1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines SValBuilder, the base class for all (complete) SValBuilder
10 //  implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/Analysis/AnalysisDeclContext.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
35 #include "llvm/ADT/APSInt.h"
36 #include "llvm/ADT/None.h"
37 #include "llvm/ADT/Optional.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include <cassert>
41 #include <tuple>
42 
43 using namespace clang;
44 using namespace ento;
45 
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
49 
50 void SValBuilder::anchor() {}
51 
52 DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
53   if (Loc::isLocType(type))
54     return makeNull();
55 
56   if (type->isIntegralOrEnumerationType())
57     return makeIntVal(0, type);
58 
59   if (type->isArrayType() || type->isRecordType() || type->isVectorType() ||
60       type->isAnyComplexType())
61     return makeCompoundVal(type, BasicVals.getEmptySValList());
62 
63   // FIXME: Handle floats.
64   return UnknownVal();
65 }
66 
67 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
68                                 const llvm::APSInt& rhs, QualType type) {
69   // The Environment ensures we always get a persistent APSInt in
70   // BasicValueFactory, so we don't need to get the APSInt from
71   // BasicValueFactory again.
72   assert(lhs);
73   assert(!Loc::isLocType(type));
74   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
75 }
76 
77 NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
78                                BinaryOperator::Opcode op, const SymExpr *rhs,
79                                QualType type) {
80   assert(rhs);
81   assert(!Loc::isLocType(type));
82   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
83 }
84 
85 NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
86                                const SymExpr *rhs, QualType type) {
87   assert(lhs && rhs);
88   assert(!Loc::isLocType(type));
89   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
90 }
91 
92 NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
93                                QualType fromTy, QualType toTy) {
94   assert(operand);
95   assert(!Loc::isLocType(toTy));
96   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
97 }
98 
99 SVal SValBuilder::convertToArrayIndex(SVal val) {
100   if (val.isUnknownOrUndef())
101     return val;
102 
103   // Common case: we have an appropriately sized integer.
104   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
105     const llvm::APSInt& I = CI->getValue();
106     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
107       return val;
108   }
109 
110   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
111 }
112 
113 nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
114   return makeTruthVal(boolean->getValue());
115 }
116 
117 DefinedOrUnknownSVal
118 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion *region) {
119   QualType T = region->getValueType();
120 
121   if (T->isNullPtrType())
122     return makeZeroVal(T);
123 
124   if (!SymbolManager::canSymbolicate(T))
125     return UnknownVal();
126 
127   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
128 
129   if (Loc::isLocType(T))
130     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
131 
132   return nonloc::SymbolVal(sym);
133 }
134 
135 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
136                                                    const Expr *Ex,
137                                                    const LocationContext *LCtx,
138                                                    unsigned Count) {
139   QualType T = Ex->getType();
140 
141   if (T->isNullPtrType())
142     return makeZeroVal(T);
143 
144   // Compute the type of the result. If the expression is not an R-value, the
145   // result should be a location.
