the bug
2015   // report.
2016   while (Construct.ascendToPrevNode()) {
2017     generatePathDiagnosticsForNode(Construct, PrevLoc);
2018 
2019     auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2020     if (VisitorNotes == VisitorsDiagnostics->end())
2021       continue;
2022 
2023     // This is a workaround due to inability to put shared PathDiagnosticPiece
2024     // into a FoldingSet.
2025     std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2026 
2027     // Add pieces from custom visitors.
2028     for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2029       llvm::FoldingSetNodeID ID;
2030       Note->Profile(ID);
2031       if (!DeduplicationSet.insert(ID).second)
2032         continue;
2033 
2034       if (PDC->shouldAddPathEdges())
2035         addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2036       updateStackPiecesWithMessage(Note, Construct.CallStack);
2037       Construct.getActivePath().push_front(Note);
2038     }
2039   }
2040 
2041   if (PDC->shouldAddPathEdges()) {
2042     // Add an edge to the start of the function.
2043     // We'll prune it out later, but it helps make diagnostics more uniform.
2044     const StackFrameContext *CalleeLC =
2045         Construct.getLocationContextForActivePath()->getStackFrame();
2046     const Decl *D = CalleeLC->getDecl();
2047     addEdgeToPath(Construct.getActivePath(), PrevLoc,
2048                   PathDiagnosticLocation::createBegin(D, SM));
2049   }
2050 
2051 
2052   // Finally, prune the diagnostic path of uninteresting stuff.
2053   if (!Construct.PD->path.empty()) {
2054     if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2055       bool stillHasNotes =
2056           removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2057       assert(stillHasNotes);
2058       (void)stillHasNotes;
2059     }
2060 
2061     // Remove pop-up notes if needed.
2062     if (!Opts.ShouldAddPopUpNotes)
2063       removePopUpNotes(Construct.getMutablePieces());
2064 
2065     // Redirect all call pieces to have valid locations.
2066     adjustCallLocations(Construct.getMutablePieces());
2067     removePiecesWithInvalidLocations(Construct.getMutablePieces());
2068 
2069     if (PDC->shouldAddPathEdges()) {
2070 
2071       // Reduce the number of edges from a very conservative set
2072       // to an aesthetically pleasing subset that conveys the
2073       // necessary information.
2074       OptimizedCallsSet OCS;
2075       while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2076       }
2077 
2078       // Drop the very first function-entry edge. It's not really necessary
2079       // for top-level functions.
2080       dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2081     }
2082 
2083     // Remove messages that are basically the same, and edges that may not
2084     // make sense.
2085     // We have to do this after edge optimization in the Extensive mode.
2086     removeRedundantMsgs(Construct.getMutablePieces());
2087     removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2088   }
2089 
2090   if (Opts.ShouldDisplayMacroExpansions)
2091     CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2092 
2093   return std::move(Construct.PD);
2094 }
2095 
2096 //===----------------------------------------------------------------------===//
2097 // Methods for BugType and subclasses.
2098 //===----------------------------------------------------------------------===//
2099 
2100 void BugType::anchor() {}
2101 
2102 void BuiltinBug::anchor() {}
2103 
2104 //===----------------------------------------------------------------------===//
2105 // Methods for BugReport and subclasses.
2106 //===----------------------------------------------------------------------===//
2107 
2108 LLVM_ATTRIBUTE_USED static bool
2109 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2110   for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2111     if (Pair.second == CheckerName)
2112       return true;
2113   }
2114   return false;
2115 }
2116 
2117 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2118                                          StringRef CheckerName) {
2119   for (const CheckerInfo &Checker : Registry.Checkers) {
2120     if (Checker.FullName == CheckerName)
2121       return Checker.IsHidden;
2122   }
2123   llvm_unreachable(
2124       "Checker name not found in CheckerRegistry -- did you retrieve it "
2125       "correctly from CheckerManager::getCurrentCheckerName?");
2126 }
2127 
2128 PathSensitiveBugReport::PathSensitiveBugReport(
2129     const BugType &bt, StringRef shortDesc, StringRef desc,
2130     const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2131     const Decl *DeclToUnique)
2132     : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2133       ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2134       UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2135   assert(!isDependency(ErrorNode->getState()
2136                            ->getAnalysisManager()
2137                            .getCheckerManager()
2138                            ->getCheckerRegistryData(),
2139                        bt.getCheckerName()) &&
2140          "Some checkers depend on this one! We don't allow dependency "
2141          "checkers to emit warnings, because checkers should depend on "
2142          "*modeling*, not *diagnostics*.");
2143 
2144   assert(
2145       (bt.getCheckerName().startswith("debug") ||
2146        !isHidden(ErrorNode->getState()
2147                      ->getAnalysisManager()
2148                      .getCheckerManager()
2149                      ->getCheckerRegistryData(),
2150                  bt.getCheckerName())) &&
2151           "Hidden checkers musn't emit diagnostics as they are by definition "
2152           "non-user facing!");
2153 }
2154 
2155 void PathSensitiveBugReport::addVisitor(
2156     std::unique_ptr<BugReporterVisitor> visitor) {
2157   if (!visitor)
2158     return;
2159 
2160   llvm::FoldingSetNodeID ID;
2161   visitor->Profile(ID);
2162 
2163   void *InsertPos = nullptr;
2164   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2165     return;
2166   }
2167 
2168   Callbacks.push_back(std::move(visitor));
2169 }
2170 
2171 void PathSensitiveBugReport::clearVisitors() {
2172   Callbacks.clear();
2173 }
2174 
2175 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2176   const ExplodedNode *N = getErrorNode();
2177   if (!N)
2178     return nullptr;
2179 
2180   const LocationContext *LC = N->getLocationContext();
2181   return LC->getStackFrame()->getDecl();
2182 }
2183 
2184 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2185   hash.AddInteger(static_cast<int>(getKind()));
2186   hash.AddPointer(&BT);
2187   hash.AddString(Description);
2188   assert(Location.isValid());
2189   Location.Profile(hash);
2190 
2191   for (SourceRange range : Ranges) {
2192     if (!range.isValid())
2193       continue;
2194     hash.Add(range.getBegin());
2195     hash.Add(range.getEnd());
2196   }
2197 }
2198 
2199 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2200   hash.AddInteger(static_cast<int>(getKind()));
2201   hash.AddPointer(&BT);
2202   hash.AddString(Description);
2203   PathDiagnosticLocation UL = getUniqueingLocation();
2204   if (UL.isValid()) {
2205     UL.Profile(hash);
2206   } else {
2207     // TODO: The statement may be null if the report was emitted before any
2208     // statements were executed. In particular, some checkers by design
2209     // occasionally emit their reports in empty functions (that have no
2210     // statements in their body). Do we profile correctly in this case?
