1 //===- MveEmitter.cpp - Generate arm_mve.h for use with clang -*- C++ -*-=====//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
14 //
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
19 //
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
25 //
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
30 //
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
39 //
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
51 //
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
78 
79 using namespace llvm;
80 
81 namespace {
82 
83 class EmitterBase;
84 class Result;
85 
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
89 //
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
97 
98 class Type {
99 public:
100   enum class TypeKind {
101     // Void appears as a return type (for store intrinsics, which are pure
102     // side-effect). It's also used as the parameter type in the Tablegen
103     // when an intrinsic doesn't need to come in various suffixed forms like
104     // vfooq_s8,vfooq_u16,vfooq_f32.
105     Void,
106 
107     // Scalar is used for ordinary int and float types of all sizes.
108     Scalar,
109 
110     // Vector is used for anything that occupies exactly one MVE vector
111     // register, i.e. {uint,int,float}NxM_t.
112     Vector,
113 
114     // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115     // interleaving load/store intrinsics v{ld,st}{2,4}q.
116     MultiVector,
117 
118     // Predicate is used by all the predicated intrinsics. Its C
119     // representation is mve_pred16_t (which is just an alias for uint16_t).
120     // But we give more detail here, by indicating that a given predicate
121     // instruction is logically regarded as a vector of i1 containing the
122     // same number of lanes as the input vector type. So our Predicate type
123     // comes with a lane count, which we use to decide which kind of <n x i1>
124     // we'll invoke the pred_i2v IR intrinsic to translate it into.
125     Predicate,
126 
127     // Pointer is used for pointer types (obviously), and comes with a flag
128     // indicating whether it's a pointer to a const or mutable instance of
129     // the pointee type.
130     Pointer,
131   };
132 
133 private:
134   const TypeKind TKind;
135 
136 protected:
137   Type(TypeKind K) : TKind(K) {}
138 
139 public:
140   TypeKind typeKind() const { return TKind; }
141   virtual ~Type() = default;
142   virtual bool requiresFloat() const = 0;
143   virtual bool requiresMVE() const = 0;
144   virtual unsigned sizeInBits() const = 0;
145   virtual std::string cName() const = 0;
146   virtual std::string llvmName() const {
147     PrintFatalError("no LLVM type name available for type " + cName());
148   }
149   virtual std::string acleSuffix(std::string) const {
150     PrintFatalError("no ACLE suffix available for this type");
151   }
152 };
153 
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155 inline std::string toLetter(ScalarTypeKind kind) {
156   switch (kind) {
157   case ScalarTypeKind::SignedInt:
158     return "s";
159   case ScalarTypeKind::UnsignedInt:
160     return "u";
161   case ScalarTypeKind::Float:
162     return "f";
163   }
164   llvm_unreachable("Unhandled ScalarTypeKind enum");
165 }
166 inline std::string toCPrefix(ScalarTypeKind kind) {
167   switch (kind) {
168   case ScalarTypeKind::SignedInt:
169     return "int";
170   case ScalarTypeKind::UnsignedInt:
171     return "uint";
172   case ScalarTypeKind::Float:
173     return "float";
174   }
175   llvm_unreachable("Unhandled ScalarTypeKind enum");
176 }
177 
178 class VoidType : public Type {
179 public:
180   VoidType() : Type(TypeKind::Void) {}
181   unsigned sizeInBits() const override { return 0; }
182   bool requiresFloat() const override { return false; }
183   bool requiresMVE() const override { return false; }
184   std::string cName() const override { return "void"; }
185 
186   static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187   std::string acleSuffix(std::string) const override { return ""; }
188 };
189 
190 class PointerType : public Type {
191   const Type *Pointee;
192   bool Const;
193 
194 public:
195   PointerType(const Type *Pointee, bool Const)
196       : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197   unsigned sizeInBits() const override { return 32; }
198   bool requiresFloat() const override { return Pointee->requiresFloat(); }
199   bool requiresMVE() const override { return Pointee->requiresMVE(); }
200   std::string cName() const override {
201     std::string Name = Pointee->cName();
202 
203     // The syntax for a pointer in C is different when the pointee is
204     // itself a pointer. The MVE intrinsics don't contain any double
205     // pointers, so we don't need to worry about that wrinkle.
206     assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
207 
208     if (Const)
209       Name = "const " + Name;
210     return Name + " *";
211   }
212   std::string llvmName() const override {
213     return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
214   }
215 
216   static bool classof(const Type *T) {
217     return T->typeKind() == TypeKind::Pointer;
218   }
219 };
220 
221 // Base class for all the types that have a name of the form
222 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
223 //
224 // For this sub-hierarchy we invent a cNameBase() method which returns the
225 // whole name except for the trailing "_t", so that Vector and MultiVector can
226 // append an extra "x2" or whatever to their element type's cNameBase(). Then
227 // the main cName() query method puts "_t" on the end for the final type name.
228 
229 class CRegularNamedType : public Type {
230   using Type::Type;
231   virtual std::string cNameBase() const = 0;
232 
233 public:
234   std::string cName() const override { return cNameBase() + "_t"; }
235 };
236 
237 class ScalarType : public CRegularNamedType {
238   ScalarTypeKind Kind;
239   unsigned Bits;
240   std::string NameOverride;
241 
242 public:
243   ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
244     Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
245                .Case("s", ScalarTypeKind::SignedInt)
246                .Case("u", ScalarTypeKind::UnsignedInt)
247                .Case("f", ScalarTypeKind::Float);
248     Bits = Record->getValueAsInt("size");
249     NameOverride = std::string(Record->getValueAsString("nameOverride"));
250   }
251   unsigned sizeInBits() const override { return Bits; }
252   ScalarTypeKind kind() const { return Kind; }
253   std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
254   std::string cNameBase() const override {
255     return toCPrefix(Kind) + utostr(Bits);
256   }
257   std::string cName() const override {
258     if (NameOverride.empty())
259       return CRegularNamedType::cName();
260     return NameOverride;
261   }
262   std::string llvmName() const override {
263     if (Kind == ScalarTypeKind::Float) {
264       if (Bits == 16)
265         return "HalfTy";
266       if (Bits == 32)
267         return "FloatTy";
268       if (Bits == 64)
269         return "DoubleTy";
270       PrintFatalError("bad size for floating type");
271     }
272     return "Int" + utostr(Bits) + "Ty";
273   }
274   std::string acleSuffix(std::string overrideLetter) const override {
275     return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
276                + utostr(Bits);
277   }
278   bool isInteger() const { return Kind != ScalarTypeKind::Float; }
279   bool requiresFloat() const override { return !isInteger(); }
280   bool requiresMVE() const override { return false; }
281   bool hasNonstandardName() const { return !NameOverride.empty(); }
282 
283   static bool classof(const Type *T) {
284     return T->typeKind() == TypeKind::Scalar;
285   }
286 };
287 
288 class VectorType : public CRegularNamedType {
289   const ScalarType *Element;
290   unsigned Lanes;
291 
292 public:
293   VectorType(const ScalarType *Element, unsigned Lanes)
294       : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
295   unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
296   unsigned lanes() const { return Lanes; }
297   bool requiresFloat() const override { return Element->requiresFloat(); }
298   bool requiresMVE() const override { return true; }
299   std::string cNameBase() const override {
300     return Element->cNameBase() + "x" + utostr(Lanes);
301   }
302   std::string llvmName() const override {
303     return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
304            utostr(Lanes) + ")";
305   }
306 
307   static bool classof(const Type *T) {
308     return T->typeKind() == TypeKind::Vector;
309   }
310 };
311 
312 class MultiVectorType : public CRegularNamedType {
313   const VectorType *Element;
314   unsigned Registers;
315 
316 public:
317   MultiVectorType(unsigned Registers, const VectorType *Element)
318       : CRegularNamedType(TypeKind::MultiVector), Element(Element),
319         Registers(Registers) {}
320   unsigned sizeInBits() const override {
321     return Registers * Element->sizeInBits();
322   }
323   unsigned registers() const { return Registers; }
324   bool requiresFloat() const override { return Element->requiresFloat(); }
325   bool requiresMVE() const override { return true; }
326   std::string cNameBase() const override {
327     return Element->cNameBase() + "x" + utostr(Registers);
328   }
329 
330   // MultiVectorType doesn't override llvmName, because we don't expect to do
331   // automatic code generation for the MVE intrinsics that use it: the {vld2,
332   // vld4, vst2, vst4} family are the only ones that use these types, so it was
333   // easier to hand-write the codegen for dealing with these structs than to
334   // build in lots of extra automatic machinery that would only be used once.
335 
336   static bool classof(const Type *T) {
337     return T->typeKind() == TypeKind::MultiVector;
338   }
339 };
340 
341 class PredicateType : public CRegularNamedType {
342   unsigned Lanes;
343 
344 public:
345   PredicateType(unsigned Lanes)
346       : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
347   unsigned sizeInBits() const override { return 16; }
348   std::string cNameBase() const override { return "mve_pred16"; }
349   bool requiresFloat() const override { return false; };
350   bool requiresMVE() const override { return true; }
351   std::string llvmName() const override {
352     return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
353            ")";
354   }
355 
356   static bool classof(const Type *T) {
357     return T->typeKind() == TypeKind::Predicate;
358   }
359 };
360 
361 // -----------------------------------------------------------------------------
362 // Class to facilitate merging together the code generation for many intrinsics
363 // by means of varying a few constant or type parameters.
364 //
365 // Most obviously, the intrinsics in a single parametrised family will have
366 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
367 // and vaddq_u16 will look the same apart from putting a different vector type
368 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
369 // will often code-generate in the same way, with only a different choice of
370 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
371 // marshalling the arguments and return values of the IR intrinsic in exactly
372 // the same way. And others might differ only in some other kind of constant,
373 // such as a lane index.