146   QualType ExType = Ex->getType();
147   if (Ex->isGLValue())
148     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
149 
150   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
151 }
152 
153 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
154                                                    const Expr *expr,
155                                                    const LocationContext *LCtx,
156                                                    QualType type,
157                                                    unsigned count) {
158   if (type->isNullPtrType())
159     return makeZeroVal(type);
160 
161   if (!SymbolManager::canSymbolicate(type))
162     return UnknownVal();
163 
164   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
165 
166   if (Loc::isLocType(type))
167     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
168 
169   return nonloc::SymbolVal(sym);
170 }
171 
172 DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
173                                                    const LocationContext *LCtx,
174                                                    QualType type,
175                                                    unsigned visitCount) {
176   if (type->isNullPtrType())
177     return makeZeroVal(type);
178 
179   if (!SymbolManager::canSymbolicate(type))
180     return UnknownVal();
181 
182   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
183 
184   if (Loc::isLocType(type))
185     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
186 
187   return nonloc::SymbolVal(sym);
188 }
189 
190 DefinedOrUnknownSVal
191 SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
192                                       const LocationContext *LCtx,
193                                       unsigned VisitCount) {
194   QualType T = E->getType();
195   assert(Loc::isLocType(T));
196   assert(SymbolManager::canSymbolicate(T));
197   if (T->isNullPtrType())
198     return makeZeroVal(T);
199 
200   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
201   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
202 }
203 
204 DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
205                                               const MemRegion *region,
206                                               const Expr *expr, QualType type,
207                                               const LocationContext *LCtx,
208                                               unsigned count) {
209   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
210 
211   SymbolRef sym =
212       SymMgr.getMetadataSymbol(region, expr, type, LCtx, count, symbolTag);
213 
214   if (Loc::isLocType(type))
215     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
216 
217   return nonloc::SymbolVal(sym);
218 }
219 
220 DefinedOrUnknownSVal
221 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
222                                              const TypedValueRegion *region) {
223   QualType T = region->getValueType();
224 
225   if (T->isNullPtrType())
226     return makeZeroVal(T);
227 
228   if (!SymbolManager::canSymbolicate(T))
229     return UnknownVal();
230 
231   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
232 
233   if (Loc::isLocType(T))
234     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
235 
236   return nonloc::SymbolVal(sym);
237 }
238 
239 DefinedSVal SValBuilder::getMemberPointer(const DeclaratorDecl *DD) {
240   assert(!DD || isa<CXXMethodDecl>(DD) || isa<FieldDecl>(DD));
241 
242   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DD)) {
243     // Sema treats pointers to static member functions as have function pointer
244     // type, so return a function pointer for the method.
245     // We don't need to play a similar trick for static member fields
246     // because these are represented as plain VarDecls and not FieldDecls
247     // in the AST.
248     if (MD->isStatic())
249       return getFunctionPointer(MD);
250   }
251 
252   return nonloc::PointerToMember(DD);
253 }
254 
255 DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
256   return loc::MemRegionVal(MemMgr.getFunctionCodeRegion(func));
257 }
258 
259 DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
260                                          CanQualType locTy,
261                                          const LocationContext *locContext,
262                                          unsigned blockCount) {
263   const BlockCodeRegion *BC =
264     MemMgr.getBlockCodeRegion(block, locTy, locContext->getAnalysisDeclContext());
265   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
266                                                         blockCount);
267   return loc::MemRegionVal(BD);
268 }
269 
270 /// Return a memory region for the 'this' object reference.
271 loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
272                                           const StackFrameContext *SFC) {
273   return loc::MemRegionVal(
274       getRegionManager().getCXXThisRegion(D->getThisType(), SFC));
275 }
276 
277 /// Return a memory region for the 'this' object reference.
278 loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
279                                           const StackFrameContext *SFC) {
280   const Type *T = D->getTypeForDecl();
281   QualType PT = getContext().getPointerType(QualType(T, 0));
282   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
283 }
284 
285 Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
286   E = E->IgnoreParens();
287 
288   switch (E->getStmtClass()) {
289   // Handle expressions that we treat differently from the AST's constant
290   // evaluator.