2211     hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2212   }
2213 
2214   for (SourceRange range : Ranges) {
2215     if (!range.isValid())
2216       continue;
2217     hash.Add(range.getBegin());
2218     hash.Add(range.getEnd());
2219   }
2220 }
2221 
2222 template <class T>
2223 static void insertToInterestingnessMap(
2224     llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2225     bugreporter::TrackingKind TKind) {
2226   auto Result = InterestingnessMap.insert({Val, TKind});
2227 
2228   if (Result.second)
2229     return;
2230 
2231   // Even if this symbol/region was already marked as interesting as a
2232   // condition, if we later mark it as interesting again but with
2233   // thorough tracking, overwrite it. Entities marked with thorough
2234   // interestiness are the most important (or most interesting, if you will),
2235   // and we wouldn't like to downplay their importance.
2236 
2237   switch (TKind) {
2238     case bugreporter::TrackingKind::Thorough:
2239       Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2240       return;
2241     case bugreporter::TrackingKind::Condition:
2242       return;
2243     }
2244 
2245     llvm_unreachable(
2246         "BugReport::markInteresting currently can only handle 2 different "
2247         "tracking kinds! Please define what tracking kind should this entitiy"
2248         "have, if it was already marked as interesting with a different kind!");
2249 }
2250 
2251 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2252                                              bugreporter::TrackingKind TKind) {
2253   if (!sym)
2254     return;
2255 
2256   insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2257 
2258   // FIXME: No tests exist for this code and it is questionable:
2259   // How to handle multiple metadata for the same region?
2260   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2261     markInteresting(meta->getRegion(), TKind);
2262 }
2263 
2264 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2265   if (!sym)
2266     return;
2267   InterestingSymbols.erase(sym);
2268 
2269   // The metadata part of markInteresting is not reversed here.
2270   // Just making the same region not interesting is incorrect
2271   // in specific cases.
2272   if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2273     markNotInteresting(meta->getRegion());
2274 }
2275 
2276 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2277                                              bugreporter::TrackingKind TKind) {
2278   if (!R)
2279     return;
2280 
2281   R = R->getBaseRegion();
2282   insertToInterestingnessMap(InterestingRegions, R, TKind);
2283 
2284   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2285     markInteresting(SR->getSymbol(), TKind);
2286 }
2287 
2288 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2289   if (!R)
2290     return;
2291 
2292   R = R->getBaseRegion();
2293   InterestingRegions.erase(R);
2294 
2295   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2296     markNotInteresting(SR->getSymbol());
2297 }
2298 
2299 void PathSensitiveBugReport::markInteresting(SVal V,
2300                                              bugreporter::TrackingKind TKind) {
2301   markInteresting(V.getAsRegion(), TKind);
2302   markInteresting(V.getAsSymbol(), TKind);
2303 }
2304 
2305 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2306   if (!LC)
2307     return;
2308   InterestingLocationContexts.insert(LC);
2309 }
2310 
2311 std::optional<bugreporter::TrackingKind>
2312 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2313   auto RKind = getInterestingnessKind(V.getAsRegion());
2314   auto SKind = getInterestingnessKind(V.getAsSymbol());
2315   if (!RKind)
2316     return SKind;
2317   if (!SKind)
2318     return RKind;
2319 
2320   // If either is marked with throrough tracking, return that, we wouldn't like
2321   // to downplay a note's importance by 'only' mentioning it as a condition.
2322   switch(*RKind) {
2323     case bugreporter::TrackingKind::Thorough:
2324       return RKind;
2325     case bugreporter::TrackingKind::Condition:
2326       return SKind;
2327   }
2328 
2329   llvm_unreachable(
2330       "BugReport::getInterestingnessKind currently can only handle 2 different "
2331       "tracking kinds! Please define what tracking kind should we return here "
2332       "when the kind of getAsRegion() and getAsSymbol() is different!");
2333   return std::nullopt;
2334 }
2335 
2336 std::optional<bugreporter::TrackingKind>
2337 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2338   if (!sym)
2339     return std::nullopt;
2340   // We don't currently consider metadata symbols to be interesting
2341   // even if we know their region is interesting. Is that correct behavior?