374 //
375 // So, when we generate the IR-building code for all these intrinsics, we keep
376 // track of every value that could possibly be pulled out of the code and
377 // stored ahead of time in a local variable. Then we group together intrinsics
378 // by textual equivalence of the code that would result if _all_ those
379 // parameters were stored in local variables. That gives us maximal sets that
380 // can be implemented by a single piece of IR-building code by changing
381 // parameter values ahead of time.
382 //
383 // After we've done that, we do a second pass in which we only allocate _some_
384 // of the parameters into local variables, by tracking which ones have the same
385 // values as each other (so that a single variable can be reused) and which
386 // ones are the same across the whole set (so that no variable is needed at
387 // all).
388 //
389 // Hence the class below. Its allocParam method is invoked during code
390 // generation by every method of a Result subclass (see below) that wants to
391 // give it the opportunity to pull something out into a switchable parameter.
392 // It returns a variable name for the parameter, or (if it's being used in the
393 // second pass once we've decided that some parameters don't need to be stored
394 // in variables after all) it might just return the input expression unchanged.
395 
396 struct CodeGenParamAllocator {
397   // Accumulated during code generation
398   std::vector<std::string> *ParamTypes = nullptr;
399   std::vector<std::string> *ParamValues = nullptr;
400 
401   // Provided ahead of time in pass 2, to indicate which parameters are being
402   // assigned to what. This vector contains an entry for each call to
403   // allocParam expected during code gen (which we counted up in pass 1), and
404   // indicates the number of the parameter variable that should be returned, or
405   // -1 if this call shouldn't allocate a parameter variable at all.
406   //
407   // We rely on the recursive code generation working identically in passes 1
408   // and 2, so that the same list of calls to allocParam happen in the same
409   // order. That guarantees that the parameter numbers recorded in pass 1 will
410   // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
411   // decided to do about each one in pass 2.
412   std::vector<int> *ParamNumberMap = nullptr;
413 
414   // Internally track how many things we've allocated
415   unsigned nparams = 0;
416 
417   std::string allocParam(StringRef Type, StringRef Value) {
418     unsigned ParamNumber;
419 
420     if (!ParamNumberMap) {
421       // In pass 1, unconditionally assign a new parameter variable to every
422       // value we're asked to process.
423       ParamNumber = nparams++;
424     } else {
425       // In pass 2, consult the map provided by the caller to find out which
426       // variable we should be keeping things in.
427       int MapValue = (*ParamNumberMap)[nparams++];
428       if (MapValue < 0)
429         return std::string(Value);
430       ParamNumber = MapValue;
431     }
432 
433     // If we've allocated a new parameter variable for the first time, store
434     // its type and value to be retrieved after codegen.
435     if (ParamTypes && ParamTypes->size() == ParamNumber)
436       ParamTypes->push_back(std::string(Type));
437     if (ParamValues && ParamValues->size() == ParamNumber)
438       ParamValues->push_back(std::string(Value));
439 
440     // Unimaginative naming scheme for parameter variables.
441     return "Param" + utostr(ParamNumber);
442   }
443 };
444 
445 // -----------------------------------------------------------------------------
446 // System of classes that represent all the intermediate values used during
447 // code-generation for an intrinsic.
448 //
449 // The base class 'Result' can represent a value of the LLVM type 'Value', or
450 // sometimes 'Address' (for loads/stores, including an alignment requirement).
451 //
452 // In the case where the Tablegen provides a value in the codegen dag as a
453 // plain integer literal, the Result object we construct here will be one that
454 // returns true from hasIntegerConstantValue(). This allows the generated C++
455 // code to use the constant directly in contexts which can take a literal
456 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
457 // effort of calling llvm::ConstantInt::get() and then pulling the constant
458 // back out of the resulting llvm:Value later.
459 
460 class Result {
461 public:
462   // Convenient shorthand for the pointer type we'll be using everywhere.
463   using Ptr = std::shared_ptr<Result>;
464 
465 private:
466   Ptr Predecessor;
467   std::string VarName;
468   bool VarNameUsed = false;
469   unsigned Visited = 0;
470 
471 public:
472   virtual ~Result() = default;
473   using Scope = std::map<std::string, Ptr>;
474   virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
475   virtual bool hasIntegerConstantValue() const { return false; }
476   virtual uint32_t integerConstantValue() const { return 0; }
477   virtual bool hasIntegerValue() const { return false; }
478   virtual std::string getIntegerValue(const std::string &) {
479     llvm_unreachable("non-working Result::getIntegerValue called");
480   }
481   virtual std::string typeName() const { return "Value *"; }
482 
483   // Mostly, when a code-generation operation has a dependency on prior
484   // operations, it's because it uses the output values of those operations as
485   // inputs. But there's one exception, which is the use of 'seq' in Tablegen
486   // to indicate that operations have to be performed in sequence regardless of
487   // whether they use each others' output values.
488   //
489   // So, the actual generation of code is done by depth-first search, using the
490   // prerequisites() method to get a list of all the other Results that have to
491   // be computed before this one. That method divides into the 'predecessor',
492   // set by setPredecessor() while processing a 'seq' dag node, and the list
493   // returned by 'morePrerequisites', which each subclass implements to return
494   // a list of the Results it uses as input to whatever its own computation is
495   // doing.
496 
497   virtual void morePrerequisites(std::vector<Ptr> &output) const {}
498   std::vector<Ptr> prerequisites() const {
499     std::vector<Ptr> ToRet;
500     if (Predecessor)
501       ToRet.push_back(Predecessor);
502     morePrerequisites(ToRet);
503     return ToRet;
504   }
505 
506   void setPredecessor(Ptr p) {
507     // If the user has nested one 'seq' node inside another, and this
508     // method is called on the return value of the inner 'seq' (i.e.
509     // the final item inside it), then we can't link _this_ node to p,
510     // because it already has a predecessor. Instead, walk the chain
511     // until we find the first item in the inner seq, and link that to
512     // p, so that nesting seqs has the obvious effect of linking
513     // everything together into one long sequential chain.
514     Result *r = this;
515     while (r->Predecessor)
516       r = r->Predecessor.get();
517     r->Predecessor = p;
518   }
519 
520   // Each Result will be assigned a variable name in the output code, but not
521   // all those variable names will actually be used (e.g. the return value of
522   // Builder.CreateStore has void type, so nobody will want to refer to it). To
523   // prevent annoying compiler warnings, we track whether each Result's
524   // variable name was ever actually mentioned in subsequent statements, so
525   // that it can be left out of the final generated code.
526   std::string varname() {
527     VarNameUsed = true;
528     return VarName;
529   }
530   void setVarname(const StringRef s) { VarName = std::string(s); }
531   bool varnameUsed() const { return VarNameUsed; }
532 
533   // Emit code to generate this result as a Value *.
534   virtual std::string asValue() {
535     return varname();
536   }
537 
538   // Code generation happens in multiple passes. This method tracks whether a
539   // Result has yet been visited in a given pass, without the need for a
540   // tedious loop in between passes that goes through and resets a 'visited'
541   // flag back to false: you just set Pass=1 the first time round, and Pass=2
542   // the second time.
543   bool needsVisiting(unsigned Pass) {
544     bool ToRet = Visited < Pass;
545     Visited = Pass;
546     return ToRet;
547   }
548 };
549 
550 // Result subclass that retrieves one of the arguments to the clang builtin
551 // function. In cases where the argument has pointer type, we call
552 // EmitPointerWithAlignment and store the result in a variable of type Address,
553 // so that load and store IR nodes can know the right alignment. Otherwise, we
554 // call EmitScalarExpr.
555 //
556 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
557 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
558 // vst2q/vst4q family, which is few enough that we just write the code by hand
559 // for those in CGBuiltin.cpp.
560 class BuiltinArgResult : public Result {
561 public:
562   unsigned ArgNum;
563   bool AddressType;
564   bool Immediate;
565   BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
566       : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
567   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
568     OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
569        << "(E->getArg(" << ArgNum << "))";
570   }
571   std::string typeName() const override {
572     return AddressType ? "Address" : Result::typeName();
573   }
574   // Emit code to generate this result as a Value *.
575   std::string asValue() override {
576     if (AddressType)
577       return "(" + varname() + ".getPointer())";
578     return Result::asValue();
579   }
580   bool hasIntegerValue() const override { return Immediate; }
581   std::string getIntegerValue(const std::string &IntType) override {
582     return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
583            utostr(ArgNum) + "), getContext())";
584   }
585 };
586 
587 // Result subclass for an integer literal appearing in Tablegen. This may need
588 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
589 // it may be used directly as an integer, depending on which IRBuilder method
590 // it's being passed to.
591 class IntLiteralResult : public Result {
592 public:
593   const ScalarType *IntegerType;
594   uint32_t IntegerValue;
595   IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
596       : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
597   void genCode(raw_ostream &OS,
598                CodeGenParamAllocator &ParamAlloc) const override {
599     OS << "llvm::ConstantInt::get("
600        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
601        << ", ";
602     OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
603        << ")";
604   }
605   bool hasIntegerConstantValue() const override { return true; }
606   uint32_t integerConstantValue() const override { return IntegerValue; }
607 };
608 
609 // Result subclass representing a cast between different integer types. We use
610 // our own ScalarType abstraction as the representation of the target type,
611 // which gives both size and signedness.
612 class IntCastResult : public Result {
613 public:
614   const ScalarType *IntegerType;
615   Ptr V;
616   IntCastResult(const ScalarType *IntegerType, Ptr V)
617       : IntegerType(IntegerType), V(V) {}
618   void genCode(raw_ostream &OS,
619                CodeGenParamAllocator &ParamAlloc) const override {
620     OS << "Builder.CreateIntCast(" << V->varname() << ", "
621        << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
622        << ParamAlloc.allocParam("bool",
623                                 IntegerType->kind() == ScalarTypeKind::SignedInt
624                                     ? "true"
625                                     : "false")
626        << ")";
627   }
628   void morePrerequisites(std::vector<Ptr> &output) const override {
629     output.push_back(V);
630   }
631 };
632 
633 // Result subclass representing a cast between different pointer types.