291   case Stmt::AddrLabelExprClass:
292     return makeLoc(cast<AddrLabelExpr>(E));
293 
294   case Stmt::CXXScalarValueInitExprClass:
295   case Stmt::ImplicitValueInitExprClass:
296     return makeZeroVal(E->getType());
297 
298   case Stmt::ObjCStringLiteralClass: {
299     const auto *SL = cast<ObjCStringLiteral>(E);
300     return makeLoc(getRegionManager().getObjCStringRegion(SL));
301   }
302 
303   case Stmt::StringLiteralClass: {
304     const auto *SL = cast<StringLiteral>(E);
305     return makeLoc(getRegionManager().getStringRegion(SL));
306   }
307 
308   // Fast-path some expressions to avoid the overhead of going through the AST's
309   // constant evaluator
310   case Stmt::CharacterLiteralClass: {
311     const auto *C = cast<CharacterLiteral>(E);
312     return makeIntVal(C->getValue(), C->getType());
313   }
314 
315   case Stmt::CXXBoolLiteralExprClass:
316     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
317 
318   case Stmt::TypeTraitExprClass: {
319     const auto *TE = cast<TypeTraitExpr>(E);
320     return makeTruthVal(TE->getValue(), TE->getType());
321   }
322 
323   case Stmt::IntegerLiteralClass:
324     return makeIntVal(cast<IntegerLiteral>(E));
325 
326   case Stmt::ObjCBoolLiteralExprClass:
327     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
328 
329   case Stmt::CXXNullPtrLiteralExprClass:
330     return makeNull();
331 
332   case Stmt::CStyleCastExprClass:
333   case Stmt::CXXFunctionalCastExprClass:
334   case Stmt::CXXConstCastExprClass:
335   case Stmt::CXXReinterpretCastExprClass:
336   case Stmt::CXXStaticCastExprClass:
337   case Stmt::ImplicitCastExprClass: {
338     const auto *CE = cast<CastExpr>(E);
339     switch (CE->getCastKind()) {
340     default:
341       break;
342     case CK_ArrayToPointerDecay:
343     case CK_IntegralToPointer:
344     case CK_NoOp:
345     case CK_BitCast: {
346       const Expr *SE = CE->getSubExpr();
347       Optional<SVal> Val = getConstantVal(SE);
348       if (!Val)
349         return None;
350       return evalCast(*Val, CE->getType(), SE->getType());
351     }
352     }
353     // FALLTHROUGH
354     LLVM_FALLTHROUGH;
355   }
356 
357   // If we don't have a special case, fall back to the AST's constant evaluator.
358   default: {
359     // Don't try to come up with a value for materialized temporaries.
360     if (E->isGLValue())
361       return None;
362 
363     ASTContext &Ctx = getContext();
364     Expr::EvalResult Result;
365     if (E->EvaluateAsInt(Result, Ctx))
366       return makeIntVal(Result.Val.getInt());
367 
368     if (Loc::isLocType(E->getType()))
369       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
370         return makeNull();
371 
372     return None;
373   }
374   }
375 }
376 
377 SVal SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op,
378                                    NonLoc LHS, NonLoc RHS,
379                                    QualType ResultTy) {
380   const SymExpr *symLHS = LHS.getAsSymExpr();
381   const SymExpr *symRHS = RHS.getAsSymExpr();
382 
383   // TODO: When the Max Complexity is reached, we should conjure a symbol
384   // instead of generating an Unknown value and propagate the taint info to it.
385   const unsigned MaxComp = StateMgr.getOwningEngine()
386                                .getAnalysisManager()
387                                .options.MaxSymbolComplexity;
388 
389   if (symLHS && symRHS &&
390       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
391     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
392 
393   if (symLHS && symLHS->computeComplexity() < MaxComp)
394     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
395       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
396 
397   if (symRHS && symRHS->computeComplexity() < MaxComp)
398     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
399       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
400 
401   return UnknownVal();
402 }
403 
404 SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
405                             SVal lhs, SVal rhs, QualType type) {
406   if (lhs.isUndef() || rhs.isUndef())
407     return UndefinedVal();
408 
409   if (lhs.isUnknown() || rhs.isUnknown())
410     return UnknownVal();
411 
412   if (lhs.getAs<nonloc::LazyCompoundVal>() ||
413       rhs.getAs<nonloc::LazyCompoundVal>()) {
414     return UnknownVal();
415   }
416 
417   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
418     if (Optional<Loc> RV = rhs.getAs<Loc>())
419       return evalBinOpLL(state, op, *LV, *RV, type);
420 
421     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
422   }
423 
424   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
425     // Support pointer arithmetic where the addend is on the left
426     // and the pointer on the right.
427     assert(op == BO_Add);
428 
429     // Commute the operands.