2342   auto It = InterestingSymbols.find(sym);
2343   if (It == InterestingSymbols.end())
2344     return std::nullopt;
2345   return It->getSecond();
2346 }
2347 
2348 std::optional<bugreporter::TrackingKind>
2349 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2350   if (!R)
2351     return std::nullopt;
2352 
2353   R = R->getBaseRegion();
2354   auto It = InterestingRegions.find(R);
2355   if (It != InterestingRegions.end())
2356     return It->getSecond();
2357 
2358   if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2359     return getInterestingnessKind(SR->getSymbol());
2360   return std::nullopt;
2361 }
2362 
2363 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2364   return getInterestingnessKind(V).has_value();
2365 }
2366 
2367 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2368   return getInterestingnessKind(sym).has_value();
2369 }
2370 
2371 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2372   return getInterestingnessKind(R).has_value();
2373 }
2374 
2375 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC)  const {
2376   if (!LC)
2377     return false;
2378   return InterestingLocationContexts.count(LC);
2379 }
2380 
2381 const Stmt *PathSensitiveBugReport::getStmt() const {
2382   if (!ErrorNode)
2383     return nullptr;
2384 
2385   ProgramPoint ProgP = ErrorNode->getLocation();
2386   const Stmt *S = nullptr;
2387 
2388   if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2389     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2390     if (BE->getBlock() == &Exit)
2391       S = ErrorNode->getPreviousStmtForDiagnostics();
2392   }
2393   if (!S)
2394     S = ErrorNode->getStmtForDiagnostics();
2395 
2396   return S;
2397 }
2398 
2399 ArrayRef<SourceRange>
2400 PathSensitiveBugReport::getRanges() const {
2401   // If no custom ranges, add the range of the statement corresponding to
2402   // the error node.
2403   if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2404       return ErrorNodeRange;
2405 
2406   return Ranges;
2407 }
2408 
2409 PathDiagnosticLocation
2410 PathSensitiveBugReport::getLocation() const {
2411   assert(ErrorNode && "Cannot create a location with a null node.");
2412   const Stmt *S = ErrorNode->getStmtForDiagnostics();
2413     ProgramPoint P = ErrorNode->getLocation();
2414   const LocationContext *LC = P.getLocationContext();
2415   SourceManager &SM =
2416       ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2417 
2418   if (!S) {
2419     // If this is an implicit call, return the implicit call point location.
2420       if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2421       return PathDiagnosticLocation(PIE->getLocation(), SM);
2422     if (auto FE = P.getAs<FunctionExitPoint>()) {
2423       if (const ReturnStmt *RS = FE->getStmt())
2424         return PathDiagnosticLocation::createBegin(RS, SM, LC);
2425     }
2426     S = ErrorNode->getNextStmtForDiagnostics();
2427   }
2428 
2429   if (S) {
2430     // For member expressions, return the location of the '.' or '->'.
2431     if (const auto *ME = dyn_cast<MemberExpr>(S))
2432       return PathDiagnosticLocation::createMemberLoc(ME, SM);
2433 
2434     // For binary operators, return the location of the operator.
2435     if (const auto *B = dyn_cast<BinaryOperator>(S))
2436       return PathDiagnosticLocation::createOperatorLoc(B, SM);
2437 
2438     if (P.getAs<PostStmtPurgeDeadSymbols>())
2439       return PathDiagnosticLocation::createEnd(S, SM, LC);
2440 
2441     if (S->getBeginLoc().isValid())
2442       return PathDiagnosticLocation(S, SM, LC);
2443 
2444     return PathDiagnosticLocation(
2445         PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2446   }
2447 
2448   return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2449                                                SM);
2450 }
2451 
2452 //===----------------------------------------------------------------------===//
2453 // Methods for BugReporter and subclasses.
2454 //===----------------------------------------------------------------------===//
2455 
2456 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2457   return Eng.getGraph();
2458 }
2459 
2460 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2461   return Eng.getStateManager();
2462 }
2463 
2464 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2465 BugReporter::~BugReporter() {
2466   // Make sure reports are flushed.
2467   assert(StrBugTypes.empty() &&
2468          "Destroying BugReporter before diagnostics are emitted!");
2469 
2470   // Free the bug reports we are tracking.
2471   for (const auto I : EQClassesVector)
2472     delete I;
2473 }
2474 
2475 void BugReporter::FlushReports() {
2476   // We need to flush reports in deterministic order to ensure the order
2477   // of the reports is consistent between runs.
2478   for (const auto EQ : EQClassesVector)
2479     FlushReport(*EQ);
2480 
2481   // BugReporter owns and deletes only BugTypes created implicitly through
2482   // EmitBasicReport.
2483   // FIXME: There are leaks from checkers that assume that the BugTypes they
2484   // create will be destroyed by the BugReporter.
2485   StrBugTypes.clear();
2486 }
2487 
2488 //===----------------------------------------------------------------------===//
2489 // PathDiagnostics generation.
2490 //===----------------------------------------------------------------------===//
2491 
2492 namespace {
2493 
2494 /// A wrapper around an ExplodedGraph that contains a single path from the root
2495 /// to the error node.
2496 class BugPathInfo {
2497 public:
2498   std::unique_ptr<ExplodedGraph> BugPath;
2499   PathSensitiveBugReport *Report;
2500   const ExplodedNode *ErrorNode;
2501 };
2502 
2503 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2504 /// conveniently retrieve bug paths from a single error node to the root.
2505 class BugPathGetter {
2506   std::unique_ptr<ExplodedGraph> TrimmedGraph;
2507 
2508   using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2509 
2510   /// Assign each node with its distance from the root.
2511   PriorityMapTy PriorityMap;
2512 
2513   /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2514   /// we need to pair it to the error node of the constructed trimmed graph.
2515   using ReportNewNodePair =
2516       std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2517   SmallVector<ReportNewNodePair, 32> ReportNodes;
2518 
2519   BugPathInfo CurrentBugPath;
2520 
2521   /// A helper class for sorting ExplodedNodes by priority.