634 class PointerCastResult : public Result {
635 public:
636   const PointerType *PtrType;
637   Ptr V;
638   PointerCastResult(const PointerType *PtrType, Ptr V)
639       : PtrType(PtrType), V(V) {}
640   void genCode(raw_ostream &OS,
641                CodeGenParamAllocator &ParamAlloc) const override {
642     OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
643        << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
644   }
645   void morePrerequisites(std::vector<Ptr> &output) const override {
646     output.push_back(V);
647   }
648 };
649 
650 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
651 // method we want to use will have a Tablegen record giving the method name and
652 // describing any important details of how to call it, such as whether a
653 // particular argument should be an integer constant instead of an llvm::Value.
654 class IRBuilderResult : public Result {
655 public:
656   StringRef CallPrefix;
657   std::vector<Ptr> Args;
658   std::set<unsigned> AddressArgs;
659   std::map<unsigned, std::string> IntegerArgs;
660   IRBuilderResult(StringRef CallPrefix, std::vector<Ptr> Args,
661                   std::set<unsigned> AddressArgs,
662                   std::map<unsigned, std::string> IntegerArgs)
663       : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
664         IntegerArgs(IntegerArgs) {}
665   void genCode(raw_ostream &OS,
666                CodeGenParamAllocator &ParamAlloc) const override {
667     OS << CallPrefix;
668     const char *Sep = "";
669     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
670       Ptr Arg = Args[i];
671       auto it = IntegerArgs.find(i);
672 
673       OS << Sep;
674       Sep = ", ";
675 
676       if (it != IntegerArgs.end()) {
677         if (Arg->hasIntegerConstantValue())
678           OS << "static_cast<" << it->second << ">("
679              << ParamAlloc.allocParam(it->second,
680                                       utostr(Arg->integerConstantValue()))
681              << ")";
682         else if (Arg->hasIntegerValue())
683           OS << ParamAlloc.allocParam(it->second,
684                                       Arg->getIntegerValue(it->second));
685       } else {
686         OS << Arg->varname();
687       }
688     }
689     OS << ")";
690   }
691   void morePrerequisites(std::vector<Ptr> &output) const override {
692     for (unsigned i = 0, e = Args.size(); i < e; ++i) {
693       Ptr Arg = Args[i];
694       if (IntegerArgs.find(i) != IntegerArgs.end())
695         continue;
696       output.push_back(Arg);
697     }
698   }
699 };
700 
701 // Result subclass representing making an Address out of a Value.
702 class AddressResult : public Result {
703 public:
704   Ptr Arg;
705   unsigned Align;
706   AddressResult(Ptr Arg, unsigned Align) : Arg(Arg), Align(Align) {}
707   void genCode(raw_ostream &OS,
708                CodeGenParamAllocator &ParamAlloc) const override {
709     OS << "Address(" << Arg->varname() << ", CharUnits::fromQuantity("
710        << Align << "))";
711   }
712   std::string typeName() const override {
713     return "Address";
714   }
715   void morePrerequisites(std::vector<Ptr> &output) const override {
716     output.push_back(Arg);
717   }
718 };
719 
720 // Result subclass representing a call to an IR intrinsic, which we first have
721 // to look up using an Intrinsic::ID constant and an array of types.
722 class IRIntrinsicResult : public Result {
723 public:
724   std::string IntrinsicID;
725   std::vector<const Type *> ParamTypes;
726   std::vector<Ptr> Args;
727   IRIntrinsicResult(StringRef IntrinsicID, std::vector<const Type *> ParamTypes,
728                     std::vector<Ptr> Args)
729       : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
730         Args(Args) {}
731   void genCode(raw_ostream &OS,
732                CodeGenParamAllocator &ParamAlloc) const override {
733     std::string IntNo = ParamAlloc.allocParam(
734         "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
735     OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
736     if (!ParamTypes.empty()) {
737       OS << ", {";
738       const char *Sep = "";
739       for (auto T : ParamTypes) {
740         OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
741         Sep = ", ";
742       }
743       OS << "}";
744     }
745     OS << "), {";
746     const char *Sep = "";
747     for (auto Arg : Args) {
748       OS << Sep << Arg->asValue();
749       Sep = ", ";
750     }
751     OS << "})";
752   }
753   void morePrerequisites(std::vector<Ptr> &output) const override {
754     output.insert(output.end(), Args.begin(), Args.end());
755   }
756 };
757 
758 // Result subclass that specifies a type, for use in IRBuilder operations such
759 // as CreateBitCast that take a type argument.
760 class TypeResult : public Result {
761 public:
762   const Type *T;
763   TypeResult(const Type *T) : T(T) {}
764   void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
765     OS << T->llvmName();
766   }
767   std::string typeName() const override {
768     return "llvm::Type *";
769   }
770 };
771 
772 // -----------------------------------------------------------------------------
773 // Class that describes a single ACLE intrinsic.
774 //
775 // A Tablegen record will typically describe more than one ACLE intrinsic, by
776 // means of setting the 'list<Type> Params' field to a list of multiple
777 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
778 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
779 // rather than a single one for all of them. Hence, the constructor takes both
780 // a Tablegen record and the current value of the parameter type.
781 
782 class ACLEIntrinsic {
783   // Structure documenting that one of the intrinsic's arguments is required to
784   // be a compile-time constant integer, and what constraints there are on its
785   // value. Used when generating Sema checking code.
786   struct ImmediateArg {
787     enum class BoundsType { ExplicitRange, UInt };
788     BoundsType boundsType;
789     int64_t i1, i2;
790     StringRef ExtraCheckType, ExtraCheckArgs;
791     const Type *ArgType;
792   };
793 
794   // For polymorphic intrinsics, FullName is the explicit name that uniquely
795   // identifies this variant of the intrinsic, and ShortName is the name it
796   // shares with at least one other intrinsic.
797   std::string ShortName, FullName;
798 
799   // Name of the architecture extension, used in the Clang builtin name
800   StringRef BuiltinExtension;
801 
802   // A very small number of intrinsics _only_ have a polymorphic
803   // variant (vuninitializedq taking an unevaluated argument).
804   bool PolymorphicOnly;
805 
806   // Another rarely-used flag indicating that the builtin doesn't
807   // evaluate its argument(s) at all.
808   bool NonEvaluating;
809 
810   // True if the intrinsic needs only the C header part (no codegen, semantic
811   // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
812   bool HeaderOnly;
813 
814   const Type *ReturnType;
815   std::vector<const Type *> ArgTypes;
816   std::map<unsigned, ImmediateArg> ImmediateArgs;
817   Result::Ptr Code;
818 
819   std::map<std::string, std::string> CustomCodeGenArgs;
820 
821   // Recursive function that does the internals of code generation.
822   void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
823                   unsigned Pass) const {
824     if (!V->needsVisiting(Pass))
825       return;
826 
827     for (Result::Ptr W : V->prerequisites())
828       genCodeDfs(W, Used, Pass);
829 
830     Used.push_back(V);
831   }
832 
833 public:
834   const std::string &shortName() const { return ShortName; }
835   const std::string &fullName() const { return FullName; }
836   StringRef builtinExtension() const { return BuiltinExtension; }
837   const Type *returnType() const { return ReturnType; }
838   const std::vector<const Type *> &argTypes() const { return ArgTypes; }
839   bool requiresFloat() const {
840     if (ReturnType->requiresFloat())
841       return true;
842     for (const Type *T : ArgTypes)
843       if (T->requiresFloat())
844         return true;
845     return false;
846   }
847   bool requiresMVE() const {
848     return ReturnType->requiresMVE() ||
849            any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
850   }
851   bool polymorphic() const { return ShortName != FullName; }
852   bool polymorphicOnly() const { return PolymorphicOnly; }
853   bool nonEvaluating() const { return NonEvaluating; }
854   bool headerOnly() const { return HeaderOnly; }
855 
856   // External entry point for code generation, called from EmitterBase.
857   void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
858                unsigned Pass) const {
859     assert(!headerOnly() && "Called genCode for header-only intrinsic");
860     if (!hasCode()) {
861       for (auto kv : CustomCodeGenArgs)
862         OS << "  " << kv.first << " = " << kv.second << ";\n";
863       OS << "  break; // custom code gen\n";
864       return;
865     }
866     std::list<Result::Ptr> Used;
867     genCodeDfs(Code, Used, Pass);
868 
869     unsigned varindex = 0;
870     for (Result::Ptr V : Used)
871       if (V->varnameUsed())
872         V->setVarname("Val" + utostr(varindex++));
873 
874     for (Result::Ptr V : Used) {
875       OS << "  ";
876       if (V == Used.back()) {
877         assert(!V->varnameUsed());
878         OS << "return "; // FIXME: what if the top-level thing is void?
879       } else if (V->varnameUsed()) {
880         std::string Type = V->typeName();
881         OS << V->typeName();
882         if (!StringRef(Type).endswith("*"))
883           OS << " ";
884         OS << V->varname() << " = ";
885       }
886       V->genCode(OS, ParamAlloc);
887       OS << ";\n";
888     }
889   }
890   bool hasCode() const { return Code != nullptr; }
891 
892   static std::string signedHexLiteral(const llvm::APInt &iOrig) {
893     llvm::APInt i = iOrig.trunc(64);
894     SmallString<40> s;
895     i.toString(s, 16, true, true);
896     return std::string(s.str());
897   }
898 
899   std::string genSema() const {
900     assert(!headerOnly() && "Called genSema for header-only intrinsic");
901     std::vector<std::string> SemaChecks;
902 
903     for (const auto &kv : ImmediateArgs) {
904       const ImmediateArg &IA = kv.second;
905 
906       llvm::APInt lo(128, 0), hi(128, 0);
907       switch (IA.boundsType) {
908       case ImmediateArg::BoundsType::ExplicitRange:
909         lo = IA.i1;
910         hi = IA.i2;
911         break;
912       case ImmediateArg::BoundsType::UInt:
913         lo = 0;
914         hi = llvm::APInt::getMaxValue(IA.i1).zext(128);
915         break;
916       }
917 
918       std::string Index = utostr(kv.first);
919 
920       // Emit a range check if the legal range of values for the
921       // immediate is smaller than the _possible_ range of values for
922       // its type.