430     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
431   }
432 
433   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
434                      type);
435 }
436 
437 ConditionTruthVal SValBuilder::areEqual(ProgramStateRef state, SVal lhs,
438                                         SVal rhs) {
439   return state->isNonNull(evalEQ(state, lhs, rhs));
440 }
441 
442 SVal SValBuilder::evalEQ(ProgramStateRef state, SVal lhs, SVal rhs) {
443   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType());
444 }
445 
446 DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
447                                          DefinedOrUnknownSVal lhs,
448                                          DefinedOrUnknownSVal rhs) {
449   return evalEQ(state, static_cast<SVal>(lhs), static_cast<SVal>(rhs))
450       .castAs<DefinedOrUnknownSVal>();
451 }
452 
453 /// Recursively check if the pointer types are equal modulo const, volatile,
454 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
455 /// Assumes the input types are canonical.
456 static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
457                                                          QualType FromTy) {
458   while (Context.UnwrapSimilarTypes(ToTy, FromTy)) {
459     Qualifiers Quals1, Quals2;
460     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
461     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
462 
463     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
464     // spaces) are identical.
465     Quals1.removeCVRQualifiers();
466     Quals2.removeCVRQualifiers();
467     if (Quals1 != Quals2)
468       return false;
469   }
470 
471   // If we are casting to void, the 'From' value can be used to represent the
472   // 'To' value.
473   //
474   // FIXME: Doing this after unwrapping the types doesn't make any sense. A
475   // cast from 'int**' to 'void**' is not special in the way that a cast from
476   // 'int*' to 'void*' is.
477   if (ToTy->isVoidType())
478     return true;
479 
480   if (ToTy != FromTy)
481     return false;
482 
483   return true;
484 }
485 
486 // Handles casts of type CK_IntegralCast.
487 // At the moment, this function will redirect to evalCast, except when the range
488 // of the original value is known to be greater than the max of the target type.
489 SVal SValBuilder::evalIntegralCast(ProgramStateRef state, SVal val,
490                                    QualType castTy, QualType originalTy) {
491   // No truncations if target type is big enough.
492   if (getContext().getTypeSize(castTy) >= getContext().getTypeSize(originalTy))
493     return evalCast(val, castTy, originalTy);
494 
495   const SymExpr *se = val.getAsSymbolicExpression();
496   if (!se) // Let evalCast handle non symbolic expressions.
497     return evalCast(val, castTy, originalTy);
498 
499   // Find the maximum value of the target type.
500   APSIntType ToType(getContext().getTypeSize(castTy),
501                     castTy->isUnsignedIntegerType());
502   llvm::APSInt ToTypeMax = ToType.getMaxValue();
503   NonLoc ToTypeMaxVal =
504       makeIntVal(ToTypeMax.isUnsigned() ? ToTypeMax.getZExtValue()
505                                         : ToTypeMax.getSExtValue(),
506                  castTy)
507           .castAs<NonLoc>();
508   // Check the range of the symbol being casted against the maximum value of the
509   // target type.
510   NonLoc FromVal = val.castAs<NonLoc>();
511   QualType CmpTy = getConditionType();
512   NonLoc CompVal =
513       evalBinOpNN(state, BO_LE, FromVal, ToTypeMaxVal, CmpTy).castAs<NonLoc>();
514   ProgramStateRef IsNotTruncated, IsTruncated;
515   std::tie(IsNotTruncated, IsTruncated) = state->assume(CompVal);
516   if (!IsNotTruncated && IsTruncated) {
517     // Symbol is truncated so we evaluate it as a cast.
518     NonLoc CastVal = makeNonLoc(se, originalTy, castTy);
519     return CastVal;
520   }
521   return evalCast(val, castTy, originalTy);
522 }
523 
524 // FIXME: should rewrite according to the cast kind.
525 SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
526   castTy = Context.getCanonicalType(castTy);
527   originalTy = Context.getCanonicalType(originalTy);
528   if (val.isUnknownOrUndef() || castTy == originalTy)
529     return val;
530 
531   if (castTy->isBooleanType()) {
532     if (val.isUnknownOrUndef())
533       return val;
534     if (val.isConstant())
535       return makeTruthVal(!val.isZeroConstant(), castTy);
536     if (!Loc::isLocType(originalTy) &&
537         !originalTy->isIntegralOrEnumerationType() &&
538         !originalTy->isMemberPointerType())
539       return UnknownVal();
540     if (SymbolRef Sym = val.getAsSymbol(true)) {
541       BasicValueFactory &BVF = getBasicValueFactory();
542       // FIXME: If we had a state here, we could see if the symbol is known to
543       // be zero, but we don't.