2522   template <bool Descending>
2523   class PriorityCompare {
2524     const PriorityMapTy &PriorityMap;
2525 
2526   public:
2527     PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2528 
2529     bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2530       PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2531       PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2532       PriorityMapTy::const_iterator E = PriorityMap.end();
2533 
2534       if (LI == E)
2535         return Descending;
2536       if (RI == E)
2537         return !Descending;
2538 
2539       return Descending ? LI->second > RI->second
2540                         : LI->second < RI->second;
2541     }
2542 
2543     bool operator()(const ReportNewNodePair &LHS,
2544                     const ReportNewNodePair &RHS) const {
2545       return (*this)(LHS.second, RHS.second);
2546     }
2547   };
2548 
2549 public:
2550   BugPathGetter(const ExplodedGraph *OriginalGraph,
2551                 ArrayRef<PathSensitiveBugReport *> &bugReports);
2552 
2553   BugPathInfo *getNextBugPath();
2554 };
2555 
2556 } // namespace
2557 
2558 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2559                              ArrayRef<PathSensitiveBugReport *> &bugReports) {
2560   SmallVector<const ExplodedNode *, 32> Nodes;
2561   for (const auto I : bugReports) {
2562     assert(I->isValid() &&
2563            "We only allow BugReporterVisitors and BugReporter itself to "
2564            "invalidate reports!");
2565     Nodes.emplace_back(I->getErrorNode());
2566   }
2567 
2568   // The trimmed graph is created in the body of the constructor to ensure
2569   // that the DenseMaps have been initialized already.
2570   InterExplodedGraphMap ForwardMap;
2571   TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2572 
2573   // Find the (first) error node in the trimmed graph.  We just need to consult
2574   // the node map which maps from nodes in the original graph to nodes
2575   // in the new graph.
2576   llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2577 
2578   for (PathSensitiveBugReport *Report : bugReports) {
2579     const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2580     assert(NewNode &&
2581            "Failed to construct a trimmed graph that contains this error "
2582            "node!");
2583     ReportNodes.emplace_back(Report, NewNode);
2584     RemainingNodes.insert(NewNode);
2585   }
2586 
2587   assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2588 
2589   // Perform a forward BFS to find all the shortest paths.
2590   std::queue<const ExplodedNode *> WS;
2591 
2592   assert(TrimmedGraph->num_roots() == 1);
2593   WS.push(*TrimmedGraph->roots_begin());
2594   unsigned Priority = 0;
2595 
2596   while (!WS.empty()) {
2597     const ExplodedNode *Node = WS.front();
2598     WS.pop();
2599 
2600     PriorityMapTy::iterator PriorityEntry;
2601     bool IsNew;
2602     std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2603     ++Priority;
2604 
2605     if (!IsNew) {
2606       assert(PriorityEntry->second <= Priority);
2607       continue;
2608     }
2609 
2610     if (RemainingNodes.erase(Node))
2611       if (RemainingNodes.empty())
2612         break;
2613 
2614     for (const ExplodedNode *Succ : Node->succs())
2615       WS.push(Succ);
2616   }
2617 
2618   // Sort the error paths from longest to shortest.
2619   llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2620 }
2621 
2622 BugPathInfo *BugPathGetter::getNextBugPath() {
2623   if (ReportNodes.empty())
2624     return nullptr;
2625 
2626   const ExplodedNode *OrigN;
2627   std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2628   assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2629 
2630   // Create a new graph with a single path. This is the graph that will be
2631   // returned to the caller.
2632   auto GNew = std::make_unique<ExplodedGraph>();
2633 
2634   // Now walk from the error node up the BFS path, always taking the
2635   // predeccessor with the lowest number.
2636   ExplodedNode *Succ = nullptr;
2637   while (true) {
2638     // Create the equivalent node in the new graph with the same state
2639     // and location.
2640     ExplodedNode *NewN = GNew->createUncachedNode(
2641         OrigN->getLocation(), OrigN->getState(),
2642         OrigN->getID(), OrigN->isSink());
2643 
2644     // Link up the new node with the previous node.
2645     if (Succ)
2646       Succ->addPredecessor(NewN, *GNew);
2647     else
2648       CurrentBugPath.ErrorNode = NewN;
2649 
2650     Succ = NewN;
2651 
2652     // Are we at the final node?
2653     if (OrigN->pred_empty()) {
2654       GNew->addRoot(NewN);
2655       break;
2656     }
2657 
2658     // Find the next predeccessor node.  We choose the node that is marked
2659     // with the lowest BFS number.
2660     OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2661                               PriorityCompare<false>(PriorityMap));
2662   }
2663 
2664   CurrentBugPath.BugPath = std::move(GNew);
2665 
2666   return &CurrentBugPath;
2667 }
2668 
2669 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2670 /// object and collapses PathDiagosticPieces that are expanded by macros.
2671 static void CompactMacroExpandedPieces(PathPieces &path,
2672                                        const SourceManager& SM) {
2673   using MacroStackTy = std::vector<
2674       std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2675 
2676   using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2677 
2678   MacroStackTy MacroStack;
2679   PiecesTy Pieces;
2680 
2681   for (PathPieces::const_iterator I = path.begin(), E = path.end();
2682        I != E; ++I) {
2683     const auto &piece = *I;
2684 
2685     // Recursively compact calls.
2686     if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2687       CompactMacroExpandedPieces(call->path, SM);
2688     }
2689 
2690     // Get the location of the PathDiagnosticPiece.