923       unsigned ArgTypeBits = IA.ArgType->sizeInBits();
924       llvm::APInt ArgTypeRange = llvm::APInt::getMaxValue(ArgTypeBits).zext(128);
925       llvm::APInt ActualRange = (hi-lo).trunc(64).sext(128);
926       if (ActualRange.ult(ArgTypeRange))
927         SemaChecks.push_back("SemaBuiltinConstantArgRange(TheCall, " + Index +
928                              ", " + signedHexLiteral(lo) + ", " +
929                              signedHexLiteral(hi) + ")");
930 
931       if (!IA.ExtraCheckType.empty()) {
932         std::string Suffix;
933         if (!IA.ExtraCheckArgs.empty()) {
934           std::string tmp;
935           StringRef Arg = IA.ExtraCheckArgs;
936           if (Arg == "!lanesize") {
937             tmp = utostr(IA.ArgType->sizeInBits());
938             Arg = tmp;
939           }
940           Suffix = (Twine(", ") + Arg).str();
941         }
942         SemaChecks.push_back((Twine("SemaBuiltinConstantArg") +
943                               IA.ExtraCheckType + "(TheCall, " + Index +
944                               Suffix + ")")
945                                  .str());
946       }
947 
948       assert(!SemaChecks.empty());
949     }
950     if (SemaChecks.empty())
951       return "";
952     return join(std::begin(SemaChecks), std::end(SemaChecks),
953                 " ||\n         ") +
954            ";\n";
955   }
956 
957   ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param);
958 };
959 
960 // -----------------------------------------------------------------------------
961 // The top-level class that holds all the state from analyzing the entire
962 // Tablegen input.
963 
964 class EmitterBase {
965 protected:
966   // EmitterBase holds a collection of all the types we've instantiated.
967   VoidType Void;
968   std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
969   std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
970            std::unique_ptr<VectorType>>
971       VectorTypes;
972   std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
973       MultiVectorTypes;
974   std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
975   std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
976 
977   // And all the ACLEIntrinsic instances we've created.
978   std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
979 
980 public:
981   // Methods to create a Type object, or return the right existing one from the
982   // maps stored in this object.
983   const VoidType *getVoidType() { return &Void; }
984   const ScalarType *getScalarType(StringRef Name) {
985     return ScalarTypes[std::string(Name)].get();
986   }
987   const ScalarType *getScalarType(Record *R) {
988     return getScalarType(R->getName());
989   }
990   const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
991     std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
992                                                        ST->sizeInBits(), Lanes);
993     if (VectorTypes.find(key) == VectorTypes.end())
994       VectorTypes[key] = std::make_unique<VectorType>(ST, Lanes);
995     return VectorTypes[key].get();
996   }
997   const VectorType *getVectorType(const ScalarType *ST) {
998     return getVectorType(ST, 128 / ST->sizeInBits());
999   }
1000   const MultiVectorType *getMultiVectorType(unsigned Registers,
1001                                             const VectorType *VT) {
1002     std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1003     if (MultiVectorTypes.find(key) == MultiVectorTypes.end())
1004       MultiVectorTypes[key] = std::make_unique<MultiVectorType>(Registers, VT);
1005     return MultiVectorTypes[key].get();
1006   }
1007   const PredicateType *getPredicateType(unsigned Lanes) {
1008     unsigned key = Lanes;
1009     if (PredicateTypes.find(key) == PredicateTypes.end())
1010       PredicateTypes[key] = std::make_unique<PredicateType>(Lanes);
1011     return PredicateTypes[key].get();
1012   }
1013   const PointerType *getPointerType(const Type *T, bool Const) {
1014     PointerType PT(T, Const);
1015     std::string key = PT.cName();
1016     if (PointerTypes.find(key) == PointerTypes.end())
1017       PointerTypes[key] = std::make_unique<PointerType>(PT);
1018     return PointerTypes[key].get();
1019   }
1020 
1021   // Methods to construct a type from various pieces of Tablegen. These are
1022   // always called in the context of setting up a particular ACLEIntrinsic, so
1023   // there's always an ambient parameter type (because we're iterating through
1024   // the Params list in the Tablegen record for the intrinsic), which is used
1025   // to expand Tablegen classes like 'Vector' which mean something different in
1026   // each member of a parametric family.
1027   const Type *getType(Record *R, const Type *Param);
1028   const Type *getType(DagInit *D, const Type *Param);
1029   const Type *getType(Init *I, const Type *Param);
1030 
1031   // Functions that translate the Tablegen representation of an intrinsic's
1032   // code generation into a collection of Value objects (which will then be
1033   // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1034   Result::Ptr getCodeForDag(DagInit *D, const Result::Scope &Scope,
1035                             const Type *Param);
1036   Result::Ptr getCodeForDagArg(DagInit *D, unsigned ArgNum,
1037                                const Result::Scope &Scope, const Type *Param);
1038   Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1039                             bool Immediate);
1040 
1041   void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1042 
1043   // Constructor and top-level functions.
1044 
1045   EmitterBase(RecordKeeper &Records);
1046   virtual ~EmitterBase() = default;
1047 
1048   virtual void EmitHeader(raw_ostream &OS) = 0;
1049   virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1050   virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1051   void EmitBuiltinCG(raw_ostream &OS);
1052   void EmitBuiltinAliases(raw_ostream &OS);
1053 };
1054 
1055 const Type *EmitterBase::getType(Init *I, const Type *Param) {
1056   if (auto Dag = dyn_cast<DagInit>(I))
1057     return getType(Dag, Param);
1058   if (auto Def = dyn_cast<DefInit>(I))
1059     return getType(Def->getDef(), Param);
1060 
1061   PrintFatalError("Could not convert this value into a type");
1062 }
1063 
1064 const Type *EmitterBase::getType(Record *R, const Type *Param) {
1065   // Pass to a subfield of any wrapper records. We don't expect more than one
1066   // of these: immediate operands are used as plain numbers rather than as
1067   // llvm::Value, so it's meaningless to promote their type anyway.
1068   if (R->isSubClassOf("Immediate"))
1069     R = R->getValueAsDef("type");
1070   else if (R->isSubClassOf("unpromoted"))
1071     R = R->getValueAsDef("underlying_type");
1072 
1073   if (R->getName() == "Void")
1074     return getVoidType();
1075   if (R->isSubClassOf("PrimitiveType"))
1076     return getScalarType(R);
1077   if (R->isSubClassOf("ComplexType"))
1078     return getType(R->getValueAsDag("spec"), Param);
1079 
1080   PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1081 }
1082 
1083 const Type *EmitterBase::getType(DagInit *D, const Type *Param) {
1084   // The meat of the getType system: types in the Tablegen are represented by a
1085   // dag whose operators select sub-cases of this function.