544       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
545     }
546     // Loc values are not always true, they could be weakly linked functions.
547     if (Optional<Loc> L = val.getAs<Loc>())
548       return evalCastFromLoc(*L, castTy);
549 
550     Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
551     return evalCastFromLoc(L, castTy);
552   }
553 
554   // For const casts, casts to void, just propagate the value.
555   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
556     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
557                                          Context.getPointerType(originalTy)))
558       return val;
559 
560   // Check for casts from pointers to integers.
561   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
562     return evalCastFromLoc(val.castAs<Loc>(), castTy);
563 
564   // Check for casts from integers to pointers.
565   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
566     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
567       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
568         StoreManager &storeMgr = StateMgr.getStoreManager();
569         R = storeMgr.castRegion(R, castTy);
570         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
571       }
572       return LV->getLoc();
573     }
574     return dispatchCast(val, castTy);
575   }
576 
577   // Just pass through function and block pointers.
578   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
579     assert(Loc::isLocType(castTy));
580     return val;
581   }
582 
583   // Check for casts from array type to another type.
584   if (const auto *arrayT =
585           dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
586     // We will always decay to a pointer.
587     QualType elemTy = arrayT->getElementType();
588     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
589 
590     // Are we casting from an array to a pointer?  If so just pass on
591     // the decayed value.
592     if (castTy->isPointerType() || castTy->isReferenceType())
593       return val;
594 
595     // Are we casting from an array to an integer?  If so, cast the decayed
596     // pointer value to an integer.
597     assert(castTy->isIntegralOrEnumerationType());
598 
599     // FIXME: Keep these here for now in case we decide soon that we
600     // need the original decayed type.
601     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
602     //    QualType pointerTy = C.getPointerType(elemTy);
603     return evalCastFromLoc(val.castAs<Loc>(), castTy);
604   }
605 
606   // Check for casts from a region to a specific type.
607   if (const MemRegion *R = val.getAsRegion()) {
608     // Handle other casts of locations to integers.
609     if (castTy->isIntegralOrEnumerationType())
610       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
611 
612     // FIXME: We should handle the case where we strip off view layers to get
613     //  to a desugared type.
614     if (!Loc::isLocType(castTy)) {
615       // FIXME: There can be gross cases where one casts the result of a function
616       // (that returns a pointer) to some other value that happens to fit
617       // within that pointer value.  We currently have no good way to
618       // model such operations.  When this happens, the underlying operation
619       // is that the caller is reasoning about bits.  Conceptually we are
620       // layering a "view" of a location on top of those bits.  Perhaps
621       // we need to be more lazy about mutual possible views, even on an
622       // SVal?  This may be necessary for bit-level reasoning as well.
623       return UnknownVal();
624     }
625 
626     // We get a symbolic function pointer for a dereference of a function
627     // pointer, but it is of function type. Example:
628 
629     //  struct FPRec {
630     //    void (*my_func)(int * x);
631     //  };
632     //
633     //  int bar(int x);
634     //
635     //  int f1_a(struct FPRec* foo) {
636     //    int x;
637     //    (*foo->my_func)(&x);
638     //    return bar(x)+1; // no-warning
639     //  }
640 
641     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
642            originalTy->isBlockPointerType() || castTy->isReferenceType());
643 
644     StoreManager &storeMgr = StateMgr.getStoreManager();
645 
646     // Delegate to store manager to get the result of casting a region to a
647     // different type.  If the MemRegion* returned is NULL, this expression
648     // Evaluates to UnknownVal.
649     R = storeMgr.castRegion(R, castTy);
650     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
651   }
652 
653   return dispatchCast(val, castTy);
654 }
655