2691     const FullSourceLoc Loc = piece->getLocation().asLocation();
2692 
2693     // Determine the instantiation location, which is the location we group
2694     // related PathDiagnosticPieces.
2695     SourceLocation InstantiationLoc = Loc.isMacroID() ?
2696                                       SM.getExpansionLoc(Loc) :
2697                                       SourceLocation();
2698 
2699     if (Loc.isFileID()) {
2700       MacroStack.clear();
2701       Pieces.push_back(piece);
2702       continue;
2703     }
2704 
2705     assert(Loc.isMacroID());
2706 
2707     // Is the PathDiagnosticPiece within the same macro group?
2708     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2709       MacroStack.back().first->subPieces.push_back(piece);
2710       continue;
2711     }
2712 
2713     // We aren't in the same group.  Are we descending into a new macro
2714     // or are part of an old one?
2715     std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2716 
2717     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2718                                           SM.getExpansionLoc(Loc) :
2719                                           SourceLocation();
2720 
2721     // Walk the entire macro stack.
2722     while (!MacroStack.empty()) {
2723       if (InstantiationLoc == MacroStack.back().second) {
2724         MacroGroup = MacroStack.back().first;
2725         break;
2726       }
2727 
2728       if (ParentInstantiationLoc == MacroStack.back().second) {
2729         MacroGroup = MacroStack.back().first;
2730         break;
2731       }
2732 
2733       MacroStack.pop_back();
2734     }
2735 
2736     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2737       // Create a new macro group and add it to the stack.
2738       auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2739           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2740 
2741       if (MacroGroup)
2742         MacroGroup->subPieces.push_back(NewGroup);
2743       else {
2744         assert(InstantiationLoc.isFileID());
2745         Pieces.push_back(NewGroup);
2746       }
2747 
2748       MacroGroup = NewGroup;
2749       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2750     }
2751 
2752     // Finally, add the PathDiagnosticPiece to the group.
2753     MacroGroup->subPieces.push_back(piece);
2754   }
2755 
2756   // Now take the pieces and construct a new PathDiagnostic.
2757   path.clear();
2758 
2759   path.insert(path.end(), Pieces.begin(), Pieces.end());
2760 }
2761 
2762 /// Generate notes from all visitors.
2763 /// Notes associated with @c ErrorNode are generated using
2764 /// @c getEndPath, and the rest are generated with @c VisitNode.
2765 static std::unique_ptr<VisitorsDiagnosticsTy>
2766 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2767                             const ExplodedNode *ErrorNode,
2768                             BugReporterContext &BRC) {
2769   std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2770       std::make_unique<VisitorsDiagnosticsTy>();
2771   PathSensitiveBugReport::VisitorList visitors;
2772 
2773   // Run visitors on all nodes starting from the node *before* the last one.
2774   // The last node is reserved for notes generated with @c getEndPath.
2775   const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2776   while (NextNode) {
2777 
2778     // At each iteration, move all visitors from report to visitor list. This is
2779     // important, because the Profile() functions of the visitors make sure that
2780     // a visitor isn't added multiple times for the same node, but it's fine
2781     // to add the a visitor with Profile() for different nodes (e.g. tracking
2782     // a region at different points of the symbolic execution).
2783     for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2784       visitors.push_back(std::move(Visitor));
2785 
2786     R->clearVisitors();
2787 
2788     const ExplodedNode *Pred = NextNode->getFirstPred();
2789     if (!Pred) {
2790       PathDiagnosticPieceRef LastPiece;
2791       for (auto &V : visitors) {
2792         V->finalizeVisitor(BRC, ErrorNode, *R);
2793 
2794         if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2795           assert(!LastPiece &&
2796                  "There can only be one final piece in a diagnostic.");
2797           assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2798                  "The final piece must contain a message!");
2799           LastPiece = std::move(Piece);
2800           (*Notes)[ErrorNode].push_back(LastPiece);
2801         }
2802       }
2803       break;
2804     }
2805 
2806     for (auto &V : visitors) {
2807       auto P = V->VisitNode(NextNode, BRC, *R);
2808       if (P)
2809         (*Notes)[NextNode].push_back(std::move(P));
2810     }
2811 
2812     if (!R->isValid())
2813       break;
2814 
2815     NextNode = Pred;
2816   }
2817 
2818   return Notes;
2819 }
2820 
2821 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2822     ArrayRef<PathSensitiveBugReport *> &bugReports,
2823     PathSensitiveBugReporter &Reporter) {
2824 
2825   BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2826 
2827   while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2828     // Find the BugReport with the original location.
2829     PathSensitiveBugReport *R = BugPath->Report;
2830     assert(R && "No original report found for sliced graph.");
2831     assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2832     const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2833 
2834     // Register refutation visitors first, if they mark the bug invalid no
2835     // further analysis is required
2836     R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2837 
2838     // Register additional node visitors.
2839     R->addVisitor<NilReceiverBRVisitor>();
2840     R->addVisitor<ConditionBRVisitor>();
2841     R->addVisitor<TagVisitor>();
2842 
2843     BugReporterContext BRC(Reporter);
2844 
2845     // Run all visitors on a given graph, once.