1086 
1087   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1088   if (!Op->isSubClassOf("ComplexTypeOp"))
1089     PrintFatalError(
1090         "Expected ComplexTypeOp as dag operator in type expression");
1091 
1092   if (Op->getName() == "CTO_Parameter") {
1093     if (isa<VoidType>(Param))
1094       PrintFatalError("Parametric type in unparametrised context");
1095     return Param;
1096   }
1097 
1098   if (Op->getName() == "CTO_Vec") {
1099     const Type *Element = getType(D->getArg(0), Param);
1100     if (D->getNumArgs() == 1) {
1101       return getVectorType(cast<ScalarType>(Element));
1102     } else {
1103       const Type *ExistingVector = getType(D->getArg(1), Param);
1104       return getVectorType(cast<ScalarType>(Element),
1105                            cast<VectorType>(ExistingVector)->lanes());
1106     }
1107   }
1108 
1109   if (Op->getName() == "CTO_Pred") {
1110     const Type *Element = getType(D->getArg(0), Param);
1111     return getPredicateType(128 / Element->sizeInBits());
1112   }
1113 
1114   if (Op->isSubClassOf("CTO_Tuple")) {
1115     unsigned Registers = Op->getValueAsInt("n");
1116     const Type *Element = getType(D->getArg(0), Param);
1117     return getMultiVectorType(Registers, cast<VectorType>(Element));
1118   }
1119 
1120   if (Op->isSubClassOf("CTO_Pointer")) {
1121     const Type *Pointee = getType(D->getArg(0), Param);
1122     return getPointerType(Pointee, Op->getValueAsBit("const"));
1123   }
1124 
1125   if (Op->getName() == "CTO_CopyKind") {
1126     const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1127     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1128     for (const auto &kv : ScalarTypes) {
1129       const ScalarType *RT = kv.second.get();
1130       if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1131         return RT;
1132     }
1133     PrintFatalError("Cannot find a type to satisfy CopyKind");
1134   }
1135 
1136   if (Op->isSubClassOf("CTO_ScaleSize")) {
1137     const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1138     int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1139     unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1140     for (const auto &kv : ScalarTypes) {
1141       const ScalarType *RT = kv.second.get();
1142       if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1143         return RT;
1144     }
1145     PrintFatalError("Cannot find a type to satisfy ScaleSize");
1146   }
1147 
1148   PrintFatalError("Bad operator in type dag expression");
1149 }
1150 
1151 Result::Ptr EmitterBase::getCodeForDag(DagInit *D, const Result::Scope &Scope,
1152                                        const Type *Param) {
1153   Record *Op = cast<DefInit>(D->getOperator())->getDef();
1154 
1155   if (Op->getName() == "seq") {
1156     Result::Scope SubScope = Scope;
1157     Result::Ptr PrevV = nullptr;
1158     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1159       // We don't use getCodeForDagArg here, because the argument name
1160       // has different semantics in a seq
1161       Result::Ptr V =
1162           getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1163       StringRef ArgName = D->getArgNameStr(i);
1164       if (!ArgName.empty())
1165         SubScope[std::string(ArgName)] = V;
1166       if (PrevV)
1167         V->setPredecessor(PrevV);
1168       PrevV = V;
1169     }
1170     return PrevV;
1171   } else if (Op->isSubClassOf("Type")) {
1172     if (D->getNumArgs() != 1)
1173       PrintFatalError("Type casts should have exactly one argument");
1174     const Type *CastType = getType(Op, Param);
1175     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1176     if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1177       if (!ST->requiresFloat()) {
1178         if (Arg->hasIntegerConstantValue())
1179           return std::make_shared<IntLiteralResult>(
1180               ST, Arg->integerConstantValue());
1181         else
1182           return std::make_shared<IntCastResult>(ST, Arg);
1183       }
1184     } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1185       return std::make_shared<PointerCastResult>(PT, Arg);
1186     }
1187     PrintFatalError("Unsupported type cast");
1188   } else if (Op->getName() == "address") {
1189     if (D->getNumArgs() != 2)
1190       PrintFatalError("'address' should have two arguments");
1191     Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1192     unsigned Alignment;
1193     if (auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1194       Alignment = II->getValue();
1195     } else {
1196       PrintFatalError("'address' alignment argument should be an integer");
1197     }
1198     return std::make_shared<AddressResult>(Arg, Alignment);
1199   } else if (Op->getName() == "unsignedflag") {
1200     if (D->getNumArgs() != 1)
1201       PrintFatalError("unsignedflag should have exactly one argument");
1202     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1203     if (!TypeRec->isSubClassOf("Type"))
1204       PrintFatalError("unsignedflag's argument should be a type");
1205     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1206       return std::make_shared<IntLiteralResult>(
1207         getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1208     } else {
1209       PrintFatalError("unsignedflag's argument should be a scalar type");
1210     }
1211   } else if (Op->getName() == "bitsize") {
1212     if (D->getNumArgs() != 1)
1213       PrintFatalError("bitsize should have exactly one argument");
1214     Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1215     if (!TypeRec->isSubClassOf("Type"))
1216       PrintFatalError("bitsize's argument should be a type");
1217     if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1218       return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1219                                                 ST->sizeInBits());
1220     } else {
1221       PrintFatalError("bitsize's argument should be a scalar type");
1222     }
1223   } else {
1224     std::vector<Result::Ptr> Args;
1225     for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1226       Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1227     if (Op->isSubClassOf("IRBuilderBase")) {
1228       std::set<unsigned> AddressArgs;
1229       std::map<unsigned, std::string> IntegerArgs;
1230       for (Record *sp : Op->getValueAsListOfDefs("special_params")) {
1231         unsigned Index = sp->getValueAsInt("index");
1232         if (sp->isSubClassOf("IRBuilderAddrParam")) {
1233           AddressArgs.insert(Index);
1234         } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1235           IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1236         }
1237       }
1238       return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1239                                                Args, AddressArgs, IntegerArgs);
1240     } else if (Op->isSubClassOf("IRIntBase")) {
1241       std::vector<const Type *> ParamTypes;
1242       for (Record *RParam : Op->getValueAsListOfDefs("params"))
1243         ParamTypes.push_back(getType(RParam, Param));
1244       std::string IntName = std::string(Op->getValueAsString("intname"));
1245       if (Op->getValueAsBit("appendKind"))
1246         IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1247       return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1248     } else {
1249       PrintFatalError("Unsupported dag node " + Op->getName());
1250     }
1251   }
1252 }
1253 
1254 Result::Ptr EmitterBase::getCodeForDagArg(DagInit *D, unsigned ArgNum,
1255                                           const Result::Scope &Scope,
1256                                           const Type *Param) {
1257   Init *Arg = D->getArg(ArgNum);
1258   StringRef Name = D->getArgNameStr(ArgNum);
1259 
1260   if (!Name.empty()) {
1261     if (!isa<UnsetInit>(Arg))
1262       PrintFatalError(
1263           "dag operator argument should not have both a value and a name");
1264     auto it = Scope.find(std::string(Name));
1265     if (it == Scope.end())
1266       PrintFatalError("unrecognized variable name '" + Name + "'");
1267     return it->second;
1268   }
1269 
1270   // Sometimes the Arg is a bit. Prior to multiclass template argument
1271   // checking, integers would sneak through the bit declaration,
1272   // but now they really are bits.
1273   if (auto *BI = dyn_cast<BitInit>(Arg))
1274     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1275                                               BI->getValue());
1276 
1277   if (auto *II = dyn_cast<IntInit>(Arg))
1278     return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1279                                               II->getValue());
1280 
1281   if (auto *DI = dyn_cast<DagInit>(Arg))
1282     return getCodeForDag(DI, Scope, Param);
1283 
1284   if (auto *DI = dyn_cast<DefInit>(Arg)) {
1285     Record *Rec = DI->getDef();
1286     if (Rec->isSubClassOf("Type")) {
1287       const Type *T = getType(Rec, Param);
1288       return std::make_shared<TypeResult>(T);
1289     }
1290   }
1291 
1292   PrintError("bad DAG argument type for code generation");
1293   PrintNote("DAG: " + D->getAsString());
1294   if (TypedInit *Typed = dyn_cast<TypedInit>(Arg))
1295     PrintNote("argument type: " + Typed->getType()->getAsString());
1296   PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1297 }
1298 
1299 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1300                                        bool Promote, bool Immediate) {
1301   Result::Ptr V = std::make_shared<BuiltinArgResult>(
1302       ArgNum, isa<PointerType>(ArgType), Immediate);
1303 
1304   if (Promote) {
1305     if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1306       if (ST->isInteger() && ST->sizeInBits() < 32)
1307         V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1308     } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1309       V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1310       V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1311                                               std::vector<const Type *>{PT},
1312                                               std::vector<Result::Ptr>{V});
1313     }
1314   }
1315 
1316   return V;
1317 }
1318 
1319 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, Record *R, const Type *Param)
1320     : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1321   // Derive the intrinsic's full name, by taking the name of the
1322   // Tablegen record (or override) and appending the suffix from its
1323   // parameter type. (If the intrinsic is unparametrised, its
1324   // parameter type will be given as Void, which returns the empty
1325   // string for acleSuffix.)
1326   StringRef BaseName =
1327       (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1328                                        : R->getName());
1329   StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1330   FullName =
1331       (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1332 
1333   // Derive the intrinsic's polymorphic name, by removing components from the
1334   // full name as specified by its 'pnt' member ('polymorphic name type'),
1335   // which indicates how many type suffixes to remove, and any other piece of
1336   // the name that should be removed.
1337   Record *PolymorphicNameType = R->getValueAsDef("pnt");
1338   SmallVector<StringRef, 8> NameParts;
1339   StringRef(FullName).split(NameParts, '_');
1340   for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1341                            "NumTypeSuffixesToDiscard");
1342        i < e; ++i)
1343     NameParts.pop_back();
1344   if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1345     StringRef ExtraSuffix =
1346         PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1347     auto it = NameParts.end();
1348     while (it != NameParts.begin()) {
1349       --it;
1350       if (*it == ExtraSuffix) {
1351         NameParts.erase(it);
1352         break;
1353       }
1354     }
1355   }
1356   ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1357 
1358   BuiltinExtension = R->getValueAsString("builtinExtension");
1359 
1360   PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1361   NonEvaluating = R->getValueAsBit("nonEvaluating");
1362   HeaderOnly = R->getValueAsBit("headerOnly");
1363 
1364   // Process the intrinsic's argument list.
1365   DagInit *ArgsDag = R->getValueAsDag("args");
1366   Result::Scope Scope;
1367   for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1368     Init *TypeInit = ArgsDag->getArg(i);
1369 
1370     bool Promote = true;
1371     if (auto TypeDI = dyn_cast<DefInit>(TypeInit))
1372       if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1373         Promote = false;
1374 
1375     // Work out the type of the argument, for use in the function prototype in
1376     // the header file.
1377     const Type *ArgType = ME.getType(TypeInit, Param);
1378     ArgTypes.push_back(ArgType);
1379 
1380     // If the argument is a subclass of Immediate, record the details about
1381     // what values it can take, for Sema checking.
1382     bool Immediate = false;
1383     if (auto TypeDI = dyn_cast<DefInit>(TypeInit)) {
1384       Record *TypeRec = TypeDI->getDef();
1385       if (TypeRec->isSubClassOf("Immediate")) {
1386         Immediate = true;
1387 
1388         Record *Bounds = TypeRec->getValueAsDef("bounds");
1389         ImmediateArg &IA = ImmediateArgs[i];
1390         if (Bounds->isSubClassOf("IB_ConstRange")) {
1391           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1392           IA.i1 = Bounds->getValueAsInt("lo");
1393           IA.i2 = Bounds->getValueAsInt("hi");
1394         } else if (Bounds->getName() == "IB_UEltValue") {
1395           IA.boundsType = ImmediateArg::BoundsType::UInt;
1396           IA.i1 = Param->sizeInBits();
1397         } else if (Bounds->getName() == "IB_LaneIndex") {
1398           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1399           IA.i1 = 0;
1400           IA.i2 = 128 / Param->sizeInBits() - 1;
1401         } else if (Bounds->isSubClassOf("IB_EltBit")) {
1402           IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1403           IA.i1 = Bounds->getValueAsInt("base");
1404           const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1405           IA.i2 = IA.i1 + T->sizeInBits() - 1;
1406         } else {
1407           PrintFatalError("unrecognised ImmediateBounds subclass");
1408         }
1409 
1410         IA.ArgType = ArgType;
1411 
1412         if (!TypeRec->isValueUnset("extra")) {
1413           IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1414           if (!TypeRec->isValueUnset("extraarg"))
1415             IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1416         }
1417       }
1418     }
1419 
1420     // The argument will usually have a name in the arguments dag, which goes
1421     // into the variable-name scope that the code gen will refer to.
1422     StringRef ArgName = ArgsDag->getArgNameStr(i);
1423     if (!ArgName.empty())
1424       Scope[std::string(ArgName)] =
1425           ME.getCodeForArg(i, ArgType, Promote, Immediate);
1426   }
1427 
1428   // Finally, go through the codegen dag and translate it into a Result object
1429   // (with an arbitrary DAG of depended-on Results hanging off it).
1430   DagInit *CodeDag = R->getValueAsDag("codegen");
1431   Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1432   if (MainOp->isSubClassOf("CustomCodegen")) {
1433     // Or, if it's the special case of CustomCodegen, just accumulate
1434     // a list of parameters we're going to assign to variables before
1435     // breaking from the loop.
1436     CustomCodeGenArgs["CustomCodeGenType"] =
1437         (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1438     for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1439       StringRef Name = CodeDag->getArgNameStr(i);
1440       if (Name.empty()) {
1441         PrintFatalError("Operands to CustomCodegen should have names");
1442       } else if (auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1443         CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1444       } else if (auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1445         CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1446       } else {
1447         PrintFatalError("Operands to CustomCodegen should be integers");
1448       }
1449     }
1450   } else {
1451     Code = ME.getCodeForDag(CodeDag, Scope, Param);
1452   }
1453 }
1454 
1455 EmitterBase::EmitterBase(RecordKeeper &Records) {
1456   // Construct the whole EmitterBase.
1457 
1458   // First, look up all the instances of PrimitiveType. This gives us the list
1459   // of vector typedefs we have to put in arm_mve.h, and also allows us to
1460   // collect all the useful ScalarType instances into a big list so that we can
1461   // use it for operations such as 'find the unsigned version of this signed
1462   // integer type'.
1463   for (Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1464     ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1465 
1466   // Now go through the instances of Intrinsic, and for each one, iterate
1467   // through its list of type parameters making an ACLEIntrinsic for each one.
1468   for (Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1469     for (Record *RParam : R->getValueAsListOfDefs("params")) {
1470       const Type *Param = getType(RParam, getVoidType());
1471       auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1472       ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1473     }
1474   }
1475 }
1476 
1477 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1478 /// having to point it at one elsewhere. (In other words, it works just like
1479 /// std::ostringstream; also, this makes it convenient to declare a whole array
1480 /// of them at once.)
1481 ///
1482 /// We have to set this up using multiple inheritance, to ensure that the
1483 /// string member has been constructed before raw_string_ostream's constructor
1484 /// is given a pointer to it.
1485 class string_holder {
1486 protected:
1487   std::string S;
1488 };
1489 class raw_self_contained_string_ostream : private string_holder,
1490                                           public raw_string_ostream {
1491 public:
1492   raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1493 };
1494 
1495 const char LLVMLicenseHeader[] =
1496     " *\n"
1497     " *\n"
1498     " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1499     " Exceptions.\n"
1500     " * See https://llvm.org/LICENSE.txt for license information.\n"
1501     " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1502     " *\n"
1503     " *===-----------------------------------------------------------------"
1504     "------===\n"
1505     " */\n"
1506     "\n";
1507 
1508 // Machinery for the grouping of intrinsics by similar codegen.
1509 //
1510 // The general setup is that 'MergeableGroup' stores the things that a set of
1511 // similarly shaped intrinsics have in common: the text of their code
1512 // generation, and the number and type of their parameter variables.
1513 // MergeableGroup is the key in a std::map whose value is a set of
1514 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1515 // specializes the MergeableGroup's generic description: the function name and
1516 // the _values_ of the parameter variables.
1517 
1518 struct ComparableStringVector : std::vector<std::string> {
1519   // Infrastructure: a derived class of vector<string> which comes with an
1520   // ordering, so that it can be used as a key in maps and an element in sets.
1521   // There's no requirement on the ordering beyond being deterministic.
1522   bool operator<(const ComparableStringVector &rhs) const {
1523     if (size() != rhs.size())
1524       return size() < rhs.size();
1525     for (size_t i = 0, e = size(); i < e; ++i)
1526       if ((*this)[i] != rhs[i])
1527         return (*this)[i] < rhs[i];
1528     return false;
1529   }
1530 };
1531 
1532 struct OutputIntrinsic {
1533   const ACLEIntrinsic *Int;
1534   std::string Name;
1535   ComparableStringVector ParamValues;
1536   bool operator<(const OutputIntrinsic &rhs) const {
1537     if (Name != rhs.Name)
1538       return Name < rhs.Name;
1539     return ParamValues < rhs.ParamValues;
1540   }
1541 };
1542 struct MergeableGroup {
1543   std::string Code;
1544   ComparableStringVector ParamTypes;
1545   bool operator<(const MergeableGroup &rhs) const {
1546     if (Code != rhs.Code)
1547       return Code < rhs.Code;
1548     return ParamTypes < rhs.ParamTypes;
1549   }
1550 };
1551 
1552 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1553   // Pass 1: generate code for all the intrinsics as if every type or constant
1554   // that can possibly be abstracted out into a parameter variable will be.
1555   // This identifies the sets of intrinsics we'll group together into a single
1556   // piece of code generation.
1557 
1558   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1559 
1560   for (const auto &kv : ACLEIntrinsics) {
1561     const ACLEIntrinsic &Int = *kv.second;
1562     if (Int.headerOnly())
1563       continue;
1564 
1565     MergeableGroup MG;
1566     OutputIntrinsic OI;
1567 
1568     OI.Int = &Int;
1569     OI.Name = Int.fullName();
1570     CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1571     raw_string_ostream OS(MG.Code);
1572     Int.genCode(OS, ParamAllocPrelim, 1);
1573     OS.flush();
1574 
1575     MergeableGroupsPrelim[MG].insert(OI);
1576   }
1577 
1578   // Pass 2: for each of those groups, optimize the parameter variable set by
1579   // eliminating 'parameters' that are the same for all intrinsics in the
1580   // group, and merging together pairs of parameter variables that take the
1581   // same values as each other for all intrinsics in the group.
1582 
1583   std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1584 
1585   for (const auto &kv : MergeableGroupsPrelim) {
1586     const MergeableGroup &MG = kv.first;
1587     std::vector<int> ParamNumbers;
1588     std::map<ComparableStringVector, int> ParamNumberMap;
1589 
1590     // Loop over the parameters for this group.
1591     for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1592       // Is this parameter the same for all intrinsics in the group?
1593       const OutputIntrinsic &OI_first = *kv.second.begin();
1594       bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1595         return OI.ParamValues[i] == OI_first.ParamValues[i];
1596       });
1597 
1598       // If so, record it as -1, meaning 'no parameter variable needed'. Then
1599       // the corresponding call to allocParam in pass 2 will not generate a
1600       // variable at all, and just use the value inline.
1601       if (Constant) {
1602         ParamNumbers.push_back(-1);
1603         continue;
1604       }
1605 
1606       // Otherwise, make a list of the values this parameter takes for each
1607       // intrinsic, and see if that value vector matches anything we already
1608       // have. We also record the parameter type, so that we don't accidentally
1609       // match up two parameter variables with different types. (Not that
1610       // there's much chance of them having textually equivalent values, but in
1611       // _principle_ it could happen.)
1612       ComparableStringVector key;
1613       key.push_back(MG.ParamTypes[i]);
1614       for (const auto &OI : kv.second)
1615         key.push_back(OI.ParamValues[i]);
1616 
1617       auto Found = ParamNumberMap.find(key);
1618       if (Found != ParamNumberMap.end()) {
1619         // Yes, an existing parameter variable can be reused for this.
1620         ParamNumbers.push_back(Found->second);
1621         continue;
1622       }
1623 
1624       // No, we need a new parameter variable.
1625       int ExistingIndex = ParamNumberMap.size();
1626       ParamNumberMap[key] = ExistingIndex;
1627       ParamNumbers.push_back(ExistingIndex);
1628     }
1629 
1630     // Now we're ready to do the pass 2 code generation, which will emit the
1631     // reduced set of parameter variables we've just worked out.
1632 
1633     for (const auto &OI_prelim : kv.second) {
1634       const ACLEIntrinsic *Int = OI_prelim.Int;
1635 
1636       MergeableGroup MG;
1637       OutputIntrinsic OI;
1638 
1639       OI.Int = OI_prelim.Int;
1640       OI.Name = OI_prelim.Name;
1641       CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1642                                        &ParamNumbers};
1643       raw_string_ostream OS(MG.Code);
1644       Int->genCode(OS, ParamAlloc, 2);
1645       OS.flush();
1646 
1647       MergeableGroups[MG].insert(OI);
1648     }
1649   }
1650 
1651   // Output the actual C++ code.
1652 
1653   for (const auto &kv : MergeableGroups) {
1654     const MergeableGroup &MG = kv.first;
1655 
1656     // List of case statements in the main switch on BuiltinID, and an open
1657     // brace.
1658     const char *prefix = "";
1659     for (const auto &OI : kv.second) {
1660       OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1661          << "_" << OI.Name << ":";
1662 
1663       prefix = "\n";
1664     }
1665     OS << " {\n";
1666 
1667     if (!MG.ParamTypes.empty()) {
1668       // If we've got some parameter variables, then emit their declarations...