2846     std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2847         generateVisitorsDiagnostics(R, ErrorNode, BRC);
2848 
2849     if (R->isValid()) {
2850       if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2851         // If crosscheck is enabled, remove all visitors, add the refutation
2852         // visitor and check again
2853         R->clearVisitors();
2854         R->addVisitor<FalsePositiveRefutationBRVisitor>();
2855 
2856         // We don't overwrite the notes inserted by other visitors because the
2857         // refutation manager does not add any new note to the path
2858         generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2859       }
2860 
2861       // Check if the bug is still valid
2862       if (R->isValid())
2863         return PathDiagnosticBuilder(
2864             std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2865             BugPath->ErrorNode, std::move(visitorNotes));
2866     }
2867   }
2868 
2869   return {};
2870 }
2871 
2872 std::unique_ptr<DiagnosticForConsumerMapTy>
2873 PathSensitiveBugReporter::generatePathDiagnostics(
2874     ArrayRef<PathDiagnosticConsumer *> consumers,
2875     ArrayRef<PathSensitiveBugReport *> &bugReports) {
2876   assert(!bugReports.empty());
2877 
2878   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2879 
2880   std::optional<PathDiagnosticBuilder> PDB =
2881       PathDiagnosticBuilder::findValidReport(bugReports, *this);
2882 
2883   if (PDB) {
2884     for (PathDiagnosticConsumer *PC : consumers) {
2885       if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2886         (*Out)[PC] = std::move(PD);
2887       }
2888     }
2889   }
2890 
2891   return Out;
2892 }
2893 
2894 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2895   bool ValidSourceLoc = R->getLocation().isValid();
2896   assert(ValidSourceLoc);
2897   // If we mess up in a release build, we'd still prefer to just drop the bug
2898   // instead of trying to go on.
2899   if (!ValidSourceLoc)
2900     return;
2901 
2902   // Compute the bug report's hash to determine its equivalence class.
2903   llvm::FoldingSetNodeID ID;
2904   R->Profile(ID);
2905 
2906   // Lookup the equivance class.  If there isn't one, create it.
2907   void *InsertPos;
2908   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2909 
2910   if (!EQ) {
2911     EQ = new BugReportEquivClass(std::move(R));
2912     EQClasses.InsertNode(EQ, InsertPos);
2913     EQClassesVector.push_back(EQ);
2914   } else
2915     EQ->AddReport(std::move(R));
2916 }
2917 
2918 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2919   if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2920     if (const ExplodedNode *E = PR->getErrorNode()) {
2921       // An error node must either be a sink or have a tag, otherwise
2922       // it could get reclaimed before the path diagnostic is created.
2923       assert((E->isSink() || E->getLocation().getTag()) &&
2924              "Error node must either be a sink or have a tag");
2925 
2926       const AnalysisDeclContext *DeclCtx =
2927           E->getLocationContext()->getAnalysisDeclContext();
2928       // The source of autosynthesized body can be handcrafted AST or a model
2929       // file. The locations from handcrafted ASTs have no valid source
2930       // locations and have to be discarded. Locations from model files should
2931       // be preserved for processing and reporting.
2932       if (DeclCtx->isBodyAutosynthesized() &&
2933           !DeclCtx->isBodyAutosynthesizedFromModelFile())
2934         return;
2935     }
2936 
2937   BugReporter::emitReport(std::move(R));
2938 }
2939 
2940 //===----------------------------------------------------------------------===//
2941 // Emitting reports in equivalence classes.
2942 //===----------------------------------------------------------------------===//
2943 
2944 namespace {
2945 
2946 struct FRIEC_WLItem {
2947   const ExplodedNode *N;
2948   ExplodedNode::const_succ_iterator I, E;
2949 
2950   FRIEC_WLItem(const ExplodedNode *n)
2951       : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2952 };
2953 
2954 } // namespace
2955 
2956 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2957     BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2958   // If we don't need to suppress any of the nodes because they are
2959   // post-dominated by a sink, simply add all the nodes in the equivalence class
2960   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
2961   assert(EQ.getReports().size() > 0);
2962   const BugType& BT = EQ.getReports()[0]->getBugType();
2963   if (!BT.isSuppressOnSink()) {
2964     BugReport *R = EQ.getReports()[0].get();
2965     for (auto &J : EQ.getReports()) {
2966       if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2967         R = PR;
2968         bugReports.push_back(PR);
2969       }
2970     }
2971     return R;
2972   }
2973 
2974   // For bug reports that should be suppressed when all paths are post-dominated
2975   // by a sink node, iterate through the reports in the equivalence class
2976   // until we find one that isn't post-dominated (if one exists).  We use a
2977   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
2978   // this as a recursive function, but we don't want to risk blowing out the
2979   // stack for very long paths.
2980   BugReport *exampleReport = nullptr;
2981 
2982   for (const auto &I: EQ.getReports()) {
2983     auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2984     if (!R)
2985       continue;
2986 
2987     const ExplodedNode *errorNode = R->getErrorNode();
2988     if (errorNode->isSink()) {
2989       llvm_unreachable(
2990            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2991     }
2992     // No successors?  By definition this nodes isn't post-dominated by a sink.
2993     if (errorNode->succ_empty()) {
2994       bugReports.push_back(R);
2995       if (!exampleReport)
2996         exampleReport = R;
2997       continue;
2998     }
2999 
3000     // See if we are in a no-return CFG block. If so, treat this similarly
3001     // to being post-dominated by a sink. This works better when the analysis
3002     // is incomplete and we have never reached the no-return function call(s)
3003     // that we'd inevitably bump into on this path.
3004     if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3005       if (ErrorB->isInevitablySinking())
3006         continue;
3007 
3008     // At this point we know that 'N' is not a sink and it has at least one
3009     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3010     using WLItem = FRIEC_WLItem;
3011     using DFSWorkList = SmallVector<WLItem, 10>;
3012 
3013     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3014 
3015     DFSWorkList WL;
3016     WL.push_back(errorNode);
3017     Visited[errorNode] = 1;
3018 
3019     while (!WL.empty()) {
3020       WLItem &WI = WL.back();
3021       assert(!WI.N->succ_empty());
3022 
3023       for (; WI.I != WI.E; ++WI.I) {
3024         const ExplodedNode *Succ = *WI.I;
3025         // End-of-path node?