1669       for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1670         StringRef Type = MG.ParamTypes[i];
1671         OS << "  " << Type;
1672         if (!Type.endswith("*"))
1673           OS << " ";
1674         OS << " Param" << utostr(i) << ";\n";
1675       }
1676 
1677       // ... and an inner switch on BuiltinID that will fill them in with each
1678       // individual intrinsic's values.
1679       OS << "  switch (BuiltinID) {\n";
1680       for (const auto &OI : kv.second) {
1681         OS << "  case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1682            << "_" << OI.Name << ":\n";
1683         for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1684           OS << "    Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1685         OS << "    break;\n";
1686       }
1687       OS << "  }\n";
1688     }
1689 
1690     // And finally, output the code, and close the outer pair of braces. (The
1691     // code will always end with a 'return' statement, so we need not insert a
1692     // 'break' here.)
1693     OS << MG.Code << "}\n";
1694   }
1695 }
1696 
1697 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1698   // Build a sorted table of:
1699   // - intrinsic id number
1700   // - full name
1701   // - polymorphic name or -1
1702   StringToOffsetTable StringTable;
1703   OS << "static const IntrinToName MapData[] = {\n";
1704   for (const auto &kv : ACLEIntrinsics) {
1705     const ACLEIntrinsic &Int = *kv.second;
1706     if (Int.headerOnly())
1707       continue;
1708     int32_t ShortNameOffset =
1709         Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1710                           : -1;
1711     OS << "  { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1712        << Int.fullName() << ", "
1713        << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1714        << ShortNameOffset << "},\n";
1715   }
1716   OS << "};\n\n";
1717 
1718   OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1719 
1720   OS << "static const char IntrinNames[] = {\n";
1721   StringTable.EmitString(OS);
1722   OS << "};\n\n";
1723 }
1724 
1725 void EmitterBase::GroupSemaChecks(
1726     std::map<std::string, std::set<std::string>> &Checks) {
1727   for (const auto &kv : ACLEIntrinsics) {
1728     const ACLEIntrinsic &Int = *kv.second;
1729     if (Int.headerOnly())
1730       continue;
1731     std::string Check = Int.genSema();
1732     if (!Check.empty())
1733       Checks[Check].insert(Int.fullName());
1734   }
1735 }
1736 
1737 // -----------------------------------------------------------------------------
1738 // The class used for generating arm_mve.h and related Clang bits
1739 //
1740 
1741 class MveEmitter : public EmitterBase {
1742 public:
1743   MveEmitter(RecordKeeper &Records) : EmitterBase(Records){};
1744   void EmitHeader(raw_ostream &OS) override;
1745   void EmitBuiltinDef(raw_ostream &OS) override;
1746   void EmitBuiltinSema(raw_ostream &OS) override;
1747 };
1748 
1749 void MveEmitter::EmitHeader(raw_ostream &OS) {
1750   // Accumulate pieces of the header file that will be enabled under various
1751   // different combinations of #ifdef. The index into parts[] is made up of
1752   // the following bit flags.
1753   constexpr unsigned Float = 1;
1754   constexpr unsigned UseUserNamespace = 2;
1755 
1756   constexpr unsigned NumParts = 4;
1757   raw_self_contained_string_ostream parts[NumParts];
1758 
1759   // Write typedefs for all the required vector types, and a few scalar
1760   // types that don't already have the name we want them to have.
1761 
1762   parts[0] << "typedef uint16_t mve_pred16_t;\n";
1763   parts[Float] << "typedef __fp16 float16_t;\n"
1764                   "typedef float float32_t;\n";
1765   for (const auto &kv : ScalarTypes) {
1766     const ScalarType *ST = kv.second.get();
1767     if (ST->hasNonstandardName())
1768       continue;
1769     raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1770     const VectorType *VT = getVectorType(ST);
1771 
1772     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1773        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1774        << VT->cName() << ";\n";
1775 
1776     // Every vector type also comes with a pair of multi-vector types for
1777     // the VLD2 and VLD4 instructions.
1778     for (unsigned n = 2; n <= 4; n += 2) {
1779       const MultiVectorType *MT = getMultiVectorType(n, VT);
1780       OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1781          << MT->cName() << ";\n";
1782     }
1783   }
1784   parts[0] << "\n";
1785   parts[Float] << "\n";
1786 
1787   // Write declarations for all the intrinsics.
1788 
1789   for (const auto &kv : ACLEIntrinsics) {
1790     const ACLEIntrinsic &Int = *kv.second;
1791 
1792     // We generate each intrinsic twice, under its full unambiguous
1793     // name and its shorter polymorphic name (if the latter exists).
1794     for (bool Polymorphic : {false, true}) {
1795       if (Polymorphic && !Int.polymorphic())
1796         continue;
1797       if (!Polymorphic && Int.polymorphicOnly())
1798         continue;
1799 
1800       // We also generate each intrinsic under a name like __arm_vfooq
1801       // (which is in C language implementation namespace, so it's
1802       // safe to define in any conforming user program) and a shorter
1803       // one like vfooq (which is in user namespace, so a user might
1804       // reasonably have used it for something already). If so, they
1805       // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1806       // including the header, which will suppress the shorter names
1807       // and leave only the implementation-namespace ones. Then they
1808       // have to write __arm_vfooq everywhere, of course.
1809 
1810       for (bool UserNamespace : {false, true}) {
1811         raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1812                                 (UserNamespace ? UseUserNamespace : 0)];
1813 
1814         // Make the name of the function in this declaration.
1815 
1816         std::string FunctionName =
1817             Polymorphic ? Int.shortName() : Int.fullName();
1818         if (!UserNamespace)
1819           FunctionName = "__arm_" + FunctionName;
1820 
1821         // Make strings for the types involved in the function's
1822         // prototype.
1823 
1824         std::string RetTypeName = Int.returnType()->cName();
1825         if (!StringRef(RetTypeName).endswith("*"))
1826           RetTypeName += " ";
1827 
1828         std::vector<std::string> ArgTypeNames;
1829         for (const Type *ArgTypePtr : Int.argTypes())
1830           ArgTypeNames.push_back(ArgTypePtr->cName());
1831         std::string ArgTypesString =
1832             join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1833 
1834         // Emit the actual declaration. All these functions are
1835         // declared 'static inline' without a body, which is fine
1836         // provided clang recognizes them as builtins, and has the
1837         // effect that this type signature is used in place of the one
1838         // that Builtins.def didn't provide. That's how we can get
1839         // structure types that weren't defined until this header was
1840         // included to be part of the type signature of a builtin that
1841         // was known to clang already.
1842         //
1843         // The declarations use __attribute__(__clang_arm_builtin_alias),
1844         // so that each function declared will be recognized as the
1845         // appropriate MVE builtin in spite of its user-facing name.
1846         //
1847         // (That's better than making them all wrapper functions,
1848         // partly because it avoids any compiler error message citing
1849         // the wrapper function definition instead of the user's code,
1850         // and mostly because some MVE intrinsics have arguments
1851         // required to be compile-time constants, and that property
1852         // can't be propagated through a wrapper function. It can be
1853         // propagated through a macro, but macros can't be overloaded
1854         // on argument types very easily - you have to use _Generic,
1855         // which makes error messages very confusing when the user
1856         // gets it wrong.)
1857         //
1858         // Finally, the polymorphic versions of the intrinsics are
1859         // also defined with __attribute__(overloadable), so that when
1860         // the same name is defined with several type signatures, the
1861         // right thing happens. Each one of the overloaded
1862         // declarations is given a different builtin id, which
1863         // has exactly the effect we want: first clang resolves the
1864         // overload to the right function, then it knows which builtin
1865         // it's referring to, and then the Sema checking for that
1866         // builtin can check further things like the constant
1867         // arguments.
1868         //
1869         // One more subtlety is the newline just before the return
1870         // type name. That's a cosmetic tweak to make the error
1871         // messages legible if the user gets the types wrong in a call
1872         // to a polymorphic function: this way, clang will print just
1873         // the _final_ line of each declaration in the header, to show
1874         // the type signatures that would have been legal. So all the
1875         // confusing machinery with __attribute__ is left out of the
1876         // error message, and the user sees something that's more or
1877         // less self-documenting: "here's a list of actually readable
1878         // type signatures for vfooq(), and here's why each one didn't
1879         // match your call".
1880 
1881         OS << "static __inline__ __attribute__(("
1882            << (Polymorphic ? "__overloadable__, " : "")
1883            << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1884            << ")))\n"
1885            << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1886       }
1887     }
1888   }
1889   for (auto &part : parts)
1890     part << "\n";
1891 
1892   // Now we've finished accumulating bits and pieces into the parts[] array.
1893   // Put it all together to write the final output file.