3026         if (Succ->succ_empty()) {
3027           // If we found an end-of-path node that is not a sink.
3028           if (!Succ->isSink()) {
3029             bugReports.push_back(R);
3030             if (!exampleReport)
3031               exampleReport = R;
3032             WL.clear();
3033             break;
3034           }
3035           // Found a sink?  Continue on to the next successor.
3036           continue;
3037         }
3038         // Mark the successor as visited.  If it hasn't been explored,
3039         // enqueue it to the DFS worklist.
3040         unsigned &mark = Visited[Succ];
3041         if (!mark) {
3042           mark = 1;
3043           WL.push_back(Succ);
3044           break;
3045         }
3046       }
3047 
3048       // The worklist may have been cleared at this point.  First
3049       // check if it is empty before checking the last item.
3050       if (!WL.empty() && &WL.back() == &WI)
3051         WL.pop_back();
3052     }
3053   }
3054 
3055   // ExampleReport will be NULL if all the nodes in the equivalence class
3056   // were post-dominated by sinks.
3057   return exampleReport;
3058 }
3059 
3060 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3061   SmallVector<BugReport*, 10> bugReports;
3062   BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3063   if (!report)
3064     return;
3065 
3066   // See whether we need to silence the checker/package.
3067   for (const std::string &CheckerOrPackage :
3068        getAnalyzerOptions().SilencedCheckersAndPackages) {
3069     if (report->getBugType().getCheckerName().startswith(
3070             CheckerOrPackage))
3071       return;
3072   }
3073 
3074   ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3075   std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3076       generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3077 
3078   for (auto &P : *Diagnostics) {
3079     PathDiagnosticConsumer *Consumer = P.first;
3080     std::unique_ptr<PathDiagnostic> &PD = P.second;
3081 
3082     // If the path is empty, generate a single step path with the location
3083     // of the issue.
3084     if (PD->path.empty()) {
3085       PathDiagnosticLocation L = report->getLocation();
3086       auto piece = std::make_unique<PathDiagnosticEventPiece>(
3087         L, report->getDescription());
3088       for (SourceRange Range : report->getRanges())
3089         piece->addRange(Range);
3090       PD->setEndOfPath(std::move(piece));
3091     }
3092 
3093     PathPieces &Pieces = PD->getMutablePieces();
3094     if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3095       // For path diagnostic consumers that don't support extra notes,
3096       // we may optionally convert those to path notes.
3097       for (const auto &I : llvm::reverse(report->getNotes())) {
3098         PathDiagnosticNotePiece *Piece = I.get();
3099         auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3100           Piece->getLocation(), Piece->getString());
3101         for (const auto &R: Piece->getRanges())
3102           ConvertedPiece->addRange(R);
3103 
3104         Pieces.push_front(std::move(ConvertedPiece));
3105       }
3106     } else {
3107       for (const auto &I : llvm::reverse(report->getNotes()))
3108         Pieces.push_front(I);
3109     }
3110 
3111     for (const auto &I : report->getFixits())
3112       Pieces.back()->addFixit(I);
3113 
3114     updateExecutedLinesWithDiagnosticPieces(*PD);
3115     Consumer->HandlePathDiagnostic(std::move(PD));
3116   }
3117 }
3118 
3119 /// Insert all lines participating in the function signature \p Signature
3120 /// into \p ExecutedLines.
3121 static void populateExecutedLinesWithFunctionSignature(
3122     const Decl *Signature, const SourceManager &SM,
3123     FilesToLineNumsMap &ExecutedLines) {
3124   SourceRange SignatureSourceRange;
3125   const Stmt* Body = Signature->getBody();
3126   if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3127     SignatureSourceRange = FD->getSourceRange();
3128   } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3129     SignatureSourceRange = OD->getSourceRange();
3130   } else {
3131     return;
3132   }
3133   SourceLocation Start = SignatureSourceRange.getBegin();
3134   SourceLocation End = Body ? Body->getSourceRange().getBegin()
3135     : SignatureSourceRange.getEnd();
3136   if (!Start.isValid() || !End.isValid())
3137     return;
3138   unsigned StartLine = SM.getExpansionLineNumber(Start);
3139   unsigned EndLine = SM.getExpansionLineNumber(End);
3140 
3141   FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3142   for (unsigned Line = StartLine; Line <= EndLine; Line++)
3143     ExecutedLines[FID].insert(Line);
3144 }
3145 
3146 static void populateExecutedLinesWithStmt(
3147     const Stmt *S, const SourceManager &SM,
3148     FilesToLineNumsMap &ExecutedLines) {
3149   SourceLocation Loc = S->getSourceRange().getBegin();
3150   if (!Loc.isValid())
3151     return;
3152   SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3153   FileID FID = SM.getFileID(ExpansionLoc);
3154   unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3155   ExecutedLines[FID].insert(LineNo);
3156 }
3157 
3158 /// \return all executed lines including function signatures on the path
3159 /// starting from \p N.
3160 static std::unique_ptr<FilesToLineNumsMap>
3161 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3162   auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3163 
3164   while (N) {
3165     if (N->getFirstPred() == nullptr) {
3166       // First node: show signature of the entrance point.
3167       const Decl *D = N->getLocationContext()->getDecl();
3168       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3169     } else if (auto CE = N->getLocationAs<CallEnter>()) {
3170       // Inlined function: show signature.
3171       const Decl* D = CE->getCalleeContext()->getDecl();
3172       populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3173     } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3174       populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3175 
3176       // Show extra context for some parent kinds.
3177       const Stmt *P = N->getParentMap().getParent(S);
3178 
3179       // The path exploration can die before the node with the associated
3180       // return statement is generated, but we do want to show the whole
3181       // return.
3182       if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3183         populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3184         P = N->getParentMap().getParent(RS);
3185       }
3186 
3187       if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3188         populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3189     }
3190 
3191     N = N->getFirstPred();
3192   }
3193   return ExecutedLines;
3194 }
3195 
3196 std::unique_ptr<DiagnosticForConsumerMapTy>
3197 BugReporter::generateDiagnosticForConsumerMap(
3198     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3199     ArrayRef<BugReport *> bugReports) {
3200   auto *basicReport = cast<BasicBugReport>(exampleReport);
3201   auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3202   for (auto *Consumer : consumers)
3203     (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3204   return Out;
3205 }
3206 
3207 static PathDiagnosticCallPiece *
3208 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3209                                 const SourceManager &SMgr) {
3210   SourceLocation CallLoc = CP->callEnter.asLocation();
3211 
3212   // If the call is within a macro, don't do anything (for now).
3213   if (CallLoc.isMacroID())
3214     return nullptr;
3215 
3216   assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3217          "The call piece should not be in a header file.");
3218 
3219   // Check if CP represents a path through a function outside of the main file.
3220   if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3221     return CP;
3222 
3223   const PathPieces &Path = CP->path;
3224   if (Path.empty())
3225     return nullptr;
3226 
3227   // Check if the last piece in the callee path is a call to a function outside
3228   // of the main file.
3229   if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3230     return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3231 
3232   // Otherwise, the last piece is in the main file.
3233   return nullptr;
3234 }
3235 
3236 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3237   if (PD.path.empty())
3238     return;
3239 
3240   PathDiagnosticPiece *LastP = PD.path.back().get();
3241   assert(LastP);
3242   const SourceManager &SMgr = LastP->getLocation().getManager();
3243 
3244   // We only need to check if the report ends inside headers, if the last piece
3245   // is a call piece.
3246   if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3247     CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3248     if (CP) {
3249       // Mark the piece.
3250        CP->setAsLastInMainSourceFile();
3251 
3252       // Update the path diagnostic message.
3253       const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3254       if (ND) {
3255         SmallString<200> buf;
3256         llvm::raw_svector_ostream os(buf);
3257         os << " (within a call to '" << ND->getDeclName() << "')";
3258         PD.appendToDesc(os.str());
3259       }
3260 
3261       // Reset the report containing declaration and location.
3262       PD.setDeclWithIssue(CP->getCaller());
3263       PD.setLocation(CP->getLocation());
3264 
3265       return;
3266     }
3267   }
3268 }
3269 
3270 
3271 
3272 std::unique_ptr<DiagnosticForConsumerMapTy>
3273 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3274     BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3275     ArrayRef<BugReport *> bugReports) {
3276   std::vector<BasicBugReport *> BasicBugReports;
3277   std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3278   if (isa<BasicBugReport>(exampleReport))
3279     return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3280                                                          consumers, bugReports);
3281 
3282   // Generate the full path sensitive diagnostic, using the generation scheme
3283   // specified by the PathDiagnosticConsumer. Note that we have to generate
3284   // path diagnostics even for consumers which do not support paths, because
3285   // the BugReporterVisitors may mark this bug as a false positive.
3286   assert(!bugReports.empty());
3287   MaxBugClassSize.updateMax(bugReports.size());
3288 
3289   // Avoid copying the whole array because there may be a lot of reports.
3290   ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3291       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3292       reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3293   std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3294       consumers, convertedArrayOfReports);
3295 
3296   if (Out->empty())
3297     return Out;
3298 
3299   MaxValidBugClassSize.updateMax(bugReports.size());
3300 
3301   // Examine the report and see if the last piece is in a header. Reset the
3302   // report location to the last piece in the main source file.
3303   const AnalyzerOptions &Opts = getAnalyzerOptions();
3304   for (auto const &P : *Out)
3305     if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3306       resetDiagnosticLocationToMainFile(*P.second);
3307 
3308   return Out;
3309 }
3310 
3311 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3312                                   const CheckerBase *Checker, StringRef Name,
3313                                   StringRef Category, StringRef Str,
3314                                   PathDiagnosticLocation Loc,
3315                                   ArrayRef<SourceRange> Ranges,
3316                                   ArrayRef<FixItHint> Fixits) {
3317   EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3318                   Loc, Ranges, Fixits);
3319 }
3320 
3321 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3322                                   CheckerNameRef CheckName,
3323                                   StringRef name, StringRef category,
3324                                   StringRef str, PathDiagnosticLocation Loc,
3325                                   ArrayRef<SourceRange> Ranges,
3326                                   ArrayRef<FixItHint> Fixits) {
3327   // 'BT' is owned by BugReporter.
3328   BugType *BT = getBugTypeForName(CheckName, name, category);
3329   auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3330   R->setDeclWithIssue(DeclWithIssue);
3331   for (const auto &SR : Ranges)
3332     R->addRange(SR);
3333   for (const auto &FH : Fixits)
3334     R->addFixItHint(FH);
3335   emitReport(std::move(R));
3336 }
3337 
3338 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3339                                         StringRef name, StringRef category) {
3340   SmallString<136> fullDesc;
3341   llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3342                                       << ":" << category;
3343   std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3344   if (!BT)
3345     BT = std::make_unique<BugType>(CheckName, name, category);
3346   return BT.get();
3347 }
3348