1894 
1895   OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1896         "-----------------------------------===\n"
1897      << LLVMLicenseHeader
1898      << "#ifndef __ARM_MVE_H\n"
1899         "#define __ARM_MVE_H\n"
1900         "\n"
1901         "#if !__ARM_FEATURE_MVE\n"
1902         "#error \"MVE support not enabled\"\n"
1903         "#endif\n"
1904         "\n"
1905         "#include <stdint.h>\n"
1906         "\n"
1907         "#ifdef __cplusplus\n"
1908         "extern \"C\" {\n"
1909         "#endif\n"
1910         "\n";
1911 
1912   for (size_t i = 0; i < NumParts; ++i) {
1913     std::vector<std::string> conditions;
1914     if (i & Float)
1915       conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1916     if (i & UseUserNamespace)
1917       conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1918 
1919     std::string condition =
1920         join(std::begin(conditions), std::end(conditions), " && ");
1921     if (!condition.empty())
1922       OS << "#if " << condition << "\n\n";
1923     OS << parts[i].str();
1924     if (!condition.empty())
1925       OS << "#endif /* " << condition << " */\n\n";
1926   }
1927 
1928   OS << "#ifdef __cplusplus\n"
1929         "} /* extern \"C\" */\n"
1930         "#endif\n"
1931         "\n"
1932         "#endif /* __ARM_MVE_H */\n";
1933 }
1934 
1935 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1936   for (const auto &kv : ACLEIntrinsics) {
1937     const ACLEIntrinsic &Int = *kv.second;
1938     OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1939        << ", \"\", \"n\")\n";
1940   }
1941 
1942   std::set<std::string> ShortNamesSeen;
1943 
1944   for (const auto &kv : ACLEIntrinsics) {
1945     const ACLEIntrinsic &Int = *kv.second;
1946     if (Int.polymorphic()) {
1947       StringRef Name = Int.shortName();
1948       if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1949         OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1950         if (Int.nonEvaluating())
1951           OS << "u"; // indicate that this builtin doesn't evaluate its args
1952         OS << "\")\n";
1953         ShortNamesSeen.insert(std::string(Name));
1954       }
1955     }
1956   }
1957 }
1958 
1959 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1960   std::map<std::string, std::set<std::string>> Checks;
1961   GroupSemaChecks(Checks);
1962 
1963   for (const auto &kv : Checks) {
1964     for (StringRef Name : kv.second)
1965       OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1966     OS << "  return " << kv.first;
1967   }
1968 }
1969 
1970 // -----------------------------------------------------------------------------
1971 // Class that describes an ACLE intrinsic implemented as a macro.
1972 //
1973 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1974 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1975 // fixed types.
1976 
1977 class FunctionMacro {
1978   std::vector<StringRef> Params;
1979   StringRef Definition;
1980 
1981 public:
1982   FunctionMacro(const Record &R);
1983 
1984   const std::vector<StringRef> &getParams() const { return Params; }
1985   StringRef getDefinition() const { return Definition; }
1986 };
1987 
1988 FunctionMacro::FunctionMacro(const Record &R) {
1989   Params = R.getValueAsListOfStrings("params");
1990   Definition = R.getValueAsString("definition");
1991 }
1992 
1993 // -----------------------------------------------------------------------------
1994 // The class used for generating arm_cde.h and related Clang bits
1995 //
1996 
1997 class CdeEmitter : public EmitterBase {
1998   std::map<StringRef, FunctionMacro> FunctionMacros;
1999 
2000 public:
2001   CdeEmitter(RecordKeeper &Records);
2002   void EmitHeader(raw_ostream &OS) override;
2003   void EmitBuiltinDef(raw_ostream &OS) override;
2004   void EmitBuiltinSema(raw_ostream &OS) override;
2005 };
2006 
2007 CdeEmitter::CdeEmitter(RecordKeeper &Records) : EmitterBase(Records) {
2008   for (Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2009     FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2010 }
2011 
2012 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2013   // Accumulate pieces of the header file that will be enabled under various
2014   // different combinations of #ifdef. The index into parts[] is one of the
2015   // following:
2016   constexpr unsigned None = 0;
2017   constexpr unsigned MVE = 1;
2018   constexpr unsigned MVEFloat = 2;
2019 
2020   constexpr unsigned NumParts = 3;
2021   raw_self_contained_string_ostream parts[NumParts];
2022 
2023   // Write typedefs for all the required vector types, and a few scalar
2024   // types that don't already have the name we want them to have.
2025 
2026   parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2027   parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2028                      "typedef float float32_t;\n";
2029   for (const auto &kv : ScalarTypes) {
2030     const ScalarType *ST = kv.second.get();
2031     if (ST->hasNonstandardName())
2032       continue;
2033     // We don't have float64x2_t
2034     if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2035       continue;
2036     raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2037     const VectorType *VT = getVectorType(ST);
2038 
2039     OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2040        << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2041        << VT->cName() << ";\n";
2042   }
2043   parts[MVE] << "\n";
2044   parts[MVEFloat] << "\n";
2045 
2046   // Write declarations for all the intrinsics.
2047 
2048   for (const auto &kv : ACLEIntrinsics) {
2049     const ACLEIntrinsic &Int = *kv.second;
2050 
2051     // We generate each intrinsic twice, under its full unambiguous
2052     // name and its shorter polymorphic name (if the latter exists).
2053     for (bool Polymorphic : {false, true}) {
2054       if (Polymorphic && !Int.polymorphic())
2055         continue;
2056       if (!Polymorphic && Int.polymorphicOnly())
2057         continue;
2058 
2059       raw_ostream &OS =
2060           parts[Int.requiresFloat() ? MVEFloat
2061                                     : Int.requiresMVE() ? MVE : None];
2062 
2063       // Make the name of the function in this declaration.
2064       std::string FunctionName =
2065           "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2066 
2067       // Make strings for the types involved in the function's
2068       // prototype.
2069       std::string RetTypeName = Int.returnType()->cName();
2070       if (!StringRef(RetTypeName).endswith("*"))
2071         RetTypeName += " ";
2072 
2073       std::vector<std::string> ArgTypeNames;
2074       for (const Type *ArgTypePtr : Int.argTypes())
2075         ArgTypeNames.push_back(ArgTypePtr->cName());
2076       std::string ArgTypesString =
2077           join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2078 
2079       // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2080       // comments
2081       OS << "static __inline__ __attribute__(("
2082          << (Polymorphic ? "__overloadable__, " : "")
2083          << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2084          << "_" << Int.fullName() << ")))\n"
2085          << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2086     }
2087   }
2088 
2089   for (const auto &kv : FunctionMacros) {
2090     StringRef Name = kv.first;
2091     const FunctionMacro &FM = kv.second;
2092 
2093     raw_ostream &OS = parts[MVE];
2094     OS << "#define "
2095        << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2096        << FM.getDefinition() << "\n";
2097   }
2098 
2099   for (auto &part : parts)
2100     part << "\n";
2101 
2102   // Now we've finished accumulating bits and pieces into the parts[] array.
2103   // Put it all together to write the final output file.
2104 
2105   OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2106         "-----------------------------------===\n"
2107      << LLVMLicenseHeader
2108      << "#ifndef __ARM_CDE_H\n"
2109         "#define __ARM_CDE_H\n"
2110         "\n"
2111         "#if !__ARM_FEATURE_CDE\n"
2112         "#error \"CDE support not enabled\"\n"
2113         "#endif\n"
2114         "\n"
2115         "#include <stdint.h>\n"
2116         "\n"
2117         "#ifdef __cplusplus\n"
2118         "extern \"C\" {\n"
2119         "#endif\n"
2120         "\n";
2121 
2122   for (size_t i = 0; i < NumParts; ++i) {
2123     std::string condition;
2124     if (i == MVEFloat)
2125       condition = "__ARM_FEATURE_MVE & 2";
2126     else if (i == MVE)
2127       condition = "__ARM_FEATURE_MVE";
2128 
2129     if (!condition.empty())
2130       OS << "#if " << condition << "\n\n";
2131     OS << parts[i].str();
2132     if (!condition.empty())
2133       OS << "#endif /* " << condition << " */\n\n";
2134   }
2135 
2136   OS << "#ifdef __cplusplus\n"
2137         "} /* extern \"C\" */\n"
2138         "#endif\n"
2139         "\n"
2140         "#endif /* __ARM_CDE_H */\n";
2141 }
2142 
2143 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2144   for (const auto &kv : ACLEIntrinsics) {
2145     if (kv.second->headerOnly())
2146       continue;
2147     const ACLEIntrinsic &Int = *kv.second;
2148     OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2149        << ", \"\", \"ncU\")\n";
2150   }
2151 }
2152 
2153 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2154   std::map<std::string, std::set<std::string>> Checks;
2155   GroupSemaChecks(Checks);
2156 
2157   for (const auto &kv : Checks) {
2158     for (StringRef Name : kv.second)
2159       OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2160     OS << "  Err = " << kv.first << "  break;\n";
2161   }
2162 }
2163 
2164 } // namespace
2165 
2166 namespace clang {
2167 
2168 // MVE
2169 
2170 void EmitMveHeader(RecordKeeper &Records, raw_ostream &OS) {
2171   MveEmitter(Records).EmitHeader(OS);
2172 }
2173 
2174 void EmitMveBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2175   MveEmitter(Records).EmitBuiltinDef(OS);
2176 }
2177 
2178 void EmitMveBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2179   MveEmitter(Records).EmitBuiltinSema(OS);
2180 }
2181 
2182 void EmitMveBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2183   MveEmitter(Records).EmitBuiltinCG(OS);
2184 }
2185 
2186 void EmitMveBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2187   MveEmitter(Records).EmitBuiltinAliases(OS);
2188 }
2189 
2190 // CDE
2191 
2192 void EmitCdeHeader(RecordKeeper &Records, raw_ostream &OS) {
2193   CdeEmitter(Records).EmitHeader(OS);
2194 }
2195 
2196 void EmitCdeBuiltinDef(RecordKeeper &Records, raw_ostream &OS) {
2197   CdeEmitter(Records).EmitBuiltinDef(OS);
2198 }
2199 
2200 void EmitCdeBuiltinSema(RecordKeeper &Records, raw_ostream &OS) {
2201   CdeEmitter(Records).EmitBuiltinSema(OS);
2202 }
2203 
2204 void EmitCdeBuiltinCG(RecordKeeper &Records, raw_ostream &OS) {
2205   CdeEmitter(Records).EmitBuiltinCG(OS);
2206 }
2207 
2208 void EmitCdeBuiltinAliases(RecordKeeper &Records, raw_ostream &OS) {
2209   CdeEmitter(Records).EmitBuiltinAliases(OS);
2210 }
2211 
2212 } // end namespace clang
